WO2014054189A1 - 電子部品用金属材料及びその製造方法 - Google Patents

電子部品用金属材料及びその製造方法 Download PDF

Info

Publication number
WO2014054189A1
WO2014054189A1 PCT/JP2012/078200 JP2012078200W WO2014054189A1 WO 2014054189 A1 WO2014054189 A1 WO 2014054189A1 JP 2012078200 W JP2012078200 W JP 2012078200W WO 2014054189 A1 WO2014054189 A1 WO 2014054189A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal material
electronic parts
parts according
outermost
Prior art date
Application number
PCT/JP2012/078200
Other languages
English (en)
French (fr)
Inventor
澁谷 義孝
深町 一彦
篤志 児玉
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012222567A external-priority patent/JP5284526B1/ja
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to EP12886098.8A priority Critical patent/EP2905356B1/en
Priority to US14/432,978 priority patent/US9580783B2/en
Priority to KR1020157011263A priority patent/KR20150065795A/ko
Priority to KR1020167033054A priority patent/KR102011186B1/ko
Priority to CN201280076223.5A priority patent/CN104685101B/zh
Publication of WO2014054189A1 publication Critical patent/WO2014054189A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • C25D3/14Electroplating: Baths therefor from solutions of nickel or cobalt from baths containing acetylenic or heterocyclic compounds
    • C25D3/18Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/64Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium

Definitions

  • the present invention relates to a metal material for electronic parts and a manufacturing method thereof.
  • a connector that is a connection part for consumer and in-vehicle electronic devices uses a material in which a surface of brass or phosphor bronze is plated with Ni or Cu and further plated with Sn or Sn alloy.
  • Sn or Sn alloy plating generally requires characteristics such as low contact resistance and high solder wettability, and in recent years, it is also required to reduce insertion force when mating a male terminal and a female terminal formed by plating a plated material. ing.
  • whiskers that are needle-like crystals that cause problems such as short circuits may occur on the plating surface in the manufacturing process, and it is necessary to suppress these whiskers well.
  • Patent Document 1 a surface layer having a thickness of 0.05 ⁇ m or more from the surface is partially coated with Ag or an Ag alloy on a substrate made of Ni, Co or an alloy thereof, A silver-coated electric material is disclosed in which In, Zn, Sn, Pd or an alloy thereof is coated to a thickness of 0.01 to 1.0 ⁇ m on a partially coated Ag or Ag alloy layer. According to this, it is described that excellent solderability as an electrical material and connectivity in mechanical electrical connection can be maintained over a long period of time.
  • Patent Document 2 a first coating layer of Ni, Co, or an alloy containing these is provided on the surface of a Cu or Cu alloy base material, and a second coating layer of Ag or an Ag alloy is provided on the surface, and the surface is further provided.
  • a Sn or Sn alloy coating material provided with a coating layer of Sn or Sn alloy. According to this, it is possible to provide a Sn or Sn alloy coating material that has no surface oxidative discoloration, little increase in contact resistance, and good appearance and contact characteristics over a long period of time regardless of use at high temperatures. Are listed.
  • Patent Document 3 a first coating layer of Ni, Co or an alloy containing these is provided on the surface of a Cu or Cu alloy base material, a second coating layer of Ag or an Ag alloy is provided on the surface, and the surface is further provided.
  • an Sn or Sn alloy coating material provided with an Sn or Sn alloy melt-solidified coating layer. According to this, it is possible to provide a Sn or Sn alloy coating material that has no surface oxidative discoloration, little increase in contact resistance, good appearance and contact characteristics over a long period of time regardless of use at high temperatures. Are listed.
  • Patent Document 4 discloses an electrical contact material in which an Ag layer or an Ag alloy layer is coated on one surface of a conductive strip and an Sn layer or an Sn alloy layer is coated on the other surface. According to this, it is described that an electrical contact material or an electrical contact component with little deterioration of solderability even when exposed to a sulfurized environment or the like can be provided.
  • Patent Document 5 includes (a) any one of a metal thin film for a base selected from the group consisting of silver, palladium, platinum, bismuth, indium, nickel, zinc, titanium, zirconium, aluminum, chromium, and antimony.
  • a method for preventing tin whiskers by pretreatment which is characterized in that after being formed on an object to be plated, (b) a tin or tin alloy plating film is formed on the metal thin film for the base. And according to this, it is possible to effectively prevent tin whiskers by a simple operation in a tin-based film formed in order to ensure good solderability on the surface of an object to be plated such as a copper-based substrate. It is stated that you can.
  • a silver plating layer is formed on the surface of a plating base, and further a tin, indium or zinc plating layer having a thickness of 0.001 to 0.1 ⁇ m is formed on the surface of the silver plating layer.
  • a plating structure obtained by heat-treating a silver plating structure is obtained.
  • Patent Document 1 has a problem that the contact resistance increases in a region where Sn is formed extremely thin. Further, the techniques described in Patent Documents 2 to 5 have good solder wettability or contact characteristics, but are not satisfactory in terms of insertion / removability and whisker suppression. Further, in the technique described in Patent Document 6, although the contact resistance is improved, it cannot be said that the solder wettability is satisfactory. As described above, the metal material for electronic parts having the conventional Sn / Ag / Ni base plating structure has problems in insertion / removability and whiskers.
  • the present invention has been made to solve the above-described problems, and has low insertion / extraction (low insertion / extraction indicates that the insertion force generated when a male terminal and a female terminal are fitted together is low), low whisker It is another object of the present invention to provide a metal material for electronic parts having high durability and a method for producing the same.
  • the present inventors have provided an intermediate layer and an outermost layer in order on a base material, and formed the intermediate layer and the outermost layer with a predetermined metal and with a predetermined thickness or adhesion amount. It has been found that a metal material for electronic parts having all of insertability / removability, low whisker property and high durability can be produced.
  • the present invention completed on the basis of the above knowledge, in one aspect, comprises a base material, an outermost layer of the base material, an A layer formed of Sn, In, or an alloy thereof, the base material and A A middle layer, and a B layer formed of Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy thereof, and the outermost layer (A layer)
  • a metal material for electronic parts having a low whisker property and high durability, having a thickness of 0.002 to 0.2 ⁇ m and a thickness of the intermediate layer (B layer) larger than 0.3 ⁇ m.
  • a base material, an outermost layer of the base material, and formed between Sn, In, or an alloy thereof, and the base material and the A layer are provided.
  • an intermediate layer, and a B layer formed of Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy thereof, and the amount of Sn and In deposited on the outermost layer (A layer) Is 1 to 150 ⁇ g / cm 2 , and the adhesion amount of Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir in the middle layer (B layer) is more than 330 ⁇ g / cm 2 , low whisker property and high durability It is a metal material for electronic parts having properties.
  • the metal material for electronic parts of the present invention has an alloy composition of the outermost layer (A layer) of Sn, In, or a total of Sn and In of 50% by mass or more, and a remaining alloy component of Ag, It consists of one or more metals selected from the group consisting of As, Au, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, W, and Zn.
  • the alloy composition of the intermediate layer (B layer) is Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or Ag, Au, Pt, and Pd.
  • Ru, Rh, Os and Ir in total is 50% by mass or more, and the remaining alloy components are Bi, Cd, Co, Cu, Fe, In, Mn, Mo, Ni, Pb, Sb, Se, Sn, W. , Tl, Zn selected from the group consisting of one or two or more metals.
  • the surface of the outermost layer (A layer) has a Vickers hardness of Hv90 or more.
  • the metal material for electronic parts according to the present invention hits the surface with a load of 980.7 mN and a load holding time of 15 seconds on the surface of the outermost layer (A layer) by an ultra micro hardness test.
  • the indentation hardness of the surface of the outermost layer (A layer), which is the hardness obtained by measuring in this manner, is 1000 MPa or more.
  • the metal material for electronic parts of the present invention has a Vickers hardness of Hv1000 or less on the surface of the outermost layer (A layer).
  • the metal material for electronic parts according to the present invention hits the surface with a load of 980.7 mN and a load holding time of 15 seconds on the surface of the outermost layer (A layer) by an ultra micro hardness test.
  • the indentation hardness of the surface of the outermost layer (A layer), which is the hardness obtained by the measurement, is 10000 MPa or less.
  • the arithmetic average height (Ra) of the surface of the outermost layer (A layer) is 0.1 ⁇ m or less.
  • the maximum height (Rz) of the surface of the outermost layer (A layer) is 1 ⁇ m or less.
  • the metal material for electronic parts of the present invention has a reflection density of 0.3 or more on the surface of the outermost layer (A layer).
  • the metal material for electronic parts according to the present invention is subjected to depth analysis by XPS (X-ray photoelectron spectroscopy), and the Sn or In atomic concentration (at%) of the outermost layer (A layer)
  • XPS X-ray photoelectron spectroscopy
  • the position (D 1 ) showing the highest value of Ag, Au, Pt, Pd, Ru, Rh, Os, or the atomic concentration (at%) of the intermediate layer (B layer) showing the highest value (D 2 ) Exists in the order of D 1 and D 2 from the outermost surface.
  • the metal material for electronic parts according to the present invention is subjected to depth analysis by XPS (X-ray photoelectron spectroscopy), and the Sn or In atomic concentration (at%) of the outermost layer (A layer) Is at least 10 at%.
  • XPS X-ray photoelectron spectroscopy
  • the metal material for electronic parts of the present invention is provided between the base material and the B layer to form a lower layer, and is made of a group consisting of Ni, Cr, Mn, Fe, Co, and Cu.
  • a C layer formed of one or two or more selected types is further provided.
  • the composition of the alloy of the lower layer is 50% by mass or more in total of Ni, Cr, Mn, Fe, Co, Cu, and B , P, Sn, Zn, or one or more selected from the group consisting of Zn.
  • the metal material for electronic parts according to the present invention is subjected to depth analysis by XPS (X-ray photoelectron spectroscopy), and the Sn or In atomic concentration (at%) of the outermost layer (A layer)
  • the position (D 3 ) indicating the highest atomic concentration (at%) of Ni, Cr, Mn, Fe, Co or Cu in the lower layer (C layer) is in the order of D 1 , D 2 , D 3 from the outermost surface.
  • the metal material for electronic parts according to the present invention is subjected to depth analysis by XPS (X-ray photoelectron spectroscopy), and the Sn or In atomic concentration (at%) of the outermost layer (A layer)
  • the depth at which the atomic concentration (at%) of Ni, Cr, Mn, Fe, Co or Cu in the lower layer (C layer) is 25% or more is 50 nm or more.
  • the lower layer (C layer) has a thickness of 0.05 ⁇ m or more.
  • the adhesion amount of Ni, Cr, Mn, Fe, Co, Cu in the lower layer (C layer) is 0.03 mg / cm 2 or more.
  • the outermost layer (A layer) has a thickness of 0.01 to 0.1 ⁇ m.
  • the amount of Sn and In deposited on the outermost layer (A layer) is 7 to 75 ⁇ g / cm 2 .
  • the thickness of the intermediate layer (B layer) is more than 0.3 ⁇ m and not more than 0.6 ⁇ m.
  • the metal material for electronic parts of the present invention has an adhesion amount of Ag, Au, Pt, Pd, Ru, Rh, Os, Ir of the intermediate layer (B layer) exceeding 330 ⁇ g / cm 2 and 660 ⁇ g. / Cm 2 or less.
  • the surface of the lower layer (C layer) has a Vickers hardness of Hv300 or more.
  • the metal material for electronic parts according to the present invention has a Vickers hardness and thickness of the surface of the lower layer (C layer) represented by the following formula: Vickers hardness (Hv) ⁇ ⁇ 376.22 Ln (thickness ⁇ m) +86.411 Meet.
  • the metal material for electronic parts according to the present invention hits the surface of the lower layer (C layer) with a load of 980.7 mN and a load holding time of 15 seconds by an ultra-micro hardness test.
  • the indentation hardness of the surface of the lower layer (C layer), which is the hardness obtained by measurement, is 2500 MPa or more.
  • the metal material for electronic parts according to the present invention has the following indentation hardness and thickness of the lower layer (C layer): Indentation hardness (MPa) ⁇ ⁇ 3998.4Ln (thickness ⁇ m) +1178.9 Meet.
  • the Vickers hardness of the surface of the lower layer (C layer) is Hv 1000 or less.
  • the metal material for electronic parts according to the present invention hits the surface of the lower layer (C layer) with a load of 980.7 mN and a load holding time of 15 seconds by an ultra-micro hardness test.
  • the indentation hardness of the surface of the lower layer (C layer), which is the hardness obtained by measurement, is 10,000 MPa or less.
  • the substrate is a metal substrate, and the Vickers hardness of the surface of the metal substrate is Hv90 or more.
  • the base material is a metal base material, and a load of 980.7 mN is maintained on the surface of the metal base material by an ultra-micro hardness test.
  • the indentation hardness of the surface of the metal base material which is the hardness obtained by measuring with a strike at a time of 15 seconds, is 1000 MPa or more.
  • the base material is a metal base material
  • the tensile speed is set to 50 mm / min in the rolling parallel direction of the metal base material according to JIS C 2241.
  • the elongation of the metal substrate measured by conducting a tensile test is 5% or more.
  • the metal material for electronic parts according to the present invention is a metal substrate, and a W-bending test is performed according to Japan Copper and Brass Association Technical Standard (JCBA) T307.
  • the minimum bending radius ratio (MBR / t) which is the ratio of the minimum bending radius (MBR) at which no cracking occurs and the metal material thickness (t), is 3 or less.
  • the metal material for electronic parts of the present invention is obtained by conducting elemental analysis of the surface of the outermost layer (A layer) by survey measurement of XPS (X-ray photoelectron spectroscopy). % Or more.
  • the metal material for electronic parts of the present invention is obtained by performing elemental analysis on the surface of the outermost layer (A layer) by survey measurement by XPS (X-ray photoelectron spectroscopy). , Pd, Ru, Rh, Os or Ir is less than 7 at%.
  • the metal material for electronic parts of the present invention is less than 50 at% when elemental analysis of the surface of the outermost layer (A layer) is performed by Survey measurement of XPS (X-ray photoelectron spectroscopy). It is.
  • the present invention is a connector terminal using the metal material for electronic parts of the present invention as a contact portion.
  • the present invention is a connector using the connector terminal of the present invention.
  • the present invention is an FFC terminal using the metal material for electronic parts of the present invention for a contact portion.
  • the present invention is an FPC terminal using the metal material for electronic parts of the present invention as a contact portion.
  • the present invention is an FFC using the FFC terminal of the present invention.
  • the present invention is an FPC using the FPC terminal of the present invention.
  • Another aspect of the present invention is an electronic component using the metal material for an electronic component of the present invention as an external connection electrode.
  • the method in the method for producing a metal material for electronic parts according to the present invention, includes the step of forming the outermost layer (A layer) and the intermediate layer (B layer) by surface treatment using wet plating. is there.
  • the wet plating method is electroplating.
  • the outermost layer (A layer) is formed by a plating process using an acidic plating solution.
  • the intermediate layer (B layer) is formed by plating using a cyan-containing plating solution.
  • the method for producing a metal material for electronic parts according to the present invention includes a step of forming the lower layer (C layer) by plating using a sulfamic acid bath or a watt bath.
  • the plating solution used in the sulfamic acid bath and the Watt bath is a bright Ni plating solution.
  • saccharin is contained as an additive in the plating solution for forming the lower layer (C layer).
  • the present invention it is possible to provide a metal material for electronic parts having a low insertion / extraction property, a low whisker property, and a high durability, and a manufacturing method thereof.
  • a metal material 10 for an electronic component has a lower layer (C layer) 12 formed on the surface of a base material 11, and a middle layer (B layer) 13 on the surface of the lower layer (C layer) 12.
  • the outermost layer (A layer) 14 is formed on the surface of the middle layer (B layer) 13.
  • the lower layer (C layer) 12 is not formed on the surface of the base material 11
  • the middle layer (B layer) 13 is formed on the surface of the base material 11
  • the outermost layer (A layer) is formed on the surface of the middle layer (B layer) 13.
  • the material in which 14 is formed is also a metal material for electronic components according to the embodiment of the present invention.
  • Base material ⁇ Configuration of metal materials for electronic parts> (Base material)
  • metal base materials such as copper and a copper alloy, Fe-type material, stainless steel, titanium and a titanium alloy, aluminum, and an aluminum alloy
  • a metal base and a resin layer may be combined.
  • composites of metal layers and resin layers include electrode portions on FPC or FFC substrates.
  • the Vickers hardness of the substrate 11 is preferably Hv90 or higher. When the Vickers hardness of the substrate 11 is Hv90 or more, the thin substrate lubrication effect is improved by the hard substrate, and the insertion / extraction property is further lowered.
  • the indentation hardness of the substrate 11 is preferably 1000 MPa or more.
  • the elongation of the substrate 11 is preferably 5% or more.
  • the elongation of the substrate 11 is preferably 5% or more.
  • the minimum bending radius ratio (MBR / t) when the W-bending test is performed on the substrate 11 is preferably 3 or less.
  • the minimum bending radius ratio (MBR / t) of the substrate 11 is 3 or less, bending workability is improved, and when the metal material for electronic parts of the present invention is press-molded, cracks are hardly formed in the molded part. This suppresses the decrease in gas corrosion resistance (durability).
  • the outermost layer (A layer) 14 needs to be Sn, In, or an alloy thereof.
  • Sn and In are oxidizable metals, but are relatively soft among metals. Therefore, even if an oxide film is formed on the Sn and In surfaces, for example, when a male terminal and a female terminal are mated using a metal material for electronic parts as a contact material, the oxide film is easily scraped, and a new surface of Sn and In is formed. Low contact resistance can be obtained because the faces are exposed and the contacts are made of metal.
  • Sn and In are excellent in gas corrosion resistance against gases such as chlorine gas, sulfurous acid gas, and hydrogen sulfide gas.
  • the middle layer (B layer) 13 is inferior in gas corrosion resistance and the lower layer (C layer) 12 in.
  • Ni is inferior in gas corrosion resistance, and copper and copper alloy inferior in gas corrosion resistance are used for the base material 11, there is a function of improving the gas corrosion resistance of the metal material for electronic parts.
  • Sn and In Sn is preferable because In is strictly regulated based on the technical guidelines for preventing health problems of the Ministry of Health, Labor and Welfare.
  • the composition of the outermost layer (A layer) 14 is 50 mass% or more in total of Sn, In, or Sn and In, and the remaining alloy components are Ag, As, Au, Bi, Cd, Co, Cr, Cu, You may be comprised by the 1 type selected from the group which consists of Fe, Mn, Mo, Ni, Pb, Sb, W, Zn, or 2 or more types of metals.
  • the composition of the outermost layer (A layer) 14 becomes an alloy (for example, Sn-Ag plating is applied), so that low insertion / removal property, low whisker property, and durability (heat resistance, gas corrosion resistance, solder wettability, etc.) ) May be further improved.
  • the thickness of the outermost layer (A layer) 14 needs to be 0.002 to 0.2 ⁇ m.
  • the thickness of the outermost layer (A layer) 14 is preferably 0.01 to 0.1 ⁇ m. If the thickness of the outermost layer (A layer) 14 is less than 0.002 ⁇ m, sufficient gas corrosion resistance cannot be obtained, and the metal material for electronic parts is subjected to a gas corrosion test such as chlorine gas, sulfurous acid gas, hydrogen sulfide gas. If done, it corrodes and the contact resistance increases significantly compared to before the gas corrosion test. In order to obtain more sufficient gas corrosion resistance, a thickness of 0.01 ⁇ m or more is preferable.
  • the thickness is 0.2 ⁇ m or less. More preferably, it is 0.1 ⁇ m or less. When the thickness is 0.1 ⁇ m or less, whiskers are not generated. Whiskers are generated by the occurrence of screw dislocations. In order to generate screw dislocations, a bulk with a thickness of several hundred nm or more is required. When the thickness of the outermost layer (A layer) 14 is 0.2 ⁇ m or less, the thickness is not sufficient to cause screw dislocation, and basically whiskers are not generated. In addition, since the outermost layer (A layer) and the middle layer (B layer) are easily diffused by a short circuit at room temperature and an alloy is easily formed, no whisker is generated.
  • the amount of Sn and In deposited on the outermost layer (A layer) 14 needs to be 1 to 150 ⁇ g / cm 2 .
  • the adhesion amount of the outermost layer (A layer) 14 is preferably 7 to 75 ⁇ g / cm 2 .
  • the reason for defining the amount of adhesion will be described. For example, when the thickness of the outermost layer (A layer) 14 is measured with a fluorescent X-ray film thickness meter, it is measured by an alloy layer formed between, for example, the outermost layer (A layer) and the middle layer (B layer) therebelow. An error may occur in the thickness value to be formed.
  • more accurate quality control can be performed regardless of the formation state of the alloy layer.
  • the adhesion amount of Sn and In on the outermost layer (A layer) 14 is less than 1 ⁇ g / cm 2 , sufficient gas corrosion resistance cannot be obtained, and the metal material for electronic parts is made of chlorine gas, sulfurous acid gas, hydrogen sulfide gas.
  • a gas corrosion test such as the above is performed, corrosion occurs and the contact resistance is greatly increased as compared to before the gas corrosion test.
  • an adhesion amount of 7 ⁇ g / cm 2 or more is preferable. Further, when the amount of adhesion increases, the adhesion wear of Sn and In increases, the insertion / extraction force increases, and whiskers are easily generated.
  • the amount is set to 150 ⁇ g / cm 2 or less. More preferably, it is 75 ⁇ g / cm 2 or less. Note that whisker does not occur when the adhesion amount is 75 ⁇ g / cm 2 or less. Whiskers are generated by the occurrence of screw dislocations, but in order for screw dislocations to occur, a bulk with an adhesion amount of several tens of ⁇ g / cm 2 or more is required. If the adhesion amount of the outermost layer (A layer) 14 is 150 ⁇ g / cm 2 or less, the adhesion amount is not sufficient to cause screw dislocation, and basically whiskers are not generated. In addition, since the outermost layer (A layer) and the middle layer (B layer) are easily diffused by a short circuit at room temperature and an alloy is easily formed, no whisker is generated.
  • the middle layer (B layer) 13 needs to be formed of Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy thereof.
  • Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir are characterized by having relatively heat resistance among metals. Therefore, it suppresses that the composition of the base material 11 and the lower layer (C layer) 12 diffuses to the outermost layer (A layer) 14 side, and improves heat resistance. Further, these metals form a compound with Sn or In of the outermost layer (A layer) 14 to suppress the formation of an oxide film of Sn or In and improve solder wettability.
  • the alloy composition of the middle layer (B layer) 13 is Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or Ag, Au, Pt, Pd, Ru, Rh, Os, and Ir.
  • the remaining alloy component is selected from the group consisting of Bi, Cd, Co, Cu, Fe, In, Mn, Mo, Ni, Pb, Sb, Se, Sn, W, Tl, Zn, or two You may be comprised with the above metal.
  • an alloy composition for example, Sn—Ag plating
  • the low insertion / removal property, low whisker property, and durability heat resistance, gas corrosion resistance, solder wettability, etc.
  • the thickness of the middle layer (B layer) 13 needs to be thicker than 0.3 ⁇ m.
  • the thickness of the middle layer (B layer) 13 is preferably more than 0.3 ⁇ m and not more than 0.6 ⁇ m.
  • durability heat resistance, gas corrosion resistance, solder wettability, etc.
  • the thickness is increased, so that the thickness is preferably 0.6 ⁇ m or less.
  • thickness exceeds 0.6 micrometer, insertion / extraction force may become larger than the present material (comparative example 4).
  • the adhesion amount of Ag, Au, Pt, Pd, Ru, Rh, Os, Ir, or an alloy thereof in the middle layer (B layer) 13 needs to be larger than 330 ⁇ g / cm 2 .
  • Adhesion amount of the middle layer (B layer) 13 is 330 ⁇ g / cm 2 ultra and is preferably at 660 ⁇ g / cm 2 or less.
  • the reason for defining the amount of adhesion will be described. For example, when measuring the thickness of the middle layer (B layer) 13 with a fluorescent X-ray film thickness meter, for example, by an alloy layer formed between the outermost layer (A layer) 14 and the middle layer (B layer) 13 therebelow, There may be an error in the measured thickness value.
  • the adhesion amount when controlling by the adhesion amount, more accurate quality control can be performed regardless of the formation state of the alloy layer.
  • the adhesion amount is more than 330 ⁇ g / cm 2 , durability (heat resistance, gas corrosion resistance, solder wettability, etc.) is improved.
  • the insertion / extraction force increases as the adhesion amount increases, it is preferably 660 ⁇ g / cm 2 or less. When the adhesion amount exceeds 660 ⁇ g / cm 2 , the insertion / extraction force may be larger than that of the current material (Comparative Example 4).
  • a lower layer (C layer) 12 made of one or more selected from the group consisting of Ni, Cr, Mn, Fe, Co and Cu is provided. Preferably formed.
  • the lower layer (C layer) 12 using one or more metals selected from the group consisting of Ni, Cr, Mn, Fe, Co, and Cu, by forming a hard lower layer (C layer)
  • the thin film lubrication effect is improved and the low insertion / extraction property is improved, and the lower layer (C layer) 12 prevents the constituent metal of the base material 11 from diffusing into the middle layer (B layer), and the heat resistance test and gas corrosion resistance test.
  • Durability is improved, for example, by suppressing subsequent increase in contact resistance and solder wettability deterioration.
  • the alloy composition of the lower layer (C layer) 12 is 50% by mass or more in total of Ni, Cr, Mn, Fe, Co, and Cu, and is further selected from the group consisting of B, P, Sn, and Zn, Or 2 or more types may be included.
  • the alloy composition of the lower layer (C layer) 12 has such a configuration, the lower layer (C layer) is further cured, so that the thin film lubrication effect is further improved and the low insertion / extraction property is improved.
  • the alloying of 12 further prevents the constituent metal of the base material 11 from diffusing into the middle layer (B layer), suppresses the increase in contact resistance and solder wettability after the heat resistance test and gas corrosion resistance test, etc. Durability is improved.
  • the thickness of the lower layer (C layer) 12 is preferably 0.05 ⁇ m or more.
  • the thickness of the lower layer (C layer) 12 is less than 0.05 ⁇ m, the thin film lubrication effect by the hard lower layer (C layer) is lowered and the low insertion / removal property is deteriorated, and the constituent metal of the substrate 11 is the middle layer (B layer). Durability is worsened, such as increased contact resistance after heat resistance test and gas corrosion resistance test and solder wettability deterioration.
  • the adhesion amount of Ni, Cr, Mn, Fe, Co, and Cu in the lower layer (C layer) 12 is preferably 0.03 mg / cm 2 or more.
  • the reason for defining the amount of adhesion will be described.
  • the thickness of the lower layer (C layer) 12 is measured with a fluorescent X-ray film thickness meter, it is measured with the outermost layer (A layer) 14, the middle layer (B layer) 13, the base material 11 and the alloy layer formed. An error may occur in the thickness value to be formed.
  • more accurate quality control can be performed regardless of the formation state of the alloy layer.
  • the adhesion amount is less than 0.03 mg / cm 2 , the thin film lubrication effect by the hard lower layer (C layer) is lowered and the low insertion / removal property is deteriorated, and the constituent metal of the base material 11 diffuses into the middle layer (B layer).
  • the durability deteriorates, for example, the contact resistance increases after the heat resistance test and the gas corrosion resistance test and the solder wettability easily deteriorates.
  • Heat treatment After the outermost layer (A layer) 14 is formed, heat treatment may be performed for the purpose of improving low insertion / removability, low whisker properties, and durability (heat resistance, gas corrosion resistance, solder wettability, etc.). Heat treatment makes it easy for the outermost layer (A layer) 14 and the middle layer (B layer) 13 to form an alloy layer, and by lowering the Sn adhesion force, low insertion / removability is obtained, and low whisker properties and durability are also achieved. Further improve. In addition, about this heat processing, process conditions (temperature x time) can be selected suitably. Further, this heat treatment is not particularly required.
  • Post-processing For the purpose of improving low insertability and durability (heat resistance, gas corrosion resistance, solder wettability, etc.) after heat treatment on the outermost layer (A layer) 14 or the outermost layer (A layer) 14 Post-processing may be performed. Post-treatment improves lubricity, provides further low insertion / extraction, and suppresses oxidation of outermost layer (A layer) and middle layer (B layer), heat resistance, gas corrosion resistance, solder wettability, etc. Improves durability. Specific post-treatment includes phosphate treatment, lubrication treatment, silane coupling treatment, etc. using an inhibitor. In addition, about this heat processing, process conditions (temperature x time) can be selected suitably. Further, this heat treatment is not particularly required.
  • the Vickers hardness of the surface of the outermost layer (A layer) (measured from the surface of the outermost layer) is preferably Hv90 or higher.
  • the Vickers hardness of the surface of the outermost layer (A layer) 14 is Hv90 or more, the thin outermost layer (A layer) improves the thin film lubrication effect and improves low insertion / extraction.
  • the Vickers hardness of the outermost layer (A layer) 14 surface is preferably Hv1000 or less.
  • the indentation hardness of the surface of the outermost layer (A layer) 14 (measured from the surface of the outermost layer) is preferably 1000 MPa or more.
  • the indentation hardness of the surface of the outermost layer (A layer) 14 is 1000 MPa or more, the thin outermost layer (A layer) improves the thin film lubrication effect and improves the low insertion / extraction property.
  • the indentation hardness of the surface of the outermost layer (A layer) 14 is preferably 10,000 MPa or less.
  • the indentation hardness of the surface of the outermost layer (A layer) 14 is 10000 MPa or less, bending workability is improved, and when the metal material for electronic parts of the present invention is press-molded, cracks are hardly formed in the molded part. This suppresses the decrease in gas corrosion resistance (durability).
  • the arithmetic average height (Ra) of the surface of the outermost layer (A layer) 14 is preferably 0.1 ⁇ m or less. When the arithmetic average height (Ra) of the surface of the outermost layer (A layer) 14 is 0.1 ⁇ m or less, convex portions that are relatively easily corroded are reduced and smoothed, and thus the gas corrosion resistance is improved.
  • the maximum height (Rz) of the surface of the outermost layer (A layer) 14 is preferably 1 ⁇ m or less. When the maximum height (Rz) of the surface of the outermost layer (A layer) 14 is 1 ⁇ m or less, the number of convex portions that are relatively easy to corrode is reduced and the surface becomes smooth, so that the gas corrosion resistance is improved.
  • the reflection density of the surface of the outermost layer (A layer) 14 is preferably 0.3 or more.
  • the reflection density on the surface of the outermost layer (A layer) 14 is 0.3 or more, the number of convex portions that are relatively easily corroded is reduced and the surface becomes smooth, so that gas corrosion resistance is improved.
  • the lower layer (C layer) 12 preferably has a Vickers hardness of Hv300 or higher.
  • the Vickers hardness of the lower layer (C layer) 12 is Hv300 or higher, the lower layer (C layer) is further cured, so that the thin film lubricating effect is further improved and the low insertion / removability is improved.
  • the lower layer (C layer) 12 preferably has a Vickers hardness Hv of 1000 or less.
  • the Vickers hardness of the lower layer (C layer) 12 is Hv1000 or less, bending workability is improved, and when the metal material for electronic parts of the present invention is press-molded, cracks are hardly formed in the molded part, Suppresses gas corrosion (durability) degradation.
  • the Vickers hardness of the lower layer (C layer) 12 and the thickness of the lower layer (C layer) 12 are expressed by the following formula: Vickers hardness (Hv) ⁇ ⁇ 376.22 Ln (thickness ⁇ m) +86.411 It is preferable to satisfy.
  • the Vickers hardness of the lower layer (C layer) 12 and the thickness of the lower layer (C layer) 12 satisfy the above formula, the lower layer (C layer) is further cured, thereby further improving the thin film lubricating effect and improving the low insertion / removability.
  • “Ln (thickness ⁇ m)” means a natural logarithm of thickness ( ⁇ m).
  • the indentation hardness of the lower layer (C layer) 12 is preferably 2500 MPa or more.
  • the indentation hardness of the lower layer (C layer) 12 is 2500 MPa or more, the low insertion / extraction property is improved.
  • the indentation hardness of the lower layer (C layer) 12 is preferably 10,000 MPa or less.
  • the indentation hardness of the lower layer (C layer) 12 is 10000 MPa or less, bending workability is improved, and when the metal material for electronic parts of the present invention is press-molded, cracks are hardly formed in the molded portion, Suppresses gas corrosion (durability) degradation.
  • the indentation hardness of the lower layer (C layer) 12 and the thickness of the lower layer (C layer) 12 are expressed by the following formula: Indentation hardness (MPa) ⁇ ⁇ 3998.4Ln (thickness ⁇ m) +1178.9 It is preferable to satisfy.
  • the indentation hardness of the lower layer (C layer) 12 and the thickness of the lower layer (C layer) 12 satisfy the above formula, the lower layer (C layer) is further cured, thereby further improving the thin film lubricating effect and improving the low insertion / removability. To do.
  • the position (D 2 ) showing the highest value of the atomic concentration (at%) of Ag, Au, Pt, Pd, Ru, Rh, Os, or Ir in the region may exist in the order of D 1 and D 2 from the outermost surface. preferable. If it does not exist in the order of D 1 and D 2 from the outermost surface, sufficient gas corrosion resistance cannot be obtained.
  • a metal material for electronic parts is subjected to a gas corrosion test such as chlorine gas, sulfurous acid gas, hydrogen sulfide gas, etc., it will corrode. As a result, the contact resistance may increase significantly compared to before the gas corrosion test.
  • a gas corrosion test such as chlorine gas, sulfurous acid gas, hydrogen sulfide gas, etc.
  • the maximum value of the atomic concentration (at%) of Sn or In of the outermost layer (A layer) 14 is 10 at% or more.
  • the maximum value of the atomic concentration (at%) of Sn or In of the outermost layer (A layer) 14 is less than 10 at%, sufficient gas corrosion resistance cannot be obtained, and the metal material for electronic parts is made of chlorine gas, sulfurous acid.
  • the position (D 2 ) showing the highest atomic concentration (at%) of Ag, Au, Pt, Pd, Ru, Rh, Os or Ir of Ni, Cr, Mn, Fe, Co in the lower layer (C layer) 12 or highest value indicating the position of Cu atomic concentration (at%) (D 3) is preferably present in the order of D 1, D 2, D 3 from the outermost surface.
  • the maximum value of the atomic concentration (at%) of Sn or In in the outermost layer (A layer) 14 is 10 at% or more, and the lower layer (C layer) 12
  • the depth at which the atomic concentration (at%) of Ni, Cr, Mn, Fe, Co or Cu is 25 at% or more is preferably 50 nm or more.
  • the maximum value of the atomic concentration (at%) of Sn or In in the outermost layer (A layer) 14 and the atomic concentration of Ag, Au, Pt, Pd, Ru, Rh, Os or Ir in the intermediate layer (B layer) ( The depth at which the maximum value of each of the atomic (at%) is less than 10 at% and the atomic concentration (at%) of Ni, Cr, Mn, Fe, Co or Cu in the lower layer (C layer) 12 is 25 at% or more is 50 nm. If it is less, the low insertion / extraction property and durability (heat resistance, gas corrosion resistance, solder wettability, etc.) are poor as the base material component diffuses into the outermost layer (A layer) 14 or the middle layer (B layer) 13. There is a risk.
  • Sn and In are preferably 2 at% or more. If Sn, In is less than 1 at%, for example, Ag, the resistance to sulfidation is inferior, and the contact resistance may be greatly increased. For example, in the case of Pd, Pd may be oxidized to increase the contact resistance.
  • Sn, In is less than 1 at%, for example, Ag
  • Pd may be oxidized to increase the contact resistance.
  • the use of the metal material for electronic parts of the present invention is not particularly limited.
  • a connector terminal using the metal material for electronic parts as a contact part an FFC terminal or FPC terminal using the metal material for electronic parts as a contact part, and an electronic part Electronic parts using metal materials for external connection as electrodes for external connection.
  • the external connection electrode include a connection component in which a surface treatment is performed on a tab and a material in which a surface treatment is applied to a semiconductor under bump metal.
  • a connector may be produced using the connector terminal formed in this way, and an FFC or FPC may be produced using an FFC terminal or an FPC terminal.
  • both the male terminal and the female terminal may be the metal material for electronic parts of the present invention, or only one of the male terminal and the female terminal.
  • low insertion property is further improved by making both the male terminal and the female terminal into the metal material for electronic parts of the present invention.
  • ⁇ Method for producing metal material for electronic parts As a method for producing a metal material for electronic parts of the present invention, wet (electrical, electroless) plating, dry (sputtering, ion plating, etc.) plating, or the like can be used. However, wet plating is less than dry plating because the trace amount of impurity components present in the plating solution is co-deposited in the plating film to suppress whisker generation, and the electrodeposition structure becomes harder, resulting in lower insertion and removal. May be improved. From the viewpoint of production cost, wet plating is preferable. Of the wet plating, electroplating is preferable.
  • the outermost layer (A layer) 14 is preferably formed by a plating process using an acidic plating solution. By using acidic plating, adhesion with the middle layer (B layer) 13 is improved.
  • the middle layer (B layer) 13 is preferably formed by plating using a cyan-containing plating solution. By using cyan-containing plating, a dense film can be formed and durability (heat resistance, gas corrosion resistance, solder wettability, etc.) is improved.
  • the lower layer (C layer) 12 is preferably formed by plating using a sulfamic acid bath or a watt bath.
  • the plating solution used in the sulfamic acid bath or Watt bath is preferably a bright Ni plating solution.
  • the coating becomes smooth and hard, and low insertability and durability (heat resistance, gas corrosion resistance, solder wettability, etc.) are improved.
  • saccharin is contained as an additive in the sulfamic acid bath or the Watt bath. By adding saccharin, the film becomes dense and hard, the film becomes smooth and hard, and low insertion / removability and durability (heat resistance, gas corrosion resistance, solder wettability, etc.) are improved.
  • Tables 1 to 7 samples formed by providing a base material, a lower layer (C layer), an intermediate layer (B layer), and an outermost layer (A layer) in this order are shown in Tables 1 to 7 below. Each was produced under the conditions shown. Moreover, the example which does not form about a lower layer (C layer) was also produced. Table 1 shows the production conditions for the substrate, Table 2 shows the production conditions for the lower layer (C layer), Table 3 shows the production conditions for the middle layer (B layer), and Table 4 shows the production conditions for the outermost layer (A layer). Table 5 shows the heat treatment conditions. In addition, Table 6 shows the production conditions and heat treatment conditions of each layer used in each example, and Table 7 shows the production conditions and heat treatment conditions of each layer used in each comparative example.
  • the thickness of the outermost layer (A layer), the middle layer (B layer), and the lower layer (C layer) is the same as that of the base material that does not have the composition of the outermost layer (A layer), middle layer (B layer), and lower layer (C layer).
  • Each was subjected to a surface treatment, and the actual thickness was measured with a fluorescent X-ray film thickness meter (SEA 5100 manufactured by Seiko Instruments, collimator 0.1 mm ⁇ ).
  • SEA 5100 manufactured by Seiko Instruments, collimator 0.1 mm ⁇ .
  • Sn plating if the substrate is Cu-10 mass% Sn-0.15 mass% P, the substrate has Sn, and the exact Sn plating thickness is not known. The thickness was measured with Cu-30 mass% Zn, which does not have the composition of the base material.
  • the layer structure of the obtained sample was determined by a depth profile by XPS (X-ray photoelectron spectroscopy) analysis.
  • the analyzed elements are the composition of the outermost layer (A layer), the middle layer (B layer), the lower layer (C layer), and C and O. These elements are designated elements. Further, the concentration (at%) of each element was analyzed with the total of the designated elements as 100%.
  • the thickness in XPS (X-ray photoelectron spectroscopy) analysis corresponds to the distance on the horizontal axis of the chart by analysis (distance in terms of SiO 2 ). Further, the surface of the obtained sample was also subjected to qualitative analysis by survey measurement by XPS (X-ray photoelectron spectroscopy) analysis.
  • the resolution of the qualitative analysis concentration was 0.1 at%.
  • ULVAC-PHI Co., Ltd. 5600MC was used, ultimate vacuum: 5.7 ⁇ 10 ⁇ 9 Torr, excitation source: monochromatic AlK ⁇ , output: 210 W, detection area: 800 ⁇ m ⁇ , incident angle: 45 degrees, The take-off angle was 45 degrees, no neutralizing gun was used, and the measurement was performed under the following sputtering conditions.
  • Comparative Example 1 The sample of Comparative Example 1 was adopted as the blank material for the insertion / extraction force.
  • the target of the insertion / extraction force is 90% or less as compared with the maximum insertion / extraction force of Comparative Example 1. This is because Comparative Example 4 is 90% compared to the maximum insertion force of Comparative Example 1.
  • Comparative Example 4 has poor solder wettability after the PCT test, the reduction in insertion / extraction force is equal to or greater than that of Comparative Example 4, and the present invention finds a specification with good solder wettability after the PCT test. This is for the purpose of the invention.
  • the commercially available Sn reflow plating female terminal was used for the female terminal used for this test, when the plating or Au plating according to the example is used, the insertion / extraction force is further reduced.
  • Whisker Whisker was evaluated by a load test (ball indenter method) of JEITA RC-5241. That is, a load test was performed on each sample, and the sample after the load test was observed at a magnification of 100 to 10,000 times with a SEM (manufactured by JEOL, model JSM-5410) to observe the occurrence of whiskers. .
  • the load test conditions are shown below. Diameter of ball indenter: ⁇ 1mm ⁇ 0.1mm Test load: 2N ⁇ 0.2N Test time: 120 hours Number of samples: 10
  • the target characteristic is that whiskers having a length of 20 ⁇ m or more are not generated, but the maximum target is that no whisker is generated.
  • the contact resistance was measured by a 4-terminal method using a contact simulator CRS-113-Au type manufactured by Yamazaki Seiki Co., Ltd. under the condition of a contact load of 50 g. The number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted.
  • the target characteristic is a contact resistance of 10 m ⁇ or less.
  • Heat resistance Heat resistance was evaluated by measuring the contact resistance of a sample after an atmospheric heating (155 ° C. ⁇ 1000 h) test.
  • the target characteristic is a contact resistance of 10 m ⁇ or less, and the maximum target is that the contact resistance does not change before and after the heat resistance test (is equivalent).
  • Gas corrosion resistance was evaluated in the three test environments shown in (1) to (3) below.
  • the gas corrosion resistance was evaluated based on the contact resistance of the sample after the environmental tests (1) to (3) were completed.
  • the target characteristic is a contact resistance of 10 m ⁇ or less, but the maximum target is that the contact resistance does not change (equivalent) before and after the heat resistance test.
  • Solder wettability was evaluated for samples after plating and after a pressure cooker test (105 ° C. ⁇ 100% unsaturated RH ⁇ 96 h).
  • Solder checker (SAT-5000 manufactured by Reska Co., Ltd.) was used, and a commercially available 25% rosin ethanol flux was used as the flux, and the solder wetting time was measured by the meniscograph method.
  • Sn-3Ag-0.5Cu 250 ° C.
  • the number of samples was 5, and the range from the minimum value to the maximum value of each sample was adopted.
  • the target characteristic is a zero cross time of 5 seconds or less.
  • the bending workability is the minimum bending radius (MBR) and the metal material thickness (t) at which W metal bending test is performed according to Japan Copper and Brass Association Technical Standard (JCBA) T307.
  • the minimum bend radius ratio (MBR / t) was 3 or less, which was good.
  • the surface of the bent portion was observed with an optical microscope, and when it was judged that there was no practical problem when no crack was observed in the plating film, it was evaluated as ⁇ , and when the crack was recognized, it was evaluated as x.
  • the number of samples was three.
  • the Vickers hardness of the outermost layer (A layer) was measured by hitting the root of the sample surface with a load of 980.7 mN and a load holding time of 15 seconds. Further, the Vickers hardness of the lower layer (C layer) was measured by hitting the root of the lower layer (C layer) with a load of 980.7 mN and a load holding time of 15 seconds.
  • I. Indentation hardness The indentation hardness of the outermost layer (A layer) and the metal substrate was measured by hitting the root of the sample surface with a load of 980.7 mN and a load holding time of 15 seconds.
  • the indentation hardness of the lower layer (C layer) was measured by hitting the root with a load of 980.7 mN and a load holding time of 15 seconds.
  • the reflection density was measured by using a densitometer (ND-1, manufactured by Nippon Denshoku Industries Co., Ltd.). In addition, it measured 5 times per sample.
  • Elongation Elongation was measured by conducting a tensile test in the rolling parallel direction of each sample in accordance with JIS C 2241. The tensile speed was 50 mm / min. The number of samples was three.
  • M.M. Minimum bending radius ratio (MBR / t) The minimum bending radius ratio was measured by the same method as bending workability, and the minimum bending radius / test specimen thickness at which no crack occurred in the material was measured. The number of samples was three. Tables 8 to 23 show the evaluation results of the above tests under each condition.
  • Examples 1 to 98 were electronic component metal materials excellent in all of low insertability / removability, low whisker property, and durability.
  • Comparative Example 1 is a blank material.
  • Comparative Example 2 was produced by thinning the Sn plating of the blank material of Comparative Example 1, but the solder wettability was poor.
  • the comparative example 3 was produced without performing heat processing compared with the comparative example 2, the insertion / extraction force was higher than the target.
  • Comparative Example 4 was prepared by applying Cu plating to the middle layer as compared with Comparative Example 2, but the insertion / extraction force was 90% as compared with Comparative Example 1. However, the solder wettability after the PCT test was poor.
  • Comparative Example 5 was prepared by making Sn plating thinner than Comparative Example 4, but the solder wettability was poor.
  • Comparative Example 6 was prepared without heat treatment as compared with Comparative Example 5, but the insertion / extraction force was higher than the target.
  • Comparative Example 7 was prepared by applying Cu plating to the lower layer as compared with the blank material of Comparative Example 1, but the characteristics were not different from Comparative Example 1.
  • Comparative Example 8 was produced by applying a lower Ni plating thicker than the blank material of Comparative Example 1, but the characteristics were not different from Comparative Example 1.
  • Comparative Example 9 was prepared by thickening the outermost Sn plating compared to Example 1, but the insertion / extraction force was higher than the target.
  • Comparative Example 10 was prepared by thickening the outermost Sn plating compared to Example 2, but the insertion / extraction force was higher than the target.
  • Comparative Example 11 was prepared by thinly applying the middle layer of Ag plating as compared with Example 2, but the solder wettability after the PCT test was poor.
  • Comparative Example 12 was produced by thinly applying the middle layer of Ag plating as compared with Example 5, but the solder wettability after the PCT test was poor.
  • Comparative Example 13 was prepared by thinning the outermost layer of Sn plating compared to Example 1, but the gas corrosion resistance was poor, and the contact resistance after the hydrogen sulfide gas corrosion test exceeded the target. It was.
  • Comparative Example 14 was prepared by thinning the outermost layer of Sn plating compared to Example 2, but the outermost layer (A layer) was measured by depth measurement with XPS (X-ray photoelectron spectroscopy). The maximum value of the atomic concentration (at%) of Sn or In was 10 at% or less, the gas corrosion resistance was poor, and the contact resistance after the hydrogen sulfide gas corrosion test exceeded the target. Comparative Example 15 was prepared by reversing the plating order of Sn and Ag as compared with Example 3, but the depth of the outermost layer (A layer) was measured by Depth measurement by XPS (X-ray photoelectron spectroscopy).
  • Comparative Example 17 was produced by reversing the plating order of Sn and Ag as compared with Example 61, but the depth of the outermost layer (A layer) was measured by Depth measurement using XPS (X-ray photoelectron spectroscopy).
  • Comparative Example 19 was prepared by thinning the outermost layer of Sn plating as compared with Example 79, but the outermost layer (A layer) was measured by depth measurement with XPS (X-ray photoelectron spectroscopy). The position (D 1 ) showing the maximum value of the atomic concentration (at%) of Sn or In was 10 at% or less, the gas corrosion resistance was poor, and the contact resistance after the hydrogen sulfide gas corrosion test exceeded the target. Comparative Example 20 was prepared by thinning the outermost layer of Sn plating compared to Example 79, but the outermost surface Sn was 2 at% or less in the survey measurement by XPS (X-ray photoelectron spectroscopy). Therefore, the gas corrosion resistance was poor, and the contact resistance after the hydrogen sulfide gas corrosion test exceeded the target.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 2 shows the depth measurement results of XPS (X-ray photoelectron spectroscopy) according to Example 3. From FIG. 2, the position (D 1 ) showing the highest value of the atomic concentration (at%) of Sn or In in the outermost layer (A layer), Ag, Au, Pt, Pd, Ru, Rh in the middle layer (B layer). It can be seen that the position (D 2 ) showing the maximum value of the atomic concentration (at%) of, Os or Ir exists in the order of D 1 and D 2 , and D 1 is 35 at% and D 2 is 87%.
  • FIG. 3 shows the result of survey measurement by XPS (X-ray photoelectron spectroscopy) according to Example 3. FIG. 3 shows that O is 24.1 at%, Ag is 2.6 at%, and Sn is 7.3 at%.
  • Base material 12 Lower layer (C layer) 13 Middle layer (B layer) 14 Outermost layer (A layer)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 低挿抜性、低ウィスカ性及び高耐久性を有する電子部品用金属材料及びその製造方法を提供する。基材11と、基材11の最表層を構成し、Sn,In,またはそれらの合金で形成されたA層14と、基材11とA層14との間に設けられて中層を構成し、Ag,Au,Pt,Pd,Ru,Rh,Os,Ir,またはそれらの合金で形成されたB層13と、を備え、最表層(A層)14の厚みが0.002~0.2μmであり、中層(B層)13の厚みが0.3μmより厚い電子部品用金属材料10。

Description

電子部品用金属材料及びその製造方法
 本発明は、電子部品用金属材料及びその製造方法に関する。
 民生用及び車載用電子機器用接続部品であるコネクタには、黄銅やリン青銅の表面にNiやCuの下地めっきを施し、さらにその上にSn又はSn合金めっきを施した材料が使用されている。Sn又はSn合金めっきは、一般的に低接触抵抗及び高はんだ濡れ性という特性が求められ、更に近年めっき材をプレス加工で成形したオス端子及びメス端子勘合時の挿入力の低減化も求められている。また、製造工程でめっき表面に、短絡等の問題を引き起こす針状結晶であるウィスカが発生することがあり、このウィスカを良好に抑制する必要もある。
 これに対し、特許文献1には、表面から厚さ0.05μm以上の表層がNi,Co又はこれらの合金からなる基材上に、Ag又はAg合金を部分被覆し、露出する基材表面と部分被覆したAg又はAg合金層上に、In,Zn,Sn,Pd又はこれらの合金を0.01~1.0μmの厚さに被覆した銀被覆電気材料が開示されている。そしてこれによれば、電気材料としての優れた半田付け性や機械的電気接続における接続性を長期にわたり維持することができると記載されている。
 また、特許文献2には、CuまたはCu合金基材表面にNi、Coまたはこれらを含む合金の第1被覆層を設け、その表面にAgまたはAg合金の第2被覆層を設け、さらにその表面にSnまたはSn合金の被覆層を設けてなるSnまたはSn合金被覆材料が開示されている。そしてこれによれば、高温における使用に拘わらず、表面の酸化変色がなく接触抵抗の増加が少なく、長期間にわたり、外観および接触特性が良好なSnまたはSn合金被覆材料を提供することができると記載されている。
 また、特許文献3には、CuまたはCu合金基材表面にNi,Coまたはこれらを含む合金の第1被覆層を設け、その表面にAgまたはAg合金の第2被覆層を設け、さらにその表面にSnまたはSn合金の溶融凝固被覆層を設けてなるSnまたはSn合金被覆材料が開示されている。そしてこれによれば、高温における使用に拘わらず、表面の酸化変色がなく接触抵抗の増加が少なく、長期化にわたり、外観および接触特性が良好なSnまたはSn合金被覆材料を提供することができると記載されている。
 また、特許文献4には、導電性の帯条体の片面にAg層又はAg合金層が被覆され、他面にSn層又はSn合金層が被覆されている電気接点用材料が開示されている。そしてこれによれば、硫化環境等に曝されても半田付性の劣化が少ない電気接点用材料又は電気接点部品を提供することができると記載されている。
 また、特許文献5には、(a)銀、パラジウム、白金、ビスマス、インジウム、ニッケル、亜鉛、チタン、ジルコニウム、アルミニウム、クロム、アンチモンよりなる群から選ばれた下地用の金属薄膜のいずれかを被メッキ物上に形成した後、(b)上記下地用の金属薄膜上にスズ又はスズ合金のメッキ皮膜を形成することを特徴とする前処理によるスズホイスカーの防止方法が開示されている。そしてこれによれば、銅系素地を初めとする被メッキ物の表面上にハンダ付け性などを良好に確保するために形成するスズ系皮膜において、簡便な操作でスズホイスカーを有効に防止することができると記載されている。
 また、特許文献6には、メッキ用基体の表面に銀メッキ層を形成し、さらに該銀メッキ層の表面に厚さ0.001~0.1μmの錫またはインジウムまたは亜鉛のメッキ層を形成してなる銀メッキ構造体を熱処理して得られるメッキ構造が開示されている。そしてこれによれば、耐熱性に優れ、かつ銀の硫化による反射率低下の少ない発光素子収納用支持体及び、硫化により変色しにくく、銀本来の光沢を有し、接触抵抗が小さい電気部品用被覆方法を提供することができると記載されている。
特開昭61-124597号公報 特開平1-306574号公報 特開平2-301573号公報 特開平9-78287号公報 特開2003-129278号公報 特開2011-122234号公報
 しかしながら、特許文献1に記載の技術では、Snが極薄に形成されている領域での接触抵抗が大きくなるという問題がある。
 また、特許文献2~5に記載の技術では、はんだ濡れ性又は接触特性は良好であるが、挿抜性やウィスカの抑制に関して満足できるものとはいえない。
 また、特許文献6に記載の技術では、接触抵抗は改善されているものの、はんだ濡れ性に関して満足できるものとはいえない。
 このように、従来のSn/Ag/Ni下地めっき構造を有する電子部品用金属材料には挿抜性やウィスカに問題があり、挿抜性やウィスカに問題が無い仕様としても、耐久性(耐熱性、耐ガス腐食性、高はんだ濡れ性)についても満足できる仕様とすることは困難であり、明らかになっていなかった。
 本発明は上記の課題を解決するためになされたものであり、低挿抜性(低挿抜性とは、オス端子とメス端子を勘合させた時に生じる挿入力が低いことを示す)、低ウィスカ性及び高耐久性を有する電子部品用金属材料及びその製造方法を提供することを課題とする。
 本発明者らは、鋭意検討の結果、基材上に中層と最表層とを順に設け、中層及び最表層を所定の金属を用い、且つ、所定の厚み又は付着量で形成することで、低挿抜性、低ウィスカ性及び高耐久性のいずれも備えた電子部品用金属材料を作製することができることを見出した。
 以上の知見を基礎として完成した本発明は一側面において、基材と、前記基材の最表層を構成し、Sn,In,またはそれらの合金で形成されたA層と、前記基材とA層との間に設けられて中層を構成し、Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されたB層とを備え、前記最表層(A層)の厚みが0.002~0.2μmであり、前記中層(B層)の厚みが0.3μmよりも厚い、低ウィスカ性及び高耐久性を有する電子部品用金属材料である。
 本発明は別の一側面において、基材と、前記基材の最表層を構成し、Sn,In,またはそれらの合金で形成されたA層と、前記基材とA層との間に設けられて中層を構成し、Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されたB層とを備え、前記最表層(A層)のSn,Inの付着量が1~150μg/cm2であり、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,Os,Irの付着量が330μg/cm2よりも多い、低ウィスカ性及び高耐久性を有する電子部品用金属材料である。
 本発明の電子部品用金属材料は一実施例において、前記最表層(A層)の合金組成がSn,In,またはSnとInとの合計で50質量%以上であり、残合金成分がAg,As,Au,Bi,Cd,Co,Cr,Cu,Fe,Mn,Mo,Ni,Pb,Sb,W,Znからなる群より選択される1種、もしくは2種以上の金属からなる。
 本発明の電子部品用金属材料は別の一実施例において、前記中層(B層)の合金組成がAg,Au,Pt,Pd,Ru,Rh,Os,Ir,またはAgとAuとPtとPdとRuとRhとOsとIrとの合計で50質量%以上であり、残合金成分がBi,Cd,Co,Cu,Fe,In,Mn,Mo,Ni,Pb,Sb,Se,Sn,W,Tl,Znからなる群より選択される1種、もしくは2種以上の金属からなる。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)の表面のビッカース硬さがHv90以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、超微小硬さ試験により、前記最表層(A層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記最表層(A層)の表面の押し込み硬さが1000MPa以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)の表面のビッカース硬さがHv1000以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、超微小硬さ試験により、前記最表層(A層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記最表層(A層)の表面の押し込み硬さが10000MPa以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)の表面の算術平均高さ(Ra)が0.1μm以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)の表面の最大高さ(Rz)が1μm以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)の表面の反射濃度が0.3以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)が、最表面からD1、D2の順で存在する。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値が10at%以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記基材とB層との間に設けられて下層を構成し、Ni,Cr,Mn,Fe,Co,Cuからなる群から選択された1種、もしくは2種以上で形成されたC層をさらに備える。
 本発明の電子部品用金属材料は更に別の一実施例において、下層(C層)の合金の組成がNi,Cr,Mn,Fe,Co,Cuの合計で50質量%以上であり、さらにB,P,Sn,Znからなる群から選択された1種、もしくは2種以上を含む。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)、前記下層(C層)のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)の最高値示す位置(D3)が最表面からD1、D2、D3の順で存在する。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値が10at%以上であって、前記下層(C層)のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)が25%以上である深さが50nm以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記下層(C層)の厚みが0.05μm以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記下層(C層)のNi,Cr,Mn,Fe,Co,Cuの付着量が、0.03mg/cm2以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)の厚みが0.01~0.1μmである。
 本発明の電子部品用金属材料は更に別の一実施例において、前記最表層(A層)のSn,Inの付着量が7~75μg/cm2である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記中層(B層)の厚みが0.3μm超且つ0.6μm以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,Os,Irの付着量が330μg/cm2超且つ660μg/cm2以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記下層(C層)の表面のビッカース硬さがHv300以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記下層(C層)の表面のビッカース硬さと厚みとが下記式:
  ビッカース硬さ(Hv) ≧ -376.22Ln(厚みμm)+86.411
を満たす。
 本発明の電子部品用金属材料は更に別の一実施例において、超微小硬さ試験により、前記下層(C層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記下層(C層)の表面の押し込み硬さが2500MPa以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記下層(C層)の表面の押し込み硬さと厚みとが下記式:
  押し込み硬さ(MPa) ≧ -3998.4Ln(厚みμm)+1178.9
を満たす。
 本発明の電子部品用金属材料は更に別の一実施例において、前記下層(C層)の表面のビッカース硬さがHv1000以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、超微小硬さ試験により、前記下層(C層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記下層(C層)の表面の押し込み硬さが10000MPa以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記基材が金属基材であって、前記金属基材の表面のビッカース硬さがHv90以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記基材が金属基材であって、超微小硬さ試験により、前記金属基材の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記金属基材の表面の押し込み硬さが1000MPa以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記基材が金属基材であって、JIS C 2241に従い、前記金属基材の圧延平行方向について、引張速度を50mm/minとして引張試験を行うことで測定した前記金属基材の伸びが5%以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、前記基材が金属基材であって、日本伸銅協会技術標準(JCBA)T307に準じてW曲げ試験を行い前記金属材料の割れが発生しない最小の曲げ半径(MBR)と前記金属材料厚さ(t)の比である最小曲げ半径比(MBR/t)が3以下である。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Sn,Inが2at%以上である。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Ag,Au,Pt,Pd,Ru,Rh,OsまたはIrが7at%未満である。
 本発明の電子部品用金属材料は更に別の一実施例において、XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Oが50at%未満である。
 本発明は更に別の一側面において、本発明の電子部品用金属材料を接点部分に用いたコネクタ端子である。
 本発明は更に別の一側面において、本発明のコネクタ端子を用いたコネクタである。
 本発明は更に別の一側面において、本発明の電子部品用金属材料を接点部分に用いたFFC端子である。
 本発明は更に別の一側面において、本発明の電子部品用金属材料を接点部分に用いたFPC端子である。
 本発明は更に別の一側面において、本発明のFFC端子を用いたFFCである。
 本発明は更に別の一側面において、本発明のFPC端子を用いたFPCである。
 本発明は更に別の一側面において、本発明の電子部品用金属材料を外部接続用電極に用いた電子部品である。
 本発明は更に別の一側面において、前記最表層(A層)及び前記中層(B層)を、それぞれ湿式めっきによる表面処理で形成する工程を含む本発明の電子部品用金属材料の製造方法である。
 本発明の電子部品用金属材料の製造方法は一実施形態において、前記湿式めっきの方法が電気めっきである。
 本発明の電子部品用金属材料の製造方法は別の一実施形態において、前記最表層(A層)を、酸性めっき液を用いためっき処理で形成する。
 本発明の電子部品用金属材料の製造方法は更に別の一実施形態において、前記中層(B層)を、シアン含有めっき液を用いためっき処理で形成する。
 本発明の電子部品用金属材料の製造方法は更に別の一実施形態において、前記下層(C層)を、スルファミン酸浴またはワット浴を用いためっき処理で形成する工程を含む。
 本発明の電子部品用金属材料の製造方法は更に別の一実施形態において、前記スルファミン酸浴及び前記ワット浴で用いるめっき液が光沢Niめっき液である。
 本発明の電子部品用金属材料の製造方法は更に別の一実施形態において、前記下層(C層)を形成するためのめっき液に、添加剤としてサッカリンが含有されている。
 本発明によれば、低挿抜性、低ウィスカ性及び高耐久性を有する電子部品用金属材料及びその製造方法を提供することができる。
本発明の実施形態に係る電子部品用金属材料の構成を示す模式図である。 実施例3に係るXPS(X線光電子分光)のDepth測定結果である。 実施例3に係るXPS(X線光電子分光)のSurvey測定結果である。
 以下、本発明の実施形態に係る電子部品用金属材料について説明する。図1に示すように、実施形態に係る電子部品用金属材料10は、基材11の表面に下層(C層)12が形成され、下層(C層)12の表面に中層(B層)13が形成され、中層(B層)13の表面に最表層(A層)14が形成されている。また、基材11の表面に下層(C層)12を形成せず、基材11の表面に中層(B層)13が形成され、中層(B層)13の表面に最表層(A層)14が形成されている材料も、本発明の実施形態に係る電子部品用金属材料である。
 <電子部品用金属材料の構成>
 (基材)
 基材11としては、特に限定されないが、例えば、銅及び銅合金、Fe系材、ステンレス、チタン及びチタン合金、アルミニウム及びアルミニウム合金などの金属基材を用いることができる。また、金属基材に樹脂層を複合させたものであっても良い。金属基材に樹脂層を複合させたものとは、例としてFPCまたはFFC基材上の電極部分などがある。
 基材11のビッカース硬さはHv90以上であるのが好ましい。基材11のビッカース硬さがHv90以上であると、硬い基材によって薄膜潤滑効果が向上し、挿抜性がより低下する。
 基材11の押し込み硬さは1000MPa以上であるのが好ましい。基材11の押し込み硬さが1000MPa以上であると、硬い基材によって薄膜潤滑効果が向上し、挿抜性がより低下する。
 基材11の伸びは5%以上であるのが好ましい。基材11の伸びが5%以上であると、曲げ加工性が向上し、本発明の電子部品用金属材料をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性(耐久性)低下を抑制する。
 基材11に対してW曲げ試験を行ったときの最小曲げ半径比(MBR/t)は3以下であるのが好ましい。基材11の最小曲げ半径比(MBR/t)が3以下であると、曲げ加工性が向上し、本発明の電子部品用金属材料をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性(耐久性)低下を抑制する。
 (最表層(A層))
 最表層(A層)14は、Sn,In,またはそれらの合金である必要がある。Sn及びInは、酸化性を有する金属ではあるが、金属の中では比較的柔らかいという特徴がある。よって、Sn及びIn表面に酸化膜が形成されていても、例えば電子部品用金属材料を接点材料としてオス端子とメス端子を勘合する時に、容易に酸化膜が削られ、Sn及びInの新生面が顔を出し、接点が金属同士となるため、低接触抵抗が得られる。
 また、Sn及びInは塩素ガス、亜硫酸ガス、硫化水素ガス等のガスに対する耐ガス腐食性に優れ、例えば、中層(B層)13に耐ガス腐食性に劣るAg、下層(C層)12に耐ガス腐食性に劣るNi、基材11に耐ガス腐食性に劣る銅及び銅合金を用いた場合には、電子部品用金属材料の耐ガス腐食性を向上させる働きがある。なおSn及びInでは、厚生労働省の健康障害防止に関する技術指針に基づき、Inは規制が厳しいため、Snが好ましい。
 最表層(A層)14の組成は、Sn,In,またはSnとInとの合計で50質量%以上であり、残合金成分がAg,As,Au,Bi,Cd,Co,Cr,Cu,Fe,Mn,Mo,Ni,Pb,Sb,W,Znからなる群より選択される1種、もしくは2種以上の金属で構成されていても良い。最表層(A層)14の組成が合金になる(例えばSn-Agめっきを施す)ことで、低挿抜性、低ウィスカ性、及び、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)などをより向上させる場合がある。
 最表層(A層)14の厚みは0.002~0.2μmである必要がある。最表層(A層)14の厚みは0.01~0.1μmであるのが好ましい。最表層(A層)14の厚みが0.002μm未満であると、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加する。より充分な耐ガス腐食性が得られるためには、0.01μm以上の厚みが好ましい。また、厚みが大きくなると、SnやInの凝着磨耗が大きくなり、挿抜力が大きくなり、ウィスカも発生しやすくなる。より充分な低挿抜性、低ウィスカ性を得るためには、0.2μm以下とする。より好ましくは0.1μm以下である。なお、厚みを0.1μm以下にするとウィスカが発生しない。ウィスカはらせん転位が生じることによって発生するが、らせん転位が生じるためには数百nm以上の厚みのバルクが必要である。最表層(A層)14の厚みが0.2μm以下では、らせん転位が生じる十分な厚みではなく、基本的にはウィスカが発生しない。また最表層(A層)と中層(B層)は常温において短回路拡散が進みやすく、合金が形成しやすいためウィスカが発生しない。
 最表層(A層)14のSn,Inの付着量は、1~150μg/cm2である必要がある。最表層(A層)14の付着量は、7~75μg/cm2であるのが好ましい。ここで、付着量で定義する理由を説明する。例えば、最表層(A層)14の厚みを蛍光X線膜厚計で測定する場合、例えば最表層(A層)とその下の中層(B層)との間に形成した合金層により、測定される厚みの値に誤差が生じる場合がある。一方、付着量で制御する場合、合金層の形成状況に左右されず、より正確な品質管理をすることができる。最表層(A層)14のSn,Inの付着量が1μg/cm2未満であると、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加する。より充分な耐ガス腐食性が得られるためには、7μg/cm2以上の付着量が好ましい。また付着量が多くなると、SnやInの凝着磨耗が大きくなり、挿抜力が大きくなり、ウィスカも発生しやすくなる。より充分な低挿抜性、低ウィスカ性を得るためには、150μg/cm2以下とする。より好ましくは75μg/cm2以下である。なお、付着量を75μg/cm2以下にするとウィスカが発生しない。ウィスカはらせん転位が生じることによって発生するが、らせん転位が生じるためには数十μg/cm2以上の付着量のバルクが必要である。最表層(A層)14の付着量が150μg/cm2以下では、らせん転位が生じる十分な付着量ではなく、基本的にはウィスカが発生しない。また最表層(A層)と中層(B層)は常温において短回路拡散が進みやすく、合金が形成しやすいためウィスカが発生しない。
 (中層(B層))
 中層(B層)13は、Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されている必要がある。Ag,Au,Pt,Pd,Ru,Rh,Os,Irは、金属の中では比較的耐熱性を有するという特徴がある。よって基材11や下層(C層)12の組成が最表層(A層)14側に拡散するのを抑制して耐熱性を向上させる。また、これら金属は、最表層(A層)14のSnやInと化合物を形成してSnやInの酸化膜形成を抑制し、はんだ濡れ性を向上させる。なお、Ag,Au,Pt,Pd,Ru,Rh,Os,Irの中では、導電率の観点でAgがより望ましい。Agは導電率が高い。例えば高周波の信号用途にAg用いた場合、表皮効果により、インピーダンス抵抗が低くなる。
 中層(B層)13の合金組成Ag,Au,Pt,Pd,Ru,Rh,Os,Ir,またはAgとAuとPtとPdとRuとRhとOsとIrとの合計で50質量%以上であり、残合金成分がBi,Cd,Co,Cu,Fe,In,Mn,Mo,Ni,Pb,Sb,Se,Sn,W,Tl,Znからなる群より選択される1種、もしくは2種以上の金属で構成されていても良い。このような合金組成になる(例えばSn-Agめっきを施す)ことで、低挿抜性、低ウィスカ性、及び、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)などを向上させる場合がある。
 中層(B層)13の厚みは0.3μmよりも厚くする必要がある。中層(B層)13の厚みは0.3μm超且つ0.6μm以下であるのが好ましい。厚みを0.3μmよりも厚くすると、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)が向上する。一方、厚みが厚くなると、挿抜力が大きくなるため、厚みは0.6μm以下が好ましい。厚みが0.6μmを超えると、挿抜力が現行材(比較例4)よりも大きくなる場合がある。
 中層(B層)13のAg,Au,Pt,Pd,Ru,Rh,Os,Ir,またはそれら合金の付着量は330μg/cm2よりも多くする必要がある。中層(B層)13の付着量は330μg/cm2超且つ660μg/cm2以下であるのが好ましい。ここで、付着量で定義する理由を説明する。例えば、中層(B層)13の厚みを蛍光X線膜厚計で測定する場合、例えば最表層(A層)14とその下の中層(B層)13との間に形成した合金層により、測定される厚みの値に誤差が生じる場合がある。一方、付着量で制御する場合、合金層の形成状況に左右されず、より正確な品質管理をすることができる。付着量が330μg/cm2よりも多いと、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)が向上する。一方、付着量が多くなると、挿抜力が大きくなるため、660μg/cm2以下が好ましい。付着量が660μg/cm2を超えると、挿抜力が現行材(比較例4)よりも大きくなる場合がある。
 (下層(C層))
 基材11と中層(B層)13との間には、Ni,Cr,Mn,Fe,Co,Cuからなる群から選択された1種、もしくは2種以上からなる下層(C層)12を形成するのが好ましい。Ni,Cr,Mn,Fe,Co,Cuからなる群から選択された1種、もしくは2種以上の金属を用いて下層(C層)12を形成することで、硬い下層(C層)形成により薄膜潤滑効果が向上して低挿抜性が向上し、下層(C層)12は基材11の構成金属が中層(B層)に拡散するのを防止し、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化を抑制するなど、耐久性が向上する。
 下層(C層)12の合金組成が、Ni,Cr,Mn,Fe,Co,Cuの合計で50質量%以上であり、さらにB,P,Sn,Znからなる群から選択された1種、もしくは2種以上を含んでも良い。下層(C層)12の合金組成がこのような構成となることで、下層(C層)がより硬化することで更に薄膜潤滑効果が向上して低挿抜性が向上し、下層(C層)12の合金化は基材11の構成金属が中層(B層)に拡散するのを更に防止し、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化を抑制するなど、耐久性が向上する。
 下層(C層)12の厚みは0.05μm以上であることが好ましい。下層(C層)12の厚みが0.05μm未満であると、硬い下層(C層)による薄膜潤滑効果が低下して低挿抜性が悪くなり、基材11の構成金属は中層(B層)に拡散しやすくなり、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化しやすいなど、耐久性が悪くなる。
 下層(C層)12のNi,Cr,Mn,Fe,Co,Cuの付着量が、0.03mg/cm2以上であるのが好ましい。ここで、付着量で定義する理由を説明する。例えば、下層(C層)12の厚みを蛍光X線膜厚計で測定する場合、最表層(A層)14、中層(B層)13、及び基材11等と形成した合金層により、測定される厚みの値に誤差が生じる場合がある。一方、付着量で制御する場合、合金層の形成状況に左右されず、より正確な品質管理をすることができる。また付着量が0.03mg/cm2未満であると、硬い下層(C層)による薄膜潤滑効果が低下して低挿抜性が悪くなり、基材11の構成金属は中層(B層)に拡散しやすくなり、耐熱性試験や耐ガス腐食性試験後の接触抵抗増加及びはんだ濡れ性劣化しやすいなど、耐久性が悪くなる。
 (熱処理)
 最表層(A層)14を形成させた後に、低挿抜性、低ウィスカ性、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)を向上させる目的で熱処理を施しても良い。熱処理によって最表層(A層)14と中層(B層)13が合金層を形成しやすくなり、Snの凝着力を一層小さくすることにより低挿抜性が得られ、また低ウィスカ性及び耐久性も更に向上させる。なお、この熱処理については、処理条件(温度×時間)は適宜選択できる。また、特にこの熱処理はしなくてもよい。
 (後処理)
 最表層(A層)14上、または最表層(A層)14上に熱処理を施した後に、低挿抜性や耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)を向上させる目的で後処理を施しても良い。後処理によって潤滑性が向上し、更なる低挿抜性が得られ、また最表層(A層)と中層(B層)の酸化が抑制されて、耐熱性、耐ガス腐食性及びはんだ濡れ性等の耐久性が向上する。具体的な後処理としてはインヒビターを用いた、リン酸塩処理、潤滑処理、シランカップリング処理等がある。なお、この熱処理については、処理条件(温度×時間)は適宜選択できる。また、特にこの熱処理はしなくてもよい。
 <電子部品用金属材料の特性>
 最表層(A層)の表面(最表層の表面から測定した)のビッカース硬さはHv90以上であるのが好ましい。最表層(A層)14の表面のビッカース硬さがHv90以上であると、硬い最表層(A層)によって薄膜潤滑効果が向上し、低挿抜性が向上する。また一方で、最表層(A層)14表面(最表層の表面から測定した)のビッカース硬さはHv1000以下あるのが好ましい。最表層(A層)14の表面のビッカース硬さがHv1000以下であると、曲げ加工性が向上し、本発明の電子部品用金属材料をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性(耐久性)低下を抑制する。
 最表層(A層)14の表面(最表層の表面から測定した)の押し込み硬さは1000MPa以上あるのが好ましい。最表層(A層)14の表面の押し込み硬さが1000MPa以上であると、硬い最表層(A層)によって薄膜潤滑効果が向上し、低挿抜性が向上する。また一方で最表層(A層)14の表面(最表層の表面から測定した)の押し込み硬さは10000MPa以下あるのが好ましい。最表層(A層)14の表面の押し込み硬さが10000MPa以下であると、曲げ加工性が向上し、本発明の電子部品用金属材料をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性(耐久性)低下を抑制する。
 最表層(A層)14の表面の算術平均高さ(Ra)は0.1μm以下であるのが好ましい。最表層(A層)14の表面の算術平均高さ(Ra)が0.1μm以下であると比較的腐食しやすい凸部が少なくなり平滑となるため、耐ガス腐食性が向上する。
 最表層(A層)14の表面の最大高さ(Rz)は1μm以下であるのが好ましい。最表層(A層)14の表面の最大高さ(Rz)が1μm以下であると比較的腐食しやすい凸部が少なくなり平滑となるため、耐ガス腐食性が向上する。
 最表層(A層)14の表面の反射濃度が0.3以上であるのが好ましい。最表層(A層)14の表面の反射濃度が0.3以上であると比較的腐食しやすい凸部が少なくなり平滑となるため、耐ガス腐食性が向上する。
 下層(C層)12のビッカース硬さはHv300以上あるのが好ましい。下層(C層)12のビッカース硬さがHv300以上であると、下層(C層)がより硬化することで更に薄膜潤滑効果が向上して低挿抜性が向上する。また一方で、下層(C層)12のビッカース硬さHv1000以下あるのが好ましい。下層(C層)12のビッカース硬さがHv1000以下であると、曲げ加工性が向上し、本発明の電子部品用金属材料をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性(耐久性)低下を抑制する。
 下層(C層)12のビッカース硬さと下層(C層)12の厚みとが下記式:
  ビッカース硬さ(Hv) ≧ -376.22Ln(厚みμm)+86.411
を満たすことが好ましい。下層(C層)12のビッカース硬さと下層(C層)12の厚みとが上記式を満たすと、下層(C層)がより硬化することで更に薄膜潤滑効果が向上して低挿抜性が向上する。
 なお、本発明において、「Ln(厚みμm)」とは、厚み(μm)の自然対数の数値を意味する。
 下層(C層)12の押し込み硬さは2500MPa以上であるのが好ましい。下層(C層)12の押し込み硬さが2500MPa以上であると、低挿抜性が向上する。また一方で、下層(C層)12の押し込み硬さが10000MPa以下であるのが好ましい。下層(C層)12の押し込み硬さが10000MPa以下であると、曲げ加工性が向上し、本発明の電子部品用金属材料をプレス成形した場合に、成形した部分にクラックが入り難くなり、耐ガス腐食性(耐久性)低下を抑制する。
 下層(C層)12の押し込み硬さと下層(C層)12の厚みとが下記式:
  押し込み硬さ(MPa) ≧ -3998.4Ln(厚みμm)+1178.9
を満たすことが好ましい。下層(C層)12の押し込み硬さと下層(C層)12の厚みとが上記式を満たすと、下層(C層)がより硬化することで更に薄膜潤滑効果が向上して低挿抜性が向上する。
 XPS(X線光電子分光)でDepth分析を行ったとき、最表層(A層)14のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、中層(B層)13のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)が、最表面からD1、D2の順で存在することが好ましい。最表面からD1、D2の順で存在しない場合、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加するおそれがある。
 XPS(X線光電子分光)でDepth分析を行ったとき、最表層(A層)14のSnまたはInの原子濃度(at%)の最高値が10at%以上であることが好ましい。最表層(A層)14のSnまたはInの原子濃度(at%)の最高値が10at%未満である場合、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加するおそれがある。
 XPS(X線光電子分光)でDepth分析を行ったとき、最表層(A層)14のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、中層(B層)13のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)、下層(C層)12のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)の最高値示す位置(D3)が最表面からD1、D2、D3の順で存在することが好ましい。最表面からD1、D2、D3の順で存在しない場合、充分な耐ガス腐食性が得られず、電子部品用金属材料を塩素ガス、亜硫酸ガス、硫化水素ガス等のガス腐食試験を行うと腐食して、ガス腐食試験前と比較して大きく接触抵抗が増加するとなるおそれがある。
 XPS(X線光電子分光)でDepth分析を行ったとき、最表層(A層)14のSnまたはInの原子濃度(at%)の最高値が10at%以上であって、下層(C層)12のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)が25at%以上である深さが50nm以上であることが好ましい。最表層(A層)14のSnまたはInの原子濃度(at%)の最高値、及び、中層(B層)13のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値がそれぞれ10at%未満であって、下層(C層)12のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)が25at%以上である深さが50nm未満である場合、低挿抜性や耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)は、基材成分が最表層(A層)14または中層(B層)13に拡散して悪くなるおそれがある。
 XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Sn,Inが2at%以上であることが好ましい。Sn,Inが1at%未満であると、例えばAgの場合、耐硫化性が劣り、接触抵抗が大きく増加するおそれがある。また、例えばPdの場合、Pdが酸化して接触抵抗が高くなるおそれがある。
 XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Ag,Au,Pt,Pd,Ru,Rh,OsまたはIrが7at%未満であることが好ましい。Ag,Au,Pt,Pd,Ru,Rh,OsまたはIrが7at%以上であると、例えばAgの場合、耐硫化性が劣り、接触抵抗が大きく増加するおそれがある。また、例えばPdの場合、Pdが酸化して接触抵抗が高くなるおそれがある。
 XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Oが50at%未満であることが好ましい。Oが50at%以上であると、接触抵抗が高くなるおそれがある。
 <電子部品用金属材料の用途>
 本発明の電子部品用金属材料の用途は特に限定しないが、例えば電子部品用金属材料を接点部分に用いたコネクタ端子、電子部品用金属材料を接点部分に用いたFFC端子またはFPC端子、電子部品用金属材料を外部接続用電極に用いた電子部品などが挙げられる。なお、端子については、圧着端子、はんだ付け端子、プレスフィット端子等、配線側との接合方法によらない。外部接続用電極には、タブに表面処理を施した接続部品や半導体のアンダーバンプメタル用に表面処理を施した材料などがある。
 また、このように形成されたコネクタ端子を用いてコネクタを作製しても良く、FFC端子またはFPC端子を用いてFFCまたはFPCを作製しても良い。
 コネクタはオス端子とメス端子の両方が本発明の電子部品用金属材料であっても良いし、オス端子またはメス端子の片方だけであっても良い。なおオス端子とメス端子の両方を本発明の電子部品用金属材料にすることで、更に低挿抜性が向上する。
 <電子部品用金属材料の製造方法>
 本発明の電子部品用金属材料の製造方法としては、湿式(電気、無電解)めっき、乾式(スパッタ、イオンプレーティング等)めっき等を用いることができる。
 但し、乾式めっきよりも湿式めっきの方が、めっき皮膜中に、めっき液中に存在する極微量の不純物成分が共析されウィスカの発生を抑制し、また電着組織が硬くなることで低挿抜性を向上させる場合がある。また製造コストの観点からは、湿式めっきであることが好ましい。
 湿式めっきの中では電気めっきの方が好ましい。電気めっきは無電解めっきと比較して均一な皮膜が形成されるため、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)を向上させる場合がある。
 最表層(A層)14は、酸性めっき液を用いためっき処理で形成することが好ましい。酸性めっきを用いることにより、中層(B層)13との密着性が向上する。
 中層(B層)13は、シアン含有めっき液を用いためっき処理で形成することが好ましい。シアン含有めっきを用いることにより、緻密な皮膜ができ、耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)が向上する。
 下層(C層)12は、スルファミン酸浴またはワット浴を用いためっき処理で形成することが好ましい。スルファミン酸浴またはワット浴を用いることにより、基材との密着性が向上する。
 またスルファミン酸浴またはワット浴で用いるめっき液が、光沢Niめっき液であることが好ましい。めっき液として光沢Niめっきを用いることにより、皮膜が平滑かつ硬くなり、低挿抜性や耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)が向上する。
 またスルファミン酸浴またはワット浴に添加剤としてサッカリンが含まれていることが好ましい。サッカリンを添加することにより、緻密で硬い皮膜となり、皮膜が平滑かつ硬くなり、低挿抜性や耐久性(耐熱性、耐ガス腐食性、はんだ濡れ性等)が向上する。
 以下、本発明の実施例を比較例と共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
 実施例及び比較例として、基材、下層(C層)、中層(B層)、最表層(A層)をこの順に設けて熱処理を行うことで形成した試料を、以下の表1~7に示す条件でそれぞれ作製した。また、下層(C層)については、形成しない例も作製した。
 表1に基材の作製条件を、表2に下層(C層)の作製条件を、表3に中層(B層)の作製条件を、表4に最表層(A層)の作製条件を、表5に熱処理条件をそれぞれ示す。また、表6に各実施例で使用した各層の作製条件及び熱処理の条件を、表7に各比較例で使用した各層の作製条件及び熱処理の条件それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 (厚みの測定)
 最表層(A層)、中層(B層)、下層(C層)の厚みは、最表層(A層)、中層(B層)、下層(C層)の組成を有していない基材にそれぞれ表面処理を施し、それぞれ蛍光X線膜厚計(Seiko Instruments製 SEA5100、コリメータ0.1mmΦ)で実際の厚みを測定した。例えば、Snめっきの場合には、基材がCu-10質量%Sn-0.15質量%Pであると、基材にSnが有しており、正確なSnめっきの厚みがわからないため、Snが基材の組成を有していない、Cu-30質量%Znで厚みを測定した。
 (付着量の測定)
 各試料を硫酸や硝酸等で酸分解し、ICP(誘導結合プラズマ)発光分光分析により各金属の付着量を測定した。なお具体的に用いる酸は、それぞれのサンプルを有する組成によって異なる。
 (組成の決定)
 測定した付着量に基づき、各金属の組成を算出した。
 (層構造の決定)
 得られた試料の層構造は、XPS(X線光電子分光)分析による深さ(Depth)プロファイルで決定した。分析した元素は、最表層(A層)、中層(B層)、下層(C層)の組成と、C及びOである。これら元素を指定元素とする。また、指定元素の合計を100%として、各元素の濃度(at%)を分析した。XPS(X線光電子分光)分析での厚みは、分析によるチャートの横軸の距離(SiO2換算での距離)に対応する。
 また、得られた試料の表面は、XPS(X線光電子分光)分析によるSurvey測定にて定性分析も行った。定性分析の濃度の分解能は0.1at%とした。
 XPS装置としては、アルバック・ファイ株式会社製5600MCを用い、到達真空度:5.7×10-9Torr、励起源:単色化AlKα、出力:210W、検出面積:800μmΦ、入射角:45度、取り出し角:45度、中和銃なしとし、以下のスパッタ条件で測定した。
 イオン種:Ar+
 加速電圧:3kV
 掃引領域:3mm×3mm
 レート:2.8nm/min.(SiO2換算)
 (評価)
 各試料について以下の評価を行った。
 A.挿抜力
 挿抜力は,市販のSnリフローめっきメス端子(090型住友TS/矢崎090IIシリーズメス端子非防水/F090-SMTS)を用いて、実施例及び比較例に係るめっきしたオス端子と挿抜試験することによって評価した。
試験に用いた測定装置は、アイコーエンジニアリング製1311NRであり、オスピンの摺動距離5mmで評価した。サンプル数は5個とし、挿抜力は、挿入力と抜去力が同等であるため,各サンプルの最大挿入力の値を平均した値を採用した。挿抜力のブランク材としては、比較例1のサンプルを採用した。
 挿抜力の目標は、比較例1の最大挿抜力と比較して90%以下である。これは、比較例4が比較例1の最大挿入力と比較して90%であるためである。しかし比較例4はPCT試験後のはんだ濡れ性が悪いため、この比較例4よりも、挿抜力の減少が同等以上であり、PCT試験後のはんだ濡れ性が良好である仕様を見出すことを本発明の目的としているためである。
 なお今回の試験に用いたメス端子は、市販のSnリフローめっきメス端子を用いたが、実施例に係るめっきやAuめっきを用いると更に挿抜力は低下する。
 B.ウィスカ
 ウィスカは、JEITA RC-5241の荷重試験(球圧子法)にて評価した。すなわち、各サンプルに対して荷重試験を行い、荷重試験を終えたサンプルをSEM(JEOL社製、型式JSM-5410)にて100~10000倍の倍率で観察して、ウィスカの発生状況を観察した。荷重試験条件を以下に示す。
 球圧子の直径:Φ1mm±0.1mm
 試験荷重:2N±0.2N
 試験時間:120時間
 サンプル数:10
 目標とする特性は、長さ20μm以上のウィスカが発生しないことであるが、最大の目標としては、ウィスカが1本も発生しないこととした。
 C.接触抵抗
 接触抵抗は、山崎精機製接点シミュレーターCRS-113-Au型を使用し、接点荷重50gの条件で4端子法にて測定した。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。目標とする特性は、接触抵抗10mΩ以下である。
 D.耐熱性
 耐熱性は、大気加熱(155℃×1000h)試験後のサンプルの接触抵抗を測定し、評価した。目標とする特性は、接触抵抗10mΩ以下であるが、最大の目標としては、接触抵抗が、耐熱性試験前後で変化がない(同等である)こととした。
 E.耐ガス腐食性
 耐ガス腐食性は、下記の(1)~(3)に示す3つの試験環境で評価した。耐ガス腐食性の評価は、(1)~(3)の環境試験を終えた試験後のサンプルの接触抵抗で測定した。なお目標とする特性は、接触抵抗10mΩ以下であるが、最大の目標としては、接触抵抗が、耐熱性試験前後で変化がない(同等である)こととした。
 (1)塩水噴霧試験
  塩水濃度:5%
  温度:35℃
  噴霧圧力:98±10kPa
  曝露時間:96h
 (2)亜硫酸ガス腐食試験
  亜硫酸濃度:25ppm
  温度:40℃
  湿度:80%RH
  曝露時間:96h
 (3)硫化水素ガス腐食試験
  亜硫酸濃度:3ppm
  温度:40℃
  湿度:80%RH
  曝露時間:96h
 F.はんだ濡れ性
 はんだ濡れ性はめっき後とプレッシャークッカー試験(105℃×不飽和100%RH×96h)後のサンプルを評価した。ソルダーチェッカ(レスカ社製SAT-5000)を使用し、フラックスとして市販の25%ロジンエタノールフラックスを用い、メニスコグラフ法にてはんだ濡れ時間を測定した。はんだはSn-3Ag-0.5Cu(250℃)を用いた。サンプル数は5個とし、各サンプルの最小値から最大値の範囲を採用した。目標とする特性は、ゼロクロスタイム5秒以下である。
 G.曲げ加工性
 曲げ加工性は、日本伸銅協会技術標準(JCBA)T307に準じてW曲げ試験を行い前記金属材料の割れが発生しない最小の曲げ半径(MBR)と前記金属材料厚さ(t)の比で評価し、最小曲げ半径比(MBR/t)が3以下で良好とした。評価は曲げ加工部表面を光学顕微鏡で観察し、めっき皮膜にクラックが観察されない場合の実用上問題ないと判断した場合には○とし、クラックが認められた場合を×とした。なお、サンプル数は3個とした。
 H.ビッカース硬さ
 最表層(A層)のビッカース硬さは、サンプル表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定した。
 また、下層(C層)のビッカース硬さは、下層(C層)断面に荷重980.7mN、荷重保持時間15秒で打根を打って測定した。
 I.押し込み硬さ
 最表層(A層)及び金属基材の押し込み硬さは、サンプル表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定した。
 また、下層(C層)の押し込み硬さは、断面に荷重980.7mN、荷重保持時間15秒で打根を打って測定した。
 J.表面粗さ
 表面粗さ(算術平均高さ(Ra)及び最大高さ(Rz))の測定は、JIS B 0601に準拠し、非接触式三次元測定装置(三鷹光器社製、形式NH-3)を用いて行った。カットオフは0.25mm、測定長さは1.50mmで、1試料当たり5回測定した。
 K.反射濃度
 反射濃度は、デンシトメーター(ND-1、日本電色工業社製)を使用して、反射率を測定した。なお、1試料当たり5回測定した。
 L.伸び
 伸びは、JIS C 2241に従い、各サンプルの圧延平行方向について引張試験を行うことで測定した。引張速度は50mm/minとした。なお、サンプル数は3個とした。
 M.最小曲げ半径比(MBR/t)
 最小曲げ半径比は、曲げ加工性と同じ方法で、素材に割れの発生しない最小曲げ半径/試験片厚さを測定した。なお、サンプル数は3個とした。
 以上の試験について、各条件での評価結果を表8~23に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 実施例1~98は、低挿抜性、低ウィスカ性及び耐久性のいずれも優れた電子部品金属材料であった。
 比較例1はブランク材である。
 比較例2は、比較例1のブランク材のSnめっきを薄くして作製したものであるが、はんだ濡れ性が悪かった。
 比較例3は、比較例2と比較して熱処理を施さないで作製したものであるが、挿抜力が目標よりも高かった。
 比較例4は、比較例2と比較して中層にCuめっきを施して作製したものであるが、挿抜力は比較例1と比較して90%であった。しかしPCT試験後のはんだ濡れ性が悪かった。
 比較例5は、比較例4と比較してSnめっきを薄くして作製したものであるが、はんだ濡れ性が悪かった。
 比較例6は、比較例5と比較して熱処理を施さないで作製したものであるが、挿抜力が目標よりも高かった。
 比較例7は、比較例1のブランク材と比較して下層にCuめっきを施して作製したものであるが、比較例1と特性は変わらなかった。
 比較例8は、比較例1のブランク材と比較して下層のNiめっきを厚く施して作製したものであるが、比較例1と特性は変わらなかった。
 比較例9は、実施例1と比較して最表層のSnめっきを厚くして施して作製したものであるが、挿抜力が目標よりも高かった。
 比較例10は、実施例2と比較して最表層のSnめっきを厚くして施して作製したものであるが、挿抜力が目標よりも高かった。
 比較例11は、実施例2と比較して中層のAgめっきを薄く施して作製したものであるが、PCT試験後のはんだ濡れ性が悪かった。
 比較例12は、実施例5と比較して中層のAgめっきを薄く施して作製したものであるが、PCT試験後のはんだ濡れ性が悪かった。
 比較例13は、実施例1と比較して最表層のSnめっきを薄くして施して作製したものであるが、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例14は、実施例2と比較して最表層のSnめっきを薄くして施して作製したものであるが、XPS(X線光電子分光)でのDepth測定で、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値が10at%以下であり、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例15は、実施例3と比較して、SnとAgのめっき順序を逆にして作製したものであるが、XPS(X線光電子分光)でのDepth測定で前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)がD2、D1の順で存在するため、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例16は、XPS(X線光電子分光)でのDepth測定で前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)がD1≒D2であるため、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例17は、実施例61と比較して、SnとAgのめっき順序を逆にして作製したものであるが、XPS(X線光電子分光)でのDepth測定で前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)がD2、D1の順で存在するため、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例18は、XPS(X線光電子分光)でのDepth測定で前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)がD1≒D2であるため、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例19は、実施例79と比較して最表層のSnめっきを薄くして施して作製したものであるが、XPS(X線光電子分光)でのDepth測定で、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)が10at%以下であり、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 比較例20は、実施例79と比較して最表層のSnめっきを薄く施して作製したものであるが、XPS(X線光電子分光)でのSurvey測定で最表面のSnが2at%以下であったため、耐ガス腐食性が悪く、硫化水素ガス腐食試験後の接触抵抗が目標を上回った。
 また、図2に実施例3に係るXPS(X線光電子分光)のDepth測定結果を示す。図2より、最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)がD1、D2の順で存在し、D1が35at%、D2が87%であることが分かる。
 また、図3に実施例3に係るXPS(X線光電子分光)のSurvey測定結果を示す。図3より、Oが24.1at%であり、Agが2.6at%で、Snが7.3at%であることが分かる。
10 電子部品用金属材料
11 基材
12 下層(C層)
13 中層(B層)
14 最表層(A層)

Claims (50)

  1.  基材と、
     前記基材の最表層を構成し、Sn,In,またはそれらの合金で形成されたA層と、
     前記基材とA層との間に設けられて中層を構成し、Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されたB層と、
    を備え、
     前記最表層(A層)の厚みが0.002~0.2μmであり、
     前記中層(B層)の厚みが0.3μmよりも厚い、低ウィスカ性及び高耐久性を有する電子部品用金属材料。
  2.  基材と、
     前記基材の最表層を構成し、Sn,In,またはそれらの合金で形成されたA層と、
     前記基材とA層との間に設けられて中層を構成し、Ag,Au,Pt,Pd,Ru,Rh,Os,Irまたはそれらの合金で形成されたB層と、
    を備え、
     前記最表層(A層)のSn,Inの付着量が1~150μg/cm2であり、
     前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,Os,Irの付着量が330μg/cm2よりも多い、低ウィスカ性及び高耐久性を有する電子部品用金属材料。
  3.  前記最表層(A層)の合金組成がSn,In,またはSnとInとの合計で50質量%以上であり、残合金成分がAg,As,Au,Bi,Cd,Co,Cr,Cu,Fe,Mn,Mo,Ni,Pb,Sb,W,Znからなる群より選択される1種、もしくは2種以上の金属からなる請求項1または2に記載の電子部品用金属材料。
  4.  前記中層(B層)の合金組成がAg,Au,Pt,Pd,Ru,Rh,Os,Ir,またはAgとAuとPtとPdとRuとRhとOsとIrとの合計で50質量%以上であり、残合金成分がBi,Cd,Co,Cu,Fe,In,Mn,Mo,Ni,Pb,Sb,Se,Sn,W,Tl,Znからなる群より選択される1種、もしくは2種以上の金属からなる請求項1~3のいずれかに記載の電子部品用金属材料。
  5.  前記最表層(A層)の表面のビッカース硬さがHv90以上である請求項1~4のいずれかに記載の電子部品用金属材料。
  6.  超微小硬さ試験により、前記最表層(A層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記最表層(A層)の表面の押し込み硬さが1000MPa以上である請求項1~5のいずれかに記載の電子部品用金属材料。
  7.  前記最表層(A層)の表面のビッカース硬さがHv1000以下である、高曲げ加工性を有する請求項1~6のいずれかに記載の電子部品用金属材料。
  8.  超微小硬さ試験により、前記最表層(A層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記最表層(A層)の表面の押し込み硬さが10000MPa以下である、高曲げ加工性を有する請求項1~7のいずれかに記載の電子部品用金属材料。
  9.  前記最表層(A層)の表面の算術平均高さ(Ra)が0.1μm以下である、耐ガス腐食性がより優れた請求項1~8のいずれかに記載の電子部品用金属材料。
  10.  前記最表層(A層)の表面の最大高さ(Rz)が1μm以下である、耐ガス腐食性がより優れた請求項1~9のいずれかに記載の電子部品用金属材料。
  11.  前記最表層(A層)の表面の反射濃度が0.3以上である、耐ガス腐食性がより優れた請求項1~10のいずれかに記載の電子部品用金属材料。
  12.  XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)が、最表面からD1、D2の順で存在する請求項1~11のいずれかに記載の電子部品用金属材料。
  13.  XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値が10at%以上である請求項1~12のいずれかに記載の電子部品用金属材料。
  14.  前記基材とB層との間に設けられて下層を構成し、Ni,Cr,Mn,Fe,Co,Cuからなる群から選択された1種、もしくは2種以上で形成されたC層をさらに備えた請求項1~13のいずれかに記載の電子部品用金属材料。
  15.  下層(C層)の合金の組成がNi,Cr,Mn,Fe,Co,Cuの合計で50質量%以上であり、さらにB,P,Sn,Znからなる群から選択された1種、もしくは2種以上を含む請求項14に記載の電子部品用金属材料。
  16.  XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値を示す位置(D1)、前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,OsまたはIrの原子濃度(at%)の最高値を示す位置(D2)、前記下層(C層)のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)の最高値示す位置(D3)が最表面からD1、D2、D3の順で存在する請求項14または15に記載の電子部品用金属材料。
  17.  XPS(X線光電子分光)でDepth分析を行ったとき、前記最表層(A層)のSnまたはInの原子濃度(at%)の最高値が10at%以上であって、前記下層(C層)のNi,Cr,Mn,Fe,CoまたはCuの原子濃度(at%)が25%以上である深さが50nm以上である請求項14~16のいずれかに記載の電子部品用金属材料。
  18.  前記下層(C層)の厚みが0.05μm以上である請求項14~17のいずれかに記載の電子部品用金属材料。
  19.  前記下層(C層)のNi,Cr,Mn,Fe,Co,Cuの付着量が、0.03mg/cm2以上である請求項14~18のいずれかに記載の電子部品用金属材料。
  20.  前記最表層(A層)の厚みが0.01~0.1μmである、低挿抜性がより優れ、ウィスカがフリーである請求項1~19のいずれかに記載の電子部品用金属材料。
  21.  前記最表層(A層)のSn,Inの付着量が7~75μg/cm2であるウィスカがフリーである請求項1~20のいずれかに記載の電子部品用金属材料。
  22.  前記中層(B層)の厚みが0.3μm超且つ0.6μm以下である請求項1~21のいずれかに記載の電子部品用金属材料。
  23.  前記中層(B層)のAg,Au,Pt,Pd,Ru,Rh,Os,Irの付着量が330μg/cm2超且つ660μg/cm2以下である請求項1~22のいずれかに記載の電子部品用金属材料。
  24.  前記下層(C層)の表面のビッカース硬さがHv300以上である請求項14~23のいずれかに記載の電子部品用金属材料。
  25.  前記下層(C層)の表面のビッカース硬さと厚みとが下記式:
      ビッカース硬さ(Hv) ≧ -376.22Ln(厚みμm)+86.411
    を満たす請求項14~24のいずれかに記載の電子部品用金属材料。
  26.  超微小硬さ試験により、前記下層(C層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記下層(C層)の表面の押し込み硬さが2500MPa以上である請求項14~25のいずれかに記載の電子部品用金属材料。
  27.  前記下層(C層)の表面の押し込み硬さと厚みとが下記式:
      押し込み硬さ(MPa) ≧ -3998.4Ln(厚みμm)+1178.9
    を満たす請求項14~26のいずれかに記載の電子部品用金属材料。
  28.  前記下層(C層)の表面のビッカース硬さがHv1000以下である、高曲げ加工性を有する請求項14~27のいずれかに記載の電子部品用金属材料。
  29.  超微小硬さ試験により、前記下層(C層)の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記下層(C層)の表面の押し込み硬さが10000MPa以下である、高曲げ加工性を有する請求項14~28のいずれかに記載の電子部品用金属材料。
  30.  前記基材が金属基材であって、前記金属基材の表面のビッカース硬さがHv90以上である請求項1~29のいずれかに記載の電子部品用金属材料。
  31.  前記基材が金属基材であって、超微小硬さ試験により、前記金属基材の表面に荷重980.7mN、荷重保持時間15秒で打根を打って測定して得られた硬度である、前記金属基材の表面の押し込み硬さが1000MPa以上である請求項1~30のいずれかに記載の電子部品用金属材料。
  32.  前記基材が金属基材であって、JIS C 2241に従い、前記金属基材の圧延平行方向について、引張速度を50mm/minとして引張試験を行うことで測定した前記金属基材の伸びが5%以上である、高曲げ加工性を有する請求項1~31のいずれかに記載の電子部品用金属材料。
  33.  前記基材が金属基材であって、日本伸銅協会技術標準(JCBA)T307に準じてW曲げ試験を行い前記金属材料の割れが発生しない最小の曲げ半径(MBR)と前記金属材料厚さ(t)の比である最小曲げ半径比(MBR/t)が3以下である、高曲げ加工性を有する請求項1~32のいずれかに記載の電子部品用金属材料。
  34.  XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Sn,Inが2at%以上である請求項1~33のいずれかに記載の電子部品用金属材料。
  35.  XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Ag,Au,Pt,Pd,Ru,Rh,OsまたはIrが7at%未満である請求項1~34のいずれかに記載の電子部品用金属材料。
  36.  XPS(X線光電子分光)のSurvey測定で前記最表層(A層)の表面の元素分析を行ったとき、Oが50at%未満である請求項1~35のいずれかに記載の電子部品用金属材料。
  37.  請求項1~36のいずれかに記載の電子部品用金属材料を接点部分に用いたコネクタ端子。
  38.  請求項37に記載のコネクタ端子を用いたコネクタ。
  39.  請求項1~36のいずれかに記載の電子部品用金属材料を接点部分に用いたFFC端子。
  40.  請求項1~36のいずれかに記載の電子部品用金属材料を接点部分に用いたFPC端子。
  41.  請求項39に記載のFFC端子を用いたFFC。
  42.  請求項40に記載のFPC端子を用いたFPC。
  43.  請求項1~36のいずれかに記載の電子部品用金属材料を外部接続用電極に用いた電子部品。
  44.  前記最表層(A層)及び前記中層(B層)を、それぞれ湿式めっきによる表面処理で形成する工程を含む請求項1~36のいずれかに記載の電子部品用金属材料の製造方法。
  45.  前記湿式めっきの方法が電気めっきである請求項44に記載の電子部品用金属材料の製造方法。
  46.  前記最表層(A層)を、酸性めっき液を用いためっき処理で形成する請求項44又は45に記載の電子部品用金属材料の製造方法。
  47.  前記中層(B層)を、シアン含有めっき液を用いためっき処理で形成する請求項44~46のいずれかに記載の電子部品用金属材料の製造方法。
  48.  前記下層(C層)を、スルファミン酸浴またはワット浴を用いためっき処理で形成する工程を含む請求項14~36のいずれかに記載の電子部品用金属材料の製造方法。
  49.  前記スルファミン酸浴及び前記ワット浴で用いるめっき液が光沢Niめっき液である請求項48に記載の電子部品用金属材料の製造方法。
  50.  前記下層(C層)を形成するためのめっき液に、添加剤としてサッカリンが含有されている請求項48又は49に記載の電子部品用金属材料の製造方法。
PCT/JP2012/078200 2011-10-04 2012-10-31 電子部品用金属材料及びその製造方法 WO2014054189A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12886098.8A EP2905356B1 (en) 2012-10-04 2012-10-31 Metal material for use in electronic component
US14/432,978 US9580783B2 (en) 2011-10-04 2012-10-31 Electronic component metal material and method for manufacturing the same
KR1020157011263A KR20150065795A (ko) 2012-10-04 2012-10-31 전자 부품용 금속 재료 및 그 제조 방법
KR1020167033054A KR102011186B1 (ko) 2012-10-04 2012-10-31 전자 부품용 금속 재료 및 그 제조 방법
CN201280076223.5A CN104685101B (zh) 2012-10-04 2012-10-31 电子零件用金属材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-222567 2012-10-04
JP2012222567A JP5284526B1 (ja) 2011-10-04 2012-10-04 電子部品用金属材料及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014054189A1 true WO2014054189A1 (ja) 2014-04-10

Family

ID=50435603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078200 WO2014054189A1 (ja) 2011-10-04 2012-10-31 電子部品用金属材料及びその製造方法

Country Status (5)

Country Link
EP (1) EP2905356B1 (ja)
KR (2) KR102011186B1 (ja)
CN (1) CN104685101B (ja)
TW (1) TWI485930B (ja)
WO (1) WO2014054189A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483782A (zh) * 2016-01-08 2016-04-13 昆明天经电力设备有限公司 一种母线电刷镀锡工艺
WO2018105388A1 (ja) * 2016-12-06 2018-06-14 Dowaメタルテック株式会社 Snめっき材およびその製造方法
CN110036142B (zh) * 2016-12-06 2021-04-20 同和金属技术有限公司 Sn镀覆材料及其制造方法
JP6653340B2 (ja) * 2018-02-01 2020-02-26 Jx金属株式会社 バーンインテストソケット用表面処理金属材料、それを用いたバーンインテストソケット用コネクタ及びバーンインテストソケット
CN110340174B (zh) * 2019-07-12 2021-04-06 南京工程学院 一种电容器用钽铝复合板带的生产方法
JP6811466B1 (ja) * 2019-09-26 2021-01-13 田中貴金属工業株式会社 医療用Au−Pt−Pd合金
CN111394606B (zh) * 2020-05-06 2021-03-16 贵研铂业股份有限公司 一种金基高阻合金、合金材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124597A (ja) 1984-11-20 1986-06-12 Furukawa Electric Co Ltd:The 銀被覆電気材料
JPH01306574A (ja) 1988-06-06 1989-12-11 Furukawa Electric Co Ltd:The SnまたはSn合金被覆材料
JPH02301573A (ja) 1989-05-15 1990-12-13 Furukawa Electric Co Ltd:The SnまたはSn合金被覆材料
JPH0978287A (ja) 1995-09-08 1997-03-25 Furukawa Electric Co Ltd:The 電気接点用材料又は電気接点部品
JPH11229178A (ja) * 1998-02-10 1999-08-24 Furukawa Electric Co Ltd:The 金属被覆部材
JP2003129278A (ja) 2001-10-16 2003-05-08 Ishihara Chem Co Ltd 前処理によるスズホイスカーの防止方法
JP2004190065A (ja) * 2002-12-09 2004-07-08 Fcm Kk コネクタ端子およびそれを有するコネクタ
JP2011012320A (ja) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The コネクタ用金属材料
JP2011122234A (ja) 2009-07-15 2011-06-23 Kyowa Densen Kk メッキ構造及び電気材料の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0484449A (ja) * 1990-07-27 1992-03-17 Shinko Electric Ind Co Ltd Tabテープ
TWI225322B (en) * 2002-08-22 2004-12-11 Fcm Co Ltd Terminal having ruthenium layer and a connector with the terminal
US7391116B2 (en) * 2003-10-14 2008-06-24 Gbc Metals, Llc Fretting and whisker resistant coating system and method
JP4111522B2 (ja) * 2004-11-30 2008-07-02 日鉱金属株式会社 Sn被覆銅系材料及び端子
TW200904365A (en) * 2007-07-03 2009-02-01 Biosphere Ind Llc Biodegradable and compostable composition having improved physical and chemical properties
JP2009099282A (ja) * 2007-10-12 2009-05-07 Kobe Steel Ltd 嵌合型コネクタ
JP5415707B2 (ja) * 2008-03-19 2014-02-12 古河電気工業株式会社 コネクタ用金属材料およびその製造方法
WO2011027762A1 (ja) * 2009-09-01 2011-03-10 国立大学法人東北大学 配線接続方法と機能デバイス
TWI493798B (zh) * 2012-02-03 2015-07-21 Jx Nippon Mining & Metals Corp Push-in terminals and electronic parts for their use
JP6050664B2 (ja) * 2012-06-27 2016-12-21 Jx金属株式会社 電子部品用金属材料及びその製造方法、それを用いたコネクタ端子、コネクタ及び電子部品
JP5427945B2 (ja) * 2012-06-27 2014-02-26 Jx日鉱日石金属株式会社 電子部品用金属材料及びその製造方法、それを用いたコネクタ端子、コネクタ及び電子部品

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124597A (ja) 1984-11-20 1986-06-12 Furukawa Electric Co Ltd:The 銀被覆電気材料
JPH01306574A (ja) 1988-06-06 1989-12-11 Furukawa Electric Co Ltd:The SnまたはSn合金被覆材料
JPH02301573A (ja) 1989-05-15 1990-12-13 Furukawa Electric Co Ltd:The SnまたはSn合金被覆材料
JPH0978287A (ja) 1995-09-08 1997-03-25 Furukawa Electric Co Ltd:The 電気接点用材料又は電気接点部品
JPH11229178A (ja) * 1998-02-10 1999-08-24 Furukawa Electric Co Ltd:The 金属被覆部材
JP2003129278A (ja) 2001-10-16 2003-05-08 Ishihara Chem Co Ltd 前処理によるスズホイスカーの防止方法
JP2004190065A (ja) * 2002-12-09 2004-07-08 Fcm Kk コネクタ端子およびそれを有するコネクタ
JP2011012320A (ja) * 2009-07-03 2011-01-20 Furukawa Electric Co Ltd:The コネクタ用金属材料
JP2011122234A (ja) 2009-07-15 2011-06-23 Kyowa Densen Kk メッキ構造及び電気材料の製造方法

Also Published As

Publication number Publication date
EP2905356A1 (en) 2015-08-12
TWI485930B (zh) 2015-05-21
KR20160139054A (ko) 2016-12-06
KR20150065795A (ko) 2015-06-15
KR102011186B1 (ko) 2019-08-14
CN104685101A (zh) 2015-06-03
TW201415721A (zh) 2014-04-16
EP2905356A4 (en) 2016-06-01
EP2905356B1 (en) 2018-10-10
CN104685101B (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
JP5086485B1 (ja) 電子部品用金属材料及びその製造方法
JP5284526B1 (ja) 電子部品用金属材料及びその製造方法
JP5968668B2 (ja) 電子部品用金属材料
JP5138827B1 (ja) 電子部品用金属材料、それを用いたコネクタ端子、コネクタ及び電子部品
WO2014054190A1 (ja) 電子部品用金属材料及びその製造方法
WO2014054189A1 (ja) 電子部品用金属材料及びその製造方法
JP5298233B2 (ja) 電子部品用金属材料及びその製造方法
JP2015045053A (ja) 電子部品用金属材料及びその製造方法、それを用いたコネクタ端子、コネクタ及び電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14432978

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012886098

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157011263

Country of ref document: KR

Kind code of ref document: A