WO2014061619A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2014061619A1
WO2014061619A1 PCT/JP2013/077862 JP2013077862W WO2014061619A1 WO 2014061619 A1 WO2014061619 A1 WO 2014061619A1 JP 2013077862 W JP2013077862 W JP 2013077862W WO 2014061619 A1 WO2014061619 A1 WO 2014061619A1
Authority
WO
WIPO (PCT)
Prior art keywords
trench
electrode
region
gate
emitter
Prior art date
Application number
PCT/JP2013/077862
Other languages
English (en)
French (fr)
Inventor
勇一 小野澤
高橋 英紀
吉村 尚
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2014542125A priority Critical patent/JP5867617B2/ja
Priority to KR1020157006098A priority patent/KR20150066517A/ko
Priority to EP13847740.1A priority patent/EP2822039B1/en
Priority to CN201380019387.9A priority patent/CN104221153B/zh
Publication of WO2014061619A1 publication Critical patent/WO2014061619A1/ja
Priority to US14/449,984 priority patent/US9054154B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a trench gate insulated gate bipolar transistor (IGBT).
  • IGBT trench gate insulated gate bipolar transistor
  • IGBTs insulated gate bipolar transistors
  • a planar gate type IGBT in which a gate electrode is provided along the wafer surface, and a vertical direction in the depth direction from a striped planar pattern on the wafer surface
  • a trench gate type IGBT is known in which a polysilicon gate electrode is embedded in a trench having a shape extending in a via a surface oxide film.
  • the channel is formed along both side walls inside the trench having an opening having a stripe-like planar pattern, the channel is reduced by narrowing the gap between the opening width of the trench and the stripe-like trench pattern.
  • the density can be made higher than that of the planar gate type. As the channel density increases, the on-voltage can be further reduced.
  • the application of trench gate type IGBTs is increasing.
  • FIG. 8 is a cross-sectional view of a conventional trench gate type IGBT having a floating potential region.
  • a p layer 112 including a p base region 103 and a floating p region 111 is formed in the layer.
  • the p layer 112 is divided into a p base region 103 and a floating p region 111 by a plurality of trenches 110 that penetrate the p layer 112 from the front surface of the silicon substrate and reach the n ⁇ drift layer 102.
  • the p base region 103 is a region sandwiched between the side walls of the adjacent trenches 110 on the side where the n + emitter region 104 is provided in the p layer 112. Since the region sandwiched between the side walls of the adjacent trenches 110 on the side where the n + emitter region 104 is provided is a region through which a main current flows, it is also referred to as an active mesa region.
  • the floating p region 111 is a region sandwiched between sidewalls of the adjacent trenches 110 on the side where the n + emitter region 104 does not exist in the p layer 112.
  • the floating p region 111 is insulated from the n ⁇ drift layer 102 by a pn junction, and is insulated from the gate electrode 106 by the gate insulating film 105. That is, the floating p region 111 is in a so-called floating state (floating region).
  • a gate electrode 106 is provided inside the trench 110 with a gate insulating film 105 interposed therebetween.
  • N + emitter region 104 is in contact with gate insulating film 105 provided on the side wall of trench 110 on the p base region 103 side.
  • Emitter electrode 108 is electrically connected to n + emitter region 104 and p base region 103, and is insulated from gate electrode 106 by interlayer insulating film 107.
  • the emitter electrode 108 is covered with a passivation protection film (not shown) made of a silicon nitride film (Si 3 N 4 film), an amorphous silicon film, or a polyimide film.
  • Collector electrode 109 is in contact with p + collector region 101.
  • the emitter electrode 108 is normally grounded, and when the voltage higher than the emitter electrode 108 is applied to the collector electrode 109 and the voltage of the gate electrode 106 is lower than the threshold value, the p base region 103 and the n ⁇ drift layer 102. Since the pn junction between and is reverse-biased, no current flows between the emitter and collector. That is, the IGBT is in an off state.
  • the injected electrons cause the pn junction between the p + collector region 101 and the n ⁇ type drift layer 102 to be forward-biased and holes are injected from the collector electrode 109, so that a current flows between the emitter and the collector. . That is, the IGBT is turned on.
  • the voltage drop between the emitter electrode 108 and the collector electrode 109 of the IGBT in the on state is the on voltage.
  • the gate voltage between the emitter electrode 108 and the gate electrode 106 is lowered below a threshold value.
  • the charges accumulated in the gate electrode 106 are discharged to the gate drive circuit via the gate resistance.
  • the channel region that has been inverted to the n-type returns to the p-type, and the supply of electrons from the emitter electrode 108 to the n ⁇ drift layer 102 stops due to the absence of the channel region.
  • IEGT injection Enhanced Gate Bipolar Transistor
  • Patent Document 1 FIG. 101
  • the n + emitter region and the p base region are partially covered with an insulating film to insulate them, thereby reducing the contact area between the n + emitter region and the p base region and the emitter electrode.
  • this IEGT is basically the same as that of a trench gate type IGBT.
  • the carrier concentration distribution of the n ⁇ drift layer is close to the carrier concentration distribution of the diode, and can be made lower than the on-voltage of a normal trench gate type IGBT.
  • the trench gate type IGBT and IEGT charge the capacitance between the gate electrode and the emitter electrode when shifted from the off state to the on state, and when the transition from the on state to the off state occurs, It is necessary to discharge the charge accumulated in the capacitor between the emitter electrode.
  • the capacitance between the gate electrode and the emitter electrode is increased, the charge / discharge time is increased, and not only switching characteristics but also switching loss is increased.
  • the total generated loss of the power device is the sum of the steady loss determined by the ON voltage and the switching loss generated during the switching operation. For this reason, it is also important to reduce the capacitance between the gate electrode and the emitter electrode in order to reduce the switching loss as well as the on-voltage. By reducing the capacitance between the gate electrode and the emitter electrode, it is possible to suppress a decrease in switching characteristics.
  • Patent Document 2 As an IGBT that solves such a problem, an IGBT having a floating p region has been proposed (see, for example, Patent Document 2 (FIG. 1) below).
  • Patent Document 2 a floating p region in a floating state is provided. For this reason, in the vicinity of the lower side of the floating p region, holes are difficult to be discharged to the emitter electrode when turned off, and accumulate in the floating p region. As a result, as described above, the carrier concentration distribution in the n ⁇ drift layer becomes close to the carrier concentration distribution of the diode, and the on-voltage is reduced.
  • the floating p region is also referred to as a floating mesa region. Furthermore, since this floating p region has no trench gate structure, the capacitance between the gate electrode and the emitter electrode is reduced, the charge / discharge time is shortened, and the switching loss can be reduced. it can.
  • Non-Patent Document 1 As common to the structure of Patent Document 2 and the structure of Patent Document 1, it is reported that Non-Patent Document 1 below has room for improvement in turn-on characteristics.
  • Patent Document 3 shows a structure that further improves such turn-on characteristics. That is, the polysilicon layer (gate electrode) filled in the trench is divided, and only the polysilicon layer close to the n + emitter region and the p base region side (active mesa region side) is separated and divided as the gate electrode, and the floating mesa is separated. The polysilicon layer near the region side is not connected to the gate electrode but connected to the emitter electrode. Further, this Patent Document 3 discloses the following method as such a method for dividing the polysilicon layer. A polysilicon layer having a thickness that does not completely fill the trench is formed. Next, the polysilicon layer at the bottom of the trench is cut using the oxide film as a mask while leaving the polysilicon layer on the substrate surface.
  • the polysilicon layer in the trench is filled with an oxide film or the like and the polysilicon layers on both side walls are separated and divided from each other, and then a lead portion with the polysilicon layer on the substrate surface is formed (for example, (See Patent Document 3 (FIG. 1) below).
  • the inner wall of the trench is formed when the gate electrode is formed along both sides of the inner wall of the trench.
  • the polysilicon film on the bottom surface of the trench is formed by general photolithography and etching with the polysilicon film remaining on the front surface of the silicon substrate.
  • the gate electrode in the trench is divided by removing. For this reason, there are problems that the number of process steps is very large, and there is a concern about an increase in cost and a decrease in yield rate.
  • An object of the present invention is to provide a semiconductor device that can improve turn-on characteristics such as on-voltage and switching loss at turn-on while suppressing an increase in cost and a decrease in yield rate by adding a small number of process steps. Is to provide.
  • a semiconductor device includes a first trench formed in a surface layer of a first conductivity type semiconductor layer, and one of the first trenches.
  • a second trench connected to a side wall; a third trench connected to the other side wall of the first trench; and the semiconductor layer at a depth shallower than the first trench along one side wall of the first trench.
  • a base region of a second conductivity type selectively formed on the surface layer of the first region; an emitter region formed on the surface layer of the base region in contact with the side wall of the first trench; and the other side wall of the first trench And a floating potential region of a second conductivity type selectively formed on the surface layer of the semiconductor layer.
  • the semiconductor device described above includes the first insulating film provided along one side wall of the first trench and the inner wall of the second trench, the other side wall of the first trench, and the inner wall of the third trench.
  • a shield electrode provided inside the third trench, inside the second insulating film along the other side wall of the first trench, and in the first trench, And a third insulating film embedded between the gate electrode and the shield electrode.
  • the second trench is extended so that a part thereof is provided on the first gate electrode, the gate runner connected to the first gate electrode, and the third trench
  • an emitter polysilicon layer partially provided on the shield electrode and connected to the shield electrode, the first gate electrode, the shield electrode, the emitter region, the gate runner and the emitter
  • An interlayer insulating film covering a polysilicon layer; a gate pad provided on the interlayer insulating film; connected to the gate runner; and provided on the interlayer insulating film apart from the gate pad; the emitter region; And an emitter electrode connected to the base region and the shield electrode.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the opening widths of the second trench and the third trench are narrower than the opening width of the first trench.
  • the opening width of the first trench is narrower than twice the film thickness of the first shield electrode.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the second trench and the third trench are arranged on the same straight line across the first trench.
  • a plurality of the second trenches are provided with respect to one third trench, and are sandwiched between the adjacent second trenches in the base region. The portion is opposed to the third trench across the first trench.
  • the second trench and a part of the first trench, and the third trench and a part of the first trench are respectively annular planes. It is characterized by having a shape.
  • the first connecting portion between the side wall of the first trench and the side wall of the second trench, and the side wall of the first trench and the side wall of the third trench in the above-described invention is chamfered and is round shape, It is characterized by the above-mentioned.
  • the semiconductor device according to the present invention is characterized in that, in the above-described invention, the upper portions of the first connecting portion and the second connecting portion are not covered with the emitter electrode and the gate pad.
  • the semiconductor device further comprises a collector layer of a second conductivity type provided on the back surface of the semiconductor layer and a collector electrode provided on the surface of the collector layer.
  • the semiconductor device of the present invention it is possible to improve turn-on characteristics such as on-voltage and switching loss at turn-on while suppressing an increase in cost and a decrease in yield rate by adding a small number of process steps. There is an effect that can be done.
  • FIG. 2 is a plan view showing a planar layout of the main part of the semiconductor device according to the first embodiment;
  • FIG. FIG. 3 is a cross-sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment (part 1);
  • FIG. 3 is a cross-sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment (part 2);
  • FIG. 3 is a cross-sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment (part 3);
  • FIG. 6 is a sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment (part 4);
  • FIG. 6 is a cross-sectional view showing the state in the middle of manufacturing the semiconductor device according to the first embodiment (No. 5);
  • FIG. 6 is a sectional view showing a state in the middle of manufacturing the semiconductor device according to the first embodiment (No. 6); It is sectional drawing of the trench gate type IGBT which has the conventional floating electric potential area
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along a cutting line A1-A2 in FIG.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure at each of cutting lines B1-B2 and C1-C2 of FIG.
  • FIG. 2 is a cross-sectional view showing a cross-sectional structure taken along a cutting line D1-D2 in FIG.
  • FIG. 6 is a plan view showing a planar layout of essential parts of a semiconductor device according to a second embodiment; FIG.
  • FIG. 13 is a cross-sectional view showing a cross-sectional structure taken along a cutting line E1-E2 of FIG.
  • FIG. 6 is a plan view showing a planar layout of a main part of a semiconductor device according to a third embodiment
  • FIG. 6 is a plan view showing a planar layout of a main part of a semiconductor device according to a fourth embodiment
  • FIG. 10 is a plan view showing a planar layout of essential parts of a semiconductor device according to a fifth embodiment
  • FIG. 10 is a plan view showing a planar layout of essential parts of a semiconductor device according to a sixth embodiment;
  • FIG. 1 is a plan view showing a planar layout of the main part of the semiconductor device according to the first embodiment.
  • FIG. 9 is a cross-sectional view showing a cross-sectional structure taken along section line A1-A2 of FIG.
  • FIG. 10 is a cross-sectional view showing a cross-sectional structure taken along cutting lines B1-B2 and C1-C2 of FIG.
  • FIG. 11 is a cross-sectional view showing a cross-sectional structure taken along section line D1-D2 of FIG.
  • the planar layout of the semiconductor device according to the first embodiment will be described.
  • the semiconductor device includes an active region through which a current flows when in an on state, and a breakdown voltage region that maintains a breakdown voltage by relaxing an electric field on the front surface side of the silicon substrate of the n ⁇ drift layer.
  • the withstand voltage region surrounds the active region.
  • the shield electrode 22 b has a substantially rectangular annular planar electrode portion and surrounds the floating p region 20.
  • the shield electrode 22b has a linear planar electrode portion provided in a region surrounded by the substantially rectangular annular electrode portion connected from the substantially rectangular annular planar electrode portion. In the linear electrode portion of shield electrode 22b, the terminal portion is in contact with emitter polysilicon layer 25a.
  • the first gate electrode 22a has a substantially rectangular annular planar electrode portion and surrounds the shield electrode 22b.
  • the first gate electrode 22a has a linear planar electrode portion that is connected to the substantially rectangular annular planar electrode portion and is provided toward the outside of the substantially rectangular annular electrode portion. In the linear electrode portion of the first gate electrode 22 a, the terminal portion is in contact with the gate runner (second gate electrode) 26.
  • a third insulating film 16 is provided in a region between the first gate electrode 22a and the shield electrode 22b.
  • the first gate electrode 22a, the shield electrode 22b, and the third insulating film 16 are disposed inside the first trench 21 having a substantially rectangular annular planar shape.
  • a plurality of first trenches 21 in which the first gate electrode 22 a, the shield electrode 22 b, and the third insulating film 16 are arranged in this manner are arranged in parallel in the short direction of the first trench 21.
  • a region between adjacent first gate electrodes 22 a is an active mesa region 24.
  • a p base region 30 (see FIG. 9) is provided in the active mesa region 24.
  • An n + emitter region 31 is provided in a region between the first gate electrode 22a and the shield electrode 22b.
  • the p base region 30 and the n + emitter region 31 are in contact with the emitter electrode 25 (see FIG. 9).
  • a region in contact with the emitter electrode 25 is referred to as an emitter contact region 27.
  • a linear planar second trench 40 having one end connected to the outer side wall of the first trench 21 is provided outside the substantially rectangular annular shape of the first trench 21. Specifically, the second trench 40 is provided in a portion of the p base region 30 where the n + emitter region 31 does not exist.
  • a first gate electrode 22 a is disposed inside the second trench 40.
  • a linear planar third trench 50 having one end connected to the inner side wall of the first trench 21 is provided in a region surrounded by the substantially rectangular annular first trench 21, a linear planar third trench 50 having one end connected to the inner side wall of the first trench 21 is provided.
  • the third trench 50 is provided in the floating p region 20 surrounded by the substantially rectangular annular first trench 21.
  • the shield electrode 22b is disposed inside the third trench 50.
  • the second trench 40 and the third trench 50 are arranged on the same straight line across the first trench 21.
  • the emitter electrode 25 (see FIG. 9) is formed on the surface of the p base region 30, the floating p region 20, the first gate electrode 22a, the shield electrode 22b, and the emitter polysilicon layer 25a via the interlayer insulating film 10 (see FIG. 9). Is arranged. Emitter electrode 25 is connected to n + emitter region 31, p base region 30, and shield electrode 22b.
  • the emitter polysilicon layer 25a is formed on the insulating film 15 (see FIG. 9) provided on the floating p region 20 and in the linear shape of the shield electrode 22b in the region surrounded by the substantially rectangular ring-shaped electrode portion of the shield electrode 22b. Is provided on the electrode portion. Specifically, the emitter polysilicon layer 25a is arranged so that a part thereof covers the terminal portion of the linear electrode portion of the shield electrode 22b. That is, since the third trench 50 connected from the first trench 21 is extended to a position immediately below the emitter polysilicon layer 25a, the shield electrode 22b is connected to the emitter polysilicon layer 25a.
  • the gate runner 26 has a substantially rectangular annular planar shape, and is disposed on the outer periphery of the active region so as to surround the emitter electrode 25.
  • a region inside the gate runner 26 (including the gate runner 26) is an active region.
  • the gate runner 26 is provided on the insulating film 15 provided on the p base region 30 and on the linear electrode portion of the first gate electrode 22a. Specifically, the gate runner 26 is arranged so that a part thereof covers the terminal portion of the linear electrode portion of the first gate electrode 22a. That is, since the second trench 40 connected from the first trench 21 extends to a position immediately below the gate runner 26, the first gate electrode 22 a is connected to the gate runner 26.
  • the gate runner 26 is connected to a gate pad 28 (see FIG. 11).
  • the interlayer insulating film 10 is provided with first to third contact holes 19a to 19c having a substantially rectangular planar shape.
  • the first contact hole 19a (gate runner contact hole) extends on the gate runner 26 along the outer periphery of the active region.
  • the second contact hole 19b (emitter contact hole) is provided on the emitter polysilicon layer 25a.
  • the third contact hole 19c (see FIG. 9) extends on the p base region 30 along the direction in which the p base region 30 extends.
  • the first to third contact holes 19a to 19c may have a configuration in which a plurality of contact holes having a substantially square planar shape are arranged at a predetermined interval.
  • the p layer 60 is provided with a plurality of first trenches 21 that penetrate the p layer 60 from the front surface of the silicon substrate and reach the n ⁇ drift layer 2.
  • the p layer 60 is divided into a mesa-shaped p base region 30 and a floating p region 20.
  • the p base region 30 is a region sandwiched between the outer sidewalls of the first trench 21, and the floating p region 20 is a region surrounded by the inner sidewall of the first trench 21.
  • n + emitter region 31 is selectively provided inside the p base region 30.
  • the n + emitter region 31 is in contact with an insulating film (first insulating film 15a described later) provided on the outer sidewall of the first trench 21.
  • the p base region 30 and the n + emitter region 31 are in contact with the emitter electrode 25 through the third contact hole 19 c opened in the interlayer insulating film 10 in the emitter contact region 27.
  • the n + emitter region 31 does not exist inside the floating p region 20.
  • the p base region 30 includes a region that is deeper than the depth of the first trench 21 in the region where the second trench 40 is formed, as shown in FIG.
  • the depth of the second trench 40 is shallower than the depth of the region of the p base region 30 that is deeper than the depth of the first trench 21.
  • Floating p region 20, n - the pn junction between the drift layer 2 n - is insulated from the drift layer 2.
  • the floating p region 20 is insulated from the shield electrode 22b inside the first trench 21 by an insulating film (second insulating film 15b described later) provided along the inner sidewall of the first trench 21. . That is, the floating p region 20 is in a so-called floating state. Holes are accumulated in the floating p region 20 when the floating p region 20 is on.
  • the depth of the floating p region 20 is preferably deeper than the depth of the first trench 21. In this case, for example, it is preferable to provide the floating p region 20 so as to cover the corner portion of the bottom surface of the first trench 21.
  • the depth of the floating p region 20 may be shallower than the depth of the first trench 21. In this case, the depth of the floating p region 20 may be approximately the same as the depth of the p base region 30.
  • an insulating film 15 is provided along the inner wall of the first trench 21.
  • the first insulating film 15a is an insulating film provided from the side wall to the bottom surface of the first trench 21 on the floating p region 20 side, and the second insulating film 15b.
  • a first gate electrode 22a and a shield electrode 22b are provided inside the first insulating film 15a and the second insulating film 15b, respectively.
  • the opening width of the first gate electrode 22a and the opening width of the shield electrode 22b may be, for example, about 0.5 ⁇ m with respect to the first trench 21 having an opening width of, for example, about 2 ⁇ m.
  • the first gate electrode 22a and the shield electrode 22b may be made of a conductor layer such as polysilicon (poly-Si) or a refractory metal.
  • a third insulating film 16 is provided between the first gate electrode 22a and the shield electrode 22b.
  • the first gate electrode 22 a and the shield electrode 22 b are insulated from each other by the third insulating film 16.
  • the third insulating film 16 may be an oxide film having a high embedding property such as a HTO (High Temperature Oxide) film or a TEOS (TetraEthoxySilane) film.
  • An interlayer insulating film 10 is provided on the front surface of the silicon substrate so as to cover the p base region 30, the floating p region 20, the first gate electrode 22a, the shield electrode 22b, the emitter polysilicon layer 25a, and the gate runner 26. ing.
  • An emitter electrode 25 and a gate pad 28 are selectively provided on the interlayer insulating film 10 so as to cover the interlayer insulating film 10.
  • the emitter electrode 25 and the gate pad 28 are provided apart from each other.
  • the interlayer insulating film 10 is provided with first to third contact holes 19a to 19c (see FIGS. 9 and 11) so as to have the above-described planar layout.
  • the first contact hole 19a is selectively provided in the interlayer insulating film 10 in a portion covered with the gate pad 28, and selectively exposes the gate runner 26.
  • the second contact hole 19b is selectively provided in the interlayer insulating film 10 in a portion covered with the emitter electrode 25, and selectively exposes the emitter polysilicon layer 25a.
  • the third contact hole 19c is selectively provided in the interlayer insulating film 10 in the portion covered with the emitter electrode 25, and selectively exposes the n + emitter region 31 and the p + base region 30.
  • a barrier metal film (not shown) made of, for example, a titanium (Ti) film and a titanium nitride (TiN) film is provided on the silicon substrate side, on the barrier metal film.
  • a tungsten (W) film is embedded.
  • the gate runner 26 is connected to the gate pad 28 via the first contact hole 19a.
  • the emitter polysilicon layer 25a is connected to the emitter electrode 25 through the second contact hole 19b. That is, gate runner 26 and emitter polysilicon layer 25a are directly connected to contact plugs (including a barrier metal film and a tungsten film) provided on the surfaces of gate runner 26 and emitter polysilicon layer 25a, respectively.
  • the emitter electrode 25 is connected to the n + emitter region 31 and the emitter contact region 27 through the third contact hole 19c.
  • the emitter electrode 25 is insulated from the first gate electrode 22a and the shield electrode 22b by the interlayer insulating film 10.
  • the emitter electrode 25 and the gate pad 28 are covered with a passivation protection film (not shown) made of a silicon nitride film or a polyimide film.
  • a collector electrode (not shown) is in contact with the p + collector region.
  • FIG. 10 shows a cross-sectional structure taken along cutting lines B1-B2 and C1-C2 in FIG. 1 as one drawing.
  • reference numerals 40, 50 and 15 a, 15 b indicate that the insulating film 15 a is provided on the side wall of the second trench 40 and the insulating film 15 b is provided on the side wall of the third trench 50.
  • reference numerals 22 a, 22 b and 26, 25 a indicate that the first gate electrode 22 a provided in the second trench 40 is connected to the gate runner 26 in the vicinity of the terminal portion of the linear electrode portion. This shows that the shield electrode 22b connected and provided inside the third trench 50 is connected to the emitter polysilicon layer 25a in the vicinity of the end portion of the linear electrode portion.
  • the first gate electrode 22a is provided directly below the gate runner 26. Therefore, the first gate electrode 22a is located near the terminal end of the linear electrode portion. It is connected to the. Since a part of the shield electrode 22b is provided just below the emitter polysilicon layer 25a, the shield electrode 22b is connected to the emitter polysilicon layer 25a in the vicinity of the terminal portion of the linear electrode portion. Yes. That is, the first gate electrode 22a is connected to the gate pad 28 through the gate runner 26 and the first contact hole 19a. The shield electrode 22b is connected to the emitter electrode 25 via the emitter polysilicon layer 25a and the second contact hole 19b.
  • the other ends of the second and third trenches 40 and 50 are extended to just below the gate runner 26 and the emitter polysilicon layer 25a, respectively. Therefore, the connection between the first gate electrode 22a and the gate runner 26 and the connection between the shield electrode 22b and the emitter polysilicon layer 25a are extremely easy.
  • 2 to 7 are cross-sectional views showing states during the manufacture of the semiconductor device according to the first embodiment.
  • a silicon substrate is prepared in which an n ⁇ drift layer 2 is laminated on the front surface of a p + semiconductor substrate to be a p + collector region.
  • a mask (not shown) is formed on the surface of the silicon substrate by photolithography, and ion implantation for forming a deep region of the p base region 30 and the floating p region 20 is performed.
  • first trenches 21, second trenches 40 are formed by photolithography and etching at a depth that does not reach the p + collector region from the front surface of the silicon substrate. 50 (see FIG. 1 and FIG. 11).
  • the opening width of the first trench 21 is 2 ⁇ m, for example, the opening width of the second and third trenches 40 and 50 is 1 ⁇ m, for example, and the opening width of the second and third trenches 40 and 50 is Narrower than the opening width.
  • the opening widths of the second and third trenches 40 and 50 are narrower than the opening width of the first trench 21 as described above, even if the first trench 21 is formed under the same conditions as the first trench 21, The depths of the third trenches 40 and 50 are shallower than the depth of the first trench 21 as shown in FIG.
  • a deep region of the p base region 30 and the floating p region 20 are formed by heat treatment.
  • This heat treatment is preferably performed before ion implantation for forming a shallow region of the p base region 30 described later.
  • the insulating film 15 is formed inside the first trench 21, the second trench 40, and the third trench 50 along the inner walls of the first trench 21, the second trench 40, and the third trench 50.
  • the insulating film 15 is grown so that the inner side of 15 is filled with the polysilicon layer 22.
  • the opening width of the first trench 21 is 2 ⁇ m, it is desirable to grow the polysilicon layer 22 having a thickness of about 0.5 ⁇ m.
  • the opening width of the second and third trenches 40 and 50 is narrower than the opening width of the first trench 21. For this reason, even if all the inside of the insulating film 15 is filled with the polysilicon layer 22 in the second and third trenches 40 and 50, the inside of the insulating film 15 in the first trench 21 is not filled with the polysilicon layer 22.
  • the polysilicon layer 22 is etched back by anisotropic etching, so that the surface of the silicon substrate (the surface of the n ⁇ drift layer 2) and the bottom surface of the first trench 21 are formed.
  • the polysilicon layer 22 is removed, leaving the polysilicon layer 22 on the side wall of the first trench 21. That is, only the polysilicon layer 22 having a shape stuck along the side wall portion of the first trench 21 via the insulating film 15 is left.
  • the polysilicon layer 22 buried inside the insulating film 15 in the second and third trenches 40 and 50 remains substantially in the state before the etch back.
  • the polysilicon layer 22 remaining on the side wall of the first trench 21 is the first gate electrode 22a and the shield electrode 22b.
  • the polysilicon layer 22 remaining inside the second trench 40 is the first gate electrode 22a.
  • the polysilicon layer 22 remaining inside the third trench 50 is the shield electrode 22b.
  • a highly embedded third insulating film 16 such as HTO or TEOS is formed so as to bury the inside of the polysilicon layer 22 inside the first trench 21.
  • the third insulating film 16 is etched back to remove the third insulating film 16 on the front surface of the silicon substrate.
  • the third insulating film 16 remains inside the polysilicon layer 22 inside the first trench 21, and the insulating film 15 remains on the inner walls of the first trench 21, the second trench 40, and the third trench 50.
  • the insulating film 15 remaining on the inner wall of the first trench 21 is the first and second insulating films 15a and 15b.
  • the insulating film 15 remaining on the inner wall of the second trench 40 is the first insulating film 15a.
  • the insulating film 15 remaining on the inner wall of the third trench 50 is the second insulating film 15b. That is, the polysilicon layer 22 with the insulating film 15 interposed between both side walls of the first trench 21 is formed of the polysilicon layer 22 (first gate electrode 22a) on the active mesa region 24 side and the polysilicon layer 22 (on the floating p region 20 side).
  • the shield electrode 22b) is separated and divided.
  • a first resist mask (not shown) having an opening corresponding to the formation region of the p base region 30 is formed.
  • p-type impurities such as boron are ion-implanted using the first resist mask as a mask, and the n ⁇ drift layer 2 is exposed to the surface layer of the n ⁇ drift layer 2 in the portion sandwiched between the first trenches 21 outside the first trench 21.
  • the p base region 30 is formed at a depth shallower than the depth of one trench 21. Thereby, the p base region 30 divided by the plurality of first trenches 21 is formed. Then, the first resist mask is removed.
  • a second resist mask having an opening corresponding to the formation region of the n + emitter region 31 is formed on the front surface of the silicon substrate.
  • n-type impurities such as phosphorus are ion-implanted using the second resist mask as a mask.
  • an n + emitter region 31 is formed in the surface layer of the p base region 30 as shown in FIG.
  • the second resist mask is removed.
  • the p base region 30 and the n + emitter region 31 formed in the mesa silicon substrate portion between the adjacent first trenches 21 become the active mesa region 24 by contacting the emitter electrode 25.
  • the mesa silicon substrate portion where the n + emitter region 31 is not formed is covered with the insulating film 15 and becomes a floating p region 20 which is a floating mesa region.
  • a gate runner 26 is formed on the p base region 30 via the insulating film 15 and on the terminal portion of the linear electrode portion of the first gate electrode 22a (see FIG. 11).
  • An emitter polysilicon layer 25a is formed on the floating p region 20 via the insulating film 15 and on the terminal portion of the linear electrode portion of the shield electrode 22b (see FIG. 11).
  • an interlayer insulating film 10 is formed on the entire front surface of the silicon substrate (see FIGS. 7 and 11).
  • the interlayer insulating film 10 corresponding to the formation region of the first to third contact holes 19a to 19c is removed by photolithography and etching. Accordingly, the gate runner 26 connected to the first gate electrode 22a formed inside the second trench 40 is selectively exposed to the first contact hole 19a.
  • the emitter polysilicon layer 25a connected to the shield electrode 22b formed inside the third trench 50 is selectively exposed in the second contact hole 19b. Further, the n + emitter region 31 and the p + base region 30 are selectively exposed in the third contact hole 19c.
  • a barrier metal film made of, for example, a titanium film and a titanium nitride film is formed inside the first to third contact holes 19a to 19c.
  • a tungsten film is formed so as to be embedded in the first to third contact holes 19a to 19c. Then, the tungsten film is etched back, and the tungsten film on the surface of the interlayer insulating film 10 is removed. Next, an emitter electrode 25 is formed on the interlayer insulating film 10, and a gate pad 28 is formed apart from the emitter electrode 25. Thereby, the polysilicon layer 22 to be the first gate electrode 22a is connected to the gate pad 28 via the gate runner 26, the barrier metal film, and the tungsten film. The polysilicon layer 22 serving as the shield electrode 22b is connected to the emitter electrode 25 via the emitter polysilicon layer 25a, the barrier metal film, and the tungsten film.
  • a passivation film is formed on the surface of the silicon substrate, the passivation film is selectively opened, and a part of the gate pad 28 and the emitter electrode 25 is exposed.
  • the exposed emitter electrode 25 becomes an emitter pad.
  • a collector electrode (not shown) is formed on the back surface of the silicon substrate, whereby the semiconductor device shown in FIGS. 1 and 9 to 11 is completed.
  • a semiconductor device having a significantly low gate mirror capacitance, improved turn-on characteristics, and reduced switching loss as well as reduced on-voltage can be obtained. It can be provided with a slight increase in number.
  • FIG. 12 is a plan view showing a planar layout of the main part of the semiconductor device according to the second embodiment.
  • the semiconductor device according to the second embodiment differs from the semiconductor device according to the first embodiment in the planar shape of the second and third trenches 40 and 50.
  • the second trench 40 has a substantially U-shaped planar shape, and both end portions thereof are connected to the outer side wall of the first trench 21. That is, the second trench 40 and a part of the first trench 21 form a substantially rectangular annular planar shape.
  • the second trench 40 may be formed so that both ends thereof are connected to the outer side wall of the first trench 21 so as to form a substantially rectangular annular planar shape with the first trench 21, and a substantially U-shaped planar shape. Not limited to.
  • the second trench 40 and a part of the first trench 21 may have an annular planar shape.
  • the third trench 50 has a substantially U-shaped planar shape, and both ends thereof are connected to the inner side wall of the first trench 21. That is, the third trench 50 and a part of the first trench 21 form a substantially rectangular annular planar shape.
  • the third trench 50 may be formed so that both ends thereof are connected to the inner side wall of the first trench 21 and form a substantially rectangular annular planar shape with the first trench 21. It is not limited to shape.
  • the third trench 50 and a part of the first trench 21 may have an annular planar shape.
  • the third trench 50 may be provided symmetrically with the second trench 40 with the first trench 21 interposed therebetween, for example.
  • the second trench 40 and a part of the first trench 21, and the third trench 50 and a part of the first trench 21 form a substantially rectangular annular planar shape.
  • the first gate electrode 22a and the shield electrode 22b that are formed are preferably connected to the gate runner 26 and the emitter polysilicon layer 25a in the vicinity of the approximate center of the second trench 40 and the third trench 50.
  • the first gate electrode 22a and the shield electrode 22b are preferably not connected to the gate runner 26 and the emitter polysilicon layer 25a in the vicinity of the end portions of the second trench 40 and the third trench 50.
  • the first gate electrode 22a and the shield electrode 22b are respectively formed on the gate runner 26 and the emitter polysilicon layer 25a, and the second trench 40 and the third trench 50. Are not connected in the vicinity of the terminal end portions of the second trench 40 and the third trench 50, so that the gate breakdown voltage and the reliability of the gate characteristics are reduced due to the shape of the terminal portion of each trench. The effect to be suppressed is obtained.
  • FIG. 13 is a cross-sectional view showing a cross-sectional structure taken along cutting line E1-E2 of FIG.
  • the second trench 40 and the third trench 50 are extended to just below the emitter polysilicon layer 25a and the gate runner 26, respectively. Therefore, the connection between the first gate electrode 22a and the gate runner 26 and the connection between the shield electrode 22b and the emitter polysilicon layer 25a are extremely easy.
  • the second trench 40 and a part of the first trench 21 are formed so that the third trench 50 and the first trench 21 form a substantially rectangular annular planar shape. Since the gate runner 26 and the emitter polysilicon layer 25a are connected in the vicinity of the substantially central portions of the second trench 40 and the third trench 50, and are not connected in the vicinity of the terminal portions of the second trench 40 and the third trench 50, each trench. It can be suppressed that the gate breakdown voltage and the reliability of the gate characteristics are lowered due to the shape of the terminal portion.
  • FIG. 14 is a plan view showing a planar layout of the main part of the semiconductor device according to the third embodiment.
  • the semiconductor device according to the third embodiment is different from the semiconductor device according to the first embodiment in the number of second trenches 40 with respect to one third trench 50 and the position where the second trenches 40 are arranged.
  • the second trench 40 and the third trench 50 are arranged facing each other with the first trench 21 in between. More specifically, the second trench 40 and the third trench 50 are arranged on the same straight line across the first trench 21.
  • two second trenches 40 are arranged for one third trench 50, and the second trench 40 is interposed between the first trenches 21.
  • the third trenches 50 are alternately arranged. More specifically, for example, a plurality of second trenches 40 are provided for one third trench 50, and a portion of the p base region 30 sandwiched between adjacent second trenches 40 sandwiches the first trench 21. It faces the third trench 50.
  • the cross-sectional structure is the same as that of the semiconductor device of the first embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 15 is a plan view showing a planar layout of the main part of the semiconductor device according to the fourth embodiment.
  • the semiconductor device according to the fourth embodiment differs from the semiconductor device according to the third embodiment in the position where the second trench 40 is disposed.
  • two second trenches 40 are arranged for one third trench 50, and each of the second trenches 40 is a corner of the first trench 21.
  • the second trenches 40 and the third trenches 50 are alternately arranged with the first trench 21 in between. More specifically, for example, a plurality of second trenches 40 are provided for one third trench 50 and are connected to the outer side wall of the corner portion of the first trench 21.
  • the portion sandwiched between the adjacent second trenches 40 faces the third trench 50 with the first trench 21 interposed therebetween.
  • the cross-sectional structure is the same as that of the semiconductor device of the first embodiment, the same effect as that of the first embodiment can be obtained.
  • FIG. 16 is a plan view showing a planar layout of the main part of the semiconductor device according to the fifth embodiment.
  • the semiconductor device according to the fifth embodiment is different from the semiconductor device according to the second embodiment in the planar shape of the second trench 40.
  • the second trench 40 and the third trench 50 are arranged symmetrically facing each other with the first trench 21 therebetween.
  • the second trench 40 is disposed on the outer side in a plane with respect to the third trench 50, and the second trench is interposed between the first trenches 21. 40 and the third trenches 50 are arranged alternately or asymmetrically.
  • the length of the side wall portion of the first trench 21 in the annular (or substantially rectangular annular) planar shape formed by the second trench 40 and a part of the first trench 21 is the third trench. 50 is longer than the length of the side wall portion of the first trench 21 in an annular (or substantially rectangular annular) planar shape formed by a part of the first trench 21.
  • FIG. 17 is a plan view showing a planar layout of the main part of the semiconductor device according to the sixth embodiment.
  • the semiconductor device according to the sixth embodiment differs from the semiconductor device according to the second embodiment in the planar shape of the third trench 50.
  • the third trench 50 is arranged on the outer side in a plane with respect to the second trench 40, and the second trench is interposed between the first trenches 21.
  • the trenches 40 and the third trenches 50 are arranged alternately or asymmetrically. More specifically, the length of the side wall portion of the first trench 21 in the annular (or substantially rectangular annular) planar shape formed by the third trench 50 and a part of the first trench 21 is the second trench. It is longer than the length of the side wall portion of the first trench 21 in the annular (or substantially rectangular annular) planar shape formed by 40 and a part of the first trench 21.
  • the semiconductor device according to the seventh embodiment includes a connection portion (first connection portion) between the first trench 21 and the second trench 40 and a connection portion (second connection) between the first trench 21 and the third trench 50.
  • the shape of the connecting portion is different from that of the semiconductor device according to the first embodiment. Specifically, it is formed by the first trench 21 and the second trench 40 at a position where the first trench 21 and the second trench 40 intersect and a position where the first trench 21 and the third trench 50 intersect.
  • the corners of the connecting portion and the corners of the connecting portion formed by the first trench 21 and the third trench 50 are chamfered to form a round shape (not shown).
  • the first connecting portion between the side wall of the first trench 21 and the side wall of the second trench 40 is chamfered and rounded.
  • the second connecting portions between the side walls of the first trench 21 and the third trench 50 are chamfered and rounded.
  • first connecting part and the second connecting part may be round.
  • at least one of the four connecting portions of the first connecting portion and the second connecting portion may be round. Accordingly, an electric field is generated in the vicinity of the first connection portion between the sidewall of the first trench 21 and the sidewall of the second trench 40 and the second connection portion between the sidewall of the first trench 21 and the sidewall of the third trench 50. Can be prevented from concentrating.
  • the upper portions of the first connecting portion and the second connecting portion are covered with the emitter electrode 25 and the gate pad 28, respectively. Preferably not.
  • the cross-sectional structure is the same as that of the semiconductor device of the first embodiment, the same effect as that of the first embodiment can be obtained.
  • the first connecting portion between the side wall of the first trench 21 and the side wall of the second trench 40 and the first connection between the side wall of the first trench 21 and the side wall of the third trench 50 are provided. It is possible to prevent the electric field from being concentrated in the vicinity of the two connecting portions.
  • the present invention has been described by taking the IGBT as an example.
  • the present invention is not limited to the above-described embodiment, and can be applied to semiconductor devices having various configurations including a MOS gate structure.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • the first conductivity type is p-type and the second conductivity type is n-type. It holds.
  • the semiconductor device according to the present invention is useful for a power semiconductor device used for a power conversion device or the like.
  • drift layer 10 interlayer insulating film 15 insulating film 15a first insulating film 15b second insulating film 16 third insulating film 19a first contact hole 19b second contact hole 19c third contact hole 20 floating p region 21 first trench 22 polysilicon layer 22a first gate electrode 22b shield electrode 25 emitter electrode 25a emitter polysilicon layer 26 gate runner 27 emitter contact region 28 gate pad 30 p base region 31 n + emitter region 40 second trench 50 third trench 60 p layer

Abstract

 第1絶縁膜の内側に、第1トレンチ(21)の一方の側壁に沿って設けられるとともに、第2トレンチ(40)の内部に設けられた第1ゲート電極(22a)と、第2絶縁膜の内側に、第1トレンチ(21)の他方の側壁に沿って設けられるとともに、第3トレンチ(50)の内部に設けられたシールド電極(22b)と、第2トレンチ(40)が延長されることによって、一部が第1ゲート電極(22a)上に設けられ、第1ゲート電極(22a)と接続されたゲートランナーと、第3トレンチ(50)が延長されることによって、一部がシールド電極(22b)上に設けられ、シールド電極(22b)と接続されたエミッタポリシリコン層(25a)と、を備えることを特徴とする半導体装置により、わずかなプロセス工程数の増加で、コスト増加、良品率の低下を抑えながら、ターンオン特性を改善した。

Description

半導体装置
 本発明は、半導体装置、特に、トレンチゲート絶縁ゲート型バイポーラトランジスタ(IGBT)に関する。
 電力変換装置の低消費電力化が進む中で、その電力変換装置の中で中心的な役割を果たすパワーデバイスへの低消費電力化に対する期待は大きい。そのパワーデバイスの中でも伝導度変調効果により、低オン電圧が達成でき、また電圧駆動のゲート制御で制御が容易である絶縁ゲート型バイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)の使用は定着してきている。
 このIGBTのMOSゲート(金属-酸化膜-半導体からなる絶縁ゲート)構造として、ウエハ表面に沿ってゲート電極が設けられるプレーナゲート型IGBTと、ウエハ表面のストライプ状の平面パターンから深さ方向に垂直に延びる形状を有するトレンチ内部に表面酸化膜を介してポリシリコンゲート電極が埋設されるトレンチゲート型IGBTとが公知である。トレンチゲート型IGBTは、開口部がストライプ状の平面パターンからなるトレンチの内部の両側壁に沿ってチャネルが形成されるので、トレンチの開口幅とストライプ状のトレンチパターンの間隔を狭くすることによりチャネル密度をプレーナゲート型よりも高くすることができる。チャネルの高密度化が進むと、オン電圧のいっそうの低減が可能になるため、近年、トレンチゲート型IGBTの適用が増えつつある。
 一般的なトレンチゲート型IGBTの構造を説明する。図8は、従来のフローティング電位領域を有するトレンチゲート型IGBTの断面図である。図8では、p+コレクタ領域101となるp+シリコン基板のおもて面上にn-ドリフト層102が積層されてなるシリコン基板のおもて面側(n-ドリフト層102側)の表面層には、pベース領域103および浮遊p領域111を含むp層112が形成されている。p層112は、シリコン基板おもて面からp層112を貫通してn-ドリフト層102に達する複数のトレンチ110により、pベース領域103と浮遊p領域111とに分割されている。
 pベース領域103は、p層112のうち、隣り合うトレンチ110の、n+エミッタ領域104が設けられた側の側壁に挟まれた領域である。この隣り合うトレンチ110の、n+エミッタ領域104が設けられた側の側壁に挟まれた領域は、主電流が流れる領域であるので、活性メサ領域とも称する。浮遊p領域111は、p層112のうち、隣り合うトレンチ110の、n+エミッタ領域104が存在しない側の側壁の間に挟まれた領域である。浮遊p領域111は、n-ドリフト層102とはpn接合により絶縁されており、かつゲート絶縁膜105によりゲート電極106から絶縁されている。すなわち、浮遊p領域111は、いわゆるフローティング状態(フローティング領域)となっている。
 トレンチ110の内部には、ゲート絶縁膜105を介してゲート電極106が設けられている。n+エミッタ領域104は、トレンチ110の、pベース領域103側の側壁に設けられたゲート絶縁膜105に接する。エミッタ電極108は、n+エミッタ領域104およびpベース領域103に電気的に接続され、層間絶縁膜107によってゲート電極106から絶縁されている。また、エミッタ電極108は、シリコン窒化膜(Si34膜)、アモルファスシリコン膜やポリイミド膜からなるパッシベーション保護膜(不図示)によって覆われている。コレクタ電極109は、p+コレクタ領域101に接する。
 以下、図8に示すIGBTの動作について説明する。まず、このトレンチゲート型IGBTをオフ状態からオン状態に移行させる動作について説明する。エミッタ電極108は通常アースに接地され、エミッタ電極108よりも高い電圧をコレクタ電極109に印加した状態で、ゲート電極106の電圧が閾値よりも低い電圧では、pベース領域103とn-ドリフト層102との間のpn接合は逆バイアスされているため、エミッタ-コレクタ間に電流は流れない。すなわち、IGBTがオフ状態である。
 一方、図示しないゲート駆動回路よりゲート抵抗を介して閾値よりも高い電圧をゲート電極106に印加すると、ゲート電極106には電荷が蓄積され始める。ゲート電極106への電荷の蓄積と同時に、pベース領域103のうち、n+エミッタ領域104とn-ドリフト層102とに挟まれた部分のトレンチ110に接する領域が反転してn型のチャネル領域が形成される。これにより、エミッタ電極108から出た電子が、n+エミッタ領域104とn型のチャネル領域とを通り、n-ドリフト層102に注入される。
 この注入された電子によりp+コレクタ領域101とn-型ドリフト層102との間のpn接合が順バイアスされて、コレクタ電極109から正孔が注入されるため、エミッタ-コレクタ間に電流が流れる。すなわち、IGBTはオン状態となる。このオン状態のIGBTのエミッタ電極108とコレクタ電極109との間の電圧降下がオン電圧である。
 次に、IGBTをオン状態からオフ状態に移行させる動作について説明する。まず、エミッタ電極108とゲート電極106との間のゲート電圧を閾値以下に下げる。このことによって、ゲート電極106に蓄積されていた電荷はゲート抵抗を介してゲート駆動回路へ放電される。その際、n型に反転していたチャネル領域がp型に戻り、チャネル領域が無くなることによりエミッタ電極108からn-ドリフト層102への電子の供給が止まる。この結果、コレクタ電極109からの正孔の注入も無くなるので、n-ドリフト層102内に蓄積されていた電子と正孔とがそれぞれコレクタ電極109とエミッタ電極108とに排出されるか、または、互いに再結合することにより消滅し、エミッタ-コレクタ間に電流が流れなくなる。すなわち、IGBTがオフ状態になる。
 このトレンチゲート型IGBTのオン電圧をさらに低減するためにさまざまな改善方法が提案されている。例えば、ダイオードのオン電圧に近い限界の特性を備えたIEGT(Injection Enhanced Gate Bipolar Transistor)と呼ばれるIGBTが公知である(例えば、下記特許文献1(第101図)参照。)。このIEGTデバイスは、n+エミッタ領域およびpベース領域の一部表面を絶縁膜により被覆して絶縁することにより、n+エミッタ領域およびpベース領域とエミッタ電極との接触面積を少なくしたものである。
 このIEGTの動作は基本的にはトレンチゲート型IGBTと同じである。エミッタ電極に対して電気的に絶縁されたn+エミッタ領域とpベース領域の下側の正孔は、オフ時にエミッタ電極に吐き出され難いためにこの部分に蓄積する。その結果、n-ドリフト層のキャリア濃度分布はダイオードのキャリア濃度分布に近くなり、通常のトレンチゲート型IGBTのオン電圧よりも低くできる。
 しかし、パワーデバイスには低オン電圧以外に高速スイッチング特性も要求されており、この特性の改善も重要な課題となっている。ところが、トレンチゲート型IGBTおよびIEGTでは、低オン電圧にするためにトレンチ構造を高密度化すればするほど、ゲート電極とエミッタ電極との間の容量も大きくなり、スイッチング特性は低下する。
 さらに、トレンチゲート型IGBTおよびIEGTは、オフ状態からオン状態へ移行されるときにはゲート電極とエミッタ電極との間の容量に電荷を充電し、オン状態からオフ状態へ移行されるときには、ゲート電極とエミッタ電極との間の容量に蓄積された電荷を放電する必要がある。
 従って、ゲート電極とエミッタ電極との間の容量が大きくなると充放電時間が増加するとともに、スイッチング特性だけでなく、スイッチング損失も増加するという問題も発生する。また、パワーデバイスのトータルの発生損失は、オン電圧で決まる定常損失とスイッチング動作時に発生するスイッチング損失との和である。このため、オン電圧の低減と共に、スイッチング損失を低減させるためにゲート電極とエミッタ電極との間の容量を低減することも重要である。ゲート電極とエミッタ電極との間の容量を低減することによって、スイッチング特性の低下を抑制することもできる。
 このような問題を解消したIGBTとして、浮遊p領域を備えたIGBTが提案されている(例えば、下記特許文献2(第1図)参照。)。下記特許文献2では、フローティング状態の浮遊p領域が設けられている。このため、浮遊p領域の下側近傍では、オフ時に正孔がエミッタ電極に吐き出され難くなって浮遊p領域に蓄積するようになる。その結果、前述と同様に、n-ドリフト層中のキャリア濃度分布がダイオードのキャリア濃度分布に近くなり、オン電圧を低減させる効果を奏する。浮遊p領域をフローティングメサ領域とも称する。さらに、この浮遊p領域はトレンチゲート構造が形成されていない構造のため、ゲート電極とエミッタ電極との間の容量が低減し充放電時間が短縮し、スイッチング損失を低減するという効果も奏することができる。
 この特許文献2の構造と前記特許文献1の構造に共通することとして、下記非特許文献1には、ターンオン特性に改善の余地があることが報告されている。
 さらに、下記特許文献3には、そのようなターンオン特性をさらに改善する構造が示されている。すなわち、トレンチ内部に充填されたポリシリコン層(ゲート電極)を分割し、n+エミッタ領域とpベース領域側(活性メサ領域側)に近いポリシリコン層のみをゲート電極として分離分割し、フローティングメサ領域側に近いポリシリコン層はゲート電極には接続せずエミッタ電極に接続する構造である。さらに、この特許文献3ではそのようなポリシリコン層の分割方法として以下の方法を開示している。トレンチ内を完全に充填しない程度の厚さのポリシリコン層を形成する。次に、基板表面のポリシリコン層を残した状態で酸化膜をマスクに用いてトレンチ底部のポリシリコン層を切断する。次に、トレンチ内のポリシリコン層間を酸化膜等で充填して両側壁のポリシリコン層を相互に分離分割をした後に、基板表面のポリシリコン層との引き出し部を形成する方法である(例えば、下記特許文献3(第1図)参照。)。
 さらに、横型MOSデバイスではあるが、トレンチ内で2つのゲートポリシリコン層を分離して設け、一方のトレンチ側壁につながる一本のトレンチで一方のゲートポリシリコン層を引き出し、他方のトレンチ側壁につながる一本のトレンチで他方のゲートポリシリコン層を引き出している構成が示されている(例えば、下記特許文献4(第2図および第3図)参照。)。
特開平5-243561号公報 特開2001-308327号公報 米国特許第6815769号明細書 特開2010-258005号公報
M.Yamaguchi他,"IEGT Design Criterion for Reducing EMI Noise",in Proc.ISPSD’2004 pp.115-118,2004(要約)
 しかしながら、前記特許文献3に記載のターンオン特性を改善するために行われる、トレンチ内のポリシリコン層の分割方法においては、トレンチの内壁の両側に沿ってそれぞれゲート電極を形成するにあたって、トレンチの内壁に沿ってゲート電極材料であるポリシリコン膜を形成した後、シリコン基板おもて面上にポリシリコン膜を残した状態で、一般的なフォトリソグラフィおよびエッチングによりトレンチの底面上のポリシリコン膜を除去してトレンチ内のゲート電極を分割している。このため、プロセス工程数が非常に多く、コストの増加や良品率の低下が懸念されるという問題がある。
 本発明は、前述の課題を解決するために成されたものである。本発明の目的は、わずかなプロセス工程数の追加によるだけで、コストの増加や良品率の低下を抑えながら、ターンオン時のオン電圧、スイッチング損失などのターンオン特性を改善することができる半導体装置を提供することである。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置は、第1導電型の半導体層の表面層に形成された第1トレンチと、前記第1トレンチの一方の側壁に連結された第2トレンチと、前記第1トレンチの他方の側壁に連結された第3トレンチと、前記第1トレンチの一方の側壁に沿って前記第1トレンチより浅い深さで前記半導体層の表面層に選択的に形成された第2導電型のベース領域と、前記ベース領域の表面層に前記第1トレンチの側壁に接して形成されるエミッタ領域と、前記第1トレンチの他方の側壁に沿って前記半導体層の表面層に選択的に形成された第2導電型の浮遊電位領域と、を備えている。そして、上述した半導体装置は、前記第1トレンチの一方の側壁および前記第2トレンチの内壁に沿って設けられた第1絶縁膜と、前記第1トレンチの他方の側壁および前記第3トレンチの内壁に沿って設けられた第2絶縁膜と、前記第1絶縁膜の内側に、前記第1トレンチの一方の側壁に沿って設けられるとともに、前記第2トレンチの内部に設けられた第1ゲート電極と、前記第2絶縁膜の内側に、前記第1トレンチの他方の側壁に沿って設けられるとともに、前記第3トレンチの内部に設けられたシールド電極と、前記第1トレンチの内部の、前記第1ゲート電極と前記シールド電極との間に埋め込まれた第3絶縁膜と、を備えている。そして、上述した半導体装置は、前記第2トレンチが延長されることによって、一部が前記第1ゲート電極上に設けられ、前記第1ゲート電極と接続されたゲートランナーと、前記第3トレンチが延長されることによって、一部が前記シールド電極上に設けられ、前記シールド電極と接続されたエミッタポリシリコン層と、前記第1ゲート電極、前記シールド電極、前記エミッタ領域、前記ゲートランナーおよび前記エミッタポリシリコン層を覆う層間絶縁膜と、前記層間絶縁膜上に設けられ、前記ゲートランナーに接続されたゲートパッドと、前記層間絶縁膜上に、前記ゲートパッドと離れて設けられ、前記エミッタ領域、前記ベース領域および前記シールド電極に接続されたエミッタ電極と、を備えることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2トレンチおよび前記第3トレンチの開口幅が、前記第1トレンチの開口幅よりも狭いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1トレンチの開口幅が、前記第1シールド電極の膜厚の2倍よりも狭いことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2トレンチおよび前記第3トレンチが、前記第1トレンチを横切る同一直線上に配置されていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2トレンチが、1つの前記第3トレンチに対して、複数設けられ、前記ベース領域の、隣り合う前記第2トレンチに挟まれた部分が前記第1トレンチを挟んで前記第3トレンチに対向していることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第2トレンチと前記第1トレンチの一部とで、および前記第3トレンチと前記第1トレンチの一部とで、それぞれ環状の平面形状をなすことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1トレンチの側壁と前記第2トレンチの側壁との間の第1連結部および前記第1トレンチの側壁と前記第3トレンチの側壁との間の第2連結部は、それぞれ面取りされてラウンド形状になっていることを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記第1連結部および前記第2連結部のそれぞれの上方は、前記エミッタ電極および前記ゲートパッドで覆われていないことを特徴とする。
 また、この発明にかかる半導体装置は、上述した発明において、前記半導体層の裏面に設けられた第2導電型のコレクタ層と、前記コレクタ層の表面に設けられたコレクタ電極と、を備えることを特徴とする。
 本発明にかかる半導体装置によれば、わずかなプロセス工程数の追加によるだけで、コストの増加や良品率の低下を抑えながら、ターンオン時のオン電圧、スイッチング損失などのターンオン特性を改善することができるという効果を奏する。
実施の形態1にかかる半導体装置の要部の平面レイアウトを示す平面図である。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である(その1)。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である(その2) 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である(その3)。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である(その4)。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である(その5)。 実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である(その6)。 従来のフローティング電位領域を有するトレンチゲート型IGBTの断面図である。 図1の切断線A1-A2における断面構造を示す断面図である。 図1の切断線B1-B2およびC1-C2におけるそれぞれの断面構造を示す断面図である。 図1の切断線D1-D2における断面構造を示す断面図である。 実施の形態2にかかる半導体装置の要部の平面レイアウトを示す平面図である。 図12の切断線E1-E2における断面構造を示す断面図である。 実施の形態3にかかる半導体装置の要部の平面レイアウトを示す平面図である。 実施の形態4にかかる半導体装置の要部の平面レイアウトを示す平面図である。 実施の形態5にかかる半導体装置の要部の平面レイアウトを示す平面図である。 実施の形態6にかかる半導体装置の要部の平面レイアウトを示す平面図である。
 以下、本発明の半導体装置にかかる実施の形態について、図面を参照して詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれ相対的に不純物濃度が高いまたは低いことを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、実施の形態で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていない。本発明はその要旨を超えない限り、以下に説明する実施の形態の記載に限定されるものではない。
(実施の形態1)
 実施の形態1にかかる半導体装置の構成について説明する。図1は、実施の形態1にかかる半導体装置の要部の平面レイアウトを示す平面図である。図9は、図1の切断線A1―A2における断面構造を示す断面図である。図10は、図1の切断線B1―B2およびC1-C2におけるそれぞれの断面構造を示す断面図である。図11は、図1の切断線D1-D2における断面構造を示す断面図である。まず、実施の形態1にかかる半導体装置の平面レイアウトについて説明する。実施の形態1にかかる半導体装置は、オン状態のときに電流が流れる活性領域と、n-ドリフト層のシリコン基板おもて面側の電界を緩和し耐圧を保持する耐圧領域と、を備える。耐圧領域は活性領域を囲む。
 活性領域において、浮遊p領域20(フローティング領域)は直線状に延びている。シールド電極22bは、略矩形環状の平面形状の電極部を有しており、浮遊p領域20を囲む。また、シールド電極22bは、略矩形環状の平面形状の電極部から連結された、略矩形環状の電極部に囲まれた領域に設けられた直線状の平面形状の電極部を有している。シールド電極22bの直線状の電極部において、その終端部がエミッタポリシリコン層25aと接する。
 第1ゲート電極22aは、略矩形環状の平面形状の電極部を有しており、シールド電極22bを囲む。第1ゲート電極22aは、略矩形環状の平面形状の電極部から連結された、略矩形環状の電極部の外側に向けて設けられた直線状の平面形状の電極部を有している。第1ゲート電極22aの直線状の電極部において、その終端部がゲートランナー(第2ゲート電極)26と接する。
 第1ゲート電極22aとシールド電極22bとの間の領域には、第3絶縁膜16が設けられている。第1ゲート電極22a、シールド電極22bおよび第3絶縁膜16は、略矩形環状の平面形状を有する第1トレンチ21の内部に配置されている。このように第1ゲート電極22a、シールド電極22bおよび第3絶縁膜16が配置された第1トレンチ21は、第1トレンチ21の短手方向に並列に複数配置されている。隣り合う第1ゲート電極22a間の領域は、活性メサ領域24である。活性メサ領域24内にpベース領域30(図9参照)を有する。pベース領域30の表面層に、n+エミッタ領域31(図9参照)を有する。pベース領域30およびn+エミッタ領域31において、エミッタ電極25(図9参照)と接する。pベース領域30およびn+エミッタ領域31において、エミッタ電極25に接する領域をエミッタコンタクト領域27と称する。
 第1トレンチ21の略矩形環状の外側に、一方の端部が第1トレンチ21の外側の側壁に連結された直線状の平面形状の第2トレンチ40が設けられている。具体的には、第2トレンチ40は、pベース領域30の、n+エミッタ領域31が存在しない部分に設けられている。第2トレンチ40の内部には、第1ゲート電極22aが配置されている。
 略矩形環状の第1トレンチ21に囲まれた領域に、一方の端部が第1トレンチ21の内側の側壁に連結された直線状の平面形状の第3トレンチ50が設けられている。具体的には、第3トレンチ50は、略矩形環状の第1トレンチ21に囲まれた浮遊p領域20に設けられている。第3トレンチ50の内部には、シールド電極22bが配置されている。第2トレンチ40と第3トレンチ50とは、第1トレンチ21を横切る同一直線上に配置されている。
 エミッタ電極25(図9参照)は、層間絶縁膜10(図9参照)を介してpベース領域30、浮遊p領域20、第1ゲート電極22a、シールド電極22bおよびエミッタポリシリコン層25aの表面上に配置されている。エミッタ電極25は、n+エミッタ領域31、pベース領域30およびシールド電極22bに接続されている。
 エミッタポリシリコン層25aは、シールド電極22bの略矩形環状の電極部に囲まれた領域内の、浮遊p領域20上に設けられた絶縁膜15(図9参照)上およびシールド電極22bの直線状の電極部上に設けられている。具体的には、エミッタポリシリコン層25aは、その一部がシールド電極22bの直線状の電極部の終端部を覆うように配置されている。すなわち、第1トレンチ21から連結された第3トレンチ50がエミッタポリシリコン層25aの直下にまで延長されているので、シールド電極22bは、エミッタポリシリコン層25aに接続されている。
 ゲートランナー26は、略矩形環状の平面形状をしており、エミッタ電極25を囲むように活性領域の外周に配置されている。ゲートランナー26よりも内側の領域(ゲートランナー26を含む)が活性領域である。また、ゲートランナー26は、pベース領域30上に設けられた絶縁膜15上および第1ゲート電極22aの直線状の電極部上に設けられている。具体的には、ゲートランナー26は、その一部が第1ゲート電極22aの直線状の電極部の終端部を覆うように配置されている。すなわち、第1トレンチ21から連結された第2トレンチ40がゲートランナー26の直下にまで延長されているので、第1ゲート電極22aは、ゲートランナー26に接続されている。ゲートランナー26はゲートパッド28(図11参照)に接続されている。
 層間絶縁膜10には、略矩形状の平面形状を有する第1~第3コンタクトホール19a~19cが設けられている。第1コンタクトホール19a(ゲートランナーコンタクトホール)は、ゲートランナー26上において、活性領域の外周に沿って延びている。第2コンタクトホール19b(エミッタコンタクトホール)は、エミッタポリシリコン層25a上に設けられている。第3コンタクトホール19c(図9参照)は、pベース領域30上において、pベース領域30の延びる方向に沿って延びている。第1~3コンタクトホール19a~19cは、略正方形状の平面形状を有する複数のコンタクトホールを所定の間隔で配置した構成であってもよい。
 次に、実施の形態1における半導体装置の断面構造について説明する。図9に示すように、p+コレクタ領域(不図示)となるp+半導体基板のおもて面上にn-ドリフト層2が積層されてなるシリコン基板において、n-ドリフト層2のシリコン基板おもて面側の表面層には、pべース領域30および浮遊p領域20を含むp層60が設けられている。
 p層60には、シリコン基板おもて面からp層60を貫通してn-ドリフト層2に達する複数の第1トレンチ21が設けられている。これらの第1トレンチ21によって、p層60は、メサ状のpベース領域30および浮遊p領域20に分割されている。pベース領域30は第1トレンチ21の外側の側壁に挟まれた領域であり、浮遊p領域20は第1トレンチ21の内側の側壁に囲まれた領域である。
 すなわち、pベース領域30と浮遊p領域20とは交互に配置されている。pベース領域30の内部には、n+エミッタ領域31が選択的に設けられている。また、n+エミッタ領域31は、第1トレンチ21の外側の側壁に設けられた絶縁膜(後述する第1絶縁膜15a)に接する。pベース領域30およびn+エミッタ領域31は、エミッタコンタクト領域27において、層間絶縁膜10に開口された第3コンタクトホール19cを介してエミッタ電極25に接触する。n+エミッタ領域31は、浮遊p領域20の内部には存在しない。
 pベース領域30は、後述する図11に示すように、第2トレンチ40が形成されている領域において第1トレンチ21の深さよりも深くなっている領域を備えている。第2トレンチ40の深さは、pベース領域30の第1トレンチ21の深さより深くなっている領域の深さよりも浅い。このように第2トレンチ40の底部の大部分をpベース領域30で囲むことにより、第2トレンチ40の底部での電界集中を緩和することができる。
 浮遊p領域20は、n-ドリフト層2とのpn接合によりn-ドリフト層2と絶縁されている。また、浮遊p領域20は、第1トレンチ21の内側の側壁に沿って設けられた絶縁膜(後述する第2絶縁膜15b)によって、第1トレンチ21の内部のシールド電極22bから絶縁されている。すなわち、浮遊p領域20は、いわゆるフローティング状態となっている。この浮遊p領域20には、オン状態のときに正孔が蓄積される。図9に示すように、浮遊p領域20の深さは、第1トレンチ21の深さよりも深い方が好ましい。この場合、例えば第1トレンチ21の底面のコーナー部を覆うように浮遊p領域20を設けるのが好ましい。これにより、第1トレンチ21の底面近傍における電界を緩和することができる。また、浮遊p領域20の深さは、第1トレンチ21の深さよりも浅くても良い。この場合、浮遊p領域20の深さは、pベース領域30の深さと同程度であっても良い。
 各第1トレンチ21の内側には、第1トレンチ21の内壁に沿って絶縁膜15が設けられている。第1ゲート電極22aおよびシールド電極22bの第1トレンチ21内での配置を明確にするために、以下、第1トレンチ21のpベース領域30側の側壁から底面にわたって設けられている絶縁膜を第1絶縁膜15aとし、第1トレンチ21の浮遊p領域20側の側壁から底面にわたって設けられている絶縁膜を第2絶縁膜15bとする。第1トレンチ21の内部において、第1絶縁膜15aおよび第2絶縁膜15bの内側には、それぞれ第1ゲート電極22aおよびシールド電極22bが設けられている。
 第1ゲート電極22aの開口幅およびシールド電極22bの開口幅は、例えば2μm程度の開口幅の第1トレンチ21に対して、例えば0.5μm程度であってもよい。第1ゲート電極22aおよびシールド電極22bは、例えばポリシリコン(poly-Si)や高融点金属などの導電体層でできていてもよい。第1ゲート電極22aとシールド電極22bとの間には、第3絶縁膜16が設けられている。第1ゲート電極22aおよびシールド電極22bは、第3絶縁膜16によって互いに絶縁されている。第3絶縁膜16は、HTO(High Temperature Oxide)膜やTEOS(TetraEthOxySilane)膜のような埋め込み性の高い酸化膜であってもよい。
 シリコン基板のおもて面には、pベース領域30、浮遊p領域20、第1ゲート電極22a、シールド電極22b、エミッタポリシリコン層25aおよびゲートランナー26を覆うように層間絶縁膜10が設けられている。層間絶縁膜10上には、層間絶縁膜10を覆うようにエミッタ電極25およびゲートパッド28(ゲート電極金属膜)が選択的に設けられている。エミッタ電極25およびゲートパッド28は、互いに離れて設けられている。層間絶縁膜10には、上述した平面レイアウトとなるように第1~第3コンタクトホール19a~19c(図9および図11参照)が設けられている。
 具体的には、第1コンタクトホール19aは、後述する図11に示すように、ゲートパッド28に覆われた部分における層間絶縁膜10に選択的に設けられ、ゲートランナー26を選択的に露出する。第2コンタクトホール19bは、後述する図11に示すように、エミッタ電極25に覆われた部分における層間絶縁膜10に選択的に設けられ、エミッタポリシリコン層25aを選択的に露出する。第3コンタクトホール19cは、エミッタ電極25に覆われた部分における層間絶縁膜10に選択的に設けられ、n+エミッタ領域31およびp+ベース領域30を選択的に露出する。
 第1~第3コンタクトホール19a~19cの内部には、シリコン基板側に例えばチタン(Ti)膜および窒化チタン(TiN)膜からなるバリアメタル膜(不図示)が設けられ、バリアメタル膜上にタングステン(W)膜が埋め込まれている。これにより、後述する図11に示すように、ゲートランナー26は、第1コンタクトホール19aを介してゲートパッド28に接続されている。エミッタポリシリコン層25aは、第2コンタクトホール19bを介してエミッタ電極25に接続されている。すなわち、ゲートランナー26およびエミッタポリシリコン層25aは、それぞれゲートランナー26およびエミッタポリシリコン層25aの表面上に設けられたコンタクトプラグ(バリアメタル膜およびタングステン膜を含む)に直接接続されている。
 シールド電極22bがエミッタ電極25に接続されていることにより、ゲート-エミッタ間容量を低減することができる。エミッタ電極25は、第3コンタクトホール19cを介してn+エミッタ領域31およびエミッタコンタクト領域27に接続されている。また、エミッタ電極25は、層間絶縁膜10によって第1ゲート電極22aおよびシールド電極22bから絶縁されている。エミッタ電極25およびゲートパッド28は、シリコン窒化膜やポリイミド膜からなるパッシベーション保護膜(不図示)によって覆われている。コレクタ電極(不図示)は、p+コレクタ領域に接する。
 図10は、図1の切断線B1―B2およびC1-C2における断面構造を1図面として示している。図10において、符号40、50および15a、15bとは、第2トレンチ40の側壁に絶縁膜15aが設けられ、第3トレンチ50の側壁に絶縁膜15bが設けられていることを示している。また、図10において、符号22a、22bおよび26、25aとは、第2トレンチ40の内部に設けられた第1ゲート電極22aが、その直線状の電極部の終端部近傍において、ゲートランナー26に接続され、第3トレンチ50の内部に設けられたシールド電極22bが、その直線状の電極部の終端部近傍において、エミッタポリシリコン層25aに接続されていることを示している。
 上述したとおり、第1ゲート電極22aは、その一部がゲートランナー26の直下にまで設けられているので、第1ゲート電極22aは、その直線状の電極部の終端部近傍において、ゲートランナー26に接続されている。シールド電極22bは、その一部がエミッタポリシリコン層25aの直下にまで設けられているので、シールド電極22bは、その直線状の電極部の終端部近傍において、エミッタポリシリコン層25aに接続されている。すなわち、第1ゲート電極22aは、ゲートランナー26、第1コンタクトホール19aを介して、ゲートパッド28に接続されている。シールド電極22bは、エミッタポリシリコン層25a、第2コンタクトホール19bを介して、エミッタ電極25に接続されている。
 図示するように、ゲートランナー26およびエミッタポリシリコン層25aの直下にまで第2、第3トレンチ40、50の他方の端部がそれぞれ延長されている。従って、第1ゲート電極22a-ゲートランナー26間、シールド電極22b-エミッタポリシリコン層25a間のそれぞれの接続が極めて容易になる。
 次に、実施の形態1にかかる半導体装置の製造方法について説明する。図2~図7は、実施の形態1にかかる半導体装置の製造途中の状態を示す断面図である。まず、p+コレクタ領域となるp+半導体基板のおもて面上にn-ドリフト層2が積層されてなるシリコン基板を用意する。次に、フォトリソグラフィによりシリコン基板の表面にマスク(不図示)を形成し、pベース領域30のうちの深い領域および浮遊p領域20を形成するためのイオン注入を行う。
 次に、フォトリソグラフィおよびエッチングにより、シリコン基板のおもて面からp+コレクタ領域に達しない深さで複数の第1トレンチ21、第2トレンチ40(図1および図11参照)および第3トレンチ50(図1および図11参照)を形成する。このとき、第1トレンチ21の開口幅を例えば2μmとし、第2、第3トレンチ40、50の開口幅を例えば1μmとして、第2、第3トレンチ40、50の開口幅を第1トレンチ21の開口幅よりも狭くする。また、第2、第3トレンチ40、50の開口幅は、上述のように第1トレンチ21の開口幅よりも狭いので、第1トレンチ21の形成と同時に同条件で形成しても、第2、第3トレンチ40、50の深さは、後述する図13に示すように第1トレンチ21の深さよりも浅くなる。
 次に、熱処理によりpベース領域30のうちの深い領域および浮遊p領域20を形成する。この熱処理は後述のpベース領域30の浅い領域を形成するためのイオン注入の前までに行うことが望ましい。
 次に、図2に示すように、第1トレンチ21、第2トレンチ40および第3トレンチ50の内部に、第1トレンチ21、第2トレンチ40および第3トレンチ50の内壁に沿って絶縁膜15を形成する。このとき、図3に示すように、第1トレンチ21においては、絶縁膜15の内側が、ポリシリコン層22で埋めこまれないように、かつ第2、第3トレンチ40、50においては絶縁膜15の内側がすべてポリシリコン層22で埋め込まれるように、ポリシリコン層22を成長させる。例えば、第1トレンチ21の開口幅が2μmである場合には、厚さ0.5μm程度のポリシリコン層22を成長させるのが望ましい。上述したように第2、第3トレンチ40、50の開口幅は第1トレンチ21の開口幅よりも狭い。このため、第2、第3トレンチ40、50において絶縁膜15の内側をすべてポリシリコン層22で埋め込んだとしても、第1トレンチ21における絶縁膜15の内側はポリシリコン層22で埋め込まれない。
 次に、図4に示すように、ポリシリコン層22を異方性エッチングによってエッチバックすることによって、シリコン基板おもて面(n-ドリフト層2の表面)上および第1トレンチ21の底面上のポリシリコン層22を除去し、第1トレンチ21の側壁にポリシリコン層22を残す。すなわち、第1トレンチ21の側壁部分に沿って絶縁膜15を介して張り付いた形状のポリシリコン層22のみを残す。このとき、第2、第3トレンチ40、50における絶縁膜15の内側に埋め込まれたポリシリコン層22は、ほぼエッチバック前の状態で残る。第1トレンチ21の側壁に残るポリシリコン層22が第1ゲート電極22aおよびシールド電極22bである。また、第2トレンチ40の内部に残るポリシリコン層22が第1ゲート電極22aである。第3トレンチ50の内部に残るポリシリコン層22がシールド電極22bである。
 次に、図5に示すように、第1トレンチ21の内部のポリシリコン層22の内側を埋め込むように、例えばHTOやTEOSのような埋め込み性の高い第3絶縁膜16を形成する。図6に示すように、第3絶縁膜16をエッチバックして、シリコン基板のおもて面上の第3絶縁膜16を除去する。これにより、第1トレンチ21の内部のポリシリコン層22の内側に第3絶縁膜16が残り、第1トレンチ21、第2トレンチ40および第3トレンチ50の内壁に絶縁膜15が残る。この第1トレンチ21の内壁に残る絶縁膜15が第1、第2絶縁膜15a、15bである。また、第2トレンチ40の内壁に残る絶縁膜15が第1絶縁膜15aである。第3トレンチ50の内壁に残る絶縁膜15が第2絶縁膜15bである。すなわち、第1トレンチ21の両側壁に絶縁膜15を介したポリシリコン層22が活性メサ領域24側のポリシリコン層22(第1ゲート電極22a)と浮遊p領域20側のポリシリコン層22(シールド電極22b)とに分離分割された状態となる。
 次に、図7に示すように、シリコン基板のおもて面に、MOSゲート構造が形成される部分(すなわち、第1トレンチ21の外側において隣り合う第1トレンチ21に挟まれた部分)におけるpベース領域30の形成領域に対応する部分が開口する第1レジストマスク(不図示)を形成する。次に、第1レジストマスクをマスクとしてボロンなどのp型不純物をイオン注入し、第1トレンチ21の外側において隣り合う第1トレンチ21に挟まれた部分におけるn-ドリフト層2の表面層に第1トレンチ21の深さよりも浅い深さでpベース領域30を形成する。これにより、複数の第1トレンチ21によって分割されてなるpベース領域30が形成される。そして、第1レジストマスクを除去する。
 次に、シリコン基板のおもて面に、n+エミッタ領域31の形成領域に対応する部分が開口する第2レジストマスクを形成する。次に、第2レジストマスクをマスクとして例えばリンなどのn型不純物をイオン注入する。これにより、図7に示すように、pベース領域30の表面層に、n+エミッタ領域31が形成される。そして、第2レジストマスクを除去する。隣接する第1トレンチ21間のメサシリコン基板部分に形成されたpベース領域30、n+エミッタ領域31が、エミッタ電極25に接触することによって活性メサ領域24となる。n+エミッタ領域31が形成されないメサシリコン基板部分は絶縁膜15で覆われてフローティングメサ領域である浮遊p領域20となる。
 次に、絶縁膜15を介したpベース領域30上、および第1ゲート電極22aの直線状の電極部の終端部上にゲートランナー26を形成する(図11参照)。絶縁膜15を介した浮遊p領域20上、およびシールド電極22bの直線状の電極部の終端部上にエミッタポリシリコン層25aを形成する(図11参照)。エミッタポリシリコン層25aおよびゲートランナー26をエッチングでパターン形成する際には、第2、第3トレンチ40、50の上部をレジストマスクで保護しておき、エッチバックされないようにすることにより、エミッタポリシリコン層25aおよびゲートランナー26を容易に設けることが可能となる。
 次に、シリコン基板のおもて面全面に層間絶縁膜10を形成する(図7および図11参照)。次に、フォトリソグラフィおよびエッチングにより、第1~3コンタクトホール19a~19cの形成領域に対応する部分の層間絶縁膜10を除去する。これによって、第1コンタクトホール19aに、第2トレンチ40の内部に形成された第1ゲート電極22aに接続されたゲートランナー26が選択的に露出される。第2コンタクトホール19bに、第3トレンチ50の内部に形成されたシールド電極22bに接続されたエミッタポリシリコン層25aが選択的に露出される。また、第3コンタクトホール19cにn+エミッタ領域31およびp+ベース領域30が選択的に露出される。次に、第1~3コンタクトホール19a~19cの内部に、例えばチタン膜および窒化チタン膜からなるバリアメタル膜を成膜する。
 次に、第1~3コンタクトホール19a~19cの内部に埋め込むようにタングステン膜を形成する。そして、タングステン膜をエッチバックして、層間絶縁膜10の表面上のタングステン膜を除去する。次に、層間絶縁膜10上に、エミッタ電極25を形成し、エミッタ電極25と離してゲートパッド28を形成する。これにより、第1ゲート電極22aとなるポリシリコン層22は、ゲートランナー26、バリアメタル膜およびタングステン膜を介してゲートパッド28に接続される。シールド電極22bとなるポリシリコン層22は、エミッタポリシリコン層25a、バリアメタル膜およびタングステン膜を介してエミッタ電極25に接続される。次に、シリコン基板の表面にパッシベーション膜を形成し、このパッシベーション膜を選択的に開口し、ゲートパッド28およびエミッタ電極25の一部を露出させる。露出したエミッタ電極25はエミッタパッドとなる。その後、シリコン基板の裏面にコレクタ電極(不図示)を形成することで、図1および図9~11に示す半導体装置が完成する。
 以上、説明したように、実施の形態1によれば、ゲートミラー容量が大幅に低く、ターンオン特性が改善され、オン電圧の低減だけでなく、スイッチング損失の低減も得られる半導体装置を、プロセスステップ数をわずかに増加させるだけで、提供することが可能となる。
(実施の形態2)
 次に、実施の形態2にかかる半導体装置の構成について説明する。図12は、実施の形態2にかかる半導体装置の要部の平面レイアウトを示す平面図である。実施の形態2にかかる半導体装置は、第2、第3トレンチ40、50の平面形状が実施の形態1にかかる半導体装置と異なる。具体的には、図12に示すように、第2トレンチ40は、略コの字状の平面形状を有し、その両端部が第1トレンチ21の外側の側壁に連結されている。すなわち、第2トレンチ40と第1トレンチ21の一部とで略矩形環状の平面形状をなす。第2トレンチ40は、両端部が第1トレンチ21の外側の側壁に連結し第1トレンチ21とで略矩形環状の平面形状を形成するように形成すればよく、略コの字状の平面形状に限らない。なお、第2トレンチ40と第1トレンチ21の一部とで環状の平面形状をなすようにしてもよい。
 第3トレンチ50は、略コの字状の平面形状を有し、その両端部は第1トレンチ21の内側の側壁に連結されている。すなわち、第3トレンチ50と第1トレンチ21の一部とで略矩形環状の平面形状をなす。また、第3トレンチ50は、両端部が第1トレンチ21の内側の側壁に連結し第1トレンチ21とで略矩形環状の平面形状をなすように形成すればよく、略コの字状の平面形状に限らない。なお、第3トレンチ50と第1トレンチ21の一部とで環状の平面形状をなすようにしてもよい。第3トレンチ50は、例えば第1トレンチ21を挟んで第2トレンチ40と対称的に設けられていてもよい。
 実施の形態2にかかる半導体装置は、第2トレンチ40と第1トレンチ21の一部とで、および第3トレンチ50と第1トレンチ21の一部とで略矩形環状の平面形状をなすように形成され、第1ゲート電極22aおよびシールド電極22bが、第2トレンチ40および第3トレンチ50の略中央部近傍において、ゲートランナー26およびエミッタポリシリコン層25aに接続されることが好ましい。換言すれば、第1ゲート電極22aおよびシールド電極22bは、第2トレンチ40および第3トレンチ50の終端部近傍において、ゲートランナー26およびエミッタポリシリコン層25aに接続されないことが好ましい。
 このように第2トレンチ40および第3トレンチ50を形成したことよって、第1ゲート電極22aおよびシールド電極22bが、それぞれゲートランナー26およびエミッタポリシリコン層25aに、第2トレンチ40および第3トレンチ50の略中央部近傍において接続され、第2トレンチ40および第3トレンチ50の終端部近傍において接続されないので、各トレンチの終端部の形状に起因するゲート耐圧の低下およびゲート特性の信頼性の低下が抑制される効果が得られる。
 次に、実施の形態2における半導体装置の断面構造について説明する。図13は、図12の切断線E1-E2における断面構造を示す断面図である。図13に示すように、エミッタポリシリコン層25aおよびゲートランナー26の直下にまで、第2トレンチ40および第3トレンチ50がそれぞれ延長されている。従って、第1ゲート電極22a-ゲートランナー26間、シールド電極22b-エミッタポリシリコン層25a間のそれぞれの接続が極めて容易になる。
 以上、説明したように、実施の形態2によれば、実施の形態1の半導体装置と断面構造が同じであるので、実施の形態1と同様の効果を得ることができる。また、実施の形態2によれば、第2トレンチ40と第1トレンチ21の一部とで、第3トレンチ50と第1トレンチ21とで略矩形環状の平面形状をなすように形成されており、ゲートランナー26およびエミッタポリシリコン層25aに、第2トレンチ40および第3トレンチ50の略中央部近傍において接続され、第2トレンチ40、第3トレンチ50の終端部近傍において接続されないので、各トレンチの終端部の形状に起因するゲート耐圧およびゲート特性の信頼性が低下することを抑制することができる。
(実施の形態3)
 図14は、実施の形態3にかかる半導体装置の要部の平面レイアウトを示す平面図である。実施の形態3にかかる半導体装置は、1つの第3トレンチ50に対する第2トレンチ40の数および第2トレンチ40を配置する位置が実施の形態1にかかる半導体装置と異なる。具体的には、実施の形態1では、第2トレンチ40、第3トレンチ50が第1トレンチ21を間にして向き合って配置されていた。より詳細には、第2トレンチ40と第3トレンチ50とは、第1トレンチ21を横切る同一直線上に配置されていた。これに対して実施の形態3では、図14に示すように、1つの第3トレンチ50に対して2つの第2トレンチ40が配置されており、第1トレンチ21を間にして第2トレンチ40、第3トレンチ50が互い違いに配置されている。より詳細には、例えば、第2トレンチ40は、1つの第3トレンチ50に対して複数設けられ、pベース領域30の、隣り合う第2トレンチ40に挟まれた部分が第1トレンチ21を挟んで第3トレンチ50に対向している。
 以上、説明したように、実施の形態3によれば、実施の形態1の半導体装置と断面構造が同じであるので、実施の形態1と同様の効果を得ることができる。
(実施の形態4)
 図15は、実施の形態4にかかる半導体装置の要部の平面レイアウトを示す平面図である。実施の形態4にかかる半導体装置は、第2トレンチ40を配置する位置が実施の形態3にかかる半導体装置と異なる。具体的には、実施の形態4では、図15に示すように、1つの第3トレンチ50に対して2つの第2トレンチ40が配置され、第2トレンチ40のそれぞれは第1トレンチ21のコーナー部に設けられ、第1トレンチ21を間にして第2トレンチ40、第3トレンチ50が互い違いに配置されている。より詳細には、例えば、第2トレンチ40は、1つの第3トレンチ50に対して複数設けられるとともに、第1トレンチ21のコーナー部の外側の側壁に連結して設けられ、pベース領域30の、隣り合う第2トレンチ40に挟まれた部分が第1トレンチ21を挟んで第3トレンチ50に対向している。
 以上、説明したように、実施の形態4によれば、実施の形態1の半導体装置と断面構造が同じであるので、実施の形態1と同様の効果を得ることができる。
(実施の形態5)
 図16は、実施の形態5にかかる半導体装置の要部の平面レイアウトを示す平面図である。実施の形態5にかかる半導体装置は、第2トレンチ40の平面形状が実施の形態2にかかる半導体装置と異なる。具体的には、実施の形態2では、図12に示すように、第2トレンチ40、第3トレンチ50が第1トレンチ21を間にして対称的に向き合って配置されていた。これに対して実施の形態5では、図16に示すように、第3トレンチ50に対して第2トレンチ40が平面的に外側に配置されており、第1トレンチ21を間にして第2トレンチ40、第3トレンチ50が互い違いにもしくは非対称的に配置されている。より詳細には、第2トレンチ40と第1トレンチ21の一部とで形成された環状(もしくは略矩形環状)の平面形状のうちの第1トレンチ21の側壁部分の長さが、第3トレンチ50と第1トレンチ21の一部とで形成された環状(もしくは略矩形環状)の平面形状のうちの第1トレンチ21の側壁部分の長さよりも長い。
 以上、説明したように、実施の形態5によれば、実施の形態1の半導体装置と断面構造が同じであるので、実施の形態1および2と同様の効果を得ることができる。
(実施の形態6)
 図17は、実施の形態6にかかる半導体装置の要部の平面レイアウトを示す平面図である。実施の形態6にかかる半導体装置は、第3トレンチ50の平面形状が実施の形態2にかかる半導体装置と異なる。具体的には、実施の形態6では、図17に示すように、第2トレンチ40に対して第3トレンチ50が平面的に外側に配置されており、第1トレンチ21を間にして第2トレンチ40、第3トレンチ50が互い違いにもしくは非対称的に配置されている。より詳細には、第3トレンチ50と第1トレンチ21の一部とで形成された環状(もしくは略矩形環状)の平面形状のうちの第1トレンチ21の側壁部分の長さが、第2トレンチ40と第1トレンチ21の一部とで形成された環状(もしくは略矩形環状)の平面形状のうちの第1トレンチ21の側壁部分の長さよりも長い。
 以上、説明したように、実施の形態6によれば、実施の形態1の半導体装置と断面構造が同じであるので、実施の形態1および2と同様の効果を得ることができる。
(実施の形態7)
 次に、実施の形態7にかかる半導体装置の構成について説明する。実施の形態7にかかる半導体装置は、第1トレンチ21と第2トレンチ40との間の連結部分(第1連結部)および第1トレンチ21と第3トレンチ50との間の連結部分(第2連結部)の形状が実施の形態1にかかる半導体装置と異なる。具体的には、第1トレンチ21と第2トレンチ40とが交差する位置および第1トレンチ21と第3トレンチ50とが交差する位置において、第1トレンチ21と第2トレンチ40とによって形成される連結部分の角部および第1トレンチ21と第3トレンチ50とによって形成される連結部分の角部が、それぞれ面取りされ、ラウンド形状(不図示)となっている。すなわち、第1トレンチ21の側壁と第2トレンチ40の側壁との間の第1連結部は、それぞれ面取りされてラウンド形状になっている。第1トレンチ21の側壁と第3トレンチ50の側壁との間の第2連結部は、それぞれ面取りされてラウンド形状になっている。
 また、第1連結部および第2連結部の少なくともいずれか一方のみがラウンド形状になっていてもよい。また、例えば、図1においては、第1連結部および第2連結部の4つの連結部のうちの少なくとも1つがラウンド形状になっていてもよい。これによって、第1トレンチ21の側壁と第2トレンチ40の側壁との間の第1連結部および第1トレンチ21の側壁と第3トレンチ50の側壁との間の第2連結部の近傍に電界が集中することを防止することができる。
 上述した第1連結部および第2連結部の近傍に電界が集中することを防止するために、第1連結部および第2連結部のそれぞれの上方は、エミッタ電極25およびゲートパッド28で覆われていないことが好ましい。
 以上、説明したように、実施の形態7によれば、実施の形態1の半導体装置と断面構造が同じであるので、実施の形態1と同様の効果を得ることができる。また、実施の形態7によれば、第1トレンチ21の側壁と第2トレンチ40の側壁との間の第1連結部および第1トレンチ21の側壁と第3トレンチ50の側壁との間の第2連結部の近傍に電界が集中することを防止することができる。
 以上において本発明では、IGBTを例に説明しているが、上述した実施の形態に限らず、MOSゲート構造を備えたさまざまな構成の半導体装置に適用することが可能である。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。
 以上のように、本発明にかかる半導体装置は、電力変換装置ななどに使用されるパワー半導体装置に有用である。
 2 n-ドリフト層
 10 層間絶縁膜
 15 絶縁膜
 15a 第1絶縁膜
 15b 第2絶縁膜
 16 第3絶縁膜
 19a 第1コンタクトホール
 19b 第2コンタクトホール
 19c 第3コンタクトホール
 20 浮遊p領域
 21 第1トレンチ
 22 ポリシリコン層
 22a 第1ゲート電極
 22b シールド電極
 25 エミッタ電極
 25a エミッタポリシリコン層
 26 ゲートランナー
 27 エミッタコンタクト領域
 28 ゲートパッド
 30 pベース領域
 31 n+エミッタ領域
 40 第2トレンチ
 50 第3トレンチ
 60 p層

Claims (9)

  1.  第1導電型の半導体層の表面層に形成された第1トレンチと、
     前記第1トレンチの一方の側壁に連結された第2トレンチと、
     前記第1トレンチの他方の側壁に連結された第3トレンチと、
     前記第1トレンチの一方の側壁に沿って前記第1トレンチより浅い深さで前記半導体層の表面層に選択的に形成された第2導電型のベース領域と、
     前記ベース領域の表面層に前記第1トレンチの側壁に接して形成されるエミッタ領域と、
     前記第1トレンチの他方の側壁に沿って前記半導体層の表面層に選択的に形成された第2導電型の浮遊電位領域と、
     前記第1トレンチの一方の側壁および前記第2トレンチの内壁に沿って設けられた第1絶縁膜と、
     前記第1トレンチの他方の側壁および前記第3トレンチの内壁に沿って設けられた第2絶縁膜と、
     前記第1絶縁膜の内側に、前記第1トレンチの一方の側壁に沿って設けられるとともに、前記第2トレンチの内部に設けられた第1ゲート電極と、
     前記第2絶縁膜の内側に、前記第1トレンチの他方の側壁に沿って設けられるとともに、前記第3トレンチの内部に設けられたシールド電極と、
     前記第1トレンチの内部の、前記第1ゲート電極と前記シールド電極との間に埋め込まれた第3絶縁膜と、
     前記第2トレンチが延長されることによって、一部が前記第1ゲート電極上に設けられ、前記第1ゲート電極と接続されたゲートランナーと、
     前記第3トレンチが延長されることによって、一部が前記シールド電極上に設けられ、前記シールド電極と接続されたエミッタポリシリコン層と、
     前記第1ゲート電極、前記シールド電極、前記エミッタ領域、前記ゲートランナーおよび前記エミッタポリシリコン層を覆う層間絶縁膜と、
     前記層間絶縁膜上に設けられ、前記ゲートランナーに接続されたゲートパッドと、
     前記層間絶縁膜上に、前記ゲートパッドと離れて設けられ、前記エミッタ領域、前記ベース領域および前記シールド電極に接続されたエミッタ電極と、
     を備えることを特徴とする半導体装置。
  2.  前記第2トレンチおよび前記第3トレンチの開口幅は、前記第1トレンチの開口幅よりも狭いことを特徴とする請求項1に記載の半導体装置。
  3.  前記第1トレンチの開口幅は、前記第1ゲート電極の膜厚の2倍よりも狭いことを特徴とする請求項2に記載の半導体装置。
  4.  前記第2トレンチおよび前記第3トレンチは、前記第1トレンチを横切る同一直線上に配置されていることを特徴とする請求項1に記載の半導体装置。
  5.  前記第2トレンチは、1つの前記第3トレンチに対して、複数設けられ、
     前記ベース領域の、隣り合う前記第2トレンチに挟まれた部分が前記第1トレンチを挟んで前記第3トレンチに対向していることを特徴とする請求項1に記載の半導体装置。
  6.  前記第2トレンチと前記第1トレンチの一部とで、および前記第3トレンチと前記第1トレンチの一部とで、それぞれ環状の平面形状をなすことを特徴とする請求項1に記載の半導体装置。
  7.  前記第1トレンチの側壁と前記第2トレンチの側壁との間の第1連結部および前記第1トレンチの側壁と前記第3トレンチの側壁との間の第2連結部は、それぞれ面取りされてラウンド形状になっていることを特徴とする請求項1に記載の半導体装置。
  8.  前記第1連結部および前記第2連結部のそれぞれの上方は、前記エミッタ電極および前記ゲートパッドで覆われていないことを特徴とする請求項7に記載の半導体装置。
  9.  前記半導体層の裏面に設けられた第2導電型のコレクタ層と、
     前記コレクタ層の表面に設けられたコレクタ電極と、
     を備えることを特徴とする請求項1~8のいずれか一つに記載の半導体装置。
PCT/JP2013/077862 2012-10-17 2013-10-11 半導体装置 WO2014061619A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014542125A JP5867617B2 (ja) 2012-10-17 2013-10-11 半導体装置
KR1020157006098A KR20150066517A (ko) 2012-10-17 2013-10-11 반도체 장치
EP13847740.1A EP2822039B1 (en) 2012-10-17 2013-10-11 Semiconductor device
CN201380019387.9A CN104221153B (zh) 2012-10-17 2013-10-11 半导体装置
US14/449,984 US9054154B2 (en) 2012-10-17 2014-08-01 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-229971 2012-10-17
JP2012229971 2012-10-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/449,984 Continuation US9054154B2 (en) 2012-10-17 2014-08-01 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2014061619A1 true WO2014061619A1 (ja) 2014-04-24

Family

ID=50488183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077862 WO2014061619A1 (ja) 2012-10-17 2013-10-11 半導体装置

Country Status (6)

Country Link
US (1) US9054154B2 (ja)
EP (1) EP2822039B1 (ja)
JP (1) JP5867617B2 (ja)
KR (1) KR20150066517A (ja)
CN (1) CN104221153B (ja)
WO (1) WO2014061619A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065420A (ja) * 2013-08-28 2015-04-09 ローム株式会社 半導体装置
JP2019024138A (ja) * 2013-08-28 2019-02-14 ローム株式会社 半導体装置
JP2020087990A (ja) * 2018-11-16 2020-06-04 株式会社 日立パワーデバイス 半導体装置およびそれを用いた電力変換装置
WO2020246230A1 (ja) * 2019-06-04 2020-12-10 ローム株式会社 半導体装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168171A1 (ja) 2013-04-11 2014-10-16 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6566512B2 (ja) * 2014-04-15 2019-08-28 ローム株式会社 半導体装置および半導体装置の製造方法
JP6197966B2 (ja) * 2014-12-19 2017-09-20 富士電機株式会社 半導体装置および半導体装置の製造方法
US10367085B2 (en) 2015-08-31 2019-07-30 Littelfuse, Inc. IGBT with waved floating P-Well electron injection
US9780202B2 (en) * 2015-08-31 2017-10-03 Ixys Corporation Trench IGBT with waved floating P-well electron injection
JP6566835B2 (ja) * 2015-10-22 2019-08-28 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP6973422B2 (ja) * 2019-01-21 2021-11-24 株式会社デンソー 半導体装置の製造方法
JP7231427B2 (ja) * 2019-02-08 2023-03-01 株式会社東芝 半導体装置
CN110277444B (zh) * 2019-06-28 2021-02-12 电子科技大学 具有scr结构的沟槽栅igbt器件
CN110504306B (zh) * 2019-08-21 2022-11-04 江苏中科君芯科技有限公司 具有可调电容的沟槽栅igbt器件
JP7242491B2 (ja) * 2019-09-20 2023-03-20 株式会社東芝 半導体装置及び半導体回路
US11430880B2 (en) * 2020-06-03 2022-08-30 DB HiTek, Co., Ltd. Insulated gate bipolar transistor and method of manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243561A (ja) 1991-08-08 1993-09-21 Toshiba Corp 電力用半導体素子
JP2001308327A (ja) 2000-04-26 2001-11-02 Fuji Electric Co Ltd 絶縁ゲート型半導体装置
JP2002528916A (ja) * 1998-10-26 2002-09-03 ノース・キャロライナ・ステイト・ユニヴァーシティ 改良された高周波スイッチング特性と降伏特性を備えたパワー半導体デバイス
US6815769B2 (en) 2002-01-28 2004-11-09 Infineon Technologies Ag Power semiconductor component, IGBT and field-effect transistor
JP2007529115A (ja) * 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション パワー半導体デバイスおよびその製造方法
JP2010141094A (ja) * 2008-12-11 2010-06-24 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP2010258005A (ja) 2009-04-21 2010-11-11 Fuji Electric Systems Co Ltd 半導体装置
JP2011014621A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345342B2 (en) 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
DE10212144B4 (de) * 2002-03-19 2005-10-06 Infineon Technologies Ag Transistoranordnung mit einer Struktur zur elektrischen Kontaktierung von Elektroden einer Trench-Transistorzelle
JP4158453B2 (ja) * 2002-08-22 2008-10-01 株式会社デンソー 半導体装置及びその製造方法
JP3742400B2 (ja) * 2003-04-23 2006-02-01 株式会社東芝 半導体装置及びその製造方法
JP2005340626A (ja) * 2004-05-28 2005-12-08 Toshiba Corp 半導体装置
JP4857566B2 (ja) * 2005-01-27 2012-01-18 富士電機株式会社 絶縁ゲート型半導体装置とその製造方法
JP4817827B2 (ja) * 2005-12-09 2011-11-16 株式会社東芝 半導体装置
US8304829B2 (en) * 2008-12-08 2012-11-06 Fairchild Semiconductor Corporation Trench-based power semiconductor devices with increased breakdown voltage characteristics
JP2012064641A (ja) * 2010-09-14 2012-03-29 Toshiba Corp 半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243561A (ja) 1991-08-08 1993-09-21 Toshiba Corp 電力用半導体素子
JP2002528916A (ja) * 1998-10-26 2002-09-03 ノース・キャロライナ・ステイト・ユニヴァーシティ 改良された高周波スイッチング特性と降伏特性を備えたパワー半導体デバイス
JP2001308327A (ja) 2000-04-26 2001-11-02 Fuji Electric Co Ltd 絶縁ゲート型半導体装置
US6815769B2 (en) 2002-01-28 2004-11-09 Infineon Technologies Ag Power semiconductor component, IGBT and field-effect transistor
JP2007529115A (ja) * 2003-12-30 2007-10-18 フェアチャイルド・セミコンダクター・コーポレーション パワー半導体デバイスおよびその製造方法
JP2010141094A (ja) * 2008-12-11 2010-06-24 Fuji Electric Systems Co Ltd 半導体装置およびその製造方法
JP2010258005A (ja) 2009-04-21 2010-11-11 Fuji Electric Systems Co Ltd 半導体装置
JP2011014621A (ja) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. YAMAGUCHI ET AL.: "IEGT Design Criterion for Reducing EMI Noise", PROC. ISPSD, 2004, pages 115 - 118

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065420A (ja) * 2013-08-28 2015-04-09 ローム株式会社 半導体装置
JP2019024138A (ja) * 2013-08-28 2019-02-14 ローム株式会社 半導体装置
US10777548B2 (en) 2013-08-28 2020-09-15 Rohm Co., Ltd. Method for manufacturing semiconductor device
US11610884B2 (en) 2013-08-28 2023-03-21 Rohm Co., Ltd. Semiconductor device
JP2020087990A (ja) * 2018-11-16 2020-06-04 株式会社 日立パワーデバイス 半導体装置およびそれを用いた電力変換装置
JP7033049B2 (ja) 2018-11-16 2022-03-09 株式会社 日立パワーデバイス 半導体装置およびそれを用いた電力変換装置
WO2020246230A1 (ja) * 2019-06-04 2020-12-10 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
CN104221153A (zh) 2014-12-17
EP2822039A4 (en) 2015-10-07
EP2822039B1 (en) 2020-08-26
US9054154B2 (en) 2015-06-09
KR20150066517A (ko) 2015-06-16
US20140339599A1 (en) 2014-11-20
EP2822039A1 (en) 2015-01-07
JP5867617B2 (ja) 2016-02-24
JPWO2014061619A1 (ja) 2016-09-05
CN104221153B (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP5867617B2 (ja) 半導体装置
JP6061023B2 (ja) 半導体装置および半導体装置の製造方法
JP5987990B2 (ja) 半導体装置
US10062774B2 (en) Trench-type insulated gate semiconductor device including an emitter trench and an overlapped floating region
US9576841B2 (en) Semiconductor device and manufacturing method
JP5055786B2 (ja) Mos型半導体装置とその製造方法
US9748229B2 (en) Semiconductor device
JP5707681B2 (ja) 半導体装置およびその製造方法
TWI518803B (zh) 用於負載開關和直流-直流器件的高密度mosfet的器件結構及其制備方法
JP5458809B2 (ja) 半導体装置
JP5720805B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
WO2015019862A1 (ja) トレンチゲートmos型半導体装置およびその製造方法
JP5569600B2 (ja) 半導体装置およびその製造方法
JP2011176027A (ja) 半導体素子および半導体素子の製造方法
JP5760320B2 (ja) 半導体装置
JP5751125B2 (ja) 半導体装置
JP7327672B2 (ja) 半導体装置
JP2020031167A (ja) 半導体装置およびその製造方法
JP2013251467A (ja) 半導体装置および半導体装置の製造方法
JP2013251464A (ja) 半導体装置
JP2018157190A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013847740

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014542125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157006098

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE