WO2014045385A1 - 蛍光センサ - Google Patents

蛍光センサ Download PDF

Info

Publication number
WO2014045385A1
WO2014045385A1 PCT/JP2012/074176 JP2012074176W WO2014045385A1 WO 2014045385 A1 WO2014045385 A1 WO 2014045385A1 JP 2012074176 W JP2012074176 W JP 2012074176W WO 2014045385 A1 WO2014045385 A1 WO 2014045385A1
Authority
WO
WIPO (PCT)
Prior art keywords
indicator
sensor
fluorescence
light
fluorescent
Prior art date
Application number
PCT/JP2012/074176
Other languages
English (en)
French (fr)
Inventor
亮 太田
憲治 宮田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2012/074176 priority Critical patent/WO2014045385A1/ja
Publication of WO2014045385A1 publication Critical patent/WO2014045385A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Definitions

  • the present invention relates to a fluorescence sensor for measuring the concentration of an analyte in a solution, and more particularly to a fluorescence sensor having an indicator made of an analyte and a hydrogel that generates fluorescence by excitation light.
  • a fluorometer that measures analyte concentration by injecting a solution to be measured containing a fluorescent dye and an analyte into a transparent container, irradiating excitation light, and measuring the fluorescence intensity from the fluorescent dye is known.
  • Fluorescent dyes change in properties due to the presence of an analyte, and generate fluorescence having an intensity corresponding to the analyte concentration when receiving excitation light.
  • a small fluorometer has a light source, a photodetector, and an indicator containing a fluorescent dye. And the excitation light from a light source is irradiated to the indicator which the analyte in a to-be-measured solution can enter / exit, and the photodetector receives the fluorescence which an indicator generate
  • the photodetector is a photoelectric conversion element and outputs an electrical signal corresponding to the received light intensity. The analyte concentration in the solution is calculated based on the electrical signal from the photodetector.
  • microfluorometer manufactured using semiconductor manufacturing technology and MEMS technology.
  • the microfluorometer is referred to as “fluorescence sensor”.
  • the fluorescent sensor 104 shown in FIGS. 1 and 2 is disclosed in International Publication No. 2010/119916.
  • the sensor unit 110 which is a main functional unit of the fluorescence sensor 104 includes a silicon substrate 111 on which a photoelectric conversion element 112 is formed, a transparent intermediate layer 113, a filter layer 114, a light emitting element 115, a transparent protective layer 116, An indicator 117 and a light shielding layer 118 are provided.
  • the analyte 9 passes through the light shielding layer 118 and enters the indicator 117.
  • the filter layer 114 of the fluorescence sensor 104 blocks the excitation light E and transmits the fluorescence F. Further, the light emitting element 115 transmits the fluorescence F.
  • the indicator 117 In the fluorescence sensor 104, when the excitation light E generated by the light emitting element 115 enters the indicator 117, the indicator 117 generates fluorescence F corresponding to the analyte concentration.
  • the fluorescent sensor 104 has a simple configuration and can be easily downsized.
  • the present invention has been made in view of the above circumstances, and its object is to provide a fluorescent sensor with high detection sensitivity.
  • the fluorescent sensor of one embodiment of the present invention is provided on the substrate portion and the substrate portion, receives the excitation light, generates fluorescence having an intensity corresponding to the concentration of the analyte, and has an outer shape of a partial cylindrical shape.
  • An indicator, a light emitting element that is mounted on the substrate portion and generates excitation light, and a photoelectric conversion element that converts the fluorescence into an electric signal are provided.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4 at the distal end portion of the fluorescent sensor.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG. 5 at the tip of the fluorescent sensor.
  • FIG. 4 is a cross-sectional view illustrating a method for manufacturing a fluorescent sensor and showing a mold and a light shielding film.
  • FIG. 4 is a cross-sectional view illustrating a method for manufacturing a fluorescent sensor, in which a light-shielding film is pressed into a recess of a mold.
  • FIG. 5 is a cross-sectional view illustrating a method for manufacturing a fluorescent sensor, in which an indicator is pressed onto a light shielding film in a recess of a mold.
  • FIG. 4 is a cross-sectional view illustrating a method for manufacturing a fluorescent sensor, in which a photoelectric conversion element substrate is arranged on an indicator of a mold.
  • FIG. 5 is a cross-sectional view illustrating a fluorescent sensor that is completed by removing a mold and explaining a method for manufacturing the fluorescent sensor.
  • FIG. 16 is a cross-sectional view taken along the line XVI-XVI in FIG. 15 at the tip of the fluorescent sensor. It is a perspective view of the front-end
  • FIG. 18 is a perspective view of a tip portion of a fluorescent sensor of a modified example different from FIG.
  • the sensor system 1 includes a fluorescent sensor 4, a main body 2, and a receiver 3 that receives and stores a signal from the main body 2. Transmission / reception of signals between the main body 2 and the receiver 3 is performed wirelessly or by wire.
  • the fluorescent sensor 4 includes a needle portion 7 that is punctured by a subject and a connector portion 8 that is joined to the rear end portion of the needle portion 7.
  • the needle part 7 has an elongated needle body part 6 and a needle tip part 5 including a sensor part 10 which is a main function part. Needle tip 5, needle body 6, and connector 8 may be integrally formed of the same material, or may be separately produced and joined.
  • the connector part 8 is detachably fitted to the fitting part 2A of the main body part 2.
  • the plurality of wirings 60 extending from the sensor unit 10 of the fluorescent sensor 4 are electrically connected to the main body unit 2 when the connector unit 8 is mechanically fitted to the fitting unit 2A of the main body unit 2. .
  • Fluorescent sensor 4 is a needle-type sensor that can continuously measure the analyte concentration of a solution (body fluid) in a living body after inserting sensor unit 10 into the body for a predetermined period, for example, one week. However, the collected body fluid or the body fluid circulating through the body via the flow path outside the body may be brought into contact with the sensor unit 10 outside the body without inserting the sensor unit 10 into the body.
  • the main body unit 2 includes a control unit 2B that performs driving and control of the sensor unit 10, and a calculation unit 2C that processes a signal output from the sensor unit 10. Note that at least one of the control unit 2B and the calculation unit 2C may be disposed in the connector unit 8 of the fluorescent sensor 4 or may be disposed in the receiver 3.
  • the main body 2 further includes a radio antenna for transmitting and receiving radio signals to and from the receiver 3, a battery, and the like.
  • the main body 2 has a signal line instead of a wireless antenna.
  • the receiver 3 may not be provided when the main body 2 includes a memory unit having a necessary capacity.
  • the structure of the sensor unit 10 which is a main functional unit of the fluorescence sensor 4 will be described with reference to FIGS.
  • all the figures are schematic diagrams for explanation, and the vertical and horizontal dimensional ratios and the like are different from actual ones, and some components may not be shown.
  • the Z-axis direction shown in the figure is referred to as an upward direction in the fluorescence sensor 4.
  • the X-axis direction indicates the rear in the front-rear direction of the fluorescent sensor 4
  • the Y-axis direction indicates the left direction in the left-right direction.
  • the fluorescence sensor 4 of the first embodiment detects glucose in the body fluid of the subject.
  • the sensor unit 10 of the present embodiment has a substantially semi-cylindrical outer shape, and a light emitting element 15 that emits light radially upward and leftward and mounted on the upper surface.
  • Detection substrate portion 20 a semi-cylindrical distal end frame 21 fitted to the distal end portion of the detection substrate portion 20, and a semi-cylindrical proximal end frame fitted to the proximal end portion of the detection substrate portion 20.
  • the outer shape disposed on the detection substrate portion 20 has an arcuate cross section, that is, a partial cylindrical indicator 17 and a light shielding film 19 that covers the indicator 17 in a dome shape.
  • the shape of the indicator 17 here is a partial cylindrical shape with the outer shape being a circular arc shape as described above.
  • This partial columnar shape is a shape obtained by cutting a column into approximately half.
  • the fluorescent sensor 4 here is provided with a light shielding film 19, an indicator 17, and a detection substrate 20 in order from the top. That is, in the fluorescent sensor 4, the indicator 17 is disposed on the detection substrate unit 20 having the light emitting element 15, and the indicator 17 is covered with the light shielding film 19.
  • the light shielding film 19 is bonded to the edge portion (both end portions) of the detection substrate unit 20.
  • the detection substrate 20 here has a photodiode element (hereinafter referred to as “PD element”) 12 that is a photoelectric conversion element that converts the fluorescence F from the indicator 17 into an electrical signal on the upper surface side on which the light emitting element 15 is mounted. Is formed. That is, the fluorescent sensor 4 of the present embodiment has a configuration in which the indicator 17 is disposed on the detection substrate unit 20 on which the light emitting element 15 and the PD element 12 are provided, and the indicator 17 is covered with the light shielding film 19. .
  • PD element photodiode element
  • the light-shielding property is necessary for the detection substrate unit 20. Therefore, it is preferable to use a silicon substrate, and the PD element 12 formed on the silicon substrate is preferable as the photoelectric conversion element.
  • the PD element 12 has a structure in which a p-type diffusion region is formed in an n-type silicon semiconductor.
  • a filter that transmits the fluorescence F and blocks the excitation light E is formed on the surface of the PD element 12 in order to prevent the excitation light E from entering (not shown).
  • the filter for example, it is preferable to use a light absorption filter that blocks excitation light E having a wavelength of 375 nm but transmits fluorescence F having a wavelength of 460 nm.
  • the detection substrate unit 20 may be a composite material in which a light-shielding cover layer is laminated on a flexible sheet, for example, a polyimide sheet on which aluminum or gold is vapor-deposited.
  • a composite material in which a light-shielding metal foil such as stainless steel and a flexible sheet are bonded together may be used.
  • plastic materials such as PET (polyethylene terephthalate), or rubber materials such as PDMS (polydimethylsiloxane) can be used.
  • PET polyethylene terephthalate
  • PDMS polydimethylsiloxane
  • a thin metal plate having a light shielding property may be used.
  • the photoelectric conversion element is manufactured by forming an organic semiconductor such as pentacene by vapor deposition or coating, and then partially doping impurities.
  • organic semiconductors include polycyclic aromatic hydrocarbons such as pentacene, anthracene, or rubrene, low-molecular compounds such as tetracyanoquinodimethane (TCNQ), polyacetylene, poly-3-hexylthiophene (P3HT), or poly A polymer such as paraphenylene vinylene (PPV) can be used.
  • polycyclic aromatic hydrocarbons such as pentacene, anthracene, or rubrene
  • TCNQ tetracyanoquinodimethane
  • P3HT poly-3-hexylthiophene
  • PV paraphenylene vinylene
  • the photoelectric conversion element is not limited to the PD element 12 and is selected from various photoelectric conversion elements such as a photoconductor or a phototransistor.
  • the detection substrate unit 20 on which the PD element 12 is mainly provided is used, but it is needless to say that the light emitting element substrate on which the light emitting element is mainly mounted may be used.
  • the detection substrate unit 20 includes the wiring 60 shown in FIG. 3, and a wiring that is connected to the external electrode of the light emitting element 15 and supplies a driving signal and a wiring that transmits the signal of the PD element 12 are formed (whichever (Not shown).
  • the light shielding film 19 covers the indicator 17 to prevent the excitation light E and the fluorescence F from leaking to the outside, and at the same time, prevents the external light G (see FIG. 12) from entering the indicator 17. Further, the light shielding film 19 has a pore structure of, for example, a submicron size that does not prevent the analyte 9 from passing through the inside and reaching the adjacent indicator 17.
  • the light-shielding film 19 is made of an inorganic material such as metal or ceramic, a composite composition with a hydrogel in which carbon black is mixed in a base material of an organic polymer such as polyimide or polyurethane, or a cellulose or polyacrylamide.
  • a resin in which carbon black is mixed into an analyte-permeable polymer or a resin in which these are laminated is used.
  • the light shielding film 19 here constitutes an entry path through which the body fluid containing the analyte 9 enters the indicator 17.
  • the light emitting element 15 provided on the detection substrate unit 20 is an element that transmits fluorescence F among light emitting elements that emit desired excitation light E such as an LED element, an organic EL element, an inorganic EL element, or a laser diode element. Is selected.
  • an LED element is used as the light emitting element 15, from the viewpoints of fluorescence transmittance, light generation efficiency, wide wavelength selectivity of the excitation light E, and generation of a light other than a wavelength having an excitation action. preferable.
  • an ultraviolet LED element made of a gallium nitride compound semiconductor formed on a sapphire substrate is particularly preferable.
  • the light emitting element 15 emits pulsed excitation light having a center wavelength of around 375 nm at an interval of once every 30 seconds, for example.
  • the current of the drive signal to the light emitting element 15 is 1 mA to 100 mA
  • the light emission pulse width is 1 ms to 100 ms.
  • the indicator 17 is made of a hydrogel having a fluorescent dye that generates fluorescence F having a wavelength longer than that of the excitation light E by the analyte 9 and the excitation light E. That is, the indicator 17 is composed of a hydrogel that contains the fluorescent dye that generates the fluorescent light F with a light amount corresponding to the analyte concentration in the sample and that allows the excitation light E and the fluorescent light F to pass therethrough satisfactorily.
  • the indicator 17 may be the analyte 9 itself in which the fluorescent dye that does not include the fluorescent dye and generates the fluorescence F exists in the solution.
  • Hydrogel is water such as acrylic hydrogel produced by polymerizing monomers such as polysaccharides such as methylcellulose or dextran, acrylamide, methylolacrylamide, hydroxyethyl acrylate, or urethane hydrogel produced from polyethylene glycol and diisocyanate. It is formed by encapsulating a fluorescent dye in a material that is easy to contain.
  • the hydrogel has a size that does not leave the sensor through the light shielding film 19. For this reason, it is preferable that the hydrogel has a molecular weight of 1 million or more, or a form in which the hydrogel is crosslinked and does not flow.
  • phenylboronic acid derivatives having a fluorescent residue are suitable as fluorescent dyes.
  • the fluorescent dye is prevented from detaching from the sensor by using a high molecular weight material or chemically fixing to a hydrogel.
  • the indicator 17 is produced by polymerizing a phosphate buffer containing a fluorescent dye, a gel skeleton-forming material, and a polymerization initiator in a nitrogen atmosphere for 1 hour.
  • a fluorescent dye 9,10-bis [N- [2- (5,5-dimethylborinan-2-yl) benzyl] -N- [6 ′-[(acryloyl polyethylene glycol-3400) carbonylamino ] -N-hexylamino] methyl] -2-acetylanthracene (F-PEG-AAm), acrylamide as the gel skeleton-forming material, sodium peroxodisulfate and N, N, N ′ as the polymerization initiator N'-tetramethylethylenediamine is used.
  • the external electrode of the light emitting element 15 is preferably sealed with an insulating resin.
  • the light emitting element 15 may be sealed with a transparent intermediate layer up to the upper surface. The resin-sealed light emitting element 15 is not easily affected by the moisture of the indicator 17.
  • the distal end frame 21 and the proximal end frame 22 fitted before and after the detection substrate unit 20 are made of silicon, glass, metal, or the like, or a resin material such as polypropylene or polystyrene. Further, the distal end frame 21 and the base end frame 22 may be provided with a plurality of openings that communicate with the indicator 17, and the light shielding film 19 may be provided so as to cover these openings. Thereby, the analyte 9 can enter the indicator 17 from the front-rear direction, and the entry area of the analyte 9 to the indicator 17 can be increased.
  • the manufacturing method of the fluorescence sensor 4 will be briefly described with reference to FIGS.
  • the light shielding film 19 is embossed on the mold 200 in which the arc-shaped recess 201 is formed.
  • a predetermined amount of the indicator 17 is embossed on the light shielding film 19 of the mold 200.
  • the indicator 17 at this time is in a dry state so that it can be easily manufactured.
  • the set amount of the indicator 17 is an amount such that the expanded state containing moisture is substantially the same as the capacity of the recess 201 provided with the light shielding film 19.
  • the liquid indicator 17 may be injected onto the light shielding film 19 of the mold 200.
  • the indicator 17 covered with the light shielding film 19 is completed.
  • the detection substrate unit 20 on which the light emitting element 15 and the PD element 12 are mounted on the indicator 17 is placed so that the surface of the detection substrate unit 20 faces the indicator 17. And the end of the light shielding film 19 are bonded.
  • the detection substrate portion 20 is covered with the light-shielding film 19 having a semicircular cross section (arc shape), and the partial columnar indicator 17 is provided. A part of the fluorescence sensor 4 is completed.
  • the distal end portion of the detection substrate portion 20 and the distal end frame 21 are fitted and adhered, and the peripheral end portion of the distal end frame 21 and the arc-shaped distal end portion of the light shielding film 19 are adhered. Further, the base end portion of the detection substrate unit 20 and the base end frame 22 are fitted and bonded, and the peripheral end portion of the base end frame 22 and the arcuate base end portion of the light shielding film 19 are bonded. Thus, the fluorescence sensor 4 is produced.
  • the excitation light E from the light emitting element 15 provided at the approximate center of the flat portion of the indicator 17 is received and the indicator 17 responds to the concentration of the analyte 9.
  • the generated fluorescence F enters the PD element 12.
  • the fluorescence F emitted according to the concentration of the analyte 9 is detected from the indicator 17 by the upper surface of the PD element 12. Therefore, in the fluorescence sensor 4, the excitation light E from the light emitting element 15 is evenly applied to the partial cylindrical indicator 17, and the sensitivity becomes higher than that of the conventional fluorescence sensor 104. That is, the fluorescence sensor 4 has high sensitivity because it can efficiently use the excitation light E from the light emitting element 15.
  • the fluorescent sensor 4 has a substantially semi-cylindrical shape, and has a partial cylindrical shape (a cross-sectional arc shape) in which the surface of the indicator 17 is formed in an arc shape, and the surface of the indicator 17 is covered with a light shielding film 19. Yes.
  • the fluorescent sensor 4 can take a large area for the analyte 9 to enter the indicator 17 through the light shielding film 19, so that the analyte 9 can easily enter the indicator 17. The response to is greatly improved.
  • the shape of the indicator 17 is not limited to the partial columnar shape, and may be a polygonal cross-sectional shape such as a dome shape.
  • the fluorescence sensor 4A of the second embodiment will be described. Since the fluorescence sensor 4A is similar to the fluorescence sensor 4, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the fluorescent sensor 4A of the present embodiment is the same in that the indicator 17 is provided on the detection substrate unit 20, but as shown in FIG. The difference is that the PD element 12 is mounted on the portion 20.
  • the PD element 12 is formed at a position avoiding the light emitting element 15 mounted on the upper surface.
  • the analyte 9 enters the indicator 17 from the light shielding film 19 as in the first embodiment.
  • the fluorescent light F corresponding to the concentration of the analyte 9 is generated from the indicator 17 by the excitation light E emitted from the light emitting element 15 in the upper and left radial directions, and the fluorescent light F emitted downward from the indicator 17 is generated on the detection substrate unit 20. It is detected by the PD element 12 mounted on the upper surface.
  • the fluorescence sensor 4A of the present embodiment has the same effect as the fluorescence sensor 4 of the first embodiment, and is more sensitive.
  • the fluorescence sensor 4B of the third embodiment will be described. Since the fluorescence sensor 4B is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the fluorescent sensor 4B of this embodiment shown in FIGS. 15 and 16 has a frame portion 18 that has a partial cylindrical shape (a cross-sectional arc shape) so as to cover the indicator 17 as compared with the fluorescent sensor 4 of the first embodiment. Different points are provided.
  • the fluorescence sensor 4B here is provided with a frame portion 18 formed in an arc shape so as to cover the indicator 17, and a light shielding film 19 is provided so as to cover the frame portion 18.
  • the frame portion 18 is formed of stainless steel, a flexible material, or the like having a thickness of 10 ⁇ m, and a plurality of slits 18 a are formed so that the analyte 9 can enter the indicator 17 along the longitudinal axis direction of the fluorescent sensor 4 ⁇ / b> B.
  • the frame portion 18 is deformed so that the indicator 17 has a partial cylindrical shape (circular arc shape).
  • the side edge part of the frame part 18 is adhere
  • the frame portion 18 may be a rigid substrate formed in an arc shape in advance.
  • the fluorescence sensor 4B of the present embodiment has a remarkable strength by providing the frame portion 18 as compared with the configuration in which the indicator 17 is covered only by the light shielding film 19. improves.
  • the frame portion 18 is not limited to the plurality of slits 18a in the direction along the longitudinal axis direction in the fluorescence sensor 4B, and, for example, as shown in FIG. 17, the frame portion 18 extends along the short axis direction in the fluorescence sensor 4B. It is good also as the slit 18b.
  • the plurality of slits formed in the frame portion 18 may have any shape such as a spiral shape or a lattice shape. Further, the frame portion 18 may have a mesh structure formed of metal or the like as shown in FIG.
  • a plurality of PD elements 12 are formed on the inner surface side of the frame portion 18 that faces the indicator 17 and contacts. That is, the fluorescence emitted radially from the indicator 17 by the plurality of PD elements 12 formed in the frame portion 18 is detected.
  • the frame portion 18 ⁇ / b> A in the fluorescence sensor 4 ⁇ / b> D here connects a plurality of substrate portions 31 in which PD elements 12 are formed on a rigid substrate or a flexible substrate made of silicon or the like by a flexible substrate 32.
  • the dome shape is formed in a circular arc shape (semicircular shape) in cross section. That is, 18 A of frame parts are arrange
  • the frame portion 18 ⁇ / b> A here has a micro through hole (not shown) so that the substrate portion 31, the PD element 12, and the flexible substrate 32 can enter the body fluid containing the analyte 9 into the indicator 17. That is, body fluid can pass through the frame portion 18A. Further, a light shielding film 19 that covers the frame portion 18A may be provided.
  • the size, shape, position, and formation density of the minute through holes of the frame portion 18A are appropriately selected according to the specifications.
  • the minute through holes do not need to be arranged in an orderly manner.
  • the shape of the opening when the minute through hole is observed from the upper surface may be any of a circle, a rectangle, a polygon, and the like.
  • the frame portion 18A in which the minute through holes are formed in this way has the same structure as the membrane filter, but is produced by patterning the minute through holes on a silicon plate or a silicon film, for example.
  • the minute through hole can be formed by dry etching such as ICP-RIE after an etching mask is formed on the surface of a silicon plate or the like by photolithography or a self-assembled film.
  • a machining method using a micro drill or the like may be used.
  • porous semiconductor through which a solution containing an analyte can pass may be used for the frame portion 18A.
  • the porous means a material having voids and pores connected to the outside in the structure. The size, distribution, and shape of the voids / pores need not be regular as long as the solution can pass through.
  • the open porosity of the frame portion 18A is preferably 5 to 75% by volume, particularly preferably 20 to 50% by volume. If it is more than the said range, a bodily fluid will pass easily, and if it is below the said range, desired mechanical strength will be obtained.
  • the open porosity is a value measured by Archimedes method.
  • the fluorescence sensors 4C and 4D of the present embodiment have a plurality of PD elements that individually receive the fluorescence F from the indicator 17 in addition to the effects of the fluorescence sensors 4 and 4B of the first embodiment and the third embodiment.
  • By forming 12 on the frame portions 18 and 18A higher sensitivity is obtained.
  • the above configuration can also be applied to the frame portion 18 of the rigid substrate previously formed in an arc shape described in the third embodiment.
  • the light emitting element 15 is optimized in shape so that the excitation light E is uniformly irradiated to the indicator 17 by using a lens, a sealing resin, or the like according to the partial cylindrical shape of the indicator 17, for example, FIG. It is preferable to use a dome shape such as a shell shape or a partial cylindrical shape as shown in FIG.
  • a sensor that detects saccharides such as glucose has been described as an example.
  • a fluorescent sensor can be used for various applications such as an enzyme sensor, a pH sensor, an immunosensor, or a microorganism sensor by selecting a fluorescent dye. ing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 蛍光センサ4は、基板部20と、基板部20上に配設され、励起光Eを受光してアナライト9の濃度に応じた強度の蛍光Fを発生し、外形が部分円柱形状を呈するインジケータ17と、基板部20に実装され励起光Eを発生する発光素子15と、蛍光Fを電気信号に変換する光電変換素子12と、を備えている。

Description

蛍光センサ
 本発明は、溶液中のアナライトの濃度を計測する蛍光センサに関し、特に、アナライト及び励起光により蛍光を発生するハイドロゲルからなるインジケータを具備する蛍光センサに関する。
 溶液中のアナライトすなわち被計測物質の濃度を測定するための様々な分析装置が開発されている。例えば、蛍光色素とアナライトとを含む被計測溶液とを透明容器に注入し、励起光を照射し蛍光色素からの蛍光強度を計測することによりアナライト濃度を計測する蛍光光度計が知られている。蛍光色素は、アナライトの存在によって性質が変化し励起光を受光するとアナライト濃度に対応した強度の蛍光を発生する。
 小型の蛍光光度計は、光源と光検出器と蛍光色素を含有したインジケータとを有している。そして、被計測溶液中のアナライトが出入り自在なインジケータに光源からの励起光を照射し、インジケータが発生する蛍光を光検出器が受光する。光検出器は光電変換素子であり、受光強度に応じた電気信号を出力する。光検出器からの電気信号をもとに溶液中のアナライト濃度が算出される。
 微量試料中のアナライトを計測するために、半導体製造技術及びMEMS技術を用いて作製される微小蛍光光度計が提案されている。以下、微小蛍光光度計のことを「蛍光センサ」という。
 図1及び図2に示す蛍光センサ104が国際公開第2010/119916号パンフレットに開示されている。蛍光センサ104の主機能部であるセンサ部110は、光電変換素子112が形成されているシリコン基板111と、透明中間層113と、フィルタ層114と、発光素子115と、透明保護層116と、インジケータ117と、遮光層118と、を有する。アナライト9は、遮光層118を通過して、インジケータ117に進入する。蛍光センサ104のフィルタ層114は励起光Eを遮断し蛍光Fを透過する。さらに、発光素子115は蛍光Fを透過する。
 蛍光センサ104では、発光素子115が発生した励起光Eがインジケータ117に入射すると、インジケータ117はアナライト濃度に応じた蛍光Fを発生する。
 インジケータ117が発生した蛍光Fの一部は、発光素子115とフィルタ層114とを通過し、光電変換素子112に入射し光電変換される。なお、発光素子115が光電変換素子112の方向(下方向)に出射した励起光Eは、フィルタ層114により蛍光強度と比較して計測上問題ないレベルまで減光される。蛍光センサ104は、構成が単純で小型化が容易である。
 しかし、蛍光センサ104は光電変換素子112が発光素子115の下面にあるため、光電変換素子112による蛍光Fの受光効率が良いとはいえない。このため、より検出感度が高い蛍光センサが求められていた。
 そこで、本発明は、上記事情に鑑みて成されたものであり、その目的とするところは、検出感度が高い蛍光センサを提供することである。
 本発明の一態様の蛍光センサは、基板部と、前記基板部上に配設され、励起光を受光してアナライトの濃度に応じた強度の蛍光を発生し、外形が部分円柱形状を呈するインジケータと、前記基板部に実装され励起光を発生する発光素子と、前記蛍光を電気信号に変換する光電変換素子と、を備えている。
従来の蛍光センサの断面構造を示した説明図である。 従来の蛍光センサの構造を示した分解図である。 第1実施形態のセンサシステムの構成図である。 同、蛍光センサの先端部の斜視図である。 同、蛍光センサの先端部における図4のV-V線に沿った断面図である。 同、蛍光センサの先端部における図5のVI-VI線に沿った断面図である。 同、蛍光センサの製造方法を説明し、型枠および遮光膜を示す断面図である。 同、蛍光センサの製造方法を説明し、型枠の凹部に遮光膜が型押しされた状態の断面図である。 同、蛍光センサの製造方法を説明し、型枠の凹部の遮光膜上にインジケータが型押しされた状態の断面図である。 同、蛍光センサの製造方法を説明し、型枠のインジケータ上に光電変換素子基板が配置された状態の断面図である。 同、蛍光センサの製造方法を説明し、型枠が取り外されて完成される蛍光センサを示す断面図である。 同、蛍光センサの動作を説明するための断面模式図である。 第2実施形態の蛍光センサの断面図である。 同、蛍光センサの動作を説明するための断面模式図である。 第3実施形態の蛍光センサの先端部の斜視図である。 同、蛍光センサの先端部における図15のXVI-XVI線に沿った断面図である。 同、変形例の蛍光センサの先端部の斜視図である。 同、図17とは異なる変形例の蛍光センサの先端部の斜視図である。 第4実施形態の蛍光センサの断面図である。 同、変形例の蛍光センサの断面図である。 発光素子形状の一例を示す断面図である。 発光素子形状の他例を示す断面図である。
 <第1実施形態>
 本発明の第1実施形態の蛍光センサ4及びセンサシステム1について説明する。図3に示すように、センサシステム1は、蛍光センサ4と、本体部2と、本体部2からの信号を受信し記憶するレシーバー3と、を有する。本体部2とレシーバー3との間の信号の送受信は無線または有線で行われる。
 蛍光センサ4は、被検体に穿刺される針部7と、針部7の後端部と接合されたコネクタ部8と、からなる。針部7は、細長い針本体部6と、主要機能部であるセンサ部10を含む針先端部5と、を有する。針先端部5、針本体部6、コネクタ部8は、同一材料により一体形成されていてもよいし、別々に作製され接合されていてもよい。
 コネクタ部8は、本体部2の嵌合部2Aと着脱自在に嵌合する。蛍光センサ4のセンサ部10から延設された複数の配線60は、コネクタ部8が本体部2の嵌合部2Aと機械的に嵌合することにより、本体部2と電気的に接続される。
 蛍光センサ4は、センサ部10を体内に挿入後、所定期間、例えば、1週間、継続して生体内の溶液(体液)のアナライト濃度を測定可能な針型センサである。しかし、センサ部10を体内に挿入しないで、採取した体液、または体外の流路を介して体内と循環する体液を、体外においてセンサ部10と接触させてもよい。
 本体部2は、センサ部10の駆動及び制御などを行う制御部2Bと、センサ部10から出力された信号を処理する演算部2Cと、を有する。なお、制御部2Bまたは演算部2Cの少なくともいずれかが、蛍光センサ4のコネクタ部8等に配設されていてもよいし、レシーバー3に配設されていてもよい。
 図示しないが、本体部2は、レシーバー3との間で無線信号を送受信するための無線アンテナと、電池等と、をさらに有する。レシーバー3との間の信号を有線にて送受信する場合には、本体部2は無線アンテナに代えて信号線を有する。なお、本体部2が必要な容量のメモリ部を有する場合にはレシーバー3はなくてもよい。
<センサ部の構造>
 次に、図4~図6を用いて、蛍光センサ4の主要機能部であるセンサ部10の構造について説明する。なお、図は、いずれも説明のための模式図であり、縦横の寸法比等は実際とは異なっており、一部の構成要素を図示しない場合もある。また、図に示すZ軸方向を蛍光センサ4における上方向という。さらに、図中、X軸方向が蛍光センサ4における前後方向の後方を示し、Y軸方向が左右方向の左方向を示している。
 第1実施形態の蛍光センサ4は、被検体の体液中のグルコースを検出する。図4から図6に示すように、本実施形態のセンサ部10は、外形略半円柱形状をしており、上左右方向に放射状に発光する発光素子15と、この発光素子15が上面に実装された検出基板部20と、この検出基板部20の先端部分に嵌着された半円柱形状の先端枠21と、検出基板部20の基端部分に嵌着された半円柱形状の基端枠22と、検出基板部20上に配設された外形が断面円弧状を呈し、すなわち部分円柱形状のインジケータ17と、インジケータ17をドーム状に覆う遮光膜19と、を有して構成されている。なお、ここでのインジケータ17の形状は、上述したように、外形が断面円弧状として部分円柱形状としている。この部分円柱形状とは、円柱を略半分に切断した形状である。
 ここでの蛍光センサ4は、上方から順に、遮光膜19、インジケータ17および検出基板部20が配設されている。すなわち、蛍光センサ4は、インジケータ17が発光素子15を有する検出基板部20上に配設されており、インジケータ17が遮光膜19に覆われている。なお、遮光膜19は、検出基板部20の縁辺部分(両側端部)に接着されている。
 ここでの検出基板部20には、発光素子15が実装される上面側にインジケータ17からの蛍光Fを電気信号に変換する光電変換素子であるフォトダーオード素子(以下「PD素子」という)12が形成されている。すなわち、本実施形態の蛍光センサ4は、発光素子15およびPD素子12が設けられた検出基板部20上にインジケータ17が配設され、インジケータ17が遮光膜19に覆われた構成となっている。
 検出基板部20には、遮光性が必要である。そのため、シリコン基板を用いるのが好適であり、光電変換素子としてはシリコン基板上に形成されたPD素子12が好適である。PD素子12は、例えば、n型シリコン半導体にp型拡散領域を形成した構造からなる。
 ここで、PD素子12表面上には、励起光Eが入射するのを防止するために、蛍光Fを透過し励起光Eを遮るフィルタが形成されていることが好ましい(不図示)。フィルタとしては、例えば、波長375nmの励起光Eは遮断するが、波長460nmの蛍光Fは透過する光吸収型フィルタを用いることが好ましい。
 なお、検出基板部20は、フレキシブルシートに遮光性のカバー層を積層した複合材料、例えば、アルミニウムまたは金を蒸着したポリイミドシートを用いることも可能である。また、ステンレス等の遮光性の金属箔とフレキシブルシートとを貼り合わせた複合材料を用いてもよい。
 フレキシブルシートはポリイミド以外にも様々な可撓性材料、例えば、PET(ポリエチレンテレフタレート)などのプラスティック材料、またはPDMS(ポリジメチルシロキサン)などのゴム材料を用いることができる。
 あるいは、遮光性を備えた薄い金属板を用いてもよい。
 検出基板部20として複合材料や金属板を用いた場合には、光電変換素子としては、ペンタセン等の有機半導体を蒸着法または塗布法で形成した後、部分的に不純物をドープすることにより作製される。
 例えば、有機半導体には、ペンタセン、アントラセン、もしくはルブレンなどの多環芳香族炭化水素、テトラシアノキノジメタン(TCNQ)などの低分子化合物、またはポリアセチレンやポリ-3-ヘキシルチオフェン(P3HT)もしくはポリパラフェニレンビニレン(PPV)などのポリマーなどを用いることができる。
 なお、光電変換素子としては、PD素子12に限定されることなく、フォトコンダクタまたはフォトトランジスタなどの各種光電変換素子から選択される。
 なお、ここでは、PD素子12が主体的に設けられる検出基板部20としているが、勿論、発光素子が主体的に実装される発光素子基板としてもよい。
 検出基板部20には、図3に示した配線60を構成し、発光素子15の外部電極と接続され駆動信号を供給する配線及びPD素子12の信号を伝送する配線が形成されている(いずれも不図示)。
 遮光膜19は、インジケータ17を覆うことで励起光E及び蛍光Fが外部へ漏光するのを防止すると同時に、外光G(図12参照)がインジケータ17に進入することを防止する。また、遮光膜19は、アナライト9が、その内部を通過して近接するインジケータ17に到達するのを妨げない、例えば、サブミクロンサイズのポア構造である。遮光膜19には、金属、セラミック等の無機材料または、ポリイミドもしくはポリウレタン等の有機ポリマーの基材にカーボンブラックが混入されたハイドロゲル類とのコンポジット組成物、または、セルロース類もしくはポリアクリルアミド等のアナライト透過性ポリマーにカーボンブラックを混入した樹脂、または、それらを積層化した樹脂等を用いる。ここでの遮光膜19は、アナライト9を含む体液がインジケータ17に進入する進入経路を構成している。
 検出基板部20に設けられる発光素子15としては、LED素子、有機EL素子、無機EL素子、またはレーザーダイオード素子等の所望の励起光Eを発光する発光素子の中から、蛍光Fを透過する素子が選択される。
 なお、発光素子15としては、蛍光透過率、光発生効率、励起光Eの波長選択性の広さ、及び励起作用のある波長以外の光を僅かしか発生しないこと等の観点から、LED素子が好ましい。さらにLED素子の中でも、サファイア基板上に形成された窒化ガリウム系化合物半導体よりなる紫外LED素子が、特に好ましい。
 発光素子15は、例えば30秒に1回の間隔で中心波長が375nm前後の励起光をパルス発光する。例えば、発光素子15への駆動信号の電流は1mA~100mAであり、発光のパルス幅は1ms~100msである。
 インジケータ17は、アナライト9及び励起光Eにより、励起光Eよりも長波長の蛍光Fを発生する蛍光色素を有するハイドロゲルからなる。すなわちインジケータ17は、試料中のアナライト濃度に応じた光量の蛍光Fを発生する蛍光色素が含まれる、励起光E及び蛍光Fが良好に透過するハイドロゲルから構成されている。なお、インジケータ17が蛍光色素を含まず、蛍光Fを発生する蛍光色素が溶液中に存在するアナライト9そのものでもよい。
 ハイドロゲルは、メチルセルロースもしくはデキストラン等の多糖類、アクリルアミド、メチロールアクリルアミド、ヒドロキシエチルアクリレート等のモノマーを重合して作製するアクリル系ハイドロゲル、またはポリエチレングリコールとジイソシアネートから作製するウレタン系ハイドロゲル等の水を含みやすい材料に蛍光色素を内包することにより形成されている。
 ハイドロゲルは、遮光膜19を介してセンサ外に離脱することがない大きさであることが好ましい。このため、ハイドロゲルは、構成する分子が分子量100万以上であるか、または架橋され流動しない形態であることが好ましい。
 一方、蛍光色素としては、グルコース等の糖類を測定する場合には、蛍光残基を有するフェニルボロン酸誘導体等が適している。蛍光色素は、高分子量材料としたり、または、ハイドロゲルに化学的に固定したりすることにより、センサ外に離脱することが防止されている。
 蛍光色素と、ゲル骨格形成材と、重合開始剤と、を含むリン酸緩衝液を、窒素雰囲気下で1時間放置し、重合することにより、インジケータ17が作製される。例えば、蛍光色素としては、9、10-ビス[N-[2-(5,5-ジメチルボリナン-2-イル)ベンジル]-N-[6‘-[(アクリロイルポリエチレングリコール-3400)カルボニルアミノ]-n-ヘキシルアミノ]メチル]-2-アセチルアントラセン(F-PEG-AAm)を、ゲル骨格形成材としては、アクリルアミドを、重合開始剤としては、ペルオキソ二硫酸ナトリウム及びN、N、N’、N‘-テトラメチルエチレンジアミンを用いる。
 また、発光素子15の外部電極は、絶縁性樹脂で封止されていることが好ましい。さらに、発光素子15が上面まで透明中間層で封止されていてもよい。樹脂封止されている発光素子15は、インジケータ17の水分の影響を受けにくい。
 検出基板部20の前後に嵌合される先端枠21および基端枠22は、シリコン、ガラスもしくは金属等、または、ポリプロピレンもしくはポリスチレン等の樹脂材料を用いる。また、これら先端枠21および基端枠22は、インジケータ17に連通する複数の開口部を設けて、これら開口部を覆うように遮光膜19を設けてもよい。これにより、インジケータ17へ前後方向からもアナライト9が進入でき、インジケータ17へのアナライト9の進入領域を増加させることができる。
 ここで、図7から図11を用いて蛍光センサ4の製造方法について簡単に説明する。 
 先ず、図7および図8に示すように、円弧状の凹部201が形成された型枠200に遮光膜19が型押しされる。
 次に、図9に示すように、予め設定された量のインジケータ17が型枠200の遮光膜19上に型押しされる。このときのインジケータ17は、製造し易いように乾燥状態のものが用いられる。インジケータ17の設定量は、水分を含んで膨張した状態が遮光膜19を設けた凹部201の容量と略同一となる量である。なお、液状のインジケータ17を型枠200の遮光膜19上に注入してもよい。こうして、遮光膜19に覆われたインジケータ17が完成する。
 続いて、図10に示すように、インジケータ17上に発光素子15およびPD素子12が実装された検出基板部20の面がインジケータ17に対向するように載置し、検出基板部20の端部と遮光膜19の端部とを接着する。
 こうして、図11に示すように、型枠200を取り外すことで、検出基板部20上に断面が半円形状(円弧状)の遮光膜19に覆われ、部分円柱形状のインジケータ17が設けられた蛍光センサ4の一部が完成する。
 そして、検出基板部20の先端部と先端枠21を嵌合して接着して、先端枠21の周端部と遮光膜19の円弧状先端部分を接着する。また、検出基板部20の基端部と基端枠22を嵌合して接着して、基端枠22の周端部と遮光膜19の円弧状基端部分を接着する。こうして、蛍光センサ4が制作される。
 本実施形態の蛍光センサ4では、図12に示すように、インジケータ17の平面部の略中央に設けられた発光素子15からの励起光Eを受けて、インジケータ17からアナライト9濃度に応じて発生した蛍光FがPD素子12に入射する。このとき、アナライト9濃度に応じて発光する蛍光Fは、インジケータ17からPD素子12の上面によって検出される。そのため、蛍光センサ4は、発光素子15からの励起光Eが部分円柱形状のインジケータ17に均一に照射され、従来の蛍光センサ104よりも高感度となる。すなわち、蛍光センサ4は、発光素子15からの励起光Eを効率よく利用できるため高感度となる。
 さらに、蛍光センサ4は、略半円柱形状として、インジケータ17の表面が円弧状に形成された部分円柱形状(断面円弧形状)をしており、インジケータ17の表面に遮光膜19で覆った構成としている。そのため、蛍光センサ4は、アナライト9が遮光膜19を介してインジケータ17への進入する面積を大きくとれるため、インジケータ17にアナライト9が進入し易くなり、その結果、アナライト9の濃度変化に対するレスポンスが格段に向上する。
 なお、インジケータ17の形状は、部分円柱形状に限定されることなく、ドーム状とした断面多角形状などでもよい。
<第2実施形態>
 次に、第2実施形態の蛍光センサ4Aについて説明する。蛍光センサ4Aは蛍光センサ4と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 本実施形態の蛍光センサ4Aは、第1実施形態の蛍光センサ4と比較すると、検出基板部20上にインジケータ17が設けられている点では同じであるが、図13に示すように、検出基板部20上にPD素子12を実装した点で異なっている。
 具体的には、検出基板部20は、上面に実装される発光素子15を避けた位置にPD素子12が形成されている。
 ここでの蛍光センサ4Aでは、図14に示すように、第1実施形態と同様に、遮光膜19からアナライト9がインジケータ17に進入する。そして、発光素子15で上左右の放射状に発光する励起光Eにより、インジケータ17からアナライト9の濃度に応じた蛍光Fが発生し、インジケータ17から下方に出射する蛍光Fが検出基板部20の上面に実装されたPD素子12により検出される。
 以上から本実施形態の蛍光センサ4Aは、第1実施形態の蛍光センサ4と同様な効果を備えて、より高感度となる。
<第3実施形態>
 次に、第3実施形態の蛍光センサ4Bについて説明する。蛍光センサ4Bは、第1実施形態の蛍光センサ4と類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 図15および図16に示す、本実施形態の蛍光センサ4Bは、第1実施形態の蛍光センサ4と比較すると、インジケータ17を覆うようにして部分円柱形状(断面円弧状)にする枠部18を設けた点が異なる。
 具体的には、ここでの蛍光センサ4Bは、インジケータ17を覆うように円弧状に形成された枠部18が設けられ、枠部18を覆うように遮光膜19が設けられている。枠部18は、10μm厚のステンレス、フレキシブル材などから形成され、蛍光センサ4Bにおける長手軸方向に沿って、アナライト9がインジケータ17に進入できるように複数のスリット18aが形成されている。
 枠部18は、インジケータ17の形状が部分円柱形状(断面円弧状)となるように変形される。なお、枠部18の側端部は、発光素子15が実装された非透明部材から形成された発光素子基板部20Aの上面に接着される。また、枠部18は、予め円弧状に形成したリジット基板でもよい。
 以上から本実施形態の蛍光センサ4Bは、第1実施形態の蛍光センサ4の効果に加え、遮光膜19のみでインジケータ17を覆う構成に比して、枠部18を設けることで強度が格段に向上する。
 なお、枠部18は、複数のスリット18aを蛍光センサ4Bにおける長手軸方向に沿った方向に限定されることなく、例えば、図17に示すように、蛍光センサ4Bにおける短手軸方向に沿ったスリット18bとしてもよい。また、枠部18に形成される複数のスリットは、螺旋状、格子状など如何なる形状でもよい。さらに、枠部18は、図18に示すように、金属等から形成されたメッシュ構造としてもよい。
<第4実施形態>
 次に、第4実施形態の蛍光センサ4C,4Dについて説明する。蛍光センサ4Cは、第1実施形態および第3実施形態の蛍光センサ4,4Bと類似しているので、同じ構成要素には同じ符号を付し、説明は省略する。
 図19に示す、本実施形態の蛍光センサ4Cは、第1実施形態および第3実施形態の蛍光センサ4,4Bと比較すると、PD素子12を枠部18に設けた点が異なる。
 具体的には、枠部18のインジケータ17に対向して接触する内面側に複数のPD素子12を形成している。すなわち、枠部18に形成された複数のPD素子12がインジケータ17から放射状に出射する蛍光を検出する。
 また、図20に示すように、蛍光センサ4Dにおけるここでの枠部18Aは、シリコン等から形成されたリジット基板またはフレキシブル基板にPD素子12を形成した複数の基板部31をフレキシブル基板32で連結して断面円弧状(半円形状)のドーム形状に形成した構成となっている。すなわち、枠部18Aは、インジケータ17が部分円柱形状(断面円弧状)となるように、インジケータ17を覆うように配設される。
 なお、ここでの枠部18Aは、基板部31、PD素子12およびフレキシブル基板32がアナライト9を含む体液がインジケータ17に進入できるように、図示しない微少貫通孔が形成されている。すなわち、枠部18Aは、体液が通過可能である。また、枠部18Aを覆う遮光膜19を設けてもよい。
 枠部18Aの微少貫通孔の大きさ、形状、位置、及び形成密度は、仕様により適宜、選択される。例えば、微少貫通孔は、整然と配列している必要はない。また、微少貫通孔を上面から観察したときの開口部の形状は、円形、矩形、または多角形等のいずれでもよい。
 このように微少貫通孔が形成された枠部18Aは、メンブレンフィルタと同様の構造であるが、例えば、シリコン板またはシリコン膜等に、微少貫通孔をパターニング形成することにより作製される。具体的には、微少貫通孔は、シリコン板等の表面に、フォトリソグラフィまたは自己組織化膜等によりエッチングマスクを形成した後に、ICP-RIE等のドライエッチングにより作製できる。微少貫通孔の形成には、マイクロドリル等による機械加工法を用いてもよい。
 また、枠部18Aには、アナライトを含む溶液が通過可能な多孔質半導体を用いてもよい。なお、多孔質とは構造中に外部と接続された空隙およびと気孔をもつ材料を意味する。空隙/気孔の、大きさ、分布及び形状は、溶液が通過可能であれば、規則性を有している必要はない。
 枠部18Aの開気孔率は5~75体積%が好ましく、特に好ましくは20~50体積%である。前記範囲以上であれば、体液が通過しやすく、前記範囲以下であれば所望の機械的強度が得られる。なお、開気孔率は、アルキメデス法により測定した値である。
 以上から本実施形態の蛍光センサ4C,4Dは、いずれも第1実施形態および第3実施形態の蛍光センサ4,4Bの効果に加え、インジケータ17からの蛍光Fを個別に受光する複数のPD素子12を枠部18,18Aに形成することで、より高感度となる。なお、以上の構成は、第3の実施の形態にて述べた、予め円弧状に形成したリジット基板の枠部18にも適用することができる。
 なお、発光素子15は、インジケータ17の部分円柱形状に合わせてレンズ、封止樹脂などにより、インジケータ17に対して励起光Eが均一に照射されるように形状を最適化して、例えば、図21に示すような砲弾形状または部分円柱形状などのドーム状、図22に示すような多角形状とすることが好ましい。
 以上の説明では、グルコース等の糖類を検出するセンサを例に説明したが、蛍光センサは、蛍光色素の選択によって、酵素センサ、pHセンサ、免疫センサ、または微生物センサ等の多様な用途に対応している。
 すなわち、本発明は、上述した実施形態及び変形例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。

Claims (7)

  1.  基板部と、
     前記基板部上に配設され、励起光を受光してアナライトの濃度に応じた強度の蛍光を発生し、外形が部分円柱形状を呈するインジケータと、
     前記基板部に実装され励起光を発生する発光素子と、
     前記蛍光を電気信号に変換する光電変換素子と、
     を備えたことを特徴とする蛍光センサ。
  2.  前記インジケータは、前記基板部に接着された前記アナライトが通過する遮光膜に覆われて前記部分円柱形状を呈することを特徴とする請求項1に記載の蛍光センサ。
  3.  前記インジケータは、前記基板部に接着された前記アナライトが通過自在な枠部に覆われて前記部分円柱形状を呈することを特徴とする請求項1または請求項2に記載の蛍光センサ。
  4.  前記枠部には、スリットが形成されていることを特徴とする請求項3に記載の蛍光センサ。
  5.  前記枠部は、メッシュ状であることを特徴とする請求項3に記載の蛍光センサ。
  6.  前記光電変換素子が前記基板部に形成されていることを特徴とする請求項1から請求項5のいずれかに記載の蛍光センサ。
  7.  前記光電変換素子が前記枠部に形成されていることを特徴とする請求項1から請求項5のいずれかに記載の蛍光センサ。
PCT/JP2012/074176 2012-09-21 2012-09-21 蛍光センサ WO2014045385A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074176 WO2014045385A1 (ja) 2012-09-21 2012-09-21 蛍光センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074176 WO2014045385A1 (ja) 2012-09-21 2012-09-21 蛍光センサ

Publications (1)

Publication Number Publication Date
WO2014045385A1 true WO2014045385A1 (ja) 2014-03-27

Family

ID=50340739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074176 WO2014045385A1 (ja) 2012-09-21 2012-09-21 蛍光センサ

Country Status (1)

Country Link
WO (1) WO2014045385A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529352A (ja) * 2001-05-04 2004-09-24 センサーズ・フォー・メディシン・アンド・サイエンス インコーポレーテッド 参照通路を備えたエレクトロオプティカルセンサ装置
JP2005513426A (ja) * 2001-12-11 2005-05-12 センサーズ・フォー・メディシン・アンド・サイエンス インコーポレーテッド 高性能蛍光光センサー
JP2012093128A (ja) * 2010-10-25 2012-05-17 Olympus Corp 蛍光センサ
JP2012520087A (ja) * 2009-04-13 2012-09-06 オリンパス株式会社 蛍光センサ、針型蛍光センサ、およびアナライトの計測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004529352A (ja) * 2001-05-04 2004-09-24 センサーズ・フォー・メディシン・アンド・サイエンス インコーポレーテッド 参照通路を備えたエレクトロオプティカルセンサ装置
JP2005513426A (ja) * 2001-12-11 2005-05-12 センサーズ・フォー・メディシン・アンド・サイエンス インコーポレーテッド 高性能蛍光光センサー
JP2012520087A (ja) * 2009-04-13 2012-09-06 オリンパス株式会社 蛍光センサ、針型蛍光センサ、およびアナライトの計測方法
JP2012093128A (ja) * 2010-10-25 2012-05-17 Olympus Corp 蛍光センサ

Similar Documents

Publication Publication Date Title
JP5307901B2 (ja) 蛍光センサ、針型蛍光センサ、およびアナライトの計測方法
JP5638343B2 (ja) 蛍光センサ
NO328830B1 (no) Forbedret fluorescens-maler I
US20180164263A1 (en) Optochemical sensor
KR101665871B1 (ko) 광루미네선스 기반의 웨어러블 센서 플랫폼 및 이를 이용한 원격 센싱장치
RU2009117658A (ru) Обнаружение состояния среды полностью интегральным преобразовательным устройством на основе гидрогеля
US11971360B2 (en) Optochemical sensor and method for measured value correction
JP2018525649A (ja) 分析装置
WO2014045384A1 (ja) 蛍光センサ
WO2013084975A1 (ja) 蛍光センサおよび蛍光センサの製造方法
WO2014045385A1 (ja) 蛍光センサ
US20100291703A1 (en) Biosensor
WO2014045387A1 (ja) 蛍光センサ
KR20170058823A (ko) 나노 플라즈모닉 바이오 센서
JP2015059869A (ja) 蛍光センサ
WO2014045388A1 (ja) 蛍光センサ
WO2014045386A1 (ja) 蛍光センサ
JP2012075750A (ja) 生体成分測定装置
JP2012247260A (ja) 蛍光センサ
KR102625129B1 (ko) 웨어러블 광 발광 센서 및 이를 구비한 원격 센싱장치
WO2013046993A1 (ja) 針型センサおよび針型センサユニット
WO2013161990A1 (ja) 蛍光センサ
KR102146877B1 (ko) 일체형 비표지식 바이오 센서 및 이를 이용한 분석 방법
KR20140081920A (ko) 실리콘 나노결정 바이오 센서 및 그의 제조 방법
WO2013094562A1 (ja) 蛍光センサ、センサシステムおよび蛍光センサの補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12884845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12884845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP