WO2014034027A1 - 撮像レンズおよび撮像レンズを備えた撮像装置 - Google Patents

撮像レンズおよび撮像レンズを備えた撮像装置 Download PDF

Info

Publication number
WO2014034027A1
WO2014034027A1 PCT/JP2013/004715 JP2013004715W WO2014034027A1 WO 2014034027 A1 WO2014034027 A1 WO 2014034027A1 JP 2013004715 W JP2013004715 W JP 2013004715W WO 2014034027 A1 WO2014034027 A1 WO 2014034027A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging
focal length
imaging lens
conditional expression
Prior art date
Application number
PCT/JP2013/004715
Other languages
English (en)
French (fr)
Inventor
近藤 雅人
長 倫生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2014532758A priority Critical patent/JP5718532B2/ja
Priority to CN201390000717.5U priority patent/CN204595301U/zh
Publication of WO2014034027A1 publication Critical patent/WO2014034027A1/ja
Priority to US14/633,448 priority patent/US9568711B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to a fixed-focus imaging lens that forms an optical image of a subject on an imaging element such as a CCD (Charge-Coupled Device) or CMOS (Complementary-Metal-Oxide-Semiconductor), and a digital image that is mounted with the imaging lens.
  • the present invention relates to an imaging apparatus such as a still camera, a camera-equipped mobile phone, an information portable terminal (PDA: Personal Digital Assistant), a smartphone, a tablet terminal, and a portable game machine.
  • the imaging lens has a five-lens structure in which the number of lenses is relatively large in order to shorten the overall length and increase the resolution.
  • An imaging lens composed of a fourth lens and a fifth lens having negative refractive power has been proposed.
  • an imaging lens that is configured by a relatively large number of lenses and that is required to shorten the entire lens length particularly used in a mobile terminal has a smaller F number and a desired resolution. For example, it is required to realize an imaging lens having a large image size that can be applied to an imaging device having a size comparable to that conventionally used.
  • the five-lens imaging lens described in Patent Documents 1 and 2 is not sufficiently corrected for aberrations or the F number is not sufficiently small. Realization of both high performance and performance is required. Since the lens described in Patent Document 3 is not sufficiently corrected for aberrations, it is required to further improve the performance.
  • the present invention has been made in view of such problems, and its object is to reduce the overall length and maintain the central angle of view while maintaining a large image size that has a small F number and that can achieve a desired resolution.
  • An imaging lens capable of realizing high imaging performance from a peripheral angle of view to a peripheral angle of view and an imaging device capable of obtaining a high-resolution captured image by mounting the imaging lens.
  • the imaging lens of the present invention includes, in order from the object side, a first lens having a biconvex shape, a second lens having a meniscus shape and a concave surface facing the image side, a third lens having a biconcave shape, and a meniscus.
  • each lens element from the first lens to the fifth lens since the configuration of each lens element from the first lens to the fifth lens is optimized in a lens configuration of five lenses as a whole, it has a small F number and shortens the overall length. A lens system having high resolution performance can be realized.
  • substantially consists of five lenses means that the imaging lens of the present invention has substantially no power other than the five lenses, a diaphragm, It is meant to include an optical element other than a lens such as a cover glass, a lens flange, a lens barrel, an image sensor, a mechanism portion such as a camera shake correction mechanism, and the like.
  • a lens including an aspheric surface is considered in a paraxial region.
  • the optical performance can be further improved by satisfying the following preferable configuration.
  • the second lens has a negative refractive power.
  • the fourth lens has a positive refractive power.
  • the imaging lens of the present invention preferably satisfies any of the following conditional expressions (1) to (6-1).
  • one satisfying any one of conditional expressions (1) to (6-1) may be satisfied, or any combination may be satisfied.
  • 1 ⁇ f / f1 ⁇ 3 (1) 1.1 ⁇ f / f1 ⁇ 2.5 (1-1) 1.2 ⁇ f / f1 ⁇ 2.2 (1-2) -0.6 ⁇ f / f3 ⁇ 0 (2) -0.5 ⁇ f / f3 ⁇ -0.1 (2-1) -3 ⁇ f / f5 ⁇ -1.2 (3) -2.5 ⁇ f / f5 ⁇ -1.3 (3-1) -2 ⁇ f / f2 ⁇ -0.4 (4) -1.5 ⁇ f / f2 ⁇ -0.5 (4-1) 1 ⁇ f / f4 ⁇ 2.5 (5) 1.1 ⁇ f / f4 ⁇ 2.3 (5-1) ⁇ d3 ⁇ 30 (6) ⁇ d3 ⁇ 26 (6-1)
  • An imaging apparatus includes the imaging lens of the present invention.
  • a high-resolution imaging signal can be obtained based on the high-resolution optical image obtained by the imaging lens of the present invention.
  • each lens element since the configuration of each lens element is optimized in the lens configuration of five as a whole, and particularly the shapes of the first lens and the fifth lens are preferably configured, it has a small F number. It is possible to realize a lens system having a large image size and a high imaging performance from the central field angle to the peripheral field angle while shortening the overall length.
  • an imaging signal corresponding to the optical image formed by the imaging lens having high imaging performance of the present invention is output, a high-resolution captured image can be obtained. Can do.
  • FIG. 1 is a lens cross-sectional view illustrating a first configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 1.
  • FIG. FIG. 2 is a lens cross-sectional view illustrating a second configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 2; 3 is a lens cross-sectional view illustrating a third configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 3.
  • FIG. 4 is a lens cross-sectional view illustrating a fourth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 4;
  • FIG. 5 is a lens cross-sectional view illustrating a fifth configuration example of an imaging lens according to an embodiment of the present invention and corresponding to Example 5.
  • FIG. 4 is a ray diagram of the imaging lens illustrated in FIG. 3.
  • FIG. 4 is an aberration diagram showing various aberrations of the imaging lens according to Example 1 of the present invention, in which (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion, and (D). Indicates lateral chromatic aberration.
  • FIG. 6 is an aberration diagram showing various aberrations of the imaging lens according to Example 2 of the present invention, in which (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion, and (D). Indicates lateral chromatic aberration.
  • FIG. 3 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 3 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is a distortion aberration, (D). Indicates lateral chromatic aberration. It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 4 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
  • FIG. 5 It is an aberration diagram which shows the various aberrations of the imaging lens which concerns on Example 5 of this invention, (A) is spherical aberration, (B) is astigmatism (field curvature), (C) is distortion aberration, (D). Indicates lateral chromatic aberration.
  • FIG. 1 shows a first configuration example of the imaging lens according to the first embodiment of the present invention.
  • This configuration example corresponds to the lens configuration of a first numerical example (Tables 1 and 2) described later.
  • FIG. 6 is an optical path diagram of the imaging lens L shown in FIG. 3, and shows the optical paths of the axial light beam 2 and the light beam 3 with the maximum field angle from an object point at an infinite distance.
  • the imaging lens L includes various imaging devices using imaging elements such as CCDs and CMOSs, in particular, relatively small portable terminal devices such as digital still cameras, mobile phones with cameras, smartphones, tablets. It is suitable for use in type terminals and PDAs.
  • the imaging lens L includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side along the optical axis Z1. Yes.
  • FIG. 12 shows an overview of a mobile phone terminal that is the imaging apparatus 1 according to the embodiment of the present invention.
  • An imaging device 1 according to an embodiment of the present invention includes an imaging lens L according to the present embodiment and an imaging element 100 such as a CCD that outputs an imaging signal corresponding to an optical image formed by the imaging lens L (see FIG. 1).
  • the image sensor 100 is disposed on the imaging surface (image surface R14) of the imaging lens L.
  • FIG. 13 shows an overview of a smartphone that is the imaging device 501 according to the embodiment of the present invention.
  • An image pickup apparatus 501 according to the embodiment of the present invention includes an image pickup lens L according to this embodiment and an image pickup device 100 such as a CCD that outputs an image pickup signal corresponding to an optical image formed by the image pickup lens L (see FIG. 1)).
  • the image sensor 100 is disposed on the imaging surface (imaging surface) of the imaging lens L.
  • Various optical members CG may be arranged between the fifth lens L5 and the image sensor 100 according to the configuration on the camera side where the lens is mounted.
  • a flat optical member such as a cover glass for protecting the imaging surface or an infrared cut filter may be disposed.
  • a flat cover glass provided with a coating having a filter effect such as an infrared cut filter or an ND filter may be used.
  • the fifth lens L5 may be coated to have the same effect as the optical member CG. Thereby, the number of parts can be reduced and the total length can be shortened.
  • the imaging lens L preferably further includes an aperture stop St disposed on the object side of the object side surface of the first lens L1.
  • the aperture stop St is disposed on the object side of the object side surface of the first lens, so that the light beam passing through the optical system (imaging device), particularly in the periphery of the image formation region. An increase in the incident angle can be suppressed.
  • “arranged closer to the object side than the object side surface of the first lens” means that the position of the aperture stop in the optical axis direction is the same as the intersection of the axial marginal ray and the object side surface of the first lens L1. It means that it is on the object side.
  • the lenses of the first to fifth configuration examples are configuration examples in which the aperture stop St is disposed closer to the object side than the image side surface of the first lens L1.
  • the aperture stop St is disposed on the image side with respect to the surface vertex of the first lens L1.
  • the present invention is not limited to this, and the aperture stop St is located on the object side of the surface vertex of the first lens L1. It may be arranged on the side.
  • the aperture stop St is disposed on the object side with respect to the surface vertex of the first lens L1
  • the amount of peripheral light is secured more than when the aperture stop St is disposed on the image side with respect to the surface vertex of the first lens L1.
  • it is somewhat disadvantageous from this viewpoint it is possible to more suitably suppress an increase in the incident angle of the light beam passing through the optical system to the imaging surface (imaging device) in the peripheral portion of the imaging region.
  • the first lens L1 has a biconvex shape in the vicinity of the optical axis, whereby the overall length can be suitably shortened.
  • the first lens L1 in a biconvex shape in the vicinity of the optical axis, it is possible to reduce the occurrence of spherical aberration that occurs when the first lens L1 has positive refractive power, and it is easy to correct spherical aberration. Can be.
  • the second lens L2 has a meniscus shape in the vicinity of the optical axis, and has a concave surface facing the image side in the vicinity of the optical axis.
  • the overall length can be suitably shortened.
  • a second lens L2 having a meniscus shape in the vicinity of the optical axis and having a concave surface in the vicinity of the optical axis on the image side of the first lens L1 having a biconvex shape, the biconvex shape is obtained.
  • the spherical aberration and chromatic aberration generated in the first lens L1 can be easily corrected, and the total length can be shortened while maintaining an image size that satisfies a desired resolution.
  • the second lens L2 has a meniscus shape and having a concave surface facing the image side in the vicinity of the optical axis, occurrence of higher-order spherical aberration can be suitably suppressed.
  • the second lens L2 has a negative refractive power in the vicinity of the optical axis, and in this case, chromatic aberration can be corrected well.
  • the third lens L3 has a biconcave shape in the vicinity of the optical axis. Adjacent to the image side of the first lens L1 having a biconvex shape near the optical axis is a second lens having a concave surface facing the image side near the optical axis, and a third lens L3 having a biconcave shape near the optical axis.
  • spherical aberration generated by the first lens L1 having a biconvex shape in the vicinity of the optical axis can be suitably corrected.
  • the third lens L3 since the third lens L3 has negative refractive power, it is easy to correct chromatic aberration.
  • the fourth lens L4 has a meniscus shape in the vicinity of the optical axis, and has a convex surface facing the image side in the vicinity of the optical axis. As a result, astigmatism can be suitably corrected.
  • the fourth lens L4 preferably has a positive refractive power in the vicinity of the optical axis. Accordingly, it is possible to suitably suppress an increase in the incident angle of the light beam passing through the optical system to the imaging surface (imaging device) in the peripheral portion of the imaging region.
  • the fifth lens L5 has a biconcave shape in the vicinity of the optical axis.
  • the fifth lens L5 has a negative refractive power in the vicinity of the optical axis, so that the imaging lens as a whole has a telephoto configuration. Therefore, the position of the rear principal point of the entire imaging lens can be brought closer to the object side, and the overall length can be suitably shortened.
  • the fifth lens L5 a biconcave shape in the vicinity of the optical axis, the negative refractive power of the fifth lens L5 is suppressed while suppressing the absolute value of the curvature of each surface of the fifth lens L5 from becoming too large. Can be strengthened sufficiently.
  • the fifth lens L5 a biconcave shape in the vicinity of the optical axis, it is possible to suitably correct the curvature of field.
  • the fifth lens L5 has at least one inflection point within the effective diameter of the image side surface.
  • the “inflection point” on the image side surface of the fifth lens L5 is a point at which the image side surface shape of the fifth lens L5 switches from a convex shape to a concave shape (or from a concave shape to a convex shape) with respect to the image side.
  • the position of the inflection point can be arranged at an arbitrary position outside the optical axis in the radial direction as long as it is within the effective diameter of the image side surface of the fifth lens L5, and is preferably arranged at the periphery. preferable.
  • the image side surface of the fifth lens L5 into a shape having at least one inflection point, the incidence of light rays passing through the optical system on the imaging surface (imaging device), particularly in the periphery of the imaging region. An increase in the angle can be suppressed.
  • the peripheral part here means a radial direction outer side from about 40% of the maximum effective radius.
  • the imaging lens L since the configuration of the lens elements of the first to fifth lenses is optimized in a lens configuration of five as a whole, the image size is large and the high resolution is achieved while shortening the overall length. A lens system having performance can be realized.
  • the imaging lens L can be suitably applied to a mobile phone terminal or the like where there are many opportunities for short-distance shooting.
  • This imaging lens L preferably uses an aspherical surface for at least one surface of each of the first lens L1 to the fifth lens L5 for high performance.
  • each of the lenses L1 to L5 constituting the imaging lens L is a single lens instead of a cemented lens. This is because the number of aspheric surfaces is larger than when any one of the lenses L1 to L5 is a cemented lens, so that the degree of freedom in designing each lens is increased, and the overall length can be suitably shortened.
  • conditional expression (1) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f1 of the first lens L1.
  • conditional expression (1) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f1 of the first lens L1.
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the positive refractive power of the first lens L1 becomes too strong with respect to the refractive power of the entire system, and correction of spherical aberration becomes particularly difficult. For this reason, by satisfying the range of conditional expression (1), it is possible to suitably shorten the length of the entire lens system while maintaining a small F number and correcting spherical aberration well. In order to enhance this effect, it is more preferable to satisfy the conditional expression (1-1), and it is more preferable to satisfy the conditional expression (1-2). 1.1 ⁇ f / f1 ⁇ 2.5 (1-1) 1.2 ⁇ f / f1 ⁇ 2.2 (1-2)
  • conditional expression (2) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f3 of the third lens L3.
  • conditional expression (2) If the upper limit of conditional expression (2) is exceeded, the refractive power of the third lens L3 becomes too weak with respect to the refractive power of the entire system, making it difficult to correct chromatic aberration. Therefore, by satisfying the range of conditional expression (2), it is possible to suitably correct various aberrations such as chromatic aberration while maintaining a small F number and shortening the total length. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (2-1). -0.5 ⁇ f / f3 ⁇ -0.1 (2-1)
  • the focal length f5 of the fifth lens L5 and the focal length f of the entire system satisfy the following conditional expression (3). -3 ⁇ f / f5 ⁇ -1.2 (3)
  • Conditional expression (3) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f5 of the fifth lens L5.
  • conditional expression (3) If the upper limit of conditional expression (3) is exceeded, the refractive power of the fifth lens L5 becomes too weak with respect to the refractive power of the entire system, making it difficult to correct field curvature. For this reason, satisfying the range of conditional expression (3) suitably suppresses an increase in the incident angle of the light beam passing through the optical system to the imaging surface (imaging device) in the periphery of the imaging region. On the other hand, it is possible to suitably correct the curvature of field. In order to enhance this effect, it is preferable to satisfy the conditional expression (3-1). -2.5 ⁇ f / f5 ⁇ -1.3 (3-1)
  • conditional expression (4) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f2 of the second lens L2. If the lower limit of conditional expression (4) is not reached, the refractive power of the second lens L2 becomes too strong with respect to the positive refractive power of the entire system, the F-number is kept small, and various aberrations are improved. It becomes difficult to shorten the overall length while correcting.
  • conditional expression (4) If the upper limit of conditional expression (4) is exceeded, the refractive power of the second lens L2 becomes too weak with respect to the refractive power of the entire system, making it difficult to correct chromatic aberration. Therefore, by satisfying the range of conditional expression (4), it is possible to suitably correct various aberrations such as chromatic aberration while maintaining a small F number and shortening the overall length. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (4-1). -1.5 ⁇ f / f2 ⁇ -0.5 (4-1)
  • conditional expression (5) defines a preferable numerical range of the ratio of the focal length f of the entire system to the focal length f4 of the fourth lens L4.
  • conditional expression (5) If the upper limit of conditional expression (5) is exceeded, the refractive power of the fourth lens L4 becomes too strong with respect to the refractive power of the entire system, making it difficult to correct field curvature. For this reason, satisfying the range of conditional expression (5) suitably suppresses an increase in the incident angle of the light beam passing through the optical system on the imaging surface (imaging device) in the periphery of the imaging region. On the other hand, it is possible to suitably correct the curvature of field. In order to further enhance this effect, it is more preferable to satisfy the conditional expression (5-1). 1.1 ⁇ f / f4 ⁇ 2.3 (5-1)
  • conditional expression (6) defines a preferable numerical range of the Abbe number ⁇ d3 with respect to the d-line of the third lens L3. If the upper limit of conditional expression (6) is exceeded, it will be difficult to correct longitudinal chromatic aberration and lateral chromatic aberration. By satisfying conditional expression (6), it is possible to satisfactorily correct axial chromatic aberration and lateral chromatic aberration by configuring the third lens L3 with a highly dispersed material. From this viewpoint, it is more preferable to satisfy the following conditional expression (6-1). ⁇ d3 ⁇ 26 (6-1)
  • each lens element since the configuration of each lens element is optimized in the lens configuration of five as a whole, it has a small F number and shortens the overall length. However, it is possible to realize a lens system having a large image size and high resolution performance.
  • the imaging lens disclosed in Patent Document 1 has a large F number or a lens having a relatively small F number, but correction of spherical aberration is not sufficient.
  • the imaging lens disclosed in Patent Document 2 has a large F number, and spherical aberration is not sufficiently corrected.
  • the imaging lens described in the known document 3 is not sufficiently corrected for axial chromatic aberration or spherical aberration, and cannot be said to have sufficiently high resolution performance.
  • the imaging signal corresponding to the optical image formed by the high-performance imaging lens according to the present embodiment is output.
  • a high-resolution captured image can be obtained up to the corner.
  • Tables 1 and 2 below show specific lens data corresponding to the configuration of the imaging lens shown in FIG.
  • Table 1 shows basic lens data
  • Table 2 shows data related to aspheric surfaces.
  • the surface of the lens element closest to the object side is the first (aperture stop St is the first) and heads toward the image side.
  • the value (mm) of the curvature radius of the i-th surface from the object side is shown in correspondence with the reference symbol Ri in FIG.
  • the column of the surface interval Di indicates the interval (mm) on the optical axis between the i-th surface Si and the i + 1-th surface Si + 1 from the object side.
  • the value of the refractive index for the d-line (587.56 nm) of the j-th optical element from the object side is shown.
  • the column of ⁇ dj shows the Abbe number value for the d-line of the j-th optical element from the object side.
  • Each lens data indicates the values of the focal length f (mm) and back focus Bf (mm) of the entire system as various data.
  • the back focus Bf represents a value converted into air.
  • both surfaces of the first lens L1 to the fifth lens L5 are all aspherical.
  • the basic lens data in Table 1 shows the numerical value of the radius of curvature near the optical axis (paraxial radius of curvature) as the radius of curvature of these aspheric surfaces.
  • Table 2 shows aspherical data in the imaging lens of Example 1.
  • E indicates that the subsequent numerical value is a “power exponent” with a base of 10
  • the numerical value represented by an exponential function with the base of 10 is Indicates that the value before “E” is multiplied.
  • “1.0E-02” indicates “1.0 ⁇ 10 ⁇ 2 ”.
  • Z is the length (mm) of a perpendicular line drawn from a point on the aspheric surface at a height h from the optical axis to the tangential plane (plane perpendicular to the optical axis) of the apex of the aspheric surface.
  • Z C ⁇ h 2 / ⁇ 1+ (1 ⁇ KA ⁇ C 2 ⁇ h 2 ) 1/2 ⁇ + ⁇ Ai ⁇ h i (A)
  • Z Depth of aspheric surface (mm)
  • h Distance from the optical axis to the lens surface (height) (mm)
  • KA aspheric coefficient
  • Table 3 and Table 4 show specific lens data corresponding to the configuration of the imaging lens shown in FIG. 2 as Example 2 in the same manner as the imaging lens of Example 1 described above. Similarly, specific lens data corresponding to the configuration of the imaging lens shown in FIGS. 3 to 5 is shown in Tables 5 to 10 as Examples 3 to 5. In the imaging lenses according to Examples 1 to 5, both surfaces of the first lens L1 to the fifth lens L5 are all aspherical.
  • FIGS. 7A to 7D are diagrams showing spherical aberration, astigmatism, distortion aberration, and lateral chromatic aberration (chromatic aberration of magnification) in the imaging lens of Example 1, respectively.
  • Each aberration diagram showing spherical aberration, astigmatism (field curvature), and distortion aberration shows aberration with the d-line (wavelength 587.56 nm) as a reference wavelength.
  • the spherical aberration diagram and the lateral chromatic aberration diagram also show aberrations for the F-line (wavelength 486.1 nm) and the C-line (wavelength 656.27 nm).
  • the spherical aberration diagram also shows aberrations with respect to the g-line (wavelength 435.83 nm).
  • the solid line indicates the sagittal direction (S), and the broken line indicates the tangential direction (T).
  • Fno Indicates the F number, and ⁇ indicates the half angle of view.
  • Table 11 shows values relating to the conditional expressions (1) to (6) according to the present invention for each of Examples 1 to 5.
  • the imaging lens of the present invention is not limited to the embodiment and each example, and various modifications can be made.
  • the values of the radius of curvature, the surface interval, the refractive index, the Abbe number, and the aspherical coefficient of each lens component are not limited to the values shown in the numerical examples, but may take other values.
  • the description is based on the premise that the fixed focus is used. However, it is possible to adopt a configuration in which focus adjustment is possible.
  • the entire lens system can be extended, or a part of the lenses can be moved on the optical axis to enable autofocusing.
  • a surface having a large absolute value of the radius of curvature of the meniscus shape near the optical axis may be configured as a plane near the optical axis. .
  • a lens having a meniscus shape near the optical axis may be a plano-convex lens or a plano-concave lens in which the surface having a large absolute value of the radius of curvature of the meniscus shape of the lens is a plane near the optical axis. Good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

【課題】Fナンバーが小さく、所望の解像度を実現可能なイメージサイズを維持しながらも、全長の短縮化および高解像化を実現した撮像レンズおよびこの撮像レンズを備えた撮像装置を実現する。 【解決手段】撮像レンズが、物体側から順に、両凸形状である第1レンズ(L1)と、メニスカス形状であり、像側に凹面を向けた第2レンズ(L2)と、両凹形状である第3レンズ(L3)と、メニスカス形状であり、像側に凸面を向けた第4レンズ(L4)と、両凹形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズ(L5)とから構成される実質的に5個のレンズからなる。

Description

撮像レンズおよび撮像レンズを備えた撮像装置
 本発明は、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子上に被写体の光学像を結像させる固定焦点の撮像レンズ、およびその撮像レンズを搭載して撮影を行うデジタルスチルカメラやカメラ付き携帯電話機、情報携帯端末(PDA:Personal Digital Assistance)、スマートフォン、タブレット型端末および携帯型ゲーム機等の撮像装置に関する。
 近年、パーソナルコンピュータの一般家庭等への普及に伴い、撮影した風景や人物像等の画像情報をパーソナルコンピュータに入力することができるデジタルスチルカメラが急速に普及している。また、携帯電話、スマートフォン、タブレット型端末に画像入力用のカメラモジュールが搭載されることも多くなっている。このような撮像機能を有する機器には、CCDやCMOSなどの撮像素子が用いられている。近年、これらの撮像素子のコンパクト化が進み、撮像機器全体ならびにそれに搭載される撮像レンズにも、コンパクト性が要求されている。また同時に、撮像素子の高画素化も進んでおり、撮像レンズの高解像、高性能化が要求されている。例えば5メガピクセル以上、よりさらに好適には8メガピクセル以上の高画素に対応した性能が要求されている。
 このような要求に対しては、例えば全長の短縮化および高解像化を図るために撮像レンズをレンズ枚数が比較的多い5枚構成とすることが考えられる。例えば、特許文献1ないし3には、物体側から順に正の屈折力を有する第1レンズ、負の屈折力を有する第2レンズ、負の屈折力を有する第3レンズ、正の屈折力を有する第4レンズ、負の屈折力を有する第5レンズから構成される撮像レンズが提案されている。
中国実用新案第201903684号明細書 国際公開第2011/118554号 特開2010-152042号公報
 ここで、上述したように比較的多いレンズ枚数から構成され、特に携帯端末に用いられるようなレンズ全長の短縮化が要求される撮像レンズにおいて、より小さなFナンバーを有し、かつ、所望の解像度に対応できるように、例えば、従来使用されていたものと同程度のサイズの撮像素子にも対応可能な大きいイメージサイズを有する撮像レンズの実現が求められている。
 これら全ての要求に応えるために、特許文献1および2に記載の5枚構成の撮像レンズは、収差の補正が十分でない、または、Fナンバーが十分小さなものとはなっていないため、小さなFナンバーと高性能化の両方を実現することが求められる。特許文献3に記載のレンズは、収差の補正が十分ではないため、やはりさらに高性能化することが求められる。
 本発明はかかる問題点に鑑みてなされたもので、その目的は、小さなFナンバーを有し、かつ、所望の解像度を実現可能な大きいイメージサイズを維持しつつ、全長を短縮化し、中心画角から周辺画角まで高い結像性能を実現することができる撮像レンズ、およびその撮像レンズを搭載して高解像の撮像画像を得ることができる撮像装置を提供することにある。
 本発明の撮像レンズは、物体側から順に、両凸形状である第1レンズと、メニスカス形状であり、像側に凹面を向けた第2レンズと、両凹形状である第3レンズと、メニスカス形状であり、像側に凸面を向けた第4レンズと、両凹形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズとから構成される実質的に5個のレンズからなり、下記条件式を満足することを特徴とする。
 本発明の撮像レンズによれば、全体として5枚というレンズ構成において、第1レンズから第5レンズの各レンズ要素の構成を最適化したので、小さなFナンバーを有し、全長を短縮化しながらも、高解像性能を有するレンズ系を実現することができる。
 なお、本発明の撮像レンズにおいて、「実質的に5個のレンズからなり、」とは、本発明の撮像レンズが、5個のレンズ以外に、実質的にパワーを有さないレンズ、絞りやカバーガラス等レンズ以外の光学要素、レンズフランジ、レンズバレル、撮像素子、手振れ補正機構等の機構部分、等を持つものも含むことを意味する。また、上記のレンズの面形状や屈折力の符号は、非球面が含まれているものについては近軸領域で考えるものとする。
 本発明の撮像レンズにおいて、さらに、次の好ましい構成を採用して満足することで、光学性能をより良好なものとすることができる。
 本発明の撮像レンズにおいて、第2レンズが負の屈折力を有することが好ましい。
 また、本発明の撮像レンズにおいて、第4レンズが正の屈折力を有することが好ましい。
 本発明の撮像レンズは、以下の条件式(1)から(6-1)のいずれかを満足することが好ましい。なお、好ましい態様としては、条件式(1)から(6-1)のいずれか一つを満たすものでもよく、あるいは任意の組合せを満たすものでもよい。
 1<f/f1<3         (1)
 1.1<f/f1<2.5     (1-1)
 1.2<f/f1<2.2     (1-2)
 -0.6<f/f3<0      (2)
 -0.5<f/f3<-0.1   (2-1)
 -3<f/f5<-1.2     (3)
 -2.5<f/f5<-1.3   (3-1)
 -2<f/f2<-0.4     (4)
 -1.5<f/f2<-0.5   (4-1)
 1<f/f4<2.5       (5)
 1.1<f/f4<2.3     (5-1)
 νd3<30           (6)
 νd3<26           (6-1)
ただし、
 f1:第1レンズの焦点距離
 f2:第2レンズの焦点距離
 f3:第3レンズの焦点距離
 f4:第4レンズの焦点距離
 f5:第5レンズの焦点距離
 νd3:第3レンズのd線に関するアッベ数
とする。
 本発明による撮像装置は、本発明の撮像レンズを備えたものである。
 本発明による撮像装置では、本発明の撮像レンズによって得られた高解像の光学像に基づいて高解像の撮像信号を得ることができる。
 本発明の撮像レンズによれば、全体として5枚というレンズ構成において、各レンズ要素の構成を最適化し、特に第1レンズと第5レンズの形状を好適に構成したので、小さなFナンバーを有し、全長を短縮化しながらも、イメージサイズが大きく、さらに中心画角から周辺画角まで高い結像性能を有するレンズ系を実現できる。
 また、本発明の撮像装置によれば、本発明の高い結像性能を有する撮像レンズによって形成された光学像に応じた撮像信号を出力するようにしたので、高解像の撮影画像を得ることができる。
本発明の一実施の形態に係る撮像レンズの第1の構成例を示すものであり、実施例1に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第2の構成例を示すものであり、実施例2に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第3の構成例を示すものであり、実施例3に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第4の構成例を示すものであり、実施例4に対応するレンズ断面図である。 本発明の一実施の形態に係る撮像レンズの第5の構成例を示すものであり、実施例5に対応するレンズ断面図である。 図3に示す撮像レンズの光線図である。 本発明の実施例1に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例2に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例3に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例4に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明の実施例5に係る撮像レンズの諸収差を示す収差図であり、(A)は球面収差、(B)は非点収差(像面湾曲)、(C)は歪曲収差、(D)は倍率色収差を示す。 本発明に係る撮像レンズを備えた携帯電話端末である撮像装置を示す図。 本発明に係る撮像レンズを備えたスマートフォンである撮像装置を示す図。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
  図1は、本発明の第1の実施の形態に係る撮像レンズの第1の構成例を示している。この構成例は、後述の第1の数値実施例(表1、表2)のレンズ構成に対応している。同様にして、後述の第2乃至第5の実施形態に係る数値実施例(表3~表10)のレンズ構成に対応する第2乃至第5の構成例の断面構成を、図2~図5に示す。図1~図5において、符号Riは、最も物体側のレンズ要素の面を1番目として、像側(結像側)に向かうに従い順次増加するようにして符号を付したi番目の面の曲率半径を示す。符号Diは、i番目の面とi+1番目の面との光軸Z1上の面間隔を示す。なお、各構成例共に基本的な構成は同じであるため、以下では、図1に示した撮像レンズの構成例を基本にして説明し、必要に応じて図2~図5の構成例についても説明する。また、図6は図3に示す撮像レンズLにおける光路図であり、無限遠の距離にある物点からの軸上光束2および最大画角の光束3の各光路を示す。
 本発明の実施の形態に係る撮像レンズLは、CCDやCMOS等の撮像素子を用いた各種撮像機器、特に、比較的小型の携帯端末機器、例えばデジタルスチルカメラ、カメラ付き携帯電話機、スマートフォン、タブレット型端末およびPDA等に用いて好適なものである。この撮像レンズLは、光軸Z1に沿って、物体側から順に、第1レンズL1と、第2レンズL2と、第3レンズL3と、第4レンズL4と、第5レンズL5とを備えている。
 図12に、本発明の実施の形態にかかる撮像装置1である携帯電話端末の概観図を示す。本発明の実施の形態に係る撮像装置1は、本実施の形態に係る撮像レンズLと、この撮像レンズLによって形成された光学像に応じた撮像信号を出力するCCDなどの撮像素子100(図1参照)とを備えて構成される。撮像素子100は、この撮像レンズLの結像面(像面R14)に配置される。
 図13に、本発明の実施の形態にかかる撮像装置501であるスマートフォンの概観図を示す。本発明の実施の形態に係る撮像装置501は、本実施の形態に係る撮像レンズLと、この撮像レンズLによって形成された光学像に応じた撮像信号を出力するCCDなどの撮像素子100(図1参照)とを有するカメラ部541を備えて構成される。撮像素子100は、この撮像レンズLの結像面(撮像面)に配置される。
 第5レンズL5と撮像素子100との間には、レンズを装着するカメラ側の構成に応じて、種々の光学部材CGが配置されていても良い。例えば撮像面保護用のカバーガラスや赤外線カットフィルタなどの平板状の光学部材が配置されていても良い。この場合、光学部材CGとして例えば平板状のカバーガラスに、赤外線カットフィルタやNDフィルタ等のフィルタ効果のあるコートが施されたものを使用しても良い。
 また、光学部材CGを用いずに、第5レンズL5にコートを施す等して光学部材CGと同等の効果を持たせるようにしても良い。これにより、部品点数の削減と全長の短縮を図ることができる。
 この撮像レンズLはまた、第1レンズL1の物体側の面より物体側に配置された開口絞りStを備えることが好ましい。このように、開口絞りStを第1レンズの物体側の面よりも物体側に配置したことにより、特に結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。なお、「第1レンズの物体側の面より物体側に配置」とは、光軸方向における開口絞りの位置が、軸上マージナル光線と第1レンズL1の物体側の面の交点と同じ位置かそれより物体側にあることを意味する。本実施の形態において、第1乃至第5の構成例のレンズ(図1~図5)が、開口絞りStが第1レンズL1の像側の面より物体側に配置された構成例である。
 また、本実施の形態において、開口絞りStは第1レンズL1の面頂点よりも像側に配置されているが、これに限定されず、開口絞りStを第1レンズL1の面頂点よりも物体側に配置されていてもよい。開口絞りStが第1レンズL1の面頂点よりも物体側に配置されている場合には、開口絞りStが第1レンズL1の面頂点よりも像側に配置されている場合より周辺光量の確保の観点からはやや不利であるが、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのをさらに好適に抑制することができる。
 この撮像レンズLにおいて、第1レンズL1は光軸近傍において両凸形状である、このことにより、全長を好適に短縮化できる。また、第1レンズL1を光軸近傍において両凸形状とすることにより、第1レンズL1を正の屈折力を有するようにした際に生じる球面収差の発生を低減でき、球面収差の補正を容易にすることができる。
 第2レンズL2は、光軸近傍においてメニスカス形状であり、光軸近傍において像側に凹面を向けている。このことにより、全長を好適に短縮化することができる。さらに、両凸形状である第1レンズL1の像側に、光軸近傍においてメニスカス形状であり、光軸近傍において像側に凹面を向けた第2レンズL2を配置することにより、両凸形状の第1レンズL1において発生した球面収差と色収差を補正しやすくなり、かつ、所望の解像度を満たすイメージサイズを維持しつつ、全長を短縮化することができる。特に、撮像レンズ全系のFナンバーを小さくしようとすると、撮像レンズ全系において高次の球面収差の発生を招きやすくなるところ、両凸形状の第1レンズL1の像側に、光軸近傍においてメニスカス形状であり、光軸近傍において像側に凹面を向けた第2レンズL2を配置することにより、高次の球面収差の発生を好適に抑制することができる。また、第2レンズL2が光軸近傍において負の屈折力を有することが好ましく、この場合には、色収差を良好に補正することができる。
 第3レンズL3は、光軸近傍において両凹形状である。光軸近傍において両凸形状である第1レンズL1の像側に、光軸近傍において像側に凹面を向けている第2レンズと、光軸近傍において両凹形状である第3レンズL3を隣接して配置することにより、光軸近傍において両凸形状である第1レンズL1によって発生した球面収差を好適に補正することができる。また、第3レンズL3が負の屈折力を有するため、色収差を補正しやすい。
 第4レンズL4は、第4レンズL4は、光軸近傍でメニスカス形状であり、光軸近傍において像側に凸面を向けている。このことにより、非点収差を好適に補正することができる。また、第4レンズL4は、光軸近傍において正の屈折力を有していることが好ましい。このことより、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを好適に抑制することができる。
 第5レンズL5は、光軸近傍において両凹形状である。第1レンズから第4レンズまでを1つの正の光学系とみなすと、第5レンズL5が光軸近傍において負の屈折力を有することにより、撮像レンズを全体としてテレフォト型の構成とすることができるため、撮像レンズ全体の後側主点位置を物体側に寄せることができ、全長を好適に短縮化することができる。また、第5レンズL5を光軸近傍において両凹形状とすることにより、第5レンズL5の各面の曲率の絶対値が大きくなりすぎることを抑制しつつ、第5レンズL5の負の屈折力を十分強めることができる。また、第5レンズL5を光軸近傍において両凹形状とすることにより、像面湾曲を好適に補正することができる。
 また、第5レンズL5は、像側の面の有効径内に少なくとも1つの変曲点を有する。第5レンズL5の像側の面における「変曲点」とは、第5レンズL5の像側の面形状が像側に対して凸形状から凹形状(または凹形状から凸形状)に切り替わる点を意味する。変曲点の位置は、第5レンズL5の像側の面の有効径内であれば光軸から半径方向外側の任意の位置に配置することができ、好ましくは、周辺部に配置することが好ましい。第5レンズL5の像側の面を少なくとも1つの変曲点を有する形状とすることにより、特に結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを抑制することができる。なお、ここでいう周辺部は、最大有効半径の略4割より半径方向外側を意味する。
 上記撮像レンズLによれば、全体として5枚というレンズ構成において、第1ないし第5レンズの各レンズ要素の構成を最適化したので、全長を短縮化しながらも、イメージサイズが大きく、高解像性能を有するレンズ系を実現できる。
 また、例えば図1~5に示す各実施形態のように全画角2ωが60度以上となるように、上記撮像レンズLの第1~第5レンズの各レンズ構成を設定した場合には、全画角2ωが適切な値となっているため、近距離撮影の機会が多い携帯電話端末などに撮像レンズLを好適に適用することができる。
 この撮像レンズLは、高性能化のために、第1レンズL1乃至第5レンズL5のそれぞれのレンズの少なくとも一方の面に、非球面を用いることが好適である。
 また、撮像レンズLを構成する各レンズL1乃至L5は接合レンズでなく単レンズとすることが好ましい。各レンズL1乃至L5のいずれかを接合レンズとした場合よりも、非球面数が多いため、各レンズの設計自由度が高くなり、好適に全長の短縮化を図ることができるからである。
 次に、以上のように構成された撮像レンズLの条件式に関する作用および効果をより詳細に説明する。
 まず、第1レンズL1の焦点距離f1および全系の焦点距離fは、以下の条件式(1)を満足する。
 1<f/f1<3         (1)
 条件式(1)は、第1レンズL1の焦点距離f1に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(1)の下限を下回る場合には、全系の屈折力に対して第1レンズL1の正の屈折力が弱くなりすぎて、諸収差を好適に補正し、小さなFナンバーを維持しつつ、全長を短縮化することが難しくなる。条件式(1)の上限を上回る場合には、全系の屈折力に対して第1レンズL1の正の屈折力が強くなりすぎて、特に球面収差の補正が難しくなる。このため、条件式(1)の範囲を満たすことで、小さなFナンバーを維持し、球面収差を良好に補正しつつ、好適にレンズ系全体の長さを短縮化できる。この効果をより高めるために、条件式(1-1)を満たすことがより好ましく、条件式(1-2)を満たすことがさらに好ましい。
 1.1<f/f1<2.5     (1-1)
 1.2<f/f1<2.2     (1-2)
 また、第3レンズL3の焦点距離f3および全系の焦点距離fは、以下の条件式(2)を満足することが好ましい。
 -0.6<f/f3<0      (2)
 条件式(2)は、第3レンズL3の焦点距離f3に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(2)の下限を下回る場合には、全系の屈折力に対して第3レンズL3の屈折力が強くなりすぎて、諸収差を良好に補正し、小さなFナンバーを維持しつつ全長を短縮化することが難しくなる。条件式(2)の上限を上回る場合には、全系の屈折力に対して第3レンズL3の屈折力が弱くなりすぎて、色収差の補正が難しくなる。このため、条件式(2)の範囲を満たすことで、小さなFナンバーを維持し、全長を短縮化しつつ、好適に色収差など諸収差を補正することができる。この効果をより高めるために、条件式(2-1)を満たすことがより好ましい。
 -0.5<f/f3<-0.1   (2-1)
 また、第5レンズL5の焦点距離f5および全系の焦点距離fは、以下の条件式(3)を満足することが好ましい。
 -3<f/f5<-1.2     (3)
 条件式(3)は、第5レンズL5の焦点距離f5に対する全系の焦点距離fの比の好8ましい数値範囲を規定するものである。条件式(3)の下限を満足することにより、全系の屈折力に対して第5レンズL5の屈折力が強くなりすぎず、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを好適に抑制することができる。条件式(3)の上限を上回る場合には、全系の屈折力に対して第5レンズL5の屈折力が弱くなりすぎて、像面湾曲の補正が難しくなる。このため、条件式(3)の範囲を満たすことで、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを好適に抑制しつつ、好適に像面湾曲を補正することができる。この効果をより高めるために、条件式(3-1)を満たすことが好ましい。
 -2.5<f/f5<-1.3   (3-1)
 また、第2レンズL2の焦点距離f2および全系の焦点距離fは、以下の条件式(4)を満足することが好ましい。
 -2<f/f2<-0.4     (4)
 条件式(4)は、第2レンズL2の焦点距離f2に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(4)の下限を下回る場合には、全系の正の屈折力に対して第2レンズL2の屈折力が強くなりすぎて、Fナンバーを小さく維持し、かつ、諸収差を良好に補正しつつ全長を短縮化することが難しくなる。条件式(4)の上限を上回る場合には、全系の屈折力に対して第2レンズL2の屈折力が弱くなりすぎて、色収差の補正が難しくなる。このため、条件式(4)の範囲を満たすことで、小さなFナンバーを維持し、全長を短縮化しつつ、好適に色収差など諸収差を補正することができる。この効果をより高めるために、条件式(4-1)を満たすことがより好ましい。
 -1.5<f/f2<-0.5   (4-1)
 また、第4レンズL4の焦点距離f4および全系の焦点距離fは、以下の条件式(5)を満足することが好ましい。
 1<f/f4<2.5       (5)
 条件式(5)は、第4レンズL4の焦点距離f4に対する全系の焦点距離fの比の好ましい数値範囲を規定するものである。条件式(5)の下限を満足することにより、全系の屈折力に対して第4レンズL4の屈折力が弱くなりすぎず、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを好適に抑制することができる。条件式(5)の上限を上回る場合には、全系の屈折力に対して第4レンズL4の屈折力が強くなりすぎて、像面湾曲の補正が難しくなる。このため、条件式(5)の範囲を満たすことで、結像領域の周辺部において、光学系を通過する光線の結像面(撮像素子)への入射角が大きくなるのを好適に抑制しつつ、好適に像面湾曲を補正することができる。この効果をより高めるために、条件式(5-1)を満たすことがより好ましい。
 1.1<f/f4<2.3     (5-1)
 また、第3レンズL3のd線に関するアッベ数νd3は、以下の条件式(6)を満足することが好ましい。
 νd3<30           (6)
 条件式(6)は、第3レンズL3のd線に関するアッベ数νd3の好ましい数値範囲をそれぞれ規定する。条件式(6)の上限を上回ると、軸上色収差と倍率色収差の補正が困難となる。条件式(6)を満足することで、第3レンズL3を高分散の材質により構成することにより、軸上色収差と倍率色収差を良好に補正することができる。この観点から、下記条件式(6-1)を満たすことがより好ましい。
 νd3<26           (6-1)
 以上説明したように、本発明の実施の形態に係る撮像レンズによれば、全体として5枚というレンズ構成において、各レンズ要素の構成を最適化したので、小さなFナンバーを有し、全長を短縮化しながらも、イメージサイズが大きく、高解像性能を有するレンズ系を実現できる。
 なお、これに対し、特許文献1に開示された撮像レンズは、Fナンバーが大きいものであるか、または、比較的小さなFナンバーを有するものの球面収差の補正が十分でない。また、特許文献2に開示された撮像レンズは、Fナンバーが大きく、球面収差が十分に補正されていない。また、公知文献3に記載の撮像レンズは軸上色収差または球面収差が十分に補正されておらず、十分に高解像性能を有しているとはいえない。
 また、適宜好ましい条件を満足することで、より高い結像性能を実現できる。また、本実施の形態に係る撮像装置によれば、本実施の形態に係る高性能の撮像レンズによって形成された光学像に応じた撮像信号を出力するようにしたので、中心画角から周辺画角まで高解像の撮影画像を得ることができる。
 次に、本発明の実施の形態に係る撮像レンズの具体的な数値実施例について説明する。以下では、複数の数値実施例をまとめて説明する。
 後掲の表1および表2は、図1に示した撮像レンズの構成に対応する具体的なレンズデータを示している。特に表1にはその基本的なレンズデータを示し、表2には非球面に関するデータを示す。表1に示したレンズデータにおける面番号Siの欄には、実施例1に係る撮像レンズについて、最も物体側のレンズ要素の面を1番目(開口絞りStを1番目)として、像側に向かうに従い順次増加するようにして符号を付したi番目の面の番号を示している。曲率半径Riの欄には、図1において付した符号Riに対応させて、物体側からi番目の面の曲率半径の値(mm)を示す。面間隔Diの欄についても、同様に物体側からi番目の面Siとi+1番目の面Si+1との光軸上の間隔(mm)を示す。Ndjの欄には、物体側からj番目の光学要素のd線(587.56nm)に対する屈折率の値を示す。νdjの欄には、物体側からj番目の光学要素のd線に対するアッベ数の値を示す。なお、各レンズデータには、諸データとして、全系の焦点距離f(mm)とバックフォーカスBf(mm)の値をそれぞれ示す。なお、このバックフォーカスBfは空気換算した値を表している。
 この実施例1に係る撮像レンズは、第1レンズL1乃至第5レンズL5の両面がすべて非球面形状となっている。表1の基本レンズデータには、これらの非球面の曲率半径として、光軸近傍の曲率半径(近軸曲率半径)の数値を示している。
 表2には実施例1の撮像レンズにおける非球面データを示す。非球面データとして示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数”であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E-02」であれば、「1.0×10-2」であることを示す。
 非球面データとしては、以下の式(A)によって表される非球面形状の式における各係数Ai,KAの値を記す。Zは、より詳しくは、光軸から高さhの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)を示す。
 Z=C・h2/{1+(1-KA・C2・h21/2}+ΣAi・hi   (A)
ただし、
 Z:非球面の深さ(mm)
 h:光軸からレンズ面までの距離(高さ)(mm)
 C:近軸曲率=1/R
 (R:近軸曲率半径)
 Ai:第i次(iは3以上の整数)の非球面係数
 KA:非球面係数
とする。
 以上の実施例1の撮像レンズと同様にして、図2に示した撮像レンズの構成に対応する具体的なレンズデータを実施例2として、表3および表4に示す。また同様にして、図3~図5に示した撮像レンズの構成に対応する具体的なレンズデータを実施例3乃至実施例5として、表5~表10に示す。これらの実施例1~5に係る撮像レンズでは、第1レンズL1乃至第5レンズL5の両面がすべて非球面形状となっている。
 図7(A)~(D)はそれぞれ、実施例1の撮像レンズにおける球面収差、非点収差、歪曲収差、倍率色収差(倍率の色収差)図を示している。球面収差、非点収差(像面湾曲)、歪曲収差を表す各収差図には、d線(波長587.56nm)を基準波長とした収差を示す。球面収差図、倍率色収差図には、F線(波長486.1nm)、C線(波長656.27nm)についての収差も示す。また、球面収差図には、g線(波長435.83nm)についての収差も示す。非点収差図において、実線はサジタル方向(S)、破線はタンジェンシャル方向(T)の収差を示す。また、Fno.はFナンバーを、ωは半画角をそれぞれ示す。
 同様に、実施例2乃至実施例5の撮像レンズについての諸収差を図8(A)~(D)乃至図11(A)~(D)に示す。
 また、表11には、本発明に係る各条件式(1)~(6)に関する値を、各実施例1~5についてそれぞれまとめたものを示す。
 以上の各数値データおよび各収差図から分かるように、各実施例について、全長を短縮化しながらも高い結像性能が実現されている。
 なお、本発明の撮像レンズには、実施の形態および各実施例に限定されず種々の変形実施が可能である。例えば、各レンズ成分の曲率半径、面間隔、屈折率、アッベ数、非球面係数の値などは、各数値実施例で示した値に限定されず、他の値をとり得る。
 また、各実施例では、すべて固定焦点で使用する前提での記載とされているが、フォーカス調整可能な構成とすることも可能である。例えばレンズ系全体を繰り出したり、一部のレンズを光軸上で動かしてオートフォーカス可能な構成とすることも可能である。また、本発明の撮像レンズは、光軸近傍でメニスカス形状とされた各レンズにおいて、光軸近傍でメニスカス形状の曲率半径の絶対値が大きい面を、光軸近傍で平面として構成してもよい。言い換えると、光軸近傍でメニスカス形状とされたレンズを、該レンズのメニスカス形状の曲率半径の絶対値が大きい面を光軸近傍で平面とした平凸形状のレンズまたは平凹形状のレンズとしてもよい。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011

Claims (17)

  1.  物体側から順に、
     両凸形状である第1レンズと、
     メニスカス形状であり、像側に凹面を向けた第2レンズと、
     両凹形状である第3レンズと、
     メニスカス形状であり、像側に凸面を向けた第4レンズと、
     両凹形状であり、像側の面に少なくとも1つの変曲点を有する第5レンズと、
     から構成される実質的に5個のレンズからなることを特徴とする撮像レンズ。
  2.  さらに以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
     1<f/f1<3         (1)
    ここで、
     f:全系の焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  3.  以下の条件式を満足することを特徴とする請求項1または2に記載の撮像レンズ。
     -0.6<f/f3<0      (2)
    ここで、
     f:全系の焦点距離
     f3:前記第3レンズの焦点距離
    とする。
  4.  以下の条件式を満足することを特徴とする請求項1から3のいずれか1項に記載の撮像レンズ。
     -3<f/f5<-1.2     (3)
    ここで、
     f:全系の焦点距離
     f5:前記第5レンズの焦点距離
    とする。
  5.  前記第2レンズが負の屈折力を有することを特徴とする請求項1から4のいずれか1項に記載の撮像レンズ。
  6.  さらに以下の条件式を満足することを特徴とする請求項1から5のいずれか1項に記載の撮像レンズ。
     -2<f/f2<-0.4     (4)
    ここで、
     f:全系の焦点距離
     f2:前記第2レンズの焦点距離
    とする。
  7.  前記第4レンズが正の屈折力を有することを特徴とする請求項1から6のいずれか1項に記載の撮像レンズ。
  8.  以下の条件式を満足することを特徴とする請求項1から7のいずれか1項に記載の撮像レンズ。
     1<f/f4<2.5       (5)
    ここで、
     f:全系の焦点距離
     f4:前記第4レンズの焦点距離
    とする。
  9.  以下の条件式を満足することを特徴とする請求項1から8のいずれか1項に記載の撮像レンズ。
     νd3<30           (6)
    ここで、
     νd3:前記第3レンズのd線に関するアッベ数
    とする。
  10.  以下の条件式を満足することを特徴とする請求項1から9のいずれか1項に記載の撮像レンズ。
     1.1<f/f1<2.5     (1-1)
    ただし、
     f:全系の焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  11.  さらに以下の条件式を満足することを特徴とする請求項1から10のいずれか1項に記載の撮像レンズ。
    -0.5<f/f3<-0.1    (2-1)
    ただし、
     f:全系の焦点距離
     f3:前記第3レンズの焦点距離
    とする。
  12.  さらに以下の条件式を満足することを特徴とする請求項1から11のいずれか1項に記載の撮像レンズ。
     -2.5<f/f5<-1.3    (3-1)
    ただし、
     f:全系の焦点距離
     f5:前記第5レンズの焦点距離
    とする。
  13.  以下の条件式を満足することを特徴とする請求項1から12のいずれか1項に記載の撮像レンズ。
     -1.5<f/f2<-0.5    (4-1)
    ただし、
     f:全系の焦点距離
     f2:前記第2レンズの焦点距離
    とする。
  14.  以下の条件式を満足することを特徴とする請求項1から13のいずれか1項に記載の撮像レンズ。
     1.1<f/f4<2.3      (5-1)
    ただし、
     f:全系の焦点距離
     f4:前記第4レンズの焦点距離
    とする。
  15.  以下の条件式を満足することを特徴とする請求項1から14のいずれか1項に記載の撮像レンズ。
     νd3<26            (6-1)
    ただし、
     νd3:前記第3レンズのd線に関するアッベ数
    とする。
  16.  以下の条件式を満足することを特徴とする請求項1から15のいずれか1項に記載の撮像レンズ。
     1.2<f/f1<2.2      (1-2)
    ただし、
     f:全系の焦点距離
     f1:前記第1レンズの焦点距離
    とする。
  17.  請求項1に記載された撮像レンズを備えたことを特徴とする撮像装置。
PCT/JP2013/004715 2012-08-29 2013-08-05 撮像レンズおよび撮像レンズを備えた撮像装置 WO2014034027A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014532758A JP5718532B2 (ja) 2012-08-29 2013-08-05 撮像レンズおよび撮像レンズを備えた撮像装置
CN201390000717.5U CN204595301U (zh) 2012-08-29 2013-08-05 摄影透镜以及具备摄影透镜的摄影装置
US14/633,448 US9568711B2 (en) 2012-08-29 2015-02-27 Imaging lens and imaging apparatus equipped with the imaging lens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012188270 2012-08-29
JP2012-188270 2012-08-29
US201261701189P 2012-09-14 2012-09-14
US61/701,189 2012-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/633,448 Continuation US9568711B2 (en) 2012-08-29 2015-02-27 Imaging lens and imaging apparatus equipped with the imaging lens

Publications (1)

Publication Number Publication Date
WO2014034027A1 true WO2014034027A1 (ja) 2014-03-06

Family

ID=50182868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004715 WO2014034027A1 (ja) 2012-08-29 2013-08-05 撮像レンズおよび撮像レンズを備えた撮像装置

Country Status (5)

Country Link
US (1) US9568711B2 (ja)
JP (1) JP5718532B2 (ja)
CN (1) CN204595301U (ja)
TW (1) TWM471598U (ja)
WO (1) WO2014034027A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153713A (ja) * 2013-02-06 2014-08-25 Genius Electronic Optical Co 光学撮像レンズセット
US9482844B2 (en) 2014-10-20 2016-11-01 Largan Precision Co., Ltd. Imaging lens system, image capturing device and electronic device
JP6362295B1 (ja) * 2018-01-19 2018-07-25 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP2021135485A (ja) * 2020-02-24 2021-09-13 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド 撮像光学レンズ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI526713B (zh) * 2015-02-02 2016-03-21 大立光電股份有限公司 攝影鏡頭組、取像裝置及電子裝置
CN106526799B (zh) * 2016-11-28 2019-03-01 河北汉光重工有限责任公司 一种高稳定性、高能量激光接收镜头
CN106980168B (zh) * 2016-12-14 2019-11-19 瑞声科技(新加坡)有限公司 摄像光学镜头
CN106802467B (zh) * 2016-12-14 2019-05-28 瑞声科技(新加坡)有限公司 摄像光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024198A1 (ja) * 2008-08-25 2010-03-04 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末
JP2010224521A (ja) * 2009-02-27 2010-10-07 Konica Minolta Opto Inc 撮像レンズ、撮像装置及び携帯端末
US20110249346A1 (en) * 2010-04-08 2011-10-13 Largan Precision Co., Ltd. Imaging lens assembly
CN202141850U (zh) * 2011-05-24 2012-02-08 大立光电股份有限公司 影像拾取镜片组
CN202166775U (zh) * 2011-05-11 2012-03-14 大立光电股份有限公司 影像拾取光学镜头组
US20120105704A1 (en) * 2010-11-01 2012-05-03 Largan Precision Co., Ltd. Photographing optical lens assembly
US20120162784A1 (en) * 2010-12-23 2012-06-28 Largan Precision Co., Ltd. Photographing optical lens assembly
TW201234068A (en) * 2012-04-19 2012-08-16 Largan Precision Co Ltd Optical image system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201679B2 (ja) 2008-12-25 2013-06-05 株式会社オプトロジック 撮像レンズ
JPWO2011118554A1 (ja) 2010-03-26 2013-07-04 コニカミノルタ株式会社 撮像レンズ,撮像光学装置及びデジタル機器
TWI429981B (zh) * 2011-07-19 2014-03-11 Largan Precision Co 光學影像擷取系統

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024198A1 (ja) * 2008-08-25 2010-03-04 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末
JP2010224521A (ja) * 2009-02-27 2010-10-07 Konica Minolta Opto Inc 撮像レンズ、撮像装置及び携帯端末
US20110249346A1 (en) * 2010-04-08 2011-10-13 Largan Precision Co., Ltd. Imaging lens assembly
US20120105704A1 (en) * 2010-11-01 2012-05-03 Largan Precision Co., Ltd. Photographing optical lens assembly
US20120162784A1 (en) * 2010-12-23 2012-06-28 Largan Precision Co., Ltd. Photographing optical lens assembly
CN202166775U (zh) * 2011-05-11 2012-03-14 大立光电股份有限公司 影像拾取光学镜头组
CN202141850U (zh) * 2011-05-24 2012-02-08 大立光电股份有限公司 影像拾取镜片组
TW201234068A (en) * 2012-04-19 2012-08-16 Largan Precision Co Ltd Optical image system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014153713A (ja) * 2013-02-06 2014-08-25 Genius Electronic Optical Co 光学撮像レンズセット
US9036276B2 (en) 2013-02-06 2015-05-19 Genius Electronic Optical Co., Ltd. Optical imaging lens set and electronic device comprising the same
US9482844B2 (en) 2014-10-20 2016-11-01 Largan Precision Co., Ltd. Imaging lens system, image capturing device and electronic device
JP6362295B1 (ja) * 2018-01-19 2018-07-25 エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd 撮像レンズ
JP2021135485A (ja) * 2020-02-24 2021-09-13 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド 撮像光学レンズ
JP7035157B2 (ja) 2020-02-24 2022-03-14 エーエーシー オプティクス (チャンジョウ)カンパニーリミテッド 撮像光学レンズ

Also Published As

Publication number Publication date
JP5718532B2 (ja) 2015-05-13
CN204595301U (zh) 2015-08-26
US9568711B2 (en) 2017-02-14
US20150168690A1 (en) 2015-06-18
TWM471598U (zh) 2014-02-01
JPWO2014034027A1 (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP5886230B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6000179B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5827688B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5687390B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5911819B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5937035B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5785324B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013145547A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5937036B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155460A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2013175783A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014240918A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP6150317B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014209163A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP2015022145A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5917431B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5718532B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5727679B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103198A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5722507B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155459A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014155465A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103197A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014103199A1 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
JP5946790B2 (ja) 撮像レンズおよび撮像レンズを備えた撮像装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000717.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834249

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014532758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834249

Country of ref document: EP

Kind code of ref document: A1