WO2014061156A1 - Electric motor and manufacturing method - Google Patents

Electric motor and manufacturing method Download PDF

Info

Publication number
WO2014061156A1
WO2014061156A1 PCT/JP2012/077126 JP2012077126W WO2014061156A1 WO 2014061156 A1 WO2014061156 A1 WO 2014061156A1 JP 2012077126 W JP2012077126 W JP 2012077126W WO 2014061156 A1 WO2014061156 A1 WO 2014061156A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
bearing
rotor
electric motor
bearing holding
Prior art date
Application number
PCT/JP2012/077126
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 隆
弘文 土井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201290001312.9U priority Critical patent/CN204810039U/en
Priority to JP2014541896A priority patent/JP6041889B2/en
Priority to PCT/JP2012/077126 priority patent/WO2014061156A1/en
Publication of WO2014061156A1 publication Critical patent/WO2014061156A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1732Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotary shaft at both ends of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/07Fixing them on the shaft or housing with interposition of an element
    • F16C35/077Fixing them on the shaft or housing with interposition of an element between housing and outer race ring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present invention relates to an electric motor that supports both ends of a rotating shaft with a bearing, and a method for manufacturing the same.
  • Patent Document 1 discloses an electric pump that includes a hydraulic pump and a motor (electric motor) that drives the hydraulic pump.
  • This motor is a normal permanent magnet field DC motor, and has a structure in which a rotor is surrounded by a cylindrical stator to which a permanent magnet is fixed.
  • bearings that support both rotating shafts are held by different members.
  • one bearing is held by a casing that accommodates a stator and a rotor, and the other bearing is held by a flat plate portion of a lid-like member that is assembled to the casing.
  • the bearings at both ends of the rotating shaft of the rotor are held by different members, due to variations in the dimensional accuracy of the holding portions of the respective members, between the rotor shaft and the stator shaft. Inevitably causes a coaxial shift. For this reason, it is necessary to provide an air gap between the outer peripheral surface of the rotor and the inner peripheral surface of the stator in consideration of the coaxial shift when designing the electric motor.
  • the present invention was made in order to solve the above-described problems, and is intended to obtain an electric motor capable of suppressing the coaxial shift between the rotor and the stator and improving the output performance, and a method for manufacturing the same. Objective.
  • An electric motor according to the present invention is provided integrally with a rotor fixed coaxially to a rotation shaft, a cylindrical stator surrounding the rotor on the inner diameter side, coaxially with the stator and on each end face of the stator. And a bearing holder that holds both ends of the bearing of the rotating shaft.
  • FIG. 3 is a diagram showing a configuration of a stator in the electric motor according to Embodiment 1.
  • FIG. 5 is a diagram for explaining a method for manufacturing the stator of the electric motor according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a holding structure of a bearing holding portion in the electric motor according to Embodiment 1. It is a figure explaining the flow of the magnetic flux of the structure (structure which provided the magnet in the stator) which concerns on Embodiment 1, and the conventional structure.
  • FIG. 1 is a cross-sectional view showing a configuration of an electric motor according to Embodiment 1 of the present invention, and shows a cross section along an axial direction.
  • An electric motor shown in FIG. 1 includes a stator 1, bearing holders 2 a and 2 b, a rotating shaft 3, a rotor 4 coaxially fixed to the rotating shaft 3, and bearings 5 a and 5 b fixed to each end of the rotating shaft 3. , A spring washer 6, a housing 7 for accommodating these components, and a plate 8 for covering the opening.
  • the stator 1 is a cylindrical stator that surrounds the rotor 4 on the inner diameter side, and bearing holding portions 2a and 2b are integrally provided on each end face thereof.
  • the stator 1 is configured by laminating and integrating a ring-shaped magnetic steel plate 1 a having a plurality of teeth portions 1 b formed on an inner peripheral portion.
  • a conductive coil is wound around the laminated tooth portion 1b to form a stator coil 1c.
  • the stator 1 may be configured by stacking and integrating a magnetic steel plate 1 a and a magnet (permanent magnet).
  • the rotor 4 rotates around the rotating shaft 3 by connecting the magnetic flux of the magnet and the rotating magnetic flux of the coil through the air gap with the stator 1.
  • a rotor in which a plurality of magnets are arranged in the circumferential direction to form a pole is used.
  • the rotor 4 is composed of a rotor core and a rotor coil in which a conductive wire is wound around the rotor core.
  • the bearing holding portions 2a and 2b are so-called trumpet-shaped members whose outer diameter gradually narrows from a flange portion fixed to the end face of the stator 1 to a cylindrical portion to which the bearings 5a and 5b are fitted.
  • the trumpet-shaped bearing holders 2a and 2b are formed by drawing a magnetic steel plate used for the stator 1 or cutting a general magnetic steel material, for example.
  • the bearings 5a and 5b are bearings that support the rotating shaft 3 at both ends, and are realized by, for example, bearings as shown in FIG.
  • the bearing holding portions 2a and 2b are not limited to the trumpet shape, and may have a structure that can be provided coaxially and integrally with the stator 1 to hold the bearings 5a and 5b. .
  • the spring washer 6 is disposed in a stepped portion provided on the inner surface of the housing 7 facing the bearing 5a, and pressurizes the bearing 5a in the direction of the bearing 5b. Further, the load due to the spring force of the spring washer 6 is received by the plate 8 via the bearing 5b.
  • FIG. 3 is a diagram illustrating a method for manufacturing the stator of the electric motor according to the first embodiment. As shown in FIG. 3A, centering is performed by passing a bearing holding portion 2a, a stator 1 and a bearing holding portion 2b through a cylindrical centering member 9 in this order. Note that the end face diameter of the centering member 9 is substantially equal to the inner diameter of the stator 1, for example.
  • the stator 1 may be configured by laminating and integrating magnetic steel plates 1a in a cylindrical shape.
  • a part of the laminated surface of each magnetic steel sheet 1a is dented to form the convex part 10 and the concave part 11, and the convex part 10 is overlapped and laminated on the concave part 11 and caulked.
  • the inner periphery of the concave portion 11 is the inner periphery of the concave portion 11.
  • the bearing holder 2a, the stator 1 and the bearing holder 2b that have been centered through the centering member 9 are integrally connected.
  • the flange portions of the bearing holding portions 2a and 2b and the respective end surfaces of the stator 1 are connected by caulking, for example, by forming the above-described concave portions and convex portions.
  • the thickness t2 of the magnetic steel plate forming the bearing holders 2a, 2b is at least equal to or greater than the thickness t1 of the magnetic steel plate 1a of the stator 1 (t1 ⁇ t2) in order to ensure the strength to hold the bearings 5a, 5b.
  • the laminated magnetic steel plate 1a works as a damper by using a steel plate having a certain spring constant as the magnetic steel plate 1a forming the stator 1, the amplitude of the rotating shaft 3 in a specific operating frequency band is suppressed. It can be set as a damping structure.
  • the bearing holding portions 2a and 2b into a trumpet shape formed from a plate material, the flange portion fixed to the end surface of the stator 1 functions as a damper that absorbs the amount of vibration generated in the rotating shaft 3 during operation.
  • a damping structure is provided that suppresses the shake of the rotating shaft 3 itself.
  • stator unit a unit composed of the bearing holders 2a, 2b and the stator 1 that are integrally connected
  • stator unit a unit composed of the bearing holders 2a, 2b and the stator 1 that are integrally connected
  • rotor unit a unit composed of the rotating shaft 3, the bearings 5a and 5b, and the rotor 4 fixed coaxially to the rotating shaft 3 is passed through the stator unit, and the bearing holding portion 2a, The bearings 5a and 5b of the rotating shaft 3 are both held by 2b.
  • FIG. 3 shows the case where the stator 1 is composed of laminated steel plates.
  • a structure in which the bearing holding portion 2a, the stator 1 and the bearing holding portion 2b are integrated is formed by cutting from a magnetic steel material. Also good. Further, before the stator unit is assembled to the housing 7, the rotor unit may be assembled to the stator unit.
  • FIG. 4 is a diagram illustrating a holding structure of a bearing holding portion in the electric motor according to Embodiment 1.
  • the bearing holding portion 2 a of the stator unit is fitted in a fitting recess 7 a formed in the housing 7 as indicated by reference symbol A.
  • the clearance amount between the outer periphery of the bearing holder 2a and the inner circumference of the fitting recess 7a is adjusted so that the bearing holder 2a does not swing due to the rotation of the rotary shaft 3.
  • the outer peripheral portion of the bearing holding portion abuts on the inner peripheral portion of the fitting recess, and the amount of deflection is within an allowable range.
  • the bearing holding portion 2b of the stator unit is fitted into a fitting recess 8a formed in the plate 8, as indicated by reference numeral B. Also in this configuration, the clearance amount between the outer periphery of the bearing holder 2b and the inner periphery of the fitting recess 8a is adjusted so that the bearing holder 2b does not swing due to the rotation of the rotary shaft 3.
  • the bearing holding part 2 a of the stator unit is fitted into a fitting recess 7 a formed in the housing 7, and the bearing holding part 2 b of the stator unit is placed inside the plate 8.
  • the clearance amount between the outer periphery of the bearing holding portion 2a and the inner periphery of the fitting recess 7a is adjusted so that the swing of the bearing holding portion 2a due to the rotation of the rotating shaft 3 is eliminated.
  • the clearance amount between the outer periphery of the bearing holder 2b and the inner circumference of the fitting recess 8a is adjusted so that the bearing holder 2b does not swing.
  • a bearing is a raceway ring when either an inner ring or an outer ring is fixed and an unfixed raceway is moved in a radial direction or an axial direction before being installed on a shaft or a housing (housing). Is set (hereinafter referred to as an internal gap ⁇ ).
  • This internal gap ⁇ must be set in consideration of thermal expansion or fitting of the inner ring, outer ring and ball. If the internal gap ⁇ is too small, the internal gap ⁇ decreases due to thermal expansion of the shaft, housing (housing), inner ring, outer ring, and ball. For this reason, the motor performance deteriorates due to the heat generation of the bearing and the increase in sliding resistance during actual use, and the bearing life is reduced due to abnormal heat generation.
  • the internal gap ⁇ is set to be large, the above-described problems are solved, but the amount of shake due to the inclination of the shaft becomes large, and vibration and rotational noise increase. If the operating temperature range of the bearing is large (in the automobile engine room, for example, the operating temperature range is from -40 ° C to 150 ° C), increasing the internal clearance ⁇ may cause the above-described problems. Therefore, it is preferable to set the internal gap ⁇ as small as possible.
  • the internal clearance ⁇ can be set small by preventing the bearing holding portion from being press-fitted into the fitting recess.
  • the internal clearance of this bearing is ⁇ 1
  • the inner ring side of the bearing is inserted, and the outer ring side is press-fitted (press-fitted)
  • the internal clearance of this bearing is ⁇ 2.
  • the internal clearance of the bearing is ⁇ 3
  • both the inner ring side and the outer ring side of the bearing are press-fitted (condition 4).
  • the internal clearance of this bearing is ⁇ 4.
  • the larger the internal clearance ⁇ the more the bearing can be used in an environment where the operating temperature range is large, such as in an automobile engine room.
  • the bearing holding part is not press-fitted into the fitting recess and the inner ring side and the outer ring side of the bearing (the outer peripheral side of the bearing holding part when held by the bearing holding part) are not press-fitted (condition 1).
  • the operating temperature range can be set large.
  • the internal clearance of the bearing becomes large, the above-described malfunction due to the shaft swing may occur.
  • the amount of shake can be suppressed by setting the clearance amount so that the amount of shake is in an allowable range by contacting the portion.
  • the stator 1 having a stator coil has been taken as an example.
  • a magnet permanent magnet
  • the rotor core is magnetized by the magnetic flux of the magnet. It is good also as an electric motor.
  • the magnetic flux leakage can be reduced by using the bearing holders 2a and 2b, the rotating shaft 3, the rotor 4 and the bearings 5a and 5b as magnetic bodies.
  • FIG. 5 is a diagram for explaining the flow of magnetic flux between the configuration of the electric motor according to Embodiment 1 (configuration in which a magnet is provided on the stator) and the conventional configuration.
  • the configuration shown in FIG. 5A is a conventional electric motor that does not have the bearing holding portions 2a and 2b.
  • the stator 1 is provided with a magnet 1A, and constitutes a magnetic flux circuit a that magnetizes the rotor 4 (magnetic flux amount A).
  • the magnet 1A forms a magnetic flux circuit b which does not pass through the rotor 4 and does not contribute to the magnetization of the rotor 4 due to the structure of the electric motor (magnetic flux amount B).
  • the magnet 1A does not magnetize the rotor 4 with all the magnetic flux generated by itself, but the total magnetic flux amount Z is the sum of the magnetic flux amount A of the magnetic flux circuit a and the magnetic flux amount B of the magnetic flux circuit b. Become. Such leakage magnetic flux in the magnetic flux circuit b becomes noise and affects the operation of the peripheral electronic component 12.
  • the bearing holding portions 2a and 2b, the rotating shaft 3, the rotor 4 and the bearings 5a and 5b are made of a magnetic material.
  • the magnetic flux amount A of the magnetic flux circuit a does not change, and the magnetic flux leakage circuit is reduced by the magnetic flux circuit c to become the magnetic flux circuit b1 (magnetic flux amount B1 ⁇ magnetic flux amount B). That is, the total magnetic flux amount Z of the magnetic flux circuit magnet 1A is the sum of the magnetic flux amount A of the magnetic flux circuit a, the magnetic flux amount B1 of the magnetic flux circuit b1, and the magnetic flux amount C of the magnetic flux circuit c. Therefore, it is possible to reduce the leakage magnetic flux that becomes noise of the peripheral electronic component 12.
  • the rotor 4 that is coaxially fixed to the rotating shaft 3, the cylindrical stator 1 that surrounds the rotor 4 on the inner diameter side, and the stator 1 are coaxial.
  • bearing holding portions 2a and 2b that are integrally provided on each end face of the stator 1 and hold both bearings 5a and 5b of the rotating shaft 3 are provided.
  • the coaxial displacement between the rotor 4 and the stator 1 is suppressed by the bearing holders 2a and 2b provided coaxially with the stator 1 and on each end face of the stator 1, It is possible to reduce the air gap between the rotor 4 and the stator 1. Thereby, the output performance of the electric motor according to the first embodiment can be improved.
  • the bearing holders 2a and 2b have a trumpet shape in which the outer diameter gradually narrows, and hold the bearings 5a and 5b of the rotary shaft 3 on the inner diameter side.
  • the flange portion fixed to the end face of 1 functions as a damper that absorbs the amount of vibration generated in the rotating shaft 3 during operation, and can suppress the vibration of the rotating shaft 3 itself.
  • the centering member 9 is centered by passing the one bearing holding portion 2a, the stator 1 and the other bearing holding portion 2b through the columnar centering member 9 in order.
  • the bearing holders 2a and 2b that have been centered through the centering member 9 and the stator 1 are connected together, the rotor unit is passed through the stator unit, and the shaft is rotated by the bearing holders 2a and 2b. 3 bearings 5a and 5b are both held.
  • the centering member 9 can easily center the bearing holding portions 2a, 2b and the stator 1. Thereby, it is possible to simplify the manufacture of the electric motor.
  • the stator 1 is a stator formed by laminating and integrating the magnetic steel plates 1a, and the magnetic steel plates forming the bearing holding portions 2a and 2b are the magnetic steel plates of the stator 1.
  • the thickness t2 is equal to or greater than the thickness t1 of 1a.
  • the housing 7 that accommodates the rotor 4 and the stator 1 and the plate 8 that covers the opening of the housing 7 are provided, and any one of the bearing holding portions 2a and 2b is disposed in the housing. 7 or the fitting recesses 7a and 8a formed inside the plate 8 or the bearing holding portion 2a is fitted and fixed to the fitting recess 7a formed inside the housing 7, and the bearing holding portion 2b. Is fitted and fixed in a fitting recess 8 a formed in the plate 8. With this configuration, it is possible to suppress the shake of the bearing holders 2 a and 2 b due to the rotation of the rotary shaft 3.
  • the magnet 1A is disposed on the stator 1, and the bearing holders 2a and 2b, the bearings 5a and 5b, the rotating shaft 3 and the rotor 4 are made of a magnetic material.
  • a new magnetic flux circuit can be formed via the bearing holding portions 2a and 2b with the magnetic flux of the magnet 1A, and the leakage magnetic flux that becomes noise of the peripheral electronic component 12 can be reduced.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the electric motor according to the present invention can be applied to various electric motors such as a synchronous electric motor, for example, because the coaxial displacement between the rotor and the stator is suppressed and the output performance can be improved.

Abstract

The present invention is provided with: a rotor (4) secured coaxially to a rotating shaft (3), a cylindrical stator (1) surrounding the rotor (4) on the diametric interior thereof; and a bearing holding part (2a, 2b) provided coaxially with the stator (1) and integrally on each of the end faces thereof, the bearing holding part (2a, 2b) holding a bearing (5a, 5b) of the rotation axis (3) from either side.

Description

電動機および製造方法Electric motor and manufacturing method
 この発明は、回転軸を軸受けで両持ち支持する電動機およびその製造方法に関する。 The present invention relates to an electric motor that supports both ends of a rotating shaft with a bearing, and a method for manufacturing the same.
 例えば、特許文献1には、液圧ポンプと、これを駆動するモータ(電動機)とを備えて構成された電動ポンプが開示されている。このモータは、通常の永久磁石界磁直流モータであり、永久磁石を固定した円筒状の固定子に回転子が囲繞された構造を有する。 For example, Patent Document 1 discloses an electric pump that includes a hydraulic pump and a motor (electric motor) that drives the hydraulic pump. This motor is a normal permanent magnet field DC motor, and has a structure in which a rotor is surrounded by a cylindrical stator to which a permanent magnet is fixed.
特開2000-333401号公報JP 2000-333401 A
 従来の電動機では、回転軸を両持ち支持する軸受けを互いに異なる部材で保持している。例えば、特許文献1においては、固定子および回転子を収容する筐体に一方の軸受けが保持され、もう一方の軸受けは、この筐体に組み付けられる蓋状部材の平板部に保持されている。このように、回転子の回転軸の両端の軸受けを互いに異なる部材で保持する構成では、各部材の保持部位の寸法精度のばらつきなどから、回転子の軸心と固定子の軸心との間に不可避的に同軸ずれが発生する。このため、電動機を設計する際に同軸ずれを考慮して、回転子の外周面と固定子の内周面との間にエアギャップを設ける必要がある。 In conventional electric motors, bearings that support both rotating shafts are held by different members. For example, in Patent Document 1, one bearing is held by a casing that accommodates a stator and a rotor, and the other bearing is held by a flat plate portion of a lid-like member that is assembled to the casing. In this way, in the configuration in which the bearings at both ends of the rotating shaft of the rotor are held by different members, due to variations in the dimensional accuracy of the holding portions of the respective members, between the rotor shaft and the stator shaft. Inevitably causes a coaxial shift. For this reason, it is necessary to provide an air gap between the outer peripheral surface of the rotor and the inner peripheral surface of the stator in consideration of the coaxial shift when designing the electric motor.
 回転子と固定子との間のエアギャップが大きくなると、これに伴って磁気抵抗が大きくなり、電動機の出力性能が著しく低下する。
 また、回転子と固定子との同軸ずれは、軸回転時の軸受けの径方向の負荷を増大させるため、軸受けの摺動抵抗が大きくなる。これにより、電動機自体の機械的な損失が大きくなって出力性能が低下する。この摺動抵抗の増加は、軸受けの短命化の要因にもなる。
 さらに、同軸ずれ量が増加した場合、高回転時に回転子が固定子に接触する軸触れ量が増加するため、回転軸が損傷する可能性もある。
When the air gap between the rotor and the stator is increased, the magnetic resistance is increased accordingly, and the output performance of the electric motor is remarkably deteriorated.
Further, the coaxial displacement between the rotor and the stator increases the radial load of the bearing during shaft rotation, and therefore the sliding resistance of the bearing increases. As a result, the mechanical loss of the motor itself increases and the output performance decreases. This increase in sliding resistance also causes a short life of the bearing.
Furthermore, when the amount of coaxial deviation increases, the amount of shaft contact with which the rotor contacts the stator during high rotation increases, which may damage the rotating shaft.
 従って、上記不具合を防ぎ、電動機の出力性能を向上させるためには、回転子と固定子との同軸ずれを極力少なくしてエアギャップを小さくする必要がある。
 しかしながら、従来のように回転軸の軸受けをそれぞれ別の部材で保持する構成では、互いが同軸になるように、高い寸法精度の加工が必要となる。
 例えば、軸受けとなるベアリングの一方を筐体に嵌合保持する場合、もう一方のベアリングの保持部との同軸を考慮しながら、嵌合箇所を高精度の切削加工で作成しなければならない。
Therefore, in order to prevent the above problems and improve the output performance of the electric motor, it is necessary to reduce the coaxial gap between the rotor and the stator as much as possible to reduce the air gap.
However, in the conventional configuration in which the bearings of the rotating shaft are held by different members, processing with high dimensional accuracy is required so that they are coaxial with each other.
For example, when one of the bearings serving as a bearing is fitted and held in the housing, the fitting portion must be created by high-precision cutting while considering the coaxial with the holding portion of the other bearing.
 この発明は、上記のような課題を解決するためになされたもので、回転子と固定子との同軸ずれが抑制されて、出力性能を向上させることができる電動機およびその製造方法を得ることを目的とする。 The present invention was made in order to solve the above-described problems, and is intended to obtain an electric motor capable of suppressing the coaxial shift between the rotor and the stator and improving the output performance, and a method for manufacturing the same. Objective.
 この発明に係る電動機は、回転軸に同軸に固着された回転子と、内径側に回転子を囲繞する円筒状の固定子と、固定子と同軸にかつ当該固定子の各端面に一体に設けられて、回転軸の軸受けを両持ち保持する軸受け保持部とを備える。 An electric motor according to the present invention is provided integrally with a rotor fixed coaxially to a rotation shaft, a cylindrical stator surrounding the rotor on the inner diameter side, coaxially with the stator and on each end face of the stator. And a bearing holder that holds both ends of the bearing of the rotating shaft.
 この発明によれば、回転子と固定子との同軸ずれが抑制されて、出力性能を向上させることができるという効果がある。 According to the present invention, there is an effect that the coaxial displacement between the rotor and the stator is suppressed, and the output performance can be improved.
この発明の実施の形態1に係る電動機の構成を示す断面図である。It is sectional drawing which shows the structure of the electric motor which concerns on Embodiment 1 of this invention. 実施の形態1に係る電動機における固定子の構成を示す図である。3 is a diagram showing a configuration of a stator in the electric motor according to Embodiment 1. FIG. 実施の形態1に係る電動機の固定子の製造方法を説明する図である。5 is a diagram for explaining a method for manufacturing the stator of the electric motor according to Embodiment 1. FIG. 実施の形態1に係る電動機における軸受け保持部の保持構造を示す図である。FIG. 3 is a diagram illustrating a holding structure of a bearing holding portion in the electric motor according to Embodiment 1. 実施の形態1に係る電動機の構成(固定子にマグネットを設けた構成)と従来の構成との磁束の流れを説明する図である。It is a figure explaining the flow of the magnetic flux of the structure (structure which provided the magnet in the stator) which concerns on Embodiment 1, and the conventional structure.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る電動機の構成を示す断面図であって、軸方向に沿った断面を示している。図1に示す電動機は、固定子1、軸受け保持部2a,2b、回転軸3、回転軸3に同軸に固着された回転子4、回転軸3の各端部に固着された軸受け5a,5b、バネワッシャ6、これらの構成を収容するハウジング7およびその開口部を覆うプレート8を備えて構成される。
Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
1 is a cross-sectional view showing a configuration of an electric motor according to Embodiment 1 of the present invention, and shows a cross section along an axial direction. An electric motor shown in FIG. 1 includes a stator 1, bearing holders 2 a and 2 b, a rotating shaft 3, a rotor 4 coaxially fixed to the rotating shaft 3, and bearings 5 a and 5 b fixed to each end of the rotating shaft 3. , A spring washer 6, a housing 7 for accommodating these components, and a plate 8 for covering the opening.
 固定子1は、内径側に回転子4を囲繞する円筒状の固定子であり、その各端面に軸受け保持部2a,2bが一体に設けられる。固定子1は、例えば、図2(a)に示すように、内周部に複数のティース部1bが形成されたリング状の磁性鋼板1aを積層一体化して構成される。また、積層されたティース部1bには、図2(b)に示すように、導電線が巻回されて固定子コイル1cが形成される。なお、図5で後述するように、磁性鋼板1aとマグネット(永久磁石)とを積層一体化して固定子1を構成してもよい。 The stator 1 is a cylindrical stator that surrounds the rotor 4 on the inner diameter side, and bearing holding portions 2a and 2b are integrally provided on each end face thereof. For example, as illustrated in FIG. 2A, the stator 1 is configured by laminating and integrating a ring-shaped magnetic steel plate 1 a having a plurality of teeth portions 1 b formed on an inner peripheral portion. Further, as shown in FIG. 2B, a conductive coil is wound around the laminated tooth portion 1b to form a stator coil 1c. In addition, as will be described later with reference to FIG. 5, the stator 1 may be configured by stacking and integrating a magnetic steel plate 1 a and a magnet (permanent magnet).
 回転子4は、固定子1とのエアギャップを介してマグネットの磁束とコイルの回転磁束とが連結して回転軸3周りに回転する。例えば、周方向に複数のマグネットを配置して極を形成した回転子とする。または、回転子4を、回転子鉄心と、この回転子鉄心に導電線を巻回した回転子コイルとで構成する。 The rotor 4 rotates around the rotating shaft 3 by connecting the magnetic flux of the magnet and the rotating magnetic flux of the coil through the air gap with the stator 1. For example, a rotor in which a plurality of magnets are arranged in the circumferential direction to form a pole is used. Alternatively, the rotor 4 is composed of a rotor core and a rotor coil in which a conductive wire is wound around the rotor core.
 軸受け保持部2a,2bは、固定子1の端面に固着されるフランジ部から軸受け5a,5bが嵌合される円筒部へ外径が徐々に窄まる、いわゆるラッパ形状の部材である。
 なお、ラッパ形状の軸受け保持部2a,2bは、例えば、固定子1に使用される磁性鋼板を絞り加工して作成するか、一般の磁性鋼材を切削加工して作成する。
 軸受け5a,5bは、回転軸3を両持ち支持する軸受けであって、例えば、図1に示すようにベアリングで実現される。なお、この発明において、軸受け保持部2a,2bは、ラッパ形状に限定されるものではなく、固定子1に同軸で一体に設けられて軸受け5a,5bを保持できる構造を有していればよい。
The bearing holding portions 2a and 2b are so-called trumpet-shaped members whose outer diameter gradually narrows from a flange portion fixed to the end face of the stator 1 to a cylindrical portion to which the bearings 5a and 5b are fitted.
The trumpet-shaped bearing holders 2a and 2b are formed by drawing a magnetic steel plate used for the stator 1 or cutting a general magnetic steel material, for example.
The bearings 5a and 5b are bearings that support the rotating shaft 3 at both ends, and are realized by, for example, bearings as shown in FIG. In the present invention, the bearing holding portions 2a and 2b are not limited to the trumpet shape, and may have a structure that can be provided coaxially and integrally with the stator 1 to hold the bearings 5a and 5b. .
 軸受け保持部2a,2bによる軸受け5a,5bの保持において、軸受け5aを軸受け保持部2aに圧入嵌合した場合、軸受け5bは軸受け保持部2bの円筒部に遊嵌される。反対に、軸受け5bを軸受け保持部2bに圧入嵌合した場合には、軸受け5aは、軸受け保持部2aの円筒部に遊嵌される。
 なお、軸受け保持部に軸受けが遊嵌される場合は、軸受けの外周と軸受け保持部の内周との間にダンパを設けてもよい。
In the holding of the bearings 5a and 5b by the bearing holding portions 2a and 2b, when the bearing 5a is press-fitted into the bearing holding portion 2a, the bearing 5b is loosely fitted into the cylindrical portion of the bearing holding portion 2b. On the contrary, when the bearing 5b is press-fitted into the bearing holding portion 2b, the bearing 5a is loosely fitted into the cylindrical portion of the bearing holding portion 2a.
When the bearing is loosely fitted to the bearing holding portion, a damper may be provided between the outer periphery of the bearing and the inner periphery of the bearing holding portion.
 バネワッシャ6は、ハウジング7の軸受け5aに対向する内面に設けた段差部に配設されて、軸受け5aを軸受け5bの方向に与圧する。また、バネワッシャ6のばね力による負荷は、軸受け5bを介してプレート8が受けている。 The spring washer 6 is disposed in a stepped portion provided on the inner surface of the housing 7 facing the bearing 5a, and pressurizes the bearing 5a in the direction of the bearing 5b. Further, the load due to the spring force of the spring washer 6 is received by the plate 8 via the bearing 5b.
 次に、固定子1の製造方法について説明する。
 図3は、実施の形態1に係る電動機の固定子の製造方法を説明する図である。図3(a)に示すように、円柱状の芯出し部材9に、軸受け保持部2a、固定子1、軸受け保持部2bを順に通して芯出しを行う。なお、芯出し部材9の端面径は、例えば固定子1の内径に略等しい。
Next, a method for manufacturing the stator 1 will be described.
FIG. 3 is a diagram illustrating a method for manufacturing the stator of the electric motor according to the first embodiment. As shown in FIG. 3A, centering is performed by passing a bearing holding portion 2a, a stator 1 and a bearing holding portion 2b through a cylindrical centering member 9 in this order. Note that the end face diameter of the centering member 9 is substantially equal to the inner diameter of the stator 1, for example.
 また、固定子1は、図3(b)に示すように、磁性鋼板1aを円筒状に積層一体化して構成してもよい。この場合、各磁性鋼板1aの積層面の一部をへこませて凸部10および凹部11を形成しておき、凹部11に凸部10を重ね合わせて積層してかしめ、凸部10の外周と凹部11の内周との摩擦により結束する。 Further, as shown in FIG. 3B, the stator 1 may be configured by laminating and integrating magnetic steel plates 1a in a cylindrical shape. In this case, a part of the laminated surface of each magnetic steel sheet 1a is dented to form the convex part 10 and the concave part 11, and the convex part 10 is overlapped and laminated on the concave part 11 and caulked. And the inner periphery of the concave portion 11.
 次に、芯出し部材9に通して芯出しを行った軸受け保持部2a、固定子1および軸受け保持部2bを一体に接続する。軸受け保持部2a,2bのフランジ部と固定子1の各端面とは、例えば、上述した凹部と凸部を形成してかしめにより接続する。なお、溶接または接着で接続してもよい。 Next, the bearing holder 2a, the stator 1 and the bearing holder 2b that have been centered through the centering member 9 are integrally connected. The flange portions of the bearing holding portions 2a and 2b and the respective end surfaces of the stator 1 are connected by caulking, for example, by forming the above-described concave portions and convex portions. In addition, you may connect by welding or adhesion | attachment.
 軸受け保持部2a,2bを形成する磁性鋼板の厚みt2は、軸受け5a,5bを保持する強度を確保するため、少なくとも固定子1の磁性鋼板1aの厚みt1以上とする(t1≦t2)。なお、固定子1を形成する磁性鋼板1aに一定のばね定数を有する鋼板を使用することにより、積層された磁性鋼板1aがダンパとして働くため、特定の動作周波数帯における回転軸3の振幅を抑制する減衰構造とすることができる。
 また、軸受け保持部2a,2bを板材から形成したラッパ形状とすることで、固定子1の端面に固着されるフランジ部が、動作中に回転軸3に発生する振れ量を吸収するダンパとして働き、回転軸3自体の振れを抑制する減衰構造となる。
The thickness t2 of the magnetic steel plate forming the bearing holders 2a, 2b is at least equal to or greater than the thickness t1 of the magnetic steel plate 1a of the stator 1 (t1 ≦ t2) in order to ensure the strength to hold the bearings 5a, 5b. In addition, since the laminated magnetic steel plate 1a works as a damper by using a steel plate having a certain spring constant as the magnetic steel plate 1a forming the stator 1, the amplitude of the rotating shaft 3 in a specific operating frequency band is suppressed. It can be set as a damping structure.
Further, by forming the bearing holding portions 2a and 2b into a trumpet shape formed from a plate material, the flange portion fixed to the end surface of the stator 1 functions as a damper that absorbs the amount of vibration generated in the rotating shaft 3 during operation. Thus, a damping structure is provided that suppresses the shake of the rotating shaft 3 itself.
 次いで、一体に接続された軸受け保持部2a,2bと固定子1とからなるユニット(以下、固定子ユニットと呼ぶ)を、電動機のハウジング7に組み付ける。この後、回転軸3、軸受け5a,5bおよび回転軸3に同軸に固着された回転子4からなるユニット(以下、回転子ユニットと呼ぶ)を、固定子ユニットに通して、軸受け保持部2a,2bにより回転軸3の軸受け5a,5bを両持ち保持する。 Next, a unit composed of the bearing holders 2a, 2b and the stator 1 that are integrally connected (hereinafter referred to as a stator unit) is assembled to the housing 7 of the motor. Thereafter, a unit (hereinafter referred to as a “rotor unit”) composed of the rotating shaft 3, the bearings 5a and 5b, and the rotor 4 fixed coaxially to the rotating shaft 3 is passed through the stator unit, and the bearing holding portion 2a, The bearings 5a and 5b of the rotating shaft 3 are both held by 2b.
 なお、図3では、固定子1を積層鋼板で構成する場合を示したが、軸受け保持部2a、固定子1および軸受け保持部2bを一体化した構造を、磁性鋼材から切削加工により形成してもよい。また、固定子ユニットをハウジング7に組み付ける前に、回転子ユニットを固定子ユニットに組み付けてもよい。 FIG. 3 shows the case where the stator 1 is composed of laminated steel plates. However, a structure in which the bearing holding portion 2a, the stator 1 and the bearing holding portion 2b are integrated is formed by cutting from a magnetic steel material. Also good. Further, before the stator unit is assembled to the housing 7, the rotor unit may be assembled to the stator unit.
 電動機の内部での固定子ユニットの組み付けは、回転軸3の回転による軸受け保持部の振れを抑制するため、図4のように構成することも可能である。
 図4は、実施の形態1に係る電動機における軸受け保持部の保持構造を示す図である。図4(a)では、符号Aで示すように、固定子ユニットの軸受け保持部2aを、ハウジング7内に形成した嵌合凹部7aに嵌合している。この構成において、回転軸3の回転による軸受け保持部2aの振れがなくなるように、軸受け保持部2aの外周と嵌合凹部7aの内周とのクリアランス量を調整しておく。例えば、動作中に軸受け保持部の外周部が嵌合凹部の内周部に当接して振れ量が許容範囲となるクリアランス量とする。
The assembly of the stator unit inside the electric motor can be configured as shown in FIG. 4 in order to suppress the shake of the bearing holding portion due to the rotation of the rotating shaft 3.
FIG. 4 is a diagram illustrating a holding structure of a bearing holding portion in the electric motor according to Embodiment 1. In FIG. 4A, the bearing holding portion 2 a of the stator unit is fitted in a fitting recess 7 a formed in the housing 7 as indicated by reference symbol A. In this configuration, the clearance amount between the outer periphery of the bearing holder 2a and the inner circumference of the fitting recess 7a is adjusted so that the bearing holder 2a does not swing due to the rotation of the rotary shaft 3. For example, during operation, the outer peripheral portion of the bearing holding portion abuts on the inner peripheral portion of the fitting recess, and the amount of deflection is within an allowable range.
 また、図4(b)では、符号Bで示すように、固定子ユニットの軸受け保持部2bを、プレート8内に形成した嵌合凹部8aに嵌合している。この構成においても、回転軸3の回転による軸受け保持部2bの振れがなくなるように、軸受け保持部2bの外周と嵌合凹部8aの内周とのクリアランス量を調整しておく。 In FIG. 4B, the bearing holding portion 2b of the stator unit is fitted into a fitting recess 8a formed in the plate 8, as indicated by reference numeral B. Also in this configuration, the clearance amount between the outer periphery of the bearing holder 2b and the inner periphery of the fitting recess 8a is adjusted so that the bearing holder 2b does not swing due to the rotation of the rotary shaft 3.
 さらに、図4(c)に示すように、固定子ユニットの軸受け保持部2aを、ハウジング7内に形成した嵌合凹部7aに嵌合し、固定子ユニットの軸受け保持部2bを、プレート8内に形成した嵌合凹部8aに嵌合してもよい。この構成においても、回転軸3の回転による軸受け保持部2aの振れがなくなるように、軸受け保持部2aの外周と嵌合凹部7aの内周とのクリアランス量を調整し、回転軸3の回転による軸受け保持部2bの振れがなくなるように、軸受け保持部2bの外周と嵌合凹部8aの内周とのクリアランス量を調整しておく。 Further, as shown in FIG. 4 (c), the bearing holding part 2 a of the stator unit is fitted into a fitting recess 7 a formed in the housing 7, and the bearing holding part 2 b of the stator unit is placed inside the plate 8. You may fit in the fitting recessed part 8a formed in this. Also in this configuration, the clearance amount between the outer periphery of the bearing holding portion 2a and the inner periphery of the fitting recess 7a is adjusted so that the swing of the bearing holding portion 2a due to the rotation of the rotating shaft 3 is eliminated. The clearance amount between the outer periphery of the bearing holder 2b and the inner circumference of the fitting recess 8a is adjusted so that the bearing holder 2b does not swing.
 一般的に、軸受けは、軸または筐体(ハウジング)に設置する前に、内輪または外輪のいずれかを固定し、固定されていない軌道輪を径方向又は軸方向に移動させたときの軌道輪の移動量(以下、内部隙間σと呼ぶ)が設定される。この内部隙間σは、内輪、外輪およびボールの熱膨張または嵌め合いを考慮して設定しなければならない。
 また、内部隙間σが小さ過ぎる場合には、軸、筐体(ハウジング)、内輪、外輪およびボールの熱膨張によって内部隙間σが減少する。このため、実使用時に軸受けの発熱および摺動抵抗の増加からモータ性能が悪化し、異常発熱によって軸受け寿命が低下する。
 一方、内部隙間σを大きく設定した場合は、上述した不具合は解消するが、軸の傾きによる振れ量が大きくなり、振動および回転音の増大が発生する。
 なお、軸受けの使用温度範囲が大きい場合(自動車エンジン室内では、例えば-40℃から150℃までが使用温度範囲となる)は、内部隙間σを大きくすると、上述のような不具合が発生する要因となるため、できる限り内部隙間σを小さく設定することが好ましい。
Generally, a bearing is a raceway ring when either an inner ring or an outer ring is fixed and an unfixed raceway is moved in a radial direction or an axial direction before being installed on a shaft or a housing (housing). Is set (hereinafter referred to as an internal gap σ). This internal gap σ must be set in consideration of thermal expansion or fitting of the inner ring, outer ring and ball.
If the internal gap σ is too small, the internal gap σ decreases due to thermal expansion of the shaft, housing (housing), inner ring, outer ring, and ball. For this reason, the motor performance deteriorates due to the heat generation of the bearing and the increase in sliding resistance during actual use, and the bearing life is reduced due to abnormal heat generation.
On the other hand, when the internal gap σ is set to be large, the above-described problems are solved, but the amount of shake due to the inclination of the shaft becomes large, and vibration and rotational noise increase.
If the operating temperature range of the bearing is large (in the automobile engine room, for example, the operating temperature range is from -40 ° C to 150 ° C), increasing the internal clearance σ may cause the above-described problems. Therefore, it is preferable to set the internal gap σ as small as possible.
 図4に示したように軸受け保持部を嵌合凹部に圧入嵌合しないようにすることで、内部隙間σを小さく設定することができる。
 例えば、軸受けの内輪側を挿入(圧入しない嵌合)、外輪側を挿入した場合(条件1)において、この軸受けの内部隙間をσ1とし、軸受けの内輪側を挿入、外輪側を圧入(圧入する嵌合)した場合(条件2)において、この軸受けの内部隙間をσ2とする。
 また、軸受けの内輪側を圧入し、外輪側を挿入した場合(条件3)において、この軸受けの内部隙間をσ3とし、軸受けの内輪側および外輪側の双方を圧入した場合(条件4)において、この軸受けの内部隙間をσ4とする。
 条件1~4の軸受けを使用した際の内部隙間の大小関係は、σ1>σ2=σ3>σ4となる。なお、熱膨張を考慮すると内部隙間σが大きいほど、自動車エンジン室内のように使用温度範囲が大きい環境においても軸受けを使用することができる。
As shown in FIG. 4, the internal clearance σ can be set small by preventing the bearing holding portion from being press-fitted into the fitting recess.
For example, when the inner ring side of the bearing is inserted (fitted without press-fitting) and the outer ring side is inserted (condition 1), the internal clearance of this bearing is σ1, the inner ring side of the bearing is inserted, and the outer ring side is press-fitted (press-fitted) In the case of fitting) (condition 2), the internal clearance of this bearing is σ2.
Further, when the inner ring side of the bearing is press-fitted and the outer ring side is inserted (condition 3), the internal clearance of the bearing is σ3, and both the inner ring side and the outer ring side of the bearing are press-fitted (condition 4). The internal clearance of this bearing is σ4.
The size relationship of the internal gap when using the bearings of conditions 1 to 4 is σ1> σ2 = σ3> σ4. In consideration of thermal expansion, the larger the internal clearance σ, the more the bearing can be used in an environment where the operating temperature range is large, such as in an automobile engine room.
 そこで、軸受け保持部を嵌合凹部に圧入嵌合せず、軸受けの内輪側および外輪側(軸受け保持部に保持された場合の軸受け保持部の外周側)を圧入しない使用条件(条件1)とすれば、使用温度範囲を大きく設定することが可能となる。
 なお、軸受けの内部隙間が大きくなると、上述した軸の振れによる不具合が発生する可能性があるが、図4に示したように、動作中に軸受け保持部の外周部が嵌合凹部の内周部に当接して振れ量が許容範囲となるクリアランス量とすることにより、振れ量を抑制することができる。
Therefore, it is assumed that the bearing holding part is not press-fitted into the fitting recess and the inner ring side and the outer ring side of the bearing (the outer peripheral side of the bearing holding part when held by the bearing holding part) are not press-fitted (condition 1). In this case, the operating temperature range can be set large.
In addition, if the internal clearance of the bearing becomes large, the above-described malfunction due to the shaft swing may occur. However, as shown in FIG. The amount of shake can be suppressed by setting the clearance amount so that the amount of shake is in an allowable range by contacting the portion.
 上述までの説明では、固定子コイルを有する固定子1を例に挙げたが、この発明に係る電動機は、固定子コアにマグネット(永久磁石)を設け、このマグネットの磁束で回転子コアを磁化させる電動機としてもよい。この構成において、軸受け保持部2a,2b、回転軸3、回転子4および軸受け5a,5bを磁性体とすることで、漏れ磁束を低減させることが可能である。 In the above description, the stator 1 having a stator coil has been taken as an example. However, in the electric motor according to the present invention, a magnet (permanent magnet) is provided in the stator core, and the rotor core is magnetized by the magnetic flux of the magnet. It is good also as an electric motor. In this configuration, the magnetic flux leakage can be reduced by using the bearing holders 2a and 2b, the rotating shaft 3, the rotor 4 and the bearings 5a and 5b as magnetic bodies.
 図5は、実施の形態1に係る電動機の構成(固定子にマグネットを設けた構成)と従来の構成との磁束の流れを説明する図である。図5(a)に示す構成は、軸受け保持部2a,2bを有しない従来の電動機である。固定子1は、マグネット1Aが配設されており、回転子4との間で、この回転子4を磁化させる磁束回路aを構成している(磁束量A)。
 しかしながら、図5(a)に示すように、マグネット1Aは、電動機の構造上、回転子4を経由せず、回転子4の磁化に寄与しない磁束回路bを形成する(磁束量B)。
 すなわち、マグネット1Aは、自身が発生する磁束の全てで回転子4を磁化するのではなく、その総磁束量Zは、磁束回路aの磁束量Aと磁束回路bの磁束量Bとの和となる。
 このような磁束回路bにおける漏れ磁束は、ノイズとなって周辺電子部品12の動作に影響を与える。
FIG. 5 is a diagram for explaining the flow of magnetic flux between the configuration of the electric motor according to Embodiment 1 (configuration in which a magnet is provided on the stator) and the conventional configuration. The configuration shown in FIG. 5A is a conventional electric motor that does not have the bearing holding portions 2a and 2b. The stator 1 is provided with a magnet 1A, and constitutes a magnetic flux circuit a that magnetizes the rotor 4 (magnetic flux amount A).
However, as shown in FIG. 5A, the magnet 1A forms a magnetic flux circuit b which does not pass through the rotor 4 and does not contribute to the magnetization of the rotor 4 due to the structure of the electric motor (magnetic flux amount B).
That is, the magnet 1A does not magnetize the rotor 4 with all the magnetic flux generated by itself, but the total magnetic flux amount Z is the sum of the magnetic flux amount A of the magnetic flux circuit a and the magnetic flux amount B of the magnetic flux circuit b. Become.
Such leakage magnetic flux in the magnetic flux circuit b becomes noise and affects the operation of the peripheral electronic component 12.
 そこで、固定子コアにマグネット1Aを配設した電動機において、この発明では、軸受け保持部2a,2b、回転軸3、回転子4および軸受け5a,5bを磁性体で構成する。
 これにより、図5(b)に示すように、マグネット1Aの磁束によって、マグネット1Aから、軸受け保持部2b、軸受け5b、回転軸3、回転子4、軸受け5a、軸受け保持部2bの順で、マグネット1Aに戻る磁束回路cを形成することができる(磁束量C)。
 この構成では、磁束回路aの磁束量Aは変化せず、磁束回路cによって漏れ磁束が低減して、磁束回路b1となる(磁束量B1<磁束量B)。すなわち、磁束回路マグネット1Aの総磁束量Zは、磁束回路aの磁束量Aと、磁束回路b1の磁束量B1と、磁束回路cの磁束量Cとの和となる。従って、周辺電子部品12のノイズとなる漏れ磁束を低減することができる。
Therefore, in the electric motor in which the magnet 1A is arranged on the stator core, in the present invention, the bearing holding portions 2a and 2b, the rotating shaft 3, the rotor 4 and the bearings 5a and 5b are made of a magnetic material.
Thereby, as shown in FIG.5 (b), with the magnetic flux of magnet 1A, from magnet 1A to bearing holding part 2b, bearing 5b, rotating shaft 3, rotor 4, bearing 5a, bearing holding part 2b in this order, A magnetic flux circuit c returning to the magnet 1A can be formed (magnetic flux amount C).
In this configuration, the magnetic flux amount A of the magnetic flux circuit a does not change, and the magnetic flux leakage circuit is reduced by the magnetic flux circuit c to become the magnetic flux circuit b1 (magnetic flux amount B1 <magnetic flux amount B). That is, the total magnetic flux amount Z of the magnetic flux circuit magnet 1A is the sum of the magnetic flux amount A of the magnetic flux circuit a, the magnetic flux amount B1 of the magnetic flux circuit b1, and the magnetic flux amount C of the magnetic flux circuit c. Therefore, it is possible to reduce the leakage magnetic flux that becomes noise of the peripheral electronic component 12.
 以上のように、この実施の形態1によれば、回転軸3に同軸に固着された回転子4と、内径側に回転子4を囲繞する円筒状の固定子1と、固定子1と同軸にかつ当該固定子1の各端面に一体に設けられて、回転軸3の軸受け5a,5bを両持ち保持する軸受け保持部2a,2bとを備える。このように、固定子1と同軸にかつ当該固定子1の各端面に一体に設けられた軸受け保持部2a,2bによって、回転子4と固定子1との同軸ずれが抑制されることから、回転子4と固定子1とのエアギャップを小さくすることが可能となる。これにより、この実施の形態1に係る電動機の出力性能を向上させることができる。 As described above, according to the first embodiment, the rotor 4 that is coaxially fixed to the rotating shaft 3, the cylindrical stator 1 that surrounds the rotor 4 on the inner diameter side, and the stator 1 are coaxial. In addition, bearing holding portions 2a and 2b that are integrally provided on each end face of the stator 1 and hold both bearings 5a and 5b of the rotating shaft 3 are provided. In this manner, the coaxial displacement between the rotor 4 and the stator 1 is suppressed by the bearing holders 2a and 2b provided coaxially with the stator 1 and on each end face of the stator 1, It is possible to reduce the air gap between the rotor 4 and the stator 1. Thereby, the output performance of the electric motor according to the first embodiment can be improved.
 また、この実施の形態1によれば、軸受け保持部2a,2bが、外径が徐々に窄まるラッパ形状を有し、内径側で回転軸3の軸受け5a,5bを保持するので、固定子1の端面に固着されるフランジ部が、動作中に回転軸3に発生する振れ量を吸収するダンパとして働き、回転軸3自体の振れを抑制することが可能である。 Further, according to the first embodiment, the bearing holders 2a and 2b have a trumpet shape in which the outer diameter gradually narrows, and hold the bearings 5a and 5b of the rotary shaft 3 on the inner diameter side. The flange portion fixed to the end face of 1 functions as a damper that absorbs the amount of vibration generated in the rotating shaft 3 during operation, and can suppress the vibration of the rotating shaft 3 itself.
 さらに、この実施の形態1に係る電動機の製造方法において、円柱状の芯出し部材9に、一方の軸受け保持部2a、固定子1、もう一方の軸受け保持部2bを順に通して芯出しを行い、芯出し部材9に通して芯出しを行った軸受け保持部2a,2bと固定子1とを一体に接続し、回転子ユニットを固定子ユニットに通して、軸受け保持部2a,2bにより回転軸3の軸受け5a,5bを両持ち保持する。このようにすることで、芯出し部材9によって、軸受け保持部2a,2bと固定子1の芯出しを容易に行うことができる。これにより、電動機の製造の簡易化を図ることが可能である。 Further, in the method of manufacturing the electric motor according to the first embodiment, the centering member 9 is centered by passing the one bearing holding portion 2a, the stator 1 and the other bearing holding portion 2b through the columnar centering member 9 in order. The bearing holders 2a and 2b that have been centered through the centering member 9 and the stator 1 are connected together, the rotor unit is passed through the stator unit, and the shaft is rotated by the bearing holders 2a and 2b. 3 bearings 5a and 5b are both held. By doing so, the centering member 9 can easily center the bearing holding portions 2a, 2b and the stator 1. Thereby, it is possible to simplify the manufacture of the electric motor.
 さらに、この実施の形態1によれば、固定子1が、磁性鋼板1aを積層一体化して形成した固定子であり、軸受け保持部2a,2bを形成する磁性鋼板が、固定子1の磁性鋼板1aの厚さt1以上の厚さt2を有する。このように構成することで、軸受け5a,5bを保持する強度を確保することができる。 Further, according to the first embodiment, the stator 1 is a stator formed by laminating and integrating the magnetic steel plates 1a, and the magnetic steel plates forming the bearing holding portions 2a and 2b are the magnetic steel plates of the stator 1. The thickness t2 is equal to or greater than the thickness t1 of 1a. By comprising in this way, the intensity | strength holding the bearings 5a and 5b is securable.
 さらに、この実施の形態1によれば、回転子4および固定子1を収容するハウジング7と、ハウジング7の開口を覆うプレート8とを備え、軸受け保持部2a,2bのいずれか一方を、ハウジング7またはプレート8の内部に形成した嵌合凹部7a,8aに嵌合固定する、あるいは、軸受け保持部2aを、ハウジング7の内部に形成した嵌合凹部7aに嵌合固定し、軸受け保持部2bを、プレート8の内部に形成した嵌合凹部8aに嵌合固定する。このように構成することで、回転軸3の回転による軸受け保持部2a,2bの振れを抑制することが可能である。 Further, according to the first embodiment, the housing 7 that accommodates the rotor 4 and the stator 1 and the plate 8 that covers the opening of the housing 7 are provided, and any one of the bearing holding portions 2a and 2b is disposed in the housing. 7 or the fitting recesses 7a and 8a formed inside the plate 8 or the bearing holding portion 2a is fitted and fixed to the fitting recess 7a formed inside the housing 7, and the bearing holding portion 2b. Is fitted and fixed in a fitting recess 8 a formed in the plate 8. With this configuration, it is possible to suppress the shake of the bearing holders 2 a and 2 b due to the rotation of the rotary shaft 3.
 さらに、この実施の形態1によれば、固定子1にマグネット1Aが配設されており、軸受け保持部2a,2b、軸受け5a,5b、回転軸3および回転子4を磁性体で構成することで、マグネット1Aの磁束で軸受け保持部2a,2bを介した新たな磁束回路を形成することができ、周辺電子部品12のノイズとなる漏れ磁束を低減することができる。 Furthermore, according to the first embodiment, the magnet 1A is disposed on the stator 1, and the bearing holders 2a and 2b, the bearings 5a and 5b, the rotating shaft 3 and the rotor 4 are made of a magnetic material. Thus, a new magnetic flux circuit can be formed via the bearing holding portions 2a and 2b with the magnetic flux of the magnet 1A, and the leakage magnetic flux that becomes noise of the peripheral electronic component 12 can be reduced.
 なお、本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 この発明に係る電動機は、回転子と固定子との同軸ずれが抑制されて、出力性能を向上させることができるので、例えば、同期型電動機など、様々な電動機に適用可能である。 The electric motor according to the present invention can be applied to various electric motors such as a synchronous electric motor, for example, because the coaxial displacement between the rotor and the stator is suppressed and the output performance can be improved.
 1 固定子、1a 磁性鋼板、1b ティース部、1c 固定子コイル、1A マグネット、2a,2b 軸受け保持部、3 回転軸、4 回転子、5a,5b 軸受け、6 バネワッシャ、7 ハウジング、7a,8a 嵌合凹部、8 プレート、9 芯出し部材、10 凸部、11 凹部、12 周辺電子部品。 1 Stator, 1a Magnetic steel plate, 1b Teeth part, 1c Stator coil, 1A magnet, 2a, 2b Bearing holding part, 3 Rotating shaft, 4 Rotor, 5a, 5b bearing, 6 Spring washer, 7 Housing, 7a, 8a Joint concave part, 8 plates, 9 centering member, 10 convex parts, 11 concave parts, 12 peripheral electronic parts.

Claims (6)

  1.  回転軸に同軸に固着された回転子と、
     内径側に前記回転子を囲繞する円筒状の固定子と、
     前記固定子と同軸にかつ当該固定子の各端面に一体に設けられて、前記回転軸の軸受けを両持ち保持する軸受け保持部とを備える電動機。
    A rotor fixed coaxially to the rotation axis;
    A cylindrical stator surrounding the rotor on the inner diameter side;
    An electric motor provided with a bearing holding portion that is provided coaxially with the stator and integrally on each end face of the stator and holds both ends of the bearing of the rotating shaft.
  2.  前記軸受け保持部は、外径が徐々に窄まるラッパ形状を有し、内径側で前記回転軸の軸受けを保持することを特徴とする請求項1記載の電動機。 The electric motor according to claim 1, wherein the bearing holding portion has a trumpet shape in which an outer diameter gradually narrows, and holds the bearing of the rotating shaft on an inner diameter side.
  3.  前記回転子および前記固定子を収容するハウジングと、
     前記ハウジングの開口を覆うプレートとを備え、
     前記軸受け保持部のいずれか一方を、前記ハウジングまたは前記プレートの内部に形成した嵌合凹部に嵌合固定する、あるいは、前記軸受け保持部の一方を、前記ハウジングの内部に形成した嵌合凹部に嵌合固定し、前記軸受け保持部のもう一方を、前記プレートの内部に形成した嵌合凹部に嵌合固定することを特徴とする請求項1記載の電動機。
    A housing for housing the rotor and the stator;
    A plate covering the opening of the housing,
    Either one of the bearing holding portions is fitted and fixed in a fitting recess formed in the housing or the plate, or one of the bearing holding portions is fitted in a fitting recess formed in the housing. The electric motor according to claim 1, wherein the electric motor is fitted and fixed, and the other of the bearing holding portions is fitted and fixed in a fitting concave portion formed in the plate.
  4.  前記固定子は、磁性鋼板を積層一体化して形成した固定子であり、
     前記軸受け保持部を形成する磁性鋼板は、前記固定子の前記磁性鋼板の厚さ以上の厚さを有することを特徴とする請求項1記載の電動機。
    The stator is a stator formed by laminating and integrating magnetic steel plates,
    The electric motor according to claim 1, wherein the magnetic steel plate forming the bearing holding portion has a thickness equal to or greater than the thickness of the magnetic steel plate of the stator.
  5.  前記固定子は、永久磁石が配設されており、
     前記軸受け保持部、前記軸受け、前記回転軸および前記回転子は、磁性体で構成されていることを特徴とする請求項1記載の電動機。
    The stator is provided with a permanent magnet,
    The electric motor according to claim 1, wherein the bearing holding portion, the bearing, the rotating shaft, and the rotor are made of a magnetic material.
  6.  回転軸に同軸に固着された回転子と、
     内径側に前記回転子を囲繞する円筒状の固定子と、
     前記固定子と同軸にかつ当該固定子の各端面に一体に設けられて、前記回転軸の軸受けを両持ち保持する軸受け保持部とを備える電動機の製造方法において、
     円柱状の芯出し部材に、一方の前記軸受け保持部、前記固定子、もう一方の前記軸受け保持部を順に通して芯出しを行うステップと、
     前記芯出し部材に通して芯出しを行った前記軸受け保持部と前記固定子とを一体に接続するステップと、
     前記回転軸、前記軸受けおよび前記回転軸に同軸に固着された回転子からなるユニットを、一体に接続された前記軸受け保持部と前記固定子とからなるユニットに通して、前記軸受け保持部により前記回転軸の軸受けを両持ち保持するステップとを備えることを特徴とする電動機の製造方法。
    A rotor fixed coaxially to the rotation axis;
    A cylindrical stator surrounding the rotor on the inner diameter side;
    In a method of manufacturing an electric motor comprising a bearing holding portion that is coaxial with the stator and integrally provided on each end face of the stator and holds both ends of the bearing of the rotating shaft.
    A step of performing centering by sequentially passing one of the bearing holders, the stator, and the other bearing holder in a cylindrical centering member;
    A step of integrally connecting the bearing holding portion and the stator that have been centered through the centering member;
    A unit consisting of the rotating shaft, the bearing and a rotor fixed coaxially to the rotating shaft is passed through a unit consisting of the bearing holding portion and the stator connected together, and the bearing holding portion causes the And a step of holding both ends of the bearing of the rotating shaft.
PCT/JP2012/077126 2012-10-19 2012-10-19 Electric motor and manufacturing method WO2014061156A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201290001312.9U CN204810039U (en) 2012-10-19 2012-10-19 Motor
JP2014541896A JP6041889B2 (en) 2012-10-19 2012-10-19 Electric motor and manufacturing method
PCT/JP2012/077126 WO2014061156A1 (en) 2012-10-19 2012-10-19 Electric motor and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077126 WO2014061156A1 (en) 2012-10-19 2012-10-19 Electric motor and manufacturing method

Publications (1)

Publication Number Publication Date
WO2014061156A1 true WO2014061156A1 (en) 2014-04-24

Family

ID=50487744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077126 WO2014061156A1 (en) 2012-10-19 2012-10-19 Electric motor and manufacturing method

Country Status (3)

Country Link
JP (1) JP6041889B2 (en)
CN (1) CN204810039U (en)
WO (1) WO2014061156A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019052834A1 (en) * 2017-09-13 2019-03-21 Valeo Systemes D Essuyage Wiper motor and method for its assembly
JP2019047572A (en) * 2017-08-30 2019-03-22 アイシン精機株式会社 Electric motor
WO2021165026A1 (en) * 2020-02-17 2021-08-26 Scanlab Gmbh Galvanometer drive with zero-backlash mounting
EP4037167A1 (en) * 2021-02-02 2022-08-03 The Boeing Company Rotary electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659010A (en) * 2017-10-30 2018-02-02 南京磁谷科技有限公司 A kind of compressing structure of motor stator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629388U (en) * 1992-09-04 1994-04-15 東京電気株式会社 PM type stepping motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622911Y2 (en) * 1981-03-30 1987-01-23
JPH07222390A (en) * 1994-01-31 1995-08-18 Sankyo Seiki Mfg Co Ltd Disk drive
JP2001341577A (en) * 2000-05-31 2001-12-11 Mitsubishi Electric Corp Vehicular headlight system and illumination axis adjuster for vehicular headlight
JP3944825B2 (en) * 2001-11-16 2007-07-18 ミネベア株式会社 Sealed structure motor and method of using the same
JP2010181000A (en) * 2009-02-09 2010-08-19 Asmo Co Ltd Bearing, rotating shaft structure, and motor
WO2012017476A1 (en) * 2010-08-03 2012-02-09 三菱電機株式会社 Electrically-controlled actuator, and turbo wastegate actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629388U (en) * 1992-09-04 1994-04-15 東京電気株式会社 PM type stepping motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047572A (en) * 2017-08-30 2019-03-22 アイシン精機株式会社 Electric motor
WO2019052834A1 (en) * 2017-09-13 2019-03-21 Valeo Systemes D Essuyage Wiper motor and method for its assembly
JP2020533937A (en) * 2017-09-13 2020-11-19 ヴァレオ システム デシュヤージュValeo Systemes D’Essuyage Wiper motor and its assembly method
JP7258015B2 (en) 2017-09-13 2023-04-14 ヴァレオ システム デシュヤージュ Wiper motor and its assembly method
WO2021165026A1 (en) * 2020-02-17 2021-08-26 Scanlab Gmbh Galvanometer drive with zero-backlash mounting
EP4037167A1 (en) * 2021-02-02 2022-08-03 The Boeing Company Rotary electric machine

Also Published As

Publication number Publication date
JPWO2014061156A1 (en) 2016-09-05
CN204810039U (en) 2015-11-25
JP6041889B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6041889B2 (en) Electric motor and manufacturing method
JP2014138487A (en) Rotary electric machine
JP2006333614A (en) Rotating electric machine and its manufacturing method
JP2013021810A (en) Rotary electric machine
JP2014033588A (en) Resolver, motor and stator
JP2016129473A (en) motor
JP5932141B2 (en) Rotating machine rotor
JP2012228024A (en) Resolver
JP2012222969A (en) Rotor of rotary electric machine
KR20150030040A (en) Stator core and motor including stator core
JP2010172095A (en) Motor
JP6661239B2 (en) Rotor and motor
CN108370192B (en) Motor with a stator having a stator core
JP2020060221A (en) Motor built-in type flexible meshing-type gear device
JP2019027522A (en) Bearing assembly, motor, assembly method for bearing assembly
JP2013201844A (en) Rotary electric machine
JP2012231564A (en) Motor
JP2021069186A (en) Rotary electric machine
WO2021200475A1 (en) Permanent magnet motor
JP2020085177A (en) Bearing assembly, motor, and assembly method of bearing assembly
JP7359068B2 (en) Electric motor
JP2014212582A (en) Dynamo-electric machine
JP7400597B2 (en) Electric motor
WO2020110603A1 (en) Bearing assembly and motor
JP7400249B2 (en) Gas dynamic pressure bearings, motors, fan motors and series fan motors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001312.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014541896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12886604

Country of ref document: EP

Kind code of ref document: A1