WO2014054580A1 - 弾性表面波装置 - Google Patents

弾性表面波装置 Download PDF

Info

Publication number
WO2014054580A1
WO2014054580A1 PCT/JP2013/076540 JP2013076540W WO2014054580A1 WO 2014054580 A1 WO2014054580 A1 WO 2014054580A1 JP 2013076540 W JP2013076540 W JP 2013076540W WO 2014054580 A1 WO2014054580 A1 WO 2014054580A1
Authority
WO
WIPO (PCT)
Prior art keywords
idt electrode
acoustic wave
wave device
groove
surface acoustic
Prior art date
Application number
PCT/JP2013/076540
Other languages
English (en)
French (fr)
Inventor
門田 道雄
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014539729A priority Critical patent/JP5757369B2/ja
Publication of WO2014054580A1 publication Critical patent/WO2014054580A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation

Definitions

  • the present invention relates to a surface acoustic wave device in which an IDT electrode is formed by embedding a metal in a groove formed on one surface of a LiNbO 3 substrate, and more particularly to a surface acoustic wave device using a Love wave.
  • Patent Document 1 discloses a surface acoustic wave device using a LiTaO 3 substrate or a LiNbO 3 substrate.
  • this surface acoustic wave device grooves are formed on a piezoelectric substrate made of a LiTaO 3 substrate or a LiNbO 3 substrate.
  • An IDT electrode is formed by filling the groove with Al.
  • an SiO 2 film is laminated so as to cover the piezoelectric substrate and the IDT electrode. Thereby, an improvement in temperature characteristics and a high reflection coefficient can be obtained.
  • Patent Document 1 also discloses a surface acoustic wave device in which a groove on the upper surface of a LiNbO 3 substrate is filled with Au.
  • the electromechanical coupling coefficient k 2 and the reflection coefficient change by changing the Euler angle of the LiNbO 3 substrate and the film thickness of the Au film.
  • Patent Document 1 shows that when Au is used instead of Al as described above, an electromechanical coupling coefficient k 2 equal to or higher than Al and a reflection coefficient larger than Al are obtained. It ’s just that. Further, it is only described that an electromechanical coupling coefficient k 2 and a reflection coefficient close to Au can be obtained even for metals such as Cu, Ni, Mo, Ag, Ta, and W. Note that Patent Document 1 does not specifically mention a configuration capable of obtaining a wider specific bandwidth.
  • An object of the present invention is to provide a surface acoustic wave device that can obtain a wider specific bandwidth.
  • the surface acoustic wave device has a LiNbO 3 substrate having a groove formed on the upper surface and an Euler angle in the range of (0 °, 80 ° to 130 °, 0 °).
  • a groove provided on the upper surface of the LiNbO 3 substrate is filled with a metal having a density higher than that of aluminum to form an IDT electrode. A Love wave excited by the IDT electrode is used.
  • the groove extends in the direction in which the electrode finger of the IDT electrode extends, the side surface of the groove in the cross section of the groove is inclined, and the angle between the side surface and the extended surface of the bottom of the groove
  • the tilt angle A is in the range of 56 ° to 84 °, and the duty of the IDT electrode is 0.45 or less.
  • the IDT electrode is made of a material mainly composed of Pt, and the duty is 0.2 or more. In this case, a sufficient specific bandwidth of 20% or more can be obtained using an IDT electrode made of Pt. More preferably, when the wavelength determined by the period of the electrode fingers of the IDT electrode is ⁇ , the thickness of the IDT electrode made of Pt is in the range of 0.06 ⁇ to 0.5 ⁇ .
  • the IDT electrode is made of a material mainly composed of Cu, and the duty is 0.25 or more.
  • the duty is 0.25 or more.
  • the thickness of the IDT electrode made of Cu is in the range of 0.16 ⁇ to 0.5 ⁇ . In this case, the specific bandwidth can be more reliably set to 20% or more.
  • the IDT electrode is made of a material mainly composed of Mo, and the duty is 0.35 or more.
  • Mo the thickness of the IDT electrode made of Mo is in the range of 0.16 ⁇ to 0.3 ⁇ . In this case, the specific bandwidth can be more reliably set to 20% or more.
  • the IDT electrode is made of a material mainly containing Ni, and the duty is 0.4 or more.
  • the duty is 0.4 or more.
  • the thickness of the IDT electrode made of Ni is in the range of 0.2 ⁇ to 0.3 ⁇ . In this case, the specific bandwidth can be more reliably set to 20% or more.
  • the IDT electrode is made of a material mainly composed of Ta, and the duty is 0.3 or more.
  • the duty is 0.3 or more.
  • the thickness of the IDT electrode made of Ta is in the range of 0.11 ⁇ to 0.3 ⁇ . In this case, the specific bandwidth can be more reliably set to 20% or more.
  • the IDT electrode is made of a material mainly composed of W, and the duty is 0.3 or more.
  • a surface acoustic wave device having a wide specific bandwidth can be reliably provided by using W as the IDT electrode. More preferably, when the wavelength determined by the period of the electrode fingers of the IDT electrode is ⁇ , the thickness of the IDT electrode made of W is in the range of 0.08 ⁇ or more and 0.3 ⁇ or less. In this case, the specific bandwidth can be more reliably set to 20% or more.
  • the IDT electrode made of a metal having a density higher than that of aluminum is formed by filling the groove with the metal, and the inclination angle A of the groove is 56 ° to 84 °.
  • the duty of the IDT electrode is 0.45 or less
  • the Euler angle of the LiNbO 3 substrate is in the specific range, so that the specific bandwidth of the surface acoustic wave device can be expanded. It becomes. Accordingly, it is possible to provide a broadband resonator and a bandpass filter.
  • FIG. 1A and FIG. 1B are a schematic plan view of a surface acoustic wave device according to an embodiment of the present invention and a partial surface cross-sectional view showing the main part thereof.
  • Euler in structure IDT electrode composed of Cu is LiNbO 3 SAW devices are formed by filling the Cu in the groove of the upper surface of the substrate to form an IDT electrode composed of Cu film LiNbO 3 substrate It is a figure which shows the relationship between (theta) of an angle, and an electromechanical coupling coefficient.
  • FIG. 3 shows a groove inclination angle A in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on an upper surface of a EuN angle (0 °, 112 °, 0 °) LiNbO 3 substrate with Pt. It is a figure which shows the relationship between the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 4 shows the thickness of the Pt film (H / H) in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °).
  • FIG. 5 shows a groove inclination angle A in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a EuN angle (0 °, 112 °, 0 °) LiNbO 3 substrate with Cu. It is a figure which shows the relationship between the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 5 shows a groove inclination angle A in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a EuN angle (0 °, 112 °, 0 °) LiNbO 3 substrate with Cu.
  • FIG. 6 shows the thickness of a Cu film (H / H) in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °). It is a figure which shows the relationship between (lambda)), the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 7 shows a groove inclination angle A in a surface acoustic wave device in which an IDT electrode is formed by filling Mo in a groove on the upper surface of a EuN angle (0 °, 112 °, 0 °) LiNbO 3 substrate.
  • FIG. 8 shows the thickness of the Mo film (H / H) in a surface acoustic wave device in which an IDT electrode is formed by filling Mo in a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °). It is a figure which shows the relationship between (lambda)), the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 9 shows a groove inclination angle A in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °). It is a figure which shows the relationship between the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 10 shows the thickness of the Ni film (H / H) in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °).
  • FIG. 11 shows an inclination angle A of a groove in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °); It is a figure which shows the relationship between the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 11 shows an inclination angle A of a groove in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °); It is a figure which shows the relationship between the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 12 shows the thickness (H / H) of a Ta film in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °). It is a figure which shows the relationship between (lambda)), the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 13 shows a groove inclination angle A in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °), It is a figure which shows the relationship between the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • FIG. 14 shows the thickness of a W film (H / H) in a surface acoustic wave device in which an IDT electrode is formed by filling a groove on the upper surface of a LiNbO 3 substrate with Euler angles (0 °, 112 °, 0 °). It is a figure which shows the relationship between (lambda)), the duty of IDT electrode, and specific bandwidth (DELTA) f.
  • a surface acoustic wave device 11 has a LiNbO 3 substrate 1.
  • an IDT electrode 3 and reflectors 12 and 13 disposed on both sides of the IDT electrode 3 in the surface wave propagation direction are formed on a LiNbO 3 substrate 1.
  • a plurality of grooves 1 b are formed on the upper surface 1 a of the LiNbO 3 substrate 1.
  • the groove 1b corresponds to an electrode finger constituent part of the IDT electrode.
  • the groove 1b is filled with a metal having a higher density than Al to form the IDT electrode 3.
  • the reflectors 12 and 13 shown in FIG. 1A are also formed by filling a plurality of grooves with a metal having a density higher than that of Al.
  • the upper surface of the metal filled in the groove 1b and the upper surface 1a of the LiNbO 3 substrate 1 are substantially flush with each other.
  • channel 1b are made into the inclined surface.
  • the electrode fingers of the IDT electrode 3 extend in a direction orthogonal to the elastic wave propagation direction.
  • FIG. 1B a portion corresponding to the cross section of the electrode finger is shown.
  • the side surfaces 1b1 and 1b2 are inclined from the direction orthogonal to the bottom surface 1b3 of the groove 1b. More specifically, the inclination angle A shown in FIG. 1 (b) is in the range of 56 ° to 84 °.
  • the inclination angle A is the angle formed between the side surface 1b1 and the extended portion 1b4 of the bottom surface 1b3, in other words, the angle formed between the side surface 1b1 and the electrode finger upper surface 3a, taking the side surface 1b1 as an example.
  • the duty of the IDT electrode 3 is set to 0.45 or less.
  • the duty is a value represented by a ratio between the upper surface of the groove 1b, that is, the width of the electrode finger upper surface 3a and the value obtained by adding the distance between the electrode finger upper surface 3a and the adjacent electrode finger.
  • the Euler angles of the LiNbO 3 substrate 1 are (0 °, 80 ° to 130 °, 0 °). In the present embodiment, since the above configuration is provided, a large specific bandwidth ⁇ f is obtained. This will be described more specifically below.
  • Euler angles of LiNbO 3 (0 °, ⁇ , 0 °) is a diagram showing a theta of, the relationship between the electromechanical coupling factor k 2.
  • the IDT electrode is made of Cu and has a thickness of 0.1 ⁇ , 0.16 ⁇ , 0.2 ⁇ , or 0.5 ⁇ .
  • is the wavelength of the propagating elastic wave.
  • the solid line B in FIG. 2 shows the electromechanical coupling coefficient k 2 of the Love wave in the surface acoustic wave device 11 of the above embodiment when the thickness of Cu is 0.1 [lambda], the thickness of the solid line C is Cu 0.1 [lambda] It shows the change in electromechanical coupling coefficient k 2 of the Rayleigh wave in the case where.
  • a broken line D indicates a Love wave in a structure in which an IDT electrode made of a Cu film having a thickness of 0.1 ⁇ is formed on the upper surface without forming a groove on the upper surface of LiNbO 3 when the thickness of Cu is 0.1 ⁇ . shows the change in electromechanical coupling coefficient k 2, the broken line E shows the change of the electromechanical coupling coefficient k 2 of the Rayleigh wave.
  • the two-dot chain line F, the solid line G, and the one-dot chain line H in FIG. 2 indicate the rub in the surface acoustic wave device 11 of the above embodiment when the Cu thickness is 0.16 ⁇ , 0.2 ⁇ , or 0.5 ⁇ , respectively. It shows the change in electromechanical coupling coefficient k 2 of the waves.
  • the electromechanical coupling coefficient k 2 of the Love wave is It can be seen that it can be increased to 0.3 or more. Therefore, it can be seen that the specific bandwidth can be effectively increased.
  • the Euler angle ⁇ is 80 ° even when another metal having a higher density than Al such as Pt and Au is used as the electrode material. If it is within the range of ⁇ 130 °, it is possible to effectively increase the electromechanical coupling coefficient k 2 of the Love wave.
  • the electrode material is Pt and Cu will be described separately.
  • Pt (In the case of IDT electrode made of Pt) Pt was used as the electrode material.
  • the electrode material only needs to be mainly composed of Pt.
  • Pt is mainly composed of the value of Pt (density ⁇ electrode thickness) and the whole IDT electrode composed of a plurality of types of electrode materials.
  • the ratio of the density of the electrode and the sum of the products of the thicknesses of the electrodes exceeds 0.5.
  • the sum of the product of the density of the entire IDT electrode and the electrode thickness is a value represented by the following equation.
  • density
  • T electrode thickness
  • n the number of electrode layers constituting the IDT electrode.
  • the Euler angles of the LiNbO 3 substrate were (0 °, 112 °, 0 °).
  • Various surface acoustic wave devices 11 were manufactured by changing the inclination angle A in the groove 1b in various ways, except that the thickness of the IDT electrode made of Pt was 0.1 ⁇ .
  • FIG. 3 shows the relationship between the groove inclination angle A, the duty, and the love wave specific bandwidth ⁇ f.
  • the specific bandwidth ⁇ f is a value represented by (fa ⁇ fr) / fr where the resonance frequency in the surface acoustic wave device 11 is fr and the antiresonance frequency is fa.
  • the specific bandwidth ⁇ f can be 0.20 or more.
  • FIG. 4 shows the relationship between the Pt thickness (H / ⁇ ) and the specific bandwidth ⁇ f when the Pt film thickness, that is, the groove thickness in the surface acoustic wave device 11 is changed.
  • the inclination angle A of the groove was 78 °.
  • the duty when the duty is in the range of 0.2 to 0.45, a Love wave is excited and a large specific bandwidth ⁇ f is obtained. In this case, when the duty is less than 0.2, the Love wave excitation state is unstable. Therefore, when an IDT electrode made of Pt is used, the duty is desirably 0.2 or more.
  • the thickness H / ⁇ of the Pt film is preferably 0.06 ⁇ or more and 0.5 ⁇ or less within the duty range of 0.2 to 0.45. . Accordingly, it can be seen that the specific bandwidth ⁇ f can be surely set to 0.20 or more, that is, 20% or more. Therefore, the thickness of the Pt film is preferably 0.06 ⁇ or more and 0.5 ⁇ or less. From FIG. 4, the thickness of the Pt film is more preferably 0.08 ⁇ or more.
  • FIG. 5 shows the relationship among the groove inclination angle A, the duty, and the specific bandwidth ⁇ f.
  • the specific bandwidth ⁇ f is a value represented by (fa ⁇ fr) / fr where the resonance frequency in the surface acoustic wave device 11 is fr and the antiresonance frequency is fa.
  • the specific bandwidth ⁇ f can be 0.20 or more.
  • FIG. 6 shows the relationship between the Cu thickness (H / ⁇ ) and the specific bandwidth ⁇ f when the Cu film thickness, that is, the groove thickness in the surface acoustic wave device 11 is changed.
  • the inclination angle A of the groove was 78 °.
  • the duty when the duty is in the range of 0.25 to 0.45, a Love wave is excited and a large specific bandwidth ⁇ f is obtained. More preferably, if the duty is 0.4 or less, it can be seen that ⁇ f can be 20% or more. In this case, when the duty is less than 0.25, the Love wave excitation state is unstable. Therefore, when an IDT electrode made of Cu is used, the duty is desirably 0.25 or more.
  • the thickness H / ⁇ of the Cu film is preferably 0.16 ⁇ or more and 0.5 ⁇ or less within the range of the duty of 0.25 to 0.45. . Accordingly, it can be seen that the specific bandwidth ⁇ f can be surely set to 0.20 or more, that is, 20% or more. Therefore, the thickness of the Cu film is desirably 0.16 ⁇ or more and 0.5 ⁇ or less. Further, more preferably 0.17 ⁇ or more from FIG. It can also be seen that if the duty is in the range of 0.25 to 0.4 and the thickness of the Cu film is 0.16 ⁇ to 0.5 ⁇ , ⁇ f can be 20% or more.
  • FIG. 7 shows the relationship between the groove inclination angle A, the duty, and the specific bandwidth ⁇ f.
  • the specific bandwidth ⁇ f is a value represented by (fa ⁇ fr) / fr where the resonance frequency in the surface acoustic wave device 11 is fr and the antiresonance frequency is fa.
  • the specific bandwidth ⁇ f can be 0.20 or more when the inclination angle A is in the range of 56 ° to 84 ° and the duty is 0.45 or less.
  • FIG. 8 shows the relationship between the Mo thickness (H / ⁇ ) and the specific bandwidth ⁇ f when the Mo film thickness, that is, the groove thickness in the surface acoustic wave device 11 is changed.
  • the inclination angle A of the groove was 78 °.
  • the thickness H / ⁇ of the Mo film is preferably 0.16 ⁇ or more and 0.3 ⁇ or less within a duty range of 0.35 to 0.45. Accordingly, it can be seen that the specific bandwidth ⁇ f can be reliably set to 0.23 or more, that is, 23% or more. Therefore, the thickness of the Mo film is desirably 0.16 ⁇ or more and 0.3 ⁇ or less.
  • FIG. 9 shows the relationship among the groove inclination angle A, the duty, and the specific bandwidth ⁇ f.
  • the specific bandwidth ⁇ f is a value represented by (fa ⁇ fr) / fr where the resonance frequency in the surface acoustic wave device 11 is fr and the antiresonance frequency is fa.
  • the specific bandwidth ⁇ f can be 0.22 or more.
  • FIG. 10 shows the relationship between the Ni thickness (H / ⁇ ) and the specific bandwidth ⁇ f when the Ni film thickness, that is, the groove thickness in the surface acoustic wave device 11 is changed.
  • the inclination angle A of the groove was 78 °.
  • the thickness H / ⁇ of the Ni film is preferably 0.2 ⁇ or more and 0.3 ⁇ or less within the duty range of 0.4 to 0.45. Accordingly, it can be seen that the specific bandwidth ⁇ f can be surely set to 0.22 or more, that is, 22% or more. Therefore, the thickness of the Ni film is preferably 0.2 ⁇ or more and 0.3 ⁇ or less.
  • FIG. 11 shows the relationship between the groove inclination angle A, the duty, and the specific bandwidth ⁇ f.
  • the specific bandwidth ⁇ f is a value represented by (fa ⁇ fr) / fr where the resonance frequency in the surface acoustic wave device 11 is fr and the antiresonance frequency is fa.
  • the specific bandwidth ⁇ f can be 0.23 or more.
  • FIG. 12 shows the relationship between the Ta thickness (H / ⁇ ) and the specific bandwidth ⁇ f when the Ta film thickness, that is, the groove thickness in the surface acoustic wave device 11 is changed.
  • the inclination angle A of the groove was 78 °.
  • ⁇ f can be 23.5% or more when the duty is 0.4 or less.
  • the duty is desirably 0.3 or more.
  • the thickness H / ⁇ of the Ta film is preferably 0.11 ⁇ or more and 0.3 ⁇ or less in the range of duty of 0.3 to 0.45. Accordingly, it can be seen that the specific bandwidth ⁇ f can be reliably set to 0.21 or more, that is, 21% or more. Therefore, the thickness of the Ta film is preferably 0.11 ⁇ or more and 0.3 ⁇ or less.
  • FIG. 13 shows the relationship among the groove inclination angle A, the duty, and the specific bandwidth ⁇ f.
  • the specific bandwidth ⁇ f is a value represented by (fa ⁇ fr) / fr where the resonance frequency in the surface acoustic wave device 11 is fr and the antiresonance frequency is fa.
  • the specific bandwidth ⁇ f can be 0.23 or more.
  • FIG. 14 shows the relationship between the W thickness (H / ⁇ ) and the specific bandwidth ⁇ f when the thickness of the W in the surface acoustic wave device 11, that is, the thickness of the groove is changed.
  • the inclination angle A of the groove was 78 °.
  • the thickness H / ⁇ of the W film is preferably 0.08 ⁇ or more and 0.3 ⁇ or less within a duty range of 0.3 to 0.45. Accordingly, it can be seen that the specific bandwidth ⁇ f can be reliably set to 0.23 or more, that is, 23% or more. Therefore, the thickness of the W film is desirably 0.08 ⁇ or more and 0.3 ⁇ or less.
  • the IDT electrode is mainly composed of Pt, Cu, Mo, Ni, Ta or W.
  • the IDT electrode is composed of a metal having a density higher than that of Al. What is necessary is just to be carried out and it is not limited to said each metal.
  • the one-port surface acoustic wave resonator has been described.
  • the present invention can also be applied to other surface acoustic wave devices such as a resonator type surface acoustic wave filter. it can. Accordingly, the number and arrangement of the IDT electrodes can be appropriately modified according to the function of the surface acoustic wave device.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 広帯域化を図り得る弾性表面波装置を提供する。 上面1aに溝1bが形成されており、オイラー角が(0°,80°~130°,0°)の範囲にあるLiNbO基板1の上面1aの溝1bにアルミニウムよりも密度が大きい金属が充填されてIDT電極3が形成されており、溝1bが、IDT電極3の電極指の延びる方向に延びており、該溝1bの横断面における溝の側面1b1,1b2が傾斜しており、側面1b1,1b2の溝の底部1b3の延長面1b4とのなす角度である傾斜角度Aが56°~84°の範囲内にあり、IDT電極3のデューティが0.45以下である、弾性表面波装置11。

Description

弾性表面波装置
 本発明は、LiNbO基板の一方面に形成された溝に金属を埋め込むことによりIDT電極が形成されている弾性表面波装置に関し、より詳細には、ラブ波を利用した弾性表面波装置に関する。
 従来、移動体通信機のバンドパスフィルタとして弾性表面波装置が広く用いられている。下記の特許文献1には、LiTaO基板またはLiNbO基板を用いた弾性表面波装置が開示されている。この弾性表面波装置では、LiTaO基板やLiNbO基板からなる圧電基板上に溝が形成されている。この溝にAlを充填することによりIDT電極が形成されている。さらに、圧電基板及びIDT電極を覆うように、SiO膜が積層されている。それによって、温度特性の改善と、高い反射係数とを得ることができる。
 また、特許文献1では、LiNbO基板の上面の溝にAuを充填してなる弾性表面波装置も開示されている。ここでは、LiNbO基板のオイラー角と、Au膜の膜厚とを変化させることにより、電気機械結合係数k及び反射係数が変化することが示されている。
WO2006/011417
 しかしながら、特許文献1では、上記のようにAlに代えてAuを用いた場合、Alと同等もしくはそれ以上の電気機械結合係数k及びAlよりも大きな反射係数が得られている旨が示されているにすぎない。また、Cu、Ni、Mo、Ag、Ta、Wなどの金属においても、Auに近い電気機械結合係数kと反射係数が得られる旨が述べられているにすぎない。なお、特許文献1には、より広い比帯域幅を得ることができる構成については具体的に言及されていない。
 本発明の目的は、より一層広い比帯域幅を得ることができる弾性表面波装置を提供することにある。
 本発明に係る弾性表面波装置は、上面に溝が形成されており、かつオイラー角が(0°,80°~130°,0°)の範囲にあるLiNbO基板を有する。LiNbO基板の上面に設けられている溝に、アルミニウムよりも密度が大きい金属が充填されて、IDT電極が形成されている。上記IDT電極により励振されたラブ波が利用される。本発明では、前記溝が前記IDT電極の電極指の延びる方向に延びており、該溝の横断面における溝の側面が傾斜しており、該側面の前記溝の底部の延長面とのなす角度である傾斜角度Aが56°~84°の範囲内にあり、前記IDT電極のデューティが0.45以下である。
 本発明に係る弾性表面波装置のある特定の局面では、前記IDT電極がPtを主体とする材料からなり、前記デューティが0.2以上である。この場合には、PtからなるIDT電極を用い、20%以上の充分な比帯域幅を得ることができる。より好ましくは、前記IDT電極の電極指の周期により定まる波長をλとしたときに、PtからなるIDT電極の厚みが0.06λ以上、0.5λ以下の範囲とされる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記IDT電極がCuを主体とする材料からなり、前記デューティが0.25以上である。この場合には、IDT電極としてCuを用い、比帯域幅が広い弾性表面波装置を確実に提供することができる。より好ましくは、前記IDT電極の電極指の周期により定まる波長をλとしたときに、CuからなるIDT電極の厚みが0.16λ以上、0.5λ以下の範囲にある。この場合には、比帯域幅をより一層確実に20%以上とすることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記IDT電極がMoを主体とする材料からなり、前記デューティが0.35以上である。この場合には、IDT電極としてMoを用い、比帯域幅が広い弾性表面波装置を確実に提供することができる。より好ましくは、前記IDT電極の電極指の周期により定まる波長をλとしたときに、MoからなるIDT電極の厚みが0.16λ以上、0.3λ以下の範囲にある。この場合には、比帯域幅をより一層確実に20%以上とすることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記IDT電極がNiを主体とする材料からなり、前記デューティが0.4以上である。この場合には、IDT電極としてNiを用い、比帯域幅が広い弾性表面波装置を確実に提供することができる。より好ましくは、前記IDT電極の電極指の周期により定まる波長をλとしたときに、NiからなるIDT電極の厚みが0.2λ以上、0.3λ以下の範囲にある。この場合には、比帯域幅をより一層確実に20%以上とすることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記IDT電極がTaを主体とする材料からなり、前記デューティが0.3以上である。この場合には、IDT電極としてTaを用い、比帯域幅が広い弾性表面波装置を確実に提供することができる。より好ましくは、前記IDT電極の電極指の周期により定まる波長をλとしたときに、TaからなるIDT電極の厚みが0.11λ以上、0.3λ以下の範囲にある。この場合には、比帯域幅をより一層確実に20%以上とすることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記IDT電極がWを主体とする材料からなり、前記デューティが0.3以上である。この場合には、IDT電極としてWを用い、比帯域幅が広い弾性表面波装置を確実に提供することができる。より好ましくは、前記IDT電極の電極指の周期により定まる波長をλとしたときに、WからなるIDT電極の厚みが0.08λ以上、0.3λ以下の範囲にある。この場合には、比帯域幅をより一層確実に20%以上とすることができる。
 本発明に係る弾性表面波装置によれば、アルミニウムよりも密度が大きい金属からなるIDT電極が溝に該金属を充填することにより形成されており、該溝の傾斜角度Aが56°~84°の範囲にあり、IDT電極のデューティが0.45以下とされており、さらにLiNbO基板のオイラー角が上記特定の範囲とされているため、弾性表面波装置の比帯域幅を広げることが可能となる。従って、広帯域の共振子やバンドパスフィルタを提供することができる。
図1(a)及び図1(b)は本発明の一実施形態に係る弾性表面波装置の模式的平面図及びその要部を示す部分表面断面図である。 図2は、CuからなるIDT電極がLiNbO基板の上面の溝にCuを充填することにより形成されている弾性表面波装置、LiNbO基板上にCu膜からなるIDT電極を形成した構造におけるオイラー角のθと、電気機械結合係数との関係を示す図である。 図3は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にPtを充填してIDT電極が形成されている弾性表面波装置における、溝の傾斜角度Aと、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図4は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にPtを充填してIDT電極が形成されている弾性表面波装置における、Pt膜の厚み(H/λ)と、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図5は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にCuを充填してIDT電極が形成されている弾性表面波装置における、溝の傾斜角度Aと、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図6は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にCuを充填してIDT電極が形成されている弾性表面波装置における、Cu膜の厚み(H/λ)と、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図7は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にMoを充填してIDT電極が形成されている弾性表面波装置における、溝の傾斜角度Aと、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図8は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にMoを充填してIDT電極が形成されている弾性表面波装置における、Mo膜の厚み(H/λ)と、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図9は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にNiを充填してIDT電極が形成されている弾性表面波装置における、溝の傾斜角度Aと、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図10は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にNiを充填してIDT電極が形成されている弾性表面波装置における、Ni膜の厚み(H/λ)と、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図11は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にTaを充填してIDT電極が形成されている弾性表面波装置における、溝の傾斜角度Aと、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図12は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にTaを充填してIDT電極が形成されている弾性表面波装置における、Ta膜の厚み(H/λ)と、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図13は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にWを充填してIDT電極が形成されている弾性表面波装置における、溝の傾斜角度Aと、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。 図14は、オイラー角(0°,112°,0°)のLiNbO基板の上面の溝にWを充填してIDT電極が形成されている弾性表面波装置における、W膜の厚み(H/λ)と、IDT電極のデューティと、比帯域幅Δfとの関係を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 図1(a)に示すように、本発明の一実施形態に係る弾性表面波装置11は、LiNbO基板1を有する。図1(a)に示すように、LiNbO基板1上に、IDT電極3と、IDT電極3の表面波伝搬方向両側に配置された反射器12,13とが形成されている。図1(b)に示すように、LiNbO基板1の上面1aに複数本の溝1bが形成されている。この溝1bは、IDT電極の電極指構成部分に相当する。溝1bに、Alよりも高密度の金属が充填されて、IDT電極3が形成されている。図1(a)に示した反射器12,13も、同様に、複数本の溝にAlよりも密度が大きい金属を充填することにより形成されている。
 なお、図1(b)に示すように、上記溝1bに充填されている金属の上面と、LiNbO基板1の上面1aとはほぼ面一とされている。
 また、図1(b)に示すように、溝1bの側面1b1,1b2は、傾斜面とされている。IDT電極3の電極指は、弾性波伝搬方向と直交する方向に延びている。図1(b)では、この電極指の横断面に相当する部分が示されている。側面1b1,1b2は、溝1bの底面1b3に対して直交する方向から傾斜されている。より具体的には、図1(b)に示す傾斜角度Aが、56°~84°の範囲内とされている。なお、傾斜角度Aとは、上記側面1b1を例にとると、側面1b1と上記底面1b3の延長部分1b4とのなす角度、言い換えれば側面1b1と電極指上面3aとのなす角度である。また、後述するように、IDT電極3のデューティは0.45以下とされている。なお、デューティとは、溝1bの上面、すなわち電極指上面3aの幅と、電極指上面3aと隣接する電極指との間隔を足し合わせた値との比で表される値である。さらに、上記LiNbO基板1のオイラー角は、(0°,80°~130°,0°)とされている。本実施形態では、上記構成を備えるため、大きな比帯域幅Δfが得られる。これを、以下においてより具体的に説明する。
 図2は、LiNbOのオイラー角(0°,θ,0°)のθと、電気機械結合係数kとの関係を示す図である。図2では、IDT電極はCuにより形成されており、その厚みは0.1λ、0.16λ、0.2λまたは0.5λとされている。ここで、λは伝搬する弾性波の波長である。
 図2の実線Bは、Cuの厚みが0.1λである場合の上記実施形態の弾性表面波装置11におけるラブ波の電気機械結合係数kを示し、実線CはCuの厚みが0.1λである場合のレイリー波の電気機械結合係数kの変化を示す。また、破線Dは、Cuの厚みが0.1λである場合のLiNbOの上面に溝を形成せずに、上面上に厚み0.1λのCu膜からなるIDT電極を形成した構造におけるラブ波の電気機械結合係数kの変化を示し、破線Eはレイリー波の電気機械結合係数kの変化を示す。
 また、図2中の二点鎖線F,実線G及び一点鎖線Hは、Cu厚みが、それぞれ、0.16λ、0.2λまたは0.5λの場合の上記実施形態の弾性表面波装置11におけるラブ波の電気機械結合係数kの変化を示す。
 図2から明らかなように、オイラー角のθが80°~130°の範囲内であれば、溝にCuを充填してなる弾性表面波装置11では、ラブ波の電気機械結合係数kを0.3以上と大きくし得ることがわかる。従って、比帯域幅を効果的に高め得ることがわかる。
 なお、図2では、電極材料としてCuを用いた場合を示したが、電極材料としてPt、AuなどのAlよりも密度が大きい他の金属を用いた場合においても、オイラー角のθが80°~130°の範囲内であれば、ラブ波の電気機械結合係数kを効果的に高め得ることが可能である。
 次に、電極材料を、Pt、Cuとしたときの場合につき、それぞれ分けて説明することとする。
 (PtからなるIDT電極の場合)
 電極材料としてPtを用いた。なお、電極材料はPtを主体として構成されておればよく、ここで、Ptを主体とする、とは、Ptの(密度×電極厚み)の値と、複数種の電極材料からなるIDT電極全体の密度と電極との厚みの積の合計との比が0.5を超える場合をいうものとする。ここで、IDT電極全体の密度と電極厚みの積の合計とは、下記の式で表される値である。
Figure JPOXMLDOC01-appb-M000001
 上記式において、ρは密度、Tは電極厚みを示し、nはIDT電極を構成している電極層の数である。
 LiNbO基板のオイラー角は(0°,112°,0°)とした。溝1bにおける傾斜角度Aを種々変更し、ただし、PtからなるIDT電極の厚みは0.1λとし、種々の弾性表面波装置11を作製した。図3に、溝の傾斜角度Aと、デューティと、ラブ波の比帯域幅Δfとの関係を示す。なお、比帯域幅Δfとは、弾性表面波装置11における共振周波数をfr、***振周波数をfaとしたとき、(fa-fr)/frで表される値である。
 図3から明らかなように、傾斜角度Aが56°~84°の範囲内であり、かつデューティが0.45以下であれば、比帯域幅Δfを0.20以上とし得ることがわかる。
 また、図4は、上記弾性表面波装置11におけるPtの膜厚すなわち溝の厚みを変化させた場合のPtの厚み(H/λ)と比帯域幅Δfとの関係を示す。ここでは、上記溝の傾斜角度Aは78°とした。
 図4から明らかなように、上記デューティが0.2~0.45の範囲内であれば、ラブ波を励振し、大きな比帯域幅Δfの得られることがわかる。なお、この場合、デューティが0.2未満では、ラブ波の励振状態が不安定であった。従って、PtからなるIDT電極を用いた場合、デューティは0.2以上であることが望ましい。
 また、図4から明らかなように、デューティが0.2~0.45の範囲内において、Pt膜の厚みH/λは、0.06λ以上、0.5λ以下であることが望ましいことがわかる。それによって、比帯域幅Δfを確実に0.20以上、すなわち20%以上とし得ることがわかる。よって、Pt膜の厚みは、0.06λ以上、0.5λ以下であることが望ましい。また図4より、Pt膜の厚みは0.08λ以上がより好ましい。
 (CuからなるIDT電極の場合)
 電極材料としてCuを用いた。なお、電極材料はCuを主体として構成されておればよい。LiNbO基板のオイラー角は(0°,112°,0°)とした。溝1bにおける傾斜角度Aを種々変更し、ただし、CuからなるIDT電極の厚みは0.35λとし、種々の弾性表面波装置11を作製した。図5に、溝の傾斜角度Aと、デューティと、比帯域幅Δfとの関係を示す。なお、比帯域幅Δfとは、弾性表面波装置11における共振周波数をfr、***振周波数をfaとしたとき、(fa-fr)/frで表される値である。
 図5から明らかなように、傾斜角度Aが56°~84°の範囲内であり、かつデューティが0.45以下であれば、比帯域幅Δfを0.20以上とし得ることがわかる。
 また、図6は、上記弾性表面波装置11におけるCuの膜厚すなわち溝の厚みを変化させた場合のCuの厚み(H/λ)と比帯域幅Δfとの関係を示す。ここでは、上記溝の傾斜角度Aは78°とした。
 図6から明らかなように、上記デューティが0.25~0.45の範囲内であれば、ラブ波を励振し、大きな比帯域幅Δfの得られることがわかる。より好ましくは、デューティが0.4以下であればΔfを20%以上とし得ることが分かる。なお、この場合、デューティが0.25未満では、ラブ波の励振状態が不安定であった。従って、CuからなるIDT電極を用いた場合、デューティは0.25以上であることが望ましい。
 また、図6から明らかなように、デューティが0.25~0.45の範囲内において、Cu膜の厚みH/λは、0.16λ以上、0.5λ以下であることが望ましいことがわかる。それによって、比帯域幅Δfを確実に0.20以上、すなわち20%以上とし得ることがわかる。よって、Cu膜の厚みは、0.16λ以上、0.5λ以下であることが望ましい。また、より好ましくは図6より0.17λ以上が好ましい。また、デューティが0.25~0.4の範囲内でかつCu膜の厚みが0.16λ~0.5λであれば、Δfを20%以上とし得ることが分かる。
 (MoからなるIDT電極の場合)
 電極材料としてMoを用いた。なお、電極材料はMoを主体として構成されておればよい。LiNbO基板のオイラー角は(0°,112°,0°)とした。溝1bにおける傾斜角度Aを種々変更し、ただし、MoからなるIDT電極の厚みは0.2λとし、種々の弾性表面波装置11を作製した。図7に、溝の傾斜角度Aと、デューティと、比帯域幅Δfとの関係を示す。なお、比帯域幅Δfとは、弾性表面波装置11における共振周波数をfr、***振周波数をfaとしたとき、(fa-fr)/frで表される値である。
 図7から明らかなように、傾斜角度Aが56°~84°の範囲内であり、かつデューティが0.45以下であれば、比帯域幅Δfを0.20以上とし得ることがわかる。
 また、図8は、上記弾性表面波装置11におけるMoの膜厚すなわち溝の厚みを変化させた場合のMoの厚み(H/λ)と比帯域幅Δfとの関係を示す。ここでは、上記溝の傾斜角度Aは78°とした。
 図8から明らかなように、上記デューティが0.35~0.45の範囲内であれば、ラブ波を励振し、大きな比帯域幅Δfの得られることがわかる。
 また、図8から明らかなように、デューティが0.35~0.45の範囲内において、Mo膜の厚みH/λは、0.16λ以上、0.3λ以下であることが望ましいことがわかる。それによって、比帯域幅Δfを確実に0.23以上、すなわち23%以上とし得ることがわかる。よって、Mo膜の厚みは、0.16λ以上、0.3λ以下であることが望ましい。
 (NiからなるIDT電極の場合)
 電極材料としてNiを用いた。なお、電極材料はNiを主体として構成されておればよい。LiNbO基板のオイラー角は(0°,112°,0°)とした。溝1bにおける傾斜角度Aを種々変更し、ただし、NiからなるIDT電極の厚みは0.25λとし、種々の弾性表面波装置11を作製した。図9に、溝の傾斜角度Aと、デューティと、比帯域幅Δfとの関係を示す。なお、比帯域幅Δfとは、弾性表面波装置11における共振周波数をfr、***振周波数をfaとしたとき、(fa-fr)/frで表される値である。
 図9から明らかなように、傾斜角度Aが56°~84°の範囲内であり、かつデューティが0.45以下であれば、比帯域幅Δfを0.22以上とし得ることがわかる。
 また、図10は、上記弾性表面波装置11におけるNiの膜厚すなわち溝の厚みを変化させた場合のNiの厚み(H/λ)と比帯域幅Δfとの関係を示す。ここでは、上記溝の傾斜角度Aは78°とした。
 図10から明らかなように、上記デューティが0.4~0.45の範囲内であれば、ラブ波を励振し、大きな比帯域幅Δfの得られることがわかる。
 また、図10から明らかなように、デューティが0.4~0.45の範囲内において、Ni膜の厚みH/λは、0.2λ以上、0.3λ以下であることが望ましいことがわかる。それによって、比帯域幅Δfを確実に0.22以上、すなわち22%以上とし得ることがわかる。よって、Ni膜の厚みは、0.2λ以上、0.3λ以下であることが望ましい。
 (TaからなるIDT電極の場合)
 電極材料としてTaを用いた。なお、電極材料はTaを主体として構成されておればよい。LiNbO基板のオイラー角は(0°,112°,0°)とした。溝1bにおける傾斜角度Aを種々変更し、ただし、TaからなるIDT電極の厚みは0.15λとし、種々の弾性表面波装置11を作製した。図11に、溝の傾斜角度Aと、デューティと、比帯域幅Δfとの関係を示す。なお、比帯域幅Δfとは、弾性表面波装置11における共振周波数をfr、***振周波数をfaとしたとき、(fa-fr)/frで表される値である。
 図11から明らかなように、傾斜角度Aが56°~84°の範囲内であり、かつデューティが0.45以下であれば、比帯域幅Δfを0.23以上とし得ることがわかる。
 また、図12は、上記弾性表面波装置11におけるTaの膜厚すなわち溝の厚みを変化させた場合のTaの厚み(H/λ)と比帯域幅Δfとの関係を示す。ここでは、上記溝の傾斜角度Aは78°とした。
 図12から明らかなように、上記デューティが0.3~0.45の範囲内であれば、ラブ波を励振し、大きな比帯域幅Δfの得られることがわかる。より好ましくは、デューティが0.4以下であればΔfを23.5%以上とし得ることが分かる。なお、この場合、デューティが0.3未満では、ラブ波の励振状態が不安定であった。従って、TaからなるIDT電極を用いた場合、デューティは0.3以上であることが望ましい。
 また、図12から明らかなように、デューティが0.3~0.45の範囲内において、Ta膜の厚みH/λは、0.11λ以上、0.3λ以下であることが望ましいことがわかる。それによって、比帯域幅Δfを確実に0.21以上、すなわち21%以上とし得ることがわかる。よって、Ta膜の厚みは、0.11λ以上、0.3λ以下であることが望ましい。
 (WからなるIDT電極の場合)
 電極材料としてWを用いた。なお、電極材料はWを主体として構成されておればよい。LiNbO基板のオイラー角は(0°,112°,0°)とした。溝1bにおける傾斜角度Aを種々変更し、ただし、WからなるIDT電極の厚みは0.1λとし、種々の弾性表面波装置11を作製した。図13に、溝の傾斜角度Aと、デューティと、比帯域幅Δfとの関係を示す。なお、比帯域幅Δfとは、弾性表面波装置11における共振周波数をfr、***振周波数をfaとしたとき、(fa-fr)/frで表される値である。
 図13から明らかなように、傾斜角度Aが56°~84°の範囲内であり、かつデューティが0.45以下であれば、比帯域幅Δfを0.23以上とし得ることがわかる。
 また、図14は、上記弾性表面波装置11におけるWの膜厚すなわち溝の厚みを変化させた場合のWの厚み(H/λ)と比帯域幅Δfとの関係を示す。ここでは、上記溝の傾斜角度Aは78°とした。
 図14から明らかなように、上記デューティが0.3~0.45の範囲内であれば、ラブ波を励振し、大きな比帯域幅Δfの得られることがわかる。
 また、図14から明らかなように、デューティが0.3~0.45の範囲内において、W膜の厚みH/λは、0.08λ以上、0.3λ以下であることが望ましいことがわかる。それによって、比帯域幅Δfを確実に0.23以上、すなわち23%以上とし得ることがわかる。よって、W膜の厚みは、0.08λ以上、0.3λ以下であることが望ましい。
 (IDT電極を構成する金属材料)
 図3~図14では、IDT電極がPt、Cu、Mo、Ni、TaまたはWを主体として構成される場合につき説明したが、本発明では、IDT電極は、Alよりも密度が大きい金属により構成されておればよく、上記各金属に限定されるものではない。
 また、図1(a)及び(b)では、一ポート型弾性表面波共振子につき説明したが、共振子型弾性表面波フィルタなどの他の弾性表面波装置にも本発明を適用することができる。従って、IDT電極の数や配置についても、弾性表面波装置の機能に応じて適宜変形することができる。
1…LiNbO基板
1a…上面
1b…溝
1b1,1b2…側面
1b3…底面
1b4…延長部
3…IDT電極
3a…電極指上面
11…弾性表面波装置
12,13…反射器

Claims (13)

  1.  上面に溝が形成されており、かつオイラー角が(0°,80°~130°,0°)の範囲にあるLiNbO基板と、
     前記LiNbO基板の上面に設けられている前記溝に充填されており、かつアルミニウムよりも密度が大きい金属からなるIDT電極とを備え、ラブ波を利用しており、
     前記溝が前記IDT電極の電極指の延びる方向に延びており、該溝の横断面における溝の側面が傾斜しており、該側面の前記溝の底部の延長面とのなす角度である傾斜角度Aが56°~84°の範囲内にあり、前記IDT電極のデューティが0.45以下である、弾性表面波装置。
  2.  前記IDT電極がPtを主体とする材料からなり、前記デューティが0.2以上である、請求項1に記載の弾性表面波装置。
  3.  前記IDT電極の電極指の周期により定まる波長をλとしたときに、前記IDT電極の厚みが0.06λ以上、0.5λ以下の範囲にある、請求項2に記載の弾性表面波装置。
  4.  前記IDT電極がCuを主体とする材料からなり、前記デューティが0.25以上である、請求項1に記載の弾性表面波装置。
  5.  前記IDT電極の電極指の周期により定まる波長をλとしたときに、前記IDT電極の厚みが0.16λ以上、0.5λ以下の範囲にある、請求項4に記載の弾性表面波装置。
  6.  前記IDT電極がMoを主体とする材料からなり、前記デューティが0.35以上である、請求項1に記載の弾性表面波装置。
  7.  前記IDT電極の電極指の周期により定まる波長をλとしたときに、前記IDT電極の厚みが0.16λ以上、0.3λ以下にある、請求項6に記載の弾性表面波装置。
  8.  前記IDT電極がNiを主体とする材料からなり、前記デューティが0.4以上である、請求項1に記載の弾性表面波装置。
  9.  前記IDT電極の電極指の周期により定まる波長をλとしたときに、前記IDT電極の厚みが0.2λ以上、0.3λ以下にある、請求項8に記載の弾性表面波装置。
  10.  前記IDT電極がTaを主体とする材料からなり、前記デューティが0.3以上である、請求項1に記載の弾性表面波装置。
  11.  前記IDT電極の電極指の周期により定まる波長をλとしたときに、前記IDT電極の厚みが0.11λ以上、0.3λ以下にある、請求項10に記載の弾性表面波装置。
  12.  前記IDT電極がWを主体とする材料からなり、前記デューティが0.3以上である、請求項1に記載の弾性表面波装置。
  13.  前記IDT電極の電極指の周期により定まる波長をλとしたときに、前記IDT電極の厚みが0.08λ以上、0.3λ以下にある、請求項12に記載の弾性表面波装置。
PCT/JP2013/076540 2012-10-05 2013-09-30 弾性表面波装置 WO2014054580A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539729A JP5757369B2 (ja) 2012-10-05 2013-09-30 弾性表面波装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-223013 2012-10-05
JP2012223013 2012-10-05
JP2012-283023 2012-12-26
JP2012283023 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014054580A1 true WO2014054580A1 (ja) 2014-04-10

Family

ID=50434907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076540 WO2014054580A1 (ja) 2012-10-05 2013-09-30 弾性表面波装置

Country Status (2)

Country Link
JP (1) JP5757369B2 (ja)
WO (1) WO2014054580A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068877A1 (ja) * 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
KR20210145804A (ko) 2019-04-03 2021-12-02 도호쿠 다이가쿠 고차 모드 표면 탄성파 디바이스
WO2021246454A1 (ja) * 2020-06-03 2021-12-09 株式会社村田製作所 弾性波装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039298B (zh) * 2018-07-27 2022-06-24 开元通信技术(厦门)有限公司 声表面波器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058544A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ
WO2012014791A1 (ja) * 2010-07-30 2012-02-02 株式会社村田製作所 弾性波装置の製造方法
WO2012036178A1 (ja) * 2010-09-17 2012-03-22 株式会社村田製作所 弾性波装置
JP2012129735A (ja) * 2010-12-14 2012-07-05 Murata Mfg Co Ltd 弾性表面波装置及び磁気センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058544A1 (ja) * 2008-11-18 2010-05-27 株式会社村田製作所 チューナブルフィルタ
WO2012014791A1 (ja) * 2010-07-30 2012-02-02 株式会社村田製作所 弾性波装置の製造方法
WO2012036178A1 (ja) * 2010-09-17 2012-03-22 株式会社村田製作所 弾性波装置
JP2012129735A (ja) * 2010-12-14 2012-07-05 Murata Mfg Co Ltd 弾性表面波装置及び磁気センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068877A1 (ja) * 2015-10-23 2017-04-27 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
US10425116B2 (en) 2015-10-23 2019-09-24 Murata Manufacturing Co., Ltd. Elastic wave device, high frequency front-end circuit, and communication apparatus
KR20210145804A (ko) 2019-04-03 2021-12-02 도호쿠 다이가쿠 고차 모드 표면 탄성파 디바이스
DE112020001723T5 (de) 2019-04-03 2021-12-16 Tohoku University Akustische oberflächenwellenvorrichtungen hoher ordnung
WO2021246454A1 (ja) * 2020-06-03 2021-12-09 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
JP5757369B2 (ja) 2015-07-29
JPWO2014054580A1 (ja) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5747987B2 (ja) 弾性波装置
JP4636179B2 (ja) 弾性表面波装置
WO2016084526A1 (ja) 弾性波装置
US8680744B2 (en) Surface acoustic wave device
WO2016047255A1 (ja) 弾性波装置
US20220029601A1 (en) Acoustic wave device
JP4636178B2 (ja) 弾性表面波装置
WO2020204045A1 (ja) 高次モード弾性表面波デバイス
JPWO2008149620A1 (ja) 弾性表面波装置
JP2010278830A (ja) ラダー型フィルタ及びその製造方法並びにデュプレクサ
JP7497750B2 (ja) 弾性波装置
JP5757369B2 (ja) 弾性表面波装置
JP2017228945A5 (ja)
JP4947055B2 (ja) 弾性境界波装置
JP5110091B2 (ja) 弾性表面波装置
WO2010137648A1 (ja) ラダー型フィルタ及び弾性波共振子
JP5206692B2 (ja) 弾性表面波装置
JP5176863B2 (ja) 弾性波装置
WO2009090715A1 (ja) 弾性表面波装置
JP2015012324A (ja) 弾性境界波装置
JP2009194895A (ja) 弾性表面波装置
KR20220082034A (ko) 탄성파 장치
JP6335492B2 (ja) 弾性波素子
CN109417371B (zh) 弹性波装置
CN112054780B (zh) 弹性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844345

Country of ref document: EP

Kind code of ref document: A1