WO2014041823A1 - 硫化物固体電解質 - Google Patents

硫化物固体電解質 Download PDF

Info

Publication number
WO2014041823A1
WO2014041823A1 PCT/JP2013/053871 JP2013053871W WO2014041823A1 WO 2014041823 A1 WO2014041823 A1 WO 2014041823A1 JP 2013053871 W JP2013053871 W JP 2013053871W WO 2014041823 A1 WO2014041823 A1 WO 2014041823A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
comparative example
tetrahedron
potential
Prior art date
Application number
PCT/JP2013/053871
Other languages
English (en)
French (fr)
Inventor
祐樹 加藤
崇督 大友
了次 菅野
雅章 平山
Original Assignee
トヨタ自動車株式会社
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 国立大学法人東京工業大学 filed Critical トヨタ自動車株式会社
Priority to EP13837706.4A priority Critical patent/EP2897209A4/en
Priority to US14/425,249 priority patent/US20150214572A1/en
Priority to KR1020157005896A priority patent/KR101661075B1/ko
Priority to CN201380046088.4A priority patent/CN104604013B/zh
Publication of WO2014041823A1 publication Critical patent/WO2014041823A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a sulfide solid electrolyte.
  • a lithium ion secondary battery has a higher energy density than a conventional secondary battery and can be operated at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • a lithium ion secondary battery has a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between them.
  • the electrolyte used for the electrolyte layer include non-aqueous liquid and solid substances. Are known.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte that is flame retardant
  • all solid battery a lithium ion secondary battery having a layer including a solid electrolyte
  • Non-Patent Document 1 discloses a sulfide solid electrolyte Li 10 GeP 2 S 12 that exhibits a lithium ion conductivity of 12 mScm ⁇ 1 at 27 ° C. as a technique related to a solid electrolyte that can be used for an all-solid battery.
  • Non-Patent Document 1 exhibits higher lithium ion conductivity than the solid electrolyte previously reported. Therefore, it is expected to increase the energy density of the all-solid battery by using this sulfide solid electrolyte.
  • Li-Ge-PS-based sulfide solid electrolytes (hereinafter sometimes referred to as “LGPS-based sulfide solid electrolytes”) such as Li 10 GeP 2 S 12 that have been proposed so far are as follows. Since reductive decomposition occurs at a potential around 0.25 V with respect to lithium (vs Li / Li + , the same applies hereinafter), there is a concern that it is difficult to achieve high energy density.
  • an object of the present invention is to provide a sulfide solid electrolyte capable of lowering the reductive decomposition potential as compared with conventional LGPS sulfide solid electrolytes.
  • the present inventors have reduced the reductive decomposition potential as compared with the conventional LGPS sulfide solid electrolyte by replacing part of Ge, which is a constituent element of the LGPS sulfide solid electrolyte, with Al.
  • a sulfide solid electrolyte in which a part of Ge, which is a constituent element of the LGPS sulfide solid electrolyte, is replaced by Al is referred to as “Al-substituted LGPS sulfide solid electrolyte.
  • This is a sulfide solid electrolyte having a crystal structure in which T2 shares a vertex (hereinafter, the phase of the crystal structure may be referred to as “crystal phase A”).
  • 2 ⁇ [deg] 17.38, 20.18, 20.44, 23.56, by X-ray diffraction measurement using CuK ⁇ rays. 23.96, 24.93, 26.96, 29.07, 29.58, 31.71, 32.66, and 33.39 ( ⁇ 0.5 deg error is allowed for all these angles.
  • the crystal phase A can be identified.
  • the crystal phase A can be identified.
  • the value of M0 can be identified by, for example, ICP (Inductively Coupled Plasma) analysis.
  • the mole fraction of contained P is M1
  • the mole fraction of contained Al is M2.
  • M0 M2 / M1 is 0 ⁇ M0 ⁇ 0.323
  • Y1 and Y2 are elements selected from the group consisting of P, Sn, and Al, an octahedron formed by Li and S O, tetrahedron T1 formed by S and Y1, and tetrahedron T2 formed by S and Y2, octahedron O and tetrahedron T1 share a ridge, and octahedron O and tetrahedron It is a sulfide solid electrolyte having a crystal structure in which T2 shares a vertex.
  • the sulfide solid electrolyte using Sn instead of Ge which is a constituent element of the sulfide solid electrolyte (Al-substituted LGPS sulfide solid electrolyte) according to the first aspect of the present invention, also has a low reductive decomposition potential. Therefore, even in this form, it is possible to reduce the reductive decomposition potential as compared with the conventional LGPS sulfide solid electrolyte.
  • FIG. 6 is a diagram showing a capacity / potential curve of a sulfide solid electrolyte according to Example 2.
  • FIG. 6 is a diagram showing a capacity / potential curve of a sulfide solid electrolyte according to Example 3.
  • FIG. 6 It is a figure explaining the reductive decomposition potential of the sulfide solid electrolyte concerning Example 3.
  • FIG. It is a figure which shows the X-ray-diffraction measurement result of the sulfide solid electrolyte concerning the comparative example 1.
  • FIG. It is a figure which shows the capacity
  • FIG. It is a figure explaining the reductive decomposition potential of the sulfide solid electrolyte concerning the comparative example 1.
  • FIG. It is a figure which shows the X-ray-diffraction measurement result of the sulfide solid electrolyte concerning the comparative example 2.
  • FIG. It is a figure explaining the reductive decomposition potential of the sulfide solid electrolyte concerning the comparative example 2.
  • LGPS sulfide solid electrolytes have high lithium ion conductivity, but they undergo reductive decomposition at a potential around 0.25 V on the basis of lithium, which may result in insufficient energy density for all solid state batteries. was there.
  • the present inventors consider that the conventional LGPS-based sulfide solid electrolyte is reductively decomposed at a potential of about 0.25 V on the basis of lithium because the Ge that is weak to reduction is partly responsible, An attempt was made to produce a sulfide solid electrolyte (Al-substituted LGPS sulfide solid electrolyte) substituted with Al having high resistance to reduction.
  • the reductive decomposition potential of the sulfide solid electrolyte could be reduced to less than 0.21 V on the basis of lithium.
  • the sulfide solid electrolyte using Sn instead of Ge, which is a constituent element of the Al-substituted LGPS sulfide solid electrolyte had a reductive decomposition potential of less than 0.2 V on the basis of lithium. From these results, it is considered that the reductive decomposition potential can be reduced by satisfying the following conditions 1 and 2.
  • Z1 is an element selected from the group consisting of Li, Na, K, Mg, Ca, and Zn
  • Z2 and Z3 are P, Sb, Si, Ge, Sn, B, Al, Ga, In, Ti
  • the element is selected from the group consisting of Zr, V, and Nb, it is formed by octahedron O formed by Z1 and S, tetrahedron T1 formed by Z2 and S, and Z3 and S.
  • a phase having a tetrahedron T2, a crystal structure in which the tetrahedron T1 and the octahedron O share a ridge, and the tetrahedron T2 and the octahedron O share a vertex is a crystal phase A.
  • the crystal phase A can be identified.
  • the sulfide solid electrolyte is an Al-substituted LGPS sulfide solid electrolyte
  • the octahedron O is formed by Li and S
  • the tetrahedrons T1 and T2 are selected from the group consisting of P, Ge, and Al. Formed by the formed elements as well as S.
  • the sulfide solid electrolyte is a sulfide solid electrolyte using Sn instead of Ge, which is a constituent element of the Al-substituted LGPS sulfide solid electrolyte
  • the octahedron O is formed of Li and S
  • T1 and T2 are formed by an element selected from the group consisting of P, Sn, and Al and S.
  • Example 1 Electrolyte synthesis Under an argon atmosphere, 0.425560 g of Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.), 0.379162 g of P 2 S 5 (manufactured by Aldrich), 0.125778 g of GeS 2 (high purity, Inc.) Chemical Laboratory) and 0.069045 g of Al 2 S 3 (High Purity Chemical Laboratory Co., Ltd.) were weighed, and these were put together with 10 zirconia balls having a diameter of 10 mm together with a zirconia pot (capacity 45 ml). ) And the pot was sealed under an argon atmosphere.
  • the pot was attached to a planetary ball mill (Fritsch, P-7) and rotated at a speed of 370 revolutions per minute to mix for 40 hours. Subsequently, the obtained mixed powder was put in a quartz tube, and sealed under reduced pressure until the pressure in the quartz tube became 30 Pa. Thereafter, the sealed quartz tube was heated at 550 ° C. for 8 hours to synthesize the sulfide solid electrolyte according to Example 1.
  • the composition of the sulfide solid electrolyte according to Example 1 was Li 3.525 Al 0.175 Ge 0.175 P 0.65 S 4 , and the sulfide solid electrolyte according to Example 1 was M0 ⁇ 0.26923. It was.
  • the LiIn foil as the reference electrode is placed in the above-mentioned Macor cylinder containing the solid electrolyte layer and the working electrode so that the LiIn foil and the solid electrolyte layer are in contact, and this is pressed at 98 MPa, A reference electrode was disposed on the surface of the solid electrolyte layer on the side not in contact with the working electrode. Then, the electrochemical measurement cell concerning Example 1 was produced by bolting the solid electrolyte layer pinched
  • Example 2 The starting materials used for the synthesis of the electrolyte were 0.397341 g of Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.), 0.369102 g of P 2 S 5 (manufactured by Aldrich), 0.220129 g of GeS 2 (Kokai Co., Ltd.)
  • the solid electrolyte for sulfide according to Example 2 was the same as Example 1 except that the purity chemical laboratory) and 0.013426 g of Al 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were used. Synthesized.
  • Example 3 The starting materials for synthesizing the electrolyte were 0.403205 g of Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.), 0.414400 g of P 2 S 5 (manufactured by Aldrich), 0.129300 g of SnS 2 (high)
  • the sulfide solid electrolyte according to Example 3 was prepared in the same manner as in Example 1, except that the purity chemical laboratory) and 0.053094 g of Al 2 S 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were used. Synthesized.
  • the composition of the synthesized sulfide solid electrolyte according to Example 3 is Li 3.4125 Al 0.1375 Sn 0.1375 P 0.725 S 4 , and the sulfide solid electrolyte according to Example 3 is M0 ⁇ 0 . 18966. Further, the sulfide solid electrolyte according to Example 3 was subjected to X-ray diffraction measurement in the same manner as in Example 1. The results are shown in FIG. When FIG. 7 and FIG. 1 were compared, they had a peak at the same position. Therefore, the structure of the sulfide solid electrolyte according to Example 3 was the crystal phase A.
  • the sulfide solid electrolyte according to Comparative Example 1 was subjected to X-ray diffraction measurement in the same manner as in Example 1. The results are shown in FIG. When FIG. 10 and FIG. 1 are compared, the position of the peak is greatly shifted. Therefore, the structure of the sulfide solid electrolyte according to Comparative Example 1 was not the crystal phase A. Further, in the same manner as the method for manufacturing the electrochemical measurement cell according to Example 1, except that the sulfide solid electrolyte according to Comparative Example 1 was used instead of the sulfide solid electrolyte according to Example 1, Comparative Example 1 Such an electrochemical measurement cell was produced.
  • FIG. 11 shows a capacity / potential curve of the electrochemical measurement cell according to Comparative Example 1
  • FIG. 12 shows a relationship obtained by differentiating the capacity / potential curve shown in FIG.
  • the sulfide solid electrolyte according to Comparative Example 2 was subjected to X-ray diffraction measurement in the same manner as in Example 1. The results are shown in FIG. Comparing FIG. 13 with FIG. 1, the position of the peak was greatly shifted. Therefore, the structure of the sulfide solid electrolyte according to Comparative Example 2 was not the crystal phase A. Further, in the same manner as the method for manufacturing the electrochemical measurement cell according to Example 1, except that the sulfide solid electrolyte according to Comparative Example 2 was used instead of the sulfide solid electrolyte according to Example 1, Comparative Example 2 was used. Such an electrochemical measurement cell was produced.
  • FIG. 14 shows a capacity / potential curve of an electrochemical measurement cell according to Comparative Example 2
  • FIG. 15 shows a relationship obtained by differentiating the capacity / potential curve shown in FIG.
  • the composition of the synthesized sulfide solid electrolyte according to Comparative Example 3 is Li 3.56 Al 0.21 Ge 0.14 P 0.65 S 4 , and the sulfide solid electrolyte according to Comparative Example 3 is M0 ⁇ 0. 32308.
  • the sulfide solid electrolyte according to Comparative Example 3 was subjected to X-ray diffraction measurement in the same manner as in Example 1. The results are shown in FIG. The peaks resulting from the crystal phase A are indicated by arrows in FIG. In FIG. 16, in addition to the peak corresponding to the crystal phase A, a peak derived from an unknown impurity was confirmed. Therefore, the sulfide solid electrolyte according to Comparative Example 3 contained a structure other than the crystal phase A.
  • the composition of the synthesized sulfide solid electrolyte according to Comparative Example 4 is Li 3.595 Al 0.245 Ge 0.105 P 0.65 S 4 , and the sulfide solid electrolyte according to Comparative Example 4 is M0 ⁇ 0 . 37692. Further, the sulfide solid electrolyte according to Comparative Example 4 was subjected to X-ray diffraction measurement in the same manner as in Example 1. The results are shown in FIG. When FIG. 17 and FIG. 1 are compared, the position of the peak is greatly shifted. Therefore, it was confirmed that the structure of the sulfide solid electrolyte according to Comparative Example 4 is not the crystal phase A, and if the value of M0 is too large, the synthesis of the crystal phase A becomes difficult.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、従来のLGPS系硫化物固体電解質よりも還元分解電位を低下させることが可能な硫化物固体電解質を提供することを主目的とする。 本発明は、Li、Al、Ge、P、及び、Sを含み、含有されているPのモル分率をM1とし、含有されているAlのモル分率をM2とするとき、M0=M2/M1が0<M0<0.323であり、X1及びX2が、P、Ge、及び、Alからなる群より選択された元素であるとき、Li及びSによって形成される八面体Oと、S及びX1によって形成される四面体T1と、S及びX2によって形成される四面体T2とを有し、八面体Oと四面体T1とが稜を共有し、八面体Oと四面体T2とが頂点を共有する結晶構造である、硫化物固体電解質とする。

Description

硫化物固体電解質
 本発明は、硫化物固体電解質に関する。
 リチウムイオン二次電池は、従来の二次電池よりもエネルギー密度が高く、高電圧で作動させることができる。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車用やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池は、正極層及び負極層と、これらの間に配置された電解質層とを有し、電解質層に用いられる電解質としては、例えば非水系の液体状や固体状の物質等が知られている。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、難燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、固体電解質を含有する層が備えられる形態のリチウムイオン二次電池(以下において、「全固体電池」ということがある。)の開発が進められている。
 全固体電池に使用可能な固体電解質に関する技術として、例えば非特許文献1には、27℃で12mScm-1のリチウムイオン伝導率を示す硫化物固体電解質Li10GeP12が開示されている。
Nature Materials、vol.10、p.682-686、2011年、doi:10.1038/nmat3066
 非特許文献1に開示されている硫化物固体電解質は、それ以前に報告されていた固体電解質よりも高いリチウムイオン伝導度を示す。したがって、この硫化物固体電解質を用いることによって、全固体電池の高エネルギー密度化を図ることが期待されている。しかしながら、これまでに提案されている、Li10GeP12等のLi-Ge-P-S系硫化物固体電解質(以下において、「LGPS系硫化物固体電解質」ということがある。)は、リチウム基準(vs Li/Li。以下において同じ。)で0.25V付近の電位において還元分解してしまうため、高エネルギー密度化を図り難い虞があった。
 そこで本発明は、従来のLGPS系硫化物固体電解質よりも還元分解電位を低下させることが可能な硫化物固体電解質を提供することを課題とする。
 本発明者らは、鋭意検討の結果、LGPS系硫化物固体電解質の構成元素であるGeの一部をAlに置換することにより、還元分解電位を従来のLGPS系硫化物固体電解質よりも低下させることが可能になることを知見した(以下において、LGPS系硫化物固体電解質の構成元素であるGeの一部がAlに置換されている硫化物固体電解質を、「Al置換LGPS系硫化物固体電解質」ということがある。)。さらに、本発明者らは、鋭意検討の結果、Al置換LGPS系硫化物固体電解質の構成元素であるGeに代えてSnを用いた硫化物固体電解質(Geを含有する原料物質に代えてSnを含有する原料物質を用いて作製した硫化物固体電解質であって、Snの一部がAlによって置換されている硫化物固体電解質。以下において同じ。)も、還元分解電位を従来のLGPS系硫化物固体電解質よりも低下させることが可能になることを知見した。本発明は、このような知見に基づいて完成させた。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、Li、Al、Ge、P、及び、Sを含み、含有されているPのモル分率をM1とし、含有されているAlのモル分率をM2とするとき、M0=M2/M1が0<M0<0.323であり、X1及びX2が、P、Ge、及び、Alからなる群より選択された元素であるとき、Li及びSによって形成される八面体Oと、S及びX1によって形成される四面体T1と、S及びX2によって形成される四面体T2とを有し、八面体Oと四面体T1とが稜を共有し、八面体Oと四面体T2とが頂点を共有する結晶構造(以下において、当該結晶構造の相を「結晶相A」ということがある。)である、硫化物固体電解質である。
 本発明の第1の態様及び以下に示す本発明の第2の態様において、CuKα線によるX線回折測定により、2θ[deg]=17.38、20.18、20.44、23.56、23.96、24.93、26.96、29.07、29.58、31.71、32.66、及び、33.39(これらすべての角度について±0.5degの誤差は許容される。以下において同じ。)の位置にピークを有する場合は、結晶相Aであると同定することができる。また、不純物結晶由来のピークである2θ=27.33[deg]のピークが存在する場合は、このピーク強度IBと結晶相Aの2θ=29.58[deg]のピーク強度IAとが、IB/IA<1を満たす場合には、結晶相Aであると同定することができる。また、本発明の第1の態様及び以下に示す本発明の第2の態様において、M0の値は、例えば、ICP(Inductively Coupled Plasma)分析によって同定することができる。
  還元されやすい元素であるGeの一部を、還元され難い元素であるAlで置換することにより、硫化物固体電解質の還元分解電位を低下させることが可能になるので、従来のLGPS系硫化物固体電解質よりも還元分解電位を低下させることが可能になる。
 本発明の第2の態様は、Li、Al、Sn、P、及び、Sを含み、含有されているPのモル分率をM1とし、含有されているAlのモル分率をM2とするとき、M0=M2/M1が0<M0<0.323であり、Y1及びY2が、P、Sn、及び、Alからなる群より選択された元素であるとき、Li及びSによって形成される八面体Oと、S及びY1によって形成される四面体T1と、S及びY2によって形成される四面体T2とを有し、八面体Oと四面体T1とが稜を共有し、八面体Oと四面体T2とが頂点を共有する結晶構造である、硫化物固体電解質である。
 上記本発明の第1の態様にかかる硫化物固体電解質(Al置換LGPS系硫化物固体電解質)の構成元素であるGeに代えてSnを用いた硫化物固体電解質も、還元分解電位が低い。したがって、かかる形態であっても、従来のLGPS系硫化物固体電解質よりも還元分解電位を低下させることが可能になる。
 本発明によれば、従来のLGPS系硫化物固体電解質よりも還元分解電位を低下させることが可能な、硫化物固体電解質を提供することができる。
実施例1にかかる硫化物固体電解質のX線回折測定結果を示す図である。 実施例1にかかる硫化物固体電解質の容量・電位曲線を示す図である。 実施例1にかかる硫化物固体電解質の還元分解電位を説明する図である。 実施例2にかかる硫化物固体電解質のX線回折測定結果を示す図である。 実施例2にかかる硫化物固体電解質の容量・電位曲線を示す図である。 実施例2にかかる硫化物固体電解質の還元分解電位を説明する図である。 実施例3にかかる硫化物固体電解質のX線回折測定結果を示す図である。 実施例3にかかる硫化物固体電解質の容量・電位曲線を示す図である。 実施例3にかかる硫化物固体電解質の還元分解電位を説明する図である。 比較例1にかかる硫化物固体電解質のX線回折測定結果を示す図である。 比較例1にかかる硫化物固体電解質の容量・電位曲線を示す図である。 比較例1にかかる硫化物固体電解質の還元分解電位を説明する図である。 比較例2にかかる硫化物固体電解質のX線回折測定結果を示す図である。 比較例2にかかる硫化物固体電解質の容量・電位曲線を示す図である。 比較例2にかかる硫化物固体電解質の還元分解電位を説明する図である。 比較例3にかかる硫化物固体電解質のX線回折測定結果を示す図である。 比較例4にかかる硫化物固体電解質のX線回折測定結果を示す図である。 M0と還元分解電位との関係を説明する図である。
 従来のLGPS系硫化物固体電解質は、高いリチウムイオン伝導性を有するが、リチウム基準で0.25V付近の電位において還元分解してしまうため、全固体電池の高エネルギー密度化が不十分になる虞があった。本発明者らは、従来のLGPS系硫化物固体電解質が、リチウム基準で0.25V付近の電位において還元分解するのは、還元に弱いGeが一因であると考え、Geの一部を、耐還元性の高いAlで置換した硫化物固体電解質(Al置換LGPS系硫化物固体電解質)の作製を試みた。その結果、硫化物固体電解質の還元分解電位をリチウム基準で0.21V未満に低減することができた。さらに、Al置換LGPS系硫化物固体電解質の構成元素であるGeに代えてSnを用いた硫化物固体電解質は、還元分解電位がリチウム基準で0.2V未満であった。これらの結果から、以下の条件1及び条件2を満たすことにより、還元分解電位を低減可能であると考えられる。
 <条件1:結晶相Aの粉末であること>
  Z1がLi、Na、K、Mg、Ca、及び、Znからなる群より選択された元素であり、Z2及びZ3がP、Sb、Si、Ge、Sn、B、Al、Ga、In、Ti、Zr、V、及び、Nbからなる群より選択された元素であるとき、Z1及びSによって形成される八面体Oと、Z2及びSによって形成される四面体T1と、Z3及びSによって形成される四面体T2とを有し、四面体T1と八面体Oとが稜を共有し、四面体T2と八面体Oとが頂点を共有する結晶構造である相が、結晶相Aである。
  ここで、CuKα線によるX線回折測定により、2θ[deg]=17.38、20.18、20.44、23.56、23.96、24.93、26.96、29.07、29.58、31.71、32.66、及び、33.39の位置にピークを有する場合は、結晶相Aであると同定することができる。また、不純物結晶由来のピークである2θ=27.33[deg]のピークが存在する場合は、このピーク強度IBと結晶相Aの2θ=29.58[deg]のピーク強度IAとが、IB/IA<1を満たす場合には、結晶相Aであると同定することができる。
  なお、硫化物固体電解質が、Al置換LGPS系硫化物固体電解質である場合、八面体OはLi及びSによって形成され、四面体T1、T2は、P、Ge、及び、Alからなる群より選択された元素並びにSによって形成される。
  また、硫化物固体電解質が、Al置換LGPS系硫化物固体電解質の構成元素であるGeに代えてSnを用いた硫化物固体電解質である場合、八面体OはLi及びSによって形成され、四面体T1、T2は、P、Sn、及び、Alからなる群より選択された元素並びにSによって形成される。
 <条件2:Al置換量が所定の範囲であること>
  硫化物固体電解質に含有されているPのモル分率をM1とし、含有されているAlのモル分率をM2とするとき、M0=M2/M1が0<M0<0.323であることが必要である。後述するように、M0を0.323にすると不純物が混在するようになり、M0を0.323よりも大きくすると、結晶相Aの合成が困難になる。
 [実施例1]
  ・電解質の合成
  アルゴン雰囲気下で、0.425560gのLiS(日本化学工業株式会社製)、0.3796162gのP(アルドリッチ社製)、0.125778gのGeS(株式会社高純度化学研究所製)、及び、0.069045gのAl(株式会社高純度化学研究所製)を秤量した後、これらを、直径10mmのジルコニアボール10個とともに、ジルコニア製のポット(容量45ml)に入れ、アルゴン雰囲気下でポットを密閉した。その後、このポットを遊星型ボールミル機(フリッチュ社製、P-7)に取り付け、毎分370回転の速さで回転させることにより、40時間に亘って混合した。続いて、得られた混合粉末を石英管の中に入れ、石英管内の圧力が30Paになるまで減圧して密封した。その後、密封された石英管を550℃で8時間に亘って加熱することにより、実施例1にかかる硫化物固体電解質を合成した。実施例1にかかる硫化物固体電解質の組成はLi3.525Al0.175Ge0.1750.65であり、実施例1にかかる硫化物固体電解質はM0≒0.26923であった。
 ・X線回折
  X線回折装置(UltimaIII、株式会社リガク製。)によって、実施例1にかかる硫化物固体電解質について、CuKα線を用いたX線回折測定を行った。結果を図1に示す。図1に示したように、実施例1にかかる硫化物固体電解質は、2θ[deg]=17.38、20.18、20.44、23.56、23.96、24.93、26.96、29.07、29.58、31.71、32.66、及び、33.39の位置にピークを有していた。したがって、実施例1にかかる硫化物固体電解質の構造は結晶相Aであった。
 ・還元分解電位の測定
  100mgの実施例1にかかる硫化物固体電解質を、マコール製のシリンダに入れ、98MPaでプレスすることにより、固体電解質層を作製した。一方、SUS粉末及び実施例1にかかる硫化物固体電解質を、質量比で、SUS粉末:実施例1にかかる硫化物固体電解質=80:20となるように秤量して混合することにより作用極用粉末を得、この作用極用粉末12mgを、固体電解質層が入っている上記マコール製のシリンダの中に入れて392MPaでプレスすることにより、固体電解質層の一方の側に作用極を作製した。さらに、参照極であるLiIn箔を、LiIn箔と固体電解質層とが接触するように、固体電解質層及び作用極が入っている上記マコール製のシリンダに入れ、これを98MPaでプレスすることにより、作用極に接触していない側の固体電解質層の表面に参照極を配置した。その後、作用極及び参照極に挟まれている固体電解質層を、6N・cmでボルト締めすることにより、実施例1にかかる電気化学測定セルを作製した。
  還元分解電位は、実施例1にかかる電気化学測定セルの作用極の電位を0.15mA/cmの電流密度で下げていくことにより測定した。作用極の電位をこのように下げると、図2に示した容量・電位曲線が得られる。この容量・電位曲線を容量にて微分すると、図3に示した関係が得られ、図3で微分係数が変化する点(矢印で示した箇所)を還元分解電位とした。実施例1にかかる硫化物固体電解質の還元分解電位は、リチウム基準で0.1992Vであった。
 [実施例2]
  電解質を合成する際の出発原料を、0.397341gのLiS(日本化学工業株式会社製)、0.369102gのP(アルドリッチ社製)、0.220129gのGeS(株式会社高純度化学研究所製)、及び、0.013426gのAl(株式会社高純度化学研究所製)としたほかは、実施例1と同様にして、実施例2にかかる硫化物固体電解質を合成した。
  合成した実施例2にかかる硫化物固体電解質の組成は、Li3.385Al0.035Ge0.3150.65であり、実施例2にかかる硫化物固体電解質はM0≒0.05385であった。
  また、実施例2にかかる硫化物固体電解質について、実施例1と同様の方法でX線回折測定を行った。結果を図4に示す。図4と図1とを比較すると、これらは同じ位置にピークを有していた。したがって、実施例2にかかる硫化物固体電解質の構造は結晶相Aであった。
  さらに、実施例1にかかる硫化物固体電解質に代えて実施例2にかかる硫化物固体電解質を用いたほかは、実施例1にかかる電気化学測定セルの作製方法と同様にして、実施例2にかかる電気化学測定セルを作製した。そして、実施例1にかかる電気化学測定セルの場合と同様にして、実施例2にかかる電気化学測定セルの容量・電位曲線を得た。その後、これを容量にて微分し、微分係数が変化する点(矢印で示した箇所)を還元分解電位とした。実施例2にかかる硫化物固体電解質の還元分解電位は、リチウム基準で0.202Vであった。実施例2にかかる電気化学測定セルの容量・電位曲線を図5に、図5に示した容量・電位曲線を容量にて微分することによって得られた関係を図6に、それぞれ示す。
 [実施例3]
  電解質を合成する際の出発原料を、0.403205gのLiS(日本化学工業株式会社製)、0.414400gのP(アルドリッチ社製)、0.129300gのSnS(株式会社高純度化学研究所製)、及び、0.053094gのAl(株式会社高純度化学研究所製)としたほかは、実施例1と同様にして、実施例3にかかる硫化物固体電解質を合成した。
  合成した実施例3にかかる硫化物固体電解質の組成は、Li3.4125Al0.1375Sn0.13750.725であり、実施例3にかかる硫化物固体電解質はM0≒0.18966であった。
  また、実施例3にかかる硫化物固体電解質について、実施例1と同様の方法でX線回折測定を行った。結果を図7に示す。図7と図1とを比較すると、これらは同じ位置にピークを有していた。したがって、実施例3にかかる硫化物固体電解質の構造は結晶相Aであった。
  さらに、実施例1にかかる硫化物固体電解質に代えて実施例3にかかる硫化物固体電解質を用いたほかは、実施例1にかかる電気化学測定セルの作製方法と同様にして、実施例3にかかる電気化学測定セルを作製した。そして、実施例1にかかる電気化学測定セルの場合と同様にして、実施例3にかかる電気化学測定セルの容量・電位曲線を得た。その後、これを容量にて微分し、微分係数が変化する点(矢印で示した箇所)を還元分解電位とした。実施例3にかかる硫化物固体電解質の還元分解電位は、リチウム基準で0.192Vであった。実施例3にかかる電気化学測定セルの容量・電位曲線を図8に、図8に示した容量・電位曲線を容量にて微分することによって得られた関係を図9に、それぞれ示す。
 [比較例1]
  電解質を合成する際の出発原料を、0.390528gのLiS(日本化学工業株式会社製)、0.3665643gのP(アルドリッチ社製)、及び、0.2429069gのGeS(株式会社高純度化学研究所製)としたほかは、実施例1と同様にして、比較例1にかかる硫化物固体電解質を合成した。
  合成した比較例1にかかる硫化物固体電解質の組成は、Li3.35Ge0.350.65であり、比較例1にかかる硫化物固体電解質はM0=0であった。
  また、比較例1にかかる硫化物固体電解質について、実施例1と同様の方法でX線回折測定を行った。結果を図10に示す。図10と図1とを比較すると、ピークの位置が大きくずれていた。したがって、比較例1にかかる硫化物固体電解質の構造は結晶相Aではなかった。
  さらに、実施例1にかかる硫化物固体電解質に代えて比較例1にかかる硫化物固体電解質を用いたほかは、実施例1にかかる電気化学測定セルの作製方法と同様にして、比較例1にかかる電気化学測定セルを作製した。そして、実施例1にかかる電気化学測定セルの場合と同様にして、比較例1にかかる電気化学測定セルの容量・電位曲線を得た。その後、これを容量にて微分し、微分係数が変化する点(矢印で示した箇所)を還元分解電位とした。比較例1にかかる硫化物固体電解質の還元分解電位は、リチウム基準で0.258Vであった。比較例1にかかる電気化学測定セルの容量・電位曲線を図11に、図11に示した容量・電位曲線を容量にて微分することによって得られた関係を図12に、それぞれ示す。
 [比較例2]
  電解質を合成する際の出発原料を、0.39019gのLiS(日本化学工業株式会社製)、0.377515gのP(アルドリッチ社製)、及び、0.232295gのSnS(株式会社高純度化学研究所製)としたほかは、実施例1と同様にして、比較例2にかかる硫化物固体電解質を合成した。
  合成した比較例2にかかる硫化物固体電解質の組成は、Li3.275Sn0.2750.725であり、比較例2にかかる硫化物固体電解質はM0=0であった。
  また、比較例2にかかる硫化物固体電解質について、実施例1と同様の方法でX線回折測定を行った。結果を図13に示す。図13と図1とを比較すると、ピークの位置が大きくずれていた。したがって、比較例2にかかる硫化物固体電解質の構造は結晶相Aではなかった。
  さらに、実施例1にかかる硫化物固体電解質に代えて比較例2にかかる硫化物固体電解質を用いたほかは、実施例1にかかる電気化学測定セルの作製方法と同様にして、比較例2にかかる電気化学測定セルを作製した。そして、実施例1にかかる電気化学測定セルの場合と同様にして、比較例2にかかる電気化学測定セルの容量・電位曲線を得た。その後、これを容量にて微分し、微分係数が変化する点(矢印で示した箇所)を還元分解電位とした。比較例2にかかる硫化物固体電解質の還元分解電位は、リチウム基準で0.3374Vであった。比較例2にかかる電気化学測定セルの容量・電位曲線を図14に、図14に示した容量・電位曲線を容量にて微分することによって得られた関係を図15に、それぞれ示す。
 [比較例3]
  電解質を合成する際の出発原料を、0.432869gのLiS(日本化学工業株式会社製)、0.3823389gのP(アルドリッチ社製)、0.1013441gのGeS(株式会社高純度化学研究所製)、及び、0.083448gのAl(株式会社高純度化学研究所製)としたほかは、実施例1と同様にして、比較例3にかかる硫化物固体電解質を合成した。
  合成した比較例3にかかる硫化物固体電解質の組成は、Li3.56Al0.21Ge0.140.65であり、比較例3にかかる硫化物固体電解質はM0≒0.32308であった。
  また、比較例3にかかる硫化物固体電解質について、実施例1と同様の方法でX線回折測定を行った。結果を図16に示す。結晶相Aに起因するピークを図16に矢印で示した。図16では、結晶相Aに相当するピークに加え、未知の不純物由来のピークが確認された。したがって、比較例3にかかる硫化物固体電解質には結晶相A以外の構造が含まれていた。
 [比較例4]
  電解質を合成する際の出発原料を、0.44028gのLiS(日本化学工業株式会社製)、0.3851009gのP(アルドリッチ社製)、0.076557gのGeS(株式会社高純度化学研究所製)、及び、0.098059gのAl(株式会社高純度化学研究所製)としたほかは、実施例1と同様にして、比較例4にかかる硫化物固体電解質を合成した。
  合成した比較例4にかかる硫化物固体電解質の組成は、Li3.595Al0.245Ge0.1050.65であり、比較例4にかかる硫化物固体電解質はM0≒0.37692であった。
  また、比較例4にかかる硫化物固体電解質について、実施例1と同様の方法でX線回折測定を行った。結果を図17に示す。図17と図1とを比較すると、ピークの位置が大きくずれていた。したがって、比較例4にかかる硫化物固体電解質の構造は結晶相Aではなく、M0の値が大き過ぎると結晶相Aの合成が困難になることが確認された。
 実施例1乃至実施例3、及び、比較例1乃至比較例2の、還元分解電位の結果をまとめて図18に示す。図18に示したように、結晶相Aを有し、且つ、0<M0<0.323を満たす硫化物固体電解質とすることにより、従来のLGPS系硫化物固体電解質の還元分解電位(リチウム基準で0.25V付近)よりも、還元分解電位を低下させることが可能になることが確認された。

Claims (2)

  1. Li、Al、Ge、P、及び、Sを含み、
     含有されているPのモル分率をM1とし、含有されているAlのモル分率をM2とするとき、M0=M2/M1が0<M0<0.323であり、
     X1及びX2が、P、Ge、及び、Alからなる群より選択された元素であるとき、Li及びSによって形成される八面体Oと、S及びX1によって形成される四面体T1と、S及びX2によって形成される四面体T2とを有し、前記八面体Oと前記四面体T1とが稜を共有し、前記八面体Oと前記四面体T2とが頂点を共有する結晶構造である、硫化物固体電解質。
  2. Li、Al、Sn、P、及び、Sを含み、
     含有されているPのモル分率をM1とし、含有されているAlのモル分率をM2とするとき、M0=M2/M1が0<M0<0.323であり、
     Y1及びY2が、P、Sn、及び、Alからなる群より選択された元素であるとき、Li及びSによって形成される八面体Oと、S及びY1によって形成される四面体T1と、S及びY2によって形成される四面体T2とを有し、前記八面体Oと前記四面体T1とが稜を共有し、前記八面体Oと前記四面体T2とが頂点を共有する結晶構造である、硫化物固体電解質。
PCT/JP2013/053871 2012-09-11 2013-02-18 硫化物固体電解質 WO2014041823A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13837706.4A EP2897209A4 (en) 2012-09-11 2013-02-18 SOLID ELECTROLYTE WITH SULFIDE
US14/425,249 US20150214572A1 (en) 2012-09-11 2013-02-18 Sulfide solid electrolyte
KR1020157005896A KR101661075B1 (ko) 2012-09-11 2013-02-18 황화물 고체 전해질
CN201380046088.4A CN104604013B (zh) 2012-09-11 2013-02-18 硫化物固体电解质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012199569A JP5971756B2 (ja) 2012-09-11 2012-09-11 硫化物固体電解質
JP2012-199569 2012-09-11

Publications (1)

Publication Number Publication Date
WO2014041823A1 true WO2014041823A1 (ja) 2014-03-20

Family

ID=50277963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053871 WO2014041823A1 (ja) 2012-09-11 2013-02-18 硫化物固体電解質

Country Status (6)

Country Link
US (1) US20150214572A1 (ja)
EP (1) EP2897209A4 (ja)
JP (1) JP5971756B2 (ja)
KR (1) KR101661075B1 (ja)
CN (1) CN104604013B (ja)
WO (1) WO2014041823A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171483A1 (ja) * 2013-04-16 2014-10-23 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
US9231275B2 (en) * 2013-07-22 2016-01-05 Electronics And Telecommunications Research Institute Method for manufacturing sulfide-based solid electrolyte
JP5895917B2 (ja) * 2013-09-26 2016-03-30 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2017117635A (ja) * 2015-12-24 2017-06-29 出光興産株式会社 硫化物固体電解質、硫化物ガラス、電極合材及びリチウムイオン電池
WO2017123026A1 (ko) * 2016-01-12 2017-07-20 주식회사 엘지화학 황화물계 고체 전해질 및 이를 적용한 전고체 전지
KR102006723B1 (ko) 2016-01-12 2019-08-02 주식회사 엘지화학 황화물계 고체 전해질 및 이를 적용한 전고체 전지
CN106169607A (zh) * 2016-08-10 2016-11-30 中国科学院西安光学精密机械研究所 一种掺氧锂离子固体电解质及其制备方法
CN106129465B (zh) * 2016-08-10 2019-09-20 中国科学院西安光学精密机械研究所 一种掺氟锂离子固体电解质及其制备方法
CN110808407B (zh) * 2019-11-01 2020-11-20 宁德新能源科技有限公司 一种不含磷的硫化物固态电解质
JP2021197209A (ja) 2020-06-09 2021-12-27 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質、その製造方法、およびリチウムイオン二次電池
JPWO2022025212A1 (ja) 2020-07-30 2022-02-03
CN113823830B (zh) * 2021-09-10 2023-10-31 四川大学 Al3+掺杂改性的LGPS型锂离子固态电解质及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093995A (ja) * 2007-10-11 2009-04-30 Idemitsu Kosan Co Ltd リチウムイオン二次電池用硫化物系固体電解質
JP2011181495A (ja) * 2010-02-02 2011-09-15 Nippon Shokubai Co Ltd 無機電解質とそれを用いたリチウム二次電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129018B2 (ja) * 1993-03-22 2001-01-29 松下電器産業株式会社 リチウムイオン導電性固体電解質およびその合成法
JP5742562B2 (ja) * 2011-08-02 2015-07-01 トヨタ自動車株式会社 固体電解質材料含有体および電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093995A (ja) * 2007-10-11 2009-04-30 Idemitsu Kosan Co Ltd リチウムイオン二次電池用硫化物系固体電解質
JP2011181495A (ja) * 2010-02-02 2011-09-15 Nippon Shokubai Co Ltd 無機電解質とそれを用いたリチウム二次電池
WO2011118801A1 (ja) * 2010-03-26 2011-09-29 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NATURE MATERIALS, vol. 10, 2011, pages 682 - 686
See also references of EP2897209A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11127974B2 (en) 2018-05-14 2021-09-21 Samsung Electronics Co., Ltd. Method of preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared therefrom, and solid secondary battery including the sulfide electrolyte
US11799126B2 (en) 2019-05-31 2023-10-24 Samsung Electronics Co., Ltd. Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method

Also Published As

Publication number Publication date
US20150214572A1 (en) 2015-07-30
CN104604013B (zh) 2017-03-08
JP5971756B2 (ja) 2016-08-17
JP2014056661A (ja) 2014-03-27
KR20150041079A (ko) 2015-04-15
KR101661075B1 (ko) 2016-09-28
CN104604013A (zh) 2015-05-06
EP2897209A4 (en) 2016-01-27
EP2897209A1 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5971756B2 (ja) 硫化物固体電解質
Yao et al. Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage
Weng et al. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries
AU2010358633B2 (en) Sulfide solid electrolyte glass, lithium solid-state battery, and method for producing sulfide solid electrolyte glass
KR102443148B1 (ko) 배터리용 고상 캐소라이트 또는 전해질
CN109314274B (zh) 硫化物固体电解质
JP6475159B2 (ja) 複合材料
US10396395B2 (en) Solid electrolyte material and method for producing the same
KR20110055635A (ko) 전고체형 리튬 전지의 제조 방법
US20160141617A1 (en) Chromium-doped lithium titanate as cathode material
CN109641805B (zh) 硫化物固体电解质
WO2019104181A1 (en) Solid state electrolytes and methods of production thereof
Zhang et al. Spontaneous gas–solid reaction on sulfide electrolytes for high-performance all-solid-state batteries
EP3843192A1 (en) Ionic conductor containing high-temperature phase of licb9h10, method for manufacturing same, and solid electrolyte for all-solid-state battery containing said ion conductor
US10403933B2 (en) Solid electrolyte material and method for producing the same
JP7031553B2 (ja) 固体電解質
US9425482B2 (en) Sulfide solid electrolyte material and electrochemical device
CN110828904B (zh) 卤化锂与二维材料复合固态电解质材料及制备方法和应用
Jiang et al. Na+ Migration Mediated Phase Transitions Induced by Electric Field in the Framework Structured Tungsten Bronze
JP6090290B2 (ja) 複合体、電池、複合体の製造方法及びイオン伝導性固体の製造方法
Mirmira et al. Impact of Processing Methodology on the Performance of Hybrid Sulfide-Polymer Solid State Electrolytes for Lithium Metal Batteries
JP2012062212A (ja) 硫化物固体電解質ガラス、リチウム固体電池および硫化物固体電解質ガラスの製造方法
Hirayama et al. A liquid-phase-synthesized cathode composite with a three-dimensional ion/electron-conducting structure for all-solid-state lithium–sulfur batteries
Hao Materials and Interfacial Engineering for High-Performance All-Solid-State Batteries
WO2024125851A1 (en) Metal-substituted lithium-rich halide-based solid electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837706

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14425249

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013837706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013837706

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157005896

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE