WO2014050382A1 - 補償装置及び無線通信装置 - Google Patents

補償装置及び無線通信装置 Download PDF

Info

Publication number
WO2014050382A1
WO2014050382A1 PCT/JP2013/072434 JP2013072434W WO2014050382A1 WO 2014050382 A1 WO2014050382 A1 WO 2014050382A1 JP 2013072434 W JP2013072434 W JP 2013072434W WO 2014050382 A1 WO2014050382 A1 WO 2014050382A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
compensation
delay
unit
filter
Prior art date
Application number
PCT/JP2013/072434
Other languages
English (en)
French (fr)
Inventor
政彦 大西
Original Assignee
住友電工ネットワークス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ネットワークス株式会社 filed Critical 住友電工ネットワークス株式会社
Priority to US14/425,859 priority Critical patent/US9231634B2/en
Priority to EP13840521.2A priority patent/EP2903232B1/en
Publication of WO2014050382A1 publication Critical patent/WO2014050382A1/ja
Priority to IN2078DEN2015 priority patent/IN2015DN02078A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/389Demodulator circuits; Receiver circuits with separate demodulation for the phase and amplitude components

Definitions

  • the present invention relates to a compensation device and a wireless communication device.
  • the received signal may be distorted by the orthogonal demodulator.
  • causes of distortion include a shift in orthogonality in the quadrature demodulator and I / Q gain imbalance (I / Q imbalance in the analog quadrature demodulator).
  • Distortion caused by the orthogonality shift and IQ gain imbalance (I / Q imbalance) is called an image component. While the present inventor conducted research on compensation processing for removing the image component, the image component can be sufficiently obtained even by simply compensating for the deviation of orthogonality and IQ gain imbalance (I / Q imbalance). Newly found that it may not be removed.
  • a filtering process may be performed on each of the I signal and the Q signal output from the quadrature demodulator by a filter such as a low pass filter (LPF).
  • a filter such as a low pass filter (LPF).
  • LPF low pass filter
  • the present invention is based on the novel finding that the difference in the frequency characteristics of the filter causes the image component to not be sufficiently removed.
  • the purpose is to be able to do it effectively.
  • the present invention is a compensation device that performs a compensation process for removing an image component in a quadrature demodulated signal, and includes a quadrature demodulation compensation unit that compensates the quadrature demodulated signal having I and Q signals,
  • the quadrature demodulation compensation unit performs a compensation process for compensating for a characteristic difference between a frequency characteristic of a first filter that performs a filtering process on the I signal and a frequency characteristic of a second filter that performs a filtering process on the Q signal.
  • the present invention can be realized not only as such a characteristic compensation device and a wireless communication device including the compensation device, but also as a system including the compensation device and the wireless communication device. Moreover, it is realizable as a method which makes the characteristic process performed by this compensation apparatus and radio
  • 3 is an image suppression performance evaluation graph by the orthogonal demodulation compensator of FIG. 2. It is a block diagram of the orthogonal demodulation compensation part which concerns on embodiment. It is a block diagram which shows the modification of the orthogonal demodulation compensation part which concerns on embodiment.
  • 6 is an image suppression performance evaluation graph by the orthogonal demodulation compensation unit of FIG. 5 is a frequency spectrum showing a simulation result by the quadrature demodulation compensator of FIG. 5 is a table showing image suppression performance evaluation results by the orthogonal demodulation compensator of FIG. It is a circuit diagram of a signal generator.
  • (A) shows a control signal to the VCO, and (b) is a diagram showing an oscillation frequency of the VCO.
  • (A) shows a control signal to the VCO, and (b) is a diagram showing an oscillation frequency of the VCO.
  • (A) is a figure which shows a quadrature demodulated signal, (b) is the reference signal replica produced
  • (A) is a diagram showing a quadrature demodulated signal
  • (b) is a diagram showing a signal extracted from a portion where only an image component exists
  • (c) a signal from which a portion where only a reference signal exists is extracted.
  • (D) is a figure which shows the synthetic
  • (A) is Formula 2 which shows the compensation process which the orthogonal demodulation compensation part 7 of FIG. 4 performs
  • (b) is Formula 3 which shows an image component.
  • An embodiment according to the present invention from a certain viewpoint is a compensation device that performs a compensation process for removing an image component in a quadrature demodulated signal, and compensates the quadrature demodulated signal having an I signal and a Q signal.
  • An orthogonal demodulation compensation unit is provided, and the orthogonal demodulation compensation unit calculates a characteristic difference between a frequency characteristic of a first filter that performs filter processing on the I signal and a frequency characteristic of a second filter that performs filter processing on the Q signal.
  • the compensation apparatus is configured to perform compensation processing for compensation. According to the present invention from a certain point of view, since the frequency characteristic difference between the first filter and the second filter can be compensated, the reason why the image component cannot be sufficiently removed is reduced, and the removal of the image component is more effective. Can be done.
  • the compensation process performed by the orthogonal demodulation compensation unit is a process for removing an image component generated by an orthogonal demodulator that outputs the orthogonal demodulated signal and compensating for the characteristic difference.
  • the image component generated by the quadrature demodulator can be removed and the frequency characteristic difference between the first filter and the second filter can be compensated.
  • Each of the first filter and the second filter is an analog filter
  • the quadrature demodulation compensation unit is configured to output the analog I signal and the Q signal output from the first filter and the second filter.
  • Is preferably configured to receive a signal converted into digital and perform the compensation processing by digital signal processing.
  • the frequency characteristic difference between the first filter and the second filter which are analog filters, can be compensated by digital signal processing.
  • the orthogonal demodulation compensation unit includes a delay unit that performs a delay process on at least one of the I signal and the Q signal, and the delay unit includes a group delay generated by the first filter, and the second filter. It is preferable to suppress the group delay difference between the group delay caused by. In this case, the frequency characteristic difference can be compensated by suppressing the group delay difference caused by the frequency characteristic difference between the first filter and the second filter.
  • the delay unit delays a first delay processing unit that performs a delay process on one of the I signal and the Q signal, and a delay on the other signal of the I signal and the Q signal.
  • a second delay processing unit that performs processing, wherein the first delay processing unit is configured to cause a delay of a predetermined delay amount in the one signal, and the second delay processing unit includes the first delay processing unit.
  • a first process for generating a delay of a delay amount smaller than the predetermined delay amount by the delay processing unit; and a second process for generating a delay of a delay amount larger than the predetermined delay amount by the first delay processing unit; Are preferably configured to be executable. In this case, it is possible to cope with a state where it is not known which of the I signal and the Q signal is delayed.
  • the order of the second delay processing unit is preferably set to 2N or less. In this case, the second delay processing unit can reliably compensate for the frequency characteristic difference between the first filter and the second filter.
  • the present invention from another viewpoint is a wireless communication device including the compensation device according to any one of (1) to (6).
  • FIG. 1 shows a configuration of a receiver in a wireless communication apparatus having a transmission / reception function.
  • the wireless communication device is used as a wireless base station device or a wireless terminal device.
  • the configuration of FIG. 1 is not limited to the receiver, and is used to monitor the transmission signal transmitted from the transmitter of its own wireless communication device (such as monitoring for DPD (distortion compensation) of the transmission amplifier). It can also be used as a monitor device that receives a transmission signal transmitted by the.
  • DPD disortion compensation
  • the receiver 1 shown in FIG. 1 has a function of orthogonally demodulating a received signal.
  • the receiver 1 also has a function as a compensation device that compensates for quadrature demodulation distortion that occurs during quadrature demodulation.
  • the receiver 1 includes an amplifier (low noise amplifier) 2 that amplifies a received signal received by an antenna (not shown), a variable attenuator 3 that adjusts the gain of the received signal, and an orthogonal demodulator 5 that performs orthogonal demodulation of the received signal. .
  • the receiver 1 further includes amplifiers 51a and 51b that amplify the quadrature demodulated signals (I / Q signals) output from the quadrature demodulator 5, and filters (low-pass filters) 53a that perform filtering processing on the I / Q signals, respectively. 53b, ADCs 6a and 6b for converting analog I / Q signals into digital signals.
  • the receiver 1 further includes a quadrature demodulation compensation unit 7 that compensates for a quadrature demodulated signal (I / Q signal), and a gain compensation unit 8 that compensates for the gain of the quadrature demodulated signal (I / Q signal). .
  • the quadrature demodulation compensation unit 7 and the gain compensation unit 8 are configured to perform compensation processing by digital signal processing.
  • the quadrature demodulation compensator 7 receives the I / Q signals converted into digital signals by the ADCs 6a and 6b and performs compensation processing.
  • the quadrature demodulator 5 includes analog elements such as an oscillator 5a, a ⁇ / 2 phase shifter 5b, and multipliers 5c and 5d that generate a signal having a reception carrier frequency (a signal having a frequency matching the reception carrier frequency).
  • An analog quadrature demodulator (AQD) that performs quadrature demodulation processing by analog signal processing. Due to variations in the analog elements constituting the quadrature demodulator 5, the quadrature demodulated signal (I / Q signal) obtained by quadrature demodulating the received signal is subjected to distortion.
  • the quadrature demodulation compensation unit 7 has a quadrature demodulator correction function and compensates for distortion generated in the quadrature demodulated signal (I / Q signal) by the quadrature demodulator 5 or the like.
  • FIG. 2 shows an orthogonal demodulation compensator 7 having only a local leak removing unit 7a and an image component removing unit 7b.
  • a local leak removal unit (QDC_LLR; Quadrature Demodulator Correction_Local Leakage Rejection) 7a removes local leak from the orthogonal demodulation distortion. Local leakage occurs due to carrier frequency leakage and / or DC offset.
  • An image component removal unit (QDC_IR; Quadrature Demodulator Correction_Image Rejection) 7b removes image components from the orthogonal demodulation distortion. Image components are caused by orthogonality shifts and / or gain imbalances. The local leak can be observed regardless of the presence or absence of a signal. The distortion of image components varies depending on the signal.
  • the local leak removing unit 7a and the image component removing unit 7b use compensation parameters (compensation coefficients) R 11 , R 21 , R 22 , d c1 , d c2 for compensating for orthogonal demodulation distortion (local leak or image component). Distortion compensation.
  • the compensation parameter is calculated by the control unit 9.
  • the compensation processing performed by the orthogonal demodulation compensator 7 shown in FIG. 2 can be expressed by the following equation 1 using the compensation parameter.
  • d c1 and d c2 are first compensation parameters for removing local leaks.
  • R 11 , R 21 , and R 22 are second compensation parameters for removing image components.
  • the compensation parameters R 11 , R 21 , R 22 , d c1 , and d c2 are calculated by the control unit 9.
  • the present inventor has found that even when the quadrature demodulation compensator 7 shown in FIG. Accordingly, the present inventor made a hypothesis that the cause of the insufficient suppression of image components is the LPFs 53a and 53b, and verified the hypothesis.
  • the analog filter has variations in the frequency characteristics of the filter due to variations in constants of elements (inductors, capacitors, etc.) constituting the filter and variations in mounting during circuit manufacture. Variation in frequency characteristics of the filter causes variation in group delay of the filter.
  • the inventor has a frequency characteristic of a first LPF (first filter) 53a that performs a filtering process on an I signal and a frequency characteristic of a second LPF (second filter) 53b that performs a filtering process on a Q signal. We thought that the characteristic difference might not be enough to suppress the image component. Therefore, the present inventor has verified through simulation whether the difference in frequency characteristics between the analog filters (LPF) 53a and 53b is a cause of insufficient suppression of image components.
  • FIG. 3 shows the simulation results.
  • evaluation of the image component suppression performance by the orthogonal demodulation compensator 7 is performed when there is a difference (group delay difference) in the group delay between the LPFs 53a and 53b due to the characteristic difference between the frequency characteristics of the LPFs 53a and 53b.
  • the vertical axis in FIG. 3 represents the image level [dBc], and the horizontal axis represents the number of iterations of the algorithm (QDC algorithm) for calculating the compensation parameters R 11 , R 21 , R 22 , d c1 and d c2 . .
  • the group delay differences of the LPFs 53a and 53b are -1 [ns], -0.75 [ns], -0.5 [ns], -0.25 [ns], 0 [ns], 0. Evaluation was made for each of 25 [ns], 0.5 [ns], 0.75 [ns], and 1 [ns].
  • the group delay difference is negative, it means that the I signal precedes, and when the group delay difference is positive, it means that the Q signal precedes.
  • 0 [ns] means no group delay difference.
  • the image level is lowered by repeatedly executing.
  • the image level decreases with repeated execution, whereas when there is a group delay difference, the image suppression level bottoms out even if it is repeatedly executed. I understand that.
  • the relationship between the group delay and the phase difference between the IQ signals is about ⁇ 10 kHz.
  • FIG. 3 shows that even a slight phase difference causes image suppression.
  • the quadrature demodulation compensation unit 7 in addition to the local leak removal unit 7a and the image component removal unit 7b shown in FIG. 2, the frequency characteristic difference between the LPFs 53a and 53b is removed.
  • An asymmetric equalizer 7c is provided.
  • the asymmetric equalization unit 7c can remove the image component together with the image component removal unit 7b by compensating for the frequency characteristic difference between the LPFs 53a and 53b.
  • the LPFs 53a and 53b are used as the image components even though the deviation from the ideal characteristics caused by the quadrature demodulator 5, the amplifiers 51a and 51b, and the ADCs 6a and 6b can be compensated.
  • the quadrature demodulation compensation unit 7 shown in FIG. 4 can suppress the LPFs 53a and 53b from inhibiting the suppression of the image components. Therefore, the quadrature demodulation compensation unit 7 shown in FIG. Can more effectively remove image components.
  • the asymmetric equalization unit 7c shown in FIG. 4 is configured as a delay unit (delay compensation equalizer) that performs a delay process on an orthogonal demodulated signal (I signal / Q signal).
  • the delay unit 7c eliminates the difference in frequency characteristics between the filters 53a and 53b by suppressing the group delay difference between the group delay caused by the first LPF 53a and the group delay caused by the second LPF 53b.
  • the delay unit 7c includes a first delay processing unit 71 that performs delay processing on the I signal and a second delay processing unit 72 that performs delay processing on the Q signal.
  • the first delay processing unit 71 includes an N delay unit (Z ⁇ N ), and applies an N delay (delay N times unit delay Z ⁇ 1 ; a predetermined delay amount) to the I signal. It is configured to perform a delay process to be generated.
  • the second delay processing unit 72 is configured as an FIR filter.
  • the second delay processing unit 71 configured as an FIR filter can make the frequency characteristic in the Q-channel where the Q signal is processed the same as the I-channel where the I signal is processed. Thereby, the amount of image suppression is improved.
  • the second delay processing unit 72 may be configured as an IIR filter.
  • the FIR filter type second delay processing unit 72 has an order of 2N (the number of taps is 2N + 1), 2N delay devices 721-1 to 721-2N up to Z ⁇ 1 to Z ⁇ 2N , and 2N + 1 pieces.
  • a multiplier 722 and 2N + 1 adders 723 are provided.
  • 2N + 1 parameters k N , k N ⁇ 1 ,..., K 1 , k 0 , k ⁇ 1 ,..., K ⁇ N multiplied by 2N + 1 multipliers 722 are the frequencies of the filters 53a and 53b.
  • Equation 2 The compensation processing performed by the orthogonal demodulation compensator 7 shown in FIG. 4 can be expressed by Equation 2 shown in FIG. 21A using the first to third compensation parameters.
  • * (n ⁇ T) represents an analog signal at time n ⁇ T when the sampling interval is T (seconds).
  • the reason why the order of the second delay processing unit 72 is set to 2N is that the delay amount N (predetermined delay amount) of the first delay processing unit 71 can be used as a reference so that it can be handled regardless of whether the Q signal precedes or delays. It is to do.
  • Z ⁇ 0 not shown as a delay unit in FIG. 4
  • Z ⁇ 1 to Z ⁇ N delay units 721-1 to 721-N are , (The delay of the delay amount N) and the delay of the delay amount smaller than the delay amount N can be performed, and the group delay difference when the Q signal is delayed with respect to the I signal can be obtained. Suppress.
  • the delay devices 721-N to 721-2N of Z ⁇ N to Z ⁇ 2N are more than the delay amount N (and the delay amount N).
  • the second process for generating a large delay amount can be performed, and the group delay difference when the I signal is delayed with respect to the Q signal is suppressed.
  • the order of the second delay processing unit 72 By setting the order of the second delay processing unit 72 to 2N, it is possible to cope with a state where it is not known which of the I signal and the Q signal is delayed.
  • the first delay processing unit 71 may be provided in the Q-channel and the second delay processing unit 72 may be provided in the I-channel. If it is known which of the I signal and the Q signal is delayed, the first delay processing unit is omitted, the order of the second delay processing unit 72 is set to N, and the second delay processing unit 72 is It may be provided in the delayed signal side channel.
  • FIG. 5 shows a modification of the orthogonal demodulation compensator 7 shown in FIG.
  • the multiplier for multiplying the compensation parameter R 22 in the image component removing unit 7b is omitted.
  • the compensation parameter R 22 in each of the 2N + 1 multipliers 722 in the second delay processing unit 72 is 2N + 1 parameters k N , k N ⁇ 1 ,. ⁇ , k 1, k 0, k -1, are multiplied., with k -N.
  • the orthogonal demodulation compensator 7 in FIG. 5 can perform the same compensation processing as that in FIG. 4, but one multiplier of the image component removing unit 7b can be omitted, and the circuit is simplified.
  • FIG. 6 shows an evaluation (simulation) result of the image suppression performance when 1 [ns] is assumed as the group delay difference between the LPFs 53a and 53b.
  • the case where the order 2N of the second delay processing unit 72 is 0, 2, 4, 6, 8 was evaluated.
  • the image suppression performance improves as the order of the second delay processing unit 72 increases.
  • the group delay difference is about 1 [ns]
  • the image suppression performance is saturated by setting the order to about 6.
  • FIG. 7 shows the results of simulation using actual received signals.
  • FIG. 8 also shows a simulation result verifying the image level suppression performance.
  • LPFs LPF-A, LPF-B, LPF-C
  • LPFs 53a and 53b LPFs 53a and 53b in the circuit shown in FIG.
  • four circuits No. 1 to No. 4 were manufactured for LPF under the same conditions.
  • four circuits No. 1 to No. 4 are manufactured for LPF-A under certain conditions
  • four circuits No. 1 to No. 4 are manufactured for LPF-B under different conditions.
  • four circuits (No. 1 to No. 4) were manufactured for LPF-C under different conditions.
  • “before compensation” indicates an image level when compensation by the orthogonal demodulation compensator 7 of FIG. 4 is not performed.
  • the LPF conditions are different, even if the LPFs have the same conditions, the characteristics of the circuit change slightly due to variations in the elements constituting the LPF, and there is a difference in image level.
  • FIG. 8 the circuit No. of each LPF (LPF-A, LPF-B, LPF-C) is shown.
  • 1-No. 4 the simulation results are shown when the order 2N of the second delay processing unit 72 is 0, 2, 4, 6, and 8, respectively.
  • the image component can be suppressed to ⁇ 65 [dBc].
  • the order of the second delay processing unit 72 is preferably 2N or less, where N is the order of the first filter 53a and the second filter 53b. If the order of the first filter 53a and the second filter 53b is N, the second delay processing unit 72 configured as an FIR filter of order N at the maximum can suppress the frequency characteristic difference between the filters 53a and 53b. If there is. Then, the second delay processing unit 72 of the present embodiment is In order to cope with the case where it is not known which of the I signal and the Q signal is delayed, the filter is configured as a filter having an order twice the order N necessary for suppressing the frequency characteristic difference. As described above, the order of the second delay processing unit 72 may be 2N or less, where N is the order of the first filter 53a and the second filter 53b.
  • the controller 9 performs compensation parameters R 11 , R 21 , R 22 , k N , k N ⁇ 1 ,..., K 1 , k 0 , k ⁇ 1 ,.
  • a special signal reference signal
  • a signal generator 10 generates a reference signal used to determine the compensation parameter.
  • a compensation device that performs compensation processing to remove the image components.
  • the quadrature demodulation compensation unit 7 includes a local leak removal unit 7a, an image component removal unit 7b, and an asymmetric equalization unit (delay unit) 7c. Is only for removing the image component generated by the quadrature demodulator 5, the local leak removing unit 7a can be omitted.
  • FIG. 9 shows a circuit configuration of the signal generator 10.
  • the signal generator is obtained by adding an external signal generator (external signal generation unit) 21 to a phase lock loop (PLL) type oscillation circuit.
  • PLL phase lock loop
  • the PLL oscillation circuit shown in FIG. 9 includes a phase comparator 22, a charge pump circuit 23, a low-pass filter (loop filter) 24, a voltage controlled oscillator (VCO) 25, and frequency dividers 26 and 27. Yes.
  • the phase comparator 22 is a frequency divider that performs N frequency division on the output signal of the frequency divider 27 that performs R frequency division on the reference frequency f ref and the output signal (frequency f out ) of the voltage controlled oscillator 25. 26 output signals are compared, and a voltage corresponding to the phase difference between the two is output.
  • the output voltage of the phase comparator 22 becomes a control signal (control voltage) to the voltage controlled oscillator 25 by passing through the charge pump circuit 23 and the low pass filter 24.
  • the output signal of the voltage controlled oscillator 25 is fed back to the phase comparator 22 via the frequency divider 26 to form a phase locked loop.
  • a signal having a constant frequency is output from the voltage controlled oscillator 25 by the phase locked loop.
  • the signal generator 10 shown in FIG. 9 is provided with an external signal generator 21.
  • the external signal generator 21 includes an oscillator (variable frequency oscillator) 29 that generates a time-varying signal such as a sine wave.
  • a signal (external signal) V ext generated by the oscillator 29 is superimposed on a control signal of the voltage controlled oscillator 25. That is, the control signal in which the external signal V ext is superimposed on the original control signal (original control voltage) V ctrl ′ generated by passing the output voltage of the phase comparator 22 through the charge pump circuit 23 and the low-pass filter 24. (Control voltage) Vctrl is generated.
  • the output signal of the oscillator 29 is given to the input line 28 of the voltage controlled oscillator 25 through the non-inverting amplifier 30, the switching unit (switch) 30b, and the capacitor 30c.
  • the non-inverting amplifier 30 has a function of adjusting the amplitude of the external signal generated by the oscillator 29. Note that when the amplitude adjustment of the external signal V ext is not necessary, the non-inverting amplifier 30 may be configured as a voltage follower circuit.
  • the switching unit 30b has a function of turning ON / OFF the superimposition of the external signal V ext on the control signal.
  • the first mode in which the control voltage V ext obtained by superimposing the external signal V ext on the output voltage of the phase comparator 22 is supplied to the voltage controlled oscillator 25 can be set.
  • the switching unit 30b it is possible to enter the second mode in which the control voltage V ext ′ in which the external signal V ext is not superimposed on the output voltage of the phase comparator 22 is given to the voltage controlled oscillator 25.
  • ON / OFF switching in the switching unit 30b is performed by a control signal (Chirp / CW signal) from the control unit 9.
  • the capacitor 30c is the role of the AC coupling has the function of the original control signal V ctrl 'swing the external signal V ext as a bias voltage.
  • the output frequency (oscillation frequency) f out monotonously increases with respect to the control signal (control voltage) Vctrl . That is, the voltage controlled oscillator (VCO) 25 outputs a signal having an output frequency (oscillation frequency) f out corresponding to the magnitude of the control signal Vctrl .
  • a variable attenuator 40 is provided on the output side of the VCO 25, and the output of the VCO 25 is used for the purpose of preventing the signal input from the signal generator 10 from being saturated when the gain of the receiver is increased. Can be adjusted.
  • the variable attenuator 40 can be adjusted from the control unit 9.
  • the signal generator 10 functions as a normal phase-locked loop circuit, and a signal (unmodulated continuous wave) having a single frequency f 0 is output from the voltage controlled oscillator 25 as shown in FIG.
  • the signal generator 10 functions as a normal phase-locked loop circuit, and a signal (unmodulated continuous wave) having a single frequency f 0 is output from the voltage controlled oscillator 25 as shown in FIG.
  • the signal generator 10 functions as a normal phase-locked loop circuit, and a signal (unmodulated continuous wave) having a single frequency f 0 is output from the voltage controlled oscillator 25 as shown in FIG.
  • an external signal (sine wave) V ext generated by the external signal generator 21 is added to a control signal (control voltage) Vctrl ′ corresponding to the output voltage of the phase comparator 22.
  • control signal (control voltage) Vctrl ′ corresponding to the output voltage of the phase comparator 22.
  • the superimposed control signal (control voltage) Vctrl is applied to the voltage controlled oscillator 25, as shown in FIG. 12B, the frequency f out of the output signal output from the voltage controlled oscillator 25 is According to the temporal change of the amplitude value of the external signal V ext , it changes with time centering on the frequency f 0 .
  • the output frequency of the voltage controlled oscillator 25 becomes the frequency f 0 locked by the control signal (control voltage) Vctrl ′, but the time of the external signal V ext
  • the amplitude value of the external signal V ext becomes larger than zero due to the fluctuation
  • the output frequency of the voltage controlled oscillator 25 becomes larger than f 0 .
  • the time variation of the external signal V ext the amplitude value of the external signal V ext is less than zero, the output frequency of the voltage controlled oscillator 25 is smaller than f 0.
  • the fluctuation of the output frequency (oscillation frequency) of the voltage controlled oscillator 25 according to the time fluctuation of the external signal V ext is f 0 ⁇ (f w / 2) to f 0 + (f w / 2) with f 0 as the center. ). That is, the frequency range in which the output frequency of the voltage controlled oscillator 25 changes temporally is f w.
  • Signal generator 10 by having an external signal generator 21, as in the chirp signal (chirp Signal), to generate a signal whose frequency varies temporally in a predetermined frequency range f w it can.
  • a signal whose frequency varies temporally within a predetermined frequency range f w, ignoring the time, frequency bandwidth can be regarded as the signal is f w.
  • the signal generator 10 can be regarded as a device for generating a signal (reference signal) having a predetermined bandwidth f w.
  • the signal generator 10 shown in FIG. 9 can easily generate a chirp signal by simply adding the external signal generator 21 to a general PLL circuit.
  • the value of the bandwidth (frequency range) f w of the signal generated by the signal generator 10 is mainly determined by the amplitude of the external signal V ext.
  • a first adjustment unit for adjusting the value of the bandwidth (frequency range) f w by adjusting the amplitude of the external signal V ext available non-inverting amplifier 30.
  • the amplification factor of the non-inverting amplifier 30 can be changed, and as a result, the amplitude of the external signal V ext can be adjusted.
  • a signal Ctrl A for changing the amplification factor of the non-inverting amplifier 30 is given from the control unit 9.
  • the value of the bandwidth (frequency range) f w of the signal generated by the signal generator 10 is also affected by other factors other than the amplitude of the external signal V ext. Another factor is, for example, the ratio between the phase comparison frequency f ref in the phase comparator 22 and the frequency of the external signal V ext . If the phase comparison frequency f ref in the phase comparator 22 is high, the phase comparison in the phase comparator 22 is frequently performed, and the degree that the frequency changed by the external signal V ext tends to return to f 0 increases. Thus, as the phase comparison frequency f ref of the phase comparator is high, it is possible to reduce the bandwidth (frequency range) f w of the signal generated by the signal generator 10.
  • the variable frequency oscillator 29 can be used as a second adjustment unit that adjusts the ratio between the phase comparison frequency f ref and the frequency of the external signal V ext in the phase comparator 22. By adjusting the frequency of the external signal ext , the ratio between the phase comparison frequency f ref and the frequency of the external signal V ext is adjusted, and as a result, the amplitude of the external signal V ext can be adjusted.
  • the signal Ctrl B for changing the oscillation frequency of the variable frequency oscillator 29 is given from the control unit 9.
  • the frequency of the external signal V ext be small. This is because if the frequency of the external signal V ext is too large, the frequency that varies depending on the external signal V ext cannot be appropriately controlled. From this viewpoint, the frequency of the external signal V ext is preferably smaller than the phase comparison frequency f ref in the phase comparator 22, for example, and is 1/10 or less of the phase comparison frequency f ref in the phase comparator 22. Is more preferable.
  • a resistor that affects the magnitude of the charge pump current in the charge pump circuit 23 may be variable. This variable resistor serves as a third adjustment unit that adjusts the charge pump current.
  • the signal Ctrl C for changing the charge pump current is given from the control unit 9.
  • an element that affects the time constant in the LPF 24 may be set as a variable element.
  • This variable element is a fourth adjustment unit that adjusts the time constant of the LPF 24.
  • the signal generated from the signal generator 10 configured as described above is supplied to the amplifier 2 via the switch unit 11 and is orthogonally demodulated by the orthogonal demodulator 5.
  • the switch unit 11 can switch whether the signal supplied to the amplifier 2 (orthogonal demodulator 5) is a reception signal received by an antenna (not shown) or a signal generated by the signal generator 10. .
  • a switching control signal to the switch unit 11 is given from the control unit 9.
  • the QDC calculation unit (orthogonal demodulation compensation calculation unit) 31 that calculates a compensation parameter used for quadrature demodulation compensation, the variable attenuator 3 and / or the gain compensation unit 8 performs gain compensation.
  • An RxALC calculation unit (gain compensation calculation unit) 34 for calculating a compensation value to be referred to at the time is provided.
  • the QDC calculation unit 31 acquires the quadrature demodulated signal (I / Q signal) output from the quadrature demodulator 5 (from the output side of the gain compensation unit 8).
  • the QDC calculation unit 31 calculates a compensation parameter for compensating for the orthogonal demodulation distortion based on the acquired orthogonal demodulation signal.
  • the compensation parameter obtained by the calculation is applied to the orthogonal demodulation compensation unit 7.
  • the quadrature demodulation compensation unit 7 removes the quadrature demodulation distortion of the quadrature demodulated signal (I / Q signal) using the compensation parameter.
  • the QDC computing unit 31 includes a QDC_LLR computing unit (local leak computing unit) 32 and a QDC_IR computing unit (image component computing unit) 33.
  • the QDC_LLR computing unit (local leak computing unit) 32 is a computing unit that computes first compensation parameters d c1 and d c2 for removing local leaks.
  • the first compensation parameters dc1 and dc2 obtained by the QDC_LLR calculation unit 32 are applied to the local leak removal unit 7a.
  • the second compensation parameters R 11 , R 21 , and R 22 obtained by the QDC_IR calculation unit 33 are applied to the image component removal unit 7b.
  • the third compensation parameter k N was determined by the QCD_IR calculation unit 33, k N-1, ⁇ , k 1, k 0, k -1, ⁇ , k -N is asymmetric equalizer (delay Part) 7c.
  • the second compensation parameter R 22 obtained by the QDC_IR calculator 33 is applied to the asymmetric equalizer (delay unit) 7c.
  • control unit 9 includes at least second compensation parameters R 11 , R 21 , R 22 and third compensation parameters k N , k N ⁇ 1 ,..., K 1 , k 0 for removing image components.
  • K ⁇ 1 ,..., K ⁇ N a function as a calculation unit of a compensation device that performs a compensation process for removing an image component generated by the quadrature demodulator 5 is provided. Can be realized.
  • FIG. 14 shows a processing flowchart for calculating (updating) the compensation parameter.
  • the control unit 9 gives the chirp signal generated by the signal generator 10 to the input side of the quadrature demodulator 5 (step S1). If the receiver 1 is provided with a plurality of systems (circuits in FIG. 1) for processing received signals, the system for calculating the compensation parameter is selected prior to step S1.
  • step S ⁇ b> 1 the control unit 9 outputs to the switch unit 11 a switching control signal for switching the switch unit 11 so that the signal generated by the signal generator 10 is supplied to the amplifier 2 (orthogonal demodulator 5).
  • the signal generator 10 is a single frequency signal; so instead (CW Constan Wave), a first mode for outputting the chirp (Chirp) signals having a predetermined bandwidth f w, mode A switching control signal (Chirp / CW signal) is output to the external signal generator 21 of the signal generator 10.
  • a mode switching control signal for causing the signal generator 10 to generate a chirp signal
  • a control voltage Vctrl on which the external signal Vext is superimposed.
  • the voltage controlled oscillator 25 outputs a signal (reference signal) having a predetermined bandwidth as shown in FIG.
  • the band of the chirp signal can be determined as appropriate according to the system band during operation. For example, several patterns of external signal V ext amplitudes may be set in advance according to the system band, and the external signal V ext amplitude to be selected may be selected according to the selected system band.
  • the chirp signal bandwidth determined by the amplitude of the external signal V ext, adjustment of the ratio of the frequency of the phase comparison frequency f ref and the external signal V ext, adjustment of the charge pump current be fine-tuned by adjusting the time constant of the LPF24 (Adjustable by adjusting at least one of the adjustments).
  • the reference signal in the reception band (f r-min -f r- max), a predetermined band with ((f 0 - (f 0 + (f W / 2)) - (f w / 2))) Generated as a signal.
  • the reference signal has a band that is biased toward the high frequency side with respect to the reception carrier frequency fc that is the center frequency of the reception band.
  • the band of the reference signal exists only on the high frequency side with respect to the carrier frequency fc, and does not exist on the low frequency side of the carrier frequency fc. Further, the band of the reference signal is located away from the carrier frequency fc.
  • the carrier frequency fc (the center frequency of the received signal) may be changed, but even if the carrier frequency fc is changed, the center frequency f 0 of the chirp signal is maintained so that the relationship shown in FIG. 15 can be maintained. and / or the bandwidth f w may be adjusted.
  • the orthogonal demodulation distortion is added to the reference signal shown in FIG.
  • the quadrature demodulated signal (I / Q signal) having the quadrature demodulation distortion is sampled by the QDC calculation unit 31 (step S2).
  • the QDC_LLR calculator 32 calculates the local leak amount based on the sampled quadrature demodulated signal (step S3). Since the reference signal has no DC component due to AC coupling (not shown), if there is no local leak, the center of the IQ constellation should be the origin of the IQ plane. However, if the influence of local leak is included in each I / Q signal, the zero point of the constellation of the orthogonal demodulated signal is shifted from the origin of the IQ plane.
  • the local leak is obtained by taking the time average of each I / Q signal.
  • DC components I DC and Q DC corresponding to are obtained.
  • the obtained DC components I DC and Q DC are used for updating the first compensation parameters dc1 and dc2 for canceling the local leak (step S5).
  • the QDC_IR computing unit 33 calculates an image component based on the sampled quadrature demodulated signal (step S4).
  • An I signal in which no image component is generated by the quadrature demodulator 5 is Refsig_re [n]
  • a Q signal in which no image component is generated by the quadrature demodulator 5 is Refsig_Im [n]
  • the I signal on which the image component of 5 is superimposed is Rxsig_re [n]
  • a Q signal in which an image component by the quadrature demodulator 5 is superimposed on Refsig_Im [n] is Rxsig_Im [n]
  • An image component generated by the quadrature demodulator can be expressed as Equation 3 shown in FIG.
  • R tmp11, R tmp21, R tmp22, ktmp N, ktmp N-1, ⁇ , ktmp 1, ktmp 0, ktmp -1, ⁇ , is ktmp -N, corresponding to the image component.
  • * [n] is a signal of digital complex baseband IQ expression sampled at time n ⁇ T when the sampling interval is T (seconds).
  • QDC_IR operation section 33 as an image component, the above R tmp11, R tmp21, R tmp22 , ktmp N, ktmp N-1, ⁇ , ktmp 1, ktmp 0, ktmp -1, ⁇ , ktmp -N Is calculated.
  • the quadrature demodulator in addition to the output signals Rxsig_re [n] and Rxsig_Im [n] of the quadrature demodulator 5, the quadrature demodulator The digital I / Q signals Refsig_re [n] and Refsig_Im [n] in which no image component due to 5 is generated are necessary.
  • the QDC_IR calculation unit 33 that performs digital processing to obtain the output signals Rxsig_re [n] and Rxsig_Im [n] of the quadrature demodulator 5.
  • the receiver 1 according to the present embodiment can generate replicas of Refsig_re [n] and Refsig_Im [n] from the output signals Rxsig_re [n] and Rxsig_Im [n] of the quadrature demodulator 5, calculation of image components is possible. Is easy.
  • the reference signal (FIG. 15) output from the signal generator 10 is input to the quadrature demodulator 5 when calculating the compensation parameter.
  • the reference signal portion and the image component portion appear in different portions. This is because the band of the reference signal exists only on one side (high frequency side) with respect to the carrier frequency fc, and the image component appears symmetrically with respect to the carrier frequency fc. That is, the image component appears in a band symmetrical in the frequency direction with respect to the band of the reference signal when the carrier frequency fc is used as a reference.
  • the frequency corresponding to the carrier frequency fc is zero.
  • the QDC_IR calculation unit 33 exists on the other side (low frequency side) with the carrier frequency fc as a reference.
  • the component can be considered an image component, not a reference signal.
  • an analog reference signal output from the signal generator 10 is used as an orthogonal demodulator 5 without orthogonal demodulation distortion. Is subjected to quadrature demodulation and converted to a digital signal by the ADCs 6a and 6b.
  • the signal in FIG. 18B has no image component. Therefore, the signal of FIG. 18B is a replica (reference signal replica) of the ideal digital reference signal Refsig [n].
  • the QDC_IR computing unit 33 uses the signal (calculation signal) shown in FIG. 18A and the reference signal replica shown in FIG. 18B to generate image components R tmp11 , R tmp21 , R tmp22 , ktmp N , ktmp N-1, ⁇ , ktmp 1, ktmp 0, ktmp -1, ⁇ , calculates a parameter indicating the ktmp -N.
  • the QDC calculation unit 31 calculates (updates) the first compensation parameters dc1 and dc2 for canceling the DC components I DC and Q DC calculated in step S3 (step S5).
  • the QDC calculation unit 31 includes the image components R tmp11 , R tmp21 , R tmp22 , ktmp N , ktmp N ⁇ 1 ,..., Ktmp 1 , ktmp 0 , ktmp ⁇ 1 ,. , Ktmp ⁇ N to cancel the second compensation parameters R 11 , R 21 , R 22 and the third compensation parameters k N , k N ⁇ 1 ,..., K 1 , k 0 , k ⁇ 1 ,. , K ⁇ N are calculated (updated) (step S5).
  • the QDC calculation unit 31 gives the obtained first, second, and third compensation parameters to the orthogonal demodulation compensation unit 7.
  • the reference signal exists only in the high frequency band with reference to the carrier frequency fc.
  • the reference signal may exist only in the low frequency band with reference to the carrier frequency fc.
  • the reference signal only needs to have a band biased to either the high frequency side or the low frequency side with respect to the carrier frequency fc. That is, the reference signal may be biased to either the high frequency side or the low frequency side of the carrier frequency fc in a state of straddling the carrier frequency fc.
  • the image component is superimposed on at least a part of the original reference signal portion.
  • the part that has not been secured By using the portion where the image component is not superimposed as the reference signal replica, the image component can be estimated.
  • the band of the reference signal is from ⁇ f 1 to f 2 (f 1 ⁇ f 2 ).
  • the image component appears in the range of ⁇ f 2 to f 1 and overlaps with the reference signal.
  • the QDC_IR calculation unit 33 since there is a magnitude level difference between the reference signal and the image component, the QDC_IR calculation unit 33 includes only the image component in a portion having a level difference of a threshold value (for example, 20 dB) or more with respect to the reference signal. It can be detected as a part to be. As a result, as shown in FIG. 19B, only image components in the range of ⁇ f 2 to f 1 can be extracted.
  • the QDC_IR calculation unit 33 extracts a signal in the range of f 1 to f 2 from the signal of FIG. 19A, thereby generating a reference on which no image component is superimposed, as shown in FIG. 19C. A signal (part of) is obtained.
  • the signal shown in FIG. 19C (corresponding to a part of the reference signal) may be used as the reference signal replica Replica_Refsig [n].
  • the image component calculation signals Rxsig_re [n] and Rxsig_Im [n] are generated by the reference signal replica of FIG. 19C and the signal of FIG. 19B (reference signal replica of FIG. 19C). 19D) obtained by synthesizing the image component).
  • the reference signal replica used for the calculation of the image component may be a portion corresponding to the entire reference signal.
  • the image component is superimposed on the reference signal, the image component is superimposed.
  • the part which removed the part may be sufficient.
  • the quadrature demodulated signal may be used as it is as the arithmetic signal, or when the reference signal and the image component are superimposed in the quadrature demodulated signal, the superimposed part is removed. Also good.
  • the control unit 9 can also perform calculation for gain compensation using the signal (CW) output from the signal generator 10.
  • the RxALC calculation unit 34 that calculates the compensation value for gain compensation includes a power calculation unit 35, a detector output calibration unit 36, and a gain calculation unit 37.
  • the RxALC calculation unit (measurement unit; gain compensation calculation unit) 34 includes the power of the signal (CW) output from the signal generator 10, the power of the quadrature demodulated reception signals R I ′′ and R Q ′′, By measuring and monitoring the ratio, the compensation value is calculated for gain compensation in the variable attenuator 3 and / or the gain compensator 8.
  • the output of the detector 12 that detects the signal (SW) output from the signal generator 10 is given to the RxALC calculation unit 34 via the ADC 12a.
  • the RxALC calculation unit 34 is provided with the orthogonally demodulated signals R I ′′ and R Q ′′. Further, the output of the temperature sensor 13 is given to the RxALC calculation unit 34 via the ADC 14.
  • the power calculator 35 of the RxALC calculator 34 calculates the received power of the orthogonally demodulated signals R I ′′ and R Q ′′.
  • the detector output calibration unit 36 calibrates the output of the detector 12 (power of the signal (CW)) with the temperature (output of the temperature sensor 13), and calculates the calibrated received power.
  • the detector output calibration unit 36 has a temperature calibration table, and calculates the calibrated received power by referring to the table.
  • the gain calculation unit 37 obtains the ratio between the received power based on the detector output and the received power of the orthogonally demodulated signals R I ′′ and R Q ′′.
  • the output of the gain calculator 37 is given to the calculator 38.
  • the calculator 38 obtains a deviation ⁇ Gain between the output of the gain calculator 37 and the gain reference value.
  • FIG. 20 shows a process flowchart for calculating gains ⁇ Gain 1 and ⁇ Gain 2 serving as compensation values for gain compensation in the variable attenuator 3 and / or the gain compensator 8.
  • the control unit 9 gives a signal (CW; unmodulated continuous wave) generated from the signal generator 10 to the input of the receiver 1 instead of a normal reception signal (step S11). If the receiver 1 is provided with a plurality of systems (circuits in FIG. 1) for processing received signals, the selection of a system to be subjected to calculation for gain compensation is performed prior to step S11. Is called.
  • step S11 the control unit 9 outputs a switching control signal for switching the switch unit 11 to the switch unit 11 so that the signal generated by the signal generator 10 is given to the amplifier 2 (orthogonal demodulator 5). To do.
  • the control unit 9 sends a mode switching control signal (Chirp / CW signal) to the signal generator 10 so that the signal generator 10 is in the second mode in which a single frequency signal (CW; Constant Wave) is output. Output to the external signal generator 21.
  • CW Continuous Wave
  • the RxALC calculator 34 samples the digital quadrature demodulated signals R I ′′ and R Q ′′ obtained by quadrature demodulating the single frequency signal (CW) generated by the signal generator 10 and converting it into a digital signal. (Step S12).
  • the RxALC operation unit 34 converts the power value (detector output) obtained by detecting the single frequency signal (CW) generated by the signal generator 10 with the detector 12 into a digital signal with the ADC 14. Is acquired (step S12).
  • the control unit 9 stops the generation of the signal (CW) from the signal generator 10 (step S13).
  • the switch 28a provided on the output side of the VCO 25 may be switched to the end 28b side.
  • the detector output calibration unit 36 calibrates the detector output (electric power) with reference to the temperature calibration table (step S14).
  • the power calculator 35 calculates the time average value of the power of the single frequency signal (CW) from the digital quadrature demodulated signals R I ′′ and R Q ′′ obtained by sampling, and calculates the gain of the calculation result.
  • Part 37 is given.
  • the gain calculation unit 37 calculates and outputs the ratio between the power output from the power calculation unit 35 and the power output from the detector output calibration unit 36 (step S15).
  • the calculator 38 calculates using the power ratio output from the gain calculator 37 and the gain reference value.
  • the calculator 38 obtains a deviation ⁇ Gain of the power ratio output from the gain calculator 37 with respect to the gain reference value.
  • the gain reference value is a target value for adjusting the power ratio output from the gain calculator 37, and is a theoretical power ratio between the detector output and the power of the digital quadrature demodulated signal.
  • the control unit 9 adjusts the gain of the variable attenuator 3 and / or the gain compensation unit 8 so that the deviation ⁇ Gain is eliminated. Is supplied to the variable attenuator 3 and / or the gain compensator 8.
  • the variable attenuator 3 and / or the gain compensator 8 operates so as to adjust the gain based on the signal from the controller 9 and eliminate the deviation ⁇ Gain.
  • the gain reference value may be determined in advance or may be input from the outside via an input interface.
  • the technical means for facilitating the removal of the image component generated by the quadrature demodulated signal is as follows.
  • (5-1) A compensation device that performs compensation processing for removing an image component generated by the quadrature demodulator on a quadrature demodulated signal output from a quadrature demodulator that performs quadrature demodulation using a carrier frequency signal.
  • a signal generator for generating a reference signal having a predetermined bandwidth within the reception band and supplying the reference signal to the input side of the quadrature demodulator, and a signal obtained by quadrature demodulating the reference signal by the quadrature demodulator And a calculation unit that calculates a compensation parameter for removing the image component, and an image component removal unit that removes the image component from the quadrature demodulated signal using the compensation parameter.
  • the signal is a signal having a band that is biased to either the high frequency side or the low frequency side with respect to the carrier frequency, and the arithmetic unit receives from the quadrature demodulator.
  • a signal in a band in which the image component is not superimposed is generated as a reference signal replica, and the reference signal replica and the image component generated by the reference signal replica
  • the compensation device computes the compensation parameter on the basis of a computation signal having the reference signal replica and the reference signal replica.
  • the arithmetic unit outputs a signal in a band in which an image component is not superimposed because a band of the reference signal is biased with respect to the carrier frequency among signals obtained by orthogonal demodulation of the reference signal, Compensation parameters are calculated based on the reference signal replica that is generated as a reference signal replica and that has a reference signal replica, an arithmetic signal having an image component generated by the reference signal replica, and the reference signal replica. That is, since the reference signal is biased with respect to the carrier frequency, a portion where an image component is not superimposed on at least a portion of the original reference signal portion is secured. By using the portion where the image component is not superimposed as the reference signal replica, it is possible to estimate the image component, and it is possible to calculate a compensation parameter for removing the image component.
  • the reference signal exists only in either the high frequency side or the low frequency side of the carrier frequency, and the arithmetic unit outputs the reference signal output from the quadrature demodulator.
  • a signal in a band corresponding to the entire reference signal is generated as a reference signal replica, and the calculation signal is preferably a signal obtained by quadrature demodulation of the reference signal. Since the image component appears symmetrically with respect to the carrier frequency, if the reference signal exists only in either the high frequency side or the low frequency side of the carrier frequency, the image component is the same as the reference signal. Appears in different parts. Therefore, the image component and the reference signal can be easily separated.
  • the arithmetic unit removes a signal in a band on the side where the reference signal does not exist from a signal obtained by orthogonally demodulating the reference signal, using the frequency corresponding to the carrier frequency as a reference, Preferably, a signal replica is generated. Since the image component exists in the band where the reference signal does not exist, with the frequency corresponding to the carrier frequency as a reference, the reference signal replica without the image component can be easily generated by removing the signal in the band. be able to.
  • the reference signal is biased to either the high frequency side or the low frequency side of the carrier frequency in a state of straddling the carrier frequency, and the arithmetic unit outputs from the quadrature demodulator
  • the signal obtained by orthogonally demodulating the reference signal is generated as a reference signal replica by removing a portion in which the image component is superimposed from a signal in a band corresponding to the reference signal. It is preferable that the signal obtained by orthogonally demodulating the reference signal is a signal obtained by removing the superimposed portion of the image component. Even if the reference signal is straddling the carrier frequency, if it is biased to either the high frequency side or the low frequency side of the carrier frequency, at least a part of the original reference signal portion is imaged. A portion where no component is superimposed is secured. By using the portion where the image component is not superimposed as the reference signal replica, the image component can be estimated.
  • the signal generator is a phase-locked loop type signal generator in which the oscillation frequency of the voltage controlled oscillator is determined by a control voltage based on the output signal of the phase comparator, and an external signal that varies with time. It is preferable that an external signal generation unit is provided, and the control voltage is obtained by superimposing the external signal on an output signal of the phase comparator. By superimposing a time-varying external signal on the output signal of the phase comparator, a signal whose frequency changes with time can be generated. A signal whose frequency changes with time can be regarded as a signal having a frequency bandwidth if time is ignored. That is, according to the signal generator, a signal having a bandwidth can be easily generated.
  • a wireless communication device is a wireless communication device including the compensation device according to (5-1).
  • a wireless communication apparatus is a wireless communication apparatus including the compensation device according to (5-5), in which the external signal is superimposed on an output signal of the phase comparator. Switching between a first mode in which the controlled voltage is applied to the voltage controlled oscillator and a second mode in which a control voltage in which the external signal is not superimposed on the output signal of the phase comparator is applied to the voltage controlled oscillator.
  • a wireless communication apparatus further comprising: a switching unit; and a measurement unit that applies a single-frequency signal output from the signal generator in the second mode to the receiver and measures a gain of the receiver. It is.
  • 1 communication device (receiver), 2: amplifier, 3: variable attenuator, 4: frequency converter, 5: quadrature demodulator, 5a: oscillator, 5b: phase shifter, 5c, 5d: multiplier, 6a, 6b : ADC, 7: Quadrature demodulation compensation unit, 7a: Local leak removal unit, 7b: Image component removal unit, 7c: Asymmetric equalizer (delay unit), 8: Gain compensation unit, 9: Control unit, 10: Signal generation 11: switch unit, 12: detector, 13: temperature sensor, 21: external signal generator, 22: phase comparator, 23: charge pump circuit, 24: low-pass filter, 25: voltage controlled oscillator, 26: minute Frequency divider, 28: input line, 30: non-inverting amplifier, 30a: variable resistor, 30b: switch, 30c: capacitor, 31: quadrature demodulation compensation calculation unit, 32: local leak calculation unit, 33: image component calculation unit, 34 Gain compensation calculation unit (measurement unit), 35: power calculation unit, 35: received

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)

Abstract

 補償装置は、直交復調信号中のイメージ成分を除去する補償処理を行う補償装置であって、I信号及びQ信号を有する前記直交復調信号の補償を行う直交復調補償部を備え、前記直交復調補償部は、前記I信号に対するフィルタ処理を行う第1フィルタの周波数特性と、前記Q信号に対するフィルタ処理を行う第2フィルタの周波数特性と、の特性差を補償する補償処理を行うよう構成されている。

Description

補償装置及び無線通信装置
 本発明は、補償装置及び無線通信装置に関するものである。
 直交変調信号を受信すると、その受信信号に対する直交復調が必要となる。このような直交復調は、特許文献1に記載されている。
特開2010-130630号公報
 直交復調を、特許文献1に示すようにアナログ信号処理で行う場合、受信信号が直交復調器によって歪を受けることがある。
 歪の要因としては、直交復調器における直交度のずれ、及び、I/Qゲイン不平衡(アナログ直交復調器内のI/Q不平衡)などがある。直交度のずれ及びIQゲイン不平衡(I/Q不平衡)によって生じる歪は、イメージ成分とよばれる。
 本発明者は、イメージ成分の除去をするための補償処理の研究を行う中で、単に、直交度のずれ及びIQゲイン不平衡(I/Q不平衡)を補償しても、イメージ成分を十分に除去できない場合があることを新規に見出した。
 つまり、直交復調器から出力されたI信号及びQ信号それぞれに対して、ローパスフィルタ(LPF)などのフィルタによってフィルタリング処理が行われることがある。フィルタを構成する素子(インダクタ,キャパシタなど)の定数のばらつきや、回路製作時の実装のばらつきにより、I信号用のフィルタの周波数特性とQ信号用のフィルタの周波数特性とには、特性差が生じることがある。
 本発明者は、このフィルタの周波数特性差が、イメージ成分を十分に除去できない原因となっていることを発見した。
 本発明は、フィルタの周波数特性差が、イメージ成分を十分に除去できない原因となっているという新規な知見に基づくものであり、フィルタの周波数特性差を考慮することで、イメージ成分の除去をより効果的に行えるようにすることを目的とする。
 ある観点からみた本発明は、直交復調信号中のイメージ成分を除去する補償処理を行う補償装置であって、I信号及びQ信号を有する前記直交復調信号の補償を行う直交復調補償部を備え、前記直交復調補償部は、前記I信号に対するフィルタ処理を行う第1フィルタの周波数特性と、前記Q信号に対するフィルタ処理を行う第2フィルタの周波数特性と、の特性差を補償する補償処理を行うよう構成されていることを特徴とする補償装置である。
 なお、本発明は、このような特徴的な補償装置や当該補償装置を備える無線通信装置として実現することができるだけでなく、かかる補償装置や無線通信装置を含むシステムとして実現できる。また、かかる補償装置や無線通信装置で行われる特徴的な処理をステップとする方法として実現したり、かかるステップをコンピュータに実行させるためのプログラムとして実現したりすることができる。また、上記補償装置や無線通信装置の一部または全部を実現する半導体集積回路として実現できる。更に、上記プログラムは、CD-ROM等の記録媒体に記憶させることができる。
 本発明によると、イメージ成分を十分に除去できない原因を減少させて、イメージ成分の除去をより効果的に行うことができる。
無線通信装置(受信機)の構成図である。 直交復調補償部の構成図である。 図2の直交復調補償部によるイメージ抑圧性能評価グラフである。 実施形態に係る直交復調補償部の構成図である。 実施形態に係る直交復調補償部の変形例を示す構成図である。 図4の直交復調補償部によるイメージ抑圧性能評価グラフである。 図4の直交復調補償部によるシミュレーション結果を示す周波数スペクトラムである。 図4の直交復調補償部によるイメージ抑圧性能評価結果を示す表である。 信号発生器の回路図である。 外部信号発生器及びその周辺の回路図である。 (a)はVCOへの制御信号を示し、(b)はVCOの発振周波数を示す図である。 (a)はVCOへの制御信号を示し、(b)はVCOの発振周波数を示す図である。 制御部の構成図である。 QDC演算処理のフローチャートである。 基準信号を示す図である。 DCオフセットを有するI信号を示す図である。 DCオフセットを有するQ信号を示す図である。 (a)は直交復調信号を示す図であり、(b)は直交復調信号から生成した基準信号レプリカである。 (a)は直交復調信号を示す図であり、(b)はイメージ成分だけが存在する部分が抽出された信号を示す図であり、(c)基準信号だけが存在する部分が抽出された信号を示す図であり、(d)は(b)と(c)のとの合成信号を示す図である。 RxALC演算処理のフローチャートである。 (a)は図4の直交復調補償部7の行う補償処理を示す式2であり、(b)はイメージ成分を示す式3である。
[実施形態の要旨]
 以下、実施形態の内容を下記(1)~(7)に列記して説明する。
(1)ある観点からみた本発明に係る実施形態は、直交復調信号中のイメージ成分を除去する補償処理を行う補償装置であって、I信号及びQ信号を有する前記直交復調信号の補償を行う直交復調補償部を備え、前記直交復調補償部は、前記I信号に対するフィルタ処理を行う第1フィルタの周波数特性と、前記Q信号に対するフィルタ処理を行う第2フィルタの周波数特性と、の特性差を補償する補償処理を行うよう構成されていることを特徴とする補償装置である。
 ある観点からみた前記本発明によると、第1フィルタ及び第2フィルタの周波数特性差を補償することができるため、イメージ成分を十分に除去できない原因を減少させて、イメージ成分の除去をより効果的に行うことができる。
(2)前記直交復調補償部が行う前記補償処理は、前記直交復調信号を出力する直交復調器によって生じたイメージ成分を除去するとともに、前記特性差を補償する処理であるのが好ましい。この場合、直交復調器によって生じたイメージ成分を除去するとともに、第1フィルタ及び第2フィルタの周波数特性差を補償することができる。
(3)前記第1フィルタ及び前記第2フィルタは、それぞれ、アナログフィルタであり、前記直交復調補償部は、前記第1フィルタ及び前記第2フィルタから出力されたアナログの前記I信号及び前記Q信号がデジタルに変換された信号を受け付けて、デジタル信号処理によって、前記補償処理を行うよう構成されているのが好ましい。この場合、アナログフィルタである第1フィルタ及び第2フィルタの周波数特性差をデジタル信号処理によって補償することができる。
(4)前記直交復調補償部は、前記I信号及びQ信号の少なくともいずれかに対する遅延処理を行う遅延部を有し、前記遅延部は、前記第1フィルタによって生じる群遅延と、前記第2フィルタによって生じる群遅延と、の間の群遅延差を抑制するのが好ましい。この場合、第1フィルタ及び第2フィルタの周波数特性差によって生じる群遅延差を抑制することで、周波数特性差を補償することができる。
(5)前記遅延部は、前記I信号及びQ信号のうちの一方の信号に対して遅延処理を行う第1遅延処理部と、前記I信号及びQ信号のうちの他方の信号に対して遅延処理を行う第2遅延処理部と、を備え、前記第1遅延処理部は、前記一方の信号に所定の遅延量の遅延を生じさせるよう構成され、前記第2遅延処理部は、前記第1遅延処理部による前記所定の遅延量よりも小さい遅延量の遅延を生じさせる第1処理と、前記第1遅延処理部による前記所定の遅延量よりも大きい遅延量の遅延を生じさせる第2処理と、を実行可能に構成されているのが好ましい。この場合、I信号及びQ信号のいずれが遅れているかわからない状態でも対応することができる。
(6)前記第1フィルタ及び前記第2フィルタの次数をNとした場合に、前記第2遅延処理部の次数は、2N以下に設定されているのが好ましい。この場合、第2遅延処理部によって第1フィルタ及び第2フィルタの周波数特性差を確実に補償することができる。
(7)他の観点からみた本発明は、前記(1)~(6)のいずれか1項に記載の前記補償装置を備えた無線通信装置である。
[実施形態の詳細]
 以下、本発明の好ましい実施形態について図面を参照しながら説明する。
[1.通信装置の構成]
 図1は、送受信機能を有する無線通信装置における受信機の構成を示している。なお、無線通信装置は、無線基地局装置又は無線端末装置として用いられる。また、図1の構成は、受信機に限らず、自身の無線通信装置の送信機から送信された送信信号を監視(送信アンプのDPD(歪補償)のための監視など)するために、自身が送信した送信信号を受信するモニタ装置としても使用できる。
 図1に示す受信機1は、受信信号を直交復調する機能を有している。また、受信機1は、直交復調の際に生じる直交復調歪を補償する補償装置としての機能をも有している。
 この受信機1は、図示しないアンテナで受信した受信信号を増幅する増幅器(ローノイズアンプ)2、受信信号の利得調整を行う可変アッテネータ3、受信信号の直交復調を行う直交復調器5を備えている。
 受信機1は、更に、直交復調器5から出力された直交復調信号(I/Q信号)それぞれを増幅する増幅器51a,51b、I/Q信号それぞれに対するフィルタリング処理を行うフィルタ(ローパスフィルタ)53a,53b、アナログI/Q信号をデジタル信号に変換するADC6a,6bを備えている。
 受信機1は、更に、直交復調信号(I/Q信号)の補償を行う直交復調補償部7、及び、直交復調信号(I/Q信号)の利得を補償する利得補償部8を備えている。
 直交復調補償部7及び利得補償部8は、デジタル信号処理によって補償処理を行うよう構成されている。直交復調補償部7は、ADC6a,6bによってデジタル信号に変換されたI/Q信号を受け付けて補償処理を行う。
 直交復調器5は、受信搬送周波数の信号(受信搬送周波数に一致する周波数の信号)を生成する発振器5a、π/2移相器5b、乗算器5c,5dなどのアナログ素子を備えており、アナログ信号処理によって直交復調処理を行うアナログ直交復調器(AQD;Analog Quadrature Demodulator)である。直交復調器5を構成するアナログ素子のばらつきにより、受信信号を直交復調した直交復調信号(I/Q信号)は、歪を受ける。
 歪の要因としては、
 1)発振器5aから注入される搬送周波数の漏れ(feed throgh)
 2)π/2移相器5bの製造ばらつきに起因する直交度のずれ
 3)直交復調器5からADC6a,6bまでの間の2つのパスで生じるゲイン不平衡
 4)DCオフセット
などが挙げられる。
 直交復調補償部7は、直交復調器補正(Quadrature Demodulator Correction)機能を有し、直交復調器5などによって直交復調信号(I/Q信号)に生じた歪の補償を行う。
 図2は、ローカルリーク除去部7aと、イメージ成分除去部7bと、だけを有する直交復調補償部7を示している。
 ローカルリーク除去部(QDC_LLR;Quadrature DemodulatorCorrection_Local Leakage Rejection)7aは、直交復調歪のうち、ローカルリークを除去する。ローカルリークは、搬送周波数の漏れ及び/又はDCオフセットを原因として発生する。
 イメージ成分除去部(QDC_IR;Quadrature DemodulatorCorrection_Image Rejection)7bは、直交復調歪のうち、イメージ成分を除去する。イメージ成分は、直交度のずれ及び/又はゲイン不平衡を原因として発生する。
 なお、ローカルリークは、信号の有無にかかわらず観測できる。イメージ成分は信号によって歪の生じ方が変化する。
 ローカルリーク除去部7a及びイメージ成分除去部7bは、直交復調歪(ローカルリーク又はイメージ成分)を補償するための補償パラメータ(補償係数)R11,R21,R22,dc1,dc2を用いて、歪補償を行う。補償パラメータは、制御部9にて演算される。
 図2に示す直交復調補償部7の行う補償処理は、上記補償パラメータを用いて次の式1で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 dc1,dc2は、ローカルリークを除去するための第1補償パラメータである。R11,R21,R22は、イメージ成分を除去するための第2補償パラメータである。
 補償パラメータR11,R21,R22,dc1,dc2は、制御部9によって算出される。
 本発明者は、図2に示す直交復調補償部7を用いても、イメージ成分の抑圧が十分にできないケースが生じることを見出した。そこで、本発明者は、イメージ成分の抑圧が十分にできない原因がLPF53a,53bにあるという仮説を立て、その検証を行った。
 ここで、アナログフィルタは、フィルタを構成する素子(インダクタ,キャパシタなど)の定数のばらつきや、回路製作時の実装のばらつきにより、フィルタの周波数特性にばらつきが生じる。フィルタの周波数特性のばらつきは、フィルタの群遅延のばらつきを生じさせる。
 本発明者は、I信号に対してフィルタリング処理を行う第1LPF(第1フィルタ)53aの周波数特性と、Q信号に対してフィルタリング処理を行う第2LPF(第2フィルタ)53bの周波数特性と、の特性差が、メージ成分の抑圧が十分にできない原因ではないかと考えた。
 そこで、本発明者は、アナログフィルタ(LPF)53a,53bの周波数特性の特性差が、イメージ成分の抑圧が十分にできない原因となるか、シミュレーションにて検証した。
 図3は、シミュレーション結果を示している。このシミュレーションでは、LPF53a,53bの周波数特性の特性差によって、LPF53a,53bの群遅延に差(群遅延差)があった場合における、直交復調補償部7によるイメージ成分抑圧性能の評価を実施した。
 図3の縦軸は、イメージレベル[dBc]を示し、横軸は補償パラメータR11,R21,R22,dc1,dc2を算出するアルゴリズム(QDCアルゴリズム)の繰り返し実行回数を示している。
 このシミュレーションでは、LPF53a,53bの群遅延差として、-1[ns],-0.75[ns],-0.5[ns],-0.25[ns],0[ns],0.25[ns],0.5[ns],0.75[ns],1[ns]の場合それぞれについて評価した。なお、群遅延差がマイナスの場合はI信号が先行し、群遅延差がプラスの場合はQ信号が先行することを意味する。0[ns]は群遅延差なし、を意味する。
 図3に示すように、繰り返し実行することで、イメージレベルは低下する。ただし、群遅延差がない場合には、繰り返し実行するほどイメージレベルは低下していくのに対し、群遅延差がある場合には、繰り返し実行しても、イメージ抑圧レベルが底打ちになっていることがわかる。
 なお、群遅延とI-Q信号の位相差の関係は、±10kHz辺りにおいて、
 群遅延差=0.00[ns] : 位相差=±0.0[degree]
 群遅延差=0.25[ns] : 位相差=±0.9[degree]
 群遅延差=0.50[ns] : 位相差=±1.8[degree]
 群遅延差=0.75[ns] : 位相差=±2.7[degree]
 群遅延差=1.00[ns] : 位相差=±3.6[degree]
となっており、図3より、わずかな位相差があっても、イメージ抑圧を抑制する原因となっていることがわかる。
 そこで、実施形態に係る直交復調補償部7では、図4に示すように、図2にも示すローカルリーク除去部7a及びイメージ成分除去部7bのほか、LPF53a,53bの周波数特性差を除去するための非対称等化部(Asymmetry Equalizer)7cが設けられている。
 非対称等化部7cは、LPF53a,53bの周波数特性差を補償することで、イメージ成分除去部7bとともにイメージ成分を除去することができる。
 図2に示す直交復調補償部7の構成では、直交復調器5、増幅器51a,51b、ADC6a,6bにて生じる理想特性からのずれを補償することはできても、LPF53a,53bがイメージ成分の抑圧を阻害するのを抑制できなかったが、図4に示す直交復調補償部7では、LPF53a,53bがイメージ成分の抑圧を阻害するのを抑制できるため、図2に示す直交復調補償部7よりもさらに効果的にイメージ成分を除去することができる。
 図4に示す非対称等化部7cは、直交復調信号(I信号/Q信号)に対して遅延処理を行う遅延部(遅延補償用等化器)として構成されている。
 遅延部7cは、第1LPF53aによって生じる群遅延と第2LPF53bによって生じる群遅延と、の間の群遅延差を抑制することで、両フィルタ53a,53bによる周波数特性差を解消している。
 遅延部7cは、I信号に対して遅延処理を行う第1遅延処理部71と、Q信号に対して遅延処理を行う第2遅延処理部72と、を備えている。
 第1遅延処理部71は、N遅延器(Z-N)を有して構成されており、I信号に対してN遅延(単位遅延Z-1のN倍の遅延;所定の遅延量)を生じさせる遅延処理を行うよう構成されている。
 第2遅延処理部72は、FIRフィルタとして構成されている。FIRフィルタとして構成された第2遅延処理部71によって、Q信号が処理されるQ-チャネルにおける周波数特性を、I信号が処理されるI-チャネルと同一にすることができる。これにより、イメージ抑圧量の改善が図られる。
 なお、第2遅延処理部72は、IIRフィルタとして構成されていてもよい。
 FIRフィルタ型の第2遅延処理部72は、次数が2N(タップ数が2N+1)であり、Z-1~Z-2Nまでの2N個の遅延器721-1~721-2Nと、2N+1個の乗算器722と、2N+1個の加算器723と、を備えている。
 2N+1個の乗算器722において乗じられる2N+1個のパラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nが、フィルタ53a,53bの周波数特性差を除去するための補償パラメータ(第3補償パラメータ)である。これらの補償パラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nは、制御部9によって算出される。
 図4に示す直交復調補償部7の行う補償処理は、第1~第3補償パラメータを用いて、図21(a)に示す式2で表すことができる。
 なお、式2において、(n・T)は、サンプリング間隔T(秒)としたときの時刻n×Tにおけるアナログ信号を示す。
 第2遅延処理部72の次数を2Nとしたのは、第1遅延処理部71の遅延量N(所定の遅延量)を基準として、Q信号が先行する場合でも遅行する場合でも対応できるようにするためである。
 第1遅延処理部71の遅延量Nを基準とすると、Z-0(図4において遅延器としては図示されていない)及びZ-1~Z-Nの遅延器721-1~721-Nは、(遅延量Nの遅延、及び)遅延量Nよりも小さい遅延量の遅延、を生じさせる第1処理を行うことができ、Q信号がI信号に対して遅れている場合の群遅延差を抑制する。
 また、第1遅延処理部71の遅延量Nを基準とすると、Z-N~Z-2Nの遅延器721-N~721-2Nは、(遅延量Nの遅延、及び)遅延量Nよりも大きい遅延量の遅延、を生じさせる第2処理を行うことができ、I信号がQ信号に対して遅れている場合の群遅延差を抑制するためのものである。
 第2遅延処理部72の次数を2Nをとすることで、I信号とQ信号のどちらが遅れているかわからない状態でも対応することができる。
 なお、第1遅延処理部71をQ-チャネルに設け、第2遅延処理部72をI-チャネルに設けてもよい。
 また、I信号とQ信号のどちらが遅れているかがわかっている場合には、第1遅延処理部を省略し、第2遅延処理部72の次数をNとするとともに、第2遅延処理部72を遅れている信号側のチャネルに設けてもよい。
 図5は、図4に示す直交復調補償部7の変形例を示している。図5に示す直交復調補償部7では、イメージ成分除去部7bにおいて補償パラメータR22を乗じる乗算器が省略されている。その代わり、図5に示す直交復調補償部7では、第2遅延処理部72における2N+1個の乗算器722それぞれにおいて、補償パラメータR22が、2N+1個のパラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nとともに乗じられている。
 図5の直交復調補償部7は、図4と同じ補償処理を行えるが、イメージ成分除去部7bの乗算器を一つ省略でき、回路の簡素化が図られている。
 図6は、LPF53a,53b間の群遅延差として1[ns]を想定した場合のイメージ抑制性能の評価(シミュレーション)結果を示している。
 このシミュレーションでは、第2遅延処理部72の次数2Nが、0,2,4,6,8である場合それぞれについて評価した。
 図6に示すように、第2遅延処理部72の次数が大きくなるほど、イメージ抑圧性能が向上していることがわかる。ただし、図6の結果では、群遅延差1[ns]程度であれば、次数を6程度にすることで、イメージ抑圧性能が飽和した。
 図7は、実際の受信信号を用いたシミュレーションを行った結果を示している。図7のシミュレーション結果は、直交復調補償部7による補償を行わない場合(図7中のNoQDC)、図2の直交復調補償部7による補償を行った場合(図7中のQDC)、図4の直交復調補償部7(第2遅延処理部72の次数2N=8)による補償を行った場合(図7中のQDCw2N-AE))の周波数スペクトラムを示している。なお、このシミュレーションでは、ローカルリーク除去は実施していない。
 図7に示すように、図2の直交復調補償部7による補償を行うと、補償を行わない場合のイメージ成分(イメージレベル=-39.673[dBc])よりはイメージ成分を抑圧でき、イメージレベルが-47.117[dBc]となる。
 そして、図4の直交復調補償部7による補償を行うと、さらにイメージ成分を抑圧でき、イメージレベルが-68.459[dBc]となる。
 このように、図4の直交復調補償部7による補償を行うと、イメージ抑圧性能が改善することがわかる。
 図8も、イメージレベルの抑圧性能を検証したシミュレーション結果を示している。
 ここでは、図1に示す回路におけるLPF53a,53bとして、複数の異なる条件のLPF(LPF-A,LPF-B,LPF-C)を用いた。また、同一条件のLPFについて、それぞれ4つの回路(No.1~No.4)を製作した。つまり、ある条件のLPF-Aについて、4つの回路(No.1~No.4)を製作し、別の条件のLPF-Bについて、4つの回路(No.1~No.4)を製作し、さらに別の条件のLPF-Cについて、4つの回路(No.1~No.4)を製作した。
 図8において、「補償前」は、図4の直交復調補償部7による補償を行わない場合のイメージレベルを示している。LPFの条件が異なる場合はもちろん、同一条件のLPFであっても、LPFを構成する素子のばらつきにより回路の特性が微妙に変化してしまい、イメージレベルには差があることがわかる。
 図8では、各LPF(LPF-A,LPF-B,LPF-C)の回路No.1~No.4それぞれについて、第2遅延処理部72の次数2Nを、0,2,4,6,8とした場合それぞれのシミュレーション結果を示している。
 図8から明らかなように、第2遅延処理部72の次数2Nを4以上にすると、イメージ成分を-65[dBc]に抑えることが出来る。
 ここで、第2遅延処理部72の次数は、第1フィルタ53a及び第2フィルタ53bの次数をNとした場合に、2N以下であるのが好ましい。
 第1フィルタ53a及び第2フィルタ53bの次数がNであれば、これらのフィルタ53a,53bの周波数特性差を抑制するには、最大でも次数NのFIRフィルタとして構成された第2遅延処理部72があればよい。そして、本実施形態の第2遅延処理部72は、
I信号,Q信号のどちらが遅れているかわからない場合でも対応できるようにするため、周波数特性差抑制に必要な次数Nの2倍の次数を有するフィルタとして構成されている。
 以上より、第2遅延処理部72の次数は、第1フィルタ53a及び第2フィルタ53bの次数をNとした場合に、2N以下であればよい。
 さて、図1に戻り、制御部9は、補償パラメータR11,R21,R22,k,kN-1,・・・,k,k,k-1,・・・,k-N,dc1,dc2を求める際には、アンテナによって受信した通常の受信信号ではなく、所定の帯域幅を持つ特別な信号(基準信号)を用いる。補償パラメータを求めるために用いる基準信号は、信号発生器10が発生する。
 つまり、前記基準信号を発生させる信号発生器10と、前記基準信号を直交復調した直交復調信号に基づいてイメージ成分を除去するための補償パラメータR11,R21,R22,k,kN-1,・・・,k,k,k-1,・・・,k-Nを演算する制御部9と、補償パラメータR11,R21,R22,k,kN-1,・・・,k,k,k-1,・・・,k-Nを用いて直交復調歪のうちのイメージ成分を除去する直交復調補償部7とは、直交復調器5によって生じたイメージ成分を除去する補償処理を行う補償装置を構成している。
 なお、図4に示すように、直交復調補償部7は、ローカルリーク除去部7aと、イメージ成分除去部7bと、非対称等化部(遅延部)7cと、を備えているが、前記補償装置が直交復調器5によって生じたイメージ成分を除去するためだけであれば、ローカルリーク除去部7aは省略できる。
[2.信号発生器]
 図9は、信号発生器10の回路構成を示している。信号発生器は、位相ロックループ(PLL;Phase Lock Loop)方式の発振回路に、外部信号発生器(外部信号発生部)21を付加したものである。
 図9に示すPLL方式の発振回路は、位相比較器22、チャージポンプ(Charge Pump)回路23、ローパスフィルタ(ループフィルタ)24、電圧制御発振器(VCO)25、分周器26,27を備えている。
 位相比較器22は、基準周波数frefに対してR分周を行う分周器27の出力信号と、電圧制御発振器25の出力信号(周波数fout)に対してN分周を行う分周器26の出力信号と、を比較し、両者の位相差に応じた電圧を出力する。位相比較器22の出力電圧は、チャージポンプ回路23及びローパスフィルタ24を通過することで、電圧制御発振器25への制御信号(制御電圧)となる。
 電圧制御発振器25の出力信号は、分周器26を介して、位相比較器22にフィードバックされ、位相ロックループが形成される。一般的な位相ロックループ方式の発振回路では、位相ロックループによって、電圧制御発振器25から、一定の周波数の信号が出力される。
 これに対し、図9に示す信号発生器10は、外部信号発生器21が設けられている。図10に示すように、外部信号発生器21は、正弦波のように時間変動する信号を生成する発振器(可変周波数発振器)29を備えている。発振器29によって発生した信号(外部信号)Vextは、電圧制御発振器25の制御信号に重畳される。
 すなわち、位相比較器22の出力電圧が、チャージポンプ回路23及びローパスフィルタ24を通過することで生成された原制御信号(原制御電圧)Vctrl’に、外部信号Vextが重畳された制御信号(制御電圧)Vctrlが生成される。
 図10の信号発生器10では、発振器29の出力信号は、非反転増幅器30、切替部(スイッチ)30b、コンデンサ30cを介して、電圧制御発振器25の入力ライン28上に与えられる。
 非反転増幅器30は、発振器29によって発生した外部信号の振幅を調整する機能を有している。なお、外部信号Vextの振幅調整が必要ない場合には、非反転増幅器30を、ボルテージフォロア回路として構成してもよい。
 切替部30bは、外部信号Vextの制御信号への重畳のON/OFFを行う機能を有している。切替部30bをONにすることで、位相比較器22の出力電圧に外部信号Vextが重畳された制御電圧Vextが電圧制御発振器25に与えられる第1モードにすることができる。また、切替部30bをOFFにすることで、位相比較器22の出力電圧に外部信号Vextが重畳されていない制御電圧Vext’が電圧制御発振器25に与えられる第2モードにすることができる。
 切替部30bにおけるON/OFF切替は、制御部9からの制御信号(Chirp/CW信号)によって行われる。
 なお、コンデンサ30cは、ACカップリングの役割をし、原制御信号Vctrl’をバイアス電圧として外部信号Vextをスイングさせる機能を有している。
 電圧制御発振器(VCO)25の入出力特性は、制御信号(制御電圧)Vctrlに対して、出力周波数(発振周波数)foutが単調増加する。つまり、電圧制御発振器(VCO)25からは、制御信号Vctrlの大きさに応じた出力周波数(発振周波数)foutの信号が出力される。
 なお、VCO25の出力側には可変アッテネータ40が設けられており、受信機の利得を上げる際に、信号発生器10から入力される信号が飽和しないようにするため等の目的でVCO25の出力を調整することができる。可変アッテネータ40は、制御部9から調整できる。
 図11(a)に示すように、外部信号Vextが重畳されず、位相比較器22の出力電圧に応じた制御信号(制御電圧)Vctrl’だけが電圧制御発振器25に与えられる場合には、信号発生器10は、通常の位相ロックループ回路として機能し、図11(b)に示すように、単一の周波数fの信号(無変調連続波)が、電圧制御発振器25から出力される。
 一方、図12(a)に示すように、位相比較器22の出力電圧に応じた制御信号(制御電圧)Vctrl’に、外部信号発生器21によって発生した外部信号(正弦波)Vextが重畳された制御信号(制御電圧)Vctrlが、電圧制御発振器25に与えられる場合には、図12(b)に示すように、電圧制御発振器25から出力される出力信号の周波数foutは、外部信号Vextの振幅値の時間的変化に応じて、周波数fを中心として時間的に変化する。
 つまり、外部信号Vextの振幅値がゼロであれば、電圧制御発振器25の出力周波数は、制御信号(制御電圧)Vctrl’によってロックされる周波数fとなるが、外部信号Vextの時間変動によって、外部信号Vextの振幅値がゼロよりも大きくなると、電圧制御発振器25の出力周波数は、fよりも大きくなる。逆に、外部信号Vextの時間変動によって、外部信号Vextの振幅値がゼロよりも小さくなると、電圧制御発振器25の出力周波数は、fよりも小さくなる。
 外部信号Vextの時間変動に応じた、電圧制御発振器25の出力周波数(発振周波数)の変動は、fを中心として、f-(f/2)からf+(f/2)の間で生じる。つまり、電圧制御発振器25の出力周波数が時間的に変化する周波数範囲はfである。
 信号発生器10は、外部信号発生器21を有していることで、チャープ信号(chirp signal)のように、所定の周波数範囲f内で周波数が時間的に変化する信号を生成することができる。
 チャープ信号のように、所定の周波数範囲f内で周波数が時間的に変化する信号は、時間を無視すれば、周波数帯域幅がfである信号とみなすことができる。したがって、信号発生器10は、所定の帯域幅fの信号(基準信号)を発生する装置であるとみなすことができる。
 従来、チャープ信号を生成するには、デジタルで生成した信号をアナログ変換し、さらに変調する必要があり、装置のコスト高及び大型化を招くおそれがあった。
 しかし、図9に示す信号発生器10では、一般的なPLL回路に外部信号発生器21を追加するだけで、容易にチャープ信号を生成することができる。
 信号発生器10によって発生する信号の帯域(周波数範囲)fの値は、主に、外部信号Vextの振幅によって決定される。外部信号Vextの振幅を調整することで帯域(周波数範囲)fの値を調整する第1調整部として、非反転増幅器30を利用できる。非反転増幅器の可変抵抗30aの値を調整することで、非反転増幅器30の増幅率を変更でき、その結果、外部信号Vextの振幅を調整することができる。なお、非反転増幅器30の増幅率を変更する信号Ctrlは、制御部9から与えられる。
 信号発生器10によって発生する信号の帯域(周波数範囲)fの値は、外部信号Vextの振幅以外の他の要因によっても影響を受ける。他の要因としては、例えば、位相比較器22における位相比較周波数frefと、外部信号Vextの周波数との比が挙げられる。位相比較器22における位相比較周波数frefが高ければ、位相比較器22における位相比較が頻繁に行われ、外部信号Vextによって変動した周波数がfに戻ろうとする度合いが高くなる。したがって、位相比較器における位相比較周波数frefが高くなるほど、信号発生器10によって発生する信号の帯域(周波数範囲)fを小さくできる。
 位相比較器22における位相比較周波数frefと、外部信号Vextの周波数との比を調整する第2調整部として、可変周波数発振器29を利用できる。外部信号extの周波数を調整することで、位相比較周波数frefと外部信号Vextの周波数との比が調整され、その結果、外部信号Vextの振幅を調整することができる。なお、可変周波数発振器29の発振周波数を変更する信号Ctrlは、制御部9から与えられる。
 ここで、図9の回路が、位相ロックループとして機能するには、外部信号Vextの周波数が小さいほうがよい。外部信号Vextの周波数が大きすぎると、外部信号Vextによって変動する周波数を適切に制御できなくなるからである。かかる観点からは、外部信号Vextの周波数は、例えば、位相比較器22における位相比較周波数frefよりも小さいのが好ましく、位相比較器22における位相比較周波数frefの1/10以下であるのが更に好ましい。
 信号発生器10によって発生する信号の帯域(周波数範囲)fの値に影響を与える他の要因としては、チャージポンプ回路23のチャージポンプ電流が挙げられる。チャージポンプ電流が大きくなると、位相比較器22の出力電圧の変化に対する制御電圧Vctrl’の応答性が高くなる。このため、外部信号Vextによって変動した周波数がfに戻ろうとする反応速度が速くなる。したがって、チャージポンプ電流を大きくするほど、信号発生器10によって発生する信号の帯域(周波数範囲)fを小さくできる。
 チャージポンプ電流を調整するには、チャージポンプ回路23においてチャージポンプ電流の大きさを左右する抵抗を可変抵抗しておけばよい。この可変抵抗が、チャージポンプ電流を調整する第3の調整部となる。なお、チャージポンプ電流を変更する信号Ctrlは、制御部9から与えられる。
 信号発生器10によって発生する信号の帯域(周波数範囲)fの値に影響を与える他の要因としては、LPF24の時定数が挙げられる。チャージポンプ電流が一定であっても、LPF24自体の応答性が高くなれば、LPF24の出力電圧(制御電圧Vctrl’)の応答性が高くなる。このため、外部信号Vextによって変動した周波数がfに戻ろうとする反応速度が速くなる。したがって、LPF24の応答性が高くなるように時定数を小さくするほど、信号発生器10によって発生する信号の帯域(周波数範囲)fを小さくできる。
 LPF24の時定数を調整するには、LPF24において時定数を左右する素子を可変素子としておけばよい。この可変素子が、LPF24の時定数を調整する第4の調整部となる。
 上記のように構成された信号発生器10から発生した信号は、スイッチ部11を介して、増幅器2に与えられ、直交復調器5によって直交復調される。スイッチ部11は、増幅器2(直交復調器5)に与えられる信号を、図示しないアンテナにて受信した受信信号とするか、信号発生器10にて発生した信号とするか、を切り替えることができる。スイッチ部11への切替制御信号は、制御部9から与えられる。
[3.制御部の処理]
 図13に示すように、制御部9は、直交復調補償に用いる補償パラメータを演算するQDC演算部(直交復調補償演算部)31と、可変アッテネータ3及び/又は利得補償部8が利得補償を行う際に参照する補償値を演算するRxALC演算部(利得補償演算部)34を備えている。
[3.1 直交復調補償]
 QDC演算部31は、直交復調器5から出力された直交復調信号(I/Q信号)を、(利得補償部8の出力側から)取得する。QDC演算部31は、取得した直交復調信号に基づいて、直交復調歪を補償するための補償パラメータを演算する。演算により求めた補償パラメータは、直交復調補償部7に適用される。直交復調補償部7は、補償パラメータを用いて、前記直交復調信号(I/Q信号)の直交復調歪を除去する。
 QDC演算部31は、QDC_LLR演算部(ローカルリーク演算部)32と、QDC_IR演算部(イメージ成分演算部)33と、を備えている。
 QDC_LLR演算部(ローカルリーク演算部)32は、ローカルリークを除去するための第1補償パラメータdc1,dc2を演算する演算部である。
 QDC_IR演算部(イメージ成分演算部)33は、イメージ成分を除去するための第2補償パラメータR11,R21,R22及びフィルタ53a,53bの周波数特性差を補償する第3補償パラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nを演算する演算部である。
 QDC_LLR演算部32で求めた第1補償パラメータdc1,dc2は、ローカルリーク除去部7aに適用される。QDC_IR演算部33で求めた第2補償パラメータR11,R21,R22は、イメージ成分除去部7bに適用される。また、QCD_IR演算部33で求めた第3補償パラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nは、非対称等化器(遅延部)7cに適用される。
 なお、図5の直交復調補償部7の場合、QDC_IR演算部33で求めた第2補償パラメータR22は、非対称等化器(遅延部)7cに適用される。
 なお、制御部9は、少なくとも、イメージ成分を除去するための第2補償パラメータR11,R21,R22及び第3補償パラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nを演算するQDC_IR演算部33を備えていれば、直交復調器5によって生じたイメージ成分を除去する補償処理を行う補償装置の演算部としての機能を実現することができる。
 図14は、補償パラメータを演算(更新)するための処理フローチャートを示している。まず、制御部9は、信号発生器10が発生したチャープ信号を、直交復調器5の入力側に与える(ステップS1)。
 なお、受信機1に受信信号の処理を行う系(図1の回路)が複数設けられている場合には、補償パラメータを演算する対象となる系の選択が、ステップS1に先立って行われる。
 ステップS1では、制御部9は、信号発生器10にて発生した信号が増幅器2(直交復調器5)側に与えられるようにスイッチ部11を切り替える切替制御信号を、スイッチ部11に対して出力する。また、制御部9は、信号発生器10が単一周波数の信号(CW;Constan Wave)ではなく、所定の帯域fを有するチャープ(Chirp)信号を出力する第1モードとなるように、モード切替制御信号(Chirp/CW信号)を信号発生器10の外部信号発生器21に対して出力する。
 信号発生器10にチャープ信号を発生させるためのモード切替制御信号(Chirp/CW信号)が、外部信号発生器21の切替部30bに与えられると、外部信号Vextが重畳された制御電圧Vctrlが、電圧制御発振器25に与えられる。すると、電圧制御発振器25は、図15に示すように、所定の帯域幅を持つ信号(基準信号)を出力する。
 なお、チャープ信号の帯域は、運用の際のシステム帯域に応じて、適宜、決定できる。例えば、システム帯域に合わせて数パターンの外部信号Vext振幅を予め設定しておき、選択されたシステム帯域に応じて、どの外部信号Vextの振幅にするかを選択すればよい。また、外部信号Vextの振幅によって定まるチャープ信号帯域を、位相比較周波数frefと外部信号Vextの周波数との比の調整、チャージポンプ電流の調整、LPF24の時定数の調整によって微調整することができる(前記各調整の内、少なくとも1つを調整することによって調整することができる)。
 基準信号は、受信帯域(fr-min-fr-max)内において、所定の帯域((f-(f/2))-(f+(f/2)))を持つ信号として生成される。
 基準信号は、受信帯域の中心周波数である受信搬送周波数fcに対して、高周波数側に偏った帯域を有している。図15では、基準信号の帯域は、搬送周波数fcに対して、高周波数側だけに存在しており、搬送周波数fcよりも低周波数側には存在しない。また、基準信号の帯域は、搬送周波数fcに対して離れて位置している。
 なお、搬送周波数fc(受信信号の中心周波数)は、変更される場合があるが、搬送周波数fcが変更されても、図15のような関係を維持できるように、チャープ信号の中心周波数f及び/又は帯域fを調整してもよい。
 図15に示す基準信号は、直交復調器5を通過することで、直交復調歪が付加される。直交復調歪を有する直交復調信号(I/Q信号)は、QDC演算部31にてサンプリングされる(ステップS2)。
 QDC_LLR演算部32は、サンプリングした直交復調信号に基づいてローカルリーク量を計算する(ステップS3)。基準信号は、図示しないACカップリングによって直流成分を有しないものとなっているため、ローカルリークがなければ、IQコンスタレーションの中心は、IQ平面の原点になるはずである。しかし、I/Q信号それぞれにローカルリークによる影響が含まれていると、直交復調信号のコンスタレーションのゼロ点は、IQ平面の原点からずれる。
 つまり、図16及び図17に示すように、ローカルリークによって、I/Q信号それぞれにDC成分IDC,QDCが含まれている場合、I/Q信号それぞれの時間平均をとると、ローカルリークに対応したDC成分IDC,QDCが得られる。得られたDC成分IDC,QDCは、ローカルリークを打ち消すための第1補償パラメータdc1,dc2の更新(ステップS5)に用いられる。
 QDC_IR演算部33は、サンプリングした直交復調信号に基づいてイメージ成分を計算する(ステップS4)。
 ここで、
直交復調器5によるイメージ成分が生じていないI信号をRefsig_re[n]とし、直交復調器5によるイメージ成分が生じていないQ信号をRefsig_Im[n]とし、Refsig_re[n]に対して直交復調器5によるイメージ成分が重畳されたI信号をRxsig_re[n]とし、
Refsig_Im[n]に対して直交復調器5によるイメージ成分が重畳されたQ信号をRxsig_Im[n]とすると、
直交復調器によって生じるイメージ成分は、図21(b)に示す式3のように表すことができる。
 式3において、Rtmp11,Rtmp21,Rtmp22,ktmp,ktmpN-1,・・・,ktmp,ktmp,ktmp-1,・・・,ktmp-Nが、イメージ成分に対応する。
 なお、式3において、*[n]は、サンプリング間隔T(秒)としたときに、時刻n×Tにサンプリングしたデジタル複素ベースバンドIQ表現の信号である。
 QDC_IR演算部33は、イメージ成分として、上記のRtmp11,Rtmp21,Rtmp22,ktmp,ktmpN-1,・・・,ktmp,ktmp,ktmp-1,・・・,ktmp-Nを算出する。
 QDC_IR演算部33は、上記式中のRtmp11,Rtmp21,Rtmp22,ktmp,ktmpN-1,・・・,ktmp,ktmp,ktmp-1,・・・,ktmp-Nを、最小2乗法など任意の数値計算手法を用いて推定する。
 ここで、デジタルで処理を行うQDC_IR演算部33が、上記式を用いて、イメージ成分を算出するには、直交復調器5の出力信号Rxsig_re[n],Rxsig_Im[n]のほか、直交復調器5によるイメージ成分が生じていないデジタルI/Q信号Refsig_re[n],Refsig_Im[n]が必要である。
 図1の回路構成から明らかなように、デジタルで処理を行うQDC_IR演算部33にとって、直交復調器5の出力信号Rxsig_re[n],Rxsig_Im[n]の取得は容易である。一方、直交復調器5によるイメージ成分が生じていないデジタルI/Q信号Refsig_re[n],Refsig_Im[n]の取得は容易ではない。
 しかし、本実施形態に係る受信機1では、直交復調器5の出力信号Rxsig_re[n],Rxsig_Im[n]から、Refsig_re[n],Refsig_Im[n]のレプリカを生成できるため、イメージ成分の算出が容易となっている。
 なお、ここでは、直交復調器5の出力として、直交復調補償部7(及び利得補償部8)の出力を考える。つまり、以下の通りである。
 R’’:Rxsig_re[n]
 R’’:Rxsig_Im[n]
 さて、本実施形態に係る受信機1では、補償パラメータを演算する際には、信号発生器10から出力された基準信号(図15)が直交復調器5へ入力される。
 この基準信号が、直交復調器5を通過することで得られる直交復調信号Rxsig[n](=Rxsig_re[n]+i×Rxsig_Im[n])は、図18(a)に示すように、元々の基準信号の部分と、イメージ成分の部分とが、異なる部分に現れる。これは、基準信号の帯域が、搬送周波数fcを基準として片側(高周波数側)だけに存在しており、イメージ成分は、搬送周波数fcを基準として対称的に現れるからである。つまり、イメージ成分は、搬送周波数fcを基準としたときに、基準信号の帯域に対して周波数方向に対称な帯域に現れる。
 なお、図18では、デジタルで処理を行う直交復調補償部7において扱う信号を表しているため、搬送周波数fcに相当する周波数が0となっている。
 基準信号の帯域が、搬送周波数fcを基準として片側(高周波数側)だけに存在しているため、QDC_IR演算部33としては、搬送周波数fcを基準とした他方側(低周波数側)に存在する成分は、基準信号ではなく、イメージ成分であるとみなすことができる。
 そこで、QDC_IR演算部33は、図18(a)に示すような直交復調信号Rxsig[n](=Rxsig_re[n]+i×Rxsig_Im[n])を取得すると、その直交復調信号から、搬送周波数fcよりも低周波数側(ここでは、周波数=0よりも低周波数側)の信号を除去する。図18(b)に示すように、除去後の直交復調信号は、イメージ成分がなく、基準信号だけが残っている。
 本実施形態では、元々の基準信号の部分と、イメージ成分との部分とが、異なる周波数に現れるため、両者を容易に分離可能である。
 ここで、理想的なデジタル基準信号Refsig[n]=Refsig_re[n]+i×Refsig_Im[n]としては、信号発生器10が出力されたアナログの基準信号を、直交復調歪のない直交復調器5によって直交復調し、さらにADC6a,6bにてデジタル信号に変換したものとなる。そして、図18(b)の信号には、イメージ成分がない。
 したがって、図18(b)の信号は、理想的なデジタル基準信号Refsig[n]のレプリカ(基準信号レプリカ)となっている。
 QDC_IR演算部33は、図18(a)に示す信号(演算用信号)と、図18(b)に示す基準信号レプリカと、を用いて、イメージ成分Rtmp11,Rtmp21,Rtmp22,ktmp,ktmpN-1,・・・,ktmp,ktmp,ktmp-1,・・・,ktmp-Nを示すパラメータを算出する。
 すなわち、QDC_IR演算部33は、取得した直交復調信号R’’,R’’を、そのまま、イメージ成分の演算用信号Rxsig_re[n],Rxsig_Im[n]として用いるとともに、基準信号Refsig[n]のレプリカ(Replica_Refsig[n])を、基準信号Refsig[n](=Refsig_Re[n]+i×Refsig_Im[n])として用いて、Rtmp11,Rtmp21,Rtmp22,ktmp,ktmpN-1,・・・,ktmp,ktmp,ktmp-1,・・・,ktmp-Nを算出する。
 なお、基準信号Refsig[n]のレプリカReplica_Refsig[n]=Replica_Refsig_Re[n]+i×Replica_Refsig_Im[n]である。
 また、Refsig[n]=α×Replica_Refsig[n]である(αは、0でない正の実数値である)。
 続いて、QDC演算部31は、ステップS3で演算されたDC成分IDC,QDCを打ち消すための第1補償パラメータdc1,dc2を演算(更新する(ステップS5)。
 また、QDC演算部31は、ステップS4で推定されたイメージ成分Rtmp11,Rtmp21,Rtmp22,ktmp,ktmpN-1,・・・,ktmp,ktmp,ktmp-1,・・・,ktmp-Nを打ち消すための第2補償パラメータR11,R21,R22及び第3補償パラメータk,kN-1,・・・,k,k,k-1,・・・,k-Nを演算(更新)する(ステップS5)。QDC演算部31は、求めた第1、第2及び第3補償パラメータを、直交復調補償部7に与える。
 本実施形態では、図17に示すように、基準信号は、搬送周波数fcを基準として高周波数側の帯域だけに存在していた。しかし、基準信号は、搬送周波数fcを基準として低周波数側の帯域だけに存在していてもよい。
 また、基準信号は、搬送周波数fcに対して、高周波数側又は低周波数側のいずれか一方に偏った帯域を有するものであればよい。つまり、基準信号は、搬送周波数fcを跨った状態で、搬送周波数fcの高周波数側又は低周波数側のいずれか一方に偏っていてもよい。
 基準信号が、高周波数側又は低周波数側のいずれか一方に偏っていれば、図19(a)に示すように、元々の基準信号の部分のうちの少なくとも一部に、イメージ成分が重畳されていない部分が確保される。イメージ成分が重畳されていない部分を基準信号レプリカとして用いることで、イメージ成分の推定が可能である。
 例えば、図19(a)に示すように基準信号の帯域が、-fからfであるとものとする(f<f)。この場合、イメージ成分は、-fからfの範囲に現れ、基準信号と重なっている。
 ここで、基準信号とイメージ成分とは大きさレベル差があるため、QDC_IR演算部33は、基準信号に対して、閾値(例えば、20dB)以上のレベル差を有する部分を、イメージ成分だけが存在する部分であるとして検出することができる。これにより、図19(b)に示すように、-fからfの範囲にあるイメージ成分だけが抽出できる。
 そして、-fからfの範囲にあるイメージ成分は、搬送周波数fc(図19では、周波数=0)を中心として対称的な位置であるfからfの基準信号によって生じたものである。そして、fからfの範囲では、基準信号に対するイメージ成分の重なりも無い。
 そこで、QDC_IR演算部33は、図19(a)の信号から、fからfの範囲の信号を抽出することで、図19(c)に示すように、イメージ成分が重畳されていない基準信号(の一部)が得られる。図19(c)に示す信号(基準信号の一部に相当)を、基準信号レプリカReplica_Refsig[n]として用いても良い。
 また、イメージ成分の演算用信号Rxsig_re[n],Rxsig_Im[n]としては、図19(c)の基準信号レプリカと、図19(b)の信号(図19(c)の基準信号レプリカによって生じたイメージ成分)と、を合成した図19(d)の信号を用いればよい。
 このように、イメージ成分の演算に用いる基準信号レプリカとしては、基準信号全体に対応する部分であってもよいし、基準信号にイメージ成分が重畳されている場合には、イメージ成分が重畳されている部分を除去したものであってもよい。
 また、演算用信号としても、直交復調信号をそのまま使用してもよいし、直交復調信号中に基準信号とイメージ成分との重畳部分がある場合には、当該重畳部分を除去したものであってもよい。
[3.2 利得補償]
 制御部9は、信号発生器10から出力された信号(CW)を用いて、利得補償のための演算を行うこともできる。
 図13に示すように、利得補償のため補償値を演算するRxALC演算部34は、電力計算部35、検波器出力校正部36、ゲイン計算部37と、を備えている。
 RxALC演算部(測定部;利得補償演算部)34は、信号発生器10から出力された信号(CW)の電力と、直交復調された受信信号R’’、R’’の電力と、の比を測定及び監視することで、可変アッテネータ3及び/又は利得補償部8での利得補償のため補償値を演算する。
 図1にも示すように、RxALC演算部34には、信号発生器10から出力された信号(SW)を検波する検波器12の出力が、ADC12aを介して、与えられる。また、RxALC演算部34には、直交復調された信号R’’、R’’が与えられる。
 さらに、RxALC演算部34には、温度センサ13の出力が、ADC14を介して、与えられる。
 RxALC演算部34の電力計算部35は、直交復調された信号R’’、R’’の受信電力を計算する。
 検波器出力校正部36は、検波器12の出力(信号(CW)の電力)を、温度(温度センサ13の出力)で校正し、校正された受信電力を演算する。検波器出力校正部36は、温度校正用テーブルを有しており、当該テーブルを参照することにより、校正された受信電力を演算する。
 ゲイン計算部37は、検波器出力に基づく受信電力と、直交復調された信号R’’、R’’の受信電力と、の比を求める。ゲイン計算部37の出力は、演算器38に与えられる。演算器38は、ゲイン計算部37の出力と、ゲイン基準値と、の偏差ΔGainを求める。
 図20は、可変アッテネータ3及び/又は利得補償部8での利得補償のため補償値となるゲインΔGain1,ΔGain2を演算するための処理フローチャートを示している。まず、制御部9は、信号発生器10から発生した信号(CW;無変調連続波)を、通常の受信信号の代わりに、受信機1の入力に与える(ステップS11)。
 なお、受信機1に受信信号の処理を行う系(図1の回路)が複数設けられている場合には、利得補償のための演算の対象となる系の選択が、ステップS11に先立って行われる。
 ステップS11では、制御部9は、信号発生器10にて発生した信号が増幅器2(直交復調器5)側に与えられるようにスイッチ部11を切り替える切替制御信号を、スイッチ部11に対して出力する。また、制御部9は、信号発生器10が単一周波数の信号(CW;Constan Wave)を出力する第2モードとなるように、モード切替制御信号(Chirp/CW信号)を信号発生器10の外部信号発生器21に対して出力する。
 CW信号を発生させる切替制御信号(Chirp/CW信号)が、外部信号発生器21の切替部30bに与えられると、外部信号Vextが重畳されていない制御電圧Vctrl’が、電圧制御発振器25に与えられる。すると、電圧制御発振器25は、単一周波数の信号(CW)を出力する。
 RxALC演算部34は、信号発生器10が発生した単一周波数の信号(CW)が、直交復調され、デジタル信号に変換されたデジタル直交復調信号R’’、R’’のサンプリングを行う(ステップS12)。また、RxALC演算部34は、信号発生器10が発生した単一周波数の信号(CW)を検波器12にて検波した電力値(検波器出力)を、ADC14にてデジタル信号に変換したものを、取得する(ステップS12)。
 ステップS12の信号の取得が終了すると、制御部9は、信号発生器10からの信号(CW)の発生を停止させる(ステップS13)。信号発生器10からの信号(CW)の発生を停止させるには、VCO25の出力側に設けられたスイッチ28aを終端28b側に切り替えればよい。
 検波器出力校正部36は、温度校正用テーブルを参照して、検波器出力(電力)の校正を行う(ステップS14)。
 電力計算部35は、サンプリングして得たデジタル直交復調信号R’’、R’’から、単一周波数の信号(CW)の電力の時間平均値を演算し、その演算結果をゲイン計算部37に与える。
 ゲイン計算部37では、電力計算部35から出力された電力と、検波器出力校正部36から出力された電力との比を計算して出力する(ステップS15)。
 演算器38では、ゲイン計算部37から出力された電力比と、ゲイン基準値と、を用いて演算する。演算器38では、ゲイン基準値に対する、ゲイン計算部37から出力された電力比の偏差ΔGainを求める。ゲイン基準値は、ゲイン計算部37から出力された電力比を調整する上でのターゲットとなる値であり、検波器出力とデジタル直交復調信号の電力との、理論的な電力比である。
 ゲイン計算部37から出力された電力比が、ゲイン基準値を超えている場合、制御部9は、前記偏差ΔGainが無くなるように、可変アッテネータ3及び/又は利得補償部8の利得を調整する信号を、可変アッテネータ3及び/又は利得補償部8に与える。
 可変アッテネータ3及び/又は利得補償部8は、制御部9からの信号に基づいて、利得を調整し、前記偏差ΔGainが無くなるように動作する。
 なお、ゲイン基準値は、例えば、事前に定めておいてもよいし、入力インターフェースを介して外部から入力してもよい。
[4.付記1]
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 また、今回開示された実施の形態の内、ある実施形態として開示された構成要素の少なくとも1部を、他の実施形態として開示された構成要素の少なくとも1部と組み合わせてもよい。
[5.付記2]
 直交復調信号によって発生したイメージ成分の除去を容易に行えるようにするための技術的手段は、以下の通りである。
(5-1)搬送周波数の信号を用いて直交復調を行う直交復調器から出力された直交復調信号に対して、前記直交復調器によって生じたイメージ成分を除去する補償処理を行う補償装置であって、受信帯域内において所定の帯域幅を持つ基準信号を発生させて、当該基準信号を前記直交復調器の入力側に与える信号発生器と、前記直交復調器によって前記基準信号を直交復調した信号に基づいて、前記イメージ成分を除去するための補償パラメータを演算する演算部と、前記補償パラメータを用いて、前記直交復調信号から前記イメージ成分を除去するイメージ成分除去部と、を備え、前記基準信号は、前記搬送周波数に対して、高周波数側又は低周波数側のいずれか一方に偏った帯域を有する信号であり前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号のうち、前記イメージ成分が重畳されていない帯域の信号を、基準信号レプリカとして生成するとともに、前記基準信号レプリカ及び前記基準信号レプリカによって生じたイメージ成分を有する演算用信号と、前記基準信号レプリカと、に基づいて、前記補償パラメータを演算することを特徴とする補償装置である。
 上記構成の補償装置によれば、演算部は、基準信号を直交復調した信号のうち、基準信号の帯域が搬送周波数に対して偏っていることによってイメージ成分が重畳されていない帯域の信号を、基準信号レプリカとして生成するとともに、基準信号レプリカ及び基準信号レプリカによって生じたイメージ成分を有する演算用信号と、基準信号レプリカと、に基づいて、補償パラメータを演算する。
 つまり、基準信号が、搬送周波数に対して偏っていることで、元々の基準信号の部分のうちの少なくとも一部に、イメージ成分が重畳されていない部分が確保される。イメージ成分が重畳されていない部分を基準信号レプリカとして用いることで、イメージ成分の推定が可能であり、ひいてはイメージ成分を除去するための補償パラメータを演算することが可能となる。
(5-2)前記基準信号は、前記搬送周波数の高周波数側又は低周波数側のいずれか一方の帯域だけに存在しており、前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号のうち、前記基準信号全体に対応する帯域の信号を基準信号レプリカとして生成し、前記演算用信号は、前記基準信号を直交復調した信号であるのが好ましい。
 イメージ成分は、搬送周波数を基準として対称的に現れるため、基準信号は、搬送周波数の高周波数側又は低周波数側のいずれか一方の帯域だけに存在していると、イメージ成分は、基準信号とは異なる部分に現れる。したがって、イメージ成分と基準信号との分離が容易となる。
(5-3)前記演算部は、前記搬送周波数に対応する周波数を基準として、前記基準信号が存在しない側の帯域の信号を、前記基準信号を直交復調した信号から除去することで、前記基準信号レプリカを生成するのが好ましい。搬送周波数に対応する周波数を基準として、基準信号が存在しない側の帯域には、イメージ成分が存在するため、その帯域の信号を除去することで、イメージ成分のない基準信号レプリカを容易に生成することができる。
(5-4)前記基準信号は、前記搬送周波数を跨った状態で、前記搬送周波数の高周波数側又は低周波数側のいずれか一方に偏っており、前記演算部は、前記直交復調器から出力された、前記基準信号を直交復調した信号において前記基準信号に対応する帯域の信号から、前記イメージ成分が重畳されている部分を除去した信号を基準信号レプリカとして生成し、前記演算用信号は、前記基準信号を直交復調した信号から、前記イメージ成分の重畳部分が除去された信号であるのが好ましい。基準信号が搬送周波数を跨っている場合であっても、搬送周波数の高周波数側又は低周波数側のいずれか一方に偏っていれば、元々の基準信号の部分のうちの少なくとも一部に、イメージ成分が重畳されていない部分が確保される。イメージ成分が重畳されていない部分を基準信号レプリカとして用いることで、イメージ成分の推定が可能である。
(5-5)前記信号発生器は、位相比較器の出力信号に基づく制御電圧によって電圧制御発振器の発振周波数が決定される位相ロックループ方式の信号発生器であるとともに、時間変動する外部信号を発生する外部信号発生部を備え、前記制御電圧は、前記位相比較器の出力信号に前記外部信号が重畳されたものであるのが好ましい。位相比較器の出力信号に、時間変動する外部信号を重畳させることで、周波数が時間的に変化する信号を生成することができる。そして、周波数が時間的に変化する信号は、時間を無視すれば、周波数帯域幅を有する信号であるとみなすことができる。つまり、上記の信号発生器によれば、帯域幅を有する信号を容易に生成できる。
(5-6)前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部を更に備えているのが好ましい。この場合、第1モードでは、周波数の時間変動によって帯域幅を有する信号を生成でき、第2モードでは、一定の周波数の信号を生成できる。
(5-7)無線通信装置は、前記(5-1)記載の前記補償装置を備えた無線通信装置である。
(5-8)さらに他の観点からみた無線通信装置は、前記(5-5)記載の前記補償装置を備えた無線通信装置であって、前記位相比較器の出力信号に前記外部信号が重畳された制御電圧が前記電圧制御発振器に与えられる第1モードと、前記位相比較器の出力信号に前記外部信号が重畳されていない制御電圧が前記電圧制御発振器に与えられる第2モードと、を切り替える切替部と、前記第2モードの前記信号発生器から出力された単一周波数の信号を、前記受信機に与えて前記受信機の利得を測定する測定部と、を更に備えている無線通信装置である。
 1:通信装置(受信機)、2:増幅器、3:可変アッテネータ、4:周波数変換器、5:直交復調器、5a:発振器、5b:移相器、5c,5d:乗算器、6a,6b:ADC、7:直交復調補償部、7a:ローカルリーク除去部、7b:イメージ成分除去部、7c:非対称等化器(遅延部)、8:利得補償部、9:制御部、10:信号発生器、11:スイッチ部、12:検波器、13:温度センサ、21:外部信号発生器、22:位相比較器、23:チャージポンプ回路、24:ローパスフィルタ、25:電圧制御発振器、26:分周器、28:入力ライン、30:非反転増幅器、30a:可変抵抗、30b:スイッチ、30c:コンデンサ、31:直交復調補償演算部、32:ローカルリーク演算部、33:イメージ成分演算部、34:利得補償演算部(測定部)、35:電力計算部、35:受信電力計算部、36:検波器出力校正部、37:ゲイン計算部、38:演算器、51a,51b:増幅器、53a:第1LPF(第1フィルタ)、53b:第2LPF(第2フィルタ)、71:第1遅延処理部、72:第2遅延処理部

Claims (7)

  1.  直交復調信号中のイメージ成分を除去する補償処理を行う補償装置であって、
     I信号及びQ信号を有する前記直交復調信号の補償を行う直交復調補償部を備え、
     前記直交復調補償部は、前記I信号に対するフィルタ処理を行う第1フィルタの周波数特性と、前記Q信号に対するフィルタ処理を行う第2フィルタの周波数特性と、の特性差を補償する補償処理を行うよう構成されている
     補償装置。
  2.  前記直交復調補償部が行う前記補償処理は、前記直交復調信号を出力する直交復調器によって生じたイメージ成分を除去するとともに、前記特性差を補償する処理である
     請求項1記載の補償装置。
  3.  前記第1フィルタ及び前記第2フィルタは、それぞれ、アナログフィルタであり、
     前記直交復調補償部は、前記第1フィルタ及び前記第2フィルタから出力されたアナログの前記I信号及び前記Q信号がデジタルに変換された信号を受け付けて、デジタル信号処理によって、前記補償処理を行うよう構成されている
     請求項1又は2記載の補償装置
  4.  前記直交復調補償部は、前記I信号及びQ信号の少なくともいずれかに対する遅延処理を行う遅延部を有し、
     前記遅延部は、前記第1フィルタによって生じる群遅延と、前記第2フィルタによって生じる群遅延と、の間の群遅延差を抑制する
     請求項1~3のいずれか1項に記載の補償装置。
  5.  前記遅延部は、
      前記I信号及びQ信号のうちの一方の信号に対して遅延処理を行う第1遅延処理部と、前記I信号及びQ信号のうちの他方の信号に対して遅延処理を行う第2遅延処理部と、を備え、
     前記第1遅延処理部は、前記一方の信号に所定の遅延量の遅延を生じさせるよう構成され、
     前記第2遅延処理部は、前記第1遅延処理部による前記所定の遅延量よりも小さい遅延量の遅延を生じさせる第1処理と、前記第1遅延処理部による前記所定の遅延量よりも大きい遅延量の遅延を生じさせる第2処理と、を実行可能に構成されている
     請求項4記載の補償装置。
  6.  前記第1フィルタ及び前記第2フィルタの次数をNとした場合に、
     前記第2遅延処理部の次数は、2N以下に設定されている
     請求項5記載の補償装置。
  7.  請求項1記載の前記補償装置を備えた無線通信装置。
PCT/JP2013/072434 2012-09-25 2013-08-22 補償装置及び無線通信装置 WO2014050382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/425,859 US9231634B2 (en) 2012-09-25 2013-08-22 Compensation apparatus and wireless communication equipment
EP13840521.2A EP2903232B1 (en) 2012-09-25 2013-08-22 Compensation device, and wireless communication device
IN2078DEN2015 IN2015DN02078A (ja) 2012-09-25 2015-03-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210799A JP5935631B2 (ja) 2012-09-25 2012-09-25 補償装置及び無線通信装置
JP2012-210799 2012-09-25

Publications (1)

Publication Number Publication Date
WO2014050382A1 true WO2014050382A1 (ja) 2014-04-03

Family

ID=50387791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072434 WO2014050382A1 (ja) 2012-09-25 2013-08-22 補償装置及び無線通信装置

Country Status (5)

Country Link
US (1) US9231634B2 (ja)
EP (1) EP2903232B1 (ja)
JP (1) JP5935631B2 (ja)
IN (1) IN2015DN02078A (ja)
WO (1) WO2014050382A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008014B2 (en) * 2018-08-14 2021-05-18 Ford Global Technologies, Llc Methods and apparatus to determine vehicle weight information based on ride height
US11072323B2 (en) * 2018-02-26 2021-07-27 Audi Ag Method for operating an onboard network of a hybrid motor vehicle and hybrid motor vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201700031177A1 (it) * 2017-03-21 2018-09-21 St Microelectronics Srl Demodulatore compensato per segnali modulati in fase e quadratura, giroscopio mems includente il medesimo e metodo di demodulazione
US11012273B1 (en) * 2019-12-31 2021-05-18 Hughes Network Systems, Llc Compensating for frequency-dependent I-Q phase imbalance
JP7495250B2 (ja) 2020-03-12 2024-06-04 古河電気工業株式会社 復調装置および復調方法
CN114063699B (zh) * 2020-07-31 2022-11-25 星宸科技股份有限公司 直流失调校准***及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199039A (ja) * 2000-06-23 2002-07-12 Ntt Docomo Inc 通信システムにおける受信方法及び受信機
WO2004082232A1 (en) * 2003-03-12 2004-09-23 Koninklijke Philips Electronics N.V. Transceiver with i/q mismatch compensation scheme
JP2005197968A (ja) * 2004-01-06 2005-07-21 Fujitsu Ltd 信号処理回路並びに直交復調装置およびその誤差推定方法
JP2007184784A (ja) * 2006-01-06 2007-07-19 Hitachi Kokusai Electric Inc 無線送信機
JP2010130630A (ja) 2008-12-01 2010-06-10 Sumitomo Electric Ind Ltd 受信機とその受信方法及び処理装置
JP2010541486A (ja) * 2007-10-01 2010-12-24 マックス リニアー、インコーポレイテッド I/qキャリブレーション技術

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987815B2 (en) 2000-06-23 2006-01-17 Ntt Docomo, Inc. Receive method and receiver in communication system
JP4457484B2 (ja) * 2000-10-30 2010-04-28 パナソニック株式会社 無線装置
TWI226154B (en) * 2003-01-20 2005-01-01 Mediatek Inc Method and related apparatus for erasing image cross talk in a low-IF receiver
JP4116591B2 (ja) * 2004-06-04 2008-07-09 株式会社東芝 ディジタル受信機および受信方法
US7382297B1 (en) * 2005-12-08 2008-06-03 Marvell International Ltd. Transmitter I/Q mismatch calibration for low IF design systems
JP2008028530A (ja) * 2006-07-19 2008-02-07 Fujitsu Ltd ばらつき補正回路を備えた無線受信機
JP2009206555A (ja) * 2008-02-26 2009-09-10 Nsc Co Ltd 受信機
WO2010073720A1 (ja) * 2008-12-26 2010-07-01 日本電気株式会社 受信装置、イメージ信号の減衰方法及びミスマッチ補償方法
US20110110790A1 (en) 2009-11-10 2011-05-12 General Electric Company Heat shield
US8306103B2 (en) * 2009-12-07 2012-11-06 Csr Technology Inc. Systems and methods providing in-phase and quadrature equalization
WO2011077618A1 (ja) * 2009-12-21 2011-06-30 日本電気株式会社 受信機およびイメージ除去比測定方法
JP2011163374A (ja) 2010-02-05 2011-08-25 Nabtesco Corp 減速装置
US8442171B2 (en) * 2010-10-07 2013-05-14 Maxim Integrated Products, Inc. Digital correction of analog polyphase filters
WO2012153373A1 (ja) * 2011-05-10 2012-11-15 パナソニック株式会社 振幅・直交度誤差補償装置
JP5637065B2 (ja) * 2011-05-13 2014-12-10 住友電気工業株式会社 増幅回路及び無線通信装置
WO2013015279A1 (ja) * 2011-07-26 2013-01-31 住友電気工業株式会社 補償装置、信号発生器及び無線通信装置
US9106502B2 (en) * 2012-11-19 2015-08-11 Intel Corporation Apparatus, system and method of in-phase/quadrature (I/Q) imbalance compensation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199039A (ja) * 2000-06-23 2002-07-12 Ntt Docomo Inc 通信システムにおける受信方法及び受信機
WO2004082232A1 (en) * 2003-03-12 2004-09-23 Koninklijke Philips Electronics N.V. Transceiver with i/q mismatch compensation scheme
JP2005197968A (ja) * 2004-01-06 2005-07-21 Fujitsu Ltd 信号処理回路並びに直交復調装置およびその誤差推定方法
JP2007184784A (ja) * 2006-01-06 2007-07-19 Hitachi Kokusai Electric Inc 無線送信機
JP2010541486A (ja) * 2007-10-01 2010-12-24 マックス リニアー、インコーポレイテッド I/qキャリブレーション技術
JP2010130630A (ja) 2008-12-01 2010-06-10 Sumitomo Electric Ind Ltd 受信機とその受信方法及び処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072323B2 (en) * 2018-02-26 2021-07-27 Audi Ag Method for operating an onboard network of a hybrid motor vehicle and hybrid motor vehicle
US11008014B2 (en) * 2018-08-14 2021-05-18 Ford Global Technologies, Llc Methods and apparatus to determine vehicle weight information based on ride height

Also Published As

Publication number Publication date
EP2903232B1 (en) 2019-05-22
IN2015DN02078A (ja) 2015-08-14
US20150222309A1 (en) 2015-08-06
JP5935631B2 (ja) 2016-06-15
EP2903232A4 (en) 2016-05-11
US9231634B2 (en) 2016-01-05
JP2014068116A (ja) 2014-04-17
EP2903232A1 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5846204B2 (ja) 補償装置、信号発生器及び無線通信装置
US8396173B2 (en) I/Q calibration techniques
JP5935631B2 (ja) 補償装置及び無線通信装置
EP2273676B1 (en) Filter shaping using a signal-cancellation function
JP5034319B2 (ja) 歪補償装置及び歪補償方法
US10333765B2 (en) Method and system for I/Q mismatch calibration and compensation for wideband communication receivers
US20110189970A1 (en) Receiving apparatus and image rejection method
JP2015154364A (ja) 歪補償装置、無線送信装置及び歪補償方法
WO2011086640A1 (ja) 送信装置、無線通信装置及び送信方法
US20090156143A1 (en) Power control loop, transmitter with the power control loop and method for controlling output power of a transmitter device
JP2008172544A (ja) ダイオードリニアライザを用いた歪補償回路
US7373131B2 (en) Signal processing method and signal processing apparatus
JP2010021889A (ja) 受信装置
KR101980862B1 (ko) 트랜시버 내 국부 발진기의 위상 동기화를 위한 장치 및 방법
JP5591853B2 (ja) 直交誤差補償回路
US10862729B1 (en) Systems and methods for digital correction with selective enabling in low intermediate frequency (IF) receivers
JP5618863B2 (ja) 無線受信装置
JP2009124747A (ja) Fm復調器および受信機
JP2010226216A (ja) 受信機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840521

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14425859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013840521

Country of ref document: EP