WO2014045491A1 - 配線基板及びその製造方法 - Google Patents

配線基板及びその製造方法 Download PDF

Info

Publication number
WO2014045491A1
WO2014045491A1 PCT/JP2013/003137 JP2013003137W WO2014045491A1 WO 2014045491 A1 WO2014045491 A1 WO 2014045491A1 JP 2013003137 W JP2013003137 W JP 2013003137W WO 2014045491 A1 WO2014045491 A1 WO 2014045491A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection terminal
layer
solder resist
wiring board
region
Prior art date
Application number
PCT/JP2013/003137
Other languages
English (en)
French (fr)
Inventor
貴広 林
永井 誠
聖二 森
智弘 西田
若園 誠
伊藤 達也
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201380049261.6A priority Critical patent/CN104662655B/zh
Priority to EP13839334.3A priority patent/EP2899751B1/en
Priority to US14/417,751 priority patent/US9516751B2/en
Priority to KR1020157009516A priority patent/KR101713458B1/ko
Publication of WO2014045491A1 publication Critical patent/WO2014045491A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/2024Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure of the already developed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16237Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09409Multiple rows of pads, lands, terminals or dummy patterns; Multiple rows of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09427Special relation between the location or dimension of a pad or land and the location or dimension of a terminal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09845Stepped hole, via, edge, bump or conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/099Coating over pads, e.g. solder resist partly over pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/058Additional resists used for the same purpose but in different areas, i.e. not stacked
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0594Insulating resist or coating with special shaped edges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits

Definitions

  • the present invention relates to a wiring board having a plurality of connection terminal portions for flip-chip mounting a semiconductor chip and a method for manufacturing the same.
  • connection terminals are arranged on the bottom surface of a semiconductor chip, and each connection terminal of the semiconductor chip is connected to a plurality of connection terminal portions formed on a wiring board in the form of a flip chip.
  • connection terminal portion of the wiring board is made of a conductor layer mainly composed of copper, and the connection terminal on the semiconductor chip side is connected via a solder bump or the like.
  • this wiring board when the interval between adjacent connection terminal portions becomes narrow, there is a concern that when semiconductor chips are connected, solder flows out to the adjacent terminal portions and wiring, and problems such as short circuit between terminals occur.
  • a wiring board having a resist pattern that divides wiring and terminal portions has been proposed (see, for example, Patent Document 1).
  • a first solder resist layer having a first opening in which a part of a solder bump is embedded, and a second opening provided on the solder resist layer through which the solder bump penetrates are provided.
  • the second solder resist layer is formed in a lattice shape so as to surround each of the solder bumps on the connection terminal portions arranged in a staggered manner. Providing the second solder resist layer prevents the solder from flowing out when the semiconductor chip is connected. That is, the second solder resist layer plays the role of a dam for preventing solder outflow.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a wiring board having excellent connection reliability with a semiconductor chip. Another object is to provide a method of manufacturing a wiring board that can manufacture a wiring board having excellent connection reliability with a semiconductor chip.
  • solder resist layer including a connection terminal portion provided in a mounting region of the semiconductor chip for flip chip mounting, a solder resist layer being provided as the insulating layer of the outermost layer of the stacked body
  • the connection terminal portion of the semiconductor chip is connected to the connection region to be connected via solder, and in a planar direction from the connection region.
  • the solder resist layer is formed integrally with the side surface covering portion that covers the side surface of the connection terminal portion, and the side surface covering portion, and the connection terminal There is a wiring substrate characterized by having a said connection area and protruding from the convex wall portion to intersect at. *
  • the convex wall portion is formed integrally with the side surface covering portion that covers the side surface of the connection terminal portion, and the convex wall portion is connected to the connection terminal portion. Projecting to intersect the area.
  • the convex wall portion is formed integrally with the side surface covering portion, sufficient strength can be secured. Therefore, it is possible to avoid the problem that the convex wall portion is peeled off.
  • the convex wall portion functions as a solder dam, so that the solder in the connection region is prevented from flowing out into the wiring region, and the solder in the connection region is securely held. Therefore, connection reliability with the semiconductor chip in the wiring board can be improved.
  • the wiring region may be extended on both sides in the planar direction of the connection region, or the wiring region may be extended only on one side of the connection region in the planar direction.
  • connection terminal portions are arranged along the outer periphery thereof, and the plurality of connection terminal portions are exposed through the openings of the solder resist layer. It may extend so as to intersect with a plurality of wiring regions.
  • the convex wall portion is formed, sufficient strength can be secured, so that the convex wall portion can function as a solder dam. Therefore, by providing the convex wall portion, the solder in each connection region can be reliably held, and the connection reliability with the semiconductor chip in the wiring board can be improved.
  • the convex wall portion may be formed integrally with the inner wall surface of the solder resist layer that forms the opening. If it does in this way, since the intensity
  • the width of the convex wall portion may be 5 ⁇ m or more and 50 ⁇ m or less. Even when the convex wall portion in the solder resist layer is miniaturized as described above, the convex wall portion is formed integrally with the side surface covering portion, so that sufficient strength can be ensured.
  • the terminal pitch of the plurality of connection terminal portions formed on the wiring board may be 80 ⁇ m or less, and when the density is further increased, the terminal pitch may be 40 ⁇ m or less. Good.
  • the terminal pitch is thus narrowed to increase the density of the wiring board, the area of the connection region is reduced and the amount of solder used is reduced.
  • the solder can be reliably held in the connection region, so that the connection reliability with the semiconductor chip can be sufficiently ensured.
  • connection terminal portions may be arranged so that the extending directions of the wiring regions are parallel to each other.
  • the connection area is provided at a position shifted in a direction perpendicular to the arrangement direction (extension direction of the wiring area) so that the position of the connection area does not overlap with the arrangement direction. Also good. If it does in this way, it will become possible to narrow the terminal pitch of a plurality of connecting terminal parts, and it can aim at densification of a wiring board.
  • Examples of the wiring board of means 1 include a ceramic wiring board using a ceramic insulating layer as an insulating layer and an organic wiring board using a resin insulating layer as an insulating layer.
  • the wiring board is an organic wiring board, it is possible to increase the density of the wiring, which is a preferable form in adopting the configuration of the present invention.
  • the resin insulating layer may be formed using a build-up material mainly composed of a thermosetting resin.
  • the material for forming the resin insulating layer include thermosetting resins such as epoxy resins, phenol resins, urethane resins, silicone resins, and polyimide resins.
  • thermosetting resins such as epoxy resins, phenol resins, urethane resins, silicone resins, and polyimide resins.
  • composite materials of these resins and organic fibers such as glass fibers (glass woven fabrics and glass nonwoven fabrics) and polyamide fibers, or three-dimensional network fluorine-based resin base materials such as continuous porous PTFE, epoxy resins, etc.
  • a resin-resin composite material impregnated with a thermosetting resin may be used.
  • the conductor layer in the organic wiring board is mainly composed of copper.
  • it is formed by a known method such as a subtractive method, a semi-additive method, or a full additive method. Specifically, for example, techniques such as etching of copper foil, electroless copper plating, or electrolytic copper plating are applied.
  • a conductor layer can be formed by etching after forming a thin film by a technique such as sputtering or CVD, or a conductor layer can be formed by printing a conductive paste or the like.
  • Examples of the semiconductor chip include an IC chip used as a computer microprocessor, an IC chip such as a DRAM (Dynamic Random Access Memory) and an SRAM (Static Random Access Memory). *
  • the conductor layer as the outermost layer of the laminate has the following structure: Including a connection terminal portion provided in the mounting area of the semiconductor chip for flip-chip mounting of the semiconductor chip, a solder resist layer is provided as the insulating layer of the outermost layer of the laminate, and is formed on the solder resist layer
  • a step of forming the outermost conductor layer in the multilayer body, wherein the connection terminal of the semiconductor chip is soldered A conductor layer forming step of forming the connection terminal portion having a connection region to be connected via a wiring region extending from the connection region in a planar direction, and the solder resist layer
  • the resin insulating material having photosensitivity is arranged so as to cover the side surface and the upper surface of the connection terminal portion, and the opening is formed by
  • a side surface covering portion that covers the side surface of the connection terminal portion within the opening, and a convex shape that is integrally formed with the side surface covering portion and protrudes so as to intersect the connection region in the connection terminal portion.
  • the side surface covering portion that covers the side surface of the connection terminal portion is formed in the opening, and the protrusion protruding so as to intersect the connection region in the connection terminal portion.
  • the wall portion is formed integrally with the side surface covering portion.
  • the resin insulating material that becomes the solder resist layer is an insulating film, and in the solder resist layer forming step, after the insulating film is placed on the connection terminal portion and pressed in the thickness direction of the film to ensure surface flatness, Exposure and development may be performed. If it does in this way, the flatness of the surface of a convex-shaped wall part or a side surface covering part can be ensured, and the connection reliability of a wiring board can be improved.
  • the top view which shows the organic wiring board of one embodiment.
  • the expanded sectional view which shows the principal part of the organic wiring board of one embodiment.
  • the enlarged plan view which shows each connection terminal part, side surface covering part, and convex wall part in an opening part.
  • the expanded sectional view which shows each connection terminal part and a convex-shaped wall part.
  • the expanded sectional view which shows a side surface covering part and a convex-shaped wall part.
  • Explanatory drawing which shows the manufacturing method of the organic wiring board of one embodiment.
  • Explanatory drawing which shows the manufacturing method of the organic wiring board of one embodiment.
  • Explanatory drawing which shows the manufacturing method of the organic wiring board of one embodiment.
  • Explanatory drawing which shows the manufacturing method of the organic wiring board of one embodiment.
  • the expanded sectional view which shows the convex-shaped wall part in another embodiment.
  • the expanded sectional view which shows the convex-shaped wall part in another embodiment.
  • the expanded sectional view which shows the convex-shaped wall part which shows the convex-shaped wall part in another embodiment.
  • FIG. 1 is a plan view of an organic wiring board according to the present embodiment
  • FIG. 2 is an enlarged cross-sectional view showing a main part of the organic wiring board.
  • the organic wiring substrate 10 of the present embodiment has a substrate main surface 11 to be a semiconductor chip mounting surface and a substrate back surface 12 on the opposite side.
  • the organic wiring substrate 10 includes a rectangular plate-shaped core substrate 13, a first buildup layer 31 formed on the core main surface 14 (upper surface in FIG. 2) of the core substrate 13, and the core substrate 13.
  • the second buildup layer 32 is formed on the core back surface 15 (the lower surface in FIG. 2).
  • the core substrate 13 of the present embodiment is made of, for example, a resin insulating material (glass epoxy material) obtained by impregnating a glass cloth as a reinforcing material with an epoxy resin.
  • a plurality of through-hole conductors 16 are formed in the core substrate 13 so as to penetrate the core main surface 14 and the core back surface 15.
  • the inside of the through-hole conductor 16 is filled with a closing body 17 such as an epoxy resin.
  • a conductor layer 19 made of copper is patterned on the core main surface 14 and the core back surface 15 of the core substrate 13, and each conductor layer 19 is electrically connected to the through-hole conductor 16. *
  • the first buildup layer 31 formed on the core main surface 14 of the core substrate 13 includes a plurality of resin insulating layers 21 and 22 (insulating layers) made of thermosetting resin (epoxy resin) and a plurality of copper made of copper.
  • This is a laminate having a structure in which the conductor layer 24 is laminated.
  • the outermost conductor layer 24 includes a plurality of connection terminal portions 41 arranged along the outer periphery of the semiconductor chip mounting region R1 for flip-chip mounting a semiconductor chip (not shown). Contains.
  • a solder resist layer 25 is provided as the outermost insulating layer in the first buildup layer 31.
  • a plurality of slit-like openings 43 are formed in the solder resist layer 25 at positions corresponding to the four sides of the semiconductor chip mounting region R1.
  • a plurality of connection terminal portions 41 are formed in the opening 43 of the solder resist layer 25. *
  • connection terminal portions 41 are provided on the upper surface of the resin insulating layer 22.
  • via holes 33 and filled via conductors 34 are formed in the resin insulating layers 21 and 22, respectively. Each via conductor 34 is electrically connected to each conductor layer 19, 24 and connection terminal portion 41.
  • connection terminal having a Cu pillar structure As the semiconductor chip mounted on the wiring substrate 10 of the present embodiment, for example, one having a connection terminal having a Cu pillar structure is used. In addition to the Cu pillar structure, a semiconductor chip having connection terminals with an Au plating bump structure or an Au stud structure may be flip-chip mounted. *
  • the second buildup layer 32 formed on the core back surface 15 of the core substrate 13 has substantially the same structure as the first buildup layer 31 described above. That is, the second buildup layer 32 has a structure in which the resin insulating layers 26 and 27 and the conductor layer 24 are laminated. In the second buildup layer 32, a plurality of external connection terminals 45 for connection to a mother board (not shown) are formed as the outermost conductive layer 24. Also, via holes 33 and via conductors 34 are formed in the resin insulating layers 26 and 27. Each via conductor 34 is electrically connected to the conductor layers 19 and 24 and the external connection terminal 45. Further, a solder resist layer 28 is provided as the outermost layer in the second buildup layer 32.
  • An opening 47 for exposing the external connection terminal 45 is provided at a predetermined location of the solder resist layer 28.
  • the lower surface exposed in the opening 47 is covered with a plating layer 48 (for example, a tin plating layer).
  • a plurality of solder bumps 49 that can be electrically connected to a mother board (not shown) are disposed on the lower surface of the external connection terminal 45.
  • the organic wiring board 10 is mounted on a mother board (not shown) by the solder bumps 49. *
  • connection terminal portion 41 formed in the first buildup layer 31 on the substrate main surface 11 side will be described in detail.
  • each connection terminal portion 41 includes a connection region 51 (a region indicated by a dotted circle in FIG. 3) to which the connection terminal of the semiconductor chip is to be connected via solder. And a wiring region 52 extending in a planar direction from both sides (upper and lower sides in FIG. 3) of the connection region 51.
  • Each connection terminal portion 41 (connection region 51 and wiring region 52) is mainly composed of copper, and a plating layer 53 (for example, a tin plating layer) is formed on the surface thereof.
  • the plating layer 53 of the connection terminal portion 41 and the plating layer 48 of the external connection terminal 45 described above include plating including at least one of a nickel plating layer, a palladium plating layer, and a gold plating layer in addition to the tin plating layer. It may be a layer.
  • the surface of the connection terminal portion 41 and the external connection terminal 45 may be subjected to OSP (Organic Solderability Preservative) treatment for rust prevention or may be subjected to solder coating treatment. *
  • OSP Organic Solderability Preservative
  • connection terminal portions 41 arranged in the openings 43 of the solder resist layer 25 the wiring regions 52 are provided so that the extending directions are parallel to each other, and the connection regions 51 are staggered. It is arranged at the position shifted to. That is, in the connection terminal portions 41 adjacent to each other in the arrangement direction, each connection area 51 is shifted to a position perpendicular to the arrangement direction (extension direction of the wiring area 52) so that the position of the connection area 51 does not overlap the arrangement direction. Is arranged.
  • the connection terminal portions 41 are formed in this way, the terminal pitch of each connection terminal portion 41 can be reduced.
  • the terminal pitch of this Embodiment is 40 micrometers, for example. *
  • the solder resist layer 25 includes, in the opening 43, a side surface covering portion 55 that covers the side surface of the connection terminal portion 41, and a convex wall portion 56 that protrudes so as to intersect the connection region 51 in the connection terminal portion 41.
  • the convex wall portion 56 is provided linearly along the longitudinal direction of the opening 43 so as to divide the central portion of the opening 43 in the short direction.
  • the convex wall portion 56 is formed integrally with the side surface covering portion 55 (see FIGS. 4 and 5). Further, the convex wall portion 56 is formed integrally with the inner wall surface 58 (see FIG. 3) of the solder resist layer 25 that forms the opening 43.
  • FIG. 4 is a cross-sectional view of the convex wall portion 56 shown in FIG. 3 cut along its longitudinal direction.
  • FIG. 5 is a cross-sectional view of the convex wall portion 56 perpendicular to the longitudinal direction (short direction).
  • FIG. 3 and FIG. 4 the convex wall portion 56 has a width of about 15 ⁇ m and extends so as to intersect the plurality of wiring regions 52 at a right angle.
  • the convex wall portion 56 serves as a solder dam that prevents the solder from flowing out from the connection region 51 to the wiring region 52 in each connection terminal portion 41.
  • the convex wall portion 56 is formed to have the same height as the height of the peripheral portion of the opening 43 that exposes the connection terminal portion 41 (see FIG. 5). *
  • a copper clad laminate in which a copper foil is pasted on both sides of a substrate made of glass epoxy is prepared. And drilling is performed using a drill machine, and the through-hole 62 (refer FIG. 6) which penetrates the front and back of the copper clad laminated board 61 is previously formed in the predetermined position. Then, the through-hole conductor 16 is formed in the through hole 62 by performing electroless copper plating and electrolytic copper plating on the inner surface of the through hole 62 of the copper-clad laminate 61.
  • the cavity of the through-hole conductor 16 is filled with an insulating resin material (epoxy resin) to form the closing body 17. Furthermore, the copper foil of the copper clad laminate 61 and the copper plating layer formed on the copper foil are patterned by, for example, a subtractive method. As a result, as shown in FIG. 7, the core substrate 13 on which the conductor layer 19 and the through-hole conductor 16 are formed is obtained. *
  • the first build-up layer 31 is formed on the core main surface 14 of the core substrate 13, and the second build-up layer 32 is also formed on the core back surface 15 of the core substrate 13.
  • sheet-like resin insulation layers 21 and 26 made of epoxy resin are disposed on the core main surface 14 and the core back surface 15 of the core substrate 13, and the resin insulation layers 21 and 26 are attached.
  • a via hole 33 is formed at a predetermined position of the resin insulating layers 21 and 26 by performing laser processing using, for example, an excimer laser, a UV laser, a CO 2 laser, or the like (see FIG. 8).
  • a desmear process is performed to remove smear in each via hole 33 using an etching solution such as a potassium permanganate solution.
  • an etchant for example it may perform processing of plasma ashing using O 2 plasma.
  • via conductors 34 are formed in the via holes 33 by performing electroless copper plating and electrolytic copper plating according to a conventionally known method. Further, the conductor layer 24 is patterned on the resin insulating layers 21 and 26 by performing etching by a conventionally known method (for example, semi-additive method) (see FIG. 9).
  • the other resin insulation layers 22 and 27 and the conductor layer 24 are also formed by the same method as the resin insulation layers 21 and 26 and the conductor layer 24 described above, and are laminated on the resin insulation layers 21 and 26.
  • a plurality of connection terminal portions 41 each having a connection region 51 and a wiring region 52 are formed as the conductor layer 24 on the resin insulating layer 22 (conductor layer forming step).
  • a plurality of external connection terminals 45 are formed as the conductor layer 24 on the resin insulating layer 27 (see FIG. 10). *
  • a solder resist layer forming step is performed to form the solder resist layer 25 of the first buildup layer 31. More specifically, first, on the resin insulating layer 22, a photosensitive insulating film 71 (for example, a film made of a resin insulating material such as a photosensitive epoxy resin) serving as the solder resist layer 25 is attached to the side surface of the connection terminal portion 41 and Affixed so as to cover the upper surface (see FIG. 11). And the insulating film 71 is pressed in the thickness direction in order to ensure the flatness of the surface. Thereafter, as shown in FIG.
  • a photosensitive insulating film 71 for example, a film made of a resin insulating material such as a photosensitive epoxy resin
  • a mask 72 is arranged on the insulating film 71, and an area around the opening 43 and an area to be the convex wall part 56 are exposed through the mask 72 and then developed. I do.
  • the opening 43 is formed to expose the surface of the connection terminal portion 41, and the convex shape is integrally connected to the side surface covering portion 55.
  • a wall 56 is formed. Further, the portion of the side surface covering portion 55 remaining between the connection terminal portions 41 is exposed.
  • the solder resist layer 25 having the side surface covering portion 55 and the convex wall portion 56 is formed in the opening portion 43 by performing a curing process using heat or ultraviolet rays. (See FIG. 13). In addition, you may perform only the hardening process, without performing the part of the side surface coating
  • solder resist layer 28 of the second buildup layer 32 is also exposed and developed in a state where a predetermined mask is arranged, and after patterning the opening 47 in the solder resist layer 28, a curing process is performed (see FIG. 13).
  • the plating layer 53 is formed by performing electroless tin plating with respect to the surface (upper surface) of the connection terminal part 41 exposed from the opening part 43.
  • a plating layer 48 is formed on the surface (lower surface) of the external connection terminal 45 exposed from the opening 47 by this electroless tin plating.
  • the organic wiring substrate 10 shown in FIGS. 1 and 2 is manufactured through the above steps.
  • solder ball 49 is formed on each external connection terminal 45 by performing a reflow process in a state where the solder ball is disposed on each external connection terminal 45 using a solder ball mounting device (not shown) and heating the solder ball. You can also *
  • the convex wall portion 56 is formed integrally with the side surface covering portion 55 that covers the side surface of the connection terminal portion 41 in the opening 43 of the solder resist layer 25. ing.
  • the strength of the convex wall portion 56 can be sufficiently secured, and the problem that the convex wall portion 56 is peeled off can be avoided.
  • the convex wall portion 56 protrudes so as to intersect with the connection region 51 in the connection terminal portion 41, the convex wall portion 56 functions as a solder dam when the semiconductor chip is mounted. As a result, the problem that the solder in the connection region 51 flows out to the wiring region 52 is prevented, and the solder in the connection region 51 is securely held. Therefore, the connection reliability with the semiconductor chip in the organic wiring board 10 can be improved.
  • the convex wall portion 56 is formed integrally with the inner wall surface 58 of the solder resist layer 25 that forms the opening 43. In this way, the strength of the convex wall portion 56 is increased, so that the problem that the convex wall portion 56 is peeled off can be reliably avoided.
  • connection terminal portions 41 are arranged so that the extending directions of the wiring regions 52 are parallel to each other. Further, in the connection terminal portions 41 adjacent to each other in the arrangement direction, the position of the connection region 51 is shifted in a direction orthogonal to the arrangement direction (extending direction of the wiring region 52) so as not to overlap with the arrangement direction of each connection terminal portion 41. A connection region 51 is provided at the position. If it does in this way, the terminal pitch of the some connecting terminal part 41 can be narrowed, and the organic wiring board 10 can be densified. *
  • connection terminal portion 41 is covered with the side surface covering portion 55 of the solder resist layer 25.
  • the connection reliability of the organic wiring substrate 10 can be increased while increasing the density of the organic wiring substrate 10.
  • the convex wall portion 56 is formed in the solder resist layer 25 so as to have the same height as the peripheral portion of the opening 43, but the present invention is not limited to this. For example, it may be changed as appropriate according to the type and amount of solder used for chip connection. Specifically, as shown in FIG. 14, a convex wall portion 56A higher than the height of the peripheral portion of the opening 43 may be formed in the solder resist layer 25, and as shown in FIG. You may form the convex-shaped wall part 56B lower than the height of the surrounding part of the opening part 43. FIG. These convex wall portions 56A and 56B are also formed integrally with the side surface covering portion 55 by repeating partial exposure and development on the insulating film 71 a plurality of times stepwise in the same manner as in the above embodiment. *
  • the convex wall portion 56 ⁇ / b> A of FIG. 14 in the solder resist layer 25 is exposed and then developed to correspond to the opening 43. Make the site slightly thinner. Then, after exposing the area
  • the convex wall portions 56, 56A, and 56B are formed with a uniform width in the thickness direction, but the present invention is not limited to this.
  • a step may be provided on the base end 73 side so that the base end 73 side is wider than the tip end 74 side.
  • the convex wall portion 56C is also formed integrally with the side surface covering portion 55 by repeating partial exposure and development on the insulating film 71 a plurality of times stepwise.
  • the connection area with the side surface covering part 55 is increased by increasing the width on the base end 73 side, and the strength of the convex wall part 56C can be further increased.
  • one convex wall portion 56 is formed in the opening 43, but a plurality of convex wall portions 56 may be formed.
  • a plurality of convex wall portions 56 may be formed.
  • three convex wall portions 56 may be formed, and the connection region 51 may be sandwiched between the convex wall portions 56.
  • the connection region 51 and the wiring region 52 are partitioned by the convex wall portion 56 in each connection terminal portion 41, it is possible to more reliably prevent the solder from flowing out from the connection region 51.
  • the convex wall portion 56 is formed in a straight line so as to intersect the plurality of wiring regions 52 at right angles in the opening 43, but is not limited thereto. Absent.
  • a convex wall portion may be formed in parallel between the connection terminal portions 41.
  • a frame-like convex wall portion may be formed so as to surround each connection region 51.
  • the convex wall portion 56 may intersect at an inclined angle with respect to the plurality of wiring regions 52 of the connection terminal portion 41.
  • convex wall portions may be provided so as to be bent in a zigzag manner according to each connection region 51 arranged in a staggered manner and intersect with each wiring region 52 at an inclined angle. . Even when the resist pattern of these convex wall portions is formed, it is possible to prevent the solder from flowing out in the connection region 51. Moreover, the intensity
  • the wiring region 52 extends from both sides of the connection region 51 in each connection terminal portion 41, but the wiring region 52 extends from one side of the connection region 51. May be. Furthermore, the present invention is applied to a wiring board provided in a mixture of a connection terminal portion 41 in which a wiring region 52 extends from both sides of the connection region 51 and a connection terminal portion in which a wiring region 52 extends from one side of the connection region 51. May be embodied. *
  • the organic wiring board 10 of the said embodiment was a wiring board which has the core board
  • substrate 13 it is not limited to this, You may make this invention apply to the coreless wiring board which does not have a core. . *
  • the form of the organic wiring board 10 in the said embodiment is BGA (ball grid array), it is not limited only to BGA, For example, it is on wiring boards, such as PGA (pin grid array) and LGA (land grid array).
  • BGA ball grid array
  • PGA pin grid array
  • LGA laand grid array
  • the terminal pitch of the plurality of connection terminal portions is 80 ⁇ m or less.
  • connection terminal portions are arranged so that the extending directions of the wiring regions are parallel to each other, and in the connection terminal portions adjacent to each other in the arrangement direction, the position of the connection region is in the arrangement direction.
  • a wiring board characterized in that the connection region is provided at a position shifted in a direction orthogonal to the arrangement direction so as not to overlap.
  • the resin insulating material is an insulating film
  • the insulating film is disposed on the connection terminal portion, and the thickness of the film is ensured to ensure surface flatness.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

半導体チップとの接続信頼性の優れた配線基板を提供すること。オーガニック配線基板10の基板主面11側には、樹脂絶縁層21,22と導体層24とを積層した第1ビルドアップ層31が形成されている。第1ビルドアップ層31における最表層の導体層24は、半導体チップをフリップチップ実装するための複数の接続端子部41を含む。複数の接続端子部41は、ソルダーレジスト層25の開口部43を介して露出している。各接続端子部41は、半導体チップの接続領域51と、接続領域51から平面方向に延設された配線領域52とを有する。ソルダーレジスト層25は、開口部43内において、接続端子部41の側面を被覆する側面被覆部55と、側面被覆部55と一体的に形成され接続領域51と交差するよう突設された凸状壁部56とを有する。

Description

配線基板及びその製造方法
本発明は、半導体チップをフリップチップ実装するための複数の接続端子部を備えた配線基板及びその製造方法に関するものである。
コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(半導体チップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間のピッチも狭くなる傾向にある。一般的に半導体チップの底面には多数の接続端子が配置されており、半導体チップの各接続端子は配線基板に形成された複数の接続端子部にフリップチップの形態で接続される。 
より詳しくは、配線基板の接続端子部は、銅を主体に構成された導体層からなり、半導体チップ側の接続端子がはんだバンプ等を介して接続される。この配線基板において、隣接する接続端子部間の間隔が狭くなると、半導体チップの接続時において、はんだが隣の端子部や配線に流れ出し、端子間ショートなどの問題が発生することが懸念される。このような問題を回避する目的で、配線と端子部とを分断するようなレジストパターンを有する配線基板が提案されている(例えば、特許文献1参照)。特許文献1の配線基板では、はんだバンプの一部が埋め込まれる第1の開口部を有する第1のソルダーレジスト層と、そのソルダーレジスト層上に設けられ、はんだバンプが突き抜ける第2の開口部を有する第2のソルダーレジスト層と備えている。配線基板において、第2のソルダーレジスト層は、千鳥状に配置された接続端子部上のはんだバンプのそれぞれを囲むように格子状に形成されている。第2のソルダーレジスト層を設けることで、半導体チップの接続時におけるはんだの流出が防止される。つまり、第2のソルダーレジスト層がはんだ流出防止用のダムの役割を果たしている。
特開2008-147458号公報
ところが、特許文献1に開示されている配線基板において、接続端子部間のピッチを狭くして高密度化を図る場合には、第2のソルダーレジスト層のパターンの微細化を図る必要がある。また、第1のソルダーレジスト層と第2のソルダーレジスト層とは別々に形成されており、レジストパターンの微細化に伴い第2のソルダーレジスト層の接続面積が少なくなる。このため、第1のソルダーレジスト層と第2のソルダーレジスト層との界面強度が不十分となり、第2のソルダーレジスト層のパターンが剥がれてしまうといった問題が懸念される。 
本発明は上記の課題に鑑みてなされたものであり、その目的は、半導体チップとの接続信頼性の優れた配線基板を提供することにある。また、別の目的は、半導体チップとの接続信頼性の優れた配線基板を製造することができる配線基板の製造方法を提供することにある。
そして上記課題を解決するための手段(手段1)としては、絶縁層及び導体層がそれぞれ1層以上積層された積層体を有し、前記積層体の最表層の前記導体層は、半導体チップをフリップチップ実装するために前記半導体チップの搭載領域に設けられた接続端子部を含み、前記積層体の最表層の前記絶縁層としてソルダーレジスト層が設けられ、そのソルダーレジスト層に形成された開口部を介して前記接続端子部の表面が露出している配線基板において、前記接続端子部は、前記半導体チップの接続端子がはんだを介して接続されるべき接続領域と、前記接続領域から平面方向に延設された配線領域とを有し、前記ソルダーレジスト層は、前記接続端子部の側面を被覆する側面被覆部と、その側面被覆部と一体的に形成され、前記接続端子部における前記接続領域と交差するよう突設された凸状壁部とを有することを特徴とする配線基板がある。 
手段1に記載の発明によると、ソルダーレジスト層において、接続端子部の側面を被覆する側面被覆部と一体的に凸状壁部が形成されており、その凸状壁部は接続端子部における接続領域と交差するよう突設されている。ここで、配線基板の高密度化を図る場合、その高密度化に伴いソルダーレジスト層における凸状壁部の幅を狭くすることが必要となる。この場合でも、凸状壁部は側面被覆部と一体的に形成されるため、十分な強度を確保することができる。従って、凸状壁部が剥がれるといった問題を回避することができる。また、半導体チップの実装時には、凸状壁部がはんだダムとして機能することにより、接続領域のはんだが配線領域に流れ出すことが防止され、接続領域のはんだが確実に保持される。よって、配線基板における半導体チップとの接続信頼性を高めることができる。 
なお、配線基板の接続端子部において、接続領域の平面方向の両側に配線領域が延設されていてもよいし、接続領域の平面方向の片側のみに配線領域が延設されていてもよい。 
また、半導体チップの搭載領域には、その外周に沿って複数の接続端子部が配列され、ソルダーレジスト層の開口部を介して複数の接続端子部が露出しており、凸状壁部は、複数の配線領域と交差するよう延設されていてもよい。このように凸状壁部を形成しても十分な強度を確保することができるため、凸状壁部をはんだダムとして機能させることができる。よって、凸状壁部を設けることにより、各接続領域のはんだを確実に保持することができ、配線基板における半導体チップとの接続信頼性を高めることができる。 
凸状壁部は、開口部を形成するソルダーレジスト層の内壁面と一体的に形成されていてもよい。このようにすると、凸状壁部の強度が増すため、凸状壁部が剥がれるといった問題を確実に回避することができる。 
凸状壁部の幅は、5μm以上50μm以下であってもよい。このようにソルダーレジスト層における凸状壁部の微細化を図る場合でも、凸状壁部は側面被覆部と一体的に形成されるため、十分な強度を確保することができる。 
配線基板の高密度化を図る場合、その配線基板に形成される複数の接続端子部の端子ピッチは、80μm以下であってもよく、さらなる高密度化を図る場合には40μm以下であってもよい。このように端子ピッチを狭くして配線基板の高密度化を図る場合には、接続領域の面積が小さくなりはんだの使用量が少なくなる。この場合、本発明のように凸状壁部を形成することで、接続領域にはんだを確実に保持できるため、半導体チップとの接続信頼性を十分に確保することができる。 
さらに、配線基板において、配線領域の延設方向が互いに平行となるよう複数の接続端子部が配列されていてもよい。この場合、配列方向に隣り合う接続端子部において、接続領域の位置が配列方向に重ならないようにその配列方向と直交する方向(配線領域の延設方向)にずらした位置に接続領域を設けてもよい。このようにすると、複数の接続端子部の端子ピッチを狭くすることが可能となり、配線基板の高密度化を図ることができる。 
手段1の配線基板としては、絶縁層としてセラミック絶縁層を用いたセラミック配線基板や、絶縁層として樹脂絶縁層を用いたオーガニック配線基板を挙げることができる。特に、配線基板をオーガニック配線基板とすると、配線の高密度化を図ることができるため、本発明の構成を採用する上で好ましい形態となる。 
樹脂絶縁層は、熱硬化性樹脂を主体とするビルドアップ材を用いて形成されていてもよい。樹脂絶縁層の形成材料の具体例としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの熱硬化性樹脂が挙げられる。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料、あるいは、連続多孔質PTFE等の三次元網目状フッ素系樹脂基材にエポキシ樹脂などの熱硬化性樹脂を含浸させた樹脂-樹脂複合材料等を使用してもよい。 
オーガニック配線基板における導体層は、銅を主体として構成される。この場合、サブトラクティブ法、セミアディティブ法、フルアディティブ法などといった公知の手法によって形成される。具体的に言うと、例えば、銅箔のエッチング、無電解銅めっきあるいは電解銅めっきなどの手法が適用される。なお、スパッタやCVD等の手法により薄膜を形成した後にエッチングを行うことで導体層を形成したり、導電性ペースト等の印刷により導体層を形成したりすることも可能である。 
半導体チップとしては、コンピュータのマイクロプロセッサとして使用されるICチップ、DRAM(Dynamic Random Access Memory)やSRAM(Static Random Access Memory )などのICチップを挙げることができる。 
また、上記課題を解決するための別の手段(手段2)としては、絶縁層及び導体層がそれぞれ1層以上積層された積層体を有し、前記積層体の最表層の前記導体層は、半導体チップをフリップチップ実装するために前記半導体チップの搭載領域に設けられた接続端子部を含み、前記積層体の最表層の前記絶縁層としてソルダーレジスト層が設けられ、そのソルダーレジスト層に形成された開口部を介して前記接続端子部の表面が露出している配線基板の製造方法において、前記積層体における最表層の導体層を形成する工程であって、前記半導体チップの接続端子がはんだを介して接続されるべき接続領域と、前記接続領域から平面方向に延設された配線領域とを有する前記接続端子部を形成する導体層形成工程と、前記ソルダーレジスト層となる感光性を有する樹脂絶縁材料を前記接続端子部の側面及び上面を覆うように配置し、前記樹脂絶縁材料における部分的な露光及び現像を段階的に複数回繰り返すことにより、前記開口部を形成するとともに、その開口部内において前記接続端子部の側面を被覆する側面被覆部と、その側面被覆部と一体的に形成され、前記接続端子部における前記接続領域と交差するよう突設された凸状壁部とを有する前記ソルダーレジスト層を形成するソルダーレジスト層形成工程とを含むことを特徴とする配線基板の製造方法がある。 
手段2に記載の発明によると、ソルダーレジスト層において、開口部内には接続端子部の側面を被覆する側面被覆部が形成されるとともに、接続端子部における接続領域と交差するよう突設された凸状壁部が側面被覆部と一体的に形成される。このようにソルダーレジスト層を形成すると、凸状壁部の強度を十分に確保することができるため、凸状壁部のレジストパターンが剥がれるといった問題を回避することができる。また、半導体チップの接続端子を接続領域にはんだ接続するときには、凸状壁部がはんだダムとして機能することにより、接続領域のはんだが配線領域に流出するといった問題を回避することができる。よって、配線基板における半導体チップとの接続信頼性を高めることができる。 
ソルダーレジスト層となる樹脂絶縁材料は絶縁フィルムであり、ソルダーレジスト層形成工程では、絶縁フィルムを接続端子部の上に配置し、表面の平坦性を確保すべくフィルムの厚さ方向にプレスした後に露光及び現像を行ってもよい。このようにすると、凸状壁部や側面被覆部の表面の平坦性を確保することができ、配線基板の接続信頼性を向上させることができる。
一実施の形態のオーガニック配線基板を示す平面図。 一実施の形態のオーガニック配線基板の要部を示す拡大断面図。 開口部内における各接続端子部、側面被覆部及び凸状壁部を示す拡大平面図。 各接続端子部及び凸状壁部を示す拡大断面図。 側面被覆部及び凸状壁部を示す拡大断面図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 一実施の形態のオーガニック配線基板の製造方法を示す説明図。 別の実施の形態における凸状壁部を示す拡大断面図。 別の実施の形態における凸状壁部を示す拡大断面図。 別の実施の形態における凸状壁部を示す拡大断面図。
以下、本発明を配線基板としてのオーガニック配線基板に具体化した一実施の形態を図面に基づき詳細に説明する。図1は、本実施の形態のオーガニック配線基板の平面図であり、図2は、オーガニック配線基板の要部を示す拡大断面図である。 
図1及び図2に示されるように、本実施の形態のオーガニック配線基板10は、半導体チップ搭載面となる基板主面11とその反対側の基板裏面12とを有している。詳述すると、オーガニック配線基板10は、矩形板状のコア基板13と、コア基板13のコア主面14(図2では上面)上に形成される第1ビルドアップ層31と、コア基板13のコア裏面15(図2では下面)上に形成される第2ビルドアップ層32とからなる。 
本実施の形態のコア基板13は、例えば補強材としてのガラスクロスにエポキシ樹脂を含浸させてなる樹脂絶縁材(ガラスエポキシ材)にて構成されている。コア基板13には、複数のスルーホール導体16がコア主面14及びコア裏面15を貫通するように形成されている。なお、スルーホール導体16の内部は、例えばエポキシ樹脂などの閉塞体17で埋められている。また、コア基板13のコア主面14及びコア裏面15には、銅からなる導体層19がパターン形成されており、各導体層19は、スルーホール導体16に電気的に接続されている。 
コア基板13のコア主面14上に形成された第1ビルドアップ層31は、熱硬化性樹脂(エポキシ樹脂)からなる複数の樹脂絶縁層21,22(絶縁層)と、銅からなる複数の導体層24とを積層した構造を有する積層体である。第1ビルドアップ層31において、最表層の導体層24は、半導体チップ(図示略)をフリップチップ実装するために半導体チップの搭載領域R1の外周に沿って配置された複数の接続端子部41を含んでいる。また、第1ビルドアップ層31における最表層の絶縁層としてソルダーレジスト層25が設けられている。ソルダーレジスト層25には、半導体チップの搭載領域R1の四辺に対応する位置にスリット状の開口部43が複数形成されている。そして、ソルダーレジスト層25の開口部43内に複数の接続端子部41が形成されている。 
本実施の形態において、複数の接続端子部41は樹脂絶縁層22の上面に設けられている。また、樹脂絶縁層21,22には、それぞれビア穴33及びフィルドビア導体34が形成されている。各ビア導体34は、各導体層19,24、接続端子部41に電気的に接続される。 
本実施の形態の配線基板10に実装される半導体チップは、例えばCuピラー構造の接続端子を有するものが用いられる。なお、Cuピラー構造以外に、Auめっきバンプ構造やAuスタッド構造の接続端子を有する半導体チップをフリップチップ実装してもよい。 
コア基板13のコア裏面15上に形成された第2ビルドアップ層32は、上述した第1ビルドアップ層31とほぼ同じ構造を有している。即ち、第2ビルドアップ層32は、樹脂絶縁層26,27と、導体層24とを積層した構造を有している。第2ビルドアップ層32において、最表層の導体層24として、マザーボード(図示略)に接続するための複数の外部接続端子45が形成されている。また、樹脂絶縁層26,27にもビア穴33及びビア導体34が形成されている。各ビア導体34は、導体層19,24、外部接続端子45に電気的に接続されている。さらに、第2ビルドアップ層32における最表層にはソルダーレジスト層28が設けられている。ソルダーレジスト層28の所定箇所には、外部接続端子45を露出させるための開口部47が設けられている。また、外部接続端子45において、開口部47内にて露出する下面がめっき層48(例えば、スズめっき層)で覆われている。その外部接続端子45の下面には、図示しないマザーボードに対して電気的に接続可能な複数のはんだバンプ49が配設されている。そして、各はんだバンプ49により、オーガニック配線基板10は図示しないマザーボード上に実装される。 
次に、基板主面11側の第1ビルドアップ層31に形成される接続端子部41の具体的な構成について詳述する。 
図2及び図3に示されるように、各接続端子部41は、半導体チップの接続端子がはんだを介して接続されるべき接続領域51(図3では、点線の円で示される領域)と、接続領域51の両側(図3では上側及び下側)から平面方向に延設された配線領域52とを有する。各接続端子部41(接続領域51及び配線領域52)は、銅を主体として構成されており、それら表面上には、めっき層53(例えば、スズめっき層)が形成されている。なお、この接続端子部41のめっき層53及び上述した外部接続端子45のめっき層48は、スズめっき層以外にニッケルめっき層、パラジウムめっき層、金めっき層のうち少なくともいずれか1層を含むめっき層であってもよい。また、めっき層53,48に代えて、接続端子部41や外部接続端子45の表面に防錆用のOSP(Organic Solderability Preservative)処理を行ってもよいし、はんだコート処理を行ってもよい。 
ソルダーレジスト層25の開口部43内にて配列される複数の接続端子部41において、各配線領域52は、延設方向が互いに平行となるよう設けられており、各接続領域51は、千鳥状にずらした位置に配置されている。つまり、配列方向に隣り合う接続端子部41において、接続領域51の位置が配列方向に重ならないように配列方向に直交する方向(配線領域52の延設方向)にずらした位置に各接続領域51が配置されている。このように接続端子部41を形成すると、各接続端子部41の端子ピッチを狭くすることが可能となる。なお、本実施の形態の端子ピッチは、例えば40μmである。 
ソルダーレジスト層25は、開口部43内において、接続端子部41の側面を被覆する側面被覆部55と、接続端子部41における接続領域51と交差するよう突設された凸状壁部56とを有する。凸状壁部56は、開口部43の短手方向の中央部分を分断するようその開口部43の長手方向に沿って直線状に設けられている。本実施の形態では、ソルダーレジスト層25において、凸状壁部56は側面被覆部55と一体的に形成されている(図4及び図5参照)。さらに、凸状壁部56は、開口部43を形成するソルダーレジスト層25の内壁面58(図3参照)と一体的に形成されている。なお、図4は、図3に示す凸状壁部56をその長手方向に沿って切断した断面図であり、図5は、凸状壁部56をその長手方向と直交する方向(短手方向)に切断した断面図である。図3及び図4に示されるように、凸状壁部56は、15μm程度の幅を有し、複数の配線領域52に対して直角に交差するよう延設されている。この凸状壁部56は、各接続端子部41において接続領域51から配線領域52へのはんだの流出を防止するはんだダムの役割を果たす。本実施の実施では、ソルダーレジスト層25において、凸状壁部56は、接続端子部41を露出させる開口部43の周囲部分の高さと同じ高さとなるよう形成されている(図5参照)。 
次に、本実施の形態のオーガニック配線基板10の製造方法について述べる。 
まず、ガラスエポキシからなる基材の両面に銅箔が貼付された銅張積層板を準備する。そして、ドリル機を用いて孔あけ加工を行い、銅張積層板61の表裏面を貫通する貫通孔62(図6参照)を所定位置にあらかじめ形成しておく。そして、銅張積層板61の貫通孔62の内面に対する無電解銅めっき及び電解銅めっきを行うことで、貫通孔62内にスルーホール導体16を形成する。 
その後、スルーホール導体16の空洞部を絶縁樹脂材料(エポキシ樹脂)で穴埋めし、閉塞体17を形成する。さらに、銅張積層板61の銅箔とその銅箔上に形成された銅めっき層とを、例えばサブトラクティブ法によってパターニングする。この結果、図7に示されるように、導体層19及びスルーホール導体16が形成されたコア基板13を得る。 
そして、ビルドアップ工程を行うことで、コア基板13のコア主面14の上に第1ビルドアップ層31を形成するとともに、コア基板13のコア裏面15の上にも第2ビルドアップ層32を形成する。 
詳しくは、コア基板13のコア主面14及びコア裏面15の上に、エポキシ樹脂からなるシート状の樹脂絶縁層21,26を配置し、樹脂絶縁層21,26を貼り付ける。そして、例えばエキシマレーザーやUVレーザーやCOレーザーなどを用いてレーザー加工を施すことによって樹脂絶縁層21,26の所定の位置にビア穴33を形成する(図8参照)。次いで、過マンガン酸カリウム溶液などのエッチング液を用いて各ビア穴33内のスミアを除去するデスミア工程を行う。なお、デスミア工程としては、エッチング液を用いた処理以外に、例えばOプラズマによるプラズマアッシングの処理を行ってもよい。 
デスミア工程の後、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことで、各ビア穴33内にビア導体34を形成する。さらに、従来公知の手法(例えばセミアディティブ法)によってエッチングを行うことで、樹脂絶縁層21,26上に導体層24をパターン形成する(図9参照)。
他の樹脂絶縁層22,27及び導体層24についても、上述した樹脂絶縁層21,26及び導体層24と同様の手法によって形成し、樹脂絶縁層21,26上に積層していく。なおここで、樹脂絶縁層22上の導体層24として、接続領域51と配線領域52とを有する複数の接続端子部41が形成される(導体層形成工程)。また、樹脂絶縁層27上の導体層24として、複数の外部接続端子45が形成される(図10参照)。 
次に、ソルダーレジスト層形成工程を行い、第1ビルドアップ層31のソルダーレジスト層25を形成する。より詳しくは、先ず、樹脂絶縁層22上において、ソルダーレジスト層25となる感光性を有する絶縁フィルム71(例えば、感光性エポキシ樹脂などの樹脂絶縁材料からなるフィルム)を接続端子部41の側面及び上面を覆うように貼り付ける(図11参照)。そして、表面の平坦性を確保すべく絶縁フィルム71をその厚さ方向にプレスする。その後、図12に示されるように、絶縁フィルム71上にマスク72を配置し、そのマスク72を介して開口部43の周囲となる領域と凸状壁部56となる領域を露光した後、現像を行う。この現像によって、各接続端子部41間に側面被覆部55の部分を残しつつ、開口部43を形成して接続端子部41の表面を露出させるとともに、側面被覆部55と一体的に繋がる凸状壁部56を形成する。さらに、各接続端子部41間に残されている側面被覆部55の部分を露光する。このように、露光及び現像を繰り返した後、熱や紫外線による硬化処理を実施することにより、開口部43内にて側面被覆部55と凸状壁部56とを有するソルダーレジスト層25を形成する(図13参照)。なお、側面被覆部55の部分は露光を行わずに硬化処理だけを行っても良い。 
また、第2ビルドアップ層32のソルダーレジスト層28についても、所定のマスクを配置した状態で露光及び現像を行い、ソルダーレジスト層28に開口部47をパターニングした後、硬化処理を実施する(図13参照)。

そして、開口部43から露出している接続端子部41の表面(上面)に対し、無電解スズめっきを施すことにより、めっき層53を形成する。

また、この無電解スズめっきによって、開口部47から露出している外部接続端子45の表面(下面)にめっき層48が形成される。

以上の工程を経ることで図1及び図2に示すオーガニック配線基板10を製造する。 
その後、図示しないはんだボール搭載装置を用いて各外部接続端子45上にはんだボールを配置した状態でリフロー工程を行い、はんだボールを加熱することにより、各外部接続端子45上にはんだバンプ49を形成することもできる。 
従って、本実施の形態によれば以下の効果を得ることができる。 
(1)本実施の形態のオーガニック配線基板10では、ソルダーレジスト層25の開口部43内において、接続端子部41の側面を被覆する側面被覆部55と一体的に凸状壁部56が形成されている。このように形成すると、凸状壁部56の強度を十分に確保することができ、凸状壁部56が剥がれるといった問題を回避することができる。また、凸状壁部56は接続端子部41における接続領域51と交差するよう突設されているので、半導体チップの実装時において、凸状壁部56がはんだダムとして機能する。この結果、接続領域51のはんだが配線領域52に流出するといった問題が防止され、接続領域51のはんだが確実に保持される。よって、オーガニック配線基板10における半導体チップとの接続信頼性を高めることができる。 
(2)本実施の形態のオーガニック配線基板10では、凸状壁部56は、開口部43を形成するソルダーレジスト層25の内壁面58と一体的に形成されている。このようにすると、凸状壁部56の強度が増すため、凸状壁部56が剥がれるといった問題を確実に回避することができる 
(3)本実施の形態において、ソルダーレジスト層形成工程では、絶縁フィルム71を接続端子部41の上に配置し、表面の平坦性を確保すべく絶縁フィルム71をその厚さ方向にプレスした後に露光及び現像を行っている。このようにすると、側面被覆部55の表面や凸状壁部56の表面の平坦性を十分に確保することができ、オーガニック配線基板10の接続信頼性を向上させることができる。 
(4)本実施の形態のオーガニック配線基板10では、配線領域52の延設方向が互いに平行となるよう複数の接続端子部41が配列されている。また、配列方向に隣り合う接続端子部41において、接続領域51の位置が各接続端子部41の配列方向に重ならないようにその配列方向と直交する方向(配線領域52の延設方向)にずらした位置に接続領域51が設けられている。このようにすると、複数の接続端子部41の端子ピッチを狭くすることができ、オーガニック配線基板10の高密度化を図ることができる。 
(5)本実施の形態のオーガニック配線基板10において、接続端子部41の側面は、ソルダーレジスト層25の側面被覆部55によって被覆されている。このようにすると、幅が狭い接続端子部41を側面被覆部55により確実に保持することができるため、オーガニック配線基板10の高密度化を図りつつ、その接続信頼性を高めることができる。 
なお、本発明の実施の形態は以下のように変更してもよい。 
・上記実施の形態のオーガニック配線基板10では、ソルダーレジスト層25において凸状壁部56が開口部43の周囲部分の高さと同じ高さとなるよう形成されていたが、これに限定されるものではなく、例えばチップ接続時のはんだの種類や使用量に応じて適宜変更してもよい。具体的には、図14に示されるように、ソルダーレジスト層25において開口部43の周囲部分の高さよりも高い凸状壁部56Aを形成してもよいし、図15に示されるように、開口部43の周囲部分の高さよりも低い凸状壁部56Bを形成してもよい。これら凸状壁部56A、56Bも上記実施の形態と同様に、絶縁フィルム71における部分的な露光及び現像を段階的に複数回繰り返すことにより、側面被覆部55と一体的に形成される。 
具体的には、ソルダーレジスト層25において図14の凸状壁部56Aを形成する場合、絶縁フィルム71において開口部43の周囲となる領域を露光した後、現像を行い、開口部43に対応する部位を若干薄くする。その後、凸状壁部56Aとなる領域を露光した後、現像を行い、ソルダーレジスト層25において開口部43を形成するとともに、側面被覆部55及び凸状壁部56Aを形成する。また、ソルダーレジスト層25において図15の凸状壁部56Bを形成する場合、絶縁フィルム71において凸状壁部56Bとなる領域を露光した後、現像を行い、凸状壁部56B以外の領域を若干薄くする。その後、開口部43の周囲となる領域を露光した後、現像を行い、ソルダーレジスト層25において開口部43を形成するとともに、側面被覆部55及び凸状壁部56Bを形成する。 
・上記実施の形態のオーガニック配線基板10では、凸状壁部56,56A,56Bは、厚さ方向に均一な幅で形成されていたが、これに限定されるものではない。図16に示される凸状壁部56Cのように、基端73側に段差を設けてその基端73側が先端74側よりも幅が広くなるように形成してもよい。この凸状壁部56Cも、絶縁フィルム71において部分的な露光及び現像を段階的に複数回繰り返すことにより、側面被覆部55と一体的に形成される。この凸状壁部56Cのように、基端73側の幅を広くすることで側面被覆部55との接続面積が増し、凸状壁部56Cの強度をより高めることができる。 
・上記実施の形態のオーガニック配線基板10では、開口部43に1本の凸状壁部56を形成していたが、複数本の凸状壁部56を形成してもよい。例えば、3本の凸状壁部56を形成し、各凸状壁部56にて接続領域51を挟み込むようにしてもよい。この場合、各接続端子部41において接続領域51と配線領域52とが凸状壁部56によって区画されるため、接続領域51からのはんだの流出をより確実に防止することができる。 
・上記実施の形態のオーガニック配線基板10では、開口部43内において複数の配線領域52と直角に交差するよう凸状壁部56が直線状に形成されていたが、これに限定されるものではない。例えば、各接続端子部41と直交する凸状壁部56に加え、各接続端子部41間にて平行に凸状壁部を形成してもよい。また例えば、各接続領域51を取り囲むように枠状の凸状壁部を形成してもよい。さらに、凸状壁部56は、接続端子部41の複数の配線領域52に対して傾斜した角度で交差してもよい。具体的には、例えば千鳥状に配設された各接続領域51に応じてジグザグ状に屈曲し、各配線領域52に対して傾斜した角度で交差するように凸状壁部を設けてもよい。これら凸状壁部のレジストパターンを形成する場合でも、接続領域51におけるはんだの流出を防止することができる。また、凸状壁部を側面被覆部55と一体的に形成することでその強度を確保することができ、凸状壁部のパターンが剥がれるといった問題を回避することができる。 
・上記実施の形態のオーガニック配線基板10では、各接続端子部41において、接続領域51の両側から配線領域52が延設されていたが、接続領域51の片側から配線領域52が延設されていてもよい。さらに、接続領域51の両側から配線領域52が延設された接続端子部41と接続領域51の片側から配線領域52が延設された接続端子部とか混在して設けられた配線基板に本発明を具体化してもよい。 
・上記実施の形態のオーガニック配線基板10は、コア基板13を有する配線基板であったが、これに限定されるものではなく、コアを有さないコアレス配線基板に本発明を適用させてもよい。 
・上記実施の形態におけるオーガニック配線基板10の形態は、BGA(ボールグリッドアレイ)であるが、BGAのみに限定されず、例えばPGA(ピングリッドアレイ)やLGA(ランドグリッドアレイ)等の配線基板に本発明を適用させてもよい。 
次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施の形態によって把握される技術的思想を以下に列挙する。 
(1)手段1に記載の前記配線基板は、前記絶縁層として樹脂絶縁層を用いたオーガニック配線基板であることを特徴とする配線基板。 
(2)手段1において、前記配線領域は、前記接続領域の両側または片側に延設されることを特徴とする配線基板。 
(3)手段1において、前記複数の接続端子部の端子ピッチは、80μm以下であることを特徴とする配線基板。 
(4)手段1において、前記配線領域の延設方向が互いに平行となるよう複数の前記接続端子部が配列され、配列方向に隣り合う接続端子部において、前記接続領域の位置が前記配列方向に重ならないようにその配列方向と直交する方向にずらした位置に前記接続領域が設けられていることを特徴とする配線基板。 
(5)手段2において、前記樹脂絶縁材料は絶縁フィルムであり、前記ソルダーレジスト層形成工程では、前記絶縁フィルムを前記接続端子部の上に配置し、表面の平坦性を確保すべくフィルムの厚さ方向にプレスした後に前記露光及び現像を行うことを特徴とする配線基板の製造方法。
10…配線基板としてのオーガニック配線基板

 21,22…絶縁層としての樹脂絶縁層

 24…導体層

 25…ソルダーレジスト層

 31…積層体としての第1ビルドアップ層

 41…接続端子部

 43…開口部

 51…接続領域

 52…配線領域

 55…側面被覆部

 56,56A~56C…凸状壁部

 71…樹脂絶縁材料としての絶縁フィルム

 R1…半導体チップの搭載領域

Claims (5)

  1. 絶縁層及び導体層がそれぞれ1層以上積層された積層体を有し、前記積層体の最表層の前記導体層は、半導体チップをフリップチップ実装するために前記半導体チップの搭載領域に設けられた接続端子部を含み、前記積層体の最表層の前記絶縁層としてソルダーレジスト層が設けられ、そのソルダーレジスト層に形成された開口部を介して前記接続端子部の表面が露出している配線基板において、

     前記接続端子部は、前記半導体チップの接続端子がはんだを介して接続されるべき接続領域と、前記接続領域から平面方向に延設された配線領域とを有し、

     前記ソルダーレジスト層は、前記接続端子部の側面を被覆する側面被覆部と、その側面被覆部と一体的に形成され、前記接続端子部における前記接続領域と交差するよう突設された凸状壁部とを有することを特徴とする配線基板。
  2. 前記半導体チップの搭載領域には、その外周に沿って複数の前記接続端子部が配列され、前記開口部を介して前記複数の接続端子部が露出しており、

     前記凸状壁部は、複数の前記配線領域と交差するよう延設されていることを特徴とする請求項1に記載の配線基板。
  3. 前記凸状壁部は、前記開口部を形成する前記ソルダーレジスト層の内壁面と一体的に形成されていることを特徴とする請求項1または2に記載の配線基板。
  4. 前記凸状壁部の幅は、5μm以上50μm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の配線基板。
  5. 絶縁層及び導体層がそれぞれ1層以上積層された積層体を有し、前記積層体の最表層の前記導体層は、半導体チップをフリップチップ実装するために前記半導体チップの搭載領域に設けられた接続端子部を含み、前記積層体の最表層の前記絶縁層としてソルダーレジスト層が設けられ、そのソルダーレジスト層に形成された開口部を介して前記接続端子部の表面が露出している配線基板の製造方法において、

     前記積層体における最表層の導体層を形成する工程であって、前記半導体チップの接続端子がはんだを介して接続されるべき接続領域と、前記接続領域から平面方向に延設された配線領域とを有する前記接続端子部を形成する導体層形成工程と、

     前記ソルダーレジスト層となる感光性を有する樹脂絶縁材料を前記接続端子部の側面及び上面を覆うように配置し、前記樹脂絶縁材料における部分的な露光及び現像を段階的に複数回繰り返すことにより、前記開口部を形成するとともに、その開口部内において前記接続端子部の側面を被覆する側面被覆部と、その側面被覆部と一体的に形成され、前記接続端子部における前記接続領域と交差するよう突設された凸状壁部とを有する前記ソルダーレジスト層を形成するソルダーレジスト層形成工程とを含むことを特徴とする配線基板の製造方法。
PCT/JP2013/003137 2012-09-21 2013-05-17 配線基板及びその製造方法 WO2014045491A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380049261.6A CN104662655B (zh) 2012-09-21 2013-05-17 布线基板及其制造方法
EP13839334.3A EP2899751B1 (en) 2012-09-21 2013-05-17 Wiring board and method for manufacturing same
US14/417,751 US9516751B2 (en) 2012-09-21 2013-05-17 Wiring board and method for manufacturing same
KR1020157009516A KR101713458B1 (ko) 2012-09-21 2013-05-17 배선기판 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-208987 2012-09-21
JP2012208987A JP5762376B2 (ja) 2012-09-21 2012-09-21 配線基板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014045491A1 true WO2014045491A1 (ja) 2014-03-27

Family

ID=50340834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003137 WO2014045491A1 (ja) 2012-09-21 2013-05-17 配線基板及びその製造方法

Country Status (7)

Country Link
US (1) US9516751B2 (ja)
EP (1) EP2899751B1 (ja)
JP (1) JP5762376B2 (ja)
KR (1) KR101713458B1 (ja)
CN (1) CN104662655B (ja)
TW (1) TWI598010B (ja)
WO (1) WO2014045491A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140246223A1 (en) * 2013-03-01 2014-09-04 Advanced Micro Devices (Shanghai) Co., Ltd. Substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213124A (ja) * 2014-05-02 2015-11-26 イビデン株式会社 パッケージ基板
JP2015222741A (ja) * 2014-05-22 2015-12-10 京セラサーキットソリューションズ株式会社 多数個取り配線基板およびその製造方法
JP6806520B2 (ja) * 2016-10-17 2021-01-06 ラピスセミコンダクタ株式会社 半導体装置および配線基板の設計方法
US10527935B2 (en) * 2016-12-31 2020-01-07 Rohm And Haas Electronic Materials Llc Radiation-sensitive compositions and patterning and metallization processes
US10622292B2 (en) * 2018-07-06 2020-04-14 Qualcomm Incorporated High density interconnects in an embedded trace substrate (ETS) comprising a core layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48112955U (ja) * 1972-03-29 1973-12-24
JPS5239373A (en) * 1975-09-25 1977-03-26 Hitachi Ltd Dam for prevention of flowing of solder material
JPS534468A (en) * 1976-07-02 1978-01-17 Hitachi Ltd Formation of bonding pads
JPH07321151A (ja) * 1994-05-27 1995-12-08 Hitachi Ltd 配線基板およびそれを用いた半導体集積回路装置
JPH11340277A (ja) * 1998-05-22 1999-12-10 Nec Corp 半導体チップ搭載基板、半導体装置及び前記半導体チップ搭載基板への半導体チップ搭載方法
JP2001156203A (ja) * 1999-11-24 2001-06-08 Matsushita Electric Works Ltd 半導体チップ実装用プリント配線板
JP2001320168A (ja) * 2000-03-02 2001-11-16 Murata Mfg Co Ltd 配線基板およびその製造方法、ならびにそれを用いた電子装置
JP2008147458A (ja) 2006-12-11 2008-06-26 Nec Electronics Corp プリント配線板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969057A (ja) * 1972-11-08 1974-07-04
JPS62152443U (ja) * 1986-03-19 1987-09-28
SG121707A1 (en) * 2002-03-04 2006-05-26 Micron Technology Inc Method and apparatus for flip-chip packaging providing testing capability
KR100541394B1 (ko) * 2003-08-23 2006-01-10 삼성전자주식회사 비한정형 볼 그리드 어레이 패키지용 배선기판 및 그의제조 방법
JP2005183464A (ja) * 2003-12-16 2005-07-07 Nitto Denko Corp 配線回路基板
TWI243462B (en) 2004-05-14 2005-11-11 Advanced Semiconductor Eng Semiconductor package including passive component
US7427717B2 (en) * 2004-05-19 2008-09-23 Matsushita Electric Industrial Co., Ltd. Flexible printed wiring board and manufacturing method thereof
TWI288590B (en) * 2005-10-31 2007-10-11 Unimicron Technology Corp Method of forming solder mask and circuit board with solder mask
JP2008210993A (ja) * 2007-02-26 2008-09-11 Nec Corp プリント配線板及びその製造方法
TWI340615B (en) * 2008-01-30 2011-04-11 Advanced Semiconductor Eng Surface treatment process for circuit board
JP5020123B2 (ja) 2008-03-03 2012-09-05 新光電気工業株式会社 配線基板の製造方法
CN100574569C (zh) * 2008-07-08 2009-12-23 深圳崇达多层线路板有限公司 一种具有长短金手指电路板的生产方法
JP5350830B2 (ja) * 2009-02-16 2013-11-27 日本特殊陶業株式会社 多層配線基板及びその製造方法
US9449913B2 (en) * 2011-10-28 2016-09-20 Intel Corporation 3D interconnect structure comprising fine pitch single damascene backside metal redistribution lines combined with through-silicon vias
CN102364995A (zh) * 2011-11-09 2012-02-29 深圳市宇顺电子股份有限公司 Fpc的金手指

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48112955U (ja) * 1972-03-29 1973-12-24
JPS5239373A (en) * 1975-09-25 1977-03-26 Hitachi Ltd Dam for prevention of flowing of solder material
JPS534468A (en) * 1976-07-02 1978-01-17 Hitachi Ltd Formation of bonding pads
JPH07321151A (ja) * 1994-05-27 1995-12-08 Hitachi Ltd 配線基板およびそれを用いた半導体集積回路装置
JPH11340277A (ja) * 1998-05-22 1999-12-10 Nec Corp 半導体チップ搭載基板、半導体装置及び前記半導体チップ搭載基板への半導体チップ搭載方法
JP2001156203A (ja) * 1999-11-24 2001-06-08 Matsushita Electric Works Ltd 半導体チップ実装用プリント配線板
JP2001320168A (ja) * 2000-03-02 2001-11-16 Murata Mfg Co Ltd 配線基板およびその製造方法、ならびにそれを用いた電子装置
JP2008147458A (ja) 2006-12-11 2008-06-26 Nec Electronics Corp プリント配線板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140246223A1 (en) * 2013-03-01 2014-09-04 Advanced Micro Devices (Shanghai) Co., Ltd. Substrate
US9870969B2 (en) * 2013-03-01 2018-01-16 Advanced Micro Devices (Shanghai) Co., Ltd. Substrate

Also Published As

Publication number Publication date
US20150208501A1 (en) 2015-07-23
JP2014063932A (ja) 2014-04-10
TW201414380A (zh) 2014-04-01
CN104662655B (zh) 2017-07-11
KR20150056816A (ko) 2015-05-27
JP5762376B2 (ja) 2015-08-12
TWI598010B (zh) 2017-09-01
EP2899751A4 (en) 2016-06-22
EP2899751B1 (en) 2018-12-26
US9516751B2 (en) 2016-12-06
KR101713458B1 (ko) 2017-03-07
EP2899751A1 (en) 2015-07-29
CN104662655A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
US9420703B2 (en) Wiring board and manufacturing method of the same
JP6158676B2 (ja) 配線基板、半導体装置及び配線基板の製造方法
US9578743B2 (en) Circuit board
JP2007173775A (ja) 回路基板構造及びその製法
JP5762376B2 (ja) 配線基板及びその製造方法
US9699905B2 (en) Wiring board
JP5547615B2 (ja) 配線基板、半導体装置及び配線基板の製造方法
US10720392B2 (en) Wiring substrate
JP2013239603A (ja) 配線基板
JP2016063130A (ja) プリント配線板および半導体パッケージ
US20120152606A1 (en) Printed wiring board
JP2013065811A (ja) プリント回路基板及びその製造方法
JP5599860B2 (ja) 半導体パッケージ基板の製造方法
KR20110098677A (ko) 다층 배선 기판 및 그 제조방법
KR20150065029A (ko) 인쇄회로기판, 그 제조방법 및 반도체 패키지
JP7430481B2 (ja) 配線基板、半導体装置及び配線基板の製造方法
JP2007214568A (ja) 回路基板構造
JP6626687B2 (ja) 配線基板、半導体装置及び配線基板の製造方法
JP5565951B2 (ja) 配線基板およびその製造方法
US20130081862A1 (en) Wiring substrate and method of manufacturing the same
JP2014123592A (ja) プリント配線板の製造方法及びプリント配線板
KR101231522B1 (ko) 인쇄회로기판 및 그의 제조 방법
JP2023047897A (ja) 配線基板及び配線基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14417751

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157009516

Country of ref document: KR

Kind code of ref document: A