JP2020060221A - Motor built-in type flexible meshing-type gear device - Google Patents

Motor built-in type flexible meshing-type gear device Download PDF

Info

Publication number
JP2020060221A
JP2020060221A JP2018190571A JP2018190571A JP2020060221A JP 2020060221 A JP2020060221 A JP 2020060221A JP 2018190571 A JP2018190571 A JP 2018190571A JP 2018190571 A JP2018190571 A JP 2018190571A JP 2020060221 A JP2020060221 A JP 2020060221A
Authority
JP
Japan
Prior art keywords
rotor
fitting portion
press
knurled
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018190571A
Other languages
Japanese (ja)
Other versions
JP7182985B2 (en
Inventor
石塚 正幸
Masayuki Ishizuka
正幸 石塚
稔也 南雲
Toshiya Nagumo
稔也 南雲
悠朗 石田
Hiroaki Ishida
悠朗 石田
媛媛 劉
Yuanyuan Liu
媛媛 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2018190571A priority Critical patent/JP7182985B2/en
Publication of JP2020060221A publication Critical patent/JP2020060221A/en
Application granted granted Critical
Publication of JP7182985B2 publication Critical patent/JP7182985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

To provide a motor built-in type flexible meshing-type gear device capable of being shortened in an axial direction.SOLUTION: A motor built-in type flexible meshing-type gear device (1) includes a flexible meshing-type gear mechanism (30), and a motor (10) built in a central part of the flexible meshing-type gear mechanism. The motor (10) includes a stator (12), and a rotor (15) surrounding the stator, the flexible meshing-type gear mechanism (30) has an exciter (31) mounted on the rotor to be rotated integrally with the rotor (15). The rotor (15) has a press-fit portion (P1) press-fitted to the exciter, and a knurl fit portion (P3) knurled and fitted to the exciter. The press-fit portion (P1) and the knurl fit portion (P3) are disposed on a position where the press-fit portion (P1) is press-fitted before the knurl fitting of the knurl fit portion (P3) when the rotor is assembled inside of the exciter from one side in an axial direction.SELECTED DRAWING: Figure 1

Description

本発明は、モータ内蔵型撓み噛合い式歯車装置に関する。   The present invention relates to a flexural meshing gear device with a built-in motor.

特許文献1には、モータ内蔵型の撓み噛合い式歯車装置が開示されている。この撓み噛合い式歯車装置は、ロータ(42)の回転運動を起振体(31)に伝達するために、起振体に径方向に貫通するセットビスを設け、セットビスでロータ(42)と起振体(31)とを係止している。   Patent Document 1 discloses a flex-meshing gear device with a built-in motor. In this flexible mesh type gear device, in order to transmit the rotational motion of the rotor (42) to the vibrating body (31), a set screw penetrating in the radial direction is provided in the vibrating body, and the rotor (42) is set by the set screw. And the vibrating body (31).

特開2017−207113号公報JP, 2017-207113, A

特許文献1の構成では、セットビスの配置スペースが必要な分、モータ内蔵型撓み噛合い式歯車装置が軸方向に長くなるという課題がある。   The configuration of Patent Document 1 has a problem in that the motor-equipped flexural mesh type gear device is lengthened in the axial direction by the amount of space required for disposing the set screw.

本発明は、軸方向の短縮化を図れるモータ内蔵型撓み噛合い式歯車装置を提供することを目的とする。   SUMMARY OF THE INVENTION It is an object of the present invention to provide a motor-contained flex-meshing gear device that can be shortened in the axial direction.

本発明は、
撓み噛合い式歯車機構と、
前記撓み噛合い式歯車機構の中心部分に組み込まれたモータと、
を備え、
前記モータは、ステータと、前記ステータを取り囲むロータとを備え、
前記撓み噛合い式歯車機構は、前記ロータと一体的に回転するように前記ロータに取り付けられた起振体を有し、
前記起振体は前記ロータを取り囲み、
前記ロータは、前記起振体に圧入された圧入部と、前記起振体にローレット嵌合されたローレット嵌合部と、を有し、前記圧入部と前記ローレット嵌合部とが、前記ロータを前記起振体の内側に軸方向の一方から組み込んだときに、前記ローレット嵌合部のローレット嵌合よりも先に前記圧入部が圧入される位置に設けられている、
モータ内蔵型撓み噛合い式歯車装置である。
The present invention
A flexible meshing gear mechanism,
A motor incorporated in the central portion of the flexible mesh type gear mechanism,
Equipped with
The motor includes a stator and a rotor surrounding the stator,
The flexible mesh type gear mechanism has a vibrating body attached to the rotor so as to rotate integrally with the rotor,
The exciter surrounds the rotor,
The rotor includes a press-fitting portion that is press-fitted into the vibrating body and a knurled fitting portion that is knurled to the vibrating body, and the press-fitting portion and the knurled fitting portion are the rotor. Is installed in the inside of the vibrating body from one side in the axial direction, the press-fitting portion is provided at a position where the press-fitting portion is press-fitted before the knurling fitting of the knurling fitting portion.
It is a flexural mesh type gear device with a built-in motor.

本発明によれば、軸方向の短縮化を図れるモータ内蔵型撓み噛合い式歯車装置を提供できる。   According to the present invention, it is possible to provide a flex-meshing gear device with a built-in motor, which can shorten the axial direction.

本発明の実施形態1に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。1 is a cross-sectional view of a built-in motor type flexural mesh type gear device according to a first embodiment of the present invention. 実施形態1のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。3A and 3B are diagrams illustrating a connecting portion between the rotor and the vibration generating body according to the first embodiment, where FIG. 7A shows a part of a cross section of the vibration generating body, and FIG. ロータと起振体との連結工程を説明する図であり、(A)〜(C)は連結工程の第1段階から第3段階を示す。It is a figure explaining the connection process of a rotor and a vibrating body, (A)-(C) shows the 1st step of the connection process to the 3rd step. 本発明の実施形態2に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。It is sectional drawing of the motor built-in type flexural mesh type gear device which concerns on Embodiment 2 of this invention. 実施形態2のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。6A and 6B are diagrams illustrating a connecting portion between a rotor and a vibrating body according to the second embodiment, where FIG. 7A shows a part of a cross section of the vibrating body, and FIG. 本発明の実施形態3に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。It is sectional drawing of the motor built-in type flexural mesh type gear device which concerns on Embodiment 3 of this invention. 実施形態3のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。It is a figure explaining the connection part of a rotor and a vibrating body of Embodiment 3, (A) shows a part of section of a vibrating body, and (B) shows a part of section of a rotor. 参考例に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。It is sectional drawing of the motor built-in type flexural mesh type gear device which concerns on a reference example. 参考例のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。It is a figure explaining the connection part of a rotor and a vibrating body of a reference example, (A) shows a part of section of a vibrating body, and (B) shows a part of section of a rotor.

以下、本発明の各実施形態について図面を参照して詳細に説明する。   Hereinafter, each embodiment of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。本明細書では、回転軸O1に沿った方向を軸方向、回転軸O1から垂直な方向を径方向、回転軸O1を中心とした回転方向を周方向と定義する。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a built-in motor type flexible mesh type gear device according to a first embodiment of the present invention. In this specification, a direction along the rotation axis O1 is defined as an axial direction, a direction perpendicular to the rotation axis O1 is defined as a radial direction, and a rotation direction around the rotation axis O1 is defined as a circumferential direction.

実施形態1のモータ内蔵型撓み噛合い式歯車装置1は、モータ10と、撓み噛合い式歯車機構30とを含む。モータ10は、ステータコイル12a及びステータコア12b有するステータ12と、マグネット15aを筒型のロータヨーク15bの内面に固定したロータ15とを有する。ロータ15は、ステータコイル12aを径方向から取り囲むように配置される。   The built-in motor type flexible meshing gear device 1 of the first embodiment includes a motor 10 and a flexible meshing gear mechanism 30. The motor 10 has a stator 12 having a stator coil 12a and a stator core 12b, and a rotor 15 having a magnet 15a fixed to the inner surface of a cylindrical rotor yoke 15b. The rotor 15 is arranged so as to surround the stator coil 12a in the radial direction.

撓み噛合い式歯車機構30は、起振体31、起振体軸受32、外歯歯車33、第1内歯歯車部材34、第2内歯歯車部材35、固定部材36、ケーシング37、軸受41、42及び主軸受44を備える。モータ10は、撓み噛合い式歯車機構30の中心部分に撓み噛合い式歯車機構30と同軸に組み込まれている。   The flexible mesh type gear mechanism 30 includes a vibrating body 31, a vibrating body bearing 32, an external gear 33, a first internal gear member 34, a second internal gear member 35, a fixing member 36, a casing 37, and a bearing 41. , 42 and a main bearing 44. The motor 10 is installed coaxially with the flexible meshing gear mechanism 30 at the center of the flexible meshing gear mechanism 30.

固定部材36は、モータ内蔵型撓み噛合い式歯車装置1の反出力側を覆うように設けられている。出力側とは減速された運動が出力される方向(図1の左方)を意味し、反出力側とは出力側の反対の方向を意味する。固定部材36は、径方向の中央において、回転軸O1に沿って突出した軸部36aを有し、軸部36aがステータ12の内方に進入してボルトによりステータ12と連結されている。   The fixing member 36 is provided so as to cover the opposite output side of the flexural meshing gear device 1 with a built-in motor. The output side means the direction in which the decelerated motion is output (left side in FIG. 1), and the counter output side means the direction opposite to the output side. The fixing member 36 has a shaft portion 36a protruding along the rotation axis O1 at the center in the radial direction, and the shaft portion 36a enters the inside of the stator 12 and is connected to the stator 12 by a bolt.

起振体31は、中空筒状であり、回転軸O1に垂直な断面の外形が、回転軸O1を中心とする楕円状の起振体本体部31Mと、同断面の外形が回転軸O1を中心とする円形の軸部31Nとを含む。楕円状は、幾何学的に厳密な楕円である必要はなく、略楕円を含む。起振体31は、モータ10のロータ15に外嵌されている。   The vibrating body 31 has a hollow cylindrical shape, and an outer shape of a cross section perpendicular to the rotation axis O1 is an elliptical vibrating body main body 31M having the rotation axis O1 as a center, and an outer shape of the same cross section forms the rotation axis O1. It includes a circular shaft portion 31N as a center. The elliptical shape does not need to be a geometrically exact ellipse and includes a substantially ellipse. The vibrating body 31 is fitted onto the rotor 15 of the motor 10.

外歯歯車33は、起振体軸受32を介して起振体本体部31Mに外嵌されている。外歯歯車33は、可撓性を有し、起振体本体部31Mの外形に沿った形状(例えば軸方向に見て略楕円形状)で、撓み変形しながら、起振体本体部31Mの周囲を相対的に回転可能に構成される。   The external gear 33 is externally fitted to the vibrator main body 31M via the vibrator bearing 32. The external gear 33 has flexibility and has a shape (for example, a substantially elliptical shape when viewed in the axial direction) along the outer shape of the vibrator main body 31M, and while flexurally deforming, It is configured to be relatively rotatable around its periphery.

第1内歯歯車部材34は、環状の形態を有し、その内周部に複数の内歯が形成されて第1内歯歯車34gが構成される。第1内歯歯車部材34は、ケーシング37及び固定部材36にボルト等により連結されている。   The first internal gear member 34 has an annular shape, and a plurality of internal teeth are formed on the inner peripheral portion thereof to form a first internal gear 34g. The first internal gear member 34 is connected to the casing 37 and the fixing member 36 by bolts or the like.

第2内歯歯車部材35は、環状の形態を有し、その内周部に複数の内歯が形成されて第2内歯歯車35gが構成される。上記の第1内歯歯車34gと第2内歯歯車35gとは、軸方向に並び、それぞれ外歯歯車33と噛み合う。   The second internal gear 35 has an annular shape, and a plurality of internal teeth are formed on the inner peripheral portion thereof to form a second internal gear 35g. The first internal gear 34g and the second internal gear 35g are aligned in the axial direction and mesh with the external gear 33, respectively.

さらに、第2内歯歯車部材35は、主軸受44の内輪として機能する内輪部35iと、相手部材と連結されるフランジ部35fとを有する。相手部材とは、減速された動力の出力先の部材である。内輪部35iは、第2内歯歯車35gの径方向の外方に位置する。フランジ部35fは第2内歯歯車35gよりも出力側に張り出して設けられている。   Further, the second internal gear member 35 has an inner ring portion 35i that functions as an inner ring of the main bearing 44, and a flange portion 35f that is connected to the mating member. The mating member is a member to which the decelerated power is output. The inner ring portion 35i is located radially outward of the second internal gear 35g. The flange portion 35f is provided so as to project to the output side with respect to the second internal gear 35g.

ケーシング37は、ボルト等により固定部材36に連結され、撓み噛合い式歯車機構30の外周部、主に、第2内歯歯車部材35の径方向外方を覆う。ケーシング37の内周部には、主軸受44の外輪として機能する外輪部37oが設けられている。図1においてケーシング37は、軸方向に2分割されているが、これらは単一の部材により一体的に構成されていてもよい。ケーシング37は、主軸受44を介して、第2内歯歯車部材35を回転自在に支持する。   The casing 37 is connected to the fixing member 36 with a bolt or the like, and covers the outer peripheral portion of the flexible meshing gear mechanism 30, mainly the radially outer side of the second internal gear member 35. An outer ring portion 37o that functions as an outer ring of the main bearing 44 is provided on the inner peripheral portion of the casing 37. In FIG. 1, the casing 37 is divided into two in the axial direction, but these may be integrally configured by a single member. The casing 37 rotatably supports the second internal gear member 35 via the main bearing 44.

軸受41は、ロータ15と固定部材36との間に配置される。軸受42は、第2内歯歯車部材35と起振体31の軸部31Nとの間に配置される。軸受41及び軸受42を介して、固定部材36及び第2内歯歯車部材35が、ロータ15及び起振体31を回転自在に支持する。   The bearing 41 is arranged between the rotor 15 and the fixed member 36. The bearing 42 is arranged between the second internal gear member 35 and the shaft portion 31N of the vibrator 31. The fixing member 36 and the second internal gear member 35 rotatably support the rotor 15 and the vibration generator 31 via the bearing 41 and the bearing 42.

<回転動作>
モータ10のステータコイル12aに電流が流されてロータ15が回転すると、起振体31が回転軸O1を中心に回転し、この運動が外歯歯車33に伝わる。このとき、外歯歯車33は、起振体本体部31Mの外周面に沿った形状に規制され、軸方向から見て、長軸部分と短軸部分とを有する楕円形状に撓んでいる。さらに、外歯歯車33は、固定された第1内歯歯車34gと噛み合っているため、外歯歯車33は起振体31と同じ回転速度で回転することはなく、外歯歯車33の内側で起振体31が相対的に回転する。そして、この相対的な回転に伴って、外歯歯車33は長軸位置と短軸位置とが周方向に移動するように撓み変形する。この変形の周期は、ロータ15の回転周期に比例する。
<Rotation motion>
When an electric current is applied to the stator coil 12a of the motor 10 and the rotor 15 rotates, the vibrating body 31 rotates about the rotation axis O1 and this movement is transmitted to the external gear 33. At this time, the external gear 33 is restricted to a shape along the outer peripheral surface of the vibrator main body 31M, and is bent in an elliptical shape having a major axis portion and a minor axis portion when viewed in the axial direction. Further, since the external gear 33 meshes with the fixed first internal gear 34g, the external gear 33 does not rotate at the same rotational speed as the vibrating body 31, and the internal gear 33 is The vibrating body 31 rotates relatively. Then, with this relative rotation, the external gear 33 is flexibly deformed so that the major axis position and the minor axis position move in the circumferential direction. The cycle of this deformation is proportional to the rotation cycle of the rotor 15.

外歯歯車33が撓み変形する際、その長軸位置が回転移動することで、外歯歯車33と第1内歯歯車34gとの噛み合う位置が回転方向に変化する。ここで、外歯歯車33の歯数が100で、第1内歯歯車34gの歯数が102だとすると、噛み合う位置が一周するごとに、外歯歯車33と第1内歯歯車34gとの噛み合う歯がずれていき、これにより外歯歯車33が回転(自転)する。上記の歯数であれば、ロータ15の回転運動は減速比100:2で減速されて外歯歯車33に伝達される。   When the external gear 33 is flexibly deformed, the position of the major axis of the external gear 33 is rotationally moved, so that the position at which the external gear 33 and the first internal gear 34g mesh with each other changes in the rotational direction. Here, assuming that the external gear 33 has 100 teeth and the first internal gear 34g has 102 teeth, the external gear 33 and the first internal gear 34g mesh with each other at every meshing position. The external gear 33 rotates (spins) as a result. With the above-mentioned number of teeth, the rotational movement of the rotor 15 is reduced at a reduction ratio of 100: 2 and transmitted to the external gear 33.

一方、起振体31の回転によって外歯歯車33と第2内歯歯車35gとの噛み合う位置も回転方向に変化する。ここで、外歯歯車33の歯数と第2内歯歯車35gの歯数とが同数であるとすると、外歯歯車33と第2内歯歯車35gとは相対的に回転せず、外歯歯車33の回転運動が減速比1:1で第2内歯歯車35gへ伝達される。これらによって、ロータ15の回転運動が、減速比100:2で減速されて、第2内歯歯車部材35のフランジ部35fから相手部材に出力される。   On the other hand, the position at which the external gear 33 and the second internal gear 35g mesh with each other also changes in the rotational direction due to the rotation of the vibrating body 31. Here, if the number of teeth of the external gear 33 and the number of teeth of the second internal gear 35g are the same, the external gear 33 and the second internal gear 35g do not rotate relative to each other, The rotational movement of the gear 33 is transmitted to the second internal gear 35g with a reduction ratio of 1: 1. As a result, the rotational movement of the rotor 15 is decelerated at a reduction ratio of 100: 2 and is output from the flange portion 35f of the second internal gear member 35 to the mating member.

<ロータと起振体との連結構造>
図2は、実施形態1のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。図3は、ロータと起振体との連結工程を説明する図であり、(A)〜(C)は連結工程の第1段階から第3段階を示す。以下では、連結工程において、ロータ15を起振体31に嵌入する側の端を「先端」、その逆の端を「後端」と呼ぶ。
<Connecting structure of rotor and vibrator>
2A and 2B are views for explaining a connecting portion between the rotor and the vibration generating body according to the first embodiment. FIG. 2A shows a part of a cross section of the vibration generating body, and FIG. 2B shows a part of a cross section of the rotor. Show. FIG. 3 is a diagram for explaining a connecting step between the rotor and the vibration generator, and (A) to (C) show first to third steps of the connecting step. In the following, in the coupling step, the end on which the rotor 15 is fitted into the vibrating body 31 is referred to as the "tip" and the opposite end is referred to as the "rear end".

図2(B)に示すように、ロータヨーク15bの外周部には、軸方向に沿って先端側から順に、圧入部P1、挿入部P2、ローレット嵌合部P3及び軸部P4を有する。圧入部P1は、圧入用に挿入部P2よりも外径が大きい。挿入部P2は、起振体31との間に間隙g1を設けるために、圧入部P1及びローレット嵌合部P3よりも外径が小さい。起振体31の対応する部位の内径が大きくされることで、挿入部P2の外径は圧入部P1と同等又は圧入部P1よりも大きくすることもできる。ローレット嵌合部P3は圧入部P1及び挿入部P2よりも外径が大きく、外周部がローレット加工されている。軸部P4は、軸受41が外嵌される部位であり、ローレット嵌合部P3よりも外径が小さい。なお、ローレット嵌合部P3とは、ローレット加工された部位の全部を指すのではなく、そのうち、起振体31に嵌合されている範囲を指す。圧入部P1についても、起振体31に圧入されている範囲を指す。   As shown in FIG. 2B, the outer peripheral portion of the rotor yoke 15b has a press-fitting portion P1, an insertion portion P2, a knurling fitting portion P3, and a shaft portion P4 in this order from the tip side along the axial direction. The press-fitting portion P1 has a larger outer diameter than the insertion portion P2 for press-fitting. The insertion portion P2 has a smaller outer diameter than the press-fitting portion P1 and the knurled fitting portion P3 in order to provide a gap g1 with the vibrating body 31. By increasing the inner diameter of the corresponding portion of the vibrating body 31, the outer diameter of the insertion portion P2 can be made equal to or larger than that of the press-fitting portion P1. The knurled fitting portion P3 has a larger outer diameter than the press-fitting portion P1 and the insertion portion P2, and the outer peripheral portion is knurled. The shaft portion P4 is a portion to which the bearing 41 is fitted, and has an outer diameter smaller than that of the knurled fitting portion P3. Note that the knurled fitting portion P3 does not refer to the entire knurled portion, but refers to a range of the knurled fitting portion P3 that is fitted to the vibration generator 31. The press-fitting portion P1 also indicates a range in which the vibrator 31 is press-fitted.

ローレット嵌合部P3は、ロータヨーク15bの軸方向中央よりも後端側に設けられている。圧入部P1は、ロータヨーク15bの軸方向中央よりも先端側に設けられている。   The knurled fitting portion P3 is provided on the rear end side with respect to the axial center of the rotor yoke 15b. The press-fitting portion P1 is provided closer to the tip side than the axial center of the rotor yoke 15b.

図3(A)に示すように、起振体31の内周部には、径が異なる複数の段部S1、S2、S3、S4が設けられている。段部とは径が略同一の連続する内周面を指し、1つの段部と隣接する段部との間に段差があるものとする。複数の段部S1〜S4は、軸方向の一方(先端側)から他方(後端側)にかけて、順に径が大きくなるように設けられている。段部S1は、ロータ15を通さない径を有する。段部S2は、ロータ15の先端部の圧入部P1が圧入される径を有する。すなわち段部S2の内径は圧入部P1の外径より僅かに小さい。段部S3は、ロータ15の圧入部P1及び挿入部P2の外径よりも大きな内径を有する。段部S4は、ロータ15のローレット嵌合部P3がローレット嵌合される径を有する。すなわち、変形前のローレット嵌合部P3の山部外径よりも、段部S4の内径が小さく、段部S4の内径よりも、ローレット嵌合部P3の谷部の外径が小さい。   As shown in FIG. 3A, a plurality of step portions S1, S2, S3, and S4 having different diameters are provided on the inner peripheral portion of the vibrating body 31. The step portion refers to a continuous inner peripheral surface having substantially the same diameter, and it is assumed that there is a step between one step portion and an adjacent step portion. The plurality of step portions S1 to S4 are provided such that the diameter increases in order from one (front end side) to the other (rear end side) in the axial direction. The step portion S1 has a diameter that does not allow the rotor 15 to pass therethrough. The step portion S2 has a diameter into which the press-fitting portion P1 at the tip of the rotor 15 is press-fitted. That is, the inner diameter of the step portion S2 is slightly smaller than the outer diameter of the press-fitting portion P1. The step portion S3 has an inner diameter larger than the outer diameters of the press-fitting portion P1 and the insertion portion P2 of the rotor 15. The step portion S4 has a diameter such that the knurled fitting portion P3 of the rotor 15 is knurled. That is, the inner diameter of the step portion S4 is smaller than the outer diameter of the peak portion of the knurled fitting portion P3 before deformation, and the outer diameter of the valley portion of the knurled fitting portion P3 is smaller than the inner diameter of the step portion S4.

ローレット嵌合とは、ローレット部、その嵌合面又はこれら両方に、ローレット部と嵌合面との間の圧力によって、削れ等の変形が生じた嵌合を言う。ローレット嵌合には、内周が円筒面の筒体と、ローレット加工された外周部を有する軸体との嵌合、あるいは、外周が円筒面の軸体と、ローレット加工された内周部を有する筒体との嵌合が含まれる。   The knurled fitting refers to fitting in which the knurled portion, the fitting surface thereof, or both of them are deformed such as scraped by the pressure between the knurled portion and the fitting surface. For knurling, a cylindrical body with an inner circumference and a shaft body with a knurled outer circumference are fitted, or a shaft body with a cylindrical outer circumference and a knurled inner circumference is used. The fitting with the cylindrical body included is included.

図3(A)に示すように、ロータ15は、組み付け時、例えばモータ内蔵型撓み噛合い式歯車装置1の反出力側から出力側へ起振体31の中空部に押し込まれる。圧入部P1及び段部S2と、ローレット嵌合部P3及び段部S4とは、ロータ15を起振体31に組み付ける際に、圧入部P1の圧入が先に開始され、その後、ローレット嵌合部P3のローレット嵌合が行われる位置に設けられている。これにより、ロータ15を起振体31に組み付ける際、先ず、図3(A)に示すように、ロータヨーク15bの圧入部P1が起振体31の段部S2に圧入され始めることで、ロータ15と起振体31との芯出しが高い精度でなされる。続いて、図3(B)、(C)に示すように、ロータヨーク15bのローレット嵌合部P3が起振体31の段部S4にローレット嵌合して、これらの間の大きな伝達トルク容量を実現することができる。   As shown in FIG. 3A, when assembled, the rotor 15 is pushed into the hollow portion of the vibrating body 31 from the opposite output side to the output side of the flexural meshing gear device 1 with a built-in motor, for example. The press-fitting portion P1 and the step portion S2, and the knurling fitting portion P3 and the step portion S4, when the rotor 15 is assembled to the vibrating body 31, the press-fitting portion P1 is first press-fitted, and then the knurling fitting portion. It is provided at a position where P3 knurling is performed. As a result, when the rotor 15 is assembled to the vibrating body 31, first, as shown in FIG. 3A, the press-fitting portion P1 of the rotor yoke 15b begins to be press-fitted into the step S2 of the vibrating body 31, whereby the rotor 15 The centering of the vibrating body 31 and the vibrating body 31 is performed with high accuracy. Subsequently, as shown in FIGS. 3 (B) and 3 (C), the knurled fitting portion P3 of the rotor yoke 15b is knurled to the step portion S4 of the vibrating body 31 to provide a large transfer torque capacity therebetween. Can be realized.

このような組み付け時の作用は、図3(A)に示すように、ロータ15の所定部分の長さL4が、起振体31の所定部分の長さL3よりも長い構造により実現される。長さL4は、ロータ15の圧入部P1の先端からローレット嵌合部P3の先端までの軸方向の長さである。長さL3は、起振体31における圧入部P1が圧入される段部S2の後端からローレット嵌合部P3が嵌合される段部S4の後端までの軸方向長さである。ここでは、ロータ15の組み付け方向の先方と後方とで後先の向きを表わしている。また、ロータ15と起振体31との組み付け後の構造においては、上記の組み付け時の作用は、例えば、圧入部P1の軸方向における長さL1(図3(C))が、ローレット嵌合部P3の軸方向における長さL2(図3(C))よりも長い構造により実現される。なお、上記の組み付け時の作用が得られる、ロータ15と起振体31との組み付け後の構造は、上記の長さL1、L2の関係を有した構造に限られない。例えば、圧入部P1の途中の区間又はロータ15の挿入方向の先端側の区間は、起振体31の内径が大きくされて、連結工程の途中から圧入が解除される構造であっても、上記の組み付け時の作用は実現される。この場合、組み付け後の圧入部P1の長さL1は、ローレット嵌合部P3の長さL3よりも短くなる場合がある。   As shown in FIG. 3 (A), such an action at the time of assembling is realized by a structure in which the length L4 of the predetermined portion of the rotor 15 is longer than the length L3 of the predetermined portion of the vibrating body 31. The length L4 is an axial length from the tip of the press-fitting portion P1 of the rotor 15 to the tip of the knurling fitting portion P3. The length L3 is an axial length from the rear end of the step S2 into which the press-fitting portion P1 of the vibrating body 31 is press fitted to the rear end of the step S4 into which the knurled fitting portion P3 is fitted. Here, the front end and the rear end of the assembling direction of the rotor 15 represent the front end direction. In addition, in the structure after the rotor 15 and the vibration generator 31 are assembled, the action at the time of the above assembling is, for example, that the length L1 (FIG. 3C) of the press-fitting portion P1 in the axial direction is knurled. It is realized by a structure longer than the length L2 (FIG. 3C) in the axial direction of the portion P3. It should be noted that the structure after the rotor 15 and the vibrating body 31 are assembled to obtain the above-described action during assembly is not limited to the structure having the relationship of the lengths L1 and L2. For example, in a section in the middle of the press-fitting portion P1 or a section on the tip end side in the insertion direction of the rotor 15, even if the press-fitting is released from the middle of the coupling process by increasing the inner diameter of the vibrating body 31, The action at the time of assembling is realized. In this case, the length L1 of the press-fitting portion P1 after assembly may be shorter than the length L3 of the knurling fitting portion P3.

ロータ15と起振体31との間には、間隙g1が設けられる。間隙g1は、ステータコイル12aに生じるジュール熱が起振体31から撓み噛合い式歯車機構30に伝達することを抑制し、撓み噛合い式歯車機構30の減速動作や寿命に熱の悪影響が及ぼされることを抑制する。   A gap g1 is provided between the rotor 15 and the vibrator 31. The gap g1 suppresses the Joule heat generated in the stator coil 12a from being transmitted from the vibration generator 31 to the flexible meshing gear mechanism 30, and the deceleration operation and life of the flexible meshing gear mechanism 30 are adversely affected by heat. To be suppressed.

軸受41は、ローレット嵌合部P3を位置決め部として軸方向の移動が規制された状態で軸部P4に嵌合される。一方、ロータヨーク15bにおいてローレット嵌合部P3に連続する部位(ローレット加工された部位)の軸方向長さは、起振体31の段部S4の軸方向長さよりも長い。これにより、軸受41の外輪と起振体31との間に間隙g2が設けられる。   The bearing 41 is fitted to the shaft portion P4 with the knurled fitting portion P3 serving as a positioning portion so that movement in the axial direction is restricted. On the other hand, the axial length of the portion of the rotor yoke 15b that is continuous with the knurled fitting portion P3 (the knurled portion) is longer than the axial length of the step portion S4 of the vibrator 31. As a result, a gap g2 is provided between the outer ring of the bearing 41 and the vibrator 31.

<実施形態効果>
以上のように、実施形態1のモータ内蔵型撓み噛合い式歯車装置1によれば、ロータ15の圧入部P1の圧入が先に行われ、その後、ローレット嵌合部P3がローレット嵌合されるように、圧入部P1とローレット嵌合部P3が設けられている。この構成により、ロータ15と起振体31との芯出しを高い精度で実現でき、かつ、ロータ15と起振体31との大きな伝達トルク容量を実現できる。さらに、ロータ15と起振体31とをセットビスで係止するような構造が不要であるため、モータ内蔵型撓み噛合い式歯車装置1の軸方向長さの短縮化を図ることができる。
<Effect of Embodiment>
As described above, according to the flexural mesh type gear device 1 with a built-in motor of the first embodiment, the press-fitting portion P1 of the rotor 15 is first press-fitted, and then the knurled fitting portion P3 is knurled. Thus, the press fitting portion P1 and the knurling fitting portion P3 are provided. With this configuration, centering of the rotor 15 and the vibration generator 31 can be realized with high accuracy, and a large transfer torque capacity between the rotor 15 and the vibration generator 31 can be realized. Further, since the structure for locking the rotor 15 and the vibration generator 31 with the set screw is not necessary, the axial length of the motor-integrated flexible meshing gear device 1 can be shortened.

さらに、実施形態1のモータ内蔵型撓み噛合い式歯車装置1によれば、ロータ15の圧入部P1が、ロータ15の軸方向中央より先端側に位置し、ロータ15のローレット嵌合部P3が、ロータ15の軸方向中央より後端側に位置する。これにより、モーメント荷重に対するロータ15と起振体31との連結強度を高めることができる。   Furthermore, according to the flexural mesh type gear device 1 with a built-in motor of the first embodiment, the press-fitting portion P1 of the rotor 15 is located closer to the tip side than the axial center of the rotor 15, and the knurled fitting portion P3 of the rotor 15 is. , Located on the rear end side of the axial center of the rotor 15. As a result, the connection strength between the rotor 15 and the vibrator 31 against the moment load can be increased.

さらに、実施形態1のモータ内蔵型撓み噛合い式歯車装置1によれば、ローレット嵌合部P3が軸受41の軸方向の移動を規制する位置決め部として機能する。これにより、位置決め部を別途設ける場合と比較して、装置の軸方向長さの短縮、部品点数の削減、及び、組立工数の削減を図れる。   Further, according to the flexural meshing gear device 1 with a built-in motor of the first embodiment, the knurled fitting portion P3 functions as a positioning portion that restricts the axial movement of the bearing 41. As a result, the axial length of the device can be shortened, the number of parts can be reduced, and the number of assembling steps can be reduced as compared with the case where the positioning portion is separately provided.

(実施形態2)
図4は、本発明の実施形態2に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。図5は、実施形態2のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。
(Embodiment 2)
FIG. 4 is a cross-sectional view of a built-in motor type flexible mesh type gear device according to a second embodiment of the present invention. 5A and 5B are views for explaining a connecting portion between the rotor and the vibration generating body according to the second embodiment. FIG. 5A shows a part of a cross section of the vibration generating body, and FIG. 5B shows a part of a cross section of the rotor. Show.

実施形態2のモータ内蔵型撓み噛合い式歯車装置1Aは、起振体31Aとロータヨーク15Abとの連結構造の一部が異なる他は、実施形態1と同様である。同様の構成要素については、実施形態1と同一符号を付して詳細な説明を省略する。   The built-in motor type flexural mesh type gear device 1A of the second embodiment is the same as that of the first embodiment except that a part of the connecting structure between the vibration generator 31A and the rotor yoke 15Ab is different. The same components are assigned the same reference numerals as those in the first embodiment, and detailed description will be omitted.

図5(B)に示すように、ロータヨーク15Abの外周部には、軸方向に沿って先端側から順に、挿入部P11、圧入部P12、ローレット嵌合部P3及び軸部P4を有する。挿入部P11は、起振体31Aとの間に間隙g1を設けるために、圧入部P12よりも外径が小さい。圧入部P12は、圧入用に挿入部P11よりも外径が大きい。ローレット嵌合部P3は、圧入部P12よりも外径が大きく、外周部がローレット加工されている。圧入部P12及びローレット嵌合部P3は、ロータヨーク15Abの軸方向中央よりも後端側に設けられている。   As shown in FIG. 5B, an outer peripheral portion of the rotor yoke 15Ab has an insertion portion P11, a press-fitting portion P12, a knurled fitting portion P3, and a shaft portion P4 in this order from the tip side along the axial direction. The insertion portion P11 has a smaller outer diameter than the press-fitting portion P12 because a gap g1 is provided between the insertion portion P11 and the vibration generating body 31A. The press-fitting portion P12 has a larger outer diameter than the insertion portion P11 for press-fitting. The knurled fitting portion P3 has a larger outer diameter than the press-fitting portion P12, and the outer peripheral portion is knurled. The press-fitting portion P12 and the knurling fitting portion P3 are provided on the rear end side with respect to the axial center of the rotor yoke 15Ab.

図5(A)に示すように、起振体31Aの内周部には、径が異なる複数の段部S1、S12、S4が設けられている。複数の段部S1、S12、S4は、軸方向の一方(先端側)から他方(後端側)にかけて、順に径が大きくなるように設けられている。段部S12は、ロータヨーク15Abの挿入部P11の外径よりも大きな内径を有する一方、圧入部P12が圧入される内径を有する。   As shown in FIG. 5A, a plurality of step portions S1, S12, S4 having different diameters are provided on the inner peripheral portion of the vibrator 31A. The plurality of step portions S1, S12, S4 are provided such that the diameter increases in order from one side (front end side) to the other side (rear end side) in the axial direction. The step portion S12 has an inner diameter larger than the outer diameter of the insertion portion P11 of the rotor yoke 15Ab, and has an inner diameter into which the press-fitting portion P12 is press-fitted.

ロータヨーク15Abは、組み付け時、反出力側から出力側へ起振体31Aの中空部に押し込まれる。圧入部P12及び段部S12と、ローレット嵌合部P3及び段部S4とは、ロータヨーク15Abを起振体31Aに組み付ける際に、圧入部P12の圧入が先に開始され、その後、ローレット嵌合部P3のローレット嵌合が行われる位置に設けられている。この組み付け時の作用は、特に限定されないが、一例として、圧入部P12の軸方向における長さが、ローレット嵌合部P3の軸方向における長さよりも長い構造により実現される。   When assembled, the rotor yoke 15Ab is pushed into the hollow portion of the vibrating body 31A from the opposite output side to the output side. The press-fitting portion P12 and the stepped portion S12 and the knurled fitting portion P3 and the stepped portion S4 start the press-fitting of the press-fitting portion P12 first when the rotor yoke 15Ab is assembled to the vibrating body 31A, and then the knurled fitting portion P12. It is provided at a position where P3 knurling is performed. The action at the time of this assembling is not particularly limited, but as an example, it is realized by a structure in which the axial length of the press-fitting portion P12 is longer than the axial length of the knurled fitting portion P3.

<実施形態効果>
以上のように、実施形態2のモータ内蔵型撓み噛合い式歯車装置1Aによれば、ロータヨーク15Abの圧入部P12と、ローレット嵌合部P3とが、先に圧入部P12の圧入が開始され、その後にローレット嵌合部P3の嵌合が行われる位置に設けられている。この構成によれば、組み付け時に、先に圧入部P12の圧入が開始されることで、ロータヨーク15Abと起振体31Aとの芯出しを高い精度で実現でき、その後のローレット嵌合部P3の嵌合により、ロータヨーク15Abと起振体31Aとの大きな伝達トルク容量を実現できる。さらに、ロータヨーク15Abと起振体31Aとをセットビスで係止するような構造が不要であるため、モータ内蔵型撓み噛合い式歯車装置1Aの軸方向長さの短縮化を図ることができる。
<Effect of Embodiment>
As described above, according to the flexure meshing gear device 1A with a built-in motor according to the second embodiment, the press-fitting portion P12 of the rotor yoke 15Ab and the knurling fitting portion P3 are first press-fitted into the press-fitting portion P12, After that, it is provided at a position where the knurled fitting portion P3 is fitted. According to this configuration, the press-fitting of the press-fitting portion P12 is started at the time of assembly, so that the rotor yoke 15Ab and the vibrator 31A can be centered with high accuracy, and the subsequent fitting of the knurling fitting portion P3. As a result, a large transfer torque capacity between the rotor yoke 15Ab and the vibrator 31A can be realized. Further, since the structure for locking the rotor yoke 15Ab and the vibrating body 31A with the set screw is unnecessary, the axial length of the built-in motor type flexible mesh type gear device 1A can be shortened.

(実施形態3)
図6は、本発明の実施形態3に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。図7は、実施形態3のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。
(Embodiment 3)
FIG. 6 is a cross-sectional view of a built-in motor type flexible meshing gear device according to a third embodiment of the present invention. 7A and 7B are diagrams illustrating a connecting portion between the rotor and the vibration generating body according to the third embodiment. FIG. 7A shows a part of a cross section of the vibration generating body, and FIG. 7B shows a part of a cross section of the rotor. Show.

実施形態3のモータ内蔵型撓み噛合い式歯車装置1Bは、起振体31Bとロータヨーク15Bbとの連結構造及びその周辺の構成が異なる他は、実施形態1及び実施形態2と同様である。同様の構成要素については、実施形態1及び実施形態2と同一符号を付して詳細な説明を省略する。   The flexural mesh type gear device 1B with a built-in motor of the third embodiment is the same as the first and second embodiments, except that the connecting structure between the vibrating body 31B and the rotor yoke 15Bb and the peripheral structure are different. Similar components are assigned the same reference numerals as those in the first and second embodiments, and detailed description thereof will be omitted.

実施形態3のモータ内蔵型撓み噛合い式歯車装置1Bは、起振体31Bとロータヨーク15Bbとの間に配置される熱伝達部材38を更に備える。   The flexural mesh type gear device 1B with a built-in motor of the third embodiment further includes a heat transfer member 38 arranged between the vibrating body 31B and the rotor yoke 15Bb.

熱伝達部材38は、筒状であり、熱伝達率に異方性を有し、径方向の熱伝達率よりも軸方向の熱伝達率の方が大きい。熱伝達部材38は、例えばヒートパイプであり、限定されるものではないが、例えばグラファイトを径方向に積層して構成できる。熱伝達部材38は、起振体31Bとロータヨーク15Bbとの間で、ロータヨーク15Bbの圧入部P12及びローレット嵌合部P3よりも先端側(出力側)に配置される。熱伝達部材38は、さらに、出力側に径方向における内方へ張り出した張出部38aを有する。熱伝達部材38の出力側の端面は、軸方向におけるローレット嵌合部P3がある側とは反対側において、モータ内蔵型撓み噛合い式歯車装置1Bの外部に露出している。この端面は、第2内歯歯車部材35のフランジ部35fの出力側端面と略面一である。ロータヨーク15Bbの圧入部P12は、軸方向においてローレット嵌合部P3と熱伝達部材38との間に位置する。熱伝達部材38は、起振体31Bに出力側から嵌入されて組み付けられる。   The heat transfer member 38 has a cylindrical shape, has anisotropy in heat transfer coefficient, and has a larger heat transfer coefficient in the axial direction than in the radial direction. The heat transfer member 38 is, for example, a heat pipe, and is not limited, but may be configured by stacking graphite in the radial direction, for example. The heat transfer member 38 is arranged between the vibrating body 31B and the rotor yoke 15Bb on the tip side (output side) of the press-fitting portion P12 and the knurled fitting portion P3 of the rotor yoke 15Bb. The heat transfer member 38 further has an overhanging portion 38a that projects inward in the radial direction on the output side. The end face on the output side of the heat transfer member 38 is exposed to the outside of the built-in motor type flexible mesh type gear device 1B on the side opposite to the side where the knurled fitting portion P3 is located in the axial direction. This end surface is substantially flush with the output side end surface of the flange portion 35f of the second internal gear member 35. The press-fitting portion P12 of the rotor yoke 15Bb is located between the knurling fitting portion P3 and the heat transfer member 38 in the axial direction. The heat transfer member 38 is fitted and assembled into the vibrating body 31B from the output side.

図7(B)に示すように、ロータヨーク15Bbの外周部には、軸方向に沿って先端側から順に、挿入部P21、圧入部P12、ローレット嵌合部P3及び軸部P4を有する。挿入部P21は、熱伝達部材38の内側に挿入可能な外径を有する。挿入部P21の軸方向長さは、熱伝達部材38の反出力側の端部から張出部38aまでの軸方向長さよりも短い。これにより、熱伝達部材38の反出力側の端面と、ロータヨーク15Bbの挿入部P21と圧入部P12との間の段差面とが接触する。また、挿入部P21の外径は、熱伝達部材38の反出力側の端部から張出部38aまでの内径よりも小さい。これにより、挿入部P21の外周面と、熱伝達部材38の内周面との間に間隙g3が設けられる。   As shown in FIG. 7B, an outer peripheral portion of the rotor yoke 15Bb has an insertion portion P21, a press-fitting portion P12, a knurled fitting portion P3, and a shaft portion P4 in this order from the front end side along the axial direction. The insertion portion P21 has an outer diameter that can be inserted inside the heat transfer member 38. The axial length of the insertion portion P21 is shorter than the axial length from the end on the opposite output side of the heat transfer member 38 to the protruding portion 38a. As a result, the end surface on the opposite output side of the heat transfer member 38 comes into contact with the step surface between the insertion portion P21 and the press-fitting portion P12 of the rotor yoke 15Bb. Further, the outer diameter of the insertion portion P21 is smaller than the inner diameter from the end portion on the opposite output side of the heat transfer member 38 to the protruding portion 38a. As a result, a gap g3 is provided between the outer peripheral surface of the insertion portion P21 and the inner peripheral surface of the heat transfer member 38.

図7(A)に示すように、起振体31Bの内周部には、先端側から、熱伝達部材38が嵌合される段部S21、ロータヨーク15Bbの圧入部P12が圧入される段部S12、並びに、ロータヨーク15Bbのローレット嵌合部P3がローレット嵌合される段部S13が設けられている。段部S21は、熱伝達部材38が嵌合する内径を有し、熱伝達部材38の外周面が接触する。熱伝達部材38が嵌合する段部S21の内径は、圧入部P12が圧入される段部S12の内径よりも大きい。段部S21の軸方向長さは、熱伝達部材38の軸方向長さよりも長い。   As shown in FIG. 7 (A), a step portion S21 into which the heat transfer member 38 is fitted and a step portion into which the press-fitting portion P12 of the rotor yoke 15Bb is press-fitted from the tip end side to the inner peripheral portion of the vibrating body 31B. S12 and a stepped portion S13 into which the knurled fitting portion P3 of the rotor yoke 15Bb is knurled are provided. The step portion S21 has an inner diameter into which the heat transfer member 38 fits, and the outer peripheral surface of the heat transfer member 38 contacts. The inner diameter of the step portion S21 into which the heat transfer member 38 is fitted is larger than the inner diameter of the step portion S12 into which the press-fitting portion P12 is press-fitted. The axial length of the step S21 is longer than the axial length of the heat transfer member 38.

<実施形態効果>
以上のように、実施形態3のモータ内蔵型撓み噛合い式歯車装置1Bによれば、ロータヨーク15Bbの圧入部P12とローレット嵌合部P3とが、実施形態2と同様に、先に圧入部P12の圧入が開始され、その後にローレット嵌合部P3の嵌合が行われる位置に設けられている。これにより、組み付け時に、圧入部P12の圧入によりロータヨーク15Bbと起振体31Bとの芯出しを高い精度で実現でき、かつ、ローレット嵌合部P3の嵌合により大きな伝達トルク容量を実現できる。さらに、ロータヨーク15Bbと起振体31Bとをセットビスで係止する構造と比べて、セットビスの配置スペースが不要な分、モータ内蔵型撓み噛合い式歯車装置1Bの軸方向長さを短縮化できる。
<Effect of Embodiment>
As described above, according to the flexural mesh type gear device 1B with a built-in motor of the third embodiment, the press-fitting portion P12 and the knurling fitting portion P3 of the rotor yoke 15Bb are first press-fitting portion P12 as in the second embodiment. Is started at a position where the knurling fitting portion P3 is fitted thereafter. As a result, at the time of assembly, the rotor yoke 15Bb and the vibration generator 31B can be centered with high accuracy by press-fitting the press-fitting portion P12, and a large transfer torque capacity can be realized by fitting the knurling fitting portion P3. Further, as compared with the structure in which the rotor yoke 15Bb and the vibrating body 31B are locked with the set screw, the axial length of the built-in motor type flexible mesh type gear device 1B is shortened by the amount of space required for setting the set screw. it can.

さらに、実施形態3のモータ内蔵型撓み噛合い式歯車装置1Bによれば、ロータヨーク15Bbと起振体31Bとの間に径方向の熱伝達率よりも軸方向の熱伝達率が大きい熱伝達部材38が配置されている。これにより、ステータコア12bの熱が、熱伝達部材38により軸方向に多く伝達される。したがって、ステータコア12bの熱が径方向に伝達されて、撓み噛合い式歯車機構30に伝わることを抑制できる。これにより、撓み噛合い式歯車機構30の温度上昇を抑えて、温度によって撓み噛合い式歯車機構30の運動に異常が生じることを抑制できる。   Further, according to the flexural mesh type gear device 1B with a built-in motor of the third embodiment, the heat transfer member having a larger heat transfer coefficient in the axial direction than in the radial direction between the rotor yoke 15Bb and the vibrator 31B. 38 are arranged. As a result, much heat of the stator core 12b is transferred in the axial direction by the heat transfer member 38. Therefore, the heat of the stator core 12b can be prevented from being radially transmitted to the flexible meshing gear mechanism 30. As a result, it is possible to suppress the temperature rise of the flexible meshing gear mechanism 30 and to prevent the motion of the flexible meshing gear mechanism 30 from being abnormal due to the temperature.

さらに、実施形態3のモータ内蔵型撓み噛合い式歯車装置1Bによれば、熱伝達部材38は、軸方向におけるローレット嵌合部P3とは反対側に露出している。これにより、熱伝達部材38を介して軸方向に伝達された熱を、装置外部へ放出できる。あるいは、熱伝達部材38の装置外部へ露出した端面の近傍に、動力の出力先である相手部材が配置される場合には、熱伝達部材38から相手部材へ熱を効率的に放出することができる。そして、撓み噛合い式歯車機構30の温度上昇をより抑えることができる。   Furthermore, according to the flexural meshing gear device 1B with a built-in motor of the third embodiment, the heat transfer member 38 is exposed on the side opposite to the knurled fitting portion P3 in the axial direction. As a result, the heat transferred in the axial direction via the heat transfer member 38 can be released to the outside of the device. Alternatively, when the mating member, which is the output destination of the power, is disposed near the end surface of the heat transfer member 38 exposed to the outside of the device, the heat can be efficiently released from the heat transfer member 38 to the mating member. it can. Then, it is possible to further suppress the temperature rise of the flexible meshing gear mechanism 30.

さらに、実施形態3のモータ内蔵型撓み噛合い式歯車装置1Bによれば、ロータヨーク15Bbの圧入部P12が、熱伝達部材38とローレット嵌合部P3との間に位置する。圧入部P12の熱伝達率はローレット嵌合部P3の熱伝達率よりも高く、ステータコア12bの熱は、他の箇所よりも圧入部P12の箇所で多く撓み噛合い式歯車機構30へ伝わる。しかし、この部位に熱伝達部材38が近いことで、圧入部P12を伝わる熱を、装置外部へ多く放出することができ、撓み噛合い式歯車機構30の温度上昇を抑えることができる。   Furthermore, according to the flexural mesh type gear device 1B with a built-in motor of the third embodiment, the press-fitting portion P12 of the rotor yoke 15Bb is located between the heat transfer member 38 and the knurling fitting portion P3. The heat transfer coefficient of the press-fitting portion P12 is higher than the heat transfer coefficient of the knurled fitting portion P3, and the heat of the stator core 12b is transferred to the flexible meshing gear mechanism 30 more at the place of the press-fitting portion P12 than at other places. However, since the heat transfer member 38 is close to this portion, a large amount of heat transmitted through the press-fitting portion P12 can be released to the outside of the device, and the temperature increase of the flexible meshing gear mechanism 30 can be suppressed.

(参考例)
図8は、参考例に係るモータ内蔵型撓み噛合い式歯車装置の断面図である。図9は、参考例のロータと起振体との連結部位を説明する図であり、(A)は起振体の断面の一部を示し、(B)はロータの断面の一部を示す。
(Reference example)
FIG. 8 is a cross-sectional view of a flexural mesh type gear device with a built-in motor according to a reference example. 9A and 9B are views for explaining a connecting portion between the rotor and the vibrator in the reference example. FIG. 9A shows a part of the cross section of the vibrator, and FIG. 9B shows a part of the cross section of the rotor. .

参考例のモータ内蔵型撓み噛合い式歯車装置1Cは、起振体31Cとロータヨーク15Cbとの連結構造及びその周辺の構成が異なる他は、実施形態1から実施形態3と同様である。同様の構成要素については、実施形態1から実施形態3と同一符号を付して詳細な説明を省略する。   The built-in motor type flexural mesh type gear device 1C of the reference example is the same as that of the first to third embodiments, except that the connecting structure between the vibrator 31C and the rotor yoke 15Cb and the peripheral structure are different. Similar components are assigned the same reference numerals as those in the first to third embodiments, and detailed description thereof will be omitted.

参考例のモータ内蔵型撓み噛合い式歯車装置1Cは、起振体31Cとロータヨーク15Cbとの間に熱伝達部材38が設けられている。熱伝達部材38、先に説明したように、径方向の熱伝達率よりも軸方向の熱伝達率が高い。熱伝達部材38は、軸方向の一方(出力側)において、モータ内蔵型撓み噛合い式歯車装置1Cの外部に露出されている。熱伝達部材38の出力側の端面は、第2内歯歯車部材35のフランジ部35fの端面とほぼ面一である。熱伝達部材38は、ロータヨーク15Cbの連結部P32よりも出力側に配置されている。   In the flexural meshing gear device 1C with a built-in motor of the reference example, a heat transfer member 38 is provided between the vibrator 31C and the rotor yoke 15Cb. As described above, the heat transfer member 38 has a higher heat transfer coefficient in the axial direction than in the radial direction. The heat transfer member 38 is exposed to the outside of the built-in motor type flexible mesh type gear device 1C on one side (output side) in the axial direction. The end surface on the output side of the heat transfer member 38 is substantially flush with the end surface of the flange portion 35f of the second internal gear member 35. The heat transfer member 38 is arranged on the output side of the connecting portion P32 of the rotor yoke 15Cb.

ロータヨーク15Cbと起振体31Cとは、ロータヨーク15Cbの連結部P32において、セットビスB1により連結されている。特に限定されないが、図9(B)に示すように、ロータヨーク15Cbの外周部には、先端側から、熱伝達部材38の内側に嵌合する嵌合部P31と、起振体31Cの内側に遊嵌されてセットビスB1により連結される連結部P32と、軸受41が嵌合される軸部P4とが設けられている。嵌合部P31の外径は、連結部P32の外径よりも小さい。連結部P32の外径は、軸部P4の外径よりも大きい。   The rotor yoke 15Cb and the vibrator 31C are connected by a set screw B1 at a connecting portion P32 of the rotor yoke 15Cb. Although not particularly limited, as shown in FIG. 9 (B), on the outer peripheral portion of the rotor yoke 15Cb, from the tip side to the fitting portion P31 that fits inside the heat transfer member 38 and the inside of the vibrating body 31C. A connecting portion P32, which is loosely fitted and connected by the set screw B1, and a shaft portion P4, into which the bearing 41 is fitted, are provided. The outer diameter of the fitting portion P31 is smaller than the outer diameter of the connecting portion P32. The outer diameter of the connecting portion P32 is larger than the outer diameter of the shaft portion P4.

また、特に限定されないが、図9(A)に示すように、起振体31Cの内周部には、先端側から、熱伝達部材38の外側に嵌合する段部S31と、ロータヨーク15Cbの連結部P32を遊嵌する段部S32とが設けられている。段部S31の内径は、段部S32の内径よりも大きい。さらに、起振体31Cの段部S32には、周方向における複数箇所にネジ孔h1が設けられ、セットビスB1が螺合されている。セットビスB1は、起振体31Cを径方向に貫き、ロータヨーク15Cbの連結部P32に当接して、起振体31Cとロータヨーク15Cbとが相対的に回転しないように、これらを連結する。   In addition, although not particularly limited, as shown in FIG. 9 (A), a step portion S31 fitted to the outside of the heat transfer member 38 and the rotor yoke 15Cb are fitted to the inner peripheral portion of the vibrating body 31C from the tip side. A step portion S32 that loosely fits the connecting portion P32 is provided. The inner diameter of the step S31 is larger than the inner diameter of the step S32. Further, in the step portion S32 of the vibrating body 31C, screw holes h1 are provided at a plurality of positions in the circumferential direction, and set screws B1 are screwed together. The set screw B1 penetrates the vibrating body 31C in the radial direction, contacts the connecting portion P32 of the rotor yoke 15Cb, and connects the vibrating body 31C and the rotor yoke 15Cb so as not to rotate relative to each other.

<参考例効果>
以上のように、参考例のモータ内蔵型撓み噛合い式歯車装置1Cによれば、ロータヨーク15Cbと起振体31Cとの間に径方向の熱伝達率よりも軸方向の熱伝達率が大きい熱伝達部材38が配置されている。これにより、ステータコア12bの熱が、熱伝達部材38により軸方向に多く伝達される。したがって、ステータコア12bの熱が径方向に伝達されて、撓み噛合い式歯車機構30に伝わることを抑制できる。これにより、撓み噛合い式歯車機構30の温度上昇を抑えて、温度によって撓み噛合い式歯車機構30の運動に異常が生じることを抑制できる。
<Reference example effect>
As described above, according to the flexural mesh type gear device with built-in motor 1C of the reference example, the heat transfer coefficient between the rotor yoke 15Cb and the vibrator 31C is larger than that in the radial direction. The transmission member 38 is arranged. As a result, much heat of the stator core 12b is transferred in the axial direction by the heat transfer member 38. Therefore, the heat of the stator core 12b can be prevented from being radially transmitted to the flexible meshing gear mechanism 30. As a result, it is possible to suppress the temperature rise of the flexible meshing gear mechanism 30 and to prevent the motion of the flexible meshing gear mechanism 30 from being abnormal due to the temperature.

さらに、参考例のモータ内蔵型撓み噛合い式歯車装置1Cによれば、熱伝達部材38は、軸方向において、ロータヨーク15Cbと起振体31Cとの連結部P32とは反対側へ露出している。これにより、熱伝達部材38を介して軸方向に伝達された熱を、装置外部へ放出できる。あるいは、熱伝達部材38の装置外部へ露出した端面の近傍に、動力の出力先である相手部材が配置される場合には、熱伝達部材38から相手部材へ熱を効率的に放出することができる。これにより、ステータコア12bの熱が、撓み噛合い式歯車機構30に伝達される量をより抑制でき、撓み噛合い式歯車機構30の温度上昇をより抑えることができる。   Furthermore, according to the flexural meshing gear device 1C with a built-in motor of the reference example, the heat transfer member 38 is exposed to the side opposite to the connecting portion P32 between the rotor yoke 15Cb and the vibrator 31C in the axial direction. . As a result, the heat transferred in the axial direction via the heat transfer member 38 can be released to the outside of the device. Alternatively, when the mating member, which is the output destination of the power, is disposed near the end surface of the heat transfer member 38 exposed to the outside of the device, the heat can be efficiently released from the heat transfer member 38 to the mating member. it can. As a result, the amount of heat of the stator core 12b transferred to the flexible meshing gear mechanism 30 can be further suppressed, and the temperature rise of the flexible meshing gear mechanism 30 can be further suppressed.

さらに、参考例のモータ内蔵型撓み噛合い式歯車装置1Cによれば、ロータヨーク15Cbの連結部P32の部分が、熱伝達部材38に軸方向から接触している。ステータコア12bの熱は、連結部P32を介してロータヨーク15Cbから起振体31Cに多く伝達される。しかし、連結部P32がある部位に熱伝達部材38が接触していることで、この部分の熱を、熱伝達部材38を介して効率的に放出し、撓み噛合い式歯車機構30の温度上昇を抑えることができる。   Further, according to the flexural mesh type gear device with built-in motor 1C of the reference example, the portion of the connecting portion P32 of the rotor yoke 15Cb is in contact with the heat transfer member 38 in the axial direction. A large amount of heat of the stator core 12b is transferred from the rotor yoke 15Cb to the vibration generator 31C via the connecting portion P32. However, since the heat transfer member 38 is in contact with the portion where the connecting portion P32 is present, the heat of this portion is efficiently released through the heat transfer member 38, and the temperature of the flexible meshing gear mechanism 30 rises. Can be suppressed.

以上、本発明の各実施形態について説明した。しかし、本発明は上記の実施形態に限られない。例えば、上記実施形態ではロータと起振体とのローレット嵌合部として、ロータのローレット部と起振体の内周部とが嵌合した例を示した。しかし、例えば起振体の内周部をローレット加工することで起振体にローレット部を設け、このローレット部とロータの外周面とを嵌合させた部分を、本発明に係るローレット嵌合部として採用してもよい。また、上記実施形態では、ロータにおいて圧入部よりもローレット嵌合部が後端側(ロータを起振体に挿入する方向の逆側)に位置する例を示した。しかし、これらの配置は逆にすることも可能である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiment. For example, in the above-described embodiment, an example in which the knurled portion of the rotor and the inner peripheral portion of the vibrator are fitted as the knurled fitting portion of the rotor and the vibrator. However, for example, a knurled portion is provided on the vibrator by knurling the inner peripheral portion of the vibrator, and the portion where the knurled portion and the outer peripheral surface of the rotor are fitted together is the knurled fitting portion according to the present invention. May be adopted as Further, in the above-described embodiment, an example has been shown in which the knurled fitting portion of the rotor is located on the rear end side (the side opposite to the direction in which the rotor is inserted into the vibrator) with respect to the press fitting portion. However, these arrangements can be reversed.

また、上記の実施形態では、所謂筒型の撓み噛合い式歯車機構を採用した構成を例にとって説明したが、本発明に係る撓み噛合い式歯車機構はこれに限定されず、例えば所謂カップ型又はシルクハット型の撓み噛合い式歯車機構が適用されてもよい。また、上記の実施形態において、単一の部材により一体的に形成された構成要素は、複数の部材に分割されて互いに連結又は固着された構成要素に置換されてもよい。また、複数の部材が連結されて構成された構成要素は、単一の部材により一体的に形成された構成要素に置換されてもよい。その他、実施形態で具体的に示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。   Further, in the above-described embodiment, the configuration in which the so-called tubular flexible meshing gear mechanism is adopted has been described as an example, but the flexible meshing gear mechanism according to the present invention is not limited to this, and is, for example, a so-called cup type. Alternatively, a top hat type flexible meshing gear mechanism may be applied. Further, in the above-described embodiment, the constituent element integrally formed by a single member may be replaced with a constituent element that is divided into a plurality of members and connected or fixed to each other. Further, a constituent element configured by connecting a plurality of members may be replaced with a constituent element integrally formed by a single member. In addition, the details specifically shown in the embodiments can be appropriately changed without departing from the spirit of the invention.

1、1A〜1C モータ内蔵型撓み噛合い式歯車装置
10 モータ
12 ステータ
12a ステータコイル
12b ステータコア
15 ロータ
15a マグネット
15b、15Ab、15Bb、15Cb ロータヨーク
30 撓み噛合い式歯車機構
31、31A、31B、31C 起振体
32 起振体軸受
33 外歯歯車
34 第1内歯歯車部材
34g 第1内歯歯車
35 第2内歯歯車部材
35g 第2内歯歯車
35f フランジ部
35i 内輪部
36 固定部材
37 ケーシング
38 熱伝達部材
41、42 軸受
44 主軸受
P1、P12 圧入部
P3 ローレット嵌合部
DESCRIPTION OF SYMBOLS 1, 1A-1C Built-in motor flexural mesh type gear device 10 Motor 12 Stator 12a Stator coil 12b Stator core 15 Rotor 15a Magnet 15b, 15Ab, 15Bb, 15Cb Rotor yoke 30 Flexible mesh type gear mechanism 31, 31A, 31B, 31C Vibration body 32 Excitation body bearing 33 External tooth gear 34 First internal tooth gear member 34g First internal tooth gear 35 Second internal tooth gear member 35g Second internal tooth gear 35f Flange portion 35i Inner ring portion 36 Fixing member 37 Casing 38 Heat Transmission member 41, 42 Bearing 44 Main bearing P1, P12 Press-fitting part P3 Knurled fitting part

Claims (6)

撓み噛合い式歯車機構と、
前記撓み噛合い式歯車機構の中心部分に組み込まれたモータと、
を備え、
前記モータは、ステータと、前記ステータを取り囲むロータとを備え、
前記撓み噛合い式歯車機構は、前記ロータと一体的に回転するように前記ロータに取り付けられた起振体を有し、
前記起振体は前記ロータを取り囲み、
前記ロータは、前記起振体に圧入された圧入部と、前記起振体にローレット嵌合されたローレット嵌合部と、を有し、前記圧入部と前記ローレット嵌合部とが、前記ロータを前記起振体の内側に軸方向の一方から組み込んだときに、前記ローレット嵌合部のローレット嵌合よりも先に前記圧入部が圧入される位置に設けられている、
モータ内蔵型撓み噛合い式歯車装置。
A flexible meshing gear mechanism,
A motor incorporated in the central portion of the flexible mesh type gear mechanism,
Equipped with
The motor includes a stator and a rotor surrounding the stator,
The flexible mesh type gear mechanism has a vibrating body attached to the rotor so as to rotate integrally with the rotor,
The exciter surrounds the rotor,
The rotor includes a press-fitting portion that is press-fitted into the vibrating body and a knurled fitting portion that is knurled to the vibrating body, and the press-fitting portion and the knurled fitting portion are the rotor. Is installed in the inside of the vibrating body from one side in the axial direction, the press-fitting portion is provided at a position where the press-fitting portion is press-fitted before the knurling fitting of the knurling fitting portion.
Flexible gear type gear unit with built-in motor.
前記ローレット嵌合部は前記ロータにおける軸方向中央よりも軸方向の一方に設けられ、前記圧入部は前記ロータにおける軸方向中央よりも軸方向の他方に設けられている、
請求項1記載のモータ内蔵型撓み噛合い式歯車装置。
The knurled fitting portion is provided on one side in the axial direction of the rotor in the axial direction, and the press-fitting portion is provided on the other side in the axial direction of the rotor in the axial direction.
A flexible mesh type gear device with a built-in motor according to claim 1.
前記ローレット嵌合部は、前記ロータを支持する軸受の軸方向の移動を規制する、
請求項1又は請求項2記載のモータ内蔵型撓み噛合い式歯車装置。
The knurled fitting portion restricts axial movement of a bearing that supports the rotor,
A flexible mesh type gear device with a built-in motor according to claim 1 or 2.
前記ロータと前記起振体との間に、径方向への熱伝達率よりも軸方向への熱伝達率が高い熱伝達部材が配置されている、
請求項1から請求項3のいずれか一項に記載のモータ内蔵型撓み噛合い式歯車装置。
A heat transfer member having a higher heat transfer coefficient in the axial direction than in the radial direction is arranged between the rotor and the vibrating body.
The built-in motor type flexible mesh type gear device according to any one of claims 1 to 3.
前記熱伝達部材は、軸方向における前記ローレット嵌合部がある側とは反対側で歯車装置外部へ露出している、
請求項4記載のモータ内蔵型撓み噛合い式歯車装置。
The heat transfer member is exposed to the outside of the gear device on the side opposite to the side where the knurled fitting portion is located in the axial direction.
A flexible mesh type gear device with a built-in motor according to claim 4.
前記ローレット嵌合部と前記熱伝達部材の間に前記圧入部が位置する、
請求項4又は請求項5記載のモータ内蔵型撓み噛合い式歯車装置。
The press-fitting portion is located between the knurled fitting portion and the heat transfer member,
A flexural mesh type gear device with a built-in motor according to claim 4 or claim 5.
JP2018190571A 2018-10-09 2018-10-09 Flexible mesh gearbox with built-in motor Active JP7182985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190571A JP7182985B2 (en) 2018-10-09 2018-10-09 Flexible mesh gearbox with built-in motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190571A JP7182985B2 (en) 2018-10-09 2018-10-09 Flexible mesh gearbox with built-in motor

Publications (2)

Publication Number Publication Date
JP2020060221A true JP2020060221A (en) 2020-04-16
JP7182985B2 JP7182985B2 (en) 2022-12-05

Family

ID=70219532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190571A Active JP7182985B2 (en) 2018-10-09 2018-10-09 Flexible mesh gearbox with built-in motor

Country Status (1)

Country Link
JP (1) JP7182985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022077564A (en) * 2020-11-12 2022-05-24 住友重機械工業株式会社 Bending meshing-type gear device
JP7462548B2 (en) 2020-12-23 2024-04-05 住友重機械工業株式会社 Reduction gear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274494A (en) * 1999-03-23 2000-10-03 Sumitomo Heavy Ind Ltd Ring gear
JP2002307237A (en) * 2001-04-09 2002-10-23 Harmonic Drive Syst Ind Co Ltd Method of manufacturing rigid internal tooth gear for wave motive gear
JP2015140910A (en) * 2014-01-30 2015-08-03 三菱電機株式会社 drive unit
JP2017141925A (en) * 2016-02-12 2017-08-17 日本電産株式会社 Speed reducer with electric motor
JP2017207113A (en) * 2016-05-17 2017-11-24 株式会社ハーモニック・ドライブ・システムズ Motor built-in type wave gear device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274494A (en) * 1999-03-23 2000-10-03 Sumitomo Heavy Ind Ltd Ring gear
JP2002307237A (en) * 2001-04-09 2002-10-23 Harmonic Drive Syst Ind Co Ltd Method of manufacturing rigid internal tooth gear for wave motive gear
JP2015140910A (en) * 2014-01-30 2015-08-03 三菱電機株式会社 drive unit
JP2017141925A (en) * 2016-02-12 2017-08-17 日本電産株式会社 Speed reducer with electric motor
JP2017207113A (en) * 2016-05-17 2017-11-24 株式会社ハーモニック・ドライブ・システムズ Motor built-in type wave gear device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022077564A (en) * 2020-11-12 2022-05-24 住友重機械工業株式会社 Bending meshing-type gear device
JP7414379B2 (en) 2020-11-12 2024-01-16 住友重機械工業株式会社 Flexible mesh gear system
JP7462548B2 (en) 2020-12-23 2024-04-05 住友重機械工業株式会社 Reduction gear

Also Published As

Publication number Publication date
JP7182985B2 (en) 2022-12-05

Similar Documents

Publication Publication Date Title
US6701803B1 (en) Reduction gears-integrated actuator
JP5354888B2 (en) Brushless motor
US8598755B2 (en) Electric rotary actuator
JP5990896B2 (en) Electric motor and electric unit including the same
JP5327724B2 (en) Rotating electric machine, robot, manufacturing method of rotating electric machine, hollow shaft
CN109921554B (en) Gear motor and assembling method thereof
JP5757326B2 (en) Power transmission device
JP2006333614A (en) Rotating electric machine and its manufacturing method
CN109661528B (en) Wave gear speed reducer with motor
JP2020060221A (en) Motor built-in type flexible meshing-type gear device
KR101922557B1 (en) Integrated drive apparatus
JP6041889B2 (en) Electric motor and manufacturing method
WO2019165864A1 (en) Motor rotor having torsion damping device and motor
JP2019533412A (en) Electric drive unit with cooling sleeve
JP2008099355A (en) Bearing for motor and vibrating motor
JP6661239B2 (en) Rotor and motor
WO2017122289A1 (en) Rotary electric machine and vibratory device
JP2013201844A (en) Rotary electric machine
JP2007221899A (en) Magnet rotor
JP2560533Y2 (en) Motor device
JP2007312568A (en) Permanent-magnet generator
WO2024080153A1 (en) Rotary machine
KR102592135B1 (en) Power transmission apparatus
JP2017099059A (en) Motor device
JPH04117151A (en) Micromotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221122

R150 Certificate of patent or registration of utility model

Ref document number: 7182985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150