WO2014061887A1 - Hybrid paper and manufacturing method therefor - Google Patents

Hybrid paper and manufacturing method therefor Download PDF

Info

Publication number
WO2014061887A1
WO2014061887A1 PCT/KR2013/003580 KR2013003580W WO2014061887A1 WO 2014061887 A1 WO2014061887 A1 WO 2014061887A1 KR 2013003580 W KR2013003580 W KR 2013003580W WO 2014061887 A1 WO2014061887 A1 WO 2014061887A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
hybrid paper
metal oxide
colloid
graphene
Prior art date
Application number
PCT/KR2013/003580
Other languages
French (fr)
Korean (ko)
Inventor
황성주
김인영
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of WO2014061887A1 publication Critical patent/WO2014061887A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/12Organo-metallic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H3/00Paper or cardboard prepared by adding substances to the pulp or to the formed web on the paper-making machine and by applying substances to finished paper or cardboard (on the paper-making machine), also when the intention is to impregnate at least a part of the paper body

Definitions

  • the present application relates to a hybrid paper, a method for producing the same, and a use thereof.
  • Graphene refers to a monolayer of carbon atoms in which carbon atoms with sp 2 orbitals are connected in a hexagonal ring structure.
  • Graphene has attracted attention from many researchers over the past decade because of the very special physicochemical properties of two-dimensional carbon nanosheets.
  • Graphene has excellent electron conductivity, high thermal conductivity and permeability, and thus can be very useful as a basic material for developing new materials.
  • graphene is a two-dimensional nanosheet having excellent flexibility and strong tensile strength, it is possible to prepare a sample in the form of paper without a substrate (Korea Patent Publication No. 10-2011-0073296).
  • Graphene which is light in weight and has the same physicochemical properties as metals, expands its functionality when hybridized with semiconductors, and research on this has been actively conducted by various researchers. For example, it has been confirmed that hybridization of 0-dimensional titanium oxide nanoparticles and 2-dimensional graphene shows better electrode performance or photocatalytic activity than conventional 0-dimensional titanium oxide nanoparticles. The research of various materials that can apply the excellent properties due to the hybridization of the metal oxide nanoparticles and graphene is required.
  • the present application is to provide a method for producing a hybrid paper (hybrid paper) using a mixture of the layered metal oxide and carbon nanostructures, the metal oxide-carbon nanocomposite hybrid paper produced by the manufacturing method, and its use .
  • a first aspect of the present disclosure provides a hybrid paper comprising a layered metal oxide or hydroxide and carbon nanostructures.
  • a second aspect of the present disclosure is to prepare a carbon nanostructure colloid by dispersing the carbon nanostructure in a solvent; Dispersing the layered metal oxide in a solvent to prepare a layered metal oxide colloid; Preparing a layered metal oxide-carbon nanostructure mixture by mixing the carbon nanostructure colloid and the layered metal oxide colloid; And dialysis of the layered metal oxide-carbon nanostructure mixture to remove residual ionic species, followed by drying.
  • the third aspect of the present application provides an antimicrobial membrane comprising the hybrid paper according to the first aspect of the present application.
  • a fourth aspect of the present application provides a catalyst comprising the hybrid paper according to the first aspect of the present application.
  • a fifth aspect of the present application provides an electrode comprising the hybrid paper according to the first aspect of the present application.
  • a sixth aspect of the present application provides an adsorbent comprising the hybrid paper according to the first aspect of the present application.
  • Hybrid paper according to the present invention can be easily and simply produced in the form of a flexible and rigid free-standing film having a thin thickness compared to the conventional using a liquid mixture of the layered metal oxide and carbon nanostructures.
  • the hybrid paper according to the present application has a high antimicrobial property, it can be applied to various environmental products and various antibacterial products.
  • C / Ti 1.83 O 4 (a) 0.2, (b) 0.4, (c) 1, (d) 2, (e) 4, and (f) 8.
  • FIG. 2 is a graph showing ultraviolet-visible spectral spectra of layered titanium oxide-graphene mixed colloid (solid line), layered titanium oxide colloid (dashed line) and graphene colloid (single dashed line) according to an embodiment of the present application.
  • Figure 3 shows a photograph of a layered titanium oxide, graphene, layered titanium oxide-graphene mixed paper in one embodiment of the present application: (a) paper samples viewed from above, (b) layered titanium oxide paper, (c A) graphene paper, (d) hybrid paper 0.4, (e) hybrid paper 1, and (f) hybrid paper 2.
  • FIG. 4 shows electron scanning micrographs of layered titanium oxide, graphene, and layered titanium oxide-graphene hybrid paper in one embodiment of the present application: (a) graphene paper, (b) layered titanium oxide paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2.
  • FIG. 5 is a graph showing X-ray diffraction patterns of layered titanium oxide, graphene, and layered titanium oxide-graphene hybrid paper in one embodiment of the present application: (a) graphene paper, and (b) layered titanium oxide Paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2.
  • FIG. 6 is a graph showing X-ray diffraction patterns of layered titanium oxide, graphene, and layered titanium oxide-graphene hybrid paper after 300 ° C. heat treatment in one embodiment of the present application: (a) layered titanium oxide paper, ( b) hybrid paper 0.4, (c) mixed paper 1, (d) mixed paper 2.
  • FIG. 7 is a graph showing Ti K-edge XANES spectra of layered titanium oxide-graphene mixed paper in one embodiment of the present application: (a) mixed paper 0.4, (b) mixed paper 1, (c) mixed paper 2, (d) layered titanium oxide paper, (e) H 0.67 Ti 1.83 O 4 of repidocrosite type, (f) rutile TiO 2 , and (g) anatase TiO 2 .
  • FIG. 8 shows (a) H 0.67 Ti 1.83 O 4 of repidocrosite type, (b) hybrid paper 0.4, (c) hybrid paper 1, (d) hybrid paper 2, and (e) in one embodiment of the present application. ) Shows a micro-Raman graph of graphene.
  • FIG. 10 illustrates contact angles of (a) graphene paper, (b) layered titanium oxide paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2 according to one embodiment of the present disclosure. It is measured.
  • FIG. 11 is a graph illustrating the antimicrobial activity of a hybrid paper against E-coli O157 in one embodiment of the present application.
  • FIG. 12 is a photograph showing an experimental result of evaluating resistance to ultrasonic stimulation of a layered titanium oxide paper, graphene paper, and a hybrid paper in one embodiment of the present application.
  • FIG. 13 illustrates the microwaves of (a) layered titanium oxide paper, (b) graphene paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2 according to one embodiment of the present disclosure.
  • the photograph showing the results of the experiment evaluating the resistance to heat treatment.
  • the term "combinations of these" included in the expression of the makushi form refers to one or more mixtures or combinations selected from the group consisting of the elements described in the expression of the makushi form. It means to include one or more selected from the group consisting of elements.
  • a first aspect of the present disclosure provides a hybrid paper comprising a layered metal oxide or hydroxide and carbon nanostructures.
  • the hybrid paper may include that the layered metal oxide or the layered metal hydroxide is laminated between the carbon nanostructures, and further carbon nanostructures are laminated on the layered metal oxide.
  • this may not be limited.
  • the carbon nanostructure may include one selected from the group consisting of carbon nanotubes, graphite, graphene oxide, graphene, and combinations thereof, for example, graphene It may include, but may not be limited thereto.
  • the carbon nanotubes may include, for example, one selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, thin-walled carbon nanotubes, multi-walled carbon nanotubes, and combinations thereof, but is not limited thereto. It may not be.
  • the layered metal oxide or hydroxide is aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Gallium (Ga), Zirconium (Zr), Molybdenum (Mo), Niobium (Nb), Tin (Sn), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag), Cadmium (Cd), Tin (Sn), Antimony (Sb), Indium (In), Tantalum (Ta), Tungsten (W), Platinum (Pt), Gold (Au) , Lead (Pb), bismuth (Bi), and may include an oxide or hydroxide of a metal selected from the group consisting of, for example, may include a layered titanium oxide, but may not be limited thereto. have.
  • the thickness of the hybrid paper is about 1 ⁇ m to about 100 ⁇ m, for example, about 5 ⁇ m to about 100 ⁇ m, about 10 ⁇ m to about 100 ⁇ m, about 20 ⁇ m to about 100 ⁇ m, About 30 ⁇ m to about 100 ⁇ m, about 40 ⁇ m to about 100 ⁇ m, about 50 ⁇ m to about 100 ⁇ m, about 60 ⁇ m to about 100 ⁇ m, about 70 ⁇ m to about 100 ⁇ m, about 80 ⁇ m to about 100 ⁇ m, about 90 ⁇ m to about 100 ⁇ m, about 1 ⁇ m to about 90 ⁇ m, about 1 ⁇ m to about 80 ⁇ m, about 1 ⁇ m to about 70 ⁇ m, about 1 ⁇ m to about 60 ⁇ m, about 1 ⁇ m to about 50 ⁇ m, about 1 ⁇ m to About 40 ⁇ m, about 1 ⁇ m to about 30 ⁇ m, about 1 ⁇ m to about 20 ⁇ m, or about 1 ⁇ m to about 10
  • the hybrid paper may have antimicrobial properties, but may not be limited thereto.
  • the hybrid paper may exhibit about 99.99% or more antimicrobial activity against microorganisms such as E-coli O157, but may not be limited thereto.
  • the hybrid paper may have hydrophilicity, but may not be limited thereto.
  • the layered metal oxide is hydrophilic and the carbon nanostructure is hydrophobic, but the hybrid paper prepared by mixing them exhibits hydrophilicity.
  • a second aspect of the present disclosure is to prepare a carbon nanostructure colloid by dispersing the carbon nanostructure in a solvent; Dispersing the layered metal oxide in a solvent to prepare a layered metal oxide colloid; Preparing a layered metal oxide-carbon nanostructure mixture by mixing the carbon nanostructure colloid and the layered metal oxide colloid; And dialysis of the layered metal oxide-carbon nanostructure mixture to remove residual ionic species, followed by drying.
  • the carbon nanostructure may include one selected from the group consisting of carbon nanotubes, graphite, graphite oxide, graphene, and combinations thereof, for example, including graphene It may be, but may not be limited thereto.
  • the carbon nanotubes may include, for example, one selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, thin-walled carbon nanotubes, multi-walled carbon nanotubes, and combinations thereof, but is not limited thereto. It may not be.
  • the layered metal oxide is aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel ( Ni, copper (Cu), zinc (Zn), gallium (Ga), zirconium (Zr), molybdenum (Mo), niobium (Nb), tin (Sn), ruthenium (Ru), rhodium (Rh), palladium ( Pd), silver (Ag), cadmium (Cd), tin (Sn), antimony (Sb), indium (In), tantalum (Ta), tungsten (W), platinum (Pt), gold (Au), lead Oxides and hydroxides of metals selected from the group consisting of (Pb), bismuth (Bi), and combinations thereof, and may include, for example, but not limited to, layered titanium oxide.
  • the carbon nanostructure colloid and the layered metal oxide colloid may be mixed in a molar mixing ratio of about 1: about 10 to about 10: about 1, but may not be limited thereto.
  • the molar mixing ratio of the carbon nanostructure colloid and the layered metal oxide colloid is, for example, about 1: about 10, about 1: about 9, about 1: about 8, about 1: about 7, about 1: about 1: 6, about 1: about 5, about 1: about 4, about 1: about 3, about 1: about 2, about 1: about 1, about 10: about 1, about 10: about 2, about 10: about 3, About 10: about 4, about 10: about 5, about 10: about 6, about 10: about 7, about 10: about 8, or about 10: about 9, but may not be limited thereto.
  • the layered metal oxide colloid may be prepared by stirring in an acidic solution to form a proton-substituted layered metal oxide colloid and then stirring in an organic cation solution to form a peeled layered metal oxide colloid.
  • the basic solution may be selected from the group consisting of tetrabutylammonium hydroxide, tetramethylammonium hydroxide, formaldehyde, a large aqueous organic compound solution, and combinations thereof. However, this may not be limited.
  • the carbon nanostructure colloid may be prepared by re-reducing the graphene oxide obtained by peeling by applying ultrasonic waves to graphite oxide formed by oxidizing graphite, but may not be limited thereto.
  • the graphene colloid may be manufactured by Hummers 'method, modified hummers' method, Staudenmaier method, or the like, but may not be limited thereto.
  • Re-reduction of the graphite oxide colloid may include reducing using a reducing agent such as hydrazine, hydroquinox, and the like, but may not be limited thereto.
  • the step of filtering the layered metal oxide-carbon nanostructure mixture from which the residual ionic species has been removed may be further included, but may not be limited thereto.
  • the third aspect of the present application provides an antimicrobial membrane comprising the hybrid paper according to the first aspect of the present application.
  • the hybrid paper may exhibit an antimicrobial activity of at least about 90%, at least about 95%, at least about 98%, at least about 99%, or at least about 99.99% to microorganisms such as E-coli O157, but is not limited thereto. Can be.
  • a fourth aspect of the present application provides a catalyst comprising the hybrid paper according to the first aspect of the present application.
  • a fifth aspect of the present application provides an electrode comprising the hybrid paper according to the first aspect of the present application.
  • a sixth aspect of the present application provides an adsorbent comprising the hybrid paper according to the first aspect of the present application.
  • Graphite oxide was prepared by oxidizing the graphite by a modified Hummers' method. Synthesized graphite oxide was added to 0.5 wt% in distilled water and ultrasonication was performed to obtain exfoliated graphene oxide colloid. 0.175 wt% of hydrazine together with ammonia was added to the obtained graphene oxide colloid and reacted at 80 ° C. for 1 hour to obtain a graphene colloid of a re-reduced form.
  • Cs 0.67 Ti 1.83 ⁇ 0.17 O 4 were mixed in equivalent weight and subjected to solid phase synthesis at 800 ° C. for 24 hours to obtain Cs 0.67 Ti 1.83 ⁇ 0.17 O 4 .
  • Cs 0.67 Ti 1.83 ⁇ 0.17 O 4 was added to 1 M HCl solution, and HCl was stirred three times or more.
  • Proton-substituted H 0.67 Ti 1.83 ⁇ 0.17 O 4 was added to a tetrabutylammonium hydroxide (TBA) solution and stirred for 1 week to obtain exfoliated Ti 1.83 ⁇ 0.17 O 4 nanosheet colloid.
  • TSA tetrabutylammonium hydroxide
  • Mixing made a mixed solution. 50 mL of the mixture was dialyzed in 0.5 wt% ammonia solution to remove TBA and hydrazine. The dialyzed solution was filtered under reduced pressure using ananodisc and then dried in a vacuum oven at room temperature. After drying, the layered titanium oxide-graphene hybrid paper was detached from ananodisc.
  • Figure 1 shows a picture of the layered titanium oxide and graphene mixed colloid mixed in various ratios. As the concentration of graphene increased, the color of the mixed colloid turned black. Gray and mixed colloids with varying brightness were stable for several months without showing any agglomeration. Zeta potential measurement results show that the layered titanium oxide and graphene exhibit surface charges of -29 mV and -44 mV, respectively, and the mixed colloids of layered titanium oxide and graphene both exhibit surface charges between -30 mV and -40 mV. (Data not shown). This suggests that the titanium oxide nanosheets and the graphene nanosheets did not lose their inherent surface properties even after mixing.
  • Figure 2 shows the UV-Vis spectroscopic analysis of the layered titanium oxide and graphene mixed colloid.
  • the layered titanium oxide suspension with a wide bandgap has a maximum absorption peak at 260 nm in the ultraviolet region.
  • the UV-Vis spectrum of the mixed colloid shows that the peak intensity near 260 nm decreases as the ratio of titanium oxide decreases. This is because the light absorption coefficient of titanium oxide is larger than that of graphene, the characteristics of titanium oxide appear to be more contributing.
  • the absorption peak of graphene is not clearly seen, as the content of graphene in the mixed colloid increases, the peak around 260-270 nm red shifts.
  • Figure 3 shows that it is possible to prepare a free-standing film by a pressure-filtration method with a mixed colloid in which graphene and layered titanium oxide nanosheets are dispersed.
  • the production of metal oxide-graphene mixed free-standing film mainly as metal oxide free-standing film is the first report in the present invention.
  • the color of the mixed paper is similar to that of the colloid, and it does not show a shiny shine like metal, but the color becomes darker as the graphene content increases.
  • Metal oxide paper is flexible when it has a thin thickness, but when the thickness is thick, its rigid property is strong. Graphene paper was shiny and very flexible like metal, but easily torn.
  • the mixed paper of the present application showed flexible and hard properties.
  • FIG. 4 is an electron scanning microscope image of a cross section of a hybrid paper and graphene, a layered titanium oxide, and a layered titanium oxide-graphene mixed paper having three ratios.
  • graphene paper a smooth surface is observed, and in layered titanium oxide paper, the edges (edges) of the nanosheets are exposed to the surface to form a rough surface.
  • hybrid papers the edges of the nanosheets are much exposed.
  • An interesting fact is that the density of the exposed edges is much higher than that of layered titanium oxide paper. This is thought to be due to mismatch between two different nanosheets, layered titanium oxide and graphene.
  • Cross-sectional electron scanning microscopy images of hybrid paper show that the nanosheets are layered and layered.
  • the thickness of the hybrid paper observed with the electron scanning microscope is about 50 ⁇ m, and the thickness can be adjusted from about 1 ⁇ m to about 100 ⁇ m by adjusting the volume of the mixed solution.
  • FIG. 5 shows an X-ray diffraction graph of graphene, layered titanium oxide, and layered titanium oxide-graphene mixed paper.
  • the X-ray diffraction pattern of the layered titanium oxide paper shows that Bragg reflections are very well developed by stacking of well-ordered nanosheets. Odd peaks during reflection have a strong intensity.
  • the Bragg reflection on the other side except for (00l) is hidden due to the orientation preference of the two-dimensional nanosheet.
  • FIG. 6 shows the results of X-ray diffraction analysis of a sample in which nitrogen gas was flowed and heat-treated at 300 ° C. for 2 hours to investigate thermal stability of the layered titanium oxide-graphene hybrid paper.
  • the graphene paper crumbled to a powdery form and lost its paper properties.
  • the titanium oxide and layered titanium oxide-graphene mixed paper remained paper. After the heat treatment, the titanium oxide paper almost disappeared Bragg reflection and anatase TiO 2 Bragg reflection was observed. In the hybrid paper, the phase transition to anatase TiO 2 was observed by heat treatment.
  • phase change of layered titanium oxide to anatase TiO 2 is prevented as the graphene content increases in the hybrid paper.
  • FIG. 7 shows Ti in the layered titanium oxide paper, and the layered titanium oxide-graphene hybrid paper together with anatase TiO 2 , rutile TiO 2 , H 0.67 Ti 1.83 O 4 in the form of repidocrosite as a control as a control.
  • K-edge XANES spectrum is shown.
  • the XANES spectrum of the mixed paper containing the layered titanium oxide paper showed a different shape from that of the control H 0.67 Ti 1.83 O 4 of the repidocrosite type.
  • the XANES spectrum looks different from that of the powder type sample because the titanium oxide nanosheets are very well aligned in the c-axis direction in the paper type sample. This spectral result is consistent with the polarization dependent XANES analysis of the layered titanium oxide.
  • the pre-edge P represents an electron transition of 1s ⁇ 3d orbital
  • the main edges A and B represent an electron transition of 1s ⁇ 4p orbital.
  • Ti atoms are stabilized at TiO 6 octahedral sites and have a tetravalent oxidation state.
  • C C, C ⁇ O, and metal-O (MO)
  • MO metal-O
  • Graphene and layered titanium oxide paper are hydrophobic and hydrophilic, respectively.
  • the mixed paper was found to be hydrophilic, like the layered titanium oxide, despite the graphene component.
  • 11 is a graph evaluating the antimicrobial activity of the mixed paper against E-coli O157.
  • the mixed papers Within 15 minutes of spraying E-coli O157 on the mixed paper, all the mixed papers showed amazing antimicrobial properties of more than 99.99%.
  • the layered titanium oxide-graphene mixed paper had an outstanding antimicrobial activity of 99.999% in 15 minutes depending on the mixing ratio. Seemed. After 30 minutes of spraying E-coli O157 on the mixed paper, 2 ⁇ 10 8 E-coli were killed. E-coli killing effect by light irradiation was insignificant.
  • FIG. 12 shows the results of evaluation of resistance to ultrasonic stimulation of the hybrid paper of the present application.
  • graphene colloids (C) and the layer of titanium oxide colloid (Ti 1.83 ⁇ 0.17 O 4) molar mixing ratio of the (C / Ti 1.83 ⁇ 0.17 O 4) is 0.4 (TG1), 1 each Hybrid papers TG1, TG2, and TG3 were prepared from the mixed solution so as to be (TG2) and 2 (TG3), respectively (Fig. 12 top image).
  • ultrasonic stimulation at 40 kHz was applied while the layered titanium oxide paper, graphene paper, and hybrid paper (TG1 to TG3) were soaked in 99% ethanol.
  • 13 shows the results of evaluation of resistance to microwave heat treatment of the hybrid paper of the present application.
  • graphene colloids (C) and the layer of titanium oxide colloid (Ti 1.83 ⁇ 0.17 O 4) molar mixing ratio of the (C / Ti 1.83 ⁇ 0.17 O 4) is 0.4 (TG1), 1 each Hybrid species TG1, TG2, and TG3 were prepared from the mixed solution mixed so as to be (TG2) and 2 (TG3), respectively.
  • 13A is a layered titanium oxide paper, (b) graphene paper, (c) TG1 hybrid paper, (d) TG2 hybrid paper, and (e) TG3 hybrid paper. Microwaves at 2,450 kHz were applied for 1 minute.

Abstract

The present application relates to hybrid paper including layered metal oxide and carbon nanostructure, a manufacturing method therefor, and a use thereof.

Description

하이브리드 종이 및 이의 제조방법Hybrid paper and its manufacturing method
본원은, 하이브리드 종이, 이의 제조 방법 및 이의 용도에 관한 것이다.The present application relates to a hybrid paper, a method for producing the same, and a use thereof.
그래핀이란 sp2 오비탈을 가진 탄소원자가 육각형 고리구조로 연결되어 있는 탄소 원자 단일층을 지칭한다. 그래핀은 2 차원 탄소 나노시트의 매우 특별한 물리화학적 특성 때문에 지난 십수년간 많은 연구자들에게 주목을 받아왔다. 그래핀은 전자전도도가 우수하며, 열전도성이 높을 뿐만 아니라 투과성을 가지고 있어 신소재 개발을 위한 기초물질로서 매우 유용하게 사용될 수 있다. 또한 그래핀은 우수한 유연성, 강한 인장 강도를 가지는 2 차원 나노시트이기 때문에 기판 없이 종이 형태로 시료의 제작이 가능하다 (대한민국 공개특허 제10-2011-0073296호). 가벼우면서도 금속과 같은 물리화학적 성질을 가지는 그래핀은 반도체와 혼성화되었을 때 그 기능성이 더욱 확장되며 이에 관한 연구가 여러 연구진에 의해 활발히 수행되어왔다. 일례로 0 차원 티탄산화물 나노입자와 2 차원 그래핀을 혼성화하여 기존의 0 차원 티탄산화물 나노입자보다 우수한 전극성능이나 광촉매 활성을 보이는 것이 확인된 바 있다. 이와 같은 금속 산화물 나노입자와 그래핀의 혼성화로 인한 우수한 특성들을 적용할 수 있는 다양한 소재의 연구가 요구되고 있다.Graphene refers to a monolayer of carbon atoms in which carbon atoms with sp 2 orbitals are connected in a hexagonal ring structure. Graphene has attracted attention from many researchers over the past decade because of the very special physicochemical properties of two-dimensional carbon nanosheets. Graphene has excellent electron conductivity, high thermal conductivity and permeability, and thus can be very useful as a basic material for developing new materials. In addition, since graphene is a two-dimensional nanosheet having excellent flexibility and strong tensile strength, it is possible to prepare a sample in the form of paper without a substrate (Korea Patent Publication No. 10-2011-0073296). Graphene, which is light in weight and has the same physicochemical properties as metals, expands its functionality when hybridized with semiconductors, and research on this has been actively conducted by various researchers. For example, it has been confirmed that hybridization of 0-dimensional titanium oxide nanoparticles and 2-dimensional graphene shows better electrode performance or photocatalytic activity than conventional 0-dimensional titanium oxide nanoparticles. The research of various materials that can apply the excellent properties due to the hybridization of the metal oxide nanoparticles and graphene is required.
이에, 본원은 층상 금속 산화물과 탄소 나노구조체의 혼합액을 이용하여 하이브리드 종이(hybrid paper)를 제조하는 방법, 상기 제조 방법에 의해 제조된 금속 산화물-탄소 나노복합체 혼성 종이, 및 이의 용도를 제공하고자 한다. Thus, the present application is to provide a method for producing a hybrid paper (hybrid paper) using a mixture of the layered metal oxide and carbon nanostructures, the metal oxide-carbon nanocomposite hybrid paper produced by the manufacturing method, and its use .
그러나, 본원이 해결하고자 하는 과제는 이상에서 기술한 과제로 제한되지 않으며, 기술되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problem described above, another problem that is not described will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 층상 금속 산화물 또는 수산화물 및 탄소 나노구조체를 포함하는, 하이브리드 종이를 제공한다. A first aspect of the present disclosure provides a hybrid paper comprising a layered metal oxide or hydroxide and carbon nanostructures.
본원의 제 2 측면은, 탄소 나노구조체를 용매에 분산시켜 탄소 나노구조체 콜로이드를 제조하는 단계; 층상 금속 산화물을 용매에 분산시켜 층상 금속 산화물 콜로이드를 제조하는 단계; 상기 탄소 나노구조체 콜로이드와 상기 층상 금속 산화물 콜로이드를 혼합하여 층상 금속 산화물-탄소 나노구조체 혼합물을 제조하는 단계; 및, 상기 층상 금속 산화물-탄소 나노구조체 혼합물을 투석하여 잔류 이온종을 제거한 후 건조시키는 단계를 포함하는, 하이브리드 종이의 제조 방법을 제공한다.A second aspect of the present disclosure is to prepare a carbon nanostructure colloid by dispersing the carbon nanostructure in a solvent; Dispersing the layered metal oxide in a solvent to prepare a layered metal oxide colloid; Preparing a layered metal oxide-carbon nanostructure mixture by mixing the carbon nanostructure colloid and the layered metal oxide colloid; And dialysis of the layered metal oxide-carbon nanostructure mixture to remove residual ionic species, followed by drying.
본원의 제 3 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 항균막을 제공한다.The third aspect of the present application provides an antimicrobial membrane comprising the hybrid paper according to the first aspect of the present application.
본원의 제 4 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 촉매를 제공한다.A fourth aspect of the present application provides a catalyst comprising the hybrid paper according to the first aspect of the present application.
본원의 제 5 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 전극을 제공한다.A fifth aspect of the present application provides an electrode comprising the hybrid paper according to the first aspect of the present application.
본원의 제 6 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 흡착제를 제공한다.A sixth aspect of the present application provides an adsorbent comprising the hybrid paper according to the first aspect of the present application.
본원에 따른 하이브리드 종이는 층상 금속 산화물 및 탄소 나노구조체의 혼합액을 이용하여 기존에 비해 얇은 두께를 가지면서 유연하고 단단한 프리-스탠딩 필름(free-standing film) 형태로 쉽고 간단하게 제조할 수 있다. 또한, 본원에 따른 하이브리드 종이는 높은 항균성을 가지고 있어, 각종 환경 관련 제품 및 여러 항균 제품에 적용될 수 있다.Hybrid paper according to the present invention can be easily and simply produced in the form of a flexible and rigid free-standing film having a thin thickness compared to the conventional using a liquid mixture of the layered metal oxide and carbon nanostructures. In addition, the hybrid paper according to the present application has a high antimicrobial property, it can be applied to various environmental products and various antibacterial products.
도 1 은 본원의 일 실시예에 따른 층상 금속 산화물 콜로이드와 탄소 나노구조체 콜로이드의 다양한 혼합비율의 혼합액 사진을 나타낸 것이다: C/Ti1.83O4 = (a) 0.2, (b) 0.4, (c) 1, (d) 2, (e) 4, 및 (f) 8.1 is a photograph of a mixture of various mixing ratios of a layered metal oxide colloid and a carbon nanostructure colloid according to an embodiment of the present application: C / Ti 1.83 O 4 = (a) 0.2, (b) 0.4, (c) 1, (d) 2, (e) 4, and (f) 8.
도 2 는 본원의 일 실시예에 따른 층상 티탄산화물-그래핀 혼합 콜로이드(실선), 층상 티탄산화물 콜로이드(쇄선) 및 그래핀 콜로이드(일점쇄선)의 자외선-가시선 분광 스펙트럼을 나타낸 그래프이다.FIG. 2 is a graph showing ultraviolet-visible spectral spectra of layered titanium oxide-graphene mixed colloid (solid line), layered titanium oxide colloid (dashed line) and graphene colloid (single dashed line) according to an embodiment of the present application.
도 3 은 본원의 일 실시예에 있어서 층상 티탄산화물, 그래핀, 층상 티탄산화물-그래핀 혼합 종이의 사진을 나타낸 것이다: (a) 위에서 바라본 종이 시료들, (b) 층상 티탄산화물 종이, (c) 그래핀 종이, (d) 하이브리드 종이 0.4, (e) 하이브리드 종이 1, 및 (f) 하이브리드 종이 2.Figure 3 shows a photograph of a layered titanium oxide, graphene, layered titanium oxide-graphene mixed paper in one embodiment of the present application: (a) paper samples viewed from above, (b) layered titanium oxide paper, (c A) graphene paper, (d) hybrid paper 0.4, (e) hybrid paper 1, and (f) hybrid paper 2.
도 4 는 본원의 일 실시예에 있어서 층상 티탄산화물, 그래핀, 및 층상 티탄산화물-그래핀 하이브리드 종이의 전자주사현미경 사진을 나타낸 것이다: (a) 그래핀 종이, (b) 층상 티탄산화물 종이, (c) 하이브리드 종이 0.4, (d) 하이브리드 종이 1, 및 (e) 하이브리드 종이 2.4 shows electron scanning micrographs of layered titanium oxide, graphene, and layered titanium oxide-graphene hybrid paper in one embodiment of the present application: (a) graphene paper, (b) layered titanium oxide paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2.
도 5 는 본원의 일 실시예에 있어서 층상 티탄산화물, 그래핀, 및 층상 티탄산화물-그래핀 하이브리드 종이의 X-선 회절패턴을 나타낸 그래프이다: (a) 그래핀 종이, (b) 층상 티탄산화물 종이, (c) 하이브리드 종이 0.4, (d) 하이브리드 종이 1, 및 (e) 하이브리드 종이 2.FIG. 5 is a graph showing X-ray diffraction patterns of layered titanium oxide, graphene, and layered titanium oxide-graphene hybrid paper in one embodiment of the present application: (a) graphene paper, and (b) layered titanium oxide Paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2.
도 6 은 본원의 일 실시예에 있어서 300℃ 열처리 후 층상 티탄산화물, 그래핀, 및 층상 티탄산화물-그래핀 하이브리드 종이의 X-선 회절패턴을 나타낸 그래프이다: (a) 층상 티탄산화물 종이, (b) 하이브리드 종이 0.4, (c) 혼합 종이 1, (d) 혼합 종이 2.FIG. 6 is a graph showing X-ray diffraction patterns of layered titanium oxide, graphene, and layered titanium oxide-graphene hybrid paper after 300 ° C. heat treatment in one embodiment of the present application: (a) layered titanium oxide paper, ( b) hybrid paper 0.4, (c) mixed paper 1, (d) mixed paper 2.
도 7 은 본원의 일 실시예에 있어서, 층상 티탄산화물-그래핀 혼합 종이의 Ti K-edge XANES 스펙트럼을 나타낸 그래프이다: (a) 혼합 종이 0.4, (b) 혼합 종이 1, (c) 혼합 종이 2, (d) 층상 티탄산화물 종이, (e) 레피도크로사이트 타입의 H0.67Ti1.83O4, (f) 루타일 TiO2, 및 (g) 아나타아제 TiO2.FIG. 7 is a graph showing Ti K-edge XANES spectra of layered titanium oxide-graphene mixed paper in one embodiment of the present application: (a) mixed paper 0.4, (b) mixed paper 1, (c) mixed paper 2, (d) layered titanium oxide paper, (e) H 0.67 Ti 1.83 O 4 of repidocrosite type, (f) rutile TiO 2 , and (g) anatase TiO 2 .
도 8은 본원의 일 실시예에 있어서 (a) 레피도크로사이트 타입의 H0.67Ti1.83O4, (b) 하이브리드 종이 0.4, (c) 하이브리드 종이 1, (d) 하이브리드 종이 2, 및 (e) 그래핀의 마이크로-라만 그래프를 나타낸 것이다.FIG. 8 shows (a) H 0.67 Ti 1.83 O 4 of repidocrosite type, (b) hybrid paper 0.4, (c) hybrid paper 1, (d) hybrid paper 2, and (e) in one embodiment of the present application. ) Shows a micro-Raman graph of graphene.
도 9는 본원의 일 실시예에 있어서 (a) 그라파이트 옥사이드, (b) 그래핀, (c) 하이브리드 종이 0.4, (d) 하이브리드 종이 1, 및 (e) 하이브리드 종이 2의 FT-IR 그래프를 나타낸 것이다.9 shows FT-IR graphs of (a) graphite oxide, (b) graphene, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2 in one embodiment of the present application. will be.
도 10은 본원의 일 실시예에 있어서, (a) 그래핀 종이, (b) 층상 티탄산화물 종이, (c) 하이브리드 종이 0.4, (d) 하이브리드 종이 1, 및 (e) 하이브리드 종이 2의 접촉각을 측정한 것이다.10 illustrates contact angles of (a) graphene paper, (b) layered titanium oxide paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2 according to one embodiment of the present disclosure. It is measured.
도 11은 본원의 일 실시예에 있어서, E-coli O157에 대한 하이브리드 종이의 항균성을 평가한 그래프이다.FIG. 11 is a graph illustrating the antimicrobial activity of a hybrid paper against E-coli O157 in one embodiment of the present application. FIG.
도 12는 본원의 일 실시예에 있어서, 층상 티탄산화물 종이, 그래핀 종이, 및 하이브리드 종이의 초음파 자극에 대한 저항성을 평가한 실험 결과를 나타낸 사진이다.12 is a photograph showing an experimental result of evaluating resistance to ultrasonic stimulation of a layered titanium oxide paper, graphene paper, and a hybrid paper in one embodiment of the present application.
도 13은 본원의 일 실시예에 있어서, (a) 층상 티탄산화물 종이, (b) 그래핀 종이, (c) 하이브리드 종이 0.4, (d) 하이브리드 종이 1, 및 (e) 하이브리드 종이 2의 마이크로 전자파 열처리에 대한 저항성을 평가한 실험 결과를 나타낸 사진이다.FIG. 13 illustrates the microwaves of (a) layered titanium oxide paper, (b) graphene paper, (c) hybrid paper 0.4, (d) hybrid paper 1, and (e) hybrid paper 2 according to one embodiment of the present disclosure. The photograph showing the results of the experiment evaluating the resistance to heat treatment.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the embodiments and embodiments of the present application to be easily carried out by those of ordinary skill in the art.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are provided to aid the understanding herein. In order to prevent the unfair use of unscrupulous infringers. In addition, throughout this specification, "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합들"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combinations of these" included in the expression of the makushi form refers to one or more mixtures or combinations selected from the group consisting of the elements described in the expression of the makushi form. It means to include one or more selected from the group consisting of elements.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.Throughout this specification, the description of "A and / or B" means "A or B, or A and B."
본원의 제 1 측면은, 층상 금속 산화물 또는 수산화물 및 탄소 나노구조체를 포함하는, 하이브리드 종이를 제공한다.A first aspect of the present disclosure provides a hybrid paper comprising a layered metal oxide or hydroxide and carbon nanostructures.
본원의 일 구현예에 있어서, 상기 하이브리드 종이는 상기 층상 금속 산화물 또는 상기 층상 금속 수산화물이 상기 탄소 나노구조체 사이에 적층되고, 상기 층상 금속 산화물 상에 추가의 탄소 나노구조체가 적층된 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the hybrid paper may include that the layered metal oxide or the layered metal hydroxide is laminated between the carbon nanostructures, and further carbon nanostructures are laminated on the layered metal oxide. However, this may not be limited.
본원의 일 구현예에 있어서, 상기 탄소 나노구조체는 탄소나노튜브, 그래파이트, 그래핀 옥사이드, 그래핀, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함할 수 있으며, 예를 들어, 그래핀을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 탄소나노튜브는 예를 들어, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 얇은벽 탄소나노튜브, 다중벽 탄소나노튜브, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the carbon nanostructure may include one selected from the group consisting of carbon nanotubes, graphite, graphene oxide, graphene, and combinations thereof, for example, graphene It may include, but may not be limited thereto. The carbon nanotubes may include, for example, one selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, thin-walled carbon nanotubes, multi-walled carbon nanotubes, and combinations thereof, but is not limited thereto. It may not be.
본원의 일 구현예에 있어서, 상기 층상 금속 산화물 또는 수산화물은 알루미늄(Al), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 갈륨(Ga), 지르코늄(Zr), 몰리브덴(Mo), 니오븀(Nb), 주석(Sn), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 은(Ag), 카드뮴(Cd), 주석(Sn), 안티모니(Sb), 인듐(In), 탄탈륨(Ta), 텅스텐(W), 백금(Pt), 금(Au), 납(Pb), 비스무스(Bi), 및 이들의 조합들로 이루어진 군으로부터 선택된 금속의 산화물 또는 수산화물을 포함할 수 있으며, 예를 들어, 층상 티탄산화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the layered metal oxide or hydroxide is aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), Gallium (Ga), Zirconium (Zr), Molybdenum (Mo), Niobium (Nb), Tin (Sn), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag), Cadmium (Cd), Tin (Sn), Antimony (Sb), Indium (In), Tantalum (Ta), Tungsten (W), Platinum (Pt), Gold (Au) , Lead (Pb), bismuth (Bi), and may include an oxide or hydroxide of a metal selected from the group consisting of, for example, may include a layered titanium oxide, but may not be limited thereto. have.
본원의 일 구현예에 있어서, 상기 하이브리드 종이의 두께는 약 1 ㎛ 내지 약 100 ㎛, 예를 들어, 약 5 ㎛ 내지 약 100 ㎛, 약 10 ㎛ 내지 약 100 ㎛, 약 20 ㎛ 내지 약 100 ㎛, 약 30 ㎛ 내지 약 100 ㎛, 약 40 ㎛ 내지 약 100 ㎛, 약 50 ㎛ 내지 약 100 ㎛, 약 60 ㎛ 내지 약 100 ㎛, 약 70 ㎛ 내지 약 100 ㎛, 약 80 ㎛ 내지 약 100 ㎛, 약 90 ㎛ 내지 약 100 ㎛, 약 1 ㎛ 내지 약 90 ㎛, 약 1 ㎛ 내지 약 80 ㎛, 약 1 ㎛ 내지 약 70 ㎛, 약 1 ㎛ 내지 약 60 ㎛, 약 1 ㎛ 내지 약 50 ㎛, 약 1 ㎛ 내지 약 40 ㎛, 약 1 ㎛ 내지 약 30 ㎛, 약 1 ㎛ 내지 약 20 ㎛, 또는 약 1 ㎛ 내지 약 10 ㎛일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present disclosure, the thickness of the hybrid paper is about 1 μm to about 100 μm, for example, about 5 μm to about 100 μm, about 10 μm to about 100 μm, about 20 μm to about 100 μm, About 30 μm to about 100 μm, about 40 μm to about 100 μm, about 50 μm to about 100 μm, about 60 μm to about 100 μm, about 70 μm to about 100 μm, about 80 μm to about 100 μm, about 90 Μm to about 100 μm, about 1 μm to about 90 μm, about 1 μm to about 80 μm, about 1 μm to about 70 μm, about 1 μm to about 60 μm, about 1 μm to about 50 μm, about 1 μm to About 40 μm, about 1 μm to about 30 μm, about 1 μm to about 20 μm, or about 1 μm to about 10 μm, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 하이브리드 종이는 항균성을 가질 수 있으나, 이에 제한되지 않을 수 있다. 상기 하이브리드 종이는 미생물, 예를 들어, E-coli O157에 대하여 약 99.99% 이상의 항균성을 나타낼 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the hybrid paper may have antimicrobial properties, but may not be limited thereto. The hybrid paper may exhibit about 99.99% or more antimicrobial activity against microorganisms such as E-coli O157, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 하이브리드 종이는 친수성을 가질 수 있으나, 이에 제한되지 않을 수 있다. 상기 층상 금속 산화물은 친수성이며 상기 탄소 나노구조체는 소수성이나, 이들을 혼합하여 제조한 상기 하이브리드 종이는 친수성을 나타낸다.In one embodiment of the present application, the hybrid paper may have hydrophilicity, but may not be limited thereto. The layered metal oxide is hydrophilic and the carbon nanostructure is hydrophobic, but the hybrid paper prepared by mixing them exhibits hydrophilicity.
본원의 제 2 측면은, 탄소 나노구조체를 용매에 분산시켜 탄소 나노구조체 콜로이드를 제조하는 단계; 층상 금속 산화물을 용매에 분산시켜 층상 금속 산화물 콜로이드를 제조하는 단계; 상기 탄소 나노구조체 콜로이드와 상기 층상 금속 산화물 콜로이드를 혼합하여 층상 금속 산화물-탄소 나노구조체 혼합물을 제조하는 단계; 및 상기 층상 금속 산화물-탄소 나노구조체 혼합물을 투석하여 잔류 이온종을 제거한 후 건조시키는 단계를 포함하는, 하이브리드 종이의 제조 방법을 제공한다.A second aspect of the present disclosure is to prepare a carbon nanostructure colloid by dispersing the carbon nanostructure in a solvent; Dispersing the layered metal oxide in a solvent to prepare a layered metal oxide colloid; Preparing a layered metal oxide-carbon nanostructure mixture by mixing the carbon nanostructure colloid and the layered metal oxide colloid; And dialysis of the layered metal oxide-carbon nanostructure mixture to remove residual ionic species, followed by drying.
본원의 일 구현예에 있어서, 상기 탄소 나노구조체는 탄소나노튜브, 그래파이트, 그래파이트 옥사이드, 그래핀, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함할 수 있으며, 예를 들어, 그래핀을 포함할 수 있으나, 이에 제한되지 않을 수 있다. 상기 탄소나노튜브는 예를 들어, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 얇은벽 탄소나노튜브, 다중벽 탄소나노튜브, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the carbon nanostructure may include one selected from the group consisting of carbon nanotubes, graphite, graphite oxide, graphene, and combinations thereof, for example, including graphene It may be, but may not be limited thereto. The carbon nanotubes may include, for example, one selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes, thin-walled carbon nanotubes, multi-walled carbon nanotubes, and combinations thereof, but is not limited thereto. It may not be.
본원의 일 구현예에 있어서, 상기 층상 금속 산화물은 알루미늄(Al), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 갈륨(Ga), 지르코늄(Zr), 몰리브덴(Mo), 니오븀(Nb), 주석(Sn), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 은(Ag), 카드뮴(Cd), 주석(Sn), 안티모니(Sb), 인듐(In), 탄탈륨(Ta), 텅스텐(W), 백금(Pt), 금(Au), 납(Pb), 비스무스(Bi), 및 이들의 조합들로 이루어진 군으로부터 선택된 금속의 산화물 및 수산화물을 포함할 수 있으며, 예를 들어, 층상 티탄산화물을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the layered metal oxide is aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel ( Ni, copper (Cu), zinc (Zn), gallium (Ga), zirconium (Zr), molybdenum (Mo), niobium (Nb), tin (Sn), ruthenium (Ru), rhodium (Rh), palladium ( Pd), silver (Ag), cadmium (Cd), tin (Sn), antimony (Sb), indium (In), tantalum (Ta), tungsten (W), platinum (Pt), gold (Au), lead Oxides and hydroxides of metals selected from the group consisting of (Pb), bismuth (Bi), and combinations thereof, and may include, for example, but not limited to, layered titanium oxide.
본원의 일 구현예에 있어서, 상기 탄소 나노구조체 콜로이드 및 상기 층상 금속 산화물 콜로이드는 약 1 : 약 10 내지 약 10 : 약 1의 몰 혼합비율로 혼합되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 상기 상기 탄소 나노구조체 콜로이드 및 상기 층상 금속 산화물 콜로이드의 몰 혼합비율은, 예를 들어, 약 1 : 약 10, 약 1 : 약 9, 약 1 : 약 8, 약 1 : 약 7, 약 1 : 약 6, 약 1 : 약 5, 약 1 : 약 4, 약 1 : 약 3, 약 1 : 약 2, 약 1 : 약 1, 약 10 : 약 1, 약 10 : 약 2, 약 10 : 약 3, 약 10 : 약 4, 약 10 : 약 5, 약 10 : 약 6, 약 10 : 약 7, 약 10 : 약 8, 또는 약 10 : 약 9일 수 있으나, 이에 제한되지 않을 수 있다. In one embodiment of the present application, the carbon nanostructure colloid and the layered metal oxide colloid may be mixed in a molar mixing ratio of about 1: about 10 to about 10: about 1, but may not be limited thereto. The molar mixing ratio of the carbon nanostructure colloid and the layered metal oxide colloid is, for example, about 1: about 10, about 1: about 9, about 1: about 8, about 1: about 7, about 1: about 1: 6, about 1: about 5, about 1: about 4, about 1: about 3, about 1: about 2, about 1: about 1, about 10: about 1, about 10: about 2, about 10: about 3, About 10: about 4, about 10: about 5, about 10: about 6, about 10: about 7, about 10: about 8, or about 10: about 9, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 층상 금속 산화물 콜로이드는 산성 용액에 교반하여 양성자 치환된 층상 금속 산화물 콜로이드를 제조한 후 유기양이온 용액에서 교반하여 박리화된 층상 금속 산화물 콜로이드를 형성하여 제조될 수 있으나, 이에 제한되지 않을 수 있다. 상기 염기성 용액은 테트라부틸암모늄 하이드록사이드(Tetrabutylammonium hydroxide), 테트라메틸암모늄 하이드록사이드(Tetramethylammonium hydroxide), 포름알데하이드(formaldehyde), 거대 유기화합물 수용액, 및 이들의 조합들로 이루어진 군으로부터 선택된 것일 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the layered metal oxide colloid may be prepared by stirring in an acidic solution to form a proton-substituted layered metal oxide colloid and then stirring in an organic cation solution to form a peeled layered metal oxide colloid. However, this may not be limited. The basic solution may be selected from the group consisting of tetrabutylammonium hydroxide, tetramethylammonium hydroxide, formaldehyde, a large aqueous organic compound solution, and combinations thereof. However, this may not be limited.
본원의 일 구현예에 있어서, 상기 탄소 나노구조체 콜로이드는 흑연을 산화시켜 형성된 그래파이트 옥사이드에 초음파를 가하여 박리시켜 수득된 그래핀 옥사이드를 재환원시켜 제조되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 탄소 나노구조체가 그래핀인 경우, 그래핀 콜로이드는, Hummers' 방법, 변형된 hummers' 방법, Staudenmaier 방법 등에 의해 제조될 수 있으나, 이에 제한되지 않을 수 있다. 상기 그래파이트 옥사이드 콜로이드의 재환원은 하이드라진, 하이드로퀸옥 등과 같은 환원제를 사용하여 환원시키는 것을 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present application, the carbon nanostructure colloid may be prepared by re-reducing the graphene oxide obtained by peeling by applying ultrasonic waves to graphite oxide formed by oxidizing graphite, but may not be limited thereto. For example, when the carbon nanostructure is graphene, the graphene colloid may be manufactured by Hummers 'method, modified hummers' method, Staudenmaier method, or the like, but may not be limited thereto. Re-reduction of the graphite oxide colloid may include reducing using a reducing agent such as hydrazine, hydroquinox, and the like, but may not be limited thereto.
본원의 일 구현예에 있어서, 상기 건조하는 단계 전에, 상기 잔류 이온종이 제거된 상기 층상 금속 산화물-탄소 나노구조체 혼합물을 감압여과시키는 단계를 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.In one embodiment of the present disclosure, before the drying step, the step of filtering the layered metal oxide-carbon nanostructure mixture from which the residual ionic species has been removed may be further included, but may not be limited thereto.
본원의 제 3 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 항균막을 제공한다. 상기 하이브리드 종이는 미생물, 예를 들어, E-coli O157에 대하여 약 90% 이상, 약 95% 이상, 약 98% 이상, 약 99% 이상 또는 약 99.99% 이상의 항균성을 나타낼 수 있으나, 이에 제한되지 않을 수 있다.The third aspect of the present application provides an antimicrobial membrane comprising the hybrid paper according to the first aspect of the present application. The hybrid paper may exhibit an antimicrobial activity of at least about 90%, at least about 95%, at least about 98%, at least about 99%, or at least about 99.99% to microorganisms such as E-coli O157, but is not limited thereto. Can be.
본원의 제 4 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 촉매를 제공한다.A fourth aspect of the present application provides a catalyst comprising the hybrid paper according to the first aspect of the present application.
본원의 제 5 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 전극을 제공한다.A fifth aspect of the present application provides an electrode comprising the hybrid paper according to the first aspect of the present application.
본원의 제 6 측면은, 상기 본원의 제 1 측면에 따른 하이브리드 종이를 포함하는 흡착제를 제공한다.A sixth aspect of the present application provides an adsorbent comprising the hybrid paper according to the first aspect of the present application.
이하, 본원에 대하여 실시예를 이용하여 좀 더 구체적으로 설명하지만, 본원이 이에 제한되지 않을 수 있다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present application may not be limited thereto.
[실시예]EXAMPLE
실시예 1Example 1
그래핀 콜로이드의 준비Preparation of Graphene Colloid
흑연을 수정된 Hummers' method 방법으로 산화시켜 그라파이트 옥사이드를 제조하였다. 합성된 그라파이트 옥사이드를 증류수에 0.5 wt%로 넣고 초음파를 가하여 박리화된 그래핀 옥사이드 콜로이드를 수득하였다. 상기 수득된 그래핀 옥사이드 콜로이드에 암모니아와 함께 0.175 wt%의 히드라진을 넣고 80℃에서 1 시간 동안 반응시켜 재환원된 형태의 그래핀 콜로이드를 수득하였다. Graphite oxide was prepared by oxidizing the graphite by a modified Hummers' method. Synthesized graphite oxide was added to 0.5 wt% in distilled water and ultrasonication was performed to obtain exfoliated graphene oxide colloid. 0.175 wt% of hydrazine together with ammonia was added to the obtained graphene oxide colloid and reacted at 80 ° C. for 1 hour to obtain a graphene colloid of a re-reduced form.
층상 티탄산화물 콜로이드의 준비Preparation of Layered Titanium Oxide Colloids
TiO2와 CsCO3를 당량으로 섞어 800℃에서 24 시간 동안 고상합성하여 Cs0.67Ti1.830.17O4를 수득하였다. 1 M HCl 용액에 Cs0.67Ti1.830.17O4를 넣고 HCl을 3회 이상 교체해주며 교반시켰다. 양성자 치환된 H0.67Ti1.830.17O4를 테트라부틸암모늄 하이드로옥사이드(Tetrabutylammonium hydroxide; TBA) 용액에 넣고 1 주일 동안 교반시켜 박리화된 Ti1.830.17O4 나노시트 콜로이드를 수득하였다.TiO 2 and CsCO 3 were mixed in equivalent weight and subjected to solid phase synthesis at 800 ° C. for 24 hours to obtain Cs 0.67 Ti 1.830.17 O 4 . Cs 0.67 Ti 1.830.17 O 4 was added to 1 M HCl solution, and HCl was stirred three times or more. Proton-substituted H 0.67 Ti 1.830.17 O 4 was added to a tetrabutylammonium hydroxide (TBA) solution and stirred for 1 week to obtain exfoliated Ti 1.830.17 O 4 nanosheet colloid.
층상 티탄산화물-그래핀 혼합 종이의 제조Preparation of Layered Titanium Oxide-Graphene Mixed Paper
상기 그래핀 콜로이드(C)와 상기 층상 티탄산화물 콜로이드(Ti1.830.17O4)의 몰 혼합비율(C/Ti1.830.17O4)이 0.2, 0.4, 1, 2, 4, 및 8이 되도록 혼합하여 혼합액을 만들었다. TBA 및 히드라진을 제거하기 위해 상기 혼합액 50 mL를 0.5 wt% 암모니아 용액에서 투석하였다. 투석한 용액을 아노디스크(anodisc)를 이용하여 감압여과한 후 상온의 진공오븐에서 건조시켰다. 건조 후 아노디스크(anodisc)로부터 층상 티탄산화물-그래핀 하이브리드 종이를 떼어냈다.The graphene colloids (C) and the layer of titanium oxide colloid (Ti 1.830.17 O 4) such that the molar mixing ratio (C / Ti 1.83 □ 0.17 O 4) 0.2, 0.4, 1, 2, 4, and 8, Mixing made a mixed solution. 50 mL of the mixture was dialyzed in 0.5 wt% ammonia solution to remove TBA and hydrazine. The dialyzed solution was filtered under reduced pressure using ananodisc and then dried in a vacuum oven at room temperature. After drying, the layered titanium oxide-graphene hybrid paper was detached from ananodisc.
결과result
도 1은 다양한 비율로 섞인 층상 티탄산화물과 그래핀 혼합 콜로이드의 사진을 나타낸 것이다. 그래핀의 농도가 높아질수록 혼합 콜로이드의 색이 검은 색으로 변하였다. 다양한 명도를 가지고 회색을 띠는 혼합 콜로이드는 어떠한 응집현상도 보이지 않고 수개월 동안 안정하였다. 제타포텐셜 측정 결과에 따르면 층상 티탄산화물과 그래핀은 각각 -29 mV 및 -44 mV의 표면전하를 나타내는데, 층상 티탄산화물과 그래핀의 혼합 콜로이드는 모두 -30 mV 내지 -40 mV 사이의 표면전하를 나타냈다 (데이터는 도시하지 않음). 이는 티탄산화물 나노시트와 그래핀 나노시트가 혼합 후에도 고유의 표면성질을 잃지 않았다는 것을 시사하는 것이다. Figure 1 shows a picture of the layered titanium oxide and graphene mixed colloid mixed in various ratios. As the concentration of graphene increased, the color of the mixed colloid turned black. Gray and mixed colloids with varying brightness were stable for several months without showing any agglomeration. Zeta potential measurement results show that the layered titanium oxide and graphene exhibit surface charges of -29 mV and -44 mV, respectively, and the mixed colloids of layered titanium oxide and graphene both exhibit surface charges between -30 mV and -40 mV. (Data not shown). This suggests that the titanium oxide nanosheets and the graphene nanosheets did not lose their inherent surface properties even after mixing.
도 2는 층상 티탄산화물과 그래핀 혼합 콜로이드의 UV-Vis 분광 스펙트럼 분석 결과를 나타낸 것이다. 넓은 밴드갭을 가지고 있는 층상 티탄산화물 현탁액은 자외선 영역인 260 nm에서 최대 흡수 피크를 갖는다. 그래핀은 270 nm에서 최대 흡수 피크를 갖는데 이는 방향족 C=C 결합의 pi-pi* 전이(transition)에 상응한다. 혼합 콜로이드의 UV-Vis 스펙트럼을 보면 티탄산화물의 비율이 감소할수록 260 nm 부근의 피크 세기가 감소하는 것을 볼 수 있다. 이는 티탄산화물의 광흡수계수가 그래핀보다 크기 때문에 티탄산화물의 특징이 더 기여적으로 나타나는 것으로 여겨졌다. 비록 그래핀의 흡수 피크가 뚜렷하게 보이진 않지만 혼합 콜로이드 내 그래핀의 함량이 증가할수록 260~270 nm 부근의 피크가 적색 시프트(red shift)하는 현상을 볼 수 있었다.Figure 2 shows the UV-Vis spectroscopic analysis of the layered titanium oxide and graphene mixed colloid. The layered titanium oxide suspension with a wide bandgap has a maximum absorption peak at 260 nm in the ultraviolet region. Graphene has a maximum absorption peak at 270 nm, which corresponds to the pi-pi * transition of aromatic C = C bonds. The UV-Vis spectrum of the mixed colloid shows that the peak intensity near 260 nm decreases as the ratio of titanium oxide decreases. This is because the light absorption coefficient of titanium oxide is larger than that of graphene, the characteristics of titanium oxide appear to be more contributing. Although the absorption peak of graphene is not clearly seen, as the content of graphene in the mixed colloid increases, the peak around 260-270 nm red shifts.
도 3은 그래핀, 층상 티탄산화물 나노시트가 분산되어 있는 혼합 콜로이드를 가지고 감압여과 방법을 통해 프리-스탠딩 필름(free-standing film) 제조가 가능함을 보여줬다. 그라파이트 옥사이드, 그래핀의 프리-스탠딩 필름 제조에 관하여는 보고된 바가 있었지만, 주로 금속산화물 프리-스탠딩 필름으로서, 금속산화물-그래핀 혼합 프리-스탠딩 필름의 제조는 본원 발명에서 최초로 보고되는 것이다. 혼합 종이의 색상은 콜로이드의 색상과 비슷하며, 금속처럼 빛나는 광택은 보이지 않고 그래핀 성분의 함유량이 많아질수록 색이 까매졌다. 금속산화물 종이는 얇은 두께를 가졌을 땐 유연하지만(flexible) 두께가 두꺼워지면 딱딱한(rigid) 성질이 강하게 나타났다. 그래핀 종이는 금속처럼 광택이 있고 매우 유연한 반면 쉽게 찢어졌다. 반면에, 본원의 혼합 종이는 유연하면서 단단한 특성을 보여줬다.Figure 3 shows that it is possible to prepare a free-standing film by a pressure-filtration method with a mixed colloid in which graphene and layered titanium oxide nanosheets are dispersed. Although there have been reports on the production of graphite oxide, graphene free-standing film, the production of metal oxide-graphene mixed free-standing film mainly as metal oxide free-standing film is the first report in the present invention. The color of the mixed paper is similar to that of the colloid, and it does not show a shiny shine like metal, but the color becomes darker as the graphene content increases. Metal oxide paper is flexible when it has a thin thickness, but when the thickness is thick, its rigid property is strong. Graphene paper was shiny and very flexible like metal, but easily torn. On the other hand, the mixed paper of the present application showed flexible and hard properties.
도 4는 하이브리드 종이의 단면과 그래핀, 층상 티탄산화물, 3 가지 비율의 층상 티탄산화물-그래핀 혼합 종이를 위에서 바라본 전자주사현미경 이미지이다. 그래핀 종이는 매끄러운 표면이 관찰되고, 층상 티탄산화물 종이에서는 나노시트의 엣지(모서리)가 표면에 노출되어 거친 표면을 형성하는 것을 볼 수 있다. 하이브리드 종이에서도 나노시트의 엣지가 많이 노출되어 있는데 흥미로운 사실은 노출된 엣지의 밀도가 층상 티탄산화물 종이보다 훨씬 더 많이 관찰된다는 것이다. 이는 서로 다른 두 종류 나노시트인 층상 티탄산화물과 그래핀 간의 미스매치에서 기인한 것으로 생각된다. 하이브리드 종이의 단면 전자주사현미경 이미지는 나노시트들이 층층이 잘 정렬되어 쌓인 것을 보여준다. 전자주사현미경으로 관찰한 하이브리드 종이의 두께는 약 50 ㎛이며, 혼합액의 부피를 조절함으로써 약 1 ㎛ 내지 약 100 ㎛까지 두께를 조절할 수 있다. 4 is an electron scanning microscope image of a cross section of a hybrid paper and graphene, a layered titanium oxide, and a layered titanium oxide-graphene mixed paper having three ratios. In graphene paper, a smooth surface is observed, and in layered titanium oxide paper, the edges (edges) of the nanosheets are exposed to the surface to form a rough surface. In hybrid papers, the edges of the nanosheets are much exposed. An interesting fact is that the density of the exposed edges is much higher than that of layered titanium oxide paper. This is thought to be due to mismatch between two different nanosheets, layered titanium oxide and graphene. Cross-sectional electron scanning microscopy images of hybrid paper show that the nanosheets are layered and layered. The thickness of the hybrid paper observed with the electron scanning microscope is about 50 μm, and the thickness can be adjusted from about 1 μm to about 100 μm by adjusting the volume of the mixed solution.
도 5는 그래핀, 층상 티탄산화물, 및 층상 티탄산화물-그래핀 혼합 종이의 X-선 회절 분석 그래프를 나타낸 것이다. 그래핀 종이의 회절 패턴에서 2θ = 23.34°에서 넓은 둔덕 피크를 볼 수 있는데 이는 전형적인 그래핀의 브래그 반사(Bragg reflection)이다. 층상 티탄산화물 종이의 X-선 회절 패턴을 보면 잘 배열된 나노시트들의 쌓임에 의하여 (00l) 브래그 반사들이 매우 잘 발달된 것을 볼 수 있다. (00l) 반사 중 홀수 피크가 강한 강도를 갖는다. (001) 브래그 반사는 2 θ =9.44o에서 나타나고 이에 상응하는 면간 거리(d001)는 9.37 Å이었다. 이는 티탄산화물 층 사이에 물 한분자가 삽입된 간격과 일치한다. 층상 티탄산화물의 회절패턴에서 2 차원 나노시트의 배향 선호성 때문에 (00l)을 제외한 다른 면의 브래그 반사는 숨어버린다. 혼합 종이의 X-선 회절패턴은 티탄산화물 종이와 유사한 것으로 보아 X-선 회절에 티탄산화물 성분이 주로 기인하는 것으로 보인다. 혼합 종이의 모든 (00l) 브래그 반사는 저각으로 이동했으며 (001) 브래그 반사는 2 θ=9.24~9.30°에서 나타났다. 이에 해당하는 면간 거리는 9.51~9.57 Å으로 층 간격이 약간 팽창되었다. 티탄산화물 종이의 회절패턴과 비교하였을 때 약간의 층 팽창 현상은 그래핀의 층간삽입이라고 해석하기보다 티탄산화물 층 사이의 물분자가 재배열한 것으로 생각할 수 있다. 5 shows an X-ray diffraction graph of graphene, layered titanium oxide, and layered titanium oxide-graphene mixed paper. In the diffraction pattern of graphene paper, wide mound peaks can be seen at 2θ = 23.34 °, which is the typical Bragg reflection of graphene. The X-ray diffraction pattern of the layered titanium oxide paper shows that Bragg reflections are very well developed by stacking of well-ordered nanosheets. Odd peaks during reflection have a strong intensity. The (001) Bragg reflection appeared at 2 θ = 9.44 o and the corresponding interplanar distance d 001 was 9.37 μs. This coincides with the spacing of one molecule of water between the titanium oxide layers. In the diffraction pattern of the layered titanium oxide, the Bragg reflection on the other side except for (00l) is hidden due to the orientation preference of the two-dimensional nanosheet. The X-ray diffraction pattern of the mixed paper is similar to that of the titanium oxide paper, indicating that the titanium oxide component is mainly attributed to the X-ray diffraction. All (00l) Bragg reflections of the mixed paper shifted to low angles and (001) Bragg reflections appeared at 2 θ = 9.24 to 9.30 °. The corresponding interplanar distances ranged from 9.51 to 9.57 mm, with some expansion of the layer spacing. Compared to the diffraction pattern of titanium oxide paper, a slight layer expansion phenomenon can be thought of as rearrangement of water molecules between layers of titanium oxide rather than interpretation of graphene intercalation.
도 6은 층상티탄산화물-그래핀 하이브리드 종이의 열적 안정성을 조사하기 위하여 질소기체를 흘려주며, 300℃에서 2 시간 열처리한 시료의 X-선 회절분석 결과이다. 동일한 조건에서 열처리를 했을 때 그래핀 종이는 바스러져서 가루형태가 되어 종이로서의 성질을 잃었다. 반면 티탄산화물과 층상 티탄산화물-그래핀 혼합 종이는 종이상태를 유지하고 있었다. 티탄산화물 종이는 열처리 후 (00l) 브래그 반사가 거의 사라지고 아나타아제 TiO2 브래그 반사가 관찰되었다. 하이브리드 종이에서도 열처리에 따라 아나타아제 TiO2로의 상전이가 관찰되었는데 흥미로운 사실은 하이브리드 종이에서 그래핀의 함량이 증가할수록 층상 티탄산화물의 아나타아제 TiO2로의 상전이가 방지된다는 것이다. 이는 그래핀이 갖는 2차원 결정구조가 티탄산화물을 2 차원 층상 구조로 안정화시키는데 기인한다고 해석할 수 있다. FIG. 6 shows the results of X-ray diffraction analysis of a sample in which nitrogen gas was flowed and heat-treated at 300 ° C. for 2 hours to investigate thermal stability of the layered titanium oxide-graphene hybrid paper. When heat-treated under the same conditions, the graphene paper crumbled to a powdery form and lost its paper properties. On the other hand, the titanium oxide and layered titanium oxide-graphene mixed paper remained paper. After the heat treatment, the titanium oxide paper almost disappeared Bragg reflection and anatase TiO 2 Bragg reflection was observed. In the hybrid paper, the phase transition to anatase TiO 2 was observed by heat treatment. An interesting fact is that the phase change of layered titanium oxide to anatase TiO 2 is prevented as the graphene content increases in the hybrid paper. This can be interpreted that the two-dimensional crystal structure of graphene is caused by stabilizing the titanium oxide into a two-dimensional layered structure.
X-선 회절분석에서는 2 차원 나노시트의 배향 선호성으로 인해 티탄산화물의 결정구조가 거의 반영되지 않기 때문에 티타늄 원자 국부구조 분석을 실시하였다. 도 7에 대조군으로서 고체 분말 형태인 아나타아제 TiO2, 루타일 TiO2, 레피도크로사이트 타입의 H0.67Ti1.83O4와 함께 층상 티탄산화물 종이, 및 층상 티탄산화물-그래핀 하이브리드 종이의 Ti K-edge XANES 스펙트럼을 나타내었다. 층상 티탄산화물 종이를 포함한 혼합 종이의 XANES 스펙트럼은 레피도크로사이트 타입의 대조군 H0.67Ti1.83O4의 것과 다른 모양을 보였다. 이것은 티탄산화물 나노시트가 종이타입의 시료에서 c축 방향으로 매우 잘 정렬되어 있기 때문에 XANES 스펙트럼이 분말 타입 시료의 것과 다르게 보이는 것이다. 이러한 스펙트럼 결과는 층상구조 티탄산화물의 편광 의존적 XANES 분석 결과와 일치한다. 프리-엣지(pre-edge) P는 1s→3d 오비탈의 전자 전이를 나타내고, 메인 엣지(main edge) A, B는 1s→4p 오비탈의 전자 전이를 의미한다. 도 7에 나타낸 모든 티탄산화물에서 Ti 원자는 TiO6 팔면체 자리에 안정화되어있고 4 가의 산화상태를 갖는다. In the X-ray diffraction analysis, titanium atom local structure analysis was performed because the crystal structure of titanium oxide was hardly reflected due to the orientation preference of two-dimensional nanosheets. FIG. 7 shows Ti in the layered titanium oxide paper, and the layered titanium oxide-graphene hybrid paper together with anatase TiO 2 , rutile TiO 2 , H 0.67 Ti 1.83 O 4 in the form of repidocrosite as a control as a control. K-edge XANES spectrum is shown. The XANES spectrum of the mixed paper containing the layered titanium oxide paper showed a different shape from that of the control H 0.67 Ti 1.83 O 4 of the repidocrosite type. This is because the XANES spectrum looks different from that of the powder type sample because the titanium oxide nanosheets are very well aligned in the c-axis direction in the paper type sample. This spectral result is consistent with the polarization dependent XANES analysis of the layered titanium oxide. The pre-edge P represents an electron transition of 1s → 3d orbital, and the main edges A and B represent an electron transition of 1s → 4p orbital. In all the titanium oxides shown in FIG. 7, Ti atoms are stabilized at TiO 6 octahedral sites and have a tetravalent oxidation state.
X-선 회절분석과 X-선 흡수분광분석을 통하여서는 전자밀도가 낮은 탄소에 대한 화학적 정보를 얻을 수 없기 때문에 탄소 분석에 대한 강력한 도구인 마이크로-라만(micro-Raman)과 FT-IR 분석을 실시하였다. 도 8은 마이크로-라만 그래프를 나타낸 것이다. 혼합 종이의 90 cm-1 내지 1,000 cm-1 파수(wave number)에서 나타나는 라만 피크들은 대조군인 레피도크로사이트 결정구조를 갖는 층상 티탄산화물의 피크 위치와 일치한다. 혼합 종이의 1,350 cm-1과 1,600 cm-1에서 라만 피크는 각각 그래핀의 전형적인 D 밴드와 G 밴드를 의미하고, 그래핀이 티탄산화물과 함께 공존하고 있음을 보여준다. 혼합 종이에서 티탄산화물의 함량이 줄어들수록 탄소 관련 피크에 대한 티탄산화물 피크의 상대적 강도는 점점 작아진다. 라만 스펙트럼에서는 나노시트의 높은 정렬성이 스펙트럼에 반영되지 않았다. X-ray diffraction analysis and X-ray absorption spectroscopy do not provide chemical information on carbon with low electron density, so micro-Raman and FT-IR analysis are powerful tools for carbon analysis. Was carried out. 8 shows a micro-Raman graph. Raman peaks appearing in the 90 cm −1 to 1,000 cm −1 wave number of the mixed paper coincide with the peak positions of the layered titanium oxide having the repidocrosite crystal structure as a control. Raman peaks at 1,350 cm -1 and 1,600 cm -1 of mixed paper mean the typical D and G bands of graphene, respectively, and show that graphene coexists with titanium oxide. As the titanium oxide content decreases in the mixed paper, the relative intensity of the titanium oxide peak relative to the carbon related peaks becomes smaller. In Raman spectra, the high alignment of the nanosheets is not reflected in the spectra.
도 9는 FT-IR 그래프를 나타낸 것이다. 혼합 종이의 1,650 cm-1, 1,400 cm-1, 및 1,000 cm-1 이하의 영역에서 나타나는 IR 피크는 각각 C=C, C=O, 금속-O(M-O)를 의미한다. 혼합 종이에서 티탄산화물 성분의 함량이 높을수록 M-O 관련 피크들이 강하게 보였으며, 그라파이트 옥사이드에서 보이는 산소관련 작용기 피크가 없는 것으로 보아 하이브리드 종이에서 그래핀이 잘 환원된 상태로 존재함을 확인하였다.9 shows an FT-IR graph. IR peaks appearing in the regions of 1,650 cm −1 , 1,400 cm −1 , and 1,000 cm −1 or less of the mixed paper mean C = C, C═O, and metal-O (MO), respectively. The higher the content of the titanium oxide component in the mixed paper, the stronger the MO-related peaks were, and no oxygen-related functional group peaks were observed in the graphite oxide, indicating that the graphene was well reduced in the hybrid paper.
도 10은 층상 티탄산화물-그래핀 하이브리드 종이의 표면 친수성을 알아보기 위한 물방울 접촉각 측정 결과이다. 그래핀과 층상 티탄산화물 종이는 각각 소수성과 친수성을 띤다. 혼합 종이는 그래핀 성분을 포함하고 있음에도 불구하고 층상 티탄산화물과 같이 친수성을 띠는 것을 확인할 수 있었다. 10 is a droplet contact angle measurement result for determining the surface hydrophilicity of the layered titanium oxide-graphene hybrid paper. Graphene and layered titanium oxide paper are hydrophobic and hydrophilic, respectively. The mixed paper was found to be hydrophilic, like the layered titanium oxide, despite the graphene component.
도 11은 E-coli O157에 대한 혼합 종이의 항균성을 평가한 그래프이다. 혼합 종이 위에 E-coli O157을 분사한지 15 분 안에 모든 혼합 종이에서 99.99% 이상의 놀라운 항균특성을 보였으며, 특히 층상 티탄산화물-그래핀 혼합 종이는 혼합 비율에 따라 15 분 안에 99.999%의 놀라운 항균성을 보였다. 혼합 종이 위에 E-coli O157을 분사한지 30 분 만에 2×108 개의 E-coli가 모두 사멸하는 결과를 보였다. 빛 조사에 따른 E-coli 사멸효과는 미미했다.11 is a graph evaluating the antimicrobial activity of the mixed paper against E-coli O157. Within 15 minutes of spraying E-coli O157 on the mixed paper, all the mixed papers showed amazing antimicrobial properties of more than 99.99%. Especially, the layered titanium oxide-graphene mixed paper had an outstanding antimicrobial activity of 99.999% in 15 minutes depending on the mixing ratio. Seemed. After 30 minutes of spraying E-coli O157 on the mixed paper, 2 × 10 8 E-coli were killed. E-coli killing effect by light irradiation was insignificant.
도 12는 본원의 하이브리드 종이의 초음파 자극에 대한 저항성을 평가한 결과를 나타낸다. 본원의 일 실시예에 따라 상기 그래핀 콜로이드(C)와 상기 층상 티탄산화물 콜로이드(Ti1.830.17O4)의 몰 혼합비율(C/Ti1.830.17O4)이 각각 0.4 (TG1), 1 (TG2), 및 2 (TG3)가 되도록 혼합한 혼합액으로부터 하이브리드 종이 TG1, TG2, 및 TG3을 각각 제조하였다 (도 12 상단 이미지). 본원의 하이브리드 종이의 기계적 강도를 측정하기 위하여, 층상 티탄산화물 종이, 그래핀 종이, 및 하이브리드 종이 (TG1 내지 TG3)를 99% 에탄올에 담근 상태로 40 kHz의 초음파 자극을 가하였다. 그 결과, 상기 그래핀 종이는 초음파 자극에 의하여 완전히 파쇄된 반면, 상기 층상 티탄산화물 종이 및 상기 본원의 하이브리드 종이는 어떠한 손상도 관찰되지 않았다 (도 12 하단 이미지). 즉, 그래핀 나노시트에 층상 티탄산화물 나노시트를 혼성화 함으로써 하이브리드 종이의 기계적 강도가 매우 향상되었다는 것이 확인되었다. 이는, 그래핀 종이의 기계적 강도 향상을 위한 무기 나노시트의 혼성화가 매우 유용하다는 사실을 뒷받침한다.12 shows the results of evaluation of resistance to ultrasonic stimulation of the hybrid paper of the present application. Wherein in accordance with an embodiment of the present graphene colloids (C) and the layer of titanium oxide colloid (Ti 1.830.17 O 4) molar mixing ratio of the (C / Ti 1.83 □ 0.17 O 4) is 0.4 (TG1), 1 each Hybrid papers TG1, TG2, and TG3 were prepared from the mixed solution so as to be (TG2) and 2 (TG3), respectively (Fig. 12 top image). In order to measure the mechanical strength of the hybrid paper of the present application, ultrasonic stimulation at 40 kHz was applied while the layered titanium oxide paper, graphene paper, and hybrid paper (TG1 to TG3) were soaked in 99% ethanol. As a result, the graphene paper was completely crushed by ultrasonic stimulation, while no damage was observed for the layered titanium oxide paper and the hybrid paper of the present application (Figure 12 bottom image). That is, it was confirmed that the mechanical strength of the hybrid paper was greatly improved by hybridizing the layered titanium oxide nanosheets to the graphene nanosheets. This supports the fact that hybridization of inorganic nanosheets for improving the mechanical strength of graphene paper is very useful.
도 13은 본원의 하이브리드 종이의 마이크로 전자파 열처리에 대한 저항성을 평가한 결과를 나타낸다. 본원의 일 실시예에 따라 상기 그래핀 콜로이드(C)와 상기 층상 티탄산화물 콜로이드(Ti1.830.17O4)의 몰 혼합비율(C/Ti1.830.17O4)이 각각 0.4 (TG1), 1 (TG2), 및 2 (TG3)가 되도록 혼합한 혼합액으로부터 하이브리드 종이 TG1, TG2, 및 TG3을 각각 제조하였다. 도 13의 (a)는 층상 티탄산화물 종이, (b)는 그래핀 종이, (c)는 TG1 하이브리드 종이, (d)는 TG2 하이브리드 종이, 및 (e)는 TG3 하이브리드 종이이며, 각각의 샘플에 2,450 kHz의 마이크로 전자파를 1 분 동안 인가하였다. 그 결과, 층상 티탄산화물 종이, 그래핀 종이, 및 TG2 및 TG3 하이브리드 종이가 부푼 형태로 손상되는데 비하여, TG1 하이브리드 종이는 형태 변화 없이 안정한 상태를 유지하고 있음을 확인하였다. 따라서, 그래핀 콜로이드(C)와 층상 티탄산화물 콜로이드(Ti1.830.17O4)의 몰 혼합비율(C/Ti1.830.17O4)이 약 0.4인 경우에 특히 열적 안정성이 우수함을 확인하였다.13 shows the results of evaluation of resistance to microwave heat treatment of the hybrid paper of the present application. Wherein in accordance with an embodiment of the present graphene colloids (C) and the layer of titanium oxide colloid (Ti 1.830.17 O 4) molar mixing ratio of the (C / Ti 1.83 □ 0.17 O 4) is 0.4 (TG1), 1 each Hybrid species TG1, TG2, and TG3 were prepared from the mixed solution mixed so as to be (TG2) and 2 (TG3), respectively. 13A is a layered titanium oxide paper, (b) graphene paper, (c) TG1 hybrid paper, (d) TG2 hybrid paper, and (e) TG3 hybrid paper. Microwaves at 2,450 kHz were applied for 1 minute. As a result, it was confirmed that the layered titanium oxide paper, the graphene paper, and the TG2 and TG3 hybrid papers were damaged in a swollen form, whereas the TG1 hybrid paper was maintained in a stable state without changing the shape. Thus, well was confirmed that particularly excellent thermal stability when pin colloid (C) and a layer of titanium oxide colloid (Ti 1.830.17 O 4) molar mixing ratio (C / Ti 1.83 □ 0.17 O 4) is about 0.4 in.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is shown by the claims below rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .

Claims (17)

  1. 층상 금속 산화물 또는 수산화물, 및 탄소 나노구조체를 포함하는, 하이브리드 종이. A hybrid paper comprising a layered metal oxide or hydroxide, and carbon nanostructures.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 층상 금속 산화물과 상기 탄소 나노구조체가 서로 혼합되어 층상 구조를 형성하는 것인, 하이브리드 종이.And the layered metal oxide and the carbon nanostructure are mixed with each other to form a layered structure.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 탄소 나노구조체는 탄소나노튜브, 그래파이트, 그래파이트 옥사이드, 그래핀, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함하는 것인, 하이브리드 종이.The carbon nanostructure is hybrid paper, including one selected from the group consisting of carbon nanotubes, graphite, graphite oxide, graphene, and combinations thereof.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 층상 금속 산화물 또는 수산화물은 알루미늄(Al), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 갈륨(Ga), 지르코늄(Zr), 몰리브덴(Mo), 니오븀(Nb), 주석(Sn), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 은(Ag), 카드뮴(Cd), 주석(Sn), 안티모니(Sb), 인듐(In), 탄탈륨(Ta), 텅스텐(W), 백금(Pt), 금(Au), 납(Pb), 비스무스(Bi), 및 이들의 조합들로 이루어진 군으로부터 선택된 금속의 산화물 또는 수산화물을 포함하는 것인, 하이브리드 종이.The layered metal oxide or hydroxide is aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu ), Zinc (Zn), gallium (Ga), zirconium (Zr), molybdenum (Mo), niobium (Nb), tin (Sn), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag) ), Cadmium (Cd), tin (Sn), antimony (Sb), indium (In), tantalum (Ta), tungsten (W), platinum (Pt), gold (Au), lead (Pb), bismuth ( Bi), and an oxide or hydroxide of a metal selected from the group consisting of combinations thereof.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 하이브리드 종이의 두께는 1 ㎛ 내지 100 ㎛인 것인, 하이브리드 종이. The hybrid paper is the thickness of the hybrid paper is 1 ㎛ to 100 ㎛.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 하이브리드 종이는 항균성을 갖는 것인, 하이브리드 종이. The hybrid paper, wherein the hybrid paper has antibacterial properties.
  7. 탄소 나노구조체를 용매에 분산시켜 탄소 나노구조체 콜로이드를 제조하는 단계;Dispersing the carbon nanostructures in a solvent to prepare a carbon nanostructure colloid;
    층상 금속 산화물을 용매에 분산시켜 층상 금속 산화물 콜로이드를 제조하는 단계; Dispersing the layered metal oxide in a solvent to prepare a layered metal oxide colloid;
    상기 탄소 나노구조체 콜로이드와 상기 층상 금속 산화물 콜로이드를 혼합하여 층상 금속 산화물-탄소 나노구조체 혼합물을 제조하는 단계; 및Preparing a layered metal oxide-carbon nanostructure mixture by mixing the carbon nanostructure colloid and the layered metal oxide colloid; And
    상기 층상 금속 산화물-탄소 나노구조체 혼합물을 투석하여 잔류 이온종을 제거한 후 건조시키는 단계Dialysis of the layered metal oxide-carbon nanostructure mixture to remove residual ionic species, followed by drying
    를 포함하는, 하이브리드 종이의 제조 방법.Comprising a method for producing a hybrid paper.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 탄소 나노구조체는 탄소나노튜브, 그래파이트, 그래파이트 옥사이드, 그래핀, 및 이들의 조합들로 이루어지는 군에서 선택되는 것을 포함하는 것인, 하이브리드 종이의 제조 방법.The carbon nanostructures are carbon nanotubes, graphite, graphite oxide, graphene, and the one comprising a combination consisting of a combination thereof, the method of producing a hybrid paper.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 층상 금속 산화물은 알루미늄(Al), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 갈륨(Ga), 지르코늄(Zr), 몰리브덴(Mo), 니오븀(Nb), 주석(Sn), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 은(Ag), 카드뮴(Cd), 주석(Sn), 안티모니(Sb), 인듐(In), 탄탈륨(Ta), 텅스텐(W), 백금(Pt), 금(Au), 납(Pb), 비스무스(Bi), 및 이들의 조합들로 이루어진 군으로부터 선택된 금속의 산화물을 포함하는 것인, 하이브리드 종이의 제조 방법.The layered metal oxide may be aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), Zinc (Zn), Gallium (Ga), Zirconium (Zr), Molybdenum (Mo), Niobium (Nb), Tin (Sn), Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Silver (Ag), Cadmium (Cd), Tin (Sn), Antimony (Sb), Indium (In), Tantalum (Ta), Tungsten (W), Platinum (Pt), Gold (Au), Lead (Pb), Bismuth (Bi) And an oxide of a metal selected from the group consisting of, and combinations thereof.
  10. 제 7 항에 있어서, The method of claim 7, wherein
    상기 탄소 나노구조체 콜로이드 및 상기 층상 금속 산화물 콜로이드는 1 : 10 내지 10 : 1의 몰 혼합비율로 혼합되는 것인, 하이브리드 종이의 제조 방법.The carbon nanostructure colloid and the layered metal oxide colloid are mixed at a molar mixing ratio of 1: 10 to 10: 1, a method for producing a hybrid paper.
  11. 제 7 항에 있어서,The method of claim 7, wherein
    상기 층상 금속 산화물 콜로이드는 산성 용액에 교반하여 양성자 치환된 층상 금속 산화물 콜로이드를 제조한 후 유기양이온 용액에서 교반하여 박리화된 층상 금속 산화물 콜로이드를 형성하여 제조되는 것인, 하이브리드 종이의 제조 방법.The layered metal oxide colloid is prepared by stirring in an acidic solution to prepare a proton-substituted layered metal oxide colloid and then stirring in an organic cation solution to form a peeled layered metal oxide colloid, a method for producing a hybrid paper.
  12. 제 7 항에 있어서,The method of claim 7, wherein
    상기 탄소 나노구조체 콜로이드는, 흑연을 산화시켜 형성된 그래파이트 옥사이드에 초음파를 가하여 박리시켜 수득된 그래핀 옥사이드를 재환원시켜 제조되는 것인, 하이브리드 종이의 제조 방법.The carbon nanostructure colloid is prepared by re-reducing graphene oxide obtained by exfoliation by applying ultrasonic waves to graphite oxide formed by oxidizing graphite, hybrid paper manufacturing method.
  13. 제 7 항에 있어서,The method of claim 7, wherein
    상기 건조하는 단계 전에, 상기 잔류 이온종이 제거된 상기 층상 금속 산화물-탄소 나노구조체 혼합물을 감압여과시키는 단계를 추가 포함하는, 하이브리드 종이의 제조 방법. And subjecting the layered metal oxide-carbon nanostructure mixture from which the residual ionic species has been removed under reduced pressure prior to the drying step, to a hybrid paper.
  14. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 하이브리드 종이를 포함하는, 항균막. Antimicrobial membrane containing the hybrid paper of any one of Claims 1-6.
  15. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 하이브리드 종이를 포함하는, 촉매.A catalyst comprising the hybrid paper according to any one of claims 1 to 6.
  16. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 하이브리드 종이를 포함하는, 전극.An electrode comprising the hybrid paper according to any one of claims 1 to 6.
  17. 제 1 항 내지 제 6 항 중 어느 한 항에 따른 하이브리드 종이를 포함하는, 흡착제.An adsorbent comprising the hybrid paper according to any one of claims 1 to 6.
PCT/KR2013/003580 2012-10-19 2013-04-25 Hybrid paper and manufacturing method therefor WO2014061887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0116420 2012-10-19
KR1020120116420A KR101426269B1 (en) 2012-10-19 2012-10-19 Hybrid paper, and preparing method of the same

Publications (1)

Publication Number Publication Date
WO2014061887A1 true WO2014061887A1 (en) 2014-04-24

Family

ID=50488421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003580 WO2014061887A1 (en) 2012-10-19 2013-04-25 Hybrid paper and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR101426269B1 (en)
WO (1) WO2014061887A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108166294A (en) * 2017-12-23 2018-06-15 林荣铨 A kind of paper products of graphene-containing and preparation method thereof
CN110029522A (en) * 2019-05-20 2019-07-19 安徽省三环康乐包装材料有限公司 A kind of sterile paper box ground paper formula and processing method
CN111183979A (en) * 2020-01-31 2020-05-22 合肥学院 High-efficiency composite inorganic antibacterial agent and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140562A1 (en) * 2003-09-09 2010-06-10 Olga Shenderova Nano-carbon hybrid structures
KR20110023263A (en) * 2009-08-31 2011-03-08 서울대학교산학협력단 Method of fabricating a metal oxide-carbon nanocomposite
KR20110073296A (en) * 2009-12-21 2011-06-29 성균관대학교산학협력단 Metal-carbon hybrid nanostructure film and preparing method of the same
KR20110079532A (en) * 2009-12-30 2011-07-07 성균관대학교산학협력단 Roll-to-roll doping method of graphene film and doped graphene film
US20110311874A1 (en) * 2010-04-30 2011-12-22 University Of Southern California Silicon-Carbon Nanostructured Electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140562A1 (en) * 2003-09-09 2010-06-10 Olga Shenderova Nano-carbon hybrid structures
KR20110023263A (en) * 2009-08-31 2011-03-08 서울대학교산학협력단 Method of fabricating a metal oxide-carbon nanocomposite
KR20110073296A (en) * 2009-12-21 2011-06-29 성균관대학교산학협력단 Metal-carbon hybrid nanostructure film and preparing method of the same
KR20110079532A (en) * 2009-12-30 2011-07-07 성균관대학교산학협력단 Roll-to-roll doping method of graphene film and doped graphene film
US20110311874A1 (en) * 2010-04-30 2011-12-22 University Of Southern California Silicon-Carbon Nanostructured Electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108166294A (en) * 2017-12-23 2018-06-15 林荣铨 A kind of paper products of graphene-containing and preparation method thereof
CN110029522A (en) * 2019-05-20 2019-07-19 安徽省三环康乐包装材料有限公司 A kind of sterile paper box ground paper formula and processing method
CN111183979A (en) * 2020-01-31 2020-05-22 合肥学院 High-efficiency composite inorganic antibacterial agent and preparation method thereof

Also Published As

Publication number Publication date
KR20140050264A (en) 2014-04-29
KR101426269B1 (en) 2014-08-05

Similar Documents

Publication Publication Date Title
Reddy et al. Carbon functionalized TiO2 nanofibers for high efficiency photocatalysis
Nasrollahzadeh et al. In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue
Reddy et al. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties
Kim et al. Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites
Das et al. In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants
Umek et al. Impact of structure and morphology on gas adsorption of titanate-based nanotubes and nanoribbons
US20190139667A1 (en) Graphene composites with dispersed metal or metal oxide
Baruah et al. Optoelectronically suitable graphene oxide-decorated titanium oxide/polyaniline hybrid nanocomposites and their enhanced photocatalytic activity with methylene blue and rhodamine B dye
Song et al. Synthesis of bifunctional reduced graphene oxide/CuS/Au composite nanosheets for in situ monitoring of a peroxidase-like catalytic reaction by surface-enhanced Raman spectroscopy
Hao et al. Bridged Ti3C2T x MXene film with superior oxidation resistance and structural stability for high-performance flexible supercapacitors
Mousli et al. Polyaniline-grafted RuO2-TiO2 heterostructure for the catalysed degradation of methyl orange in darkness
Notley et al. Bacterial interaction with graphene particles and surfaces
Albiter et al. Synthesis, characterization, and photocatalytic performance of ZnO–graphene nanocomposites: a review
Sharma et al. Methods of preparation of metal-doped and hybrid tungsten oxide nanoparticles for anticancer, antibacterial, and biosensing applications
Nipane et al. In situ one pot synthesis of nanoscale TiO 2-anchored reduced graphene oxide (RGO) for improved photodegradation of 5-fluorouracil drug
WO2014061887A1 (en) Hybrid paper and manufacturing method therefor
Du et al. Homogeneous coating of Au and SnO 2 nanocrystals on carbon nanotubes via layer-by-layer assembly: a new ternary hybrid for a room-temperature CO gas sensor
Shaikh et al. One-step solvothermal synthesis of TiO 2-reduced graphene oxide nanocomposites with enhanced visible light photoreduction of Cr (VI)
Kumar et al. Electrochemical detection of H2O2 using copper oxide-reduced graphene oxide heterostructure
CN111268652A (en) Metal oxide and hydrate nano chemical material thereof and green synthesis method thereof
Radoń et al. Structure of nanographite synthesised by electrochemical oxidation and exfoliation of polycrystalline graphite
Vasanthakumar et al. MWCNT supported V2O5 quantum dot nanoparticles decorated Bi2O3 nanosheets hybrid system: efficient visible light driven photocatalyst for degradation of ciprofloxacin
Eskalen et al. Investigating the PVA/TiO2/CDs polymer nanocomposites: effect of carbon dots for photocatalytic degradation of Rhodamine B
Díaz et al. Iridium nanostructured metal oxide, its inclusion in silica matrix and their activity toward photodegradation of methylene blue
Xiao et al. MXenes and MXene-based composites for energy conversion and storage applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847784

Country of ref document: EP

Kind code of ref document: A1