WO2014061377A1 - 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置 - Google Patents

還元剤回収制御方法及び還元剤供給装置並びに電子制御装置 Download PDF

Info

Publication number
WO2014061377A1
WO2014061377A1 PCT/JP2013/074633 JP2013074633W WO2014061377A1 WO 2014061377 A1 WO2014061377 A1 WO 2014061377A1 JP 2013074633 W JP2013074633 W JP 2013074633W WO 2014061377 A1 WO2014061377 A1 WO 2014061377A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
injection valve
supply passage
pressure
liquid
Prior art date
Application number
PCT/JP2013/074633
Other languages
English (en)
French (fr)
Inventor
謙一 谷岡
匡教 渡辺
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2014541997A priority Critical patent/JPWO2014061377A1/ja
Publication of WO2014061377A1 publication Critical patent/WO2014061377A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1433Pumps
    • F01N2610/144Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a reducing agent recovery control method for recovering a liquid reducing agent remaining in a reducing agent supply device for supplying a liquid reducing agent into an exhaust passage of the internal combustion engine when the internal combustion engine is stopped, and so on.
  • the present invention relates to a reducing agent supply device and an electronic control device that can perform simple control.
  • Nitrogen oxides are contained in the exhaust of internal combustion engines such as diesel engines mounted on vehicles and the like.
  • the selective reduction catalyst disposed in an exhaust passage of an internal combustion engine, for injecting liquid reducing agent from ammonia, such as urea aqueous solution on the upstream side of the selective reduction catalyst
  • an exhaust emission control device including a reducing agent supply device.
  • a reducing agent injection device that includes a pump and a reducing agent injection valve, pumps the liquid reducing agent in the storage tank by the pump, and is fixed to the exhaust pipe.
  • a direct injection type reducing agent supply device that supplies liquid reducing agent into an exhaust pipe through a valve.
  • the urea aqueous solution having the lowest freezing temperature is used so that the urea aqueous solution is not frozen as much as possible.
  • the freezing temperature of the urea aqueous solution is at most about ⁇ 11 ° C., and the urea aqueous solution may freeze in a cold region or the like while the urea aqueous solution supply by the reducing agent supply device is stopped.
  • moisture in the urea aqueous solution evaporates and the concentration increases, and the freezing temperature of the urea aqueous solution increases, which may cause freezing.
  • JP 2010-007617 A paragraphs [0037], [0047], etc.
  • the urea aqueous solution recovery control is performed while the reducing agent injection valve is opened and the air (exhaust gas) in the exhaust passage is taken into the reducing agent supply device. During this recovery control, the reducing agent injection valve injection is controlled.
  • the water in the urea aqueous solution attached near the hole evaporates and crystallizes, resulting in clogging of the nozzle hole.
  • an excessive negative pressure is generated in the urea aqueous solution supply passage, and when the supply passage returns to atmospheric pressure after the pump is stopped, the urea aqueous solution in the storage tank is There was a risk of being sucked back into the pump.
  • the present invention provides a reducing agent recovery control method in which urea aqueous solution is not sucked back into the pump due to clogging of the injection hole of the reducing agent injection valve at the end of urea aqueous solution recovery control, and such recovery control. It is an object of the present invention to provide a reducing agent supply device and an electronic control device that can execute the above.
  • the liquid reducing agent in the storage tank is pumped by a pump and supplied to the reducing agent injection valve via the reducing agent supply passage, and the internal combustion engine is operated by the reducing agent injection valve.
  • the reducing agent recovery control method for recovering the remaining liquid reducing agent into the storage tank when the internal combustion engine is stopped after injecting the liquid reducing agent into the exhaust passage of the engine when the internal combustion engine is stopped.
  • the pressure in the reducing agent supply passage is reduced by the pump and the reducing agent injection valve is opened to collect the liquid reducing agent and the pressure in the reducing agent supply passage becomes less than a predetermined threshold value
  • the pressure in the reducing agent supply passage is increased by a pump, and the pressure in the reducing agent supply passage is used so that the liquid reducing agent is not injected when the reducing agent injection valve is opened.
  • the reducing agent recovery control method of the present invention when the reducing agent supply passage is in an excessively negative pressure state during the reducing agent recovery control, the pressure inside the reducing agent supply passage is once increased, and the pressure causes clogging of the nozzle hole. Is resolved and recovery control is resumed. At this time, since the liquid reducing agent is controlled not to be injected from the reducing agent injection valve, there is no possibility that the liquid reducing agent adheres again to the injection hole of the reducing agent injection valve and crystallizes. Therefore, the negative pressure level in the reducing agent supply passage does not increase significantly at the end of the recovery control, and the liquid reducing agent in the storage tank is prevented from being sucked back to the pump side after the pump is stopped. Can do.
  • the reducing agent injection valve is once closed at the start of pressure increase in the reducing agent supply passage, and the reduction agent is supplied after the reducing agent supply passage becomes positive pressure. It is preferable to eliminate clogging of the nozzle hole by opening the agent injection valve for a short time. By performing such control, it becomes easy to remove clogging of the nozzle holes in a short time in a state in which the internal pressure is surely positive, and the risk that the liquid reducing agent is injected can be reduced.
  • the reducing agent injection valve is opened after the reducing agent supply passage becomes a positive pressure, or the pressure in the reducing agent supply passage is increased. If the pressure increase gradient does not decrease even after a predetermined time has elapsed from the start, it is preferable to stop the pressure increase and restart the recovery control. By performing such control, it is possible to prevent the pressure increase from being continued for a long time without showing signs of eliminating the clogging of the nozzle holes.
  • a storage tank that stores a liquid reducing agent, a pump that pumps the liquid reducing agent in the storage tank, and the liquid reducing agent that is pumped through a reducing agent supply passage are internally connected.
  • a reducing agent injection valve that injects into the exhaust passage of the engine, and an electronic control unit that controls the drive of the pump and the reducing agent injection valve, and the liquid reducing agent is supplied to the storage tank when the internal combustion engine is stopped.
  • the electronic control unit reduces the pressure in the reducing agent supply passage by the pump and opens the reducing agent injection valve when the internal combustion engine is stopped.
  • the pressure in the reducing agent supply passage becomes less than a predetermined threshold
  • the pressure in the reducing agent supply passage is increased by the pump, and the reducing agent injection valve is opened.
  • the liquid reducing agent recovery control is resumed after the clogging of the nozzle hole of the reducing agent injection valve is eliminated using the pressure in the reducing agent supply passage so that the injection of the liquid reducing agent does not occur. It is comprised in this, It is a reducing agent supply apparatus characterized by the above-mentioned.
  • the reducing agent supply device of the present invention once pressurizes the reducing agent supply passage once the inside of the reducing agent supply passage becomes excessively negative during the reducing agent recovery control and clogs the nozzle hole by the pressure. It will be resolved and recovery control will be resumed.
  • the liquid reducing agent is controlled not to be injected from the reducing agent injection valve, there is no possibility that the liquid reducing agent adheres again to the injection hole of the reducing agent injection valve and crystallizes. Therefore, the negative pressure level in the reducing agent supply passage does not increase significantly at the end of the recovery control, and the liquid reducing agent in the storage tank is prevented from being sucked back to the pump side after the pump is stopped. Can do.
  • Yet another aspect of the present invention is an electronic control device configured to be able to perform any of the above-described reducing agent recovery control.
  • the electronic control device of the present invention once pressurizes the reducing agent supply passage once the reducing agent supply passage is in an excessively negative pressure state during the reducing agent recovery control, and the clogging of the injection hole is eliminated by the pressure.
  • the collection control is resumed.
  • the liquid reducing agent is controlled not to be injected from the reducing agent injection valve, there is no possibility that the liquid reducing agent again adheres to the injection hole of the reducing agent injection valve and crystallizes. Therefore, the negative pressure level in the reducing agent supply passage does not increase significantly at the end of the recovery control, and the liquid reducing agent in the storage tank is prevented from being sucked back to the pump side after the pump is stopped. Can do.
  • FIG. 1 is an overall view showing an example of an exhaust purification device provided with a reducing agent supply device according to an embodiment of the present invention. It is a block diagram which shows the structural example of an electronic controller. It is a figure shown in order to demonstrate the reducing agent collection
  • FIG. 1 illustrates an example of the overall configuration of an exhaust emission control device 10 provided with a reducing agent supply device 20 capable of performing a reducing agent recovery control according to a first embodiment of the present invention.
  • the exhaust purification device 10 is a device for purifying NO x in exhaust gas, and is provided in an exhaust passage 11 of an internal combustion engine such as a diesel engine (not shown).
  • the exhaust purification device 10 includes a reduction catalyst 13 interposed in the middle of the exhaust passage 11 and a reducing agent supply device 20 for supplying a liquid reducing agent into the exhaust passage 11 upstream of the reduction catalyst 13. ing.
  • an arrow written in the exhaust passage 11 indicates a direction in which the exhaust flows.
  • the reduction catalyst 13 is a catalyst having a function of promoting the reduction of NO x in the exhaust, adsorbs the reducing component generated from the liquid reducing agent, and selectively reduces the NO x in the exhaust flowing into the catalyst by the reducing component. It is a catalyst that reduces to The reducing agent supply apparatus 20 of the present embodiment uses a urea aqueous solution as a liquid reducing agent, and ammonia as a reducing component is generated when the urea aqueous solution is decomposed in the exhaust passage 11. ing.
  • a reducing agent supply device 20 includes a storage tank 21 in which a liquid reducing agent is stored, a pump unit 30 for pumping the liquid reducing agent, and a liquid reducing agent. And a reducing agent injection valve 25 for injecting into the exhaust passage 11.
  • the pump unit 30 includes a pump 23 and a flow path switching valve 33.
  • the reducing agent injection valve 25, the pump 23, and the flow path switching valve 33 are controlled by an electronic control unit (ECU) 40.
  • ECU electronice control unit
  • the pump 23 and the storage tank 21 are connected by a first supply passage 27, and the pump 23 and the reducing agent injection valve 25 are connected by a second supply passage 28.
  • the second supply passage 28 has a pressure sensor as pressure detection means for detecting the pressure in the second supply passage 28, that is, the pressure of the liquid reducing agent pumped to the reducing agent injection valve 25. 31 is provided.
  • the pump 23 is connected to the first supply passage 27 and the second supply passage 28 via a flow path switching valve 33.
  • the end of the first supply passage 27 on the side of the storage tank 21 is located in the vicinity of the bottom surface of the storage tank 21 so that the liquid reducing agent can be sucked up.
  • the flow path switching valve 33 has a direction in which the liquid reducing agent pumped by the pump 23 flows from the storage tank 21 side to the reducing agent injection valve 25 side (hereinafter referred to as “positive direction”), and a reducing agent injection valve. It has a function of switching from the 25 side to the direction of flowing to the storage tank 21 side (hereinafter referred to as “reverse direction”).
  • the flow path switching valve 33 communicates the first supply passage 27 with the inlet side 23a of the pump 23 in a non-energized state and the second supply passage 28 with the pump 23.
  • the first supply passage 27 is in communication with the outlet side 23b of the pump 23 and the second supply passage 28 is in communication with the inlet side 23a of the pump 23. Yes.
  • the flow path switching valve 33 is not energized in order to supply the liquid reducing agent to the reducing agent injection valve 25 side. At this time, the liquid reducing agent flows in the positive direction.
  • the flow path switching valve 33 is energized. At this time, the liquid reducing agent flows in the reverse direction.
  • the configuration that allows the liquid reducing agent to be collected in the storage tank 21 is not limited to the example in which the flow path switching valve 33 is provided.
  • the liquid reducing agent can be configured to be recoverable by using a pump 23 that can rotate in reverse.
  • a return passage 29 having the other end connected to the storage tank 21 is provided in the middle of the second supply passage 28.
  • the end of the return passage 29 on the storage tank 21 side is connected to a gas phase portion in the storage tank 21 in order to prevent the back flow of the liquid reducing agent.
  • the position where the return passage 29 branches may be not the middle of the second supply passage 28 but the outlet side 23 b of the pump 23.
  • the storage tank 21 is provided with an air blizzard or the like, and is configured so that the internal pressure is maintained at atmospheric pressure.
  • a throttle portion 37 having a reduced flow passage area is provided in the middle of the return passage 29, so that the pressure in the second supply passage 28 can be maintained.
  • the return passage 29 closer to the storage tank 21 than the throttling portion 37 is provided with a one-way valve 35 for preventing the liquid reducing agent from flowing from the storage tank 21 side to the second supply passage 28 side. Yes.
  • the one-way valve 35 may be omitted.
  • the pressure sensor 31 is provided in the pump unit 30, but at any position as long as the pressure in the second supply passage 28 can be detected. It may be provided.
  • the pump 23 pumps a liquid reducing agent at a predetermined flow rate by energization control by the ECU 40.
  • the pump 23 is an electromagnetic pump, and the output (discharge flow rate) of the pump 23 increases as the drive duty ratio increases.
  • the pump 23 also has a function as means for collecting the liquid reducing agent in the storage tank 21.
  • the pressure value in the second supply passage 28 detected by the pressure sensor 31 (hereinafter, this value is referred to as “detected pressure”) Pu is a predetermined value set in advance.
  • the output of the pump 23 is feedback-controlled so that the target pressure Pu_tgt is maintained.
  • the ECU 40 uses a pressure sensor 31 provided in the second supply passage 28.
  • the output of the pump 23 is PID controlled based on a difference ⁇ Pu between the detected pressure Pu detected and a predetermined target pressure Pu_tgt set in advance.
  • the drive control of the pump 23 is basically performed with a constant output.
  • the reducing agent injection valve 25 is controlled to be opened and closed by energization control by the ECU 40 in an operating state of the internal combustion engine, and injects a predetermined amount of liquid reducing agent into the exhaust passage 11.
  • the reducing agent injection valve 25 is an electromagnetic on / off valve that closes in a non-energized state and opens in an energized state.
  • the ECU 40 obtains the target injection amount Qdv_tgt based on a predetermined arithmetic expression, and assumes that the detected pressure Pu in the second supply passage 28 is the target pressure Pu_tgt for each predetermined injection cycle.
  • the drive duty ratio of the reducing agent injection valve 25 means the ratio of the valve opening time during one injection cycle.
  • the reducing agent injection valve 25 is maintained in a state in which the reducing agent injection valve 25 is opened when recovering the liquid reducing agent when the internal combustion engine is stopped.
  • air exhaust gas
  • the liquid reducing agent evaporates in the nozzle hole portion of the reducing agent injection valve 25 due to the influence of exhaust heat or the like, the liquid reducing agent crystallizes, and the nozzle hole is clogged, the reducing agent injection valve 25 or the second supply It becomes difficult to recover the liquid reducing agent in the passage 28 into the storage tank 21.
  • the reducing agent supply device 20 of the present embodiment when the nozzle hole of the reducing agent injection valve 25 is clogged, the liquid reducing agent is recovered while eliminating this.
  • FIG. 2 shows a configuration example in which functional blocks are used to represent portions related to the liquid reducing agent recovery control in the ECU 40 of the present embodiment.
  • the ECU 40 is configured around a known microcomputer, and includes a collection control instruction unit 41, a flow path switching valve control unit 43, a pump drive control unit 45, a reducing agent injection valve drive control unit 47, and the like.
  • the clogging elimination control unit 49 is configured. Specifically, each of these units is realized by executing a program by a microcomputer.
  • the ECU 40 energizes a memory element (not shown) such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a timer counter, and the pump 23, the flow path switching valve 33, and the reducing agent injection valve 25.
  • a memory element such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a timer counter, and the pump 23, the flow path switching valve 33, and the reducing agent injection valve 25.
  • a drive circuit is provided.
  • the ECU 40 receives an ON / OFF signal of a key switch of the internal combustion engine and a sensor value of the pressure sensor 31, and stores values such as the detected pressure Pu in a storage element.
  • the flow path switching valve drive control unit 43, the pump drive control unit 45, and the reducing agent injection valve drive control unit 47 are respectively driven according to commands from a recovery control instruction unit 41 and a clogging elimination control unit 49 described later.
  • a command signal is output to the circuit, the pump drive circuit, and the reducing agent injection valve drive circuit.
  • the recovery control instruction unit 41 starts recovery control of the liquid reducing agent triggered by, for example, the key switch of the internal combustion engine being turned off. Specifically, the recovery control instruction unit 41 sets the flow path switching valve 33 in an energized state so that the liquid reducing agent flows in the reverse direction, and maintains the output of the pump 23 at a predetermined output. Then, the reducing agent injection valve 25 is opened. As a result, the second supply passage 28 is in a negative pressure state, and the liquid reducing agent remaining in the second supply passage 28 and the reducing agent injection valve 25 is recovered in the storage tank 21. At this time, since the air (exhaust gas) can be introduced into the second supply passage 28 through the nozzle hole of the reducing agent injection valve 25, the liquid reducing agent can be easily recovered.
  • the reducing agent injection valve drive controller 47 fixes the energization to the flow path switching valve 33 and the output of the pump 23 to a predetermined value and then a little later, that is, in the second supply passage 28. After the pressure becomes negative, the reducing agent injection valve 25 is opened. Therefore, the liquid reducing agent does not leak into the exhaust passage 11.
  • the output of the pump 23 during the liquid reductant recovery control may be variable.
  • the collection control instruction unit 41 ends the collection control at a predetermined time.
  • the recovery control can be configured to end when the time during which the liquid reducing agent is allowed to flow in the reverse direction with the reducing agent injection valve 25 opened is continuously longer than a predetermined time.
  • the recovery control of the liquid reducing agent is terminated, the driving of the pump 23 and the energization to the flow path switching valve 33 are stopped, and the reducing agent injection is performed at a time when the inside of the second supply passage 28 returns to the atmospheric pressure. The energization to the valve 25 is stopped.
  • the clog elimination control unit 49 monitors whether or not the negative pressure in the second supply passage 28 is excessive during the liquid reducing agent recovery control, and when excessive negative pressure is generated, the reducing agent injection valve It is estimated that clogging has occurred in the 25 nozzle holes, and a control execution command for eliminating clogging is generated. Specifically, when an excessive negative pressure is generated in the second supply passage 28, the clog elimination control unit 49 stops energization to the flow path switching valve 43 and sets the direction in which the liquid reducing agent flows to the positive direction. By switching, the liquid reducing agent is refilled in the second supply passage 28, and control is performed to eliminate clogging generated in the nozzle hole due to the positive pressure generated in the second supply passage 28 at that time. It has become.
  • step S2 when ECU 40 detects the ignition switch OFF signal of the internal combustion engine in step S1 of FIG. 3, in step S2, it starts energizing the flow path switching valve 33 and switches the flow direction of the liquid reducing agent to the reverse direction. Thereafter, the reducing agent injection valve 25 is energized and opened. Since the pump 23 is in a driving state, the liquid reducing agent begins to be collected in the storage tank 21 and air (exhaust gas) is supplied to the second supply passage 28 through the nozzle hole of the reducing agent injection valve 25. Is introduced. At this time, after switching the flow path switching valve 33, it is possible to reduce the risk of the liquid reducing agent leaking into the exhaust passage 11 by delaying the opening timing of the reducing agent injection valve 25. However, it is not essential to delay the valve opening timing.
  • the ECU 40 waits until the value of the timer A reaches a predetermined threshold value T1 in step S4.
  • This threshold value T1 is set to a time during which the detected pressure Pu in the second supply passage 28 is sufficiently lowered and stabilized.
  • the ECU 40 next determines in step S5 whether the detected pressure Pu is stable, that is, whether the detected pressure Pu is largely fluctuated.
  • the specific determination method is not limited, for example, the stable state of the detected pressure Pu is determined by determining whether the amplitude of the detected pressure Pu within a predetermined period is within a predetermined range. Can do. The reason for recognizing the stable state of the detected pressure Pu is to enable accurate determination of clogging of the reducing agent injection valve 25.
  • step S5 the ECU 40 waits until the detected pressure Pu becomes stable.
  • the ECU 40 proceeds to step S6, and determines whether or not the detected pressure Pu exceeds the lower limit threshold Pu1.
  • This lower limit threshold Pu1 is set as the minimum value (negative value) when the liquid reducing agent is sucked back by the pump 23 in a state where the reducing agent injection valve 25 is not clogged.
  • a value that can be determined that the reducing agent injection valve 25 is not clogged is obtained in advance and set as the lower limit threshold Pu.
  • step S6 When the detected pressure Pu is equal to or lower than the lower limit threshold Pu1 in step S6 (No determination), it is estimated that an excessive negative pressure is generated in the second supply passage 28 and the reducing agent injection valve 25 is clogged. Since it can do, ECU40 progresses to step S9 and performs clogging elimination control.
  • FIG. 4 shows a flowchart of clogging elimination control of the reducing agent recovery control method according to this embodiment.
  • the ECU 40 stops energization of the reducing agent injection valve 25 and the flow path switching valve 33, closes the reducing agent injection valve 25, and sets the direction in which the liquid reducing agent flows to the positive direction. Switch.
  • the liquid reducing agent is refilled in the second supply passage 28, and the pressure in the second supply passage 28 starts to increase.
  • the reducing agent injection valve 25 is closed, and the liquid reducing agent is not injected into the exhaust passage 11.
  • step S12 the ECU 40 stands by until the detected pressure Pu exceeds a preset threshold value Pu2.
  • the threshold value Pu2 is set to a positive value that allows the reducing agent crystallized in the nozzle hole portion to be removed by the pressure when the reducing agent injection valve 25 is opened under the pressure.
  • the ECU 40 proceeds to step S13 and opens the reducing agent injection valve 25. Thereby, the reducing agent crystallized at the nozzle hole portion of the reducing agent injection valve 25 is blown away so that the injection of the liquid reducing agent does not occur, and the clogging is removed.
  • step S14 the ECU 40 resumes energization to the flow path switching valve 33 so that the liquid reducing agent flows in the reverse direction, and ends the clogging elimination control.
  • the timing for resuming energization of the flow path switching valve 33 is set to, for example, a short time of about 0.5 to 1.5 seconds from the opening of the reducing agent injection valve 25. While the air (exhaust gas) in the supply passage 28 is ejected, the liquid reducing agent is prevented from being ejected. This time can be set in consideration of the time until the liquid reducing agent reaches the reducing agent injection valve 25 after the start of filling with the liquid reducing agent, such as the length and capacity of the second supply passage 28.
  • step S9 the ECU 40 resets the value of the timer A in step S10, returns to step S3, and repeats the flow after step S3.
  • the detected pressure Pu exceeds the lower limit threshold Pu1 in step S6 (Yes determination)
  • the reducing agent injection valve 25 is not clogged, and the liquid reducing agent is normally collected.
  • the ECU 40 proceeds to step S7 and waits until the value of the timer A reaches the threshold value T2.
  • the threshold T2 is determined by the pump 23 to collect the liquid reducing agent in consideration of the total capacity of the reducing agent supply path including the first supply passage 27, the second supply passage 28, the pump 23, the reducing agent injection valve 25, and the like. Is set as the time that can be completed.
  • step S8 the flow path switching valve 33, the reducing agent injection valve 25, and the pump 23. Turn off, end the reducing agent recovery control, and end this routine.
  • the reducing agent recovery control method according to the first embodiment of the present invention once the second supply passage 28 is in an excessively negative pressure state during the reducing agent recovery control.
  • the pressure in the supply passage 28 is increased, the clogging of the nozzle hole is eliminated by the pressure, and the recovery control is resumed.
  • the time until the liquid reducing agent is caused to flow in the reverse direction is shortened so that the liquid reducing agent is not injected.
  • the degree of negative pressure in the second supply passage 28 does not significantly increase at the end of the recovery control, and the liquid reducing agent in the storage tank 21 is sucked back to the pump 23 side after the pump 23 is stopped. Can be prevented.
  • the reducing agent injection valve 25 is once closed at the start of pressure increase in the second supply passage 28, and the inside of the second supply passage 28 becomes positive pressure. Later, the reducing agent injection valve 25 is opened for a short time to eliminate clogging of the injection hole. Therefore, it becomes easy to remove the clogging of the nozzle holes in a short time in a state where the internal pressure is surely positive, and the possibility that the liquid reducing agent is injected can be reduced.
  • the reducing agent supply device 20 and the electronic control device 40 according to the first embodiment of the present invention are configured to be able to execute the above-described reducing agent recovery control method, the second control agent at the end of the recovery control.
  • the degree of negative pressure in the supply passage 28 is not significantly increased, and the liquid reducing agent in the storage tank 21 can be prevented from being sucked back to the pump 23 after the pump 23 is stopped.
  • the reducing agent recovery control method according to the second embodiment of the present invention is different from the case of the first embodiment in the content of the clog elimination control executed by the ECU 40. Therefore, the configuration of the reducing agent supply device other than the clog elimination control executed by the ECU 40 can be the same as that of the first embodiment.
  • the content of the clog elimination control will be mainly described.
  • FIG. 5 shows a flowchart of clogging elimination control of the reducing agent recovery control method according to the present embodiment. That is, this flowchart specifically shows the contents of step S9 in the flowchart of FIG. 3 described in the first embodiment, and replaces FIG. 4 shown in the first embodiment. .
  • the ECU 40 determines in step S21 whether or not the clogging estimated to occur in the reducing agent injection valve 25 is partial clogging. That is, in step S6 in the flowchart of FIG. 3, an excessive negative pressure is generated in the second supply passage 28, and it is estimated that some clogging occurs in the reducing agent injection valve 25. Determine whether the blockage is partial or complete. Complete clogging refers to a state in which all the nozzle holes of the reducing agent injection valve 25 are closed, and partial clogging refers to a state in which some of the nozzle holes of the reducing agent injection valve 25 are blocked.
  • the threshold value Pu1 in step S6 in the flowchart of FIG. 3 can be shifted to clogging elimination control as a value (negative value) at which partial clogging can be determined, while in step S21 in FIG.
  • a threshold value Pu3 (negative value) smaller than Pu1 is compared with the detected pressure Pu to determine whether clogging is complete or partial. That is, the threshold value Pu3 here has the same meaning as the threshold value Pu1 in the first embodiment.
  • step S21 If it is determined in step S21 that the block is completely clogged (Yes determination), that is, if the detected pressure Pu ⁇ the threshold value Pu3, the process proceeds to step S22, and the reductant injection valve 25 is energized to the flow path switching valve 33. Is stopped and the direction in which the liquid reducing agent flows is switched to the positive direction, and then the timer B starts counting in step S23. As a result, the liquid reducing agent is refilled in the second supply passage 28 and the pressure in the second supply passage 28 begins to increase, but the reducing agent injection valve 25 is completely clogged and the liquid reducing agent is exhausted. It is not injected into the passage 11.
  • step S24 the ECU 40 determines whether or not the gradient of the rising speed of the detected pressure Pu has decreased.
  • the fact that the air (exhaust gas) that has been pushed into the reducing agent injection valve 25 in the second supply passage 28 is ejected and the pressure increase rate decreases is utilized. Therefore, it is intended to detect the clogging.
  • the difference between the current detected pressure Pu and the detected pressure Pu one or more previous times is continuously recorded, and it is estimated that the clogging has been eliminated when the difference becomes smaller than a predetermined value. can do.
  • the determination criterion is appropriately set to an appropriate value.
  • step S24 If it is determined in step S24 that the pressure increase gradient continues to increase without decreasing (No determination), the process proceeds to step S25, and the ECU 40 determines whether or not the value of the timer B has reached the threshold value T3.
  • This threshold value T3 is a value provided so that clogging elimination control does not take a very long time, and can be set to an appropriate value. Until the value of the timer B reaches the threshold value T3, the process returns to step S24 to monitor the pressure increase gradient. On the other hand, when the value of the timer B reaches the threshold value T3 (Yes determination), the ECU 40 resets the value of the timer B in step S26 and then resumes energization to the flow path switching valve 33 in step S27. Then, the clogging elimination control is once ended.
  • Step S24 when the pressure increase gradient decreases in Step S24 (Yes determination), it is estimated that the clogging of the reducing agent injection valve 25 has been eliminated. Therefore, after resetting the value of the timer B in Step S26, the ECU 40 In step S27, energization to the flow path switching valve 33 is resumed, and the clogging elimination control is terminated.
  • step S21 when it is determined in step S21 that the blockage is not complete (No determination), that is, when the detected pressure Pu> the threshold value Pu3, as in the case of the blockage elimination control of the first embodiment, the process waits until the detected pressure Pu exceeds the threshold value Pu2 (positive pressure) in step S29.
  • the ECU 40 opens the reducing agent injection valve 25 for a short time to remove the clogging, and then resumes energization to the flow path switching valve 33 in step S27 to clog. Terminate control.
  • the clogging elimination control is executed according to the flowchart of FIG. The clogging due to crystallization of the liquid reducing agent in the part is eliminated.
  • the reducing agent recovery control method according to the second embodiment of the present invention is similar to the reducing agent recovery control method according to the first embodiment.
  • the supply passage 28 is in an excessively negative pressure state
  • the pressure in the second supply passage 28 is once increased, and the clogging of the injection hole is eliminated by the pressure, and the recovery control is resumed.
  • the time until the liquid reducing agent is caused to flow in the reverse direction is shortened so that the liquid reducing agent is not injected. Therefore, there is no possibility that the liquid reducing agent adheres again to the nozzle hole of the reducing agent injection valve 25 and crystallizes. Accordingly, the degree of negative pressure in the second supply passage 28 does not significantly increase at the end of the recovery control, and the liquid reducing agent in the storage tank 21 is sucked back to the pump 23 side after the pump 23 is stopped. Can be prevented.
  • the reducing agent recovery control method reduces the reducing agent when it is estimated that all the injection holes of the reducing agent injection valve 25 are clogged because the detected pressure Pu is less than the threshold value Pu3.
  • the pressure increase is started while the valve opening state of the injection valve 25 is maintained. Therefore, when all the injection holes are clogged, it is not necessary to perform the opening / closing operation of the reducing agent injection valve 25, so that the control can be simplified.
  • the recovery control of the liquid reducing agent is resumed after a decrease in the pressure increase gradient appears in the second supply passage 28. Therefore, it is possible to resume the collection control after recognizing that the nozzle hole clogging has been eliminated.
  • the reducing agent supply device 20 and the electronic control device 40 according to the second embodiment of the present invention are configured to be able to execute the above-described reducing agent recovery control method, the second control agent at the end of the recovery control.
  • the degree of negative pressure in the supply passage 28 is not significantly increased, and the liquid reducing agent in the storage tank 21 can be prevented from being sucked back to the pump 23 after the pump 23 is stopped.
  • the time for resuming energization to the flow path switching valve 33 and resuming the recovery of the liquid reducing agent may be determined by monitoring the pressure after the valve opening.
  • the second embodiment it can be assumed that complete clogging has occurred and the pressure increase in the second supply passage 28 can be resumed.
  • the degree of decrease in the gradient of the pressure increase rate is considered to be smaller than in the case of complete clogging, it is necessary to reduce the reference value used for the determination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

尿素水溶液の回収制御の終了時に、還元剤噴射弁の噴孔の詰まりによって尿素水溶液がポンプ内に吸い戻されることのない還元剤回収制御方法、並びに、そのような回収制御を実行可能な還元剤供給装置及び電子制御装置を提供する。 内燃機関の停止時にポンプによって還元剤供給通路内を減圧するとともに還元剤噴射弁を開弁して液体還元剤を回収し、前記還元剤供給通路内の圧力が所定の閾値未満となったときには、前記ポンプによって前記還元剤供給通路内を昇圧するとともに、前記還元剤噴射弁の開弁状態で前記液体還元剤の噴射が生じないように前記還元剤供給通路内の圧力を利用して前記還元剤噴射弁の噴孔の詰まりを解消した後に、前記液体還元剤の回収制御を再開する。

Description

還元剤回収制御方法及び還元剤供給装置並びに電子制御装置
 本発明は、内燃機関の停止時に、内燃機関の排気通路内に液体還元剤を供給するための還元剤供給装置に残留する液体還元剤を回収するための還元剤回収制御方法、並びに、そのような制御を実行可能な還元剤供給装置及び電子制御装置に関する。
 車両等に搭載されたディーゼルエンジン等の内燃機関の排気には窒素酸化物(NOX)が含まれている。このNOXを浄化する排気浄化装置の一つとして、内燃機関の排気通路中に配置される選択還元触媒と、選択還元触媒の上流側で尿素水溶液等のアンモニア由来の液体還元剤を噴射するための還元剤供給装置とを備えた排気浄化装置が知られている。この排気浄化装置は、選択還元触媒中で、排気中のNOXと、液体還元剤から生成されるアンモニアとを効率的に還元反応させ、NOXを窒素や水等に分解するものとなっている。
 このような排気浄化装置に用いられる還元剤供給装置の一態様として、ポンプ及び還元剤噴射弁を備え、貯蔵タンク内の液体還元剤をポンプによって圧送するとともに、排気管に固定された還元剤噴射弁を介して液体還元剤を排気管内に供給する直接噴射式の還元剤供給装置がある。
 ここで、液体還元剤として尿素水溶液を使用する場合、尿素水溶液ができる限り凍結しないように、凍結温度が最も低くなる濃度の尿素水溶液が用いられる。ただし、尿素水溶液の凍結温度は低くても-11℃程度であり、冷寒地等においては還元剤供給装置による尿素水溶液の供給が停止されている期間において尿素水溶液が凍結するおそれがある。また、尿素水溶液中の水分が蒸発して濃度が上昇し、尿素水溶液の凍結温度が上昇することによって凍結しやすくなるおそれもある。
 尿素水溶液が凍結すると、次回の始動時に長時間の解凍時間が必要になったり、その体積が膨張して還元剤供給装置の構成部品が破損したりするおそれがある。そのため、内燃機関の停止時には、還元剤供給装置内に残留する尿素水溶液を貯蔵タンク内に回収する制御が行われることが一般的である。尿素水溶液の回収は、尿素水溶液を圧送するポンプを逆回転させたり、あるいは、尿素水溶液の流路の接続を切り換えたりすることで、尿素水溶液の供給通路内を減圧し、尿素水溶液を貯蔵タンク側に送ることによって行われる。(例えば、特許文献1を参照)。
特開2010-007617号公報(段落[0037]、[0047]等)
 尿素水溶液の回収制御は、還元剤噴射弁を開弁して、排気通路内の空気(排ガス)を還元剤供給装置内部に取り入れながら行われるが、この回収制御中に、還元剤噴射弁の噴孔付近に付着した尿素水溶液の水分が蒸発して結晶化し、噴孔の詰まりを生じる場合がある。噴孔の詰まりを生じると、尿素水溶液の供給通路内に過大な負圧が生じてしまい、ポンプを停止させた後、供給通路内が大気圧に復帰する際に、貯蔵タンク内の尿素水溶液がポンプ内に吸い戻されるおそれがあった。
 したがって、本発明は、尿素水溶液の回収制御の終了時に、還元剤噴射弁の噴孔の詰まりによって尿素水溶液がポンプ内に吸い戻されることのない還元剤回収制御方法、並びに、そのような回収制御を実行可能な還元剤供給装置及び電子制御装置を提供することを目的としている。
 本発明によれば、内燃機関の運転中に、貯蔵タンク内の液体還元剤をポンプによって圧送し、還元剤供給通路を介して還元剤噴射弁に供給するとともに、前記還元剤噴射弁により前記内燃機関の排気通路に前記液体還元剤を噴射した後、前記内燃機関の停止時に、残留する前記液体還元剤を前記貯蔵タンク内へ回収するための還元剤回収制御方法において、前記内燃機関の停止時に前記ポンプによって前記還元剤供給通路内を減圧するとともに前記還元剤噴射弁を開弁して前記液体還元剤を回収し、前記還元剤供給通路内の圧力が所定の閾値未満となったときには、前記ポンプによって前記還元剤供給通路内を昇圧するとともに、前記還元剤噴射弁の開弁状態で前記液体還元剤の噴射が生じないように前記還元剤供給通路内の圧力を利用して前記還元剤噴射弁の噴孔の詰まりを解消した後に、前記液体還元剤の回収制御を再開することを特徴とする還元剤回収制御方法が提供され、上述した問題を解決することができる。
 すなわち、本発明の還元剤回収制御方法は、還元剤の回収制御時に還元剤供給通路内が過大な負圧状態になると、一旦還元剤供給通路内を昇圧して、その圧力によって噴孔の詰まりを解消し、回収制御を再開することとしている。このとき、還元剤噴射弁から液体還元剤が噴射されることのないように制御されることから、還元剤噴射弁の噴孔に再び液体還元剤が付着し結晶化するおそれがない。したがって、回収制御の終了時に還元剤供給通路内の負圧度合いが著しく大きくなることがなくなり、ポンプを停止させた後において、貯蔵タンク内の液体還元剤がポンプ側に吸い戻されることを防ぐことができる。
 また、本発明の還元剤回収制御方法を実施するにあたり、前記還元剤供給通路の昇圧開始時には一旦前記還元剤噴射弁を閉弁し、前記還元剤供給通路内が正圧になった後に前記還元剤噴射弁を短時間開弁することにより、前記噴孔の詰まりを解消することが好ましい。
 このような制御を行うことにより、内部圧力が確実に正圧になった状態で短時間で噴孔の詰まりを除去しやすくなり、液体還元剤が噴射されるおそれを低減することができる。
 また、本発明の還元剤回収制御方法を実施するにあたり、前記圧力が前記所定の閾値未満となることで前記還元剤噴射弁の全ての噴孔が詰まっていると推定される場合には、前記還元剤噴射弁の開弁状態を維持したまま、前記昇圧を開始することが好ましい。
 このような制御を行うことにより、全ての噴孔が詰まっているような場合には、還元剤噴射弁の開閉動作を行わずに済むため、制御を簡素化することができる。
 また、本発明の還元剤回収制御方法を実施するにあたり、前記昇圧開始後、前記還元剤供給通路内に圧力上昇勾配の低下が現れた後に前記液体還元剤の回収制御を再開することが好ましい。
 このような制御を行うことにより、噴孔の詰まりが解消されたことを認識した上で、回収制御を再開することができる。
 また、本発明の還元剤回収制御方法を実施するにあたり、前記還元剤供給通路内が正圧になった後に前記還元剤噴射弁を開弁してから、又は、前記還元剤供給通路内の昇圧開始時から所定時間が経過しても前記圧力上昇勾配の低下が現れないときには、前記昇圧を中止し、前記回収制御を再開することが好ましい。
 このような制御を行うことにより、噴孔の詰まりの解消の兆候が見られないままで長時間昇圧が継続されることを防ぐことができる。
 また、本発明の別の態様は、液体還元剤を貯蔵する貯蔵タンクと、前記貯蔵タンク内の液体還元剤を圧送するポンプと、還元剤供給通路を介して圧送される前記液体還元剤を内燃機関の排気通路内に噴射する還元剤噴射弁と、前記ポンプ及び前記還元剤噴射弁の駆動制御を行う電子制御装置と、を備え、前記内燃機関の停止時に前記液体還元剤を前記貯蔵タンクに回収する制御を実行可能な還元剤供給装置において、前記電子制御装置は、前記内燃機関の停止時に前記ポンプによって前記還元剤供給通路内を減圧するとともに前記還元剤噴射弁を開弁して前記液体還元剤を回収し、前記還元剤供給通路内の圧力が所定の閾値未満となったときには、前記ポンプによって前記還元剤供給通路内を昇圧するとともに、前記還元剤噴射弁の開弁状態で前記液体還元剤の噴射が生じないように前記還元剤供給通路内の圧力を利用して前記還元剤噴射弁の噴孔の詰まりを解消した後に、前記液体還元剤の回収制御を再開するように構成されてなることを特徴とする還元剤供給装置である。
 すなわち、本発明の還元剤供給装置は、還元剤の回収制御時に還元剤供給通路内が過大な負圧状態になると、一旦還元剤供給通路内を昇圧して、その圧力によって噴孔の詰まりを解消し、回収制御を再開することとしている。このとき、還元剤噴射弁から液体還元剤が噴射されることのないように制御されることから、還元剤噴射弁の噴孔に再び液体還元剤が付着し結晶化するおそれがない。したがって、回収制御の終了時に還元剤供給通路内の負圧度合いが著しく大きくなることがなくなり、ポンプを停止させた後において、貯蔵タンク内の液体還元剤がポンプ側に吸い戻されることを防ぐことができる。
 また、本発明のさらに別の態様は、上述したいずれかの還元剤回収制御を実行可能に構成された電子制御装置である。
 すなわち、本発明の電子制御装置は、還元剤の回収制御時に還元剤供給通路内が過大な負圧状態になると、一旦還元剤供給通路内を昇圧して、その圧力によって噴孔の詰まりを解消し、回収制御を再開することとしている。このとき、還元剤噴射弁から液体還元剤が噴射されることのないように制御されることから、還元剤噴射弁の噴孔に再び液体還元剤が付着し結晶化するおそれがない。したがって、回収制御の終了時に還元剤供給通路内の負圧度合いが著しく大きくなることがなくなり、ポンプを停止させた後において、貯蔵タンク内の液体還元剤がポンプ側に吸い戻されることを防ぐことができる。
本発明の実施の形態に係る還元剤供給装置が備えられた排気浄化装置の一例を示す全体図である。 電子制御装置の構成例を示すブロック図である。 本発明の実施の形態に係る還元剤回収制御方法を説明するために示す図である。 本発明の第1の実施の形態に係る詰まり解消制御を説明するためのフローチャート図である。 本発明の第2の実施の形態に係る詰まり解消制御を説明するためのフローチャート図である。
 以下、適宜図面を参照して、本発明の還元剤回収制御方法、及び、還元剤回収制御装置、並びに、電子制御装置に関する実施の形態について具体的に説明する。
 なお、それぞれの図中、同じ符号を付してあるものについては、特に説明がない限り同一の部材を示しており、適宜説明が省略されている。
[第1の実施の形態]
1.排気浄化装置の全体構成
 図1は、本発明の第1の実施の形態に係る還元剤回収制御を実行可能な還元剤供給装置20が備えられた排気浄化装置10の全体構成の一例を説明するために示す図である。
 この排気浄化装置10は、排気中のNOXを浄化するための装置であり、図示しないディーゼルエンジン等の内燃機関の排気通路11に設けられている。排気浄化装置10は、排気通路11の途中に介装された還元触媒13と、還元触媒13よりも上流側の排気通路11内に液体還元剤を供給するための還元剤供給装置20とを備えている。図1中、排気通路11内に記載された矢印は排気が流れる方向を示している。
 還元触媒13は、排気中のNOXの還元を促進する機能を有する触媒であり、液体還元剤から生成される還元成分を吸着するとともに、触媒に流れ込む排気中のNOXを還元成分によって選択的に還元する触媒である。本実施の形態の還元剤供給装置20は、液体還元剤として尿素水溶液が用いられるものであり、尿素水溶液が排気通路11中で分解されることにより還元成分としてのアンモニアが生成されるようになっている。
2.還元剤供給装置
(1)基本的構成
 図1において、還元剤供給装置20は、液体還元剤が収容される貯蔵タンク21と、液体還元剤を圧送するためのポンプユニット30と、液体還元剤を排気通路11内に噴射するための還元剤噴射弁25とを備えている。ポンプユニット30は、ポンプ23及び流路切換弁33を備えている。還元剤噴射弁25、ポンプ23、及び、流路切換弁33は、電子制御装置(ECU)40によって駆動制御が行われるものとなっている。
 ポンプ23と貯蔵タンク21とは第1の供給通路27によって接続され、ポンプ23と還元剤噴射弁25とは第2の供給通路28によって接続されている。このうち、第2の供給通路28には、第2の供給通路28内の圧力、すなわち、還元剤噴射弁25に圧送される液体還元剤の圧力を検出するための圧力検出手段として、圧力センサ31が設けられている。ポンプ23と、第1の供給通路27及び第2の供給通路28とは、流路切換弁33を介して接続されている。第1の供給通路27の貯蔵タンク21側の端部は、液体還元剤の吸い上げを可能にするために、貯蔵タンク21の底面近傍に位置している。
 流路切換弁33は、ポンプ23によって圧送される液体還元剤が流れる方向を、貯蔵タンク21側から還元剤噴射弁25側に流れる方向(以下「正方向」という。)と、還元剤噴射弁25側から貯蔵タンク21側に流れる方向(以下「逆方向」という。)とに切換える機能を有している。本実施の形態にかかる還元剤供給装置20において、流路切換弁33は、非通電状態で第1の供給通路27をポンプ23の入り口側23aに連通するとともに第2の供給通路28をポンプ23の出口側23bに連通する一方、通電状態で第1の供給通路27をポンプ23の出口側23bに連通するとともに第2の供給通路28をポンプ23の入り口側23aに連通するように構成されている。
 すなわち、液体還元剤の噴射制御を行う際には、液体還元剤を還元剤噴射弁25側に供給するために、流路切換弁33への通電は行われない。このとき、液体還元剤は正方向に流れる。一方、内燃機関の停止時において、還元剤供給装置20内の液体還元剤を貯蔵タンク21に回収する場合には、流路切換弁33に対して通電される。このとき、液体還元剤は逆方向に流れる。
 なお、液体還元剤を貯蔵タンク21に回収可能とする構成は、流路切換弁33を設ける例に限られない。例えば、逆回転可能なポンプ23を用いることによって液体還元剤を回収可能に構成することもできる。
 また、第2の供給通路28の途中には、他端が貯蔵タンク21に接続されたリターン通路29が分岐して設けられている。リターン通路29の貯蔵タンク21側の端部は、液体還元剤の逆流を防ぐために、貯蔵タンク21内の気相部分に接続されている。リターン通路29が分岐する位置は、第2の供給通路28の途中ではなく、ポンプ23の出口側23bとなっていてもよい。
 なお、貯蔵タンク21にはエアブリザード等が設けられており、内部の圧力が大気圧で保たれるように構成されている。
 リターン通路29の途中には、流路面積が小さくされた絞り部37が設けられ、第2の供給通路28内の圧力を保持できるようになっている。また、絞り部37よりも貯蔵タンク21側のリターン通路29には、液体還元剤が貯蔵タンク21側から第2の供給通路28側に流れないようにするための一方向弁35が設けられている。一方向弁35は省略されていても構わない。
 なお、本実施の形態にかかる還元剤供給装置20においてはポンプユニット30内に圧力センサ31が設けられているが、第2の供給通路28内の圧力を検出できる位置であれば、どの位置に設けられていても構わない。
 ポンプ23は、ECU40による通電制御によって、所定の流量の液体還元剤を圧送する。本実施の形態において、ポンプ23は電磁式ポンプが用いられており、駆動デューティ比が大きいほどポンプ23の出力(吐出流量)が大きくなるものとなっている。本実施の形態においては、このポンプ23が、液体還元剤を貯蔵タンク21に回収するための手段としての機能も有する。
 液体還元剤の噴射制御時においては、圧力センサ31によって検出される第2の供給通路28内の圧力値(以下、この値を「検出圧力」と称する。)Puが、あらかじめ設定された所定の目標圧力Pu_tgtで維持されるように、ポンプ23の出力がフィードバック制御される。具体的に、第2の供給通路28に圧送される液体還元剤を、リターン通路29を介して貯蔵タンク21に循環させながら、ECU40は、第2の供給通路28に設けられた圧力センサ31によって検出される検出圧力Puと、あらかじめ設定された所定の目標圧力Pu_tgtとの差分ΔPuに基づいてポンプ23の出力をPID制御する。また、液体還元剤を逆方向に流して、貯蔵タンク21に回収する場合においては、基本的に出力を一定としてポンプ23の駆動制御が行われる。
 還元剤噴射弁25は、内燃機関の運転状態において、ECU40による通電制御によって開閉制御が行われ、所定量の液体還元剤を排気通路11内に噴射する。本実施の形態において、還元剤噴射弁25は、非通電状態で閉弁し、通電状態で開弁する、電磁式のオンオフ弁が用いられている。ECU40は、所定の演算式に基づいて目標噴射量Qdv_tgtを求めるとともに、第2の供給通路28内の検出圧力Puが目標圧力Pu_tgtとなっていることを前提として、あらかじめ定められた噴射サイクルごとに、目標噴射量Qdv_tgtに応じた駆動デューティ比を決定して、還元剤噴射弁25の通電制御を行う。還元剤噴射弁25の駆動デューティ比とは、一噴射サイクル中の開弁時間の割合を意味する。
 一方、還元剤噴射弁25は、内燃機関の停止時において、液体還元剤を回収する際には、還元剤噴射弁25を開弁した状態で維持される。これにより、還元剤噴射弁25の噴孔を介して空気(排ガス)が第2の供給通路28に導入され、液体還元剤が貯蔵タンク21内に回収されやすくなる。ただし、排気熱等の影響によって還元剤噴射弁25の噴孔部分で液体還元剤の水分が蒸発して液体還元剤が結晶化し、噴孔が詰まると、還元剤噴射弁25や第2の供給通路28内の液体還元剤を貯蔵タンク21内に回収することが困難となる。本実施の形態の還元剤供給装置20では、還元剤噴射弁25の噴孔の詰まりが生じた場合に、これを解消しながら液体還元剤の回収を実行するようになっている。
3.電子制御装置(ECU)
(1)電子制御装置の構成
 図2は、本実施形態のECU40のうちの液体還元剤の回収制御に関連する部分について機能的なブロックで表した構成例を示している。
 このECU40は、公知のマイクロコンピュータを中心に構成されたものであり、回収制御指示部41と、流路切換弁制御部43と、ポンプ駆動制御部45と、還元剤噴射弁駆動制御部47と、詰まり解消制御部49とにより構成されている。具体的に、これらの各部はマイクロコンピュータによるプラグラムの実行によって実現されるものとなっている。
 この他、ECU40には、RAM(Random Access Memory)及びROM(Read Only Memory)等の図示しない記憶素子やタイマカウンタ、さらにポンプ23、流路切換弁33、還元剤噴射弁25への通電を行うための駆動回路等が備えられている。また、ECU40には、内燃機関のキースイッチのオンオフ信号や圧力センサ31のセンサ値が入力され、検出圧力Pu等の値が記憶素子に記憶されるようになっている。
 流路切換弁駆動制御部43、ポンプ駆動制御部45、還元剤噴射弁駆動制御部47は、それぞれ、後述する回収制御指示部41及び詰まり解消制御部49からの指令に従って、流路切換弁駆動回路、ポンプ駆動回路、還元剤噴射弁駆動回路に対して指令信号を出力する。
 回収制御指示部41は、例えば、内燃機関のキースイッチがオフになったことをきっかけとして、液体還元剤の回収制御を開始する。具体的に、回収制御指示部41は、流路切換弁33を通電状態として、液体還元剤が逆方向に流れるようにするとともに、ポンプ23の出力を、あらかじめ定めた所定の出力で維持する。そして、還元剤噴射弁25を開弁状態にする。これにより、第2の供給通路28内は負圧状態になり、第2の供給通路28及び還元剤噴射弁25内に残留する液体還元剤が貯蔵タンク21内に回収される。このとき、還元剤噴射弁25の噴孔を介して空気(排ガス)が第2の供給通路28内に導入可能になっているために、液体還元剤の回収が容易に行われる。
 本実施の形態において、還元剤噴射弁駆動制御部47は、流路切換弁33への通電及びポンプ23の出力を所定値に固定した後、少し遅れて、つまり、第2の供給通路28内が負圧になった後に、還元剤噴射弁25を開弁状態にするようになっている。したがって、液体還元剤が排気通路11内に漏れることがない。なお、液体還元剤の回収制御時におけるポンプ23の出力は、可変となっていてもよい。
 また、本実施の形態において、回収制御指示部41は、あらかじめ定められた所定の時期に回収制御を終了する。例えば、還元剤噴射弁25が開弁された状態で液体還元剤を逆方向に流す時間が、連続して所定時間以上経過したときに、回収制御を終了するように構成することができる。液体還元剤の回収制御を終了させる際には、ポンプ23の駆動及び流路切換弁33への通電を停止して、第2の供給通路28内が大気圧に復帰する時期に、還元剤噴射弁25への通電を停止させる。
 詰まり解消制御部49は、液体還元剤の回収制御中において、第2の供給通路28内の負圧が過大になっていないかを監視し、過大な負圧が生じたときには、還元剤噴射弁25の噴孔に詰まりが生じたものと推定して、詰まりを解消する制御の実行指令を生成する。具体的には、詰まり解消制御部49は、第2の供給通路28内に過大な負圧が発生すると、流路切換弁43への通電を停止し、液体還元剤が流れる方向を正方向に切り換えることで、液体還元剤を第2の供給通路28内に再充填し、その際に第2の供給通路28内に発生する正圧によって噴孔に生じた詰まりを解消する制御を実行するようになっている。
(2)還元剤回収制御方法
 次に、ECU40によって実行される本実施の形態の還元剤回収制御方法の具体例について、図3及び図4のフローチャート図に基づいて説明する。以下のフローチャートに示される還元剤回収制御方法は、内燃機関の停止時において常時実行されるものとなっている。
 まず、ECU40は、図3のステップS1において内燃機関のイグニションスイッチのオフ信号を検知すると、ステップS2において、流路切換弁33に通電を開始し、液体還元剤の流れる方向を逆方向に切り換えた後、還元剤噴射弁25を通電状態にして開弁させる。ポンプ23は駆動状態となっているために、液体還元剤が貯蔵タンク21内に回収され始めるとともに、第2の供給通路28には還元剤噴射弁25の噴孔を介して、空気(排ガス)が導入される。このとき、流路切換弁33を切換えた後、還元剤噴射弁25の開弁時期を遅らせることにより、排気通路11内に液体還元剤が漏出するおそれを低減することができる。ただし、開弁時期を遅らせることは必須の事項ではない。
 次いで、ECU40は、ステップS3においてタイマAのカウントを開始した後、ステップS4において、タイマAの値があらかじめ定めた閾値T1に到達するまで待機する。この閾値T1は、第2の供給通路28内の検出圧力Puが十分に低下して安定する時間に設定される。ステップS4でタイマAの値が閾値T1に到達した後、今度は、ステップS5において、ECU40は検出圧力Puが安定しているか、すなわち、検出圧力Puに大きな変動が見られないかを判別する。具体的な判別方法は限定されるものではないが、例えば、所定の期間内での検出圧力Puの振幅が所定範囲内であるかを判定することで、検出圧力Puの安定状態を判別することができる。検出圧力Puの安定状態を認識するのは、還元剤噴射弁25の詰まりを精度よく判別できるようにするためである。
 ステップS5において検出圧力Puが安定するまで待機し、検出圧力Puが安定していると判定されると、ECU40は、ステップS6に進み、検出圧力Puが下限閾値Pu1を超えているか否かを判別する。この下限閾値Pu1は、還元剤噴射弁25の詰まりが生じていない状態でポンプ23によって液体還元剤を吸い戻した場合の最小の値(負の値)として設定される。換言すれば、検出圧力Puが下限閾値Pu1を超えている場合には還元剤噴射弁25の詰まりが生じていない、と判別できるような値をあらかじめ求めて、下限閾値Puとして設定される。
 ステップS6において検出圧力Puが下限閾値Pu1以下の場合(No判定)には、第2の供給通路28内に過大な負圧が生じており、還元剤噴射弁25に詰まりが生じていると推定できることから、ECU40は、ステップS9に進み、詰まり解消制御を実行する。
 図4は、本実施の形態にかかる還元剤回収制御方法の詰まり解消制御のフローチャートを示している。
 この例では、ECU40は、ステップS11において、還元剤噴射弁25及び流路切換弁33への通電を停止して、還元剤噴射弁25を閉弁するとともに液体還元剤が流れる方向を正方向に切り換える。これにより、液体還元剤が第2の供給通路28内に再充填され、第2の供給通路28内が昇圧し始める。ただし、還元剤噴射弁25は閉じられており、液体還元剤が排気通路11内に噴射されることはない。
 次いで、ECU40は、ステップS12において、検出圧力Puがあらかじめ設定された閾値Pu2を超えるまで待機する。閾値Pu2は、その圧力下で還元剤噴射弁25を開弁したときに、噴孔部分で結晶化している還元剤をその圧力によって除去することができる正の値に設定される。検出圧力Puが閾値Pu2を超えた場合には、ECU40はステップS13に進み、還元剤噴射弁25を開弁させる。これにより、液体還元剤の噴射が生じないように還元剤噴射弁25の噴孔部分で結晶化した還元剤が吹き飛ばされ、詰まりが除去される。
 その後、ECU40は、ステップS14において、流路切換弁33への通電を再開し、液体還元剤が逆方向に流れるようにして、詰まり解消制御を終了する。このとき、流路切換弁33への通電を再開する時期は、例えば、還元剤噴射弁25の開弁から0.5~1.5秒程度の短時間に設定され、開弁中において第2の供給通路28内の空気(排ガス)が噴き出す一方、液体還元剤が噴射されないようにされる。この時間は、第2の供給通路28の長さや容量等、液体還元剤の充填開始後、還元剤噴射弁25に液体還元剤が到達するまでの時間を考慮して設定することができる。
 図3に戻り、ステップS9の詰まり解消制御が終了した後、ECU40は、ステップS10でタイマAの値をリセットし、ステップS3に戻って、ステップS3以下のフローを繰り返し行う。そして、ステップS6において検出圧力Puが下限閾値Pu1を超えている場合(Yes判定)には、還元剤噴射弁25の詰まりが発生しておらず、液体還元剤の回収が正常に行われている状態と推定され、ECU40はステップS7に進み、タイマAの値が閾値T2に到達するまで待機する。この閾値T2は、第1の供給通路27、第2の供給通路28、ポンプ23、還元剤噴射弁25等からなる還元剤供給経路の全容量を考慮して、ポンプ23によって液体還元剤の回収を完了できる時間として設定される。
 そして、タイマAの値が閾値T2に到達した場合には、液体還元剤の回収が完了したとして、ステップS8に進み、流路切換弁33、還元剤噴射弁25、及びポンプ23への通電をオフにして、還元剤回収制御を終了し、本ルーチンを終了する。
5.効果
 以上説明したように、本発明の第1の実施の形態にかかる還元剤回収制御方法は、還元剤の回収制御時に第2の供給通路28内が過大な負圧状態になると、一旦第2の供給通路28内を昇圧して、その圧力によって噴孔の詰まりを解消し、回収制御を再開することとしている。このとき、還元剤噴射弁25が開弁された後、液体還元剤が逆方向に流されるまでの時間を短くして、液体還元剤が噴射されることのないように制御されることから、還元剤噴射弁25の噴孔に再び液体還元剤が付着し結晶化するおそれがない。したがって、回収制御の終了時に第2の供給通路28内の負圧度合いが著しく大きくなることがなくなり、ポンプ23を停止させた後において、貯蔵タンク21内の液体還元剤がポンプ23側に吸い戻されることを防ぐことができる。
 また、本実施の形態にかかる還元剤回収制御方法は、第2の供給通路28の昇圧開始時には一旦前記還元剤噴射弁25を閉弁し、第2の供給通路28内が正圧になった後に還元剤噴射弁25を短時間開弁することにより、噴孔の詰まりを解消することとしている。したがって、内部圧力が確実に正圧になった状態で短時間で噴孔の詰まりを除去しやすくなり、液体還元剤が噴射されるおそれを低減することができる。
 また、本発明の第1の実施の形態にかかる還元剤供給装置20及び電子制御装置40は、上述した還元剤回収制御方法を実行可能に構成されているため、回収制御の終了時に第2の供給通路28内の負圧度合いが著しく大きくなることがなくなり、ポンプ23を停止させた後において、貯蔵タンク21内の液体還元剤がポンプ23側に吸い戻されることを防ぐことができる。
[第2の実施の形態]
 本発明の第2の実施の形態にかかる還元剤回収制御方法は、ECU40によって実行される詰まり解消制御の内容が第1の実施の形態の場合と異なっている。したがって、ECU40によって実行される詰まり解消制御以外の還元剤供給装置の構成は、第1の実施の形態の場合と同様とすることができる。以下、詰まり解消制御の内容を中心に説明する。
 図5は、本実施の形態にかかる還元剤回収制御方法の詰まり解消制御のフローチャートを示している。すなわち、このフローチャートは、第1の実施の形態において説明した図3のフローチャートにおけるステップS9の内容を具体的に示すものであって、第1の実施の形態において示した図4に置き換わるものである。
 この例では、ECU40は、ステップS21において、還元剤噴射弁25に発生していると推定される詰まりが、部分詰まりであるか否かを判別する。すなわち、図3のフローチャートにおけるステップS6において、第2の供給通路28内に過大負圧が生じており、還元剤噴射弁25に何らかの詰まりが生じていると推定される状況で、その詰まりが、部分詰まりか完全詰まりかを判別する。完全詰まりとは、還元剤噴射弁25の全ての噴孔が閉塞された状態を指し、部分詰まりとは、還元剤噴射弁25の一部の噴孔が閉塞された状態を指す。
 具体的には、図3のフローチャートにおけるステップS6の閾値Pu1を、少なくとも部分詰まりを判別可能な値(負の値)として詰まり解消制御に移行可能とする一方、図5のステップS21では、その閾値Pu1よりも小さい閾値Pu3(負の値)と検出圧力Puとの比較をして、完全詰まりか部分詰まりかの切り分けを行う。つまり、ここでの閾値Pu3が、第1の実施の形態における閾値Pu1と同等の意味を持つことになる。
 ステップS21において完全詰まりであると判定された場合(Yes判定)、すなわち、検出圧力Pu≦閾値Pu3の場合には、ステップS22に進み、還元剤噴射弁25に通電したまま流路切換弁33への通電を停止して、液体還元剤が流れる方向を正方向に切り換えた後、ステップS23においてタイマBのカウントを開始する。これにより、液体還元剤が第2の供給通路28内に再充填され、第2の供給通路28内が昇圧し始めるが、還元剤噴射弁25は完全詰まりの状態であり、液体還元剤が排気通路11内に噴射されることはない。
 次いで、ECU40は、ステップS24において、検出圧力Puの上昇速度の勾配が低下したか否かを判別する。完全に詰まっていた噴孔の詰まりが解消されるときには第2の供給通路28内で還元剤噴射弁25側に押し込められていた空気(排ガス)が噴き出して圧力上昇速度が低下することを利用して、詰まりの解消を検知しようとするものである。具体的には、現在の検出圧力Puと一回又は複数回前の検出圧力Puとの差分を継続的に記録しておき、その差分が所定以上小さくなったときに、詰まりが解消されたと推定することができる。判定の基準は、適切な値に適宜設定される。
 ステップS24で圧力上昇勾配が低下しないで上昇し続けている場合(No判定)には、ステップS25に進み、ECU40は、タイマBの値が閾値T3に到達しているか否かを判別する。この閾値T3は、詰まり解消制御が著しく長時間にならないように設けられる値であって、適宜の値に設定することができる。タイマBの値が閾値T3に到達するまでは、ステップS24に戻って圧力上昇勾配を監視する。一方、タイマBの値が閾値T3に到達した場合(Yes判定)には、ECU40は、ステップS26でタイマBの値をリセットした後、ステップS27において流路切換弁33への通電を再開して、詰まり解消制御を一旦終了する。
 一方、ステップS24で圧力上昇勾配が低下した場合(Yes判定)には、還元剤噴射弁25の詰まりが解消されたと推定されるため、ECU40は、ステップS26でタイマBの値をリセットした後、ステップS27において流路切換弁33への通電を再開して、詰まり解消制御を終了する。
 また、上述のステップS21において完全詰まりではないと判定された場合(No判定)、すなわち、検出圧力Pu>閾値Pu3の場合には、第1の実施の形態の詰まり解消制御の場合と同様に、ステップS28で流路切換弁33及び還元剤噴射弁25への通電を停止した後、ステップS29において、検出圧力Puが閾値Pu2(正圧)を超えるまで待機する。そして、検出圧力Puが閾値Pu2を超えたときに、ECU40は還元剤噴射弁25を短時間開弁して詰まりを除去した後、ステップS27で流路切換弁33への通電を再開して詰まり解消制御を終了する。
 本実施の形態においては、液体還元剤の回収制御中に、検出圧力Puが閾値Pu1以下となるたびに、図5のフローチャートに沿って詰まり解消制御が実行され、還元剤噴射弁25の噴孔部分での液体還元剤の結晶化による詰まりが解消される。
 以上説明したように、本発明の第2の実施の形態にかかる還元剤回収制御方法は、第1の実施の形態にかかる還元剤回収制御方法と同様に、還元剤の回収制御時に第2の供給通路28内が過大な負圧状態になると、一旦第2の供給通路28内を昇圧して、その圧力によって噴孔の詰まりを解消し、回収制御を再開することとしている。このとき、還元剤噴射弁25が開弁あるいは詰まりが解消された後、液体還元剤が逆方向に流されるまでの時間を短くして、液体還元剤が噴射されることのないように制御されることから、還元剤噴射弁25の噴孔に再び液体還元剤が付着し結晶化するおそれがない。したがって、回収制御の終了時に第2の供給通路28内の負圧度合いが著しく大きくなることがなくなり、ポンプ23を停止させた後において、貯蔵タンク21内の液体還元剤がポンプ23側に吸い戻されることを防ぐことができる。
 また、本実施の形態にかかる還元剤回収制御方法は、検出圧力Puが閾値Pu3未満となることで還元剤噴射弁25の全ての噴孔が詰まっていると推定される場合には、還元剤噴射弁25の開弁状態を維持したまま、昇圧を開始することとしている。したがって、全ての噴孔が詰まっているような場合には、還元剤噴射弁25の開閉動作を行わずに済むため、制御を簡素化することができる。
 また、本実施の形態にかかる還元剤回収制御方法は、昇圧開始後、第2の供給通路28内に圧力上昇勾配の低下が現れた後に液体還元剤の回収制御を再開することとしている。したがって、噴孔の詰まりが解消されたことを認識した上で、回収制御を再開することができる。
 また、本発明の第2の実施の形態にかかる還元剤供給装置20及び電子制御装置40は、上述した還元剤回収制御方法を実行可能に構成されているため、回収制御の終了時に第2の供給通路28内の負圧度合いが著しく大きくなることがなくなり、ポンプ23を停止させた後において、貯蔵タンク21内の液体還元剤がポンプ23側に吸い戻されることを防ぐことができる。
[他の実施の形態]
 これまでに説明した第1及び第2の実施の形態は、本発明の一態様を示すものであって本発明を限定するものではなく、本発明の範囲内で任意に変更することが可能である。
 例えば、第1の実施の形態で、第2の供給通路28内の昇圧を再開した後、あるいは、第2の実施の形態で、部分詰まりが生じていると推定されて、第2の供給通路28内の昇圧を再開した後に、流路切換弁33への通電を再開して液体還元剤の回収を再開する時期を、開弁後の圧力を監視して決めるようにしてもよい。具体的には、第2の実施の形態において完全詰まりが生じていると推定されて第2の供給通路28内の昇圧を再開した場合と同様にすることができる。ただし、この場合には、完全詰まりの場合と比べて、圧力の上昇速度の勾配の低下度合いは小さいと考えられることから、判定に用いる基準値を小さくする必要がある。
 また、圧力上昇速度の勾配の変化に応じて、詰まり解消制御を終了させる場合において、第1の実施の形態では、第2の供給通路28内の昇圧を再開した後、あるいは、第2の実施の形態では、部分詰まりが生じていると推定されて、第2の供給通路28内の昇圧を再開した後、所定時間経過しても圧力上昇速度の勾配の変化が見られない場合には、一旦詰まり解消制御を中止するようにしてもよい。これにより、詰まり解消制御に要する時間が無駄に長くなることを防ぐことができる。

Claims (7)

  1.  内燃機関の運転中に、貯蔵タンク内の液体還元剤をポンプによって圧送し、還元剤供給通路を介して還元剤噴射弁に供給するとともに、前記還元剤噴射弁により前記内燃機関の排気通路に前記液体還元剤を噴射した後、前記内燃機関の停止時に、残留する前記液体還元剤を前記貯蔵タンク内へ回収するための還元剤回収制御方法において、
     前記内燃機関の停止時に前記ポンプによって前記還元剤供給通路内を減圧するとともに前記還元剤噴射弁を開弁して前記液体還元剤を回収し、
     前記還元剤供給通路内の圧力が所定の閾値未満となったときには、前記ポンプによって前記還元剤供給通路内を昇圧するとともに、前記還元剤噴射弁の開弁状態で前記液体還元剤の噴射が生じないように前記還元剤供給通路内の圧力を利用して前記還元剤噴射弁の噴孔の詰まりを解消した後に、前記液体還元剤の回収制御を再開することを特徴とする還元剤回収制御方法。
  2.  前記還元剤供給通路の昇圧開始時には一旦前記還元剤噴射弁を閉弁し、前記還元剤供給通路内が正圧になった後に前記還元剤噴射弁を短時間開弁することにより、前記噴孔の詰まりを解消することを特徴とする請求項1に記載の還元剤回収制御方法。
  3.  前記圧力が所定の閾値未満となることで前記還元剤噴射弁の全ての噴孔が詰まっていると推定される場合には、前記還元剤噴射弁の開弁状態を維持したまま、前記昇圧を開始することを特徴とする請求項1に記載の還元剤回収制御方法。
  4.  前記昇圧開始後、前記還元剤供給通路内に圧力上昇勾配の低下が現れた後に前記液体還元剤の回収制御を再開することを特徴とする請求項1~3のいずれか一項に記載の還元剤回収制御方法。
  5.  前記還元剤供給通路内が正圧になった後に前記還元剤噴射弁を開弁してから、又は、前記還元剤供給通路内の昇圧開始時から所定時間が経過しても前記圧力上昇勾配の低下が現れないときには、前記昇圧を中止し、前記回収制御を再開することを特徴とする請求項4に記載の還元剤回収制御方法。
  6.  液体還元剤を貯蔵する貯蔵タンクと、前記貯蔵タンク内の液体還元剤を圧送するポンプと、還元剤供給通路を介して圧送される前記液体還元剤を内燃機関の排気通路内に噴射する還元剤噴射弁と、前記ポンプ及び前記還元剤噴射弁の駆動制御を行う電子制御装置と、を備え、前記内燃機関の停止時に前記液体還元剤を前記貯蔵タンクに回収する制御を実行可能な還元剤供給装置において、
     前記電子制御装置は、前記内燃機関の停止時に前記ポンプによって前記還元剤供給通路内を減圧するとともに前記還元剤噴射弁を開弁して前記液体還元剤を回収し、
     前記還元剤供給通路内の圧力が所定の閾値未満となったときには、前記ポンプによって前記還元剤供給通路内を昇圧するとともに、前記還元剤噴射弁の開弁状態で前記液体還元剤の噴射が生じないように前記還元剤供給通路内の圧力を利用して前記還元剤噴射弁の噴孔の詰まりを解消した後に、前記液体還元剤の回収制御を再開するように構成されてなることを特徴とする還元剤供給装置。
  7.  請求項1~5のいずれか一項に記載の還元剤回収制御を実行可能に構成された電子制御装置。
PCT/JP2013/074633 2012-10-18 2013-09-12 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置 WO2014061377A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014541997A JPWO2014061377A1 (ja) 2012-10-18 2013-09-12 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012230676 2012-10-18
JP2012-230676 2012-10-18

Publications (1)

Publication Number Publication Date
WO2014061377A1 true WO2014061377A1 (ja) 2014-04-24

Family

ID=50487953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074633 WO2014061377A1 (ja) 2012-10-18 2013-09-12 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置

Country Status (2)

Country Link
JP (1) JPWO2014061377A1 (ja)
WO (1) WO2014061377A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095337A (ja) * 2012-11-09 2014-05-22 Bosch Corp 還元剤供給装置
WO2016092665A1 (ja) * 2014-12-11 2016-06-16 株式会社小松製作所 還元剤供給装置および還元剤供給装置の制御方法
CN106285864A (zh) * 2016-10-26 2017-01-04 天纳克(苏州)排放***有限公司 具有单向节流功能的尿素管、尿素喷射***及其控制方法
JP2017078345A (ja) * 2015-10-20 2017-04-27 ボッシュ株式会社 還元剤噴射装置の制御装置
WO2018047554A1 (ja) * 2016-09-12 2018-03-15 ボッシュ株式会社 制御装置
KR101882664B1 (ko) 2014-08-15 2018-08-24 로베르트 보쉬 게엠베하 압력 제어를 갖는 디젤 배기 유체 전달 시스템
DE102018214833A1 (de) * 2018-08-31 2020-03-05 Robert Bosch Gmbh Verfahren zum Lösen eines Klemmens eines elektromagnetisch betätigten Dosierventils
CN112943419A (zh) * 2021-03-09 2021-06-11 广西卡迪亚科技有限公司 柴油机scr尾气后处理***抗结晶控制方法
GB2590488A (en) * 2019-12-19 2021-06-30 Delphi Tech Ip Ltd Method to reduce urea crystal formation in an SCR doser

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002426A (ja) * 2006-06-26 2008-01-10 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2009264191A (ja) * 2008-04-23 2009-11-12 Samson Co Ltd 脱硝装置
JP2009268946A (ja) * 2008-04-30 2009-11-19 Shibaura Mechatronics Corp 塗布装置及び方法
JP2011117440A (ja) * 2009-10-30 2011-06-16 Bosch Corp 還元剤噴射弁の異常検出装置及び異常検出方法、並びに内燃機関の排気浄化装置
JP2012127214A (ja) * 2010-12-13 2012-07-05 Bosch Corp 還元剤供給装置及び内燃機関の排気浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002426A (ja) * 2006-06-26 2008-01-10 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2009264191A (ja) * 2008-04-23 2009-11-12 Samson Co Ltd 脱硝装置
JP2009268946A (ja) * 2008-04-30 2009-11-19 Shibaura Mechatronics Corp 塗布装置及び方法
JP2011117440A (ja) * 2009-10-30 2011-06-16 Bosch Corp 還元剤噴射弁の異常検出装置及び異常検出方法、並びに内燃機関の排気浄化装置
JP2012127214A (ja) * 2010-12-13 2012-07-05 Bosch Corp 還元剤供給装置及び内燃機関の排気浄化装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095337A (ja) * 2012-11-09 2014-05-22 Bosch Corp 還元剤供給装置
KR101882664B1 (ko) 2014-08-15 2018-08-24 로베르트 보쉬 게엠베하 압력 제어를 갖는 디젤 배기 유체 전달 시스템
WO2016092665A1 (ja) * 2014-12-11 2016-06-16 株式会社小松製作所 還元剤供給装置および還元剤供給装置の制御方法
US10309282B2 (en) 2014-12-11 2019-06-04 Komatsu Ltd. Reducing agent supply device and method for controlling reducing agent supply device
JP2017078345A (ja) * 2015-10-20 2017-04-27 ボッシュ株式会社 還元剤噴射装置の制御装置
WO2018047554A1 (ja) * 2016-09-12 2018-03-15 ボッシュ株式会社 制御装置
CN106285864A (zh) * 2016-10-26 2017-01-04 天纳克(苏州)排放***有限公司 具有单向节流功能的尿素管、尿素喷射***及其控制方法
DE102018214833A1 (de) * 2018-08-31 2020-03-05 Robert Bosch Gmbh Verfahren zum Lösen eines Klemmens eines elektromagnetisch betätigten Dosierventils
CN110872971A (zh) * 2018-08-31 2020-03-10 罗伯特·博世有限公司 用于松开以电磁方式来操纵的计量阀的夹紧状态的方法
GB2590488A (en) * 2019-12-19 2021-06-30 Delphi Tech Ip Ltd Method to reduce urea crystal formation in an SCR doser
CN112943419A (zh) * 2021-03-09 2021-06-11 广西卡迪亚科技有限公司 柴油机scr尾气后处理***抗结晶控制方法

Also Published As

Publication number Publication date
JPWO2014061377A1 (ja) 2016-09-05

Similar Documents

Publication Publication Date Title
WO2014061377A1 (ja) 還元剤回収制御方法及び還元剤供給装置並びに電子制御装置
JP5139765B2 (ja) 還元剤供給システムの制御装置及び制御方法
JP5547815B2 (ja) 還元剤噴射弁の異常判定装置及び還元剤供給装置
JP5475243B2 (ja) 還元剤供給装置の制御装置及び還元剤の回収方法並びに排気浄化装置
JP6024478B2 (ja) 尿素scr用尿素水配管閉塞検出装置
JP6016127B2 (ja) 内燃機関の排気浄化装置
JP6088865B2 (ja) 還元剤供給装置の制御方法
JP6663680B2 (ja) 還元剤噴射装置の制御装置
JP6017866B2 (ja) 還元剤供給装置及び液体還元剤の回収制御方法並びに排気浄化装置
US9816416B2 (en) Control apparatus and control method for reducing agent supply apparatus
JP2012127214A (ja) 還元剤供給装置及び内燃機関の排気浄化装置
JP6012086B2 (ja) 還元剤供給装置の制御方法及び還元剤供給装置
JP2012163029A (ja) 還元剤供給装置
JP2012127308A (ja) 還元剤供給装置及び内燃機関の排気浄化装置
JP6905910B2 (ja) 診断装置及び診断方法
JP2014015856A (ja) 還元剤供給装置及び液体還元剤の回収制御方法並びに排気浄化装置
WO2015001858A1 (ja) 還元剤供給装置及びその制御方法
JP6576813B2 (ja) 還元剤供給装置
JPWO2018047554A1 (ja) 制御装置
JP5914151B2 (ja) 還元剤噴射弁の異常検出装置及び還元剤供給装置
JP7108714B2 (ja) 還元剤供給装置の制御装置
JP6493953B2 (ja) 還元剤噴射装置の制御装置及び制御方法並びに還元剤噴射装置
JP2016098648A (ja) 還元剤供給装置および排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014541997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13846922

Country of ref document: EP

Kind code of ref document: A1