WO2014034933A1 - リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014034933A1
WO2014034933A1 PCT/JP2013/073568 JP2013073568W WO2014034933A1 WO 2014034933 A1 WO2014034933 A1 WO 2014034933A1 JP 2013073568 W JP2013073568 W JP 2013073568W WO 2014034933 A1 WO2014034933 A1 WO 2014034933A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
particles
composite
ion secondary
electrode
Prior art date
Application number
PCT/JP2013/073568
Other languages
English (en)
French (fr)
Inventor
勝彦 直井
和子 直井
智志 久保田
啓裕 湊
修一 石本
賢次 玉光
Original Assignee
日本ケミコン株式会社
国立大学法人東京農工大学
有限会社ケー・アンド・ダブル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社, 国立大学法人東京農工大学, 有限会社ケー・アンド・ダブル filed Critical 日本ケミコン株式会社
Priority to KR1020157005051A priority Critical patent/KR102110777B1/ko
Priority to JP2014533154A priority patent/JP6236006B2/ja
Priority to CN201380045747.2A priority patent/CN104620425B/zh
Priority to EP13833980.9A priority patent/EP2894699B1/en
Priority to US14/425,296 priority patent/US10374222B2/en
Publication of WO2014034933A1 publication Critical patent/WO2014034933A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode material that provides a lithium ion secondary battery having a high energy density, a method for producing the electrode material, and a lithium ion secondary battery including a positive electrode and / or a negative electrode using the electrode material.
  • Lithium ion secondary batteries that use non-aqueous electrolytes with high energy density are widely used as power sources for information devices such as mobile phones and laptop computers.
  • the performance of these information devices and the amount of information handled In order to cope with an increase in power consumption associated with an increase in the energy consumption, an improvement in the energy density of the lithium ion secondary battery is desired.
  • low-pollution vehicles such as electric vehicles and hybrid vehicles that replace gasoline and diesel vehicles. Expectations are increasing, and it is desired to develop a large-sized lithium ion secondary battery having a high energy density as a motor drive power source for these low-pollution vehicles.
  • a lithium ion secondary battery using a current non-aqueous electrolyte includes lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material, graphite as a negative electrode active material, and a lithium salt such as lithium hexafluorophosphate (LiPF 6 ).
  • the mainstream is an electrolyte obtained by dissolving a solution in a non-aqueous solvent such as ethylene carbonate or propylene carbonate.
  • a non-aqueous solvent such as ethylene carbonate or propylene carbonate.
  • lithium cobaltate which is a positive electrode active material, has a problem that it is difficult to use in large quantities because cobalt is expensive. Also, the discharge capacity of lithium cobaltate is not always satisfactory.
  • active materials are generally used in the form of a composite material with a conductive agent.
  • a conductive agent conductive carbon such as carbon black, natural graphite, artificial graphite, or carbon nanotube is used.
  • Conductive carbon is used in combination with a low-conductivity active material to play a role in imparting conductivity to the composite material. In addition to this, it acts as a matrix that absorbs volume changes associated with the insertion and extraction of lithium in the active material. It also acts to secure an electron conduction path even if the active material is mechanically damaged.
  • composite materials of these active materials and conductive carbon are generally obtained by a method of mixing active material particles and a conductive agent, or a method of supporting an active material generated on a conductive agent along with the generation of the active material.
  • Patent Document 1 discloses LiMn 2 O 4 obtained by dissolving a lithium source such as lithium nitrate and lithium hydroxide in water, adding manganese nitrate as a manganese source, and then performing heat treatment.
  • Patent Document 2 As a method of supporting the generated metal oxide on the conductive carbon powder as the conductive agent together with the generation of the active material composed of the metal oxide, the applicant has disclosed in Patent Document 2 that the reactant is contained in the swirling reactor. We have proposed a reaction method in which a chemical reaction proceeds by applying shear stress and centrifugal force.
  • a composite material in which nanoparticles such as titanium oxide and ruthenium oxide are highly dispersed and supported on a conductive carbon powder by a sol-gel reaction accelerated by applying shear stress and centrifugal force is described in a lithium ion secondary battery. It has been shown to be suitable for the positive or negative electrode.
  • the conductive carbon basically does not contribute to the improvement of the energy density of the lithium ion secondary battery, and it is difficult to enter the gap formed between the active material particles. Increase. Therefore, there is a limit to the improvement in energy density by the positive electrode and / or the negative electrode using the composite material described above.
  • an object of the present invention is to provide an electrode material that leads to a lithium ion secondary battery having a high energy density.
  • the present invention relates to an electrode material for a lithium ion secondary battery, wherein the composite particles are filled in a gap formed between the particles of the first active material.
  • the particles of the first active material may be referred to as “coarse particles”, and the composite particles having a particle size smaller than the coarse particles may be referred to as “fine particles”.
  • the shape of the coarse particles, the fine particles, the conductive carbon particles and the second active material particles constituting the fine particles, and the conductive agent particles shown below are not limited in shape, and are needle-like, tubular or fibrous. It may be.
  • the term “particle size” means the diameter (short axis) of the particle cross section.
  • the particles of the active material may be primary particles or secondary particles in which the primary particles are aggregated, but the second active material adheres to the conductive carbon in a highly dispersed state with a low aggregation rate. It is preferable.
  • FIG. 1 schematically shows the electrode material of the present invention.
  • Coarse particles, fine particles of a composite having a relatively high conductivity, and a conductive agent added as necessary are added to a solvent in which a binder is dissolved as necessary and kneaded sufficiently (FIG. 1).
  • the pressure causes coarse particles to approach each other, and The gap formed between adjacent coarse particles is filled with the composite and the conductive agent added as necessary (FIG. 1 right).
  • the gap portion surrounded by a plurality of coarse particles in which most of the fine particles of the composite and the conductive agent added as necessary are in contact with each other Will exist.
  • the conductive carbon constituting the composite and the particles of the second active material adhering to the conductive carbon exist as a whole through the above-described kneading and rolling processes, and are not separated apart. The reason why most of the composite is filled in the gap surrounded by a plurality of coarse particles is not clear at this time, but at the time of formation of the composite, at least part of the conductive carbon structure is destroyed and elastic.
  • a conductive agent made of conductive carbon may be contained in addition to the coarse particles and the fine particles of the composite.
  • the conductivity of the mixture of the composite and the conductive agent is preferably 10 ⁇ 3 S / cm or more. This is because the effects of the present invention can be obtained particularly well when the conductivity is in the range of 10 ⁇ 3 S / cm or more.
  • the energy density of the lithium ion secondary battery is improved by the active material in the composite filled in the gap.
  • the first active material and the second active material are the same active material. That is, if the first active material is a positive electrode active material, the second active material is also a positive electrode active material, and if the first active material is a negative electrode active material, the second active material is also a negative electrode active material. is there.
  • the positive electrode active material and the negative electrode active material known positive electrode active materials and negative electrode active materials can be used without any particular limitation.
  • the first active material and the second active material need not be the same compound.
  • the second active material is preferably a metal oxide. This is because the metal oxide is less expensive than other active materials, and a composite of metal oxide and conductive carbon excellent in conductivity is preferably produced by the method of Patent Document 2.
  • solid solutions are also included in the range of metal oxides and composite oxides.
  • those in which an oxo acid ion structure such as phosphate and silicate is recognized are also included in the scope of the metal oxide and composite oxide in the present invention.
  • the particle size of the first active material particles is larger than the particle size of the composite particles. Therefore, as a matter of course, the conductive carbon and the second active material particles constituting the composite also have a particle size smaller than the particle size of the first active material particles.
  • the first active material particles have a particle size in the range of 100 nm to 100 ⁇ m
  • the conductive carbon particles in the composite have a particle size in the range of 10 nm to 300 nm
  • the second active material particles Preferably have a particle size in the range of 1 to 40 nm. This is because the effects of the present invention can be obtained particularly well within this range.
  • the present invention also provides particles of the first active material operable as the positive electrode active material or the negative electrode active material of the lithium ion secondary battery, the conductive carbon, and the first carbon material attached to the conductive carbon.
  • a method for producing an electrode material for a lithium ion secondary battery, wherein the composite particles are filled in a gap formed between the particles of the first active material 1) a) a preparation stage in which a reaction liquid in which conductive carbon powder is added to a solution in which at least one compound containing a metal constituting the metal oxide is dissolved is introduced into a swirlable reactor; and b) A loading step of loading the conductive carbon powder with the metal compound and / or the reaction product by swirling the reactor and applying shear stress and centrifugal force to the reaction solution; and c) Oxidizing the metal compound and / or its reaction product supported on the conductive carbon powder by heat-treating the conductive carbon powder carrying the metal compound and / or its reaction product.
  • the present invention relates to a method for producing an electrode material for a lithium ion secondary battery, comprising a kneading step to be applied.
  • the “nanoparticle” means a particle having a particle size of 1 to 200 nm, preferably 5 to 50 nm, particularly preferably 10 to 40 nm.
  • the description regarding the swivelable reactor in Patent Document 2 and the description regarding the reaction using this reactor are incorporated into the present specification as they are.
  • a conductive agent can be included in the electrode material.
  • the composite particles, the first active material particles, and the conductive agent are kneaded.
  • this invention relates also to the lithium ion secondary battery provided with the positive electrode and / or negative electrode which have an active material layer containing the electrode material of this invention mentioned above.
  • LiFePO 4 is a diagram showing the relationship between the complex quantity and the electrode density of the electrode material containing a composite having a coarse particle and LiFePO 4 nanoparticles, the relationship between (A) the overall electrode density, ( B) shows the relationship with the density of coarse particles.
  • LiFePO is a diagram showing the relation between acetylene black amount and the electrode density of the electrode material containing the 4 coarse particles and acetylene black.
  • the LiMn 2 O 4 is positive SEM photograph of the active material, (a) is a photograph for Example, (b) is a photograph of a comparative example.
  • the result of measuring the pore distribution of the positive electrode was LiMn 2 O 4 as an active material.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 and LiMn 2 O 4 is a Ragone plot of the lithium ion secondary battery comprising a positive electrode and an active material.
  • LiFePO 4 is positive SEM photograph of the active material, (a) is a photograph for Example, (b) is a photograph of a comparative example.
  • the LiFePO 4 which is Ragone plot for a lithium ion secondary battery comprising a positive electrode and an active material.
  • a SEM photograph of the positive electrode in which the LiCoO 2 as an active material (a) is a photograph for Example, (b) is a photograph of a comparative example.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 and LiCoO 2 is a Ragone plot of the lithium ion secondary battery comprising a positive electrode and an active material.
  • a LiCoO 2 LiMn 2 O 4 is a Ragone plot of the lithium ion secondary battery comprising a positive electrode and an active material.
  • Li a 4 Ti 5 O 12 is an SEM photograph of the negative electrode was an active material, (a) (b) is a photograph for Example, a photograph of the (c) Comparative Example. Of Li 4 Ti 5 O 12 is a Ragone plot of the lithium ion secondary battery comprising a negative electrode and an active material.
  • Electrode material of the present invention adheres to the particles of the first active material operable as the positive electrode active material or the negative electrode active material of the lithium ion secondary battery, the conductive carbon, and the conductive carbon. And particles of a composite with a second active material operable as the same active material as the first active material.
  • the particle size of the first active material particles is larger than the particle size of the composite particles, and the composite particles are filled in gaps formed between the first active material particles. .
  • first active material and the second active material a known positive electrode active material or negative electrode active material can be used without any particular limitation.
  • the first active material and the second active material need not be the same compound.
  • positive electrode active material a material that shows a voltage of 2.3 V or higher with respect to Li / Li + during charging is generally used, and as the negative electrode active material, generally 2.3 V with respect to Li / Li + during charging. Substances exhibiting a voltage of less than are used.
  • Examples of the positive electrode active material include layered rock salt type LiMO 2 , layered Li 2 MnO 3 —LiMO 2 solid solution, and spinel type LiM 2 O 4 (wherein M is Mn, Fe, Co, Ni or these Meaning a combination).
  • positive electrode active materials also include sulfur and sulfides such as Li 2 S, TiS 2 , MoS 2 , FeS 2 , VS 2 , Cr 1/2 V 1/2 S 2 , NbSe 3 , VSe 2 , NbSe 3.
  • sulfur and sulfides such as Li 2 S, TiS 2 , MoS 2 , FeS 2 , VS 2 , Cr 1/2 V 1/2 S 2 , NbSe 3 , VSe 2 , NbSe 3.
  • selenides such as Cr 2 O 5 , Cr 3 O 8 , VO 2 , V 3 O 8 , V 2 O 5 , V 6 O 13 , LiNi 0.8 Co 0.15 Al 0.
  • LiVOPO 4 LiV 3 O 5 , LiV 3 O 8 , MoV 2 O 8 , Li 2 FeSiO 4 , Li 2 MnSiO 4 , LiFePO 4 , LiFe 1/2 Mn 1/2 PO 4 , LiMnPO 4 , Li A composite oxide such as 3 V 2 (PO 4 ) 3 can be given.
  • Examples of the negative electrode active material include Fe 2 O 3 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiO, Ni 2 O 3 , TiO, TiO 2 , SnO, SnO 2 , oxides such as SiO 2 , RuO 2 , WO, WO 2 , ZnO, metals such as Sn, Si, Al, Zn, composite oxides such as LiVO 2 , Li 3 VO 4 , Li 4 Ti 5 O 12 , Examples thereof include nitrides such as Li 2.6 Co 0.4 N, Ge 3 N 4 , Zn 3 N 2 , and Cu 3 N.
  • the positive electrode active materials or negative electrode active materials form coarse particles when used as the first active material, and composites with conductive carbon when used as the second active material.
  • the first active material may be a single compound or a mixture of two or more compounds.
  • the second active material may also be a single compound or a mixture of two or more compounds.
  • the coarse particles of the first active material are commercially available.
  • LiFePO 4 manufactured by Clariant Japan, trade name Life Power (registered trademark) P2
  • LiNi 0.5 Co 0.2 Mn 0. 3 O 2 manufactured by BASF, trade name HED NCM-523
  • LiCoO 2 manufactured by Nippon Chemical Industry Co., Ltd., trade name CELLSEED C-5H
  • LiNi 0.8 Co 0.15 Al 0.05 O 2 manufactured by ECOPRO , Trade name NCAO2O
  • the composite oxide can be obtained by mixing raw materials containing each metal constituting the composite oxide and performing heat treatment.
  • the particle size of the coarse particles is preferably in the range of 100 nm to 100 ⁇ m, more preferably in the range of 1 to 80 ⁇ m, and particularly preferably in the range of 10 to 50 ⁇ m.
  • any carbon having conductivity can be used without any particular limitation.
  • Examples include carbon black such as ketjen black, acetylene black, channel black, fullerene, carbon nanotube, carbon nanofiber, amorphous carbon, carbon fiber, natural graphite, artificial graphite, graphitized ketjen black, activated carbon, mesoporous carbon And so on.
  • vapor grown carbon fiber can be used.
  • These carbon powders may be used alone or in combination of two or more. It is preferable that at least a part of the carbon powder is a carbon nanofiber. This is because a highly conductive composite can be obtained.
  • the particle size of the conductive carbon particles is preferably in the range of 10 nm to 300 nm, more preferably in the range of 10 to 100 nm, and particularly preferably in the range of 10 to 50 nm.
  • the second active material for constituting the composite is generally nanoparticles, and preferably has a particle size in the range of 1 to 40 nm.
  • the method for producing the composite is not particularly limited as long as the composite particles having a particle diameter smaller than the coarse particles of the first active material can be obtained.
  • the method for producing the composite is not particularly limited as long as the composite particles having a particle diameter smaller than the coarse particles of the first active material can be obtained.
  • the composite is preferably formed by the method utilizing the reaction in the ultracentrifugal force field disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2007-160151). Obtainable.
  • the formation of the complex using the reaction in this ultracentrifugal force field is a) a preparation step of introducing a reaction liquid in which conductive carbon powder is added to a solution in which at least one compound containing a metal constituting a metal oxide is dissolved, into a swirlable reactor; and b) A loading step of loading the conductive carbon powder with the metal compound and / or the reaction product by swirling the reactor and applying shear stress and centrifugal force to the reaction solution; and c) Oxidizing the metal compound and / or its reaction product supported on the conductive carbon powder by heat-treating the conductive carbon powder carrying the metal compound and / or its reaction product. This is done by a process that includes a heat treatment step that converts the product into nanoparticles.
  • metal oxide raw material a compound containing a target metal (hereinafter referred to as “metal oxide raw material”) and a conductive carbon powder are added to a solvent, and the metal oxide raw material is dissolved in the solvent, whereby the reaction liquid is obtained. Get.
  • any liquid that does not adversely affect the reaction can be used without particular limitation, and water, methanol, ethanol, isopropyl alcohol, and the like can be preferably used. Two or more solvents may be mixed and used.
  • a compound that is soluble in the above solvent can be used without any particular limitation.
  • examples include inorganic metal salts such as halides, nitrates, sulfates and carbonates of the above metals, organometallic salts such as formate, acetate, oxalate, methoxide, ethoxide, isopropoxide, or mixtures thereof.
  • organometallic salts such as formate, acetate, oxalate, methoxide, ethoxide, isopropoxide, or mixtures thereof.
  • Can be used. These compounds may be used alone or in combination of two or more. You may mix and use the compound containing a different metal by predetermined amount.
  • reaction inhibitor or a reaction accelerator can be added to the reaction liquid in order to support the target reaction product on the conductive carbon in the following supporting step.
  • the second active material is Li 4 Ti 5 O 12
  • a liquid obtained by adding titanium alkoxide and lithium acetate as a metal oxide raw material to a mixing medium of isopropanol and water is used as a reaction liquid.
  • Li 4 Ti 5 O 12 can be obtained by adding formic acid, lactic acid or the like to the reaction solution to delay the hydrolysis and polycondensation reaction of titanium alkoxide.
  • the second active material is SnO 2
  • the use of a solution in which tin chloride is dissolved in water as the reaction solution slows the hydrolysis and polycondensation reaction (sol-gel reaction) of tin chloride.
  • the efficiency of supporting the polycondensation reaction product on the conductive carbon is low, but a reaction accelerator such as NaOH, KOH, Na 2 CO 3 , NaHCO 3 , or NH 4 OH is added for the purpose of promoting the reaction. As a result, the efficiency of supporting the polycondensation reaction product on the conductive carbon can be improved.
  • the composite is a composite of conductive carbon and a metal oxide containing a transition metal selected from the group consisting of Mn, Fe, Co, and Ni attached to the conductive carbon.
  • a reaction liquid containing water, at least one compound containing the above transition metal, and conductive carbon powder and having a pH in the range of 9 to 11. According to this method, the transition metal hydroxide fine particles are efficiently supported on the conductive carbon powder in the following supporting step.
  • a water-soluble compound can be used without any particular limitation.
  • the above transition metal halides, inorganic metal salts such as nitrates and sulfates, organic metal salts such as formates and acetates, or mixtures thereof can be used. These compounds may be used alone or in combination of two or more. You may mix and use the compound containing a different transition metal by predetermined amount.
  • the pH of the reaction solution is preferably adjusted with an aqueous solution in which a Li hydroxide is dissolved.
  • an aqueous solution of lithium oxide, ammonia and amine can also be used.
  • a single compound may be used for adjusting the pH, or two or more compounds may be mixed and used.
  • the reaction solution includes a solution obtained by adding the conductive carbon powder and the water-soluble salt of the transition metal to water and dissolving the water-soluble salt, a solution obtained by dissolving Li hydroxide in water, Can be easily prepared by mixing.
  • the pH of the reaction solution is adjusted to a range of 9-11. If the pH is less than 9, the loading efficiency of the hydroxide to the conductive carbon powder in the following loading stage is low. If the pH exceeds 11, the insolubilization rate of the hydroxide in the loading stage is too high, and fine water It is difficult to obtain an oxide.
  • any reactor can be used as long as it can apply a supercentrifugal force to the reaction solution.
  • FIG. 1 of Patent Document 2 Japanese Patent Laid-Open No. 2007-160151.
  • a reactor having a concentric cylinder of an outer cylinder and an inner cylinder, in which a through-hole is provided in a side surface of the rotatable inner cylinder, and a slat plate is disposed at an opening of the outer cylinder is preferably used.
  • the form which uses this suitable reactor is demonstrated.
  • the reaction solution for reaction in the ultracentrifugal force field is introduced into the inner cylinder of the reactor.
  • a reaction liquid prepared in advance may be introduced into the inner cylinder, or may be introduced by preparing the reaction liquid in the inner cylinder.
  • the inner cylinder After putting the solvent, conductive carbon powder and metal oxide raw material in the inner cylinder, turning the inner cylinder to dissolve the metal oxide raw material in the solvent and dispersing the conductive carbon powder in the liquid, the inner cylinder It is preferable to temporarily stop the rotation, then introduce a reaction accelerator or a pH adjusting solution, and rotate the inner cylinder again. This is because the dispersion of the conductive carbon powder is improved by the first turning, and the dispersibility of the supported metal oxide nanoparticles is improved.
  • the metal oxide raw material and / or the reaction product thereof is loaded on the conductive carbon powder by rotating the reactor and applying shear stress and centrifugal force to the reaction solution.
  • a metal oxide raw material may be supported, or a sol-gel reaction product may be supported.
  • the reaction solution includes water, a metal oxide raw material containing a transition metal selected from the group consisting of Mn, Fe, Co, and Ni, and a conductive carbon powder, and has a pH in the range of 9 to 11.
  • hydroxide nuclei are generated in the supporting stage, and the generated hydroxide nuclei and the conductive carbon powder are dispersed.
  • a hydroxide is supported.
  • the conversion from the metal oxide raw material to the reaction product and the loading of the metal oxide raw material and / or the reaction product on the conductive carbon powder depend on the shear stress applied to the reaction liquid and the mechanical energy of centrifugal force. Although considered to be realized, this shear stress and centrifugal force are generated by the centrifugal force applied to the reaction liquid by the rotation of the reactor.
  • the centrifugal force applied to the reaction solution is a centrifugal force in a range generally referred to as “ultracentrifugal force”, and is generally 1500 kgms ⁇ 2 or more, preferably 70000 kgms ⁇ 2 or more, particularly preferably 270000 kgms ⁇ 2 or more.
  • the distance between the inner cylinder outer wall surface and the outer cylinder inner wall surface is preferably 5 mm or less, more preferably 2.5 mm or less, and particularly preferably 1.0 mm or less.
  • the distance between the inner cylinder outer wall surface and the outer cylinder inner wall surface can be set by the width of the reactor plate and the amount of the reaction liquid introduced into the reactor.
  • the turning time of the inner cylinder There is no strict limit on the turning time of the inner cylinder, and it varies depending on the amount of the reaction solution and the turning speed of the inner cylinder (the value of the centrifugal force), but is generally in the range of 0.5 to 10 minutes. .
  • the inner cylinder stops turning, and the conductive carbon powder carrying the metal oxide raw material and / or the reaction product is recovered.
  • the recovered material is washed as necessary and then heat-treated to convert the metal oxide raw material supported on the conductive carbon powder and / or its reaction product into oxide nanoparticles. To do.
  • the atmosphere of the heat treatment is not strictly limited as long as the target metal oxide is obtained.
  • Heat treatment in a vacuum heat treatment in an inert atmosphere such as nitrogen or argon, or heat treatment in an oxygen-containing atmosphere such as oxygen or air may be used.
  • the temperature and time of the heat treatment There is no strict limitation on the temperature and time of the heat treatment, and it varies depending on the composition and amount of the target oxide.
  • the heat treatment in an oxygen-containing atmosphere is performed at a temperature of 200 to 300 ° C. for 10 hours.
  • Heat treatment in an inert atmosphere is performed at a temperature of 250 to 900 ° C. for 10 minutes to 10 hours
  • heat treatment in a vacuum is performed at a temperature of room temperature to 200 ° C. for 10 minutes to 10 hours.
  • the metal oxide generated in the heat treatment step has a fine and uniform size.
  • Particles specifically nanoparticles.
  • the properties of the nanoparticles vary depending on various conditions such as the composition of the reaction liquid in the preparation stage, the rotational speed of the reactor in the loading stage, and the heating atmosphere in the heat treatment stage.
  • Very fine particles having a particle size of the order of 1 nm supported in a highly dispersed state on the conductive carbon powder may be formed, and have a particle size of the order of 10 nm adhered to the conductive carbon with good dispersibility. Particles may be formed.
  • Composite oxidation selected from layered rock salt type LiMO 2 , layered Li 2 MnO 3 —LiMO 2 solid solution, spinel type LiM 2 O 4 (where M stands for Mn, Fe, Co, Ni or combinations thereof)
  • the transition metal selected from the group consisting of Mn, Fe, Co and Ni obtained in the above-mentioned supporting step is subjected to the heat treatment prior to the heat treatment.
  • the conductive carbon powder carrying the hydroxide is washed as necessary, mixed with a Li compound, and the mixture can be heat-treated.
  • a hydroxide such as Mn supported on the conductive carbon powder and a compound of Li react to convert into nanoparticles of the composite oxide, particularly nanoparticles having a primary particle size of 10 to 40 nm.
  • a compound containing Li can be used without any particular limitation, and examples thereof include inorganic metal salts such as Li hydroxide, carbonate, halide, nitrate, sulfate, formate, and acetic acid.
  • Organic metal salts such as salts, oxalates and lactates, or mixtures thereof can be used. These compounds may be used alone or in combination of two or more.
  • Use of a hydroxide is preferable because impurities such as a sulfur compound and a nitrogen compound do not remain and a composite oxide can be obtained quickly.
  • any medium that does not adversely affect the composite can be used without particular limitation, and water, methanol, ethanol, isopropyl alcohol, and the like can be preferably used. It can be particularly preferably used.
  • Heat treatment in a vacuum heat treatment in an inert atmosphere such as nitrogen or argon, or heat treatment in an oxygen-containing atmosphere such as oxygen or air may be used.
  • the temperature and time of the heat treatment is performed at a temperature of 200 to 300 ° C. for 10 minutes.
  • Heat treatment in an inert atmosphere for about 10 hours at a temperature of about 250 to 600 ° C. for 10 minutes to 10 hours, and heat treatment in a vacuum at a temperature of room temperature to about 200 ° C. for 10 minutes to 10 hours .
  • the heat treatment is preferably performed at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere. This is because if the temperature is 300 ° C. or lower, the conductive carbon powder is not burnt down even in an oxygen-containing atmosphere, and a composite oxide can be obtained with good crystallinity. When heat treatment is performed in an atmosphere not containing oxygen, the composite oxide may be reduced, and the target composite oxide may not be obtained.
  • the reaction between the hydroxide such as Mn and the Li compound can be performed quickly and uniformly.
  • the resulting complex oxide nanoparticles also have a fine and uniform size.
  • spinel may be generated at the same time.
  • hydrothermal treatment following the above-described heat treatment, preferably heat treatment at a temperature of 200 to 300 ° C. in an oxygen-containing atmosphere.
  • the spinel is denatured into a layered structure by hydrothermal treatment, and a layered structure with good purity can be obtained.
  • Hydrothermal treatment can be carried out in hot water at 100 ° C. or higher and 1 atm or higher after introducing heat-treated powder and water, preferably a lithium hydroxide aqueous solution, into the autoclave.
  • the fine particles of the composite having relatively high conductivity and the coarse particles of the first active material having a particle size larger than the particles of the composite are added to a solvent in which a binder is dissolved as necessary, and kneaded. Then, after applying the obtained kneaded material on a current collector for a positive electrode or a negative electrode and drying it as necessary, when the coating film is subjected to a rolling treatment, the pressure causes coarse particles to approach each other. In addition to the contact, the fine particles of the composite are extruded and filled in the gaps formed between the adjacent coarse particles (FIG. 1 right), and the electrode material of the present invention is obtained. Most of the particles of the composite are present in a gap surrounded by a plurality of coarse particles that are in contact with each other.
  • the conductive carbon constituting the composite and the particles of the second active material adhering to the conductive carbon exist as a whole through the above-described kneading and rolling processes, and are not separated apart.
  • the mixing ratio of the fine particles and the coarse particles is preferably in the range of 5 to 30:95 to 70 by mass ratio. If it exceeds this range, the energy density of the obtained electrode material tends to decrease.
  • the binder and solvent at the time of kneading, and the current collector for the positive electrode or the negative electrode will be described in the description of the lithium ion secondary battery below.
  • a composite having a relatively high conductivity is formed in a gap formed between adjacent coarse particles as shown on the right in FIG.
  • An electrode material filled with both fine particles and a conductive agent is obtained.
  • the conductivity of the mixture of the composite and the conductive agent is preferably 10 ⁇ 3 S / cm or more.
  • any conductive carbon can be used without particular limitation.
  • Examples include carbon black such as ketjen black, acetylene black, channel black, fullerene, carbon nanotube, carbon nanofiber, amorphous carbon, carbon fiber, natural graphite, artificial graphite, graphitized ketjen black, activated carbon, mesoporous carbon And so on.
  • vapor grown carbon fiber can be used. These carbon powders may be used alone or in combination of two or more.
  • grains of the conductive carbon used as a electrically conductive agent also have a particle size smaller than the particle size of the coarse particle of a 1st active material similarly to a composite_body
  • the particle size is preferably in the range of 10 nm to 300 nm, more preferably in the range of 10 to 100 nm, and particularly preferably in the range of 10 to 50 nm.
  • the electrode material of this invention is suitable for a lithium ion secondary battery. Therefore, the present invention also provides a lithium ion comprising a positive electrode and / or a negative electrode having an active material layer containing the electrode material of the present invention, and a separator holding a non-aqueous electrolyte disposed between the negative electrode and the positive electrode.
  • a secondary battery is provided.
  • the active material layer for the positive electrode is obtained by adding the above-mentioned composite fine particles containing the positive electrode active material and coarse particles made of the positive electrode active material to a solvent in which a binder is dissolved as necessary, and kneading sufficiently.
  • the obtained kneaded material can be prepared by applying the material on a current collector for the positive electrode by a doctor blade method or the like, drying it as necessary, and then subjecting the coating film to a rolling treatment. Further, the obtained kneaded product may be formed into a predetermined shape and pressure-bonded on a current collector, followed by rolling treatment.
  • the active material layer for the negative electrode is sufficiently kneaded by adding fine particles of the composite containing the negative electrode active material and coarse particles made of the negative electrode active material to a solvent in which a binder is dissolved as necessary. Then, the obtained kneaded material can be prepared by applying it onto a current collector for a negative electrode by a doctor blade method or the like, drying it as necessary, and then subjecting the coating film to a rolling treatment. Further, the obtained kneaded product may be formed into a predetermined shape and pressure-bonded on a current collector, followed by rolling treatment.
  • Either one of the positive electrode and the negative electrode is an electrode material other than the electrode material of the present invention, for example, a composite material including active material particles having a relatively large particle diameter and a conductive agent, and not including composite microparticles. May be used.
  • a conductive material such as platinum, gold, nickel, aluminum, titanium, steel, or carbon can be used.
  • shape of the current collector any shape such as a film shape, a foil shape, a plate shape, a net shape, an expanded metal shape, and a cylindrical shape can be adopted.
  • binder known binders such as polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinyl fluoride, and carboxymethyl cellulose are used.
  • the binder content is preferably 1 to 30% by mass with respect to the total amount of the mixed material. If it is 1% by mass or less, the strength of the active material layer is not sufficient, and if it is 30% by mass or more, disadvantages such as a decrease in the discharge capacity of the negative electrode and an excessive internal resistance occur.
  • a polyolefin fiber nonwoven fabric or a glass fiber nonwoven fabric is preferably used.
  • an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent is used, and a known non-aqueous electrolytic solution can be used without any particular limitation.
  • Examples of the solvent for the non-aqueous electrolyte include electrochemically stable ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, 3-methyl sulfolane, ⁇ -butyrolactone, acetonitrile, and dimethoxyethane, N-methyl-2-pyrrolidone, dimethylformamide or a mixture thereof can be preferably used.
  • a salt that generates lithium ions when dissolved in an organic electrolytic solution can be used without any particular limitation.
  • LiPF 6, LiBF 4, LiClO 4, LiN (CF 3 SO 2) 2, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (SO 2 C 2 F 5) 2, LiAsF 6, LiSbF 6 Or a mixture thereof can be preferably used.
  • a solute of the nonaqueous electrolytic solution a quaternary ammonium salt or a quaternary phosphonium salt having a quaternary ammonium cation or a quaternary phosphonium cation can be used in addition to a salt that generates lithium ions.
  • Example 1 As shown in FIG. 1 of Patent Document 2 (Japanese Patent Laid-Open No. 2007-160151), it is composed of a concentric cylinder of an outer cylinder and an inner cylinder. A solution obtained by adding 2.49 g of Co (CH 3 COO) 2 .4H 2 O and 0.225 g of ketjen black (particle size of about 40 nm) to 75 mL of water is added to the inner cylinder of the reactor in which the plate is arranged.
  • Co CH 3 COO
  • ketjen black particle size of about 40 nm
  • the inner cylinder was swirled for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution, and Co (CH 3 COO) 2 .4H 2 O was dissolved and ketjen black was dispersed.
  • the inner cylinder stopped turning 0.8 g LiOH.H 2 O dissolved in water was added to the inner cylinder.
  • the inner cylinder was swung for 300 seconds so that a centrifugal force of 70000 kgms- 2 was applied to the reaction solution again. During this time, a Co hydroxide nucleus was formed between the inner wall of the outer cylinder and the outer wall of the inner cylinder, and this nucleus grew and was supported on the surface of the ketjen black.
  • the ketjen black was collected by filtration and dried in air at 100 ° C. for 12 hours.
  • the filtrate was confirmed by ICP spectroscopic analysis, it was found that 95% or more of Co contained in the Co (CH 3 COO) 2 .4H 2 O raw material was supported.
  • the dried powder and an aqueous solution containing LiOH.H 2 O in an amount of 1: 1 Co: Li were mixed and kneaded, and after drying, heat-treated at 250 ° C. for 1 hour in the air. Further, the heat-treated powder and a 6 M / L LiOH aqueous solution were introduced into the autoclave and hydrothermally treated in saturated steam at 250 ° C. for 6 hours to obtain a composite.
  • LiCoO 2 , the composite, and acetylene black are mixed at a mass ratio of 90: 10: 2, and 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded sufficiently.
  • a slurry was formed, applied onto an aluminum foil, dried, subjected to a rolling treatment, and then subjected to ion milling to obtain an electrode for SEM observation.
  • Comparative Example 1 Commercially available LiCoO 2 (average primary particle size of about 10 ⁇ m) used in Example 1 was made into coarse particles, mixed with acetylene black at a mass ratio of 100-Y: Y, and further 5% by mass of polyvinylidene fluoride in total. An appropriate amount of N-methylpyrrolidone was added and sufficiently kneaded to form a slurry, which was applied onto an aluminum foil, dried and rolled to obtain an electrode for electrode density measurement.
  • LiCoO 2 average primary particle size of about 10 ⁇ m
  • LiCoO 2 and acetylene black were mixed at a mass ratio of 97: 3, and 5% by mass of the total polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone were added and sufficiently kneaded to form a slurry.
  • FIG. 2 shows the relationship between the composite amount X and the electrode density in the electrode of Example 1.
  • 2A shows the relationship between the electrode density calculated from the measured values of the volume and weight of the electrode material on the aluminum foil of the electrode and the composite amount X
  • FIG. 2B shows the obtained electrode density.
  • Coarse particle density electrode density ⁇ (100 ⁇ X) ⁇ 0.95 4 shows the relationship between the coarse particle density (the weight of coarse particles per 1 cc of electrode) calculated using the equation (1) and the amount of complex X.
  • FIG. 3 shows the relationship between the electrode density calculated from the measured values of the volume and weight of the electrode material on the aluminum foil of the electrode and the acetylene black amount Y in the electrode of Comparative Example 1.
  • FIG. 4 shows SEM photographs (A) and (B) of the electrode material of Example 1, and SEM photographs (C) and (D) of the electrode material of Comparative Example 1.
  • (B) is a high-magnification photograph of (A)
  • (D) is a high-magnification photograph of (C).
  • LiCoO 2 coarse particles were close to each other, and the composite particles were densely filled in the gaps between the LiCoO 2 coarse particles.
  • the electrode material of Comparative Example 1 is thicker than the electrode material of Example 1 in spite of the same rolling conditions, and the spacing between the LiCoO 2 coarse particles is increased.
  • voids were observed in the acetylene black present in the gaps between the LiCoO 2 coarse particles. From these results, it can be seen that in the electrode material of the present invention, the composite is suitably filled in the gap surrounded by the coarse particles.
  • Example 2 In the inner cylinder of the reactor used in Example 1, 1.98 g Fe (CH 3 COO) 2 , 0.77 g CH 3 COOLi, 1.10 g C 6 H 8 O 7 .H 2 O, 1. Introducing 32 g CH 3 COOH, 1.31 g H 3 PO 4 and 0.50 g ketjen black into 120 mL of water and introducing the inner cylinder so that a centrifugal force of 70000 kgms ⁇ 2 is applied to the reaction solution was swirled for 300 seconds to disperse the ketjen black and to carry the reaction product on the surface of the ketjen black. After the inner cylinder stopped turning, the contents of the reactor were collected and evaporated to dryness at 100 ° C. in air.
  • LiFePO 4 primary particle size of 0.5-1 ⁇ m, secondary particle size of about 2-3 ⁇ m
  • X A total of 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded sufficiently to form a slurry, which is applied onto an aluminum foil, dried, and subjected to a rolling treatment to measure the electrode density. An electrode was obtained.
  • Comparative Example 2 Commercially available LiFePO 4 (primary particle diameter of 0.5-1 ⁇ m, secondary particle diameter of about 2-3 ⁇ m) used in Example 1 was made into coarse particles, mixed with acetylene black at a mass ratio of 100-Y: Y, Furthermore, 5% by mass of the total polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded thoroughly to form a slurry, which is applied onto an aluminum foil, dried, rolled, and subjected to electrode density measurement. Electrode was obtained.
  • LiFePO 4 primary particle diameter of 0.5-1 ⁇ m, secondary particle diameter of about 2-3 ⁇ m
  • FIG. 5 shows the relationship between the composite amount X and the electrode density in the electrode of Example 2.
  • A) of FIG. 5 shows the relationship between the electrode density calculated from the measured values of the volume and weight of the electrode material on the aluminum foil of the electrode and the composite amount X
  • B) shows the obtained electrode density.
  • Coarse particle density electrode density ⁇ (100 ⁇ X) ⁇ 0.95 4 shows the relationship between the coarse particle density (the weight of coarse particles per 1 cc of electrode) calculated using the equation (1) and the amount of complex X.
  • FIG. 6 shows the relationship between the electrode density calculated from the measured values of the volume and weight of the electrode material on the aluminum foil of the electrode and the acetylene black amount Y in the electrode of Comparative Example 2.
  • the complex is up to 10 wt%, LiFePO 4 coarse particle density substantially the same value of the electrode material consisting only of coarse particles showed that. This indicates that up to 10% by mass of the composite, the composite is filled in a gap surrounded by a plurality of coarse particles of LiFePO 4 existing in contact with each other. From these results, it can be seen that in the electrode material of the present invention, the composite is suitably filled in the gap surrounded by the coarse particles.
  • the carbon mixture was collected by filtration and dried in air at 100 ° C. for 12 hours.
  • the filtrate was confirmed by ICP spectroscopic analysis, it was found that 95% or more of Mn contained in the Mn (CH 3 COO) 2 .4H 2 O raw material was supported.
  • the dried powder and an aqueous solution containing LiOH.H 2 O in an amount of Mn: Li of 2: 1 are mixed and kneaded, and after drying, heat-treated at 300 ° C. for 1 hour in the air to form a composite.
  • primary particles of LiMn 2 O 4 having a diameter of 10 to 40 nm were formed with good dispersibility.
  • TG measurement was performed in an air atmosphere in the range of room temperature to 650 ° C. at a temperature increase rate of 1 ° C./min.
  • the mass ratio of LiMn 2 O 4 and carbon content (carbon mixture) in the composite was 89:11.
  • the obtained composite commercially available LiMn 2 O 4 as coarse particles (primary particle diameter of 2-3 ⁇ m, secondary particle diameter of about 20 ⁇ m) and acetylene black as a conductive agent at a mass ratio of 30:
  • the positive electrode of the lithium ion secondary battery was obtained by performing a rolling process.
  • the density of the electrode material in the positive electrode obtained was 2.45 g / mL.
  • the density of the electrode material was calculated from the measured values of the volume and weight of the electrode material on the positive electrode aluminum foil.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Example 4 20 by mass ratio of the composite produced in Example 3, commercially available LiMn 2 O 4 as coarse particles (primary particle diameter 2-3 ⁇ m, secondary particle diameter approximately 20 ⁇ m) and acetylene black as a conductive agent. After mixing at a ratio of 80: 1, further adding 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone, kneading thoroughly to form a slurry, coating on an aluminum foil, and drying Then, a rolling process was performed to obtain a positive electrode of a lithium ion secondary battery. The density of the electrode material in the positive electrode obtained was 2.68 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Comparative Example 3 Commercially available LiMn 2 O 4 (primary particle diameter of 2-3 ⁇ m, secondary particle diameter of about 20 ⁇ m) as coarse particles and acetylene black as a conductive agent were mixed at a mass ratio of 90: 5, and the whole 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone were added and kneaded thoroughly to form a slurry, which was applied onto an aluminum foil, dried, and then subjected to a rolling treatment to obtain a lithium ion secondary battery. The positive electrode was obtained. The density of the electrode material in the obtained positive electrode was 2.0 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 7 the SEM photograph of the surface of the positive electrode of Example 3 and the positive electrode of the comparative example 3 is shown.
  • (A) is a photograph about Example 3
  • (b) is a photograph about Comparative Example 3.
  • the crystals observed in the B region are primary particles contained in commercially available coarse particles of LiMn 2 O 4 .
  • acetylene black and the composite are present together, but it can be seen that these are closely packed in the gaps between the coarse particles of commercially available LiMn 2 O 4. .
  • Acetylene black is present in the region A ′ in the photograph (b). Although acetylene black was also filled in the gaps between coarse particles of commercially available LiMn 2 O 4 , it was in an insufficient filling state as compared with the positive electrode of Example 3.
  • the pore distribution of the positive electrode of Example 4 and the positive electrode of Comparative Example 3 was measured by mercury porosimetry. The results are shown in FIG. It can be seen that the positive electrode of Example 4 has significantly fewer pores with a diameter of 0.08 ⁇ m or more and more pores with a diameter of less than 0.08 ⁇ m than the positive electrode of Comparative Example 3. This is considered to be a result of reflecting the fact that in the positive electrode of Example 4, acetylene black and the composite are closely packed in the gap formed by the coarse particles.
  • FIG. 9 shows a Ragon plot for the batteries of Example 3, Example 4, and Comparative Example 3.
  • the batteries of Example 3 and Example 4 showed improved energy density over the battery of Comparative Example 3.
  • the electrode material of the present invention has pores with a remarkably smaller diameter than the electrode material of the comparative example, but the electrolyte sufficiently enters the fine pores. Excellent rate characteristics were obtained.
  • Example 5 instead of commercially available LiMn 2 O 4 as coarse particles, the same amount of commercially available LiNi 0.5 Mn 0.3 Co 0.2 O 2 (primary particle diameter of 1-2 ⁇ m, secondary particle diameter of about 20 ⁇ m) was used. Then, the procedure of Example 4 was repeated. The density of the electrode material in the positive electrode was 3.2 g / mL.
  • Comparative Example 4 Commercially available LiNi 0.5 Mn 0.3 Co 0.2 O 2 (primary particle diameter of 1-2 ⁇ m, secondary particle diameter of about 20 ⁇ m) as coarse particles and acetylene black as a conductive agent in a mass ratio of 90 : Mix in a ratio of 5 and further add 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone and knead well to form a slurry, which is applied onto an aluminum foil, dried, rolled The positive electrode of the lithium ion secondary battery was obtained by performing the treatment. The density of the electrode material in the obtained positive electrode was 2.5 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 10 shows a Ragon plot for the batteries of Example 5 and Comparative Example 4.
  • the battery of Example 5 showed an improved energy density over the battery of Comparative Example 4.
  • Example 6 A composite of LiFePO 4 and conductive carbon obtained in Example 2, commercially available LiFePO 4 as coarse particles (primary particle diameter 0.5-1 ⁇ m, secondary particle diameter approximately 2-3 ⁇ m), and a conductive agent Acetylene black in a mass ratio of 20: 80: 1, and further, 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded sufficiently to form a slurry. After apply
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Comparative Example 5 Commercially available LiFePO 4 (primary particle diameter of 0.5-1 ⁇ m, secondary particle diameter of about 2-3 ⁇ m) as coarse particles and acetylene black as a conductive agent were mixed at a mass ratio of 85:10, Further, 5% by mass of the total polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded sufficiently to form a slurry, which is applied onto an aluminum foil, dried, subjected to a rolling treatment, A positive electrode of a secondary battery was obtained. The density of the electrode material in the obtained positive electrode was 2.00 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 11 the SEM photograph of the surface of the positive electrode of Example 6 and the positive electrode of the comparative example 5 is shown.
  • (A) is a photograph about Example 6, and
  • (b) is a photograph about Comparative Example 5.
  • the crystals observed in the B region are primary particles contained in commercially available coarse particles of LiFePO 4 .
  • acetylene black and the complex coexist, but it can be seen that these are closely packed in the gaps between the commercially available coarse particles of LiFePO 4 .
  • acetylene black is present in the A ′ region in the photograph of (b), acetylene black was not closely packed in the gaps between the coarse particles of LiFePO 4 .
  • FIG. 12 shows a Ragon plot for the batteries of Example 6 and Comparative Example 5.
  • the battery of Example 6 showed an improved energy density over the battery of Comparative Example 5.
  • Example 7 The composite of LiCoO 2 obtained in Example 1 and conductive carbon, commercially available LiCoO 2 (average primary particle diameter of about 5 ⁇ m) as coarse particles, and acetylene black as a conductive agent in a mass ratio of 20 After mixing at a ratio of 80: 1, further adding 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone, kneading thoroughly to form a slurry, coating on an aluminum foil, and drying Then, a rolling process was performed to obtain a positive electrode of a lithium ion secondary battery. The density of the electrode material in the positive electrode obtained was 3.9 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Comparative Example 6 Commercially available LiCoO 2 (average primary particle diameter of about 5 ⁇ m) as coarse particles and acetylene black as a conductive agent are mixed at a mass ratio of 90: 5, and 5% by mass of polyvinylidene fluoride as a whole An appropriate amount of N-methylpyrrolidone was added and sufficiently kneaded to form a slurry, which was applied onto an aluminum foil, dried, and then subjected to a rolling treatment to obtain a positive electrode of a lithium ion secondary battery. The density of the electrode material in the obtained positive electrode was 3.2 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 13 the SEM photograph of the surface of the positive electrode of Example 7 and the positive electrode of the comparative example 6 is shown.
  • (A) is a photograph about Example 7, and
  • (b) is a photograph about Comparative Example 6.
  • the crystals observed in the B region are primary particles contained in commercially available coarse particles of LiCoO 2 .
  • acetylene black and the composite coexist, but it can be seen that these are closely packed in the gaps between the coarse particles of commercially available LiCoO 2 .
  • Acetylene black is present in the region A ′ in the photograph (b). Although acetylene black was also filled in the gaps between coarse particles of commercially available LiCoO 2 , it was in an insufficient filling state as compared with the positive electrode of Example 7.
  • FIG. 14 shows a Ragon plot for the batteries of Example 7 and Comparative Example 6.
  • the battery of Example 7 showed an improved energy density than the battery of Comparative Example 6.
  • Example 8 The composite of LiCoO 2 obtained in Example 1 and conductive carbon, and commercially available LiNi 0.5 Mn 0.3 Co 0.2 O 2 as coarse particles (primary particle diameter of 1-2 ⁇ m, secondary particles) The diameter is about 20 ⁇ m) and acetylene black as a conductive agent are mixed at a mass ratio of 20: 80: 1, and 5% by mass of the total polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added.
  • a slurry which was applied onto an aluminum foil, dried, and then subjected to a rolling treatment to obtain a positive electrode of a lithium ion secondary battery.
  • the density of the electrode material in the obtained positive electrode was 3.2 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Comparative Example 7 Commercially available LiNi 0.5 Mn 0.3 Co 0.2 O 2 (primary particle diameter of 1-2 ⁇ m, secondary particle diameter of about 20 ⁇ m) as coarse particles and acetylene black as a conductive agent in a mass ratio of 90 : Mix in a ratio of 5 and further add 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone and knead well to form a slurry, which is applied onto an aluminum foil, dried, rolled The positive electrode of the lithium ion secondary battery was obtained by performing the treatment. The density of the electrode material in the obtained positive electrode was 2.5 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 15 shows a Ragon plot for the batteries of Example 8 and Comparative Example 7.
  • the battery of Example 8 showed an improved energy density over the battery of Comparative Example 7.
  • Example 9 Mass ratio of the composite of LiCoO 2 obtained in Example 1 and conductive carbon, commercially available LiMn 2 O 4 (average primary particle diameter of about 5 ⁇ m) as coarse particles, and acetylene black as a conductive agent In a ratio of 20: 80: 1, and 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded thoroughly to form a slurry, which is applied onto an aluminum foil and dried. Then, a rolling process was performed to obtain a positive electrode of a lithium ion secondary battery. The density of the electrode material in the positive electrode obtained was 3.20 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Comparative Example 8 Commercially available LiMn 2 O 4 (average primary particle diameter of about 5 ⁇ m) as coarse particles and acetylene black as a conductive agent are mixed at a mass ratio of 90: 5, and further 5% by mass of polyfluoride Vinylidene and an appropriate amount of N-methylpyrrolidone were added and sufficiently kneaded to form a slurry, which was applied onto an aluminum foil, dried, and then subjected to a rolling treatment to obtain a positive electrode of a lithium ion secondary battery. The density of the electrode material in the obtained positive electrode was 2.5 g / mL.
  • a lithium ion secondary battery in which a 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution was used as an electrolyte and the counter electrode was lithium was produced.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 16 shows a Ragon plot for the batteries of Example 9 and Comparative Example 8.
  • the battery of Example 9 showed an improved energy density than the battery of Comparative Example 8.
  • Electrode material of composite of Li 4 Ti 5 O 12 and conductive carbon and coarse particles of Li 4 Ti 5 O 12 and utilization of this electrode material Acetic acid and lithium acetate in amounts of 1.8 mol of acetic acid and 1 mol of lithium acetate per 1 mol of titanium isopropoxide were dissolved in 1000 mL of a mixed solvent in which isopropanol and water were mixed at a mass ratio of 90:10.
  • Example 2 In the inner cylinder of the reactor used in Example 1, the obtained liquid, 1 mol of titanium isopropoxide, and carbon nanofibers having an amount of Li 4 Ti 5 O 12 : C of 80:20 (diameter of about The inner cylinder was rotated for 300 seconds so that a centrifugal force of 66000 kgms ⁇ 2 was applied to the reaction solution. During this time, a thin film of a reaction product is formed between the inner wall of the outer cylinder and the outer wall of the inner cylinder, and a shear reaction and a centrifugal force are applied to the thin film to cause a chemical reaction, whereby a Li 4 Ti 5 O 12 precursor. A carbon nanofiber with a highly dispersed support was obtained.
  • the carbon nanofibers were collected by filtration, dried in vacuum at 80 ° C. for 17 hours, and further heat-treated in nitrogen at 700 ° C. for 3 minutes to obtain a composite.
  • primary particles of Li 4 Ti 5 O 12 having a diameter of 5 to 100 nm were formed with good dispersibility.
  • TG measurement was performed in an air atmosphere in the range of room temperature to 650 ° C. at a temperature increase rate of 1 ° C./min. When the weight loss was evaluated as carbon content, the mass ratio of Li 4 Ti 5 O 12 and carbon content (carbon nanofiber) in the composite was 80:20.
  • the obtained composite commercially available Li 4 Ti 5 O 12 (average secondary particle diameter of about 7 ⁇ m) as coarse particles, and acetylene black as a conductive agent are in a mass ratio of 10: 90: 1.
  • 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone are added and kneaded thoroughly to form a slurry, which is applied onto an aluminum foil, dried, and then subjected to a rolling treatment.
  • a negative electrode of a lithium ion secondary battery was obtained.
  • the density of the electrode material in the obtained negative electrode was 2.85 g / mL.
  • LiMn 2 O 4 (average primary particle diameter of about 5 ⁇ m) and acetylene black as a conductive agent are mixed at a mass ratio of 90: 5, and the total amount of 5% by mass of polyvinylidene fluoride and an appropriate amount N-methylpyrrolidone is added and sufficiently kneaded to form a slurry, which is applied onto an aluminum foil, dried, and then subjected to a rolling treatment to form a positive electrode of a lithium ion secondary battery (4 V relative to Li / Li +) . In action).
  • a lithium ion secondary battery using 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution as an electrolyte was prepared.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Example 11 The composite obtained in Example 10, commercially available Li 4 Ti 5 O 12 (average secondary particle diameter of about 7 ⁇ m) as coarse particles, and acetylene black as a conductive agent in a mass ratio of 20:80: Mix at a ratio of 1 and add 5% by mass of polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone, knead thoroughly to form a slurry, apply on aluminum foil, dry, and then rolling As a result, a negative electrode of a lithium ion secondary battery was obtained. The density of the electrode material in the obtained negative electrode was 2.55 g / mL.
  • Example 10 a lithium ion secondary battery using 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution as an electrolyte was prepared.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • Comparative Example 9 Commercially available Li 4 Ti 5 O 12 (average secondary particle diameter of about 7 ⁇ m) as coarse particles and acetylene black as a conductive agent are mixed at a mass ratio of 90: 5, and further 5% by mass of the whole Polyvinylidene fluoride and an appropriate amount of N-methylpyrrolidone were added and kneaded thoroughly to form a slurry, which was applied onto an aluminum foil, dried, and then subjected to a rolling treatment to obtain a negative electrode for a lithium ion secondary battery. It was. The density of the electrode material in the obtained negative electrode was 2.0 g / mL.
  • Example 10 a lithium ion secondary battery using 1M LiPF 6 ethylene carbonate / diethyl carbonate 1: 1 solution as an electrolyte was prepared.
  • the obtained battery was evaluated for charge / discharge characteristics under a wide range of current density conditions.
  • FIG. 17 shows SEM photographs of the surfaces of the negative electrodes of Examples 10 and 11 and Comparative Example 9.
  • A is a photograph regarding Example 10
  • (b) is a photograph regarding Example 11
  • (c) is a photograph regarding Comparative Example 9.
  • crystals observed in the B region are primary particles contained in coarse particles of commercially available Li 4 Ti 5 O 12 .
  • acetylene black and a composite coexist, but these closely fill the gaps between the coarse particles of commercially available Li 4 Ti 5 O 12.
  • Acetylene black is present in the region A ′ in the photograph (c).
  • acetylene black was also filled in the gaps between coarse particles of commercially available Li 4 Ti 5 O 12 , it was in an insufficient filling state as compared with the negative electrodes of Examples 10 and 11.
  • FIG. 18 shows a Ragon plot for the batteries of Examples 10 and 11 and Comparative Example 9.
  • the batteries of Examples 10 and 11 showed an improved energy density than the battery of Comparative Example 9.
  • a lithium ion secondary battery having a high energy density can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高いエネルギー密度を有するリチウムイオン二次電池を与える電極材料を提供する。 本発明のリチウムイオン二次電池用電極材料は、リチウムイオン二次電池の正極活物質又は負極活物質として動作可能な第1の活物質の粗大粒子と、導電性カーボンと該導電性カーボンに付着している上記第1の活物質と同じ極の活物質として動作可能な第2の活物質との複合体の粒子と、を含み、上記第1の活物質の粗大粒子の粒径が上記複合体の粒子の粒径より大きく、上記複合体の粒子が、上記第1の活物質の粗大粒子の間に形成される間隙部に充填されていることを特徴とする。上記間隙部には、導電剤をさらに含むことができる。

Description

リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
 本発明は、高いエネルギー密度を有するリチウムイオン二次電池を与える電極材料、この電極材料の製造方法、及びこの電極材料を用いた正極及び/又は負極を備えたリチウムイオン二次電池に関する。
 携帯電話やノート型パソコンなどの情報機器の電源として、エネルギー密度が高い非水系電解液を使用したリチウムイオン二次電池が広く使用されているが、これらの情報機器の高性能化や取り扱う情報量の増大に伴う消費電力の増加に対応するために、リチウムイオン二次電池のエネルギー密度の向上が望まれている。また、石油消費量の低減、大気汚染の緩和、地球温暖化の原因となる二酸化炭素の排出量の低減などの観点から、ガソリン車やディーゼル車に代わる電気自動車やハイブリッド自動車などの低公害車に対する期待が高まっており、これらの低公害車のモーター駆動電源として、高いエネルギー密度を有する大型のリチウムイオン二次電池の開発が望まれる。
 現在の非水系電解液を使用したリチウムイオン二次電池は、コバルト酸リチウム(LiCoO)を正極活物質とし、黒鉛を負極活物質とし、六フッ化リン酸リチウム(LiPF)などのリチウム塩をエチレンカーボネートやプロピレンカーボネートなどの非水系溶媒に溶解させた液を電解液としたものが主流である。しかし、正極活物質であるコバルト酸リチウムに関しては、コバルトが高価であるため大量使用が困難であるという問題がある。また、コバルト酸リチウムの放電容量は必ずしも満足のいくものでは無い。負極活物質である黒鉛に関しては、現行の二次電池でも既に理論容量に近い容量が得られており、さらなる二次電池の高容量化のためには、黒鉛に代わる負極活物質の検討が不可欠である。そのため、新規な正極活物質及び負極活物質を求めて、極めて多くの検討が行われてきた(例えば、特許文献1(特開平2-109260号公報)、特許文献2(特開2007-160151号公報)参照)。
 これらの活物質は、導電剤との複合材料の形態で使用されるのが一般的である。導電剤としては、カーボンブラック、天然黒鉛、人造黒鉛、カーボンナノチューブ等の導電性カーボンが使用される。導電性カーボンは、導電性の低い活物質と併用されて、複合材料に導電性を付与する役割を果たすが、これだけでなく、活物質のリチウムの吸蔵・放出に伴う体積変化を吸収するマトリックスとしても作用し、また、活物質が機械的な損傷を受けても電子伝導パスを確保するという役割も果たす。
 ところで、これらの活物質と導電性カーボンとの複合材料は、活物質の粒子と導電剤とを混合する方法、或いは、活物質の生成と共に導電剤に生成した活物質を担持させる方法、により一般に製造される。例えば、特許文献1には、硝酸リチウム、水酸化リチウム等のリチウム源を水に溶解させ、マンガン源としての硝酸マンガンを添加した後、加熱処理を施すことにより得られたLiMnを、導電剤としてのアセチレンブラック等と混合して加圧成形した、リチウムイオン二次電池の正極が開示されている。また、出願人は、金属酸化物から成る活物質の生成と共に導電剤としての導電性カーボン粉末に生成した金属酸化物を担持させる方法として、特許文献2において、旋回する反応器内で反応物にずり応力と遠心力を加えて化学反応を進行させる反応方法を提案している。この文献には、ずり応力と遠心力を加えて加速化したゾルゲル反応により導電性カーボン粉末上に酸化チタン、酸化ルテニウム等のナノ粒子を高分散担持させた複合材料が、リチウムイオン二次電池の正極又は負極のために適していることが示されている。
特開平2-109260号公報 特開2007-160151号公報
 上述したように高いエネルギー密度を有するリチウムイオン二次電池の開発が望まれているが、このようなリチウムイオン二次電池を得るためには、正極及び/又は負極における活物質量を増加させる必要がある。この点を考慮すると、活物質として比較的大きな粒径を有する粒子を使用し、隣り合う粒子の間に形成される間隙部に導電剤としての導電性カーボンを充填した複合材料を用いて正極及び/又は負極を構成することが望まれる。
 しかし、導電性カーボンは、基本的にリチウムイオン二次電池のエネルギー密度の向上に寄与しない上に、活物質粒子の間に形成される間隙部に進入しにくく、隣り合う活物質粒子の間隔を増大させる。そのため、上述した複合材料を用いた正極及び/又は負極によるエネルギー密度の向上には限界がある。
 そこで、本発明の目的は、高いエネルギー密度を有するリチウムイオン二次電池へと導く電極材料を提供することである。
 例えば特許文献2の方法で得ることができる、導電性カーボンと該導電性カーボンに付着している微細な活物質との複合体は、比較的高い導電性を示すことがわかっている。そして、発明者らが鋭意検討したところ、この高い導電性を示す複合体を比較的大きな粒径を有する活物質の粒子の間にその間隔を増大させることなく充填することが可能であり、この複合体の利用によりリチウムイオン二次電池のエネルギー密度を向上させることができることがわかった。
 したがって、本発明はまず、リチウムイオン二次電池の正極活物質又は負極活物質として動作可能な第1の活物質の粒子と、導電性カーボンと該導電性カーボンに付着している上記第1の活物質と同じ極の活物質として動作可能な第2の活物質との複合体の粒子と、を含み、上記第1の活物質の粒子の粒径が上記複合体の粒子の粒径より大きく、上記複合体の粒子が上記第1の活物質の粒子の間に形成される間隙部に充填されていることを特徴とするリチウムイオン二次電池用電極材料に関する。
 以下、第1の活物質の粒子を「粗大粒子」ということがあり、また、この粗大粒子より小さい粒径を有する複合体の粒子を「微小粒子」ということがある。粗大粒子、微小粒子、微小粒子を構成する導電性カーボンの粒子及び第2の活物質の粒子、及び以下に示す導電剤の粒子の形状は、形状に限定がなく、針状、管状或いは繊維状であってもよい。形状が針状、管状或いは繊維状である場合には、「粒径」の語は粒子断面の直径(短径)を意味する。活物質の粒子は、一次粒子であってもよく、一次粒子が凝集した二次粒子であってもよいが、第2の活物質は、凝集率が低い高分散状態で導電性カーボンに付着しているのが好ましい。
 図1には、本発明の電極材料を模式的に示した。粗大粒子と、比較的高い導電性を有する複合体の微小粒子と、必要に応じて添加される導電剤とを、必要に応じてバインダを溶解した溶媒に添加して十分に混練し(図1の左)、得られた混練物を集電体上に塗布し、必要に応じて乾燥した後、塗膜に圧延処理を施すと、その圧力により、粗大粒子が互いに接近して接触するとともに、隣り合う粗大粒子の間に形成される間隙部に複合体と必要に応じて添加される導電剤とが押し出させて充填される(図1右)。その結果、圧延処理後に得られる正極又は負極では、複合体の微小粒子と必要に応じて添加される導電剤の大部分が、互いに接触した状態で存在する複数の粗大粒子により囲まれた間隙部に存在することになる。複合体を構成する導電性カーボンとこれに付着している第2の活物質の粒子とは、上述した混練~圧延の過程を通じて一体として存在し、ばらばらに分離することがない。複合体の大部分が複数の粗大粒子により囲まれた間隙部に充填される理由については、現時点では明確ではないが、複合体の形成時に導電性カーボンのストラクチャの少なくとも一部が破壊されて弾性に富んだ複合体が形成され、この弾性により複合体の微小粒子が圧延処理時に変形しながら上記間隙部に移動するためであると思われる。本発明のリチウムイオン二次電池用電極材料では、粗大粒子と複合体の微小粒子に加えて、導電性カーボンから成る導電剤が含まれていても良い。導電剤と複合体の両方が上記間隙部に充填されている場合には、上記複合体と上記導電剤との混合物の導電率が10-3S/cm以上であるのが好ましい。導電率が10-3S/cm以上の範囲で、本発明の効果を特に良好に得られるからである。そして、この間隙部に充填された複合体中の活物質により、リチウムイオン二次電池のエネルギー密度の向上がもたらされる。
 第1の活物質と第2の活物質とは、同じ極の活物質である。すなわち、第1の活物質が正極活物質であれば、第2の活物質も正極活物質であり、第1の活物質が負極活物質であれば、第2の活物質も負極活物質である。正極活物質及び負極活物質としては、公知の正極活物質及び負極活物質を特に限定なく使用することができる。第1の活物質と第2の活物質とが同じ化合物である必要は無い。
 第2の活物質は、金属酸化物であるのが好ましい。金属酸化物は他の活物質と比較して安価であり、また、導電性に優れた金属酸化物と導電性カーボンとの複合体が特許文献2の方法により好適に製造されるからである。なお、本発明では、固溶体も金属酸化物及び複合酸化物の範囲に含まれる。また、リン酸塩、ケイ酸塩のようなオキソ酸イオン構造が認められるものも、本発明では金属酸化物及び複合酸化物の範囲に含まれる。
 本発明のリチウムイオン二次電池用電極材料では、第1の活物質の粒子の粒径は複合体の粒子の粒径より大きい。したがって、複合体を構成する導電性カーボン及び第2の活物質の粒子も、当然のことながら、第1の活物質の粒子の粒径よりも小さい粒径を有する。上記第1の活物質の粒子が100nm~100μmの範囲の粒径を有し、上記複合体における導電性カーボンの粒子が10nm~300nmの範囲の粒径を有し、第2の活物質の粒子が1~40nmの範囲の粒径を有するのが好ましい。この範囲内で、本発明の効果を特に良好に得られるからである。
 本発明のリチウムイオン二次電池用電極材料のうち、第2の活物質が金属酸化物である電極材料は、特許文献2に示されている超遠心力場での反応を利用する方法により、好適に得ることができる。したがって、本発明はまた、リチウムイオン二次電池の正極活物質又は負極活物質として動作可能な第1の活物質の粒子と、導電性カーボンと該導電性カーボンに付着している上記第1の活物質と同じ極の活物質として動作可能な金属酸化物からなる第2の活物質との複合体の粒子と、を含み、上記第1の活物質の粒子の粒径が上記複合体の粒子の粒径より大きく、上記複合体の粒子が、上記第1の活物質の粒子の間に形成される間隙部に充填されている、リチウムイオン二次電池用電極材料の製造方法であって、
 1)a)上記金属酸化物を構成する金属を含む少なくとも一種の化合物を溶解させた溶液に導電性カーボン粉末を添加した反応液を、旋回可能な反応器内に導入する調製段階、及び、
   b)上記反応器を旋回させて上記反応液にずり応力と遠心力とを加えることにより、上記導電性カーボン粉末に上記金属の化合物及び/又はその反応生成物を担持させる担持段階、及び、
   c)上記金属の化合物及び/又はその反応生成物を担持させた導電性カーボン粉末を加熱処理することにより、上記導電性カーボン粉末に担持された上記金属の化合物及び/又はその反応生成物を酸化物のナノ粒子に転化する熱処理段階
 を含む工程により上記複合体の粒子を得る複合体製造工程、及び、
 2)上記複合体製造工程により得られた複合体の粒子と、該複合体の粒子より大きい粒径を有する上記第1の活物質の粒子と、を混練し、得られた混練物に圧力を印加する混練工程
 を含むことを特徴とするリチウムイオン二次電池用電極材料の製造方法に関する。なお、「ナノ粒子」とは、1~200nm、好ましくは5~50nm、特に好ましくは10~40nmの粒径を有する粒子を意味する。また、特許文献2における旋回可能な反応器に関する記載及びこの反応器を使用した反応に関する記述は、そのまま本明細書に参照により組み入れられる。
 上述した製造方法により電極材料を製造する場合には、導電剤を電極材料に含めることができる。この場合には、上記混練工程において、上記複合体の粒子と上記第1の活物質の粒子と上記導電剤とを混練する。
 本発明の電極材料を正極及び/又は負極のために用いると、高いエネルギー密度を有するリチウムイオン二次電池が得られる。したがって、本発明はまた、上述した本発明の電極材料を含む活物質層を有する正極及び/又は負極を備えたリチウムイオン二次電池に関する。
 本発明のリチウムイオン二次電池用電極材料では、第1の活物質の粗大粒子の間に形成される間隙部に、導電性カーボンと該導電性カーボンに付着している第1の活物質と同じ極の活物質として動作可能な第2の活物質との複合体の微小粒子が充填されており、この間隙部に充填された複合体中の活物質により、リチウムイオン二次電池のエネルギー密度の向上がもたらされる。
本発明の電極材料を模式的に示した図である。 LiCoO粗大粒子とLiCoOナノ粒子を有する複合体とを含む電極材料中の複合体の量と電極密度との関係を示す図であり、(A)は電極全体の密度との関係を、(B)は粗大粒子の密度との関係を、示している。 LiCoO粗大粒子とアセチレンブラックとを含む電極材料中のアセチレンブラックの量と電極密度との関係を示す図である。 電極断面のSEM写真であり、(A)はLiCoO粗大粒子とLiCoOナノ粒子を有する複合体とを含む電極材料から得られた電極のSEM写真であり、(B)は(A)の高倍率のSEM写真であり、(C)はLiCoO粗大粒子とアセチレンブラックとを含む電極材料から得られた電極のSEM写真であり、(D)は(C)の高倍率のSEM写真である。 LiFePO粗大粒子とLiFePOナノ粒子を有する複合体とを含む電極材料中の複合体の量と電極密度との関係を示す図であり、(A)は電極全体の密度との関係を、(B)は粗大粒子の密度との関係を、示している。 LiFePO粗大粒子とアセチレンブラックとを含む電極材料中のアセチレンブラックの量と電極密度との関係を示す図である。 LiMnを活物質とした正極のSEM写真であり、(a)は実施例についての写真であり、(b)は比較例についての写真である。 LiMnを活物質とした正極の細孔分布を測定した結果である。 LiMnを活物質とした正極を備えたリチウムイオン二次電池についてのラゴンプロットである。 LiNi0.5Mn0.3Co0.2とLiMnとを活物質とした正極を備えたリチウムイオン二次電池についてのラゴンプロットである。 LiFePOを活物質とした正極のSEM写真であり、(a)は実施例についての写真であり、(b)は比較例についての写真である。 LiFePOを活物質とした正極を備えたリチウムイオン二次電池についてのラゴンプロットである。 LiCoOを活物質とした正極のSEM写真であり、(a)は実施例についての写真であり、(b)は比較例についての写真である。 LiCoOを活物質とした正極を備えたリチウムイオン二次電池についてのラゴンプロットである。 LiNi0.5Mn0.3Co0.2とLiCoOとを活物質とした正極を備えたリチウムイオン二次電池についてのラゴンプロットである。 LiMnとLiCoOとを活物質とした正極を備えたリチウムイオン二次電池についてのラゴンプロットである。 LiTi12を活物質とした負極のSEM写真であり、(a)(b)は実施例についての写真であり、(c)は比較例についての写真である。 LiTi12を活物質とした負極を備えたリチウムイオン二次電池についてのラゴンプロットである。
 (a)電極材料
 本発明の電極材料は、リチウムイオン二次電池の正極活物質又は負極活物質として動作可能な第1の活物質の粒子と、導電性カーボンと該導電性カーボンに付着している第1の活物質と同じ極の活物質として動作可能な第2の活物質との複合体の粒子と、を含む。そして、第1の活物質の粒子の粒径が上記複合体の粒子の粒径より大きく、上記複合体の粒子が第1の活物質の粒子の間に形成される間隙部に充填されている。
 第1の活物質及び第2の活物質としては、公知の正極活物質又は負極活物質を特に限定なく使用することができる。第1の活物質と第2の活物質とが同じ化合物である必要は無い。正極活物質としては、一般に、充電時にLi/Liに対して2.3V以上の電圧を示す物質が使用され、負極活物質としては、一般に、充電時にLi/Liに対して2.3V未満の電圧を示す物質が使用される。
 正極活物質の例としては、まず、層状岩塩型LiMO、層状LiMnO-LiMO固溶体、及びスピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)が挙げられる。これらの具体的な例としては、LiCoO、LiNiO、LiNi4/5Co1/5、LiNi1/3Co1/3Mn1/3、LiNi1/2Mn1/2、LiFeO、LiMnO、LiMnO-LiCoO2、LiMnO-LiNiO、LiMnO-LiNi1/3Co1/3Mn1/3、LiMnO-LiNi1/2Mn1/2、LiMnO-LiNi1/2Mn1/2-LiNi1/3Co1/3Mn1/3、LiMn、LiMn3/2Ni1/2が挙げられる。
 正極活物質の例としてはまた、イオウ及びLiS、TiS、MoS、FeS、VS、Cr1/21/2などの硫化物、NbSe、VSe、NbSeなどのセレン化物、Cr、Cr、VO、V、V、V13などの酸化物の他、LiNi0.8Co0.15Al0.05、LiVOPO、LiV、LiV、MoV、LiFeSiO、LiMnSiO、LiFePO、LiFe1/2Mn1/2PO、LiMnPO、Li(POなどの複合酸化物が挙げられる。
 負極活物質の例としては、Fe、MnO、MnO、Mn、Mn、CoO、Co、NiO、Ni、TiO、TiO、SnO、SnO、SiO、RuO、WO、WO、ZnO等の酸化物、Sn、Si、Al、Zn等の金属、LiVO、LiVO、LiTi12などの複合酸化物、Li2.6Co0.4N、Ge、Zn、CuNなどの窒化物が挙げられる。
 これらの正極活物質又は負極活物質は、第1の活物質として使用される場合には、粗大粒子を形成し、第2の活物質として使用される場合には、導電性カーボンとの複合体を形成する。第1の活物質は、単独の化合物であっても良く、2種以上の化合物の混合物であっても良い。第2の活物質もまた、単独の化合物であっても良く、2種以上の化合物の混合物であっても良い。
 第1の活物質の粗大粒子の多くは、市販されており、例えば、LiFePO(クラリアントジャパン株式会社製、商品名Life Power(登録商標)P2)、LiNi0.5Co0.2Mn0.3(BASF製、商品名HED NCM-523)、LiCoO(日本化学工業株式会社製、商品名セルシードC-5H)、LiNi0.8Co0.15Al0.05(ECOPRO製、商品名NCAO2O)などを使用することができる。また、これらは公知の製造方法で得ることができる。例えば、複合酸化物は、複合酸化物を構成する各金属を含む原料を混合し、熱処理することにより得ることができる。粗大粒子の粒径は、100nm~100μmの範囲であるのが好ましく、1~80μmの範囲であるのがより好ましく、10~50μmの範囲であるのが特に好ましい。
 複合体を構成するための粉末状のカーボンとしては、導電性を有しているカーボンであれば特に限定なく使用することができる。例としては、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、活性炭、メソポーラス炭素などを挙げることができる。また、気相法炭素繊維を使用することもできる。これらのカーボン粉末は、単独で使用しても良く、2種以上を混合して使用しても良い。カーボン粉末の少なくとも一部がカーボンナノファイバであるのが好ましい。導電性の高い複合体が得られるからである。導電性カーボンの粒子の粒径は、10nm~300nmの範囲であるのが好ましく、10~100nmの範囲であるのがより好ましく、10~50nmの範囲であるのが特に好ましい。
 複合体を構成するための第2の活物質は、一般にはナノ粒子であり、好ましくは1~40nmの範囲の粒径を有する。
 複合体の製造方法には、第1の活物質の粗大粒子より粒径の小さい複合体粒子が得られる方法であれば、特に限定がない。例えば、市販の正極活物質又は負極活物質を強粉砕した後、或いは、水熱反応等により活物質のナノ粒子を製造した後、導電性カーボン粉末及び分散媒と混合し、遠心力下で混練する方法(固相メカノケミカル反応)により、複合体を得ることができる。
 第2の活物質が金属酸化物である場合には、特許文献2(特開2007-160151号公報)に示されている超遠心力場での反応を利用する方法により、複合体を好適に得ることができる。
 この超遠心力場での反応を用いた複合体の形成は、
 a)金属酸化物を構成する金属を含む少なくとも一種の化合物を溶解させた溶液に導電性カーボン粉末を添加した反応液を、旋回可能な反応器内に導入する調製段階、及び、
 b)上記反応器を旋回させて上記反応液にずり応力と遠心力とを加えることにより、上記導電性カーボン粉末に上記金属の化合物及び/又はその反応生成物を担持させる担持段階、及び、
 c)上記金属の化合物及び/又はその反応生成物を担持させた導電性カーボン粉末を加熱処理することにより、上記導電性カーボン粉末に担持された上記金属の化合物及び/又はその反応生成物を酸化物のナノ粒子に転化する熱処理段階
 を含む工程により行う。
 調製段階では、溶媒に、目的の金属を含む化合物(以下、「金属酸化物原料」という。)と、導電性カーボン粉末とを添加し、金属酸化物原料を溶媒に溶解させることによって、反応液を得る。
 溶媒としては、反応に悪影響を及ぼさない液であれば特に限定なく使用することができ、水、メタノール、エタノール、イソプロピルアルコールなどを好適に使用することができる。2種以上の溶媒を混合して使用しても良い。
 金属酸化物原料としては、上記溶媒に溶解可能な化合物を特に限定なく使用することができる。例としては、上記金属のハロゲン化物、硝酸塩、硫酸塩、炭酸塩等の無機金属塩、ギ酸塩、酢酸塩、蓚酸塩、メトキシド、エトキシド、イソプロポキシド等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。異なる金属を含む化合物を所定量で混合して使用しても良い。
 反応液にはさらに、以下の担持段階において目的の反応生成物を導電性カーボンに担持させるために、反応抑制剤又は反応促進剤を添加することができる。例えば、第2の活物質がLiTi12である場合には、反応液として、イソプロパノールと水との混合用媒に金属酸化物原料としてのチタンアルコキシドと酢酸リチウムとを添加した液を用いると、チタンアルコキシドの加水分解及び重縮合反応が速すぎてLiTi12が得られない場合があるが、反応抑制剤として、チタンアルコキシドと錯体を形成する酢酸、クエン酸、蓚酸、ギ酸、乳酸等を反応液に添加し、チタンアルコキシドの加水分解及び重縮合反応を遅延化させることにより、LiTi12を得ることができるようになる。また、例えば、第2の活物質がSnOである場合には、反応液として、塩化スズを水に溶解させた液を用いると、塩化スズの加水分解及び重縮合反応(ゾルゲル反応)が遅く、重縮合反応生成物の導電性カーボンへの担持効率が低い場合があるが、反応を促進する目的で、NaOH、KOH、NaCO、NaHCO、NHOHなどの反応促進剤を添加することにより、重縮合反応生成物の導電性カーボンへの担持効率を向上させることができる。
 さらに、上記複合体が、導電性カーボンと、該導電性カーボンに付着しているMn、Fe、Co及びNiから成る群から選択された遷移金属を含む金属酸化物と、の複合体である場合には、反応液として、水と、上記遷移金属を含む少なくとも一種の化合物と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を使用するのが好ましい。この方法によると、以下の担持段階において、上記遷移金属の水酸化物の微粒子が効率よく導電性カーボン粉末に担持される。
 Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む化合物としては、水溶性の化合物を特に限定なく使用することができる。例としては、上記遷移金属のハロゲン化物、硝酸塩、硫酸塩等の無機金属塩、ギ酸塩、酢酸塩等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。異なる遷移金属を含む化合物を所定量で混合して使用しても良い。
 この反応液のpHの調整は、Liの水酸化物を溶解させた水溶液により行うのが好ましい。このほか、酸化リチウム、アンモニア及びアミンの水溶液を使用することもできる。pHの調整のために単独の化合物を用いても良く、2種以上の化合物を混合して用いても良い。
 この反応液は、水に上記導電性カーボン粉末と上記遷移金属の水溶性塩とを添加して該水溶性塩を溶解させた液と、水にLiの水酸化物を溶解させた液と、を混合することにより容易に調製することができる。このとき、反応液のpHを、9~11の範囲に調整する。pHが9未満では、以下の担持段階における水酸化物の導電性カーボン粉末への担持効率が低く、pHが11を超えると、担持段階における水酸化物の不溶化速度が速すぎて、微細な水酸化物が得られにくい。
 旋回可能な反応器としては、反応液に超遠心力を印加可能な反応器であれば特に限定なく使用することができるが、特許文献2(特開2007-160151号公報)の図1に記載されている、外筒と内筒の同心円筒からなり、旋回可能な内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器が好適に使用される。以下、この好適な反応器を使用する形態について説明する。
 超遠心力場での反応に付すための反応液は、上記反応器の内筒内に導入される。予め調製した反応液を内筒内に導入しても良く、内筒内で反応液を調製することにより導入しても良い。内筒内に溶媒と導電性カーボン粉末と金属酸化物原料とを入れ、内筒を旋回させて金属酸化物原料を溶媒に溶解させるとともに導電性カーボン粉末を液中に分散させた後、内筒の旋回を一旦停止させ、次いで、反応促進剤或いはpH調整用溶液を導入し、再度内筒を旋回させるのが好ましい。最初の旋回により導電性カーボン粉末の分散が良好になり、結果的に担持される金属酸化物ナノ粒子の分散性が良好になるからである。
 担持段階では、反応器を旋回させて反応液にずり応力と遠心力とを加えることにより、上記導電性カーボン粉末に上記金属酸化物原料及び/又はその反応生成物を担持させる。反応液の種類に依存して、金属酸化物原料が担持されることもあり、ゾルゲル反応生成物が担持されることもある。また、反応液として、水と、Mn、Fe、Co及びNiから成る群から選択された遷移金属を含む金属酸化物原料と、導電性カーボン粉末とを含み、9~11の範囲のpHを有する反応液を使用した場合には、担持段階において、水酸化物の核が生成し、この生成した水酸化物の核と導電性カーボン粉末とが分散されると同時に導電性カーボン粉末に遷移金属の水酸化物が担持される。
 金属酸化物原料から反応生成物への転化、及び、金属酸化物原料及び/又はその反応生成物の導電性カーボン粉末への担持は、反応液に加えられるずり応力と遠心力の機械的エネルギーによって実現されると考えられるが、このずり応力と遠心力は反応器の旋回により反応液に加えられる遠心力によって生じる。反応液に加えられる遠心力は、一般に「超遠心力」といわれる範囲の遠心力であり、一般には1500kgms-2以上、好ましくは70000kgms-2以上、特に好ましくは270000kgms-2以上である。
 上述した外筒と内筒とを有する好適な反応器を使用する形態について説明すると、反応液を導入した反応器の内筒を旋回させると、内筒の旋回による遠心力によって、内筒内の反応液が貫通孔を通じて外筒に移動し、内筒外壁と外筒内壁の間の反応液が外筒内壁上部にずり上がる。その結果、反応液にずり応力と遠心力が加わり、この機械的なエネルギーにより、内筒外壁面と外筒内壁面の間で、反応液の種類に依存して、金属酸化物原料から反応生成物への転化、金属酸化物原料及び/又はその反応生成物の導電性カーボン粉末への担持が生じる。金属酸化物原料及び/又はその反応生成物は、この超遠心力場での反応により、極めて微細な粒として、分散性良く導電性カーボン粉末に担持される。
 上記反応において、内筒外壁面と外筒内壁面との間隔が狭いほど、反応液に大きな機械的エネルギーを印加できるため好ましい。内筒外壁面と外筒内壁面との間隔は、5mm以下であるのが好ましく、2.5mm以下であるのがより好ましく、1.0mm以下であるのが特に好ましい。内筒外壁面と外筒内壁面との間隔は、反応器のせき板の幅及び反応器に導入される反応液の量によって設定することができる。
 内筒の旋回時間には厳密な制限がなく、反応液の量や内筒の旋回速度(遠心力の値)によっても変化するが、一般的には0.5分~10分の範囲である。反応終了後に、内筒の旋回を停止し、金属酸化物原料及び/又はその反応生成物を担持させた導電性カーボン粉末を回収する。
 熱処理段階では、回収物を、必要に応じて洗浄した後、加熱処理することにより、上記導電性カーボン粉末に担持された金属酸化物原料及び/又はその反応生成物を酸化物のナノ粒子に転化する。
 加熱処理の雰囲気には、目的の金属酸化物が得られれば、厳密な制限がない。真空中での加熱処理でも良く、窒素、アルゴン等の不活性雰囲気中での加熱処理でも良く、酸素、空気等の酸素含有雰囲気中での加熱処理でも良い。加熱処理の温度及び時間にも厳密な制限がなく、目的とする酸化物の組成や処理量によっても変化するが、一般には、酸素含有雰囲気中での加熱処理は200~300℃の温度で10分~10時間、不活性雰囲気中での加熱処理は250~900℃の温度で10分~10時間、真空中での熱処理は常温~200℃の温度で10分~10時間の範囲である。上記担持段階の過程で、金属酸化物原料及び/又はその反応生成物が微粒子として分散性良く導電性カーボン粉末に担持されているため、熱処理段階で生成する金属酸化物は微細で均一な大きさの粒子、具体的にはナノ粒子、となる。ナノ粒子の性状は、調製段階における反応液の組成、担持段階における反応器の旋回速度、熱処理段階における加熱雰囲気などの諸条件に依存して変化する。導電性カーボン粉末に高分散状態で担持された、1nmオーダーの粒径を有する極めて微細な粒子が形成されることもあり、導電性カーボンに分散性良く付着している10nmオーダーの粒径を有する粒子が形成されることもある。
 層状岩塩型LiMO、層状LiMnO-LiMO固溶体、スピネル型LiM(式中のMは、Mn、Fe、Co、Ni又はこれらの組み合わせを意味する)から選択された複合酸化物のナノ粒子と導電性カーボンとの複合体を得たい場合には、加熱処理に先立って、上記担持段階で得られた、Mn、Fe、Co及びNiから成る群から選択された遷移金属の水酸化物が担持された導電性カーボン粉末を、必要に応じて洗浄した後、Liの化合物と混合し、混合物を加熱処理することにより得ることができる。上記導電性カーボン粉末に担持されたMn等の水酸化物とLiの化合物とが反応して、上記複合酸化物のナノ粒子、特に10~40nmの一次粒子径を有するナノ粒子に転化する。
 Liの化合物としては、Liを含んでいる化合物を特に限定なく使用することができ、例えば、Liの水酸化物、炭酸塩、ハロゲン化物、硝酸塩、硫酸塩等の無機金属塩、ギ酸塩、酢酸塩、シュウ酸塩、乳酸塩等の有機金属塩、或いはこれらの混合物を使用することができる。これらの化合物は、単独で使用しても良く、2種以上を混合して使用しても良い。水酸化物を使用すると、イオウ化合物、窒素化合物等の不純物が残留しない上に、複合酸化物が迅速に得られるため好ましい。
 上記担持段階で得られたMn等の水酸化物の微粒子を担持させた導電性カーボン粉末と、Liの化合物とを、必要に応じて適量の分散媒と組み合わせ、必要に応じて分散媒を蒸発させながら混錬することにより、混錬物を得る。混錬のための分散媒としては、複合体に悪影響を及ぼさない媒体であれば特に限定なく使用することができ、水、メタノール、エタノール、イソプロピルアルコールなどを好適に使用することができ、水を特に好適に使用することができる。
 この場合にも、加熱処理の雰囲気には厳密な制限がない。真空中での加熱処理でも良く、窒素、アルゴン等の不活性雰囲気中での加熱処理でも良く、酸素、空気等の酸素含有雰囲気中での加熱処理でも良い。加熱処理の温度及び時間にも厳密な制限がなく、目的とする酸化物の組成や処理量によっても変化するが、一般に、酸素含有雰囲気中での加熱処理は200~300℃の温度で10分~10時間、不活性雰囲気中での加熱処理は約250~600℃の温度で10分~10時間、真空中での熱処理は常温~約200℃の温度で10分~10時間の範囲である。
 この場合の加熱処理は、酸素含有雰囲気中で200~300℃の温度で加熱処理を行うのが好ましい。300℃以下であれば、酸素含有雰囲気においても導電性カーボン粉末が焼失せず、複合酸化物が結晶性良く得られるからである。酸素を含まない雰囲気で加熱処理を行うと、複合酸化物が還元され、目的の複合酸化物が得られない場合がある。
 担持段階の過程で得られた、水酸化物が均一な大きさの微粒子として担持されている導電性カーボン粉末を使用するため、Mn等の水酸化物とLi化合物との反応が迅速且つ均一に進み、得られる複合酸化物のナノ粒子も微細で均一な大きさを有する。
 熱処理段階において、層状岩塩型LiMO、層状LiMnO-LiMO固溶体を得たい場合でも、スピネルが同時に生成する場合がある。この場合には、上述した加熱処理、好ましくは酸素含有雰囲気中での200~300℃の温度での加熱処理に続いて、水熱処理を行うのが好ましい。水熱処理によりスピネルが層状構造体に変性し、純度の良い層状構造体を得ることができる。水熱処理は、オートクレーブ中に熱処理後の粉末と水、好ましくは水酸化リチウム水溶液を導入した後、100℃以上、1気圧以上の熱水下で行うことができる。
 比較的高い導電性を有する複合体の微小粒子と、該複合体の粒子より大きい粒径を有する第1の活物質の粗大粒子とを、必要に応じてバインダを溶解した溶媒に添加して混練し、得られた混練物を正極又は負極のための集電体上に塗布し、必要に応じて乾燥した後、塗膜に圧延処理を施すと、その圧力により、粗大粒子が互いに接近して接触するとともに、隣り合う粗大粒子の間に形成される間隙部に複合体の微小粒子が押し出させて充填され(図1右)、本発明の電極材料が得られる。複合体の粒子の大部分は、互いに接触した状態で存在する複数の粗大粒子により囲まれた間隙部に存在する。複合体を構成する導電性カーボンとこれに付着している第2の活物質の粒子とは、上述した混練~圧延の過程を通じて一体として存在し、ばらばらに分離することがない。微小粒子と粗大粒子との混合割合は、質量比で、5~30:95~70の範囲であるのが好ましい。この範囲を超えると、得られる電極材料のエネルギー密度が低下する傾向がある。混練時のバインダ及び溶媒、正極又は負極のための集電体については、以下のリチウムイオン二次電池の説明の部分において説明する。
 このとき、導電性カーボンからなる導電剤を同時に混練することにより、図1の右に示すような、隣り合う粗大粒子の間に形成される間隙部に、比較的高い導電性を有する複合体の微小粒子と導電剤の両方が充填された電極材料が得られる。複合体と導電剤との混合物の導電率は、10-3S/cm以上であるのが好ましい。
 導電性カーボンからなる導電剤としては、導電性を有しているカーボンであれば特に限定なく使用することができる。例としては、ケッチェンブラック、アセチレンブラック、チャネルブラックなどのカーボンブラック、フラーレン、カーボンナノチューブ、カーボンナノファイバ、無定形炭素、炭素繊維、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック、活性炭、メソポーラス炭素などを挙げることができる。また、気相法炭素繊維を使用することもできる。これらのカーボン粉末は、単独で使用しても良く、2種以上を混合して使用しても良い。なお、導電剤として使用される導電性カーボンの粒子も、複合体と同様に、第1の活物質の粗大粒子の粒径よりも小さい粒径を有する。粒径は、10nm~300nmの範囲であるのが好ましく、10~100nmの範囲であるのがより好ましく、10~50nmの範囲であるのが特に好ましい。
 (b)リチウムイオン二次電池
 本発明の電極材料は、リチウムイオン二次電池のために好適である。したがって、本発明はまた、本発明の電極材料を含む活物質層を有する正極及び/又は負極と、負極と正極との間に配置された非水系電解液を保持したセパレータとを備えたリチウムイオン二次電池を提供する。
 正極のための活物質層は、上述した正極活物質を含む複合体の微小粒子と正極活物質からなる粗大粒子とを必要に応じてバインダを溶解した溶媒に添加して十分に混練し、得られた混練物をドクターブレード法などによって正極のための集電体上に塗布し、必要に応じて乾燥した後、塗膜に圧延処理を施すことにより作成することができる。また、得られた混練物を所定形状に成形し、集電体上に圧着した後、圧延処理を施しても良い。
 同様に、負極のための活物質層は、上述した負極活物質を含む複合体の微小粒子と負極活物質からなる粗大粒子とを必要に応じてバインダを溶解した溶媒に添加して十分に混練し、得られた混練物をドクターブレード法などによって負極のための集電体上に塗布し、必要に応じて乾燥した後、塗膜に圧延処理を施すことにより作成することができる。また、得られた混練物を所定形状に成形し、集電体上に圧着した後、圧延処理を施しても良い。
 正極及び負極のいずれか一方を、本発明の電極材料以外の電極材料、例えば、比較的大きな粒径を有する活物質の粒子と導電剤とを含み複合体の微小粒子を含まない複合材料、を用いて形成してもよい。
 集電体としては、白金、金、ニッケル、アルミニウム、チタン、鋼、カーボンなどの導電材料を使用することができる。集電体の形状は、膜状、箔状、板状、網状、エキスパンドメタル状、円筒状などの任意の形状を採用することができる。
 バインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレンコポリマー、ポリフッ化ビニル、カルボキシメチルセルロースなどの公知のバインダが使用される。バインダの含有量は、混合材料の総量に対して1~30質量%であるのが好ましい。1質量%以下であると活物質層の強度が十分でなく、30質量%以上であると、負極の放電容量が低下する、内部抵抗が過大になるなどの不都合が生じる。
 セパレータとしては、例えばポリオレフィン繊維不織布、ガラス繊維不織布などが好適に使用される。セパレータに保持される電解液は、非水系溶媒に電解質を溶解させた電解液が使用され、公知の非水系電解液を特に制限なく使用することができる。
 非水系電解液の溶媒としては、電気化学的に安定なエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、3-メチルスルホラン、γ-ブチロラクトン、アセトニトリル及びジメトキシエタン、N-メチル-2-ピロリドン、ジメチルホルムアミド又はこれらの混合物を好適に使用することができる。
 非水系電解液の溶質としては、有機電解液に溶解したときにリチウムイオンを生成する塩を、特に限定なく使用することができる。例えば、LiPF、LiBF、LiClO、LiN(CFSO、LiCFSO、LiC(SOCF、LiN(SO、LiAsF、LiSbF、又はこれらの混合物を好適に使用することができる。非水系電解液の溶質として、リチウムイオンを生成する塩に加えて、第4級アンモニウムカチオン又は第4級ホスホニウムカチオンを有する第4級アンモニウム塩又は第4級ホスホニウム塩を使用することができる。例えば、R又はRで表されるカチオン(ただし、R、R、R、Rは炭素数1~6のアルキル基を表す)と、PF 、BF 、ClO 、N(CFSO 、CFSO 、C(SOCF 、N(SO 、AsF 又はSbF からなるアニオンとからなる塩、又はこれらの混合物を好適に使用することができる。
 本発明を以下の実施例を用いて説明するが、本発明は以下の実施例に限定されない。
 (I)充填状態の評価
 実施例1
 特許文献2(特開2007-160151号公報)の図1に示されている、外筒と内筒の同心円筒からなり、内筒の側面に貫通孔が設けられ、外筒の開口部にせき板が配置されている反応器の内筒に、2.49gのCo(CHCOO)・4HO及び0.225gのケッチェンブラック(粒径約40nm)を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させ、Co(CHCOO)・4HOを溶解させると共にケッチェンブラックを分散させた。一旦内筒の旋回を停止し、内筒内に0.8gのLiOH・HOを水に溶解させた液を添加した。次に、再び70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。この間に、外筒の内壁と内筒の外壁との間でCo水酸化物の核が形成され、この核が成長してケッチェンブラックの表面に担持された。内筒の旋回停止後に、ケッチェンブラックをろ過して回収し、空気中100℃で12時間乾燥した。ろ液をICP分光分析により確認したところ、Co(CHCOO)・4HO原料に含まれるCoの95%以上が担持されていることがわかった。次いで、乾燥後の粉末と、Co:Liが1:1になる量のLiOH・HOを含む水溶液を混合して混練し、乾燥後に、空気中250℃で1時間加熱処理した。さらに、オートクレーブ中に加熱処理後の粉末と6M/LのLiOH水溶液とを導入し、飽和水蒸気中250℃で6時間水熱処理することにより、複合体を得た。この複合体において、直径10~200nmのLiCoOの一次粒子が分散性良く形成されていた。また、この複合体について、TG測定を、空気雰囲気中、常温~650℃の範囲で、昇温速度1℃/分の条件で行った。重量減少量を炭素分として評価したところ、複合体におけるLiCoOと炭素分(ケッチェンブラック)との質量比は、90:10であった。
 次いで、粗大粒子としての市販のLiCoO(平均一次粒子径約10μm)と、得られた複合体を100-X:Xの質量比で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥し、圧延処理を行って、電極密度測定用の電極を得た。以下に示す全ての実施例及び比較例における圧延処理は、同一条件で行っている。さらに、上記LiCoOと上記複合体とアセチレンブラックとを90:10:2の質量比で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥し、圧延処理を行った後、その断面にイオンミリング加工を施して、SEM観察用の電極を得た。
 比較例1
 実施例1において用いた市販のLiCoO(平均一次粒子径約10μm)を粗大粒子とし、アセチレンブラックと、100-Y:Yの質量比で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥し、圧延処理を行って、電極密度測定用の電極を得た。さらに、上記LiCoOとアセチレンブラックとを97:3の質量比で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥し、圧延処理を行った後、その断面にイオンミリング加工を施して、SEM観察用の電極を得た。
 図2には、実施例1の電極における、複合体量Xと電極密度との関係を示した。図2の(A)は、電極のアルミニウム箔上の電極材料の体積と重量の実測値から算出した電極密度と複合体量Xの関係を示しており、(B)は、得られた電極密度から、
    粗大粒子密度=電極密度×(100-X)×0.95
の式を用いて算出した粗大粒子密度(電極1ccあたりの粗大粒子の重量)と複合体量Xの関係を示している。図3には、比較例1の電極における、電極のアルミニウム箔上の電極材料の体積と重量の実測値から算出した電極密度とアセチレンブラック量Yとの関係を示した。
 図3から明らかなように、比較例1では、電極材料中のアセチレンブラックがわずかに1質量%であっても、電極密度が急激に減少し、アセチレンブラック含有量がさらに増加するにつれて電極密度がなだらかに減少した。したがって、アセチレンブラックがLiCoO粗大粒子間に形成される間隙部に進入しにくく、隣り合うLiCoO粗大粒子の間隔を増大させることがわかった。これに対し、本発明の電極材料を用いた実施例1では、図2の(A)から明らかなように、複合体が10質量%までは複合体含有量が増加するにつれて電極密度が増加し、複合体含有量がさらに増加すると電極密度が減少した。LiCoOの粗大粒子密度については、図2の(B)から明らかなように、複合体が10質量%までは、LiCoO粗大粒子のみから構成される電極材料の粗大粒子密度と略同一の値を示した。このことは、複合体が10質量%までは、互いに接触した状態で存在する複数のLiCoO粗大粒子により囲まれた間隙部に複合体が充填されていることを示している。
 図4には、実施例1の電極材料のSEM写真(A)(B)と、比較例1の電極材料のSEM写真(C)(D)とを示した。(B)は(A)の高倍率の写真であり、(D)は(C)の高倍率の写真である。図4から明らかなように、実施例1の電極材料では、LiCoO粗大粒子が接近しており、LiCoO粗大粒子間の間隙部に複合体粒子が密に充填されていた。これに対し、比較例1の電極材料では、実施例1の電極材料と比較して、同じ圧延処理条件であるにもかかわらず電極材料の厚みが厚く、LiCoO粗大粒子間の間隔が離れており、LiCoO粗大粒子間の間隙部に存在するアセチレンブラックに空隙が認められた。これらの結果から、本発明の電極材料では、複合体が粗大粒子により囲まれた間隙部に好適に充填されることがわかる。
 実施例2
 実施例1で用いた反応器の内筒に、1.98gのFe(CHCOO)、0.77gのCHCOOLi、1.10gのC・HO、1.32gのCHCOOH、1.31gのHPO及び0.50gのケッチェンブラックを水120mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させ、ケッチェンブラックを分散させるとともに、反応生成物をケッチェンブラックの表面に担持した。内筒の旋回停止後に、反応器の内容物を回収し、空気中100℃で蒸発乾固させた。次いで、窒素中700℃で3分間加熱処理し、複合体を得た。この複合体において、直径20~50nmのLiFePOの一次粒子が分散性良く形成されていた。また、この複合体について、TG測定を、空気雰囲気中、常温~650℃の範囲で、昇温速度1℃/分の条件で行った。重量減少量を炭素分として評価したところ、複合体におけるLiFePOと炭素分(ケッチェンブラック)との質量比は81:19であった。
 次いで、粗大粒子としての市販のLiFePO(一次粒子径0.5-1μm、二次粒子径約2-3μm)と、得られた複合体を100-X:Xの質量比で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥し、圧延処理を行って、電極密度測定用の電極を得た。
 比較例2
 実施例1において用いた市販のLiFePO(一次粒子径0.5-1μm、二次粒子径約2-3μm)を粗大粒子とし、アセチレンブラックと、100-Y:Yの質量比で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥し、圧延処理を行って、電極密度測定用の電極を得た。
 図5には、実施例2の電極における、複合体量Xと電極密度との関係を示した。図5の(A)は、電極のアルミニウム箔上の電極材料の体積と重量の実測値から算出した電極密度と複合体量Xの関係を示しており、(B)は、得られた電極密度から、
    粗大粒子密度=電極密度×(100-X)×0.95
の式を用いて算出した粗大粒子密度(電極1ccあたりの粗大粒子の重量)と複合体量Xの関係を示している。図6には、比較例2の電極における、電極のアルミニウム箔上の電極材料の体積と重量の実測値から算出した電極密度とアセチレンブラック量Yとの関係を示した。
 図6から明らかなように、比較例2では、電極材料中のアセチレンブラックがわずかに1質量%であっても、電極密度が急激に減少し、アセチレンブラック含有量がさらに増加するにつれて電極密度がなだらかに減少した。したがって、アセチレンブラックがLiFePO粗大粒子間に形成される間隙部に進入しにくく、隣り合うLiFePO粗大粒子の間隔を増大させることがわかった。これに対し、本発明の電極材料を用いた実施例2では、図5の(A)から明らかなように、複合体が10質量%までは複合体含有量が増加するにつれて電極密度が増加し、複合体含有量がさらに増加すると電極密度が減少した。LiFePOの粗大粒子密度については、図5の(B)から明らかなように、複合体が10質量%までは、LiFePO粗大粒子のみから構成される電極材料の粗大粒子密度と略同一の値を示した。このことは、複合体が10質量%までは、互いに接触した状態で存在する複数のLiFePO粗大粒子により囲まれた間隙部に複合体が充填されていることを示している。これらの結果から、本発明の電極材料では、複合体が粗大粒子により囲まれた間隙部に好適に充填されることがわかる。
 (II)リチウムイオン二次電池
 1)LiMn(スピネル)と導電性カーボンとの複合体と、LiMnの粗大粒子と、の電極材料及びこの電極材料の利用
 実施例3
 実施例1で用いた反応器の内筒に、2.45gのMn(CHCOO)・4HO及び0.225gの質量比でケッチェンブラック(粒径約40nm):カーボンナノファイバ(直径約20nm、長さ数百nm)=1:1に混合したカーボン混合物を水75mLに添加した液を導入し、70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させ、Mn(CHCOO)・4HOを溶解させると共にカーボン混合物を分散させた。一旦内筒の旋回を停止し、内筒内に0.6gのLiOH・HOを水に溶解させた液を添加した。液のpHは10であった。次に、再び70000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。この間に、外筒の内壁と内筒の外壁との間でMn水酸化物の核が形成され、この核が成長してカーボン混合物の表面に担持された。内筒の旋回停止後に、カーボン混合物をろ過して回収し、空気中100℃で12時間乾燥した。ろ液をICP分光分析により確認したところ、Mn(CHCOO)・4HO原料に含まれるMnの95%以上が担持されていることがわかった。次いで、乾燥後の粉末と、Mn:Liが2:1になる量のLiOH・HOを含む水溶液を混合して混練し、乾燥後に、空気中300℃で1時間加熱処理し、複合体を得た。この複合体において、直径10~40nmのLiMnの一次粒子が分散性良く形成されていた。また、この複合体について、TG測定を、空気雰囲気中、常温~650℃の範囲で、昇温速度1℃/分の条件で行った。重量減少量を炭素分として評価したところ、複合体におけるLiMnと炭素分(カーボン混合物)との質量比は89:11であった。
 次いで、得られた複合体と、粗大粒子としての市販のLiMn(一次粒子径2-3μm、二次粒子径約20μm)と、導電剤としてのアセチレンブラックと、を質量比で30:70:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.45g/mLであった。なお、電極材料の密度は、正極のアルミ箔上の電極材料の体積及び重量の実測値から算出した。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 実施例4
 実施例3において製造した複合体と、粗大粒子としての市販のLiMn(一次粒子径2-3μm、二次粒子径約20μm)と、導電剤としてのアセチレンブラックと、を質量比で20:80:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.68g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 比較例3
 粗大粒子としての市販のLiMn(一次粒子径2-3μm、二次粒子径約20μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.0g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図7に、実施例3の正極と比較例3の正極の表面のSEM写真を示す。(a)は実施例3についての写真であり、(b)は比較例3についての写真である。各写真において、B領域に認められる結晶は、市販のLiMnの粗大粒子に含まれている一次粒子である。(a)の写真におけるA領域には、アセチレンブラックと複合体とが共存しているが、これらが市販のLiMnの粗大粒子の間の間隙部に密に充填されていることがわかる。(b)の写真におけるA´領域には、アセチレンブラックが存在している。アセチレンブラックも市販のLiMnの粗大粒子の間の間隙部に充填されているものの、実施例3の正極と比較して不十分な充填状態であった。
 実施例4の正極と、比較例3の正極について、水銀圧入法により細孔分布を測定した。結果を図8に示す。実施例4の正極では、比較例3の正極に比較して、直径0.08μm以上の細孔が顕著に少なく、直径0.08μm未満の細孔が多いことがわかる。これは、実施例4の正極においてアセチレンブラックと複合体とが粗大粒子により形成された間隙部に密に充填されていることを反映した結果であると考えられる。
 図9には、実施例3、実施例4及び比較例3の電池についてのラゴンプロットを示す。実施例3及び実施例4の電池は、比較例3の電池より、向上したエネルギー密度を示した。また、図8に示したように、本発明の電極材料は比較例の電極材料より著しく小さな直径の細孔を有しているが、電解液がこの微細な細孔中にも十分に進入し、優れたレート特性が得られた。
 2)LiMnと導電性カーボンとの複合体と、LiNi0.5Mn0.3Co0.2の粗大粒子と、の電極材料及びこの電極材料の利用
 実施例5
 粗大粒子としての市販のLiMnの代わりに、同量の市販のLiNi0.5Mn0.3Co0.2(一次粒子径1-2μm、二次粒子径約20μm)を用いて、実施例4の手順を繰り返した。正極における電極材料の密度は、3.2g/mLであった。
 比較例4
 粗大粒子としての市販のLiNi0.5Mn0.3Co0.2(一次粒子径1-2μm、二次粒子径約20μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.5g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図10には、実施例5及び比較例4の電池についてのラゴンプロットを示す。実施例5の電池は、比較例4の電池より、向上したエネルギー密度を示した。
 3)LiFePOと導電性カーボンとの複合体と、LiFePOの粗大粒子と、の電極材料及びこの電極材料の利用
 実施例6
 実施例2において得られLiFePOと導電性カーボンとの複合体と、粗大粒子としての市販のLiFePO(一次粒子径0.5-1μm、二次粒子径約2-3μm)と、導電剤としてのアセチレンブラックと、を質量比で20:80:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.60g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 比較例5
 粗大粒子としての市販のLiFePO(一次粒子径0.5-1μm、二次粒子径約2-3μm)と、導電剤としてのアセチレンブラックと、を質量比で85:10の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.00g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図11に、実施例6の正極と比較例5の正極の表面のSEM写真を示す。(a)は実施例6についての写真であり、(b)は比較例5についての写真である。各写真において、B領域に認められる結晶は、市販のLiFePOの粗大粒子に含まれている一次粒子である。(a)の写真におけるA領域には、アセチレンブラックと複合体とが共存しているが、これらが市販のLiFePOの粗大粒子の間の間隙部に密に充填されていることがわかる。(b)の写真におけるA´領域には、アセチレンブラックが存在しているが、アセチレンブラックは、LiFePOの粗大粒子の間隙部に密に充填されてはいなかった。
 図12には、実施例6及び比較例5の電池についてのラゴンプロットを示す。実施例6の電池は、比較例5の電池より、向上したエネルギー密度を示した。
 4)LiCoOと導電性カーボンとの複合体と、LiCoOの粗大粒子と、の電極材料及びこの電極材料の利用
 実施例7
 実施例1において得られたLiCoOと導電性カーボンとの複合体と、粗大粒子としての市販のLiCoO(平均一次粒子径約5μm)と、導電剤としてのアセチレンブラックと、を質量比で20:80:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、3.9g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 比較例6
 粗大粒子としての市販のLiCoO(平均一次粒子径約5μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、3.2g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図13に、実施例7の正極と比較例6の正極の表面のSEM写真を示す。(a)は実施例7についての写真であり、(b)は比較例6についての写真である。各写真において、B領域に認められる結晶は、市販のLiCoOの粗大粒子に含まれている一次粒子である。(a)の写真におけるA領域には、アセチレンブラックと複合体とが共存しているが、これらが市販のLiCoOの粗大粒子の間の間隙部に密に充填されていることがわかる。(b)の写真におけるA´領域には、アセチレンブラックが存在している。アセチレンブラックも市販のLiCoOの粗大粒子の間の間隙部に充填されているものの、実施例7の正極と比較して不十分な充填状態であった。
 図14には、実施例7及び比較例6の電池についてのラゴンプロットを示す。実施例7の電池は、比較例6の電池より、向上したエネルギー密度を示した。
 5)LiCoOと導電性カーボンとの複合体と、LiNi0.5Mn0.3Co0.2の粗大粒子と、の電極材料及びこの電極材料の利用
 実施例8
 実施例1において得られたLiCoOと導電性カーボンとの複合体と、粗大粒子としての市販のLiNi0.5Mn0.3Co0.2(一次粒子径1-2μm、二次粒子径約20μm)と、導電剤としてのアセチレンブラックと、を質量比で20:80:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、3.2g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 比較例7
 粗大粒子としての市販のLiNi0.5Mn0.3Co0.2(一次粒子径1-2μm、二次粒子径約20μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.5g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図15に、実施例8及び比較例7の電池についてのラゴンプロットを示す。実施例8の電池は、比較例7の電池より、向上したエネルギー密度を示した。
 6)LiCoOと導電性カーボンとの複合体と、LiMnの粗大粒子と、の電極材料及びこの電極材料の利用
 実施例9
 実施例1において得られたLiCoOと導電性カーボンとの複合体と、粗大粒子としての市販のLiMn(平均一次粒子径約5μm)と、導電剤としてのアセチレンブラックと、を質量比で20:80:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、3.20g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 比較例8
 粗大粒子としての市販のLiMn(平均一次粒子径約5μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極を得た。得られた正極における電極材料の密度は、2.5g/mLであった。
 さらに、得られた正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液とし、対極をリチウムとしたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図16に、実施例9及び比較例8の電池についてのラゴンプロットを示す。実施例9の電池は、比較例8の電池より、向上したエネルギー密度を示した。
 7)LiTi12と導電性カーボンとの複合体と、LiTi12の粗大粒子と、の電極材料及びこの電極材料の利用
 実施例10
 チタンイソプロポキシド1モルに対して酢酸1.8モル、酢酸リチウム1モルとなる量の酢酸と酢酸リチウムを、イソプロパノールと水とを質量比で90:10に混合した混合溶媒1000mLに溶解した。実施例1で用いた反応器の内筒に、得られた液と、1モルのチタンイソプロポキシドと、LiTi12:Cが80:20になる量のカーボンナノファイバ(直径約20nm、長さ数百nm)とを導入し、66000kgms-2の遠心力が反応液に印加されるように内筒を300秒間旋回させた。この間に、外筒の内壁と内筒の外壁との間で反応物の薄膜が形成され、この薄膜にずり応力と遠心力が加えられて化学反応が進行し、LiTi12前駆体が高分散担持されたカーボンナノファイバが得られた。内筒の旋回停止後に、カーボンナノファイバをろ過して回収し、真空中80℃で17時間乾燥し、さらに窒素中700℃で3分加熱処理することにより、複合体を得た。この複合体において、直径5~100nmのLiTi12の一次粒子が分散性良く形成されていた。また、この複合体について、TG測定を、空気雰囲気中、常温~650℃の範囲で、昇温速度1℃/分の条件で行った。重量減少量を炭素分として評価したところ、複合体におけるLiTi12と炭素分(カーボンナノファイバ)との質量比は、80:20であった。
 次いで、得られた複合体と、粗大粒子としての市販のLiTi12(平均二次粒子径約7μm)と、導電剤としてのアセチレンブラックと、を質量比で10:90:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の負極を得た。得られた負極における電極材料の密度は、2.85g/mLであった。
 市販のLiMn(平均一次粒子径約5μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の正極(Li/Liに対して4Vで動作)を得た。
 得られた負極と正極を用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液としたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 実施例11
 実施例10で得られた複合体と、粗大粒子としての市販のLiTi12(平均二次粒子径約7μm)と、導電剤としてのアセチレンブラックと、を質量比で20:80:1の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の負極を得た。得られた負極における電極材料の密度は、2.55g/mLであった。
 さらに、得られた負極と実施例10で得られた正極とを用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液としたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 比較例9
 粗大粒子としての市販のLiTi12(平均二次粒子径約7μm)と、導電剤としてのアセチレンブラックと、を質量比で90:5の割合で混合し、さらに全体の5質量%のポリフッ化ビニリデンと適量のN-メチルピロリドンを加えて十分に混練してスラリーを形成し、アルミニウム箔上に塗布し、乾燥した後、圧延処理を施して、リチウムイオン二次電池の負極を得た。得られた負極における電極材料の密度は、2.0g/mLであった。
 さらに、得られた負極と実施例10で得られた正極とを用いて、1MのLiPFのエチレンカーボネート/ジエチルカーボネート1:1溶液を電解液としたリチウムイオン二次電池を作成した。得られた電池について、広範囲の電流密度の条件下で充放電特性を評価した。
 図17に、実施例10,11及び比較例9の負極の表面のSEM写真を示す。(a)は実施例10についての写真であり、(b)は実施例11についての写真であり、(c)は比較例9についての写真である。各写真において、B領域に認められる結晶は、市販のLiTi12の粗大粒子に含まれている一次粒子である。(a),(b)の写真におけるA領域には、アセチレンブラックと複合体とが共存しているが、これらが市販のLiTi12の粗大粒子の間の間隙部に密に充填されていることがわかる。(c)の写真におけるA´領域には、アセチレンブラックが存在している。アセチレンブラックも市販のLiTi12の粗大粒子の間の間隙部に充填されているものの、実施例10,11の負極と比較して不十分な充填状態であった。
 図18には、実施10,11及び比較例9の電池についてのラゴンプロットを示す。実施例10,11の電池は、比較例9の電池より、向上したエネルギー密度を示した。
 本発明により、高いエネルギー密度を有するリチウムイオン二次電池が得られる。

Claims (8)

  1.  リチウムイオン二次電池の正極活物質又は負極活物質として動作可能な第1の活物質の粒子と、
     導電性カーボンと、該導電性カーボンに付着している前記第1の活物質と同じ極の活物質として動作可能な第2の活物質と、の複合体の粒子と、
     を含み、
     前記第1の活物質の粒子の粒径が前記複合体の粒子の粒径より大きく、
     前記複合体の粒子が、前記第1の活物質の粒子の間に形成される間隙部に充填されている
     ことを特徴とするリチウムイオン二次電池用電極材料。
  2.  前記第2の活物質が金属酸化物である、請求項1に記載のリチウムイオン二次電池用電極材料。
  3.  前記第1の活物質の粒子が100nm~100μmの範囲の粒径を有し、
     前記複合体における導電性カーボンの粒子が10nm~300nmの範囲の粒径を有し、第2の活物質の粒子が1~40nmの範囲の粒径を有する、請求項1又は2に記載のリチウムイオン二次電池用電極材料。
  4.  導電性カーボンから成る導電剤をさらに含み、該導電剤が前記第1の活物質の粒子の間に形成される間隙部に充填されている、請求項1~3のいずれか1項に記載のリチウムイオン二次電池用電極材料。
  5.  前記複合体と前記導電剤との混合物の導電率が10-3S/cm以上である、請求項4に記載のリチウムイオン二次電池用電極材料。
  6.  リチウムイオン二次電池の正極活物質又は負極活物質として動作可能な第1の活物質の粒子と、
     導電性カーボンと、該導電性カーボンに付着している前記第1の活物質と同じ極の活物質として動作可能な金属酸化物からなる第2の活物質と、の複合体の粒子と、
     を含み、
     前記第1の活物質の粒子の粒径が前記複合体の粒子の粒径より大きく、
     前記複合体の粒子が、前記第1の活物質の粒子の間に形成される間隙部に充填されている、リチウムイオン二次電池用電極材料の製造方法であって、
     1)a)前記金属酸化物を構成する金属を含む少なくとも一種の化合物を溶解させた溶液に導電性カーボン粉末を添加した反応液を、旋回可能な反応器内に導入する調製段階、及び、
       b)前記反応器を旋回させて前記反応液にずり応力と遠心力とを加えることにより、前記導電性カーボン粉末に前記金属の化合物及び/又はその反応生成物を担持させる担持段階、及び、
       c)前記金属の化合物及び/又はその反応生成物を担持させた導電性カーボン粉末を加熱処理することにより、前記導電性カーボン粉末に担持された前記金属の化合物及び/又はその反応生成物を酸化物のナノ粒子に転化する熱処理段階
     を含む工程により、導電性カーボンと該導電性カーボンに付着している第2の活物質との複合体の粒子を得る複合体製造工程、及び、
     2)前記複合体製造工程により得られた複合体の粒子と、該複合体の粒子より大きい粒径を有する前記第1の活物質の粒子と、を混練し、得られた混練物に圧力を印加する混練工程
     を含むことを特徴とするリチウムイオン二次電池用電極材料の製造方法。
  7.  導電性カーボンから成る導電剤をさらに含み、前記混練工程において、前記複合体の粒子と前記第1の活物質の粒子と前記導電剤とを混練する、請求項6に記載のリチウムイオン二次電池用電極材料の製造方法。
  8.  請求項1~5のいずれか1項に記載の電極材料を含む活物質層を有する正極及び/又は負極を備えたリチウムイオン二次電池。
PCT/JP2013/073568 2012-09-03 2013-09-02 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池 WO2014034933A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157005051A KR102110777B1 (ko) 2012-09-03 2013-09-02 리튬 이온 이차 전지용 전극 재료, 이 전극 재료의 제조 방법, 및 리튬 이온 이차 전지
JP2014533154A JP6236006B2 (ja) 2012-09-03 2013-09-02 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
CN201380045747.2A CN104620425B (zh) 2012-09-03 2013-09-02 锂离子二次电池用电极材料、该电极材料的制造方法、及锂离子二次电池
EP13833980.9A EP2894699B1 (en) 2012-09-03 2013-09-02 Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
US14/425,296 US10374222B2 (en) 2012-09-03 2013-09-02 Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012193615 2012-09-03
JP2012-193615 2012-09-03
JP2012-280408 2012-12-24
JP2012280408 2012-12-24

Publications (1)

Publication Number Publication Date
WO2014034933A1 true WO2014034933A1 (ja) 2014-03-06

Family

ID=50183731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073568 WO2014034933A1 (ja) 2012-09-03 2013-09-02 リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池

Country Status (7)

Country Link
US (1) US10374222B2 (ja)
EP (1) EP2894699B1 (ja)
JP (1) JP6236006B2 (ja)
KR (1) KR102110777B1 (ja)
CN (1) CN104620425B (ja)
TW (1) TWI627783B (ja)
WO (1) WO2014034933A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181090A (ja) * 2014-03-05 2015-10-15 日本ケミコン株式会社 電極の製造方法
WO2016157551A1 (ja) * 2015-03-31 2016-10-06 日本ケミコン株式会社 チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス
KR20170005012A (ko) * 2014-05-19 2017-01-11 닛뽄 케미콘 가부시끼가이샤 전극, 이 전극의 제조 방법, 이 전극을 구비한 축전 디바이스, 및 축전 디바이스 전극용 도전성 카본 혼합물
US20170047608A1 (en) * 2015-08-13 2017-02-16 Samsung Sdi Co., Ltd. Rechargeable lithium battery including same
CN106463696A (zh) * 2014-05-19 2017-02-22 日本贵弥功株式会社 电极、该电极的制造方法、具备该电极的蓄电器件、和蓄电器件电极用的导电性碳混合物
JPWO2016159323A1 (ja) * 2015-03-31 2018-04-26 日本ケミコン株式会社 チタン酸化物結晶体、チタン酸化物結晶体を含む蓄電デバイス用電極
JP2021048005A (ja) * 2019-09-17 2021-03-25 株式会社東芝 電極、二次電池、電池パック及び車両

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629896B2 (en) * 2016-02-25 2020-04-21 Tdk Corporation Positive electrode and lithium ion secondary battery
US10312523B2 (en) * 2016-02-25 2019-06-04 Tdk Corporation Lithium ion secondary battery
US20170250402A1 (en) * 2016-02-25 2017-08-31 Tdk Corporation Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
US10211456B2 (en) * 2016-03-30 2019-02-19 Tdk Corporation Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP2017188424A (ja) * 2016-03-30 2017-10-12 Tdk株式会社 リチウムイオン二次電池用正極活物質、及びそれを用いたリチウムイオン二次電池用正極並びにリチウムイオン二次電池
EP3667776B1 (en) * 2017-09-04 2024-06-05 Industry - University Cooperation Foundation Hanyang University Positive electrode for metal-sulfur battery, manufacturing method therefor, and metal-sulfur battery comprising same
CN107845783B (zh) * 2017-09-15 2020-07-14 深圳市德方纳米科技股份有限公司 纳米磷酸氧钒锂正极材料及其制备方法、锂离子电池
CN110277537B (zh) * 2018-03-14 2023-07-18 株式会社理光 电极及其制造方法,电极元件,非水电解液蓄电元件
TWI682574B (zh) * 2018-06-21 2020-01-11 國立成功大學 複合電極材料及其製作方法、包含該複合電極材料之複合電極、以及包含該複合電極之鋰電池
CN109004177A (zh) * 2018-08-02 2018-12-14 天津普兰能源科技有限公司 一种高压实、高柔韧性钛酸锂极片
JPWO2020065832A1 (ja) * 2018-09-27 2021-08-30 株式会社村田製作所 導電性物質、正極および二次電池
KR102640843B1 (ko) 2018-11-19 2024-02-28 삼성전자주식회사 리튬전지용 전극 복합도전제, 이를 포함한 리튬전지용 전극, 그 제조방법 및 리튬 전지
US11670767B2 (en) * 2018-12-01 2023-06-06 Nanodian Nanostructured inorganic electrode materials with functionalized surfaces
KR102398690B1 (ko) * 2019-01-24 2022-05-17 주식회사 엘지에너지솔루션 리튬 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109260A (ja) 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd リチウム二次電池用正極
JP2004335310A (ja) * 2003-05-08 2004-11-25 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2005209591A (ja) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd 負極および非水系電解質二次電池
JP2007160151A (ja) 2005-12-09 2007-06-28 K & W Ltd 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。
JP2008243684A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd リチウム二次電池
JP2010092622A (ja) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd 電池用電極の製造方法
WO2011077754A1 (ja) * 2009-12-24 2011-06-30 パナソニック株式会社 電極および蓄電デバイス
JP2012212634A (ja) * 2011-03-31 2012-11-01 Tdk Corp 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706446B2 (en) * 2000-12-26 2004-03-16 Shin-Kobe Electric Machinery Co., Ltd. Non-aqueous electrolytic solution secondary battery
US20030099883A1 (en) * 2001-10-10 2003-05-29 Rosibel Ochoa Lithium-ion battery with electrodes including single wall carbon nanotubes
JP4843918B2 (ja) * 2004-08-26 2011-12-21 新神戸電機株式会社 複合酸化物材料及びリチウム二次電池用正極活物質
KR20060091486A (ko) * 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
KR101365568B1 (ko) * 2006-07-19 2014-02-20 니폰 카본 컴퍼니 리미티드 리튬 이온 2차 전지용 음극 활물질 및 이를 포함한 음극
JP5188795B2 (ja) * 2007-12-14 2013-04-24 パナソニック株式会社 リチウム二次電池用正極形成用塗工液、リチウム二次電池用正極およびリチウム二次電池
US8277683B2 (en) * 2008-05-30 2012-10-02 Uchicago Argonne, Llc Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries
JP4972624B2 (ja) * 2008-09-30 2012-07-11 日立ビークルエナジー株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
US8546019B2 (en) * 2008-11-20 2013-10-01 Lg Chem, Ltd. Electrode active material for secondary battery and method for preparing the same
JP5568886B2 (ja) * 2009-05-07 2014-08-13 ソニー株式会社 活物質、電池および電極の製造方法
CN101986797B (zh) * 2009-05-26 2013-08-14 科卡姆有限公司 用于锂蓄电池的阳极活性材料、其制备方法以及包含其的锂蓄电池
JP2011253620A (ja) * 2009-09-30 2011-12-15 K & W Ltd 負極活物質、この負極活物質の製造方法、及びこの負極活物質を用いたリチウムイオン二次電池
KR101084076B1 (ko) * 2010-05-06 2011-11-16 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
JP2013531871A (ja) * 2010-06-22 2013-08-08 ケイ2 エナジー ソリューションズ,インコーポレイテッド リチウムイオンバッテリ
US8691441B2 (en) * 2010-09-07 2014-04-08 Nanotek Instruments, Inc. Graphene-enhanced cathode materials for lithium batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109260A (ja) 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd リチウム二次電池用正極
JP2004335310A (ja) * 2003-05-08 2004-11-25 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2005209591A (ja) * 2004-01-26 2005-08-04 Sanyo Electric Co Ltd 負極および非水系電解質二次電池
JP2007160151A (ja) 2005-12-09 2007-06-28 K & W Ltd 反応方法及びこの方法で得られた金属酸化物ナノ粒子、またはこの金属酸化物ナノ粒子を担持したカーボン及びこのカーボンを含有する電極、並びにこれを用いた電気化学素子。
JP2008243684A (ja) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd リチウム二次電池
JP2010092622A (ja) * 2008-10-03 2010-04-22 Nissan Motor Co Ltd 電池用電極の製造方法
WO2011077754A1 (ja) * 2009-12-24 2011-06-30 パナソニック株式会社 電極および蓄電デバイス
JP2012212634A (ja) * 2011-03-31 2012-11-01 Tdk Corp 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181090A (ja) * 2014-03-05 2015-10-15 日本ケミコン株式会社 電極の製造方法
CN106463696A (zh) * 2014-05-19 2017-02-22 日本贵弥功株式会社 电极、该电极的制造方法、具备该电极的蓄电器件、和蓄电器件电极用的导电性碳混合物
KR102394159B1 (ko) * 2014-05-19 2022-05-04 닛뽄 케미콘 가부시끼가이샤 전극, 이 전극의 제조 방법, 이 전극을 구비한 축전 디바이스, 및 축전 디바이스 전극용 도전성 카본 혼합물
CN106463696B (zh) * 2014-05-19 2020-10-30 日本贵弥功株式会社 导电性碳混合物和电极的制造方法
KR20170005012A (ko) * 2014-05-19 2017-01-11 닛뽄 케미콘 가부시끼가이샤 전극, 이 전극의 제조 방법, 이 전극을 구비한 축전 디바이스, 및 축전 디바이스 전극용 도전성 카본 혼합물
JPWO2016159323A1 (ja) * 2015-03-31 2018-04-26 日本ケミコン株式会社 チタン酸化物結晶体、チタン酸化物結晶体を含む蓄電デバイス用電極
JP2018199617A (ja) * 2015-03-31 2018-12-20 日本ケミコン株式会社 チタン酸化物結晶体、チタン酸化物結晶体を含む蓄電デバイス用電極
JP2018203615A (ja) * 2015-03-31 2018-12-27 日本ケミコン株式会社 チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス
US10438751B2 (en) 2015-03-31 2019-10-08 Nippon Chemi-Con Corporation Titanium oxide crystal body and power storage device electrode including titanium oxide crystalline body
US10490316B2 (en) 2015-03-31 2019-11-26 Nippon Chemi-Con Corporation Titanium oxide particles, titanium oxide particle production method, power storage device electrode including titanium oxide particles, and power storage device provided with electrode including titanium oxide particles
JP2016193816A (ja) * 2015-03-31 2016-11-17 日本ケミコン株式会社 チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス
WO2016157551A1 (ja) * 2015-03-31 2016-10-06 日本ケミコン株式会社 チタン酸化物粒子、チタン酸化物粒子の製造方法、チタン酸化物粒子を含む蓄電デバイス用電極、チタン酸化物粒子を含む電極を備えた蓄電デバイス
US20170047608A1 (en) * 2015-08-13 2017-02-16 Samsung Sdi Co., Ltd. Rechargeable lithium battery including same
JP2021048005A (ja) * 2019-09-17 2021-03-25 株式会社東芝 電極、二次電池、電池パック及び車両
JP7159133B2 (ja) 2019-09-17 2022-10-24 株式会社東芝 電極、二次電池、電池パック及び車両

Also Published As

Publication number Publication date
CN104620425B (zh) 2017-12-01
EP2894699A1 (en) 2015-07-15
CN104620425A (zh) 2015-05-13
TWI627783B (zh) 2018-06-21
EP2894699A4 (en) 2016-10-05
JP6236006B2 (ja) 2017-11-22
JPWO2014034933A1 (ja) 2016-08-08
TW201417380A (zh) 2014-05-01
KR20150052844A (ko) 2015-05-14
EP2894699B1 (en) 2018-07-11
KR102110777B1 (ko) 2020-05-14
US20150263337A1 (en) 2015-09-17
US10374222B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
JP6236006B2 (ja) リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
KR101534386B1 (ko) 배합된 캐소드 활물질을 갖는 비수계 이차 배터리
WO2011040022A1 (ja) 負極活物質、この負極活物質の製造方法、及びこの負極活物質を用いたリチウムイオン二次電池
KR20120026466A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102400346B1 (ko) 도전성 카본, 이 도전성 카본을 포함하는 전극 재료, 및 이 전극 재료를 사용한 전극
JP6099038B2 (ja) 電極材料の製造方法
TWI670894B (zh) 二次電池用正極活性物質及其製造方法
JP6170806B2 (ja) リチウムイオン二次電池用電極材料及びこの電極材料を用いたリチウムイオン二次電池
JP7409922B2 (ja) 多層型リチウムイオン二次電池用正極活物質及びその製造方法
JP6095331B2 (ja) リチウムイオン二次電池用電極材料、この電極材料の製造方法、及びリチウムイオン二次電池
JP7366662B2 (ja) リチウムイオン二次電池用正極活物質複合体及びその製造方法
JP7108504B2 (ja) 混合正極活物質用オリビン型リチウム系酸化物一次粒子及びその製造方法
JP5444543B2 (ja) リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6319741B2 (ja) 電極の製造方法
JP7299119B2 (ja) リチウムイオン二次電池用混合型正極活物質及びリチウムイオン二次電池用正極の製造方法
JP2013073816A (ja) 負極活物質、この負極活物質の製造方法、及びこの負極活物質を用いたリチウムイオン二次電池
JP2017103137A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6253884B2 (ja) 電極層、該電極層を備えた蓄電デバイス及び電極層の製造方法
JP7320418B2 (ja) リチウムイオン二次電池用混合型正極活物質及びリチウムイオン二次電池用正極の製造方法
JP2022156472A (ja) リチウムイオン二次電池用正極活物質粒子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014533154

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157005051

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14425296

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013833980

Country of ref document: EP