WO2014034613A1 - 回転式分級機及び竪型ミル - Google Patents

回転式分級機及び竪型ミル Download PDF

Info

Publication number
WO2014034613A1
WO2014034613A1 PCT/JP2013/072752 JP2013072752W WO2014034613A1 WO 2014034613 A1 WO2014034613 A1 WO 2014034613A1 JP 2013072752 W JP2013072752 W JP 2013072752W WO 2014034613 A1 WO2014034613 A1 WO 2014034613A1
Authority
WO
WIPO (PCT)
Prior art keywords
inclined surface
rotary
end side
rotary classifier
coal
Prior art date
Application number
PCT/JP2013/072752
Other languages
English (en)
French (fr)
Inventor
卓一郎 大丸
学 小田
有馬 謙一
松本 慎治
筒場 孝志
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US14/414,178 priority Critical patent/US10124373B2/en
Priority to DE112013004298.3T priority patent/DE112013004298T5/de
Priority to KR1020157002454A priority patent/KR101662464B1/ko
Priority to CN201380039646.4A priority patent/CN104703717B/zh
Publication of WO2014034613A1 publication Critical patent/WO2014034613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/04Mills with pressed pendularly-mounted rollers, e.g. spring pressed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C2015/002Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs combined with a classifier

Definitions

  • the present invention relates to a rotary classifier that performs classification after pulverizing and pulverizing solids such as coal and biomass, and a vertical mill having this rotary classifier.
  • solid fuel such as coal or biomass is used as fuel.
  • this coal or the like is used as a solid fuel, raw coal is pulverized by a vertical mill to generate pulverized coal, and the obtained pulverized coal is used as fuel.
  • a grinding table is disposed at the lower part of a housing so as to be able to rotate.
  • a plurality of grinding rollers can be rotated on the upper surface of the grinding table and a grinding load can be applied.
  • a rotary classifier is disposed on the top of the housing. Therefore, when raw coal is supplied from the coal supply pipe onto the pulverization table, it is dispersed over the entire surface by centrifugal force to form a coal layer, and pulverized by pressing each pulverization roller against this coal layer.
  • the pulverized pulverized coal is dried by supply air, and then classified to a predetermined particle size or less by a rotary classifier, and only pulverized coal having an appropriate particle size is discharged to the outside.
  • Examples of the vertical mill classifier having a conventional rotary classifier include those described in the following patent documents.
  • the roller class rotary classifier described in Patent Document 1 is such that the blade width of the rotary blade is formed wider than the lower portion.
  • the rotary classifier of the mill described in Patent Document 2 sets the take-in angle of the take-in classifying blade of the rotary impeller, and forms an auxiliary vane extending in the direction opposite to the rotation direction at the outer peripheral end.
  • the classifier described in Patent Document 3 is one in which the upper part of the rotary fin of the rotary classifier is greatly inclined from the lower part to the rotational direction side.
  • a general rotary classifier is configured by fixing rotary blades along the vertical direction around the upper and lower rotary frames at regular intervals in the circumferential direction, and each rotary blade is predetermined in the rotational direction. Inclined at an angle of.
  • pulverized coal used in coal-fired boilers is generally said to have a particle size of 75 ⁇ m or less, and 150 ⁇ m or more is unsuitable. Therefore, a classifier used for a vertical mill is required to pass pulverized coal having a particle diameter of 75 ⁇ m or less and exclude pulverized coal having a particle size of 150 ⁇ m or more.
  • the rotating blade can eliminate coarse particles as the inclination angle with respect to the rotation direction is smaller, but also removes fine particles.
  • a rotary blade can pass a fine particle, so that the inclination
  • the present invention solves the above-described problems, and an object thereof is to provide a rotary classifier and a vertical mill capable of improving the classification efficiency.
  • a rotary classifier includes a rotatable frame having an opening in the outer periphery, and a plurality of rotating blades fixed to the opening of the frame at a predetermined interval in the circumferential direction.
  • the rotating blade has an inclined surface whose front surface in the rotation direction is inclined at an acute angle with respect to a tangent to the rotation locus on the outer peripheral side and forms a recess between the outer end side and the inner end side. It is characterized by having.
  • the rotary blade is provided with an inclined surface that forms a recess on the front surface in the rotation direction, when a plurality of rotary blades rotate together with the frame, coarse particles with high straightness collide with the inclined surface.
  • the fine particles having low rectilinearity enter the inside after colliding with the inclined surface while being excluded to the outside later. Therefore, the coarse particles can be eliminated by the plurality of rotary blades, while the fine particles can be passed, and the classification efficiency can be improved.
  • the inclined surface has a first inclined surface located on the outer end side and a second inclined surface located on the inner end side, and the inclined surface is inclined with respect to the tangent line on the first inclined surface.
  • the angle is set to be larger than an inclination angle with respect to the tangent line in the second inclined surface.
  • the first inclined surface and the second inclined surface are provided on the front surface in the rotation direction, when a plurality of rotating blades rotate together with the frame body, the coarse particles having high straightness collide with the second inclined surface. However, fine particles having low rectilinearity enter the inside even if they collide with the first inclined surface, and the classification efficiency can be improved.
  • the rotary classifier according to the present invention is characterized in that the inclined surface is provided with a bending line along the vertical direction between the first inclined surface and the second inclined surface.
  • the classification efficiency can be improved with a simple configuration.
  • the bending line is provided in an intermediate portion in the width direction of the rotary blade.
  • the first inclined surface and the second inclined surface can be set in the optimum region.
  • the rotary classifier of the present invention is characterized in that an angle between the first inclined surface and the second inclined surface is set to less than 180 degrees.
  • coarse particles and fine particles can be appropriately classified by the first inclined surface and the second inclined surface.
  • the inclined surface has a curved surface that curves from the outer end side toward the inner end side.
  • the inclined surface a curved surface, it is possible to classify appropriately regardless of the particle diameter to be classified.
  • the vertical mill of the present invention has a hollow housing, a pulverizing table supported by a lower portion in the housing so as to be driven to rotate with a rotation axis along the vertical direction, and an upper side of the pulverizing table.
  • the rotary vane is characterized in that the front surface in the rotation direction is inclined at an acute angle with respect to a tangent to the rotation locus on the outer peripheral side, and has an inclined surface that forms a recess between the outer end side and the inner end side.
  • the rotational force of the grinding table is transmitted to the grinding roller via the solid matter, and the solid matter is crushed by applying a pressing load. .
  • the pulverized solid particles rise in the housing and are classified by a rotary classifier.
  • the rotary blade is provided with an inclined surface that forms a concave portion on the front surface in the rotation direction, when a plurality of rotary blades rotate together with the frame, coarse particles having high straightness collide with the inclined surface. After that, fine particles having low rectilinearity are introduced into the interior after colliding with the inclined surface. Therefore, the coarse particles can be eliminated by the plurality of rotary blades, while the fine particles can be passed, and the classification efficiency can be improved.
  • the classification efficiency can be improved.
  • FIG. 1 is a schematic view showing a vertical mill according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the rotary classifier of the present embodiment.
  • FIG. 3 is a schematic diagram showing the rotating blades in the rotary classifier of the present embodiment.
  • FIG. 4 is a perspective view showing a rotating blade.
  • FIG. 5 is a graph showing the partial classification efficiency with respect to the particle size of the pulverized coal when the rotary blade rotates at 110 rpm.
  • FIG. 6 is a graph for explaining the effect of the present embodiment when the rotating blade rotates at 110 rpm.
  • FIG. 7 is a graph showing the partial classification efficiency with respect to the particle diameter of pulverized coal when the rotary blade rotates at 140 rpm.
  • FIG. 1 is a schematic view showing a vertical mill according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the rotary classifier of the present embodiment.
  • FIG. 3 is a schematic diagram showing the rotating blades in
  • FIG. 8 is a graph for explaining the effect of the present embodiment when the rotating blade rotates at 140 rpm.
  • FIG. 9 is a schematic diagram showing a rotating blade in a rotary classifier according to a modification of the present invention.
  • FIG. 10 is a schematic diagram showing a rotating blade in a rotary classifier according to a modification of the present invention.
  • FIG. 11 is a schematic diagram showing rotating blades in a rotary classifier according to a modification of the present invention.
  • FIG. 1 is a schematic view showing a vertical mill according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a rotary classifier according to the present embodiment
  • FIG. 3 is a schematic view of the rotary classifier according to the present embodiment.
  • FIG. 4 is a perspective view showing a rotating blade
  • FIG. 5 is a graph showing a partial classification efficiency with respect to the particle diameter of pulverized coal when the rotating blade rotates at 110 rpm
  • FIG. 6 shows a rotating blade.
  • 7 is a graph for explaining the effect of the present embodiment when rotating at 110 rpm
  • FIG. 7 is a graph showing the partial classification efficiency with respect to the particle diameter of pulverized coal when the rotary blade rotates at 140 rpm
  • FIG. It is a graph for demonstrating the effect of a present Example when a blade
  • the vertical mill of the present embodiment grinds solids such as coal (raw coal) and biomass.
  • biomass refers to organic resources derived from renewable organisms, such as thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and chips) made from these raw materials. ) And the like, and is not limited to those presented here.
  • the housing 11 has a cylindrical hollow shape, and a coal supply pipe 12 is mounted on the upper part.
  • the coal supply pipe 12 supplies coal into the housing 11 from a coal supply device (not shown).
  • the coal supply pipe 12 is arranged at the center position of the housing 11 along the vertical direction (vertical direction), and the lower end portion extends downward. Has been.
  • the crushing table 13 is arranged at the lower part of the housing 11.
  • the crushing table 13 is disposed at the center position of the housing 11 so as to face the lower end portion of the coal supply pipe 12. Further, the crushing table 13 is connected to a lower portion of a rotating shaft 14 having a rotation axis along the vertical direction, and is rotatably supported by the housing 11.
  • a worm wheel 15 as a drive gear is fixed to the rotary shaft 14, and a worm gear 16 of a drive motor (not shown) mounted on the housing 11 is engaged with the worm wheel 15. Therefore, the crushing table 13 can be driven to rotate by the drive motor via the worm gear 16, the worm wheel 15, and the rotating shaft 14.
  • the crushing table 13 has a ring-shaped table liner 17 fixed to the outer peripheral side.
  • the table liner 17 has an inclined surface whose surface (upper surface) becomes higher as it goes to the outer peripheral side of the crushing table 13.
  • a plurality of crushing rollers 18 are arranged facing the upper side of the crushing table 13 (table liner 17), and a roller driving device 19 for driving and rotating each crushing roller 18 is provided.
  • the roller driving device 19 is, for example, a motor, and can apply a driving force to the crushing roller 18.
  • the rear end portion of the support shaft 21 is supported by the roller drive device 19, and the roller drive device 19 is supported by the mounting shaft 22 on the side wall portion of the housing 11, so that the front end portion of the support shaft 21 is vertically moved. It can swing in the direction.
  • the support shaft 21 is disposed such that the tip portion faces the direction of the rotation axis of the crushing table 13 and is inclined downward, and the crushing roller 18 is mounted.
  • the roller driving device 19 (support shaft 21) is provided with an upper arm 24 extending upward, and the tip of a pressing rod 26 of a hydraulic cylinder 25 serving as a pressing device fixed to the housing 11 is connected to the upper arm 24. Connected to the tip.
  • the roller driving device 19 (support shaft 21) is provided with a lower arm 27 extending downward, and a tip portion thereof can come into contact with a stopper 28 fixed to the housing 11. Therefore, when the pressing rod 26 is advanced by the hydraulic cylinder 25, the upper arm 24 is pressed, and the roller driving device 19 and the support shaft 21 can be rotated clockwise in FIG. . At this time, when the lower arm 27 abuts against the stopper 28, the rotational positions of the roller driving device 19 and the support shaft 21 are defined.
  • the crushing roller 18 crushes coal with the crushing table 13 (table liner 17), and a predetermined gap is provided between the surface of the crushing roller 18 and the surface of the crushing table 13 (table liner 17). It is necessary to secure. Therefore, by defining the support shaft 21 at a predetermined rotational position by the hydraulic cylinder 25, a predetermined gap is secured between the surface of the pulverizing roller 18 and the surface of the pulverizing table 13 so that coal can be taken and pulverized.
  • the crushing roller 18 has a truncated cone shape with a small diameter on the tip side and the surface of the crushing roller 18 is flat.
  • the present invention is not limited to this shape.
  • the grinding roller 18 may have a tire shape.
  • a plurality of (three) crushing rollers 18 are provided and arranged at equal intervals along the rotation direction of the crushing table 13. In this case, the number and arrangement of the crushing rollers 18 may be appropriately set according to the size of the crushing table 13, the crushing roller 18, and the like.
  • the housing 11 is provided with an inlet port 31 at the lower part located on the outer periphery of the crushing table 13 and into which primary air is fed.
  • the housing 11 is provided with an outlet port 32 for discharging pulverized coal (pulverized coal) located on the outer periphery of the coal supply pipe 12 at the upper part.
  • the housing 11 is provided with a rotary separator 33 as a rotary classifier for classifying pulverized coal below the outlet port 32.
  • the rotary separator 33 is provided on the outer periphery of the coal supply pipe 12 and can be driven and rotated by a drive device 34.
  • the housing 11 is provided with a foreign matter discharge pipe 35 at the bottom.
  • the foreign matter discharge pipe 35 is for discharging foreign matters (spillage) such as gravel and metal pieces mixed in coal by dropping from the outer peripheral portion of the crushing table 13.
  • the rotary separator 33 as the rotary classifier of the present embodiment will be described in detail.
  • the rotary separator 33 is between a disk-shaped upper support frame 41 and a lower support frame 42, and a plurality of rotary blades 43 are arranged in the circumferential direction on the outer peripheral side thereof. It is configured to be fixed at a predetermined interval (equal interval).
  • Each rotary blade 43 is formed in a flat plate shape, is provided along the vertical direction (vertical direction), and is inclined with respect to the rotational direction of the rotary separator 33.
  • each rotary blade 43 is inclined so that the lower end approaches the rotation center side of the rotary separator 33.
  • the upper support frame 41 and the lower support frame 42 constitute a frame of the present invention, and a region between the upper support frame 41 and the lower support frame 42 functions as an opening.
  • the rotary blade 43 has a front surface in the rotational direction (left surface in FIG. 4) inclined at an acute angle with respect to a tangent line T to the rotation locus G1 on the outer peripheral side, It has the inclined surface 52 which forms the recessed part 51 between the end 43a side and the inner end 43b side.
  • the tangent line T to the rotation locus G is a tangent at the intersection between the rotation locus G1 on the outer peripheral side of the rotating blade 43 and the outer end 43a of the front surface in the rotation direction of the rotating blade 43.
  • the inclined surface 52 includes a first inclined surface 53 located on the outer end 43 a side of the rotary blade 43 and a second inclined surface 54 located on the inner end 43 b side, and is tangent to the first inclined surface 53.
  • the inclination angle ⁇ 1 with respect to T is set to be larger than the inclination angle ⁇ 2 with respect to the tangent line T on the second inclined surface 54.
  • the first inclined surface 53 and the second inclined surface 54 are flat surfaces along the vertical direction, respectively, and a bending line L along the vertical direction (vertical direction) is provided between the inclined surfaces 53 and 54. ing.
  • the bending line L is provided at an intermediate portion in the width direction (or the radial direction of the rotary separator 33) of the rotary blade 43, and the rotation locus G1 on the outer peripheral side and the rotation locus G2 on the inner peripheral side of the rotary blade 43
  • a central locus O that intersects the bending line L is located at an intermediate position. That is, the width of the first inclined surface 53 and the width of the second inclined surface 54 are set to substantially the same length.
  • the angle ⁇ formed by the first inclined surface 53 and the second inclined surface 54 is set to less than 180 degrees.
  • the outer peripheral portion of the rotary separator 33 that is, the region between the outer peripheral rotation locus G1 and the inner peripheral rotation locus G2 of the plurality of rotary blades 43 is the classification region A. That is, when the rotary separator 33 rotates in the direction of the arrow in FIGS. 2 and 3, when the particles of pulverized coal enter the classification area A from the rotation locus G 1 on the outer peripheral side of the plurality of rotary blades 43, the classification area A Thus, fine powder having a particle size smaller than the predetermined particle size passes between the rotary blades 43, and coarse powder having a particle size larger than the predetermined particle size is repelled to the outside by the rotary blades 43.
  • the front surface of the rotary blade 43 in the rotational direction is bent by bending a plate member having a predetermined thickness, a predetermined width, and a predetermined length (predetermined height) at an intermediate position (bending line L) in the width direction.
  • the inclined surface 52 first inclined surface 53, second inclined surface 54
  • the rear surface of the rotating blade 43 in the rotational direction has the same shape.
  • the rear surface of the rotary blade 43 in the rotational direction may be any shape as long as it does not affect the rotational resistance and classification performance of the rotary blade 43.
  • the rotational force of the crushing table 13 is transmitted to the crushing roller 18 through the coal, and the crushing roller 18 rotates with the rotation of the crushing table 13.
  • the crushing roller 18 since the crushing roller 18 is pressed and supported on the crushing table 13 side by the hydraulic cylinder 25, the crushing roller 18 presses and crushes the coal while rotating.
  • the raised pulverized coal is classified by the rotary separator 33, and the coarse-grained powder is dropped and returned to the pulverizing table 13 for re-pulverization.
  • the fine powder passes through the rotary separator 33, rides on the air current, and is discharged from the outlet port 32. Further, the spillage such as gravel and metal pieces mixed in the coal falls outward from the outer peripheral portion by the centrifugal force of the crushing table 13 and is discharged by the foreign matter discharge pipe 35.
  • the coarse particles in the pulverized coal have a large mass (weight) and thus have a large inertial force and a high straightness. is doing. Therefore, the coarse powder P1 collides with the first inclined surface 53 or the second inclined surface 54 of the rotary blade 43, and it is difficult to pass between the rotary blades 43 regardless of which collision occurs. It is ejected outside and eliminated.
  • fine powder in pulverized coal has a smaller mass (weight) than coarse powder, and therefore has a small inertial force and a low straightness.
  • the fine powder P2 hardly collides with the first inclined surface 53 or the second inclined surface 54 of the rotary blade 43, and even if it collides, the fine powder P2 passes between the rotary blades 43 without being blown outside. And get inside. Therefore, the rotary blade 43 can exclude the coarse powder P1 and allow only the fine powder P2 to enter the inside.
  • the graph shown in FIG. 5 is a graph showing the classification results for pulverized coal having different particle diameters with the rotational speed of the rotary separator 33 (rotary blade 43) set to 110 rpm.
  • the horizontal axis is the particle size ( ⁇ m) of pulverized coal
  • the vertical axis is the partial classification efficiency (passage rate%)
  • the solid line is the rotary separator 33 (rotary blade 43) of this embodiment, one point.
  • the chain line is a conventional rotary separator (planar rotary blade).
  • pulverized coal used in coal-fired boilers generally, those having a particle size of 75 ⁇ m or less are optimum, and those having a particle size of 150 ⁇ m or more are unsuitable. Therefore, it is necessary for the rotary separator of the vertical mill to pass more pulverized coal having a particle size of 75 ⁇ m or less and to eliminate as much as possible pulverized coal having a particle size of 150 ⁇ m or more.
  • the passing rate of the rotary separator 33 (rotary blade 43) of the present embodiment can be reduced to 10% or less.
  • the passing rate of the rotary separator becomes 15% or more. That is, the rotary separator 33 (rotary blade 43) of this embodiment efficiently excludes pulverized coal having a particle diameter of 150 ⁇ m or more, and has high classification efficiency, as compared with the conventional rotary separator.
  • the graph shown in FIG. 7 is a graph showing the classification result in the pulverized coal having different particle diameters with the rotational speed of the rotary separator 33 (rotary blade 43) set to 140 rpm. That is, by increasing the rotational speed of the rotary separator 33, it is difficult to pass pulverized coal having a large particle size, and the average particle size of the pulverized coal after classification is reduced.
  • the passage rate of the rotary separator 33 (rotary blade 43) of the present embodiment can be made almost 0%.
  • the passage rate of the rotary separator is about 3%. That is, the rotary separator 33 (rotary blade 43) of this embodiment efficiently excludes pulverized coal having a particle diameter of 150 ⁇ m or more, and has high classification efficiency, as compared with the conventional rotary separator.
  • a plurality of rotary blades 43 are fixed at predetermined intervals in the circumferential direction on the outer peripheral portion between the upper support frame 41 and the lower support frame 42 having a disk shape.
  • the rotary separator 33 is formed, and the front surface in the rotational direction of the rotary blade 43 is inclined at an acute angle with respect to the tangent line T to the rotation locus G1 on the outer peripheral side, and the outer end 43a side and the inner end 43b side
  • the inclined surface 52 which forms the recessed part 51 is provided in between.
  • the rotary blade 43 is provided with the inclined surface 52 that forms the recess 51 on the front surface in the rotation direction, when the rotary blade 43 rotates, coarse particles having high straightness collide with the inclined surface 52. After that, the fine particles having low rectilinearity are excluded from the outside, and enter the inside after colliding with the inclined surface 52. Therefore, while the coarse powder can be eliminated by the plurality of rotary blades 43, the fine powder can be passed and the classification efficiency can be improved.
  • a first inclined surface 53 located on the outer end 43a side of the rotary blade 43 and a second inclined surface 54 located on the inner end 43b side are provided as the inclined surface 52.
  • the inclination angle ⁇ 1 with respect to the tangent line T in the first inclined surface 53 is set to be larger than the inclination angle ⁇ 2 with respect to the tangent line T in the second inclined surface 54. Therefore, when the rotary blade 43 rotates, even if the coarse powder having high straightness collides with the second inclined surface 54 located inside, the fine powder having low straightness is located outside. Even if it collides with the 1st inclined surface 53 to do, it will enter into an inside and classification efficiency can be improved.
  • the first inclined surface 53 and the second inclined surface 54 are flat surfaces along the vertical direction, and a bending line L along the vertical direction is provided between the inclined surfaces 53 and 54. Yes. Therefore, by providing the first inclined surface 53 and the second inclined surface 54 with respect to the bending line L, the classification efficiency can be improved with a simple configuration.
  • the bending line L is provided in the intermediate portion of the rotary blade 43 in the width direction. Therefore, the first inclined surface 53 and the second inclined surface 54 can be set in an optimum region.
  • the angle ⁇ between the first inclined surface 53 and the second inclined surface 54 is set to less than 180 degrees. Therefore, coarse particles and fine particles can be appropriately classified by the first inclined surface 53 and the second inclined surface 54.
  • a crushing roller 18 that is disposed so as to face the upper side of the housing 13 and is rotatably supported, and a rotary separator 33 that is provided at an upper portion in the housing 11 and that can classify pulverized coal are provided.
  • the front surface in the rotational direction of the plurality of rotary blades 43 provided on the outer periphery of the separator 33 is inclined at an acute angle with respect to the tangent line T to the rotation locus G1 on the outer peripheral side, and between the outer end 43a side and the inner end 43b side.
  • An inclined surface 52 for forming the recess 51 is provided.
  • the first inclined surface 53 and the second inclined surface 54 having different angles are provided on the front surface of the rotating blade 43 in the rotation direction, but the present invention is not limited to this configuration. Below, the modification of the rotary blade in the rotary classifier of a present Example is demonstrated.
  • FIG. 9 to 11 are schematic views showing rotating blades in a rotary classifier according to a modification of the present invention.
  • the rotating blade 60 has a front surface in the rotational direction (the left surface in FIG. 9) inclined at an acute angle with respect to a tangent line T to the rotation locus G ⁇ b> 1 on the outer peripheral side. It has an inclined surface 62 that forms a recess 61. And as this inclined surface 62, the 1st inclined surface 63, the 2nd inclined surface 64, and the 3rd inclined surface 65 are provided from the outer side of the rotary blade 60, the inclination angle of the 1st inclined surface 63 is the largest, and the 3rd inclined surface The inclination angle of the surface 65 is set to be the smallest.
  • Each of the inclined surfaces 63, 64, 65 is a flat surface along the vertical direction, and bend lines L1, L2 along the vertical direction (vertical direction) are provided therebetween.
  • the widths of the inclined surfaces 63, 64, 65 are set to substantially the same length by the bent lines L1, L2.
  • the angle which the 1st inclined surface 63 and the 3rd inclined surface 65 make is set to less than 180 degree
  • the rotary blade 70 has a front surface in the rotation direction (a left surface in FIG. 10) inclined at an acute angle with respect to a tangent line T to the rotation locus G1 on the outer peripheral side. It has an inclined surface 72 that forms a recess 71.
  • the inclined surface 72 is a curved surface that curves from the outer end side toward the inner end side. Even in the case of this rotary blade 70, as with the rotary blade 43, when rotating, fine powder having a particle size smaller than the predetermined particle size is allowed to pass inside, and coarse powder having a particle size larger than the predetermined particle size is passed through. Can flip outside. And by making the inclined surface 72 into a curved surface, pulverized coal can be classified appropriately regardless of the particle diameter to be classified.
  • the rotary blade 80 has a front surface in the rotational direction (a left surface in FIG. 11) inclined at an acute angle with respect to a tangent line T with respect to the rotation locus G ⁇ b> 1 on the outer peripheral side. It has an inclined surface 82 that forms a recess 81. And as this inclined surface 82, the 1st inclined surface 83 and the 2nd inclined surface 84 are provided from the outer side of the rotary blade 80, and the inclination angle of the 1st inclined surface 83 is set large.
  • the inclined surfaces 83 and 84 have substantially the same shape as the inclined surfaces 53 and 54 of the rotary blade 43.
  • the rear surface in the rotation direction (the right side surface in FIG. 11) is a flat surface, and has a shape that does not affect the rotation resistance or the classification performance. Even in the case of this rotary blade 80, as with the rotary blade 43, when rotating, fine powder having a particle size smaller than a predetermined particle size is allowed to pass inside, and coarse powder having a particle size larger than the predetermined particle size is externally passed. Can be repelled.
  • the rotary separator 33 is configured by fixing a plurality of rotating blades 43 at a predetermined interval in the circumferential direction on the outer peripheral side between the upper support frame 41 and the lower support frame 42 having a disk shape.
  • the shapes of the support frames 41 and 42 and the rotary blades 43 are not limited to the examples.
  • the rotary classifier of the present invention has been described as applied to a vertical mill, the present invention is not limited to this configuration, and may be applied to a classifier other than pulverized coal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

 回転式分級機及び竪型ミルにおいて、円板形状をなす上部支持枠(41)と下部支持枠(42)との間の外周部に複数の回転羽根(43)を周方向に所定間隔で固定することで、ロータリセパレータ(33)を構成し、この回転羽根(43)における回転方向の前面に、外周側の回転軌跡(G1)に対する接線(T)に対して鋭角に傾斜すると共に、外端(43a)側と内端(43b)側との間に凹部(51)を形成する傾斜面(52)を設けることにより、分級効率の向上を可能とする。

Description

回転式分級機及び竪型ミル
 本発明は、石炭やバイオマスなどの固形物を粉砕して微粉化した後に分級する回転式分級機、この回転式分級機を有する竪型ミルに関するものである。
 ボイラ発電などの燃焼設備では、燃料として石炭やバイオマスなどの固形燃料が用いられる。そして、この石炭などを固形燃料として利用する場合、竪型ミルにより原炭を粉砕して微粉炭を生成し、得られた微粉炭を燃料として用いるようにしている。
 この竪型ミルは、ハウジングの下部に粉砕テーブルが駆動回転可能に配設されると共に、この粉砕テーブルの上面に複数の粉砕ローラが連れ回り可能で、且つ、粉砕荷重を付与可能に配設される一方、ハウジングの上部に回転式分級機が配設されて構成されている。従って、原炭が給炭管から粉砕テーブル上に供給されると、遠心力により全面に分散されて炭層が形成され、この炭層に対して各粉砕ローラが押圧することで粉砕される。そして、粉砕された微粉炭は、供給空気により乾燥された後、回転式分級機により所定の粒子径以下に分級され、適正粒子径の微粉炭のみが外部に排出される。
 従来の回転式分級機を有する竪型ミルの分級機としては、例えば、下記特許文献に記載されたものがある。特許文献1に記載されたローラミル用回転式分級機は、回転羽根の羽根巾を下部よりも上部を幅広に形成したものである。また、特許文献2に記載されたミルの回転式分級機は、回転式羽根車の取込み分級羽根の取込み角度を設定し、外周側先端に回転方向の反対方向に向けて延びる補助羽根を形成したものである。また、特許文献3に記載された分級装置は、回転式分級機の回転フィン上側部分を下側部分より回転方向側へ大きく傾けたものである。
特開平08-266923号公報 特開平07-308637号公報 特開2002-018301号公報
 ところで、一般的な回転式の分級機は、上下の回転枠の周囲に上下方向に沿った回転羽根を周方向に均等間隔で固定されて構成され、各回転羽根は、回転方向に対して所定の角度に傾斜している。一方で、石炭焚きボイラで使用される微粉炭は、一般的に、粒子径が75μm以下のものが最適とされ、150μm以上のものが不適であると言われている。そのため、竪型ミルに用いられる分級機は、粒子径が75μm以下の微粉炭を通過させ、150μm以上の微粉炭を排除することが求められる。ところが、回転羽根は、回転方向に対する傾斜角度が小さいほど粗粒子を排除することができるものの、微粒子も排除してしまう。また、回転羽根は、回転方向に対する傾斜角度が大きいほど微粒子を通過させることができるものの、粗粒子も通過させてしまう。そのため、粗粒子を排除することができる一方で、微粒子も通過させることができる分級機が望まれている。
 本発明は上述した課題を解決するものであり、分級効率の向上を可能とする回転式分級機及び竪型ミルを提供することを目的とする。
 上記の目的を達成するための本発明の回転式分級機は、外周部に開口を有する回転自在な枠体と、前記枠体の開口部に周方向に所定間隔で固定される複数の回転羽根と、を備え、前記回転羽根は、回転方向の前面が、外周側の回転軌跡に対する接線に対して鋭角に傾斜すると共に、外端側と内端側との間に凹部を形成する傾斜面を有する、ことを特徴とするものである。
 従って、回転羽根は、回転方向の前面に凹部を形成する傾斜面が設けられていることから、枠体と共に複数の回転羽根が回転するとき、直進性の高い粗粒子はこの傾斜面に衝突した後に外部に排除される一方、直進性の低い微粒子はこの傾斜面に衝突した後に内部に入り込まれる。そのため、複数の回転羽根により、粗粒子を排除することができる一方で、微粒子を通過させることができ、分級効率を向上することができる。
 本発明の回転式分級機では、前記傾斜面は、外端側に位置する第1傾斜面と内端側に位置する第2傾斜面とを有し、前記第1傾斜面における前記接線に対する傾斜角度が、前記第2傾斜面における前記接線に対する傾斜角度より大きく設定されることを特徴としている。
 従って、回転方向の前面に第1傾斜面と第2傾斜面が設けられていることから、枠体と共に複数の回転羽根が回転するとき、直進性の高い粗粒子は第2傾斜面に衝突しても外部に排除される一方、直進性の低い微粒子は第1傾斜面に衝突しても内部に入り込まれることとなり、分級効率を向上することができる。
 本発明の回転式分級機では、前記傾斜面は、前記第1傾斜面と前記第2傾斜面との間に鉛直方向に沿う屈曲線が設けられることを特徴としている。
 従って、屈曲線に対して第1傾斜面と第2傾斜面を設けることで、簡単な構成で分級効率を向上することができる。
 本発明の回転式分級機では、前記屈曲線は、前記回転羽根における幅方向の中間部に設けられることを特徴としている。
 従って、第1傾斜面と第2傾斜面を最適な領域に設定することができる。
 本発明の回転式分級機では、前記第1傾斜面と前記第2傾斜面との角度が180度未満に設定されることを特徴としている。
 従って、第1傾斜面と第2傾斜面により粗粒子と微粒子を適正に分級することができる。
 本発明の回転式分級機では、前記傾斜面は、外端側から内端側に向けて湾曲する湾曲面を有することを特徴としている。
 従って、傾斜面を湾曲面とすることで、分級する粒子径に拘わらず、適正に分級することができる。
 また、本発明の竪型ミルは、中空形状をなすハウジングと、前記ハウジング内の下部に鉛直方向に沿う回転軸心をもって駆動回転可能に支持される粉砕テーブルと、前記粉砕テーブルの上方に対向して配置されて回転自在に支持される粉砕ローラと、前記ハウジング内の上部に設けられて粉砕物を分級可能な回転式分級機と、を備え、前記回転式分級機の外周に設けられる複数の回転羽根は、回転方向の前面が、外周側の回転軌跡に対する接線に対して鋭角に傾斜すると共に、外端側と内端側との間に凹部を形成する傾斜面を有する、ことを特徴とするものである。
 従って、粉砕ローラと粉砕テーブルの間に固形物が入り込んだとき、粉砕テーブルの回転力が固形物を介して粉砕ローラに伝達されて連れ回りし、固形物は押圧荷重が与えられて粉砕される。その後、粉砕された固形物の粒子は、ハウジング内を上昇して回転式分級機により分級される。このとき、回転羽根は、回転方向の前面に凹部を形成する傾斜面が設けられていることから、枠体と共に複数の回転羽根が回転するとき、直進性の高い粗粒子はこの傾斜面に衝突した後に外部に排除される一方、直進性の低い微粒子はこの傾斜面に衝突した後に内部に入り込まれる。そのため、複数の回転羽根により、粗粒子を排除することができる一方で、微粒子を通過させることができ、分級効率を向上することができる。
 本発明の回転式分級機及び竪型ミルによれば、回転羽根の前面に外端側と内端側との間に凹部を形成する傾斜面を設けるので、分級効率を向上することができる。
図1は、本発明の一実施例に係る竪型ミルを表す概略図である。 図2は、本実施例の回転式分級機を表す平面図である。 図3は、本実施例の回転式分級機における回転羽根を表す概略図である。 図4は、回転羽根を表す斜視図である。 図5は、回転羽根が110rpmで回転したときの微粉炭の粒子径に対する部分分級効率を表すグラフである。 図6は、回転羽根が110rpmで回転したときの本実施例の効果を説明するためのグラフである。 図7は、回転羽根が140rpmで回転したときの微粉炭の粒子径に対する部分分級効率を表すグラフである。 図8は、回転羽根が140rpmで回転したときの本実施例の効果を説明するためのグラフである。 図9は、本発明の変形例に係る回転式分級機における回転羽根を表す概略図である。 図10は、本発明の変形例に係る回転式分級機における回転羽根を表す概略図である。 図11は、本発明の変形例に係る回転式分級機における回転羽根を表す概略図である。
 以下に添付図面を参照して、本発明に係る回転式分級機及び竪型ミルの好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1は、本発明の一実施例に係る竪型ミルを表す概略図、図2は、本実施例の回転式分級機を表す平面図、図3は、本実施例の回転式分級機における回転羽根を表す概略図、図4は、回転羽根を表す斜視図、図5は、回転羽根が110rpmで回転したときの微粉炭の粒子径に対する部分分級効率を表すグラフ、図6は、回転羽根が110rpmで回転したときの本実施例の効果を説明するためのグラフ、図7は、回転羽根が140rpmで回転したときの微粉炭の粒子径に対する部分分級効率を表すグラフ、図8は、回転羽根が140rpmで回転したときの本実施例の効果を説明するためのグラフである。
 本実施例の竪型ミルは、石炭(原炭)やバイオマスなどの固形物を粉砕するものである。ここで、バイオマスとは、再生可能な生物由来の有機性資源であり、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などであり、ここに提示したものに限定されることはない。
 本実施例の竪型ミルにおいて、図1に示すように、ハウジング11は、円筒の中空形状をなし、上部に石炭供給管12が装着されている。この石炭供給管12は、図示しない石炭供給装置からハウジング11内に石炭を供給するものであり、ハウジング11の中心位置に上下方向(鉛直方向)に沿って配置され、下端部が下方まで延設されている。
 ハウジング11は、下部に粉砕テーブル13が配置されている。この粉砕テーブル13は、ハウジング11の中心位置に石炭供給管12の下端部に対向して配置されている。また、この粉砕テーブル13は、下部に鉛直方向に沿った回転軸心を有する回転軸14が連結され、ハウジング11に回転自在に支持されている。この回転軸14は、駆動ギアとしてのウォームホイール15が固結され、ハウジング11に搭載された駆動モータ(図示略)のウォームギア16がこのウォームホイール15に噛み合っている。従って、駆動モータによりウォームギア16、ウォームホイール15、回転軸14を介して粉砕テーブル13が駆動回転可能となっている。
 また、粉砕テーブル13は、外周側にリング形状をなすテーブルライナ17が固定されている。このテーブルライナ17は、表面(上面)が粉砕テーブル13の外周側に行くほどに高くなる傾斜面となっている。そして、この粉砕テーブル13(テーブルライナ17)の上方に対向して複数の粉砕ローラ18が配置されると共に、各粉砕ローラ18を駆動回転するローラ駆動装置19が設けられている。このローラ駆動装置19は、例えば、モータであって、粉砕ローラ18に駆動力を付与することができる。
 即ち、支持軸21は、後端部がローラ駆動装置19に支持され、このローラ駆動装置19は、ハウジング11の側壁部に取付軸22に支持されることで、支持軸21の先端部が上下方向に揺動可能となっている。この支持軸21は、先端部が粉砕テーブル13の回転軸心方向を向き、且つ、下方に傾斜するように配置され、粉砕ローラ18が装着されている。
 また、ローラ駆動装置19(支持軸21)は、上方に延びる上部アーム24が設けられ、ハウジング11に固定された押圧装置としての油圧シリンダ25の押圧ロッド26の先端部が、この上部アーム24の先端部に連結されている。ローラ駆動装置19(支持軸21)は、下方に延びる下部アーム27が設けられ、先端部がハウジング11に固定されたストッパ28に当接可能となっている。従って、油圧シリンダ25により押圧ロッド26を前進させると、上部アーム24を押圧し、ローラ駆動装置19及び支持軸21を取付軸22を支点として図1にて時計回り方向に回動することができる。このとき、下部アーム27がストッパ28に当接することで、ローラ駆動装置19及び支持軸21の回動位置が規定される。
 つまり、粉砕ローラ18は、粉砕テーブル13(テーブルライナ17)との間で石炭を粉砕するものであり、粉砕ローラ18の表面と粉砕テーブル13(テーブルライナ17)の表面との間に所定隙間を確保する必要がある。そのため、油圧シリンダ25により支持軸21が所定の回動位置に規定されることで、粉砕ローラ18の表面と粉砕テーブル13の表面との間に、石炭を取り込んで粉砕可能な所定隙間が確保される。
 この場合、粉砕テーブル13が回転すると、この粉砕テーブル13上に供給された石炭は、その遠心力により外周側に移動され、粉砕ローラ18と粉砕テーブル13との間に入り込む。粉砕ローラ18は、粉砕テーブル13側に押圧されているため、粉砕テーブル13の回転力が石炭を介して伝達され、粉砕ローラ18は、この粉砕テーブル13の回転に連動して回転することができる。
 なお、本実施例にて、粉砕ローラ18を先端部側の径が小さくなるような円錐台形状とし、粉砕ローラ18の表面を平坦として構成したが、この形状に限定されるものではない。例えば、粉砕ローラ18をタイヤ形状としたりしてもよい。また、本実施例にて、粉砕ローラ18は、複数(3個)設けられ、粉砕テーブル13の回転方向に沿って等間隔に配置されている。この場合、粉砕ローラ18の数や配置は、粉砕テーブル13、粉砕ローラ18などの大きさなどに応じて適宜設定すればよいものである。
 また、ハウジング11は、下部に粉砕テーブル13の外周辺に位置して一次空気が送り込まれる入口ポート31が設けられている。また、ハウジング11は、上部に石炭供給管12の外周辺に位置して粉砕した石炭(微粉炭)を排出する出口ポート32が設けられている。そして、ハウジング11は、この出口ポート32の下方にて、微粉炭を分級する回転式分級機としてのロータリセパレータ33が設けられている。このロータリセパレータ33は、石炭供給管12の外周部に設けられ、駆動装置34により駆動回転可能となっている。また、ハウジング11は、下部に異物排出管35が設けられている。この異物排出管35は、石炭に混在する礫や金属片などの異物(スピレージ)を粉砕テーブル13の外周部から落下させて排出するものである。
 ここで、本実施例の回転式分級機としてのロータリセパレータ33について詳細に説明する。このロータリセパレータ33は、図1及び図2に示すように、円板形状をなす上部支持枠41と下部支持枠42との間であって、その外周側に複数の回転羽根43が周方向に所定間隔(均等間隔)で固定されて構成されている。この各回転羽根43は、平板形状をなして構成され、上下方向(鉛直方向)に沿って設けられると共に、ロータリセパレータ33の回転方向に対して傾斜して設けられている。この場合、上部支持枠41の外径に対して下部支持枠42の外径が小さく形成されていることから、各回転羽根43は、下端がロータリセパレータ33の回転中心側に接近するように傾斜して配置されている。なお、上部支持枠41と下部支持枠42とで本発明の枠体が構成され、上部支持枠41と下部支持枠42との間の領域が開口として機能する。
 この回転羽根43は、図3及び図4に示すように、回転方向の前面(図4にて左側の面)が、外周側の回転軌跡G1に対する接線Tに対して鋭角に傾斜すると共に、外端43a側と内端43b側との間に凹部51を形成する傾斜面52を有している。この場合、回転軌跡Gに対する接線Tは、回転羽根43における外周側の回転軌跡G1と、回転羽根43における回転方向の前面の外端43aとの交点における接線である。
 具体的に、この傾斜面52は、回転羽根43の外端43a側に位置する第1傾斜面53と内端43b側に位置する第2傾斜面54とからなり、第1傾斜面53における接線Tに対する傾斜角度α1が、第2傾斜面54における接線Tに対する傾斜角度α2より大きく設定されている。
 そして、この第1傾斜面53と第2傾斜面54は、それぞれ上下方向に沿う平坦面であって、各傾斜面53,54の間に上下方向(鉛直方向)に沿う屈曲線Lが設けられている。この屈曲線Lは、回転羽根43における幅方向(または、ロータリセパレータ33の径方向)の中間部に設けられており、回転羽根43における外周側の回転軌跡G1と内周側の回転軌跡G2との中間位置に屈曲線Lと交差する中心軌跡Oが位置している。即ち、第1傾斜面53の幅と第2傾斜面54の幅は、ほぼ同様の長さに設定されている。そして、第1傾斜面53と第2傾斜面54とのなす角度βは、180度未満に設定される。
 そのため、ロータリセパレータ33における外周部、つまり、複数の回転羽根43における外周側の回転軌跡G1と内周側の回転軌跡G2との間の領域が分級領域Aとなっている。つまり、ロータリセパレータ33が、図2及び図3の矢印方向に回転するとき、微粉炭の粒子が複数の回転羽根43における外周側の回転軌跡G1から分級領域Aに侵入したとき、この分級領域Aで、所定粒径より小さい粒径の微粒粉が回転羽根43の間を内部に通過し、所定粒径より大きい粒径の粗粒粉が回転羽根43により外部にはじかれる。
 なお、本実施例では、所定厚さ、所定幅、所定長さ(所定高さ)を有する板材を幅方向における中間位置(屈曲線L)で屈曲することで、回転羽根43における回転方向の前面に、凹部51を形成する傾斜面52(第1傾斜面53、第2傾斜面54)を形成したものであり、回転羽根43における回転方向の後面も同様の形状となっている。但し、この回転羽根43における回転方向の後面は、回転羽根43の回転抵抗や分級性能に影響を及ぼさない形状であれば、いずれの形状であってもよい。
 このように構成された本実施例の回転式竪型ミルにて、図1に示すように、石炭が石炭供給管12からハウジング11内に供給されると、この石炭は、石炭供給管12内を落下し、粉砕テーブル13上の中心部に供給される。このとき、粉砕テーブル13が所定の速度で回転していることから、粉砕テーブル13上の中心部に供給された石炭は、遠心力が作用して四方に分散するように移動し、粉砕テーブル13の全面に一定の層が形成される。即ち、石炭が粉砕ローラ18と粉砕テーブル13との間に入り込む。
 すると、粉砕テーブル13の回転力が石炭を介して粉砕ローラ18に伝達され、粉砕テーブル13の回転に伴って粉砕ローラ18が回転する。このとき、粉砕ローラ18は、油圧シリンダ25により粉砕テーブル13側に押圧支持されていることから、粉砕ローラ18は回転しながらこの石炭を押圧して粉砕する。
 粉砕ローラ18により粉砕された石炭、つまり、微粉炭は、入口ポート31からハウジング11内に送り込まれた一次空気により、乾燥されつつ上昇する。この上昇した微粉炭は、ロータリセパレータ33により分級され、粗粒粉は落下して再び粉砕テーブル13上に戻されて再粉砕が行われる。一方、微粒粉は、ロータリセパレータ33を通過し、気流に乗って出口ポート32から排出される。また、石炭に混在した礫や金属片などのスピレージは、粉砕テーブル13の遠心力により外周部から外方に落下し、異物排出管35により排出される。
 即ち、ロータリセパレータ33にて、図3に示すように、回転羽根43が回転するとき、微粉炭における粗粒粉は、質量(重量)が大きいことから、慣性力が大きくて高い直進性を有している。そのため、粗粒粉P1は、回転羽根43における第1傾斜面53または第2傾斜面54に衝突し、いずれに衝突した場合であっても、回転羽根43の間を通過することが困難となり、外部にはじき出されて排除される。一方、微粉炭における微粒粉は、粗粒粉に比べて、質量(重量)が小さいことから、慣性力が小さくて直進性が低い。そのため、微粒粉P2は、回転羽根43における第1傾斜面53または第2傾斜面54に衝突しにくく、衝突した場合であっても、外部にはじきとばされずに回転羽根43の間を通過し、内部に入り込む。そのため、回転羽根43は、粗粒粉P1を排除し、微粒粉P2だけを内部に入り込むことができる。
 ここで、本実施例のロータリセパレータ33による微粉炭の分級シミュレーション結果について説明する。図5に示すグラフは、ロータリセパレータ33(回転羽根43)の回転数を110rpmに設定し、異なる粒子径の微粉炭における分級結果を表すグラフである。ここで、横軸は、微粉炭の粒子径(μm)であり、縦軸は、部分分級効率(通過率%)であり、実線は、本実施例のロータリセパレータ33(回転羽根43)、一点鎖線は、従来のロータリセパレータ(平面形状の回転羽根)である。
 石炭焚きボイラで使用される微粉炭は、一般的に、粒子径が75μm以下のものが最適とされ、粒子径が150μm以上のものが不適である。そのため、竪型ミルのロータリセパレータは、粒子径が75μm以下の微粉炭をより多く通過させ、粒子径が150μm以上の微粉炭をできるだけ排除する必要がある。
 この図5のグラフからわかるように、実線で表す本実施例のロータリセパレータ33(回転羽根43)による分級では、粒子径が75μm以下の微粉炭をほぼ100%通過させることが可能であり、粒子径が75μmを超えてから通過率が低下し、粒子径が150μm以上の微粉炭をほぼ90%を超えて(通過率10%を下回って)排除することが可能である。一方、一点鎖線で表す従来のロータリセパレータによる分級では、粒子径が75μm以下の微粉炭をほぼ100%通過させることが可能であり、粒子径が75μmを超えてから通過率が低下するものの、粒子径が150μm以上の微粉炭については、ほぼ85%程度(通過率15%程度)しか排除することができない。
 具体的に、図6に示すように、粒子径が150μmの微粉炭による分級では、本実施例のロータリセパレータ33(回転羽根43)の通過率を10%以下にすることができるが、従来のロータリセパレータの通過率が15%以上となってしまう。即ち、本実施例のロータリセパレータ33(回転羽根43)は、従来のロータリセパレータに比べて、粒子径が150μm以上の微粉炭を効率良く排除しており、高い分級効率を有している。
 また、図7に示すグラフは、ロータリセパレータ33(回転羽根43)の回転数を140rpmに設定し、異なる粒子径の微粉炭における分級結果を表すグラフである。つまり、ロータリセパレータ33の回転数を高くすることで、粒子径の大きい微粉炭を通過しにくくし、分級後の微粉炭の平均粒子径を低下させようとしている。
 この場合にあっては、図7のグラフからわかるように、実線で表す本実施例のロータリセパレータ33(回転羽根43)による分級では、粒子径が50μm以下の微粉炭をほぼ100%通過させることが可能であり、粒子径が50μmを超えてから通過率が低下し、粒子径が100μm以上の微粉炭をほぼ95%を超えて(通過率5%を下回って)排除することが可能である。一方、一点鎖線で表す従来のロータリセパレータによる分級では、粒子径が50μm以下の微粉炭をほぼ100%通過させることが可能であり、粒子径が50μmを超えてから通過率が低下するものの、粒子径が100μm以上の微粉炭については、ほぼ95%程度(通過率5%程度)しか排除することができない。
 具体的に、図8に示すように、粒子径が150μmの微粉炭による分級では、本実施例のロータリセパレータ33(回転羽根43)の通過率をほぼ0%にすることができるが、従来のロータリセパレータの通過率が3%程度となってしまう。即ち、本実施例のロータリセパレータ33(回転羽根43)は、従来のロータリセパレータに比べて、粒子径が150μm以上の微粉炭を効率良く排除しており、高い分級効率を有している。
 このように本実施例の回転式分級機にあっては、円板形状をなす上部支持枠41と下部支持枠42との間の外周部に複数の回転羽根43を周方向に所定間隔で固定することで、ロータリセパレータ33を構成し、この回転羽根43における回転方向の前面に、外周側の回転軌跡G1に対する接線Tに対して鋭角に傾斜すると共に、外端43a側と内端43b側との間に凹部51を形成する傾斜面52を設けている。
 従って、回転羽根43は、回転方向の前面に凹部51を形成する傾斜面52が設けられていることから、回転羽根43が回転するとき、直進性の高い粗粒粉はこの傾斜面52に衝突した後に外部に排除される一方、直進性の低い微粒粉はこの傾斜面52に衝突した後に内部に入り込まれる。そのため、複数の回転羽根43により、粗粒粉を排除することができる一方で、微粒粉を通過させることができ、分級効率を向上することができる。
 本実施例の回転式分級機では、この傾斜面52として、回転羽根43の外端43a側に位置する第1傾斜面53と、内端43b側に位置する第2傾斜面54とを設け、第1傾斜面53における接線Tに対する傾斜角度α1を、第2傾斜面54における接線Tに対する傾斜角度α2より大きく設定している。従って、回転羽根43が回転するとき、直進性の高い粗粒粉が内側に位置する第2傾斜面54に衝突しても外部に排除される一方、直進性の低い微粒粉は、外側に位置する第1傾斜面53に衝突しても内部に入り込まれることとなり、分級効率を向上することができる。
 本実施例の回転式分級機では、第1傾斜面53と第2傾斜面54をそれぞれ上下方向に沿う平坦面とし、各傾斜面53,54の間に上下方向に沿う屈曲線Lを設けている。従って、屈曲線Lに対して第1傾斜面53と第2傾斜面54を設けることで、簡単な構成で分級効率を向上することができる。
 本実施例の回転式分級機では、屈曲線Lを回転羽根43における幅方向の中間部に設けている。従って、第1傾斜面53と第2傾斜面54を最適な領域に設定することができる。
 本実施例の回転式分級機では、第1傾斜面53と第2傾斜面54との角度βを180度未満に設定している。従って、第1傾斜面53と第2傾斜面54により粗粒粉と微粒粉を適正に分級することができる。
 また、本実施例の竪型ミルにあっては、中空形状をなすハウジング11と、ハウジング11内の下部に鉛直方向に沿う回転軸心をもって駆動回転可能に支持される粉砕テーブル13と、粉砕テーブル13の上方に対向して配置されて回転自在に支持される粉砕ローラ18と、ハウジング11内の上部に設けられて微粉炭を分級可能な回転式分級機としてのロータリセパレータ33とを設け、ロータリセパレータ33の外周に設けられる複数の回転羽根43における回転方向の前面に、外周側の回転軌跡G1に対する接線Tに対して鋭角に傾斜すると共に、外端43a側と内端43b側との間に凹部51を形成する傾斜面52を設けている。
 従って、粉砕ローラ18と粉砕テーブル13の間に石炭が入り込んだとき、粉砕テーブル13の回転力が石炭を介して粉砕ローラ18に伝達されて連れ回りし、石炭は押圧荷重が与えられて粉砕される。その後、粉砕された微粉炭子は、ハウジング11内を上昇してロータリセパレータ33により分級される。このとき、回転羽根43が回転すると、直進性の高い粗粒粉はこの傾斜面52に衝突した後に外部に排除される一方、直進性の低い微粒粉はこの傾斜面52に衝突した後に内部に入り込まれる。そのため、複数の回転羽根43により、粗粒粉を排除することができる一方で、微粒粉を通過させることができ、分級効率を向上することができる。
 なお、上述した実施例では、回転羽根43における回転方向の前面に角度の異なる第1傾斜面53と第2傾斜面54を設けたが、この構成に限定されるものではない。以下に、本実施例の回転式分級機における回転羽根の変形例を説明する。
 図9から図11は、本発明の変形例に係る回転式分級機における回転羽根を表す概略図である。
 変形例1において、図9に示すように、回転羽根60は、回転方向の前面(図9にて左側の面)が、外周側の回転軌跡G1に対する接線Tに対して鋭角に傾斜すると共に、凹部61を形成する傾斜面62を有している。そして、この傾斜面62として、回転羽根60の外側から第1傾斜面63と第2傾斜面64と第3傾斜面65とを設け、第1傾斜面63の傾斜角度が最も大きく、第3傾斜面65の傾斜角度が最も小さくく設定されている。
 そして、この各傾斜面63,64,65は、それぞれ上下方向に沿う平坦面であって、その間に上下方向(鉛直方向)に沿う屈曲線L1,L2が設けられている。この屈曲線L1,L2により各傾斜面63,64,65の幅は、ほぼ同様の長さに設定されている。そして、第1傾斜面63と第3傾斜面65とのなす角度は、180度未満に設定される。
 この回転羽根60であっても、回転羽根43と同様に、回転するとき、所定粒径より小さい粒径の微粒粉を内部に通過させ、所定粒径より大きい粒径の粗粒粉を外部にはじくことができる。なお、傾斜面の数は、2個または3個に限らず、4個以上設けてもよいものである。
 変形例2において、図10に示すように、回転羽根70は、回転方向の前面(図10にて左側の面)が、外周側の回転軌跡G1に対する接線Tに対して鋭角に傾斜すると共に、凹部71を形成する傾斜面72を有している。この傾斜面72は、外端側から内端側に向けて湾曲する湾曲面である。そして、この回転羽根70であっても、回転羽根43と同様に、回転するとき、所定粒径より小さい粒径の微粒粉を内部に通過させ、所定粒径より大きい粒径の粗粒粉を外部にはじくことができる。そして、傾斜面72を湾曲面とすることで、分級する粒子径に拘わらず、微粉炭を適正に分級することができる。
 変形例3において、図11に示すように、回転羽根80は、回転方向の前面(図11にて左側の面)が、外周側の回転軌跡G1に対する接線Tに対して鋭角に傾斜すると共に、凹部81を形成する傾斜面82を有している。そして、この傾斜面82として、回転羽根80の外側から第1傾斜面83と第2傾斜面84とを設け、第1傾斜面83の傾斜角度が大きく設定されている。なお、この各傾斜面83,84は、回転羽根43の各傾斜面53,54とほぼ同様の形状となっている。
 そして、この回転羽根80は、回転方向の後面(図11にて右側の面)が平坦面であり、回転抵抗や分級性能に影響を及ぼさない形状となっている。この回転羽根80であっても、回転羽根43と同様に、回転するとき、所定粒径より小さい粒径の微粒粉を内部に通過させ、所定粒径より大きい粒径の粗粒粉を外部にはじくことができる。
 なお、上述した実施例では、円板形状をなす上部支持枠41と下部支持枠42との間の外周側に複数の回転羽根43を周方向に所定間隔で固定してロータリセパレータ33を構成したが、支持枠41,42や回転羽根43の形状は、実施例に限定されるものではない。
 また、本発明の回転式分級機を竪型ミルに適用して説明したが、この構成に限定されるものではなく、微粉炭以外のものを分級するものに適用してもよい。
 11 ハウジング
 12 石炭供給管
 13 粉砕テーブル
 17 テーブルライナ
 18 粉砕ローラ
 19 ローラ駆動装置
 25 油圧シリンダ
 33 ロータリセパレータ(回転式分級機)
 41 上部支持枠(枠体)
 42 下部支持枠
 43,60,70,80 回転羽根
 51,61,71,81 凹部
 52,62,72,82 傾斜面
 53,63,83 第1傾斜面
 54,64,84 第2傾斜面
 65 第3傾斜面

Claims (7)

  1.  外周部に開口を有する回転自在な枠体と、
     前記枠体の開口部に周方向に所定間隔で固定される複数の回転羽根と、
     を備え、
     前記回転羽根は、回転方向の前面が、外周側の回転軌跡に対する接線に対して鋭角に傾斜すると共に、外端側と内端側との間に凹部を形成する傾斜面を有する、
     ことを特徴とする回転式分級機。
  2.  前記傾斜面は、外端側に位置する第1傾斜面と内端側に位置する第2傾斜面とを有し、前記第1傾斜面における前記接線に対する傾斜角度が、前記第2傾斜面における前記接線に対する傾斜角度より大きく設定されることを特徴とする請求項1に記載の回転式分級機。
  3.  前記傾斜面は、前記第1傾斜面と前記第2傾斜面との間に鉛直方向に沿う屈曲線が設けられることを特徴とする請求項2に記載の回転式分級機。
  4.  前記屈曲線は、前記回転羽根における幅方向の中間部に設けられることを特徴とする請求項3に記載の回転式分級機。
  5.  前記第1傾斜面と前記第2傾斜面との角度が180度未満に設定されることを特徴とする請求項2から4のいずれか一つに記載の回転式分級機。
  6.  前記傾斜面は、外端側から内端側に向けて湾曲する湾曲面を有することを特徴とする請求項1に記載の回転式分級機。
  7.  中空形状をなすハウジングと、
     前記ハウジング内の下部に鉛直方向に沿う回転軸心をもって駆動回転可能に支持される粉砕テーブルと、
     前記粉砕テーブルの上方に対向して配置されて回転自在に支持される粉砕ローラと、
     前記ハウジング内の上部に設けられて粉砕物を分級可能な回転式分級機と、
     を備え、
     前記回転式分級機の外周に設けられる複数の回転羽根は、回転方向の前面が、外周側の回転軌跡に対する接線に対して鋭角に傾斜すると共に、外端側と内端側との間に凹部を形成する傾斜面を有する、
     ことを特徴とする竪型ミル。
PCT/JP2013/072752 2012-08-28 2013-08-26 回転式分級機及び竪型ミル WO2014034613A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/414,178 US10124373B2 (en) 2012-08-28 2013-08-26 Rotary classifier and vertical mill
DE112013004298.3T DE112013004298T5 (de) 2012-08-28 2013-08-26 Dreh-Sortiermaschine und Vertikalmühle
KR1020157002454A KR101662464B1 (ko) 2012-08-28 2013-08-26 회전식 분급기 및 수직형 밀
CN201380039646.4A CN104703717B (zh) 2012-08-28 2013-08-26 旋转式分级机以及立式磨机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-187984 2012-08-28
JP2012187984A JP5905366B2 (ja) 2012-08-28 2012-08-28 回転式分級機及び竪型ミル

Publications (1)

Publication Number Publication Date
WO2014034613A1 true WO2014034613A1 (ja) 2014-03-06

Family

ID=50183425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072752 WO2014034613A1 (ja) 2012-08-28 2013-08-26 回転式分級機及び竪型ミル

Country Status (6)

Country Link
US (1) US10124373B2 (ja)
JP (1) JP5905366B2 (ja)
KR (1) KR101662464B1 (ja)
CN (1) CN104703717B (ja)
DE (1) DE112013004298T5 (ja)
WO (1) WO2014034613A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220269A1 (de) * 2015-10-19 2017-04-20 Thyssenkrupp Ag Sichteinrichtung zum Sichten eines Materialstroms
CN105457728B (zh) * 2015-12-22 2017-10-31 昆山强威粉体设备有限公司 高效超微物料分级轮
JP2017140573A (ja) * 2016-02-09 2017-08-17 三菱日立パワーシステムズ株式会社 分級機、粉砕分級装置及び微粉炭焚きボイラ
US10744534B2 (en) * 2016-12-02 2020-08-18 General Electric Technology Gmbh Classifier and method for separating particles
CN112739461B (zh) * 2018-09-26 2023-01-24 佐竹化学机械工业株式会社 分级叶轮及分级装置
US11572143B2 (en) 2020-03-12 2023-02-07 Johnson Outdoors Inc. Watercraft and associated pedal drive system
CN112044533B (zh) * 2020-08-14 2021-11-09 南京钜力智能制造技术研究院有限公司 一种智能立磨装置及其磨制方法
CN112473886A (zh) * 2020-11-05 2021-03-12 徐向春 一种耐火材料加工用雷蒙制粉机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241559A (ja) * 1986-04-11 1987-10-22 宇部興産株式会社 竪型粉砕機の回転式セパレ−タ
JPH02115052A (ja) * 1988-10-26 1990-04-27 Babcock Hitachi Kk 回転分級式微粉砕機
JPH0751630A (ja) * 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd 竪型ローラミルの分級装置
JPH09271721A (ja) * 1996-04-04 1997-10-21 Kao Corp 回転型粉体分級機
JP2002018301A (ja) * 2000-07-04 2002-01-22 Babcock Hitachi Kk 分級装置および竪型ミル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806980A (en) * 1931-05-26 Ptjlvebizeb
US4084754A (en) * 1976-07-27 1978-04-18 Loesche Hartzerkleinerungs-Und Zementmaschinen Gmbh & Co. Kg Combined vane-rotor separator
US4127237A (en) * 1977-12-27 1978-11-28 Combustion Engineering, Inc. Plural bowl mills in series
JPS6150678A (ja) * 1984-08-18 1986-03-12 川崎重工業株式会社 分級器
DE3863803D1 (de) * 1987-03-24 1991-08-29 Mitsubishi Heavy Ind Ltd Walzenmuehle.
US5251831A (en) * 1991-01-21 1993-10-12 Mitsubishi Jukogyo Kabushiki Kaisha Roller mill
JPH07308637A (ja) 1994-05-20 1995-11-28 Ishikawajima Harima Heavy Ind Co Ltd ミルの回転式分級機
JP3207702B2 (ja) 1995-04-04 2001-09-10 三菱重工業株式会社 ローラミル用回転式分級機
DE10261448A1 (de) * 2002-12-31 2004-07-29 Nied, Roland, Dr.-Ing. Beschaufelter Sichtrotor für Windsichter
JP4550486B2 (ja) * 2004-05-13 2010-09-22 バブコック日立株式会社 分級機およびそれを備えた竪型粉砕機、ならびにその竪型粉砕機を備えた石炭焚ボイラ装置
JP4662462B2 (ja) * 2004-09-17 2011-03-30 株式会社リコー トナーの製造装置及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62241559A (ja) * 1986-04-11 1987-10-22 宇部興産株式会社 竪型粉砕機の回転式セパレ−タ
JPH02115052A (ja) * 1988-10-26 1990-04-27 Babcock Hitachi Kk 回転分級式微粉砕機
JPH0751630A (ja) * 1993-08-19 1995-02-28 Mitsubishi Heavy Ind Ltd 竪型ローラミルの分級装置
JPH09271721A (ja) * 1996-04-04 1997-10-21 Kao Corp 回転型粉体分級機
JP2002018301A (ja) * 2000-07-04 2002-01-22 Babcock Hitachi Kk 分級装置および竪型ミル

Also Published As

Publication number Publication date
US10124373B2 (en) 2018-11-13
CN104703717A (zh) 2015-06-10
CN104703717B (zh) 2019-04-12
JP2014042900A (ja) 2014-03-13
KR101662464B1 (ko) 2016-10-04
KR20150027278A (ko) 2015-03-11
DE112013004298T5 (de) 2015-05-21
US20150196934A1 (en) 2015-07-16
JP5905366B2 (ja) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5905366B2 (ja) 回転式分級機及び竪型ミル
JP2007136299A (ja) セメントクリンカの粉砕設備
JP6896399B2 (ja) 固体燃料粉砕装置及びその運転方法
JP6172577B2 (ja) 竪型粉砕機
JP6415298B2 (ja) 回転式分級機および竪型ミル
JPH07155628A (ja) 機械式粉砕装置
JP6352162B2 (ja) 竪型ローラミル
KR101513054B1 (ko) 2단 수직 원심 분급기
JP6248718B2 (ja) 竪型粉砕機
KR100585253B1 (ko) 미분 분리가 가능한 샌드밀
JP2012217920A (ja) 竪型ミル
JP4257962B2 (ja) 粉砕分級機
JP6571953B2 (ja) 粉砕装置
JP4576577B2 (ja) 粉砕装置
CN217016951U (zh) 一种纳米级分级轮
JP2868099B2 (ja) 竪型粉砕機
JP3147143B2 (ja) 竪型粉砕機
KR100660140B1 (ko) 곡물 분쇄장치
KR200416162Y1 (ko) 곡물 분쇄장치
JP2011143325A5 (ja)
JP2018001055A (ja) 竪型粉砕機
KR100734620B1 (ko) 분급 유니트 및 이를 이용한 분급 장치
KR200383334Y1 (ko) 미분 분리가 가능한 샌드밀
JP2014073428A (ja) 解砕装置
JP2005288272A (ja) 遠心式破砕機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14414178

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157002454

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013004298

Country of ref document: DE

Ref document number: 1120130042983

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833651

Country of ref document: EP

Kind code of ref document: A1