WO2014030735A1 - Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery - Google Patents

Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery Download PDF

Info

Publication number
WO2014030735A1
WO2014030735A1 PCT/JP2013/072541 JP2013072541W WO2014030735A1 WO 2014030735 A1 WO2014030735 A1 WO 2014030735A1 JP 2013072541 W JP2013072541 W JP 2013072541W WO 2014030735 A1 WO2014030735 A1 WO 2014030735A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
lead
capacitor electrode
storage battery
electrode
Prior art date
Application number
PCT/JP2013/072541
Other languages
French (fr)
Japanese (ja)
Inventor
祐子 大谷
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2014030735A1 publication Critical patent/WO2014030735A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead-acid battery capacitor electrode having excellent strength and low resistance, a lead-capacitor battery, a method for producing a lead-acid battery capacitor electrode, and a method for producing a lead-capacitor battery.
  • Lead-acid batteries that use lead dioxide as the positive electrode active material, lead as the negative electrode active material, and sulfuric acid as the electrolyte are inexpensive and suitable for high-current discharge in many industries compared to other secondary batteries. Even today, the importance of high-capacity secondary batteries such as lithium-ion secondary batteries is prominent, and their importance has not been lost.
  • a capacitor layer is formed by applying a slurry for forming a capacitor layer on a lead electrode plate.
  • a capacitor layer is formed on a PET (polyethylene terephthalate) film used as a support by a dry method, the capacitor layer is pressure-bonded on a lead electrode plate, and then the PET film is peeled off.
  • Method ii) A method of forming a capacitor layer on a PET film used as a support by a dry method, peeling the PET film, and pressing the capacitor layer on a lead electrode plate is disclosed.
  • An object of the present invention is to provide a capacitor electrode for a lead storage battery, a lead capacitor storage battery, a method for manufacturing a capacitor electrode for lead storage battery, and a method for manufacturing a lead capacitor storage battery, which have excellent strength and low resistance.
  • the present inventor has found that the above-mentioned object can be achieved by containing an electrolyte-dispersible cellulose in the capacitor electrode, and has completed the present invention.
  • a capacitor electrode for a lead storage battery that is disposed between a negative electrode and a positive electrode and includes a capacitor layer, the capacitor layer including a capacitor electrode active material, a conductive agent, and a binder, and binding of the capacitor layer
  • the agent density is in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side
  • a capacitor electrode for a lead storage battery comprising an electrolytic solution-dispersible cellulose compound dispersed in an electrolytic solution.
  • a lead capacitor storage battery comprising the capacitor electrode for a lead storage battery according to any one of (1) to (5), a negative electrode, a positive electrode, a separator, and an electrolytic solution, (7) A step of granulating composite particles containing a capacitor electrode active material, a conductive agent and a binder, and a capacitor layer containing the composite particles by a dry method on a support made of electrolyte-dispersible cellulose.
  • a method for producing a lead-acid battery capacitor electrode comprising a sheet forming step, (8)
  • the composite particles and a support made of electrolyte-dispersible cellulose are supplied to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls
  • a capacitor layer is obtained by molding the composite particles into a sheet-like molded body using a belt, and the capacitor layer is produced by pressure-bonding it to the surface of the support.
  • a step of granulating composite particles containing a capacitor electrode active material, a conductive agent and a binder, and forming a capacitor layer containing the composite particles on the roughened or release-treated support surface A method for producing a capacitor electrode for a lead storage battery, comprising: a step of transferring the capacitor layer onto a support made of an electrolyte-dispersible cellulose; (10) The step of forming the capacitor layer includes supplying the composite particles and a roughened or release-treated support to a pair of press rolls or belts arranged substantially horizontally, A lead-acid battery according to (9), which is a step of obtaining a capacitor layer by molding the composite particles into a sheet-like molded body with a pressing roll or belt, and crimping the capacitor layer to the surface of the support.
  • a method of manufacturing a lead capacitor storage battery including a step of laminating a lead storage battery capacitor electrode obtained by the method of manufacturing a lead capacitor storage battery according to any one of (7) to (10) and a lead active material layer is provided. Is done.
  • a lead-acid battery capacitor electrode having excellent strength and low resistance a lead-capacitor battery, a method for producing a lead-acid battery capacitor electrode for obtaining these, and a method for producing a lead-capacitor battery.
  • the capacitor electrode for a lead storage battery of the present invention is a capacitor electrode for a lead storage battery that is disposed between a negative electrode and a positive electrode and includes a capacitor layer, the capacitor layer including a capacitor electrode active material, a conductive agent, and a binder,
  • the capacitor layer has a binder density in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side, and includes an electrolytic solution-dispersible cellulose compound dispersed in the electrolytic solution.
  • the capacitor layer used in the present invention includes a capacitor electrode active material, a conductive agent, and a binder.
  • the capacitor electrode active material used in the present invention is a substance that transfers electrons in the electrode.
  • an electrode active material used for an electric double layer capacitor electrode specifically, an allotrope of carbon is used.
  • Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used.
  • the preferred electrode active material is activated carbon. Specifically, activated carbon made from phenol resin, rayon, acrylonitrile resin, petroleum pitch, coconut shell, etc. is preferred. From the viewpoint of adhesion to the lead plate, petroleum pitch is used as a raw material. More preferred is activated carbon.
  • the volume average particle diameter of the capacitor electrode active material is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the specific surface area of the capacitor electrode active material is 30 m 2 / g or more, preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g. Since the density of the obtained capacitor layer tends to decrease as the specific surface area of the capacitor electrode active material increases, a capacitor layer having a desired density can be obtained by appropriately selecting the capacitor electrode active material.
  • the conductive agent used in the present invention comprises an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer, and specifically includes furnace black, acetylene black, and ketjen.
  • furnace black acetylene black
  • ketjen examples thereof include conductive carbon black such as black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap).
  • acetylene black and ketjen black are preferable.
  • the volume average particle diameter of the conductive agent used in the present invention is preferably smaller than the volume average particle diameter of the capacitor electrode active material, and is usually 0.001 to 10 ⁇ m from the viewpoint of obtaining high conductivity with a smaller use amount.
  • the thickness is preferably 0.005 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • These conductive agents can be used alone or in combination of two or more.
  • the amount of the conductive agent is usually 0.1 to 50 weights with respect to 100 parts by weight of the capacitor electrode active material from the viewpoint of increasing the capacity of the lead storage battery using the obtained lead storage battery electrode and reducing the internal resistance. Parts, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight.
  • the binder used for the capacitor layer is not particularly limited as long as it is a compound that can bind the capacitor electrode active material and the conductive agent to each other.
  • a suitable binder is a dispersion type binder having a property of being dispersed in a solvent.
  • the dispersion-type binder include polymer compounds such as fluoropolymers, diene polymers, acrylic polymers, polyimides, polyamides, polyurethane polymers, and diene polymers and acrylic polymers are preferable.
  • the diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof.
  • specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); acrylonitrile -Vinyl cyanide * conjugated diene copolymers, such as a butadiene copolymer (NBR); Hydrogenated SBR, hydrogenated NBR, etc. are mentioned.
  • the acrylic polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester or methacrylic ester or a monomer mixture containing a monomer copolymerizable therewith.
  • the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate.
  • Carboxylates having carbon double bonds including styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, ⁇ -methyl styrene, Styrenic monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; ⁇ , ⁇ -insoluble such as acrylonitrile and methacrylonitrile Japanese nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as methyl
  • a diene polymer from the viewpoint of strength when dry forming into composite particles together with a capacitor electrode active material and a conductive agent, and an acrylonitrile-butadiene copolymer (hereinafter referred to as “NBR”). It is more preferable to use.
  • NBR acrylonitrile-butadiene copolymer
  • the ratio of the 1,3-butadiene monomer unit in the binder is preferably 40 to 75% by weight, and 45 to 75% by weight. Is more preferable.
  • the ratio of the acrylonitrile monomer unit in the binder is preferably 20 to 60% by weight, and more preferably 20 to 45% by weight.
  • the acrylonitrile-butadiene copolymer preferably further contains monomer units of the aforementioned unsaturated carboxylic acids such as acrylic acid and methacrylic acid in addition to 1,3-butadiene and acrylonitrile.
  • unsaturated carboxylic acids methacrylic acid is preferable.
  • the lower limit of the ratio of the unsaturated carboxylic acid monomer in the binder is preferably 3% by weight or more, more preferably 5% by weight or more, and the upper limit is 39% by weight. Or less, more preferably 35% by weight or less.
  • the glass transition temperature (hereinafter referred to as “Tg”) of the binder used in the present invention is preferably ⁇ 40 to + 40 ° C., more preferably ⁇ 30 to + 30 ° C.
  • Tg glass transition temperature
  • the binder may have a melting point.
  • the shape of the binder is most preferably particulate in order to minimize binding, increase in electrode capacity, and increase in internal resistance, for example, a binder such as latex.
  • a binder such as latex.
  • examples include resin particles dispersed in a solvent and powders obtained by drying such a dispersion.
  • the particle size of the binder is not particularly limited, but the volume average particle size is preferably 100 to 500 nm.
  • the method for producing the binder is not particularly limited, and a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method using a composition containing each monomer at a predetermined ratio is used. Can be adopted. Among them, it is preferable to produce by an emulsion polymerization method because the particle diameter of the binder is easy to control. In particular, an aqueous polymerization method using water as a main solvent is preferred.
  • the capacitor layer used in the present invention preferably further contains an electrolyte-insoluble cellulose.
  • the electrolyte-insoluble cellulose include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof. From the viewpoint of reducing the internal resistance of the lead capacitor storage battery, it is preferable to use carboxymethyl cellulose, an ammonium salt or an alkali metal salt thereof, and more preferably an ammonium salt of carboxymethyl cellulose.
  • the electrolyte-insoluble cellulose in the present invention is insoluble in sulfuric acid used as the electrolyte and is different from the electrolyte-dispersible cellulose described below.
  • the ratio of the electrolyte-insoluble cellulose is preferably 0.1 to 10 parts by weight, more preferably 0.8 to 2.5 parts by weight with respect to 100 parts by weight of the capacitor electrode active material.
  • the dispersant is preferably a cellulosic polymer, such as carboxymethylcellulose or ammonium thereof. Particularly preferred are salts or alkali metal salts.
  • the amount of the dispersant used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 to 2 parts per 100 parts by weight of the electrode active material. .5 parts by weight.
  • the capacitor layer may further contain other additives as necessary. Specifically, in order to improve the electrical stability of the slurry described later, amphoteric surfactants such as anionic, cationic, nonionic or nonionic anions, aminocarboxylic acid chelate compounds, phosphonic acids And chelate compounds such as chelates, gluconic acid, citric acid, malic acid and tartaric acid.
  • amphoteric surfactants such as anionic, cationic, nonionic or nonionic anions, aminocarboxylic acid chelate compounds, phosphonic acids And chelate compounds such as chelates, gluconic acid, citric acid, malic acid and tartaric acid.
  • the capacitor layer used in the present invention includes a capacitor electrode active material, a conductive agent, a binder, and other components used as necessary.
  • the capacitor layer is provided on the support, but the method of forming the capacitor layer on the support is not limited.
  • composite particles comprising a capacitor electrode active material, a binder and a conductive agent and the optional components used as necessary are prepared, and this is formed on a sheet.
  • a method (dry molding method) obtained by molding and roll molding as necessary is preferable in that the capacity of the lead storage battery can be increased and the internal resistance can be reduced.
  • the capacitor layer composition for forming the capacitor layer includes, as described above, the essential components of the capacitor electrode active material, the conductive agent and the binder, and the electrolytic solution.
  • a composite particle comprising an optional component such as insoluble cellulose and a dispersant is preferred.
  • the capacitor layer slurry is composite particles, the electrode strength of the obtained lead storage battery electrode can be increased, or the internal resistance can be reduced.
  • the composite particle as used in the present invention refers to a particle in which a plurality of materials such as a capacitor electrode active material, an essential component of a conductive agent and a binder, and an optional component such as a dispersant are integrated.
  • composite particles that can be suitably used are produced by granulation using an essential component of a capacitor electrode active material, a conductive agent and a binder, and optional components such as an electrolyte-insoluble cellulose and a dispersant. .
  • the granulation method of the composite particles is not particularly limited, and is spray drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, or a melt granulation method.
  • the spray-drying granulation method is preferable because composite particles in which a binder and a conductive agent are unevenly distributed near the surface can be easily obtained.
  • the lead-acid battery electrode can be obtained with high productivity.
  • the internal resistance of the electrode can be further reduced.
  • the capacitor electrode active material first, the capacitor electrode active material, the essential components of the conductive agent and the binder, and optional components such as the electrolyte solution insoluble cellulose and the dispersant are dispersed or dissolved in a solvent to obtain the capacitor electrode active material.
  • a slurry is obtained in which the essential components of the substance, conductive agent and binder, and optional components such as electrolyte-insoluble cellulose and dispersant are dispersed or dissolved.
  • the solvent used for obtaining the slurry is not particularly limited, but when the above dispersant is used, a solvent capable of dissolving the dispersant is preferably used. Specifically, water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used.
  • the organic solvent examples include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like.
  • alcohols are preferable as the organic solvent.
  • water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying.
  • the dispersibility of the binder or the solubility of the dispersant varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity
  • the amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. .
  • the binder is preferably dispersed uniformly.
  • a method or procedure for dispersing or dissolving the essential components of the capacitor electrode active material, the conductive agent and the binder and the optional components such as the electrolyte-insoluble cellulose and the dispersant in the solvent is not particularly limited.
  • mixing means examples include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the viscosity of the slurry is usually in the range of 10 to 3,000 mPa ⁇ s, preferably 30 to 1,500 mPa ⁇ s, more preferably 50 to 1,000 mPa ⁇ s at room temperature.
  • the viscosity of the slurry is within this range, the productivity of the composite particles can be increased.
  • the higher the viscosity of the slurry the larger the spray droplets, and the larger the volume average particle diameter of the resulting composite particles.
  • the rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time.
  • the rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers attached between upper and lower mounting disks in a substantially concentric manner along its periphery. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
  • the temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher.
  • the hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
  • the volume average particle diameter of the composite particles is usually 0.1 to 1000 ⁇ m, preferably 1 to 80 ⁇ m, more preferably 10 to 65 ⁇ m, from the viewpoint of good fluidity and enabling thinning.
  • the volume average particle diameter of the composite particles is a volume average particle diameter measured by pressurizing and spraying the composite particles with compressed air using a laser diffraction particle size distribution analyzer.
  • the composite particles are preferably spherical. Whether the composite particles are spherical or not is evaluated by (Ll ⁇ Ls) / ⁇ (Ls + Ll) / 2 ⁇ where Ls is the minor axis diameter of the composite particles and Ll is the major axis diameter. (Hereinafter referred to as “sphericity”).
  • the minor axis diameter Ls and the major axis diameter Ll are average values for 100 arbitrary composite particles measured from a photographic image obtained by observing the composite particles using a reflection electron microscope. The smaller this value, the closer the spherical composite particle is to a true sphere.
  • the particle observed as a square in the photographic image has a sphericity of 34.4%, so the composite particle showing a sphericity exceeding 34.4% is not at least spherical.
  • the sphericity of the composite particles is preferably 20% or less, and more preferably 15% or less.
  • the composite particles obtained by the above production method can be subjected to post-treatment after production of the particles, if necessary.
  • the fluidity of spherical composite particles is improved by modifying the particle surface by mixing the composite electrode with the capacitor electrode active material, conductive agent, binder, electrolyte-insoluble cellulose, or additive. Can be improved or decreased, continuous pressure moldability can be improved, and the electrical conductivity of the spherical composite particles can be improved.
  • capacitor layer of the present invention is produced by a dry molding method, a capacitor layer made of a capacitor electrode composition such as composite particles is directly formed on a support by roll molding to obtain a capacitor electrode for a lead storage battery (hereinafter referred to as “capacitor electrode”).
  • “First manufacturing method”) a capacitor layer composed of a capacitor electrode composition such as composite particles is formed on a first support by roll forming, and the obtained capacitor layer is formed on a second support.
  • second manufacturing method a method of obtaining a capacitor electrode for a lead storage battery
  • the collector used for a lead electrode is not contained in the support body in a 1st manufacturing method, and the 1st support body and 2nd support body in a 2nd manufacturing method.
  • the capacitor electrode composition such as composite particles and the support are supplied to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls or belts A capacitor layer is obtained by molding the capacitor electrode composition into a sheet-like molded body, and this is pressure-bonded to the surface of the support.
  • the support used in the first manufacturing method is used for supporting the capacitor layer and further bonding the capacitor layer to the lead electrode.
  • Electrolyte-dispersible cellulose can be used as the material constituting the support.
  • the thickness of the support made of the electrolyte-dispersible cellulose is not particularly limited, but is preferably 10 to 50 ⁇ m, and more preferably 20 to 40 ⁇ m.
  • the width is not particularly limited, but is preferably 100 to 1000 mm, more preferably 100 to 500 mm.
  • the tensile strength of the support made of the electrolyte-dispersible cellulose is not particularly limited, but is preferably 30 to 500 MPa, more preferably 30 to 300 MPa from the viewpoint of preventing breakage during the production of the capacitor layer.
  • the manufacturing method of the support body which consists of electrolyte solution dispersible cellulose is not specifically limited, It is preferable to manufacture through a pulping process, an adjustment process, a papermaking process, and a finishing process.
  • the electrolytic solution-dispersible cellulose used in the present invention is used as a support in forming the capacitor layer. Further, the electrolytic solution-dispersible cellulose is dispersed in sulfuric acid used as an electrolytic solution.
  • the electrolyte-dispersible cellulose is preferably wood-derived cellulose, and is preferably a short fiber (for example, a length of 1 to 2 mm and a width of about 20 ⁇ m). If the length or width of the electrolyte-dispersible cellulose fiber is too large, it is difficult to disperse in the electrolyte solution, and if the length or width of the electrolyte-dispersible cellulose fiber is too small, the strength of the obtained capacitor layer becomes weak.
  • the amount of the electrolyte-dispersible cellulose in the electrolyte in the obtained lead capacitor storage battery is preferably 3 to 100 parts by weight with respect to 100 parts by weight of the capacitor electrode active material in the capacitor layer from the viewpoint of extending the life of the lead capacitor storage battery. 30 parts by weight, more preferably 10 to 30 parts by weight. If the amount of the electrolyte-dispersible cellulose in the electrolyte is too large, the resistance of the lead capacitor storage battery increases due to the influence of the electrolyte-dispersible cellulose in the electrolyte. Moreover, the lifetime characteristic of the lead capacitor storage battery obtained can be improved more by making the quantity of the electrolyte-dispersible cellulose in electrolyte solution into the said range. In addition, the quantity of the electrolyte solution dispersible cellulose in electrolyte solution can be adjusted with the kind of electrolyte solution dispersible cellulose to be used.
  • the capacitor electrode composition such as composite particles and the first support are supplied to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls or A capacitor layer is obtained by molding the capacitor electrode composition into a sheet-like molded body using a belt, and this is pressure-bonded to the surface of the first support.
  • the capacitor layer bonded to the first support is transferred to the second support.
  • the first support a support having a roughened surface or a release-treated support is used.
  • a support made of an electrolytic solution-dispersed cellulose used as the support in the first manufacturing method described above can be used.
  • FIG. 1 shows a method of supplying a capacitor electrode composition and a first support having a surface roughened or released to a pair of press rolls or belts disposed substantially horizontally. It is a figure showing the specific aspect of the process of shape
  • the roll of the first support 14 is attached to the unwinder 11 and sent out.
  • the capacitor electrode composition (composite particles in the figure) 13 is supplied to a pair of press rolls 12 arranged substantially horizontally by a supply device such as a screw feeder, and is pressure-formed by a pair of press rolls.
  • the capacitor electrode composition is molded into a sheet-like molded body, and this is pressure-bonded to the surface of the first support 14.
  • the 1st support body in which the capacitor layer was formed is wound up with the winder 10, and the 1st support body and the winding-up body of a capacitor layer are obtained.
  • the pair of press rolls shown in FIG. 1 can be replaced with a pair of press belts.
  • FIG. 1 although demonstrated as the 1st support body 1 by which the surface was roughened or released, when the 1st support body 1 was changed into the support body in a 1st manufacturing method, It becomes a figure which shows the process in a 1st manufacturing method.
  • the 1st support body used for the 2nd manufacturing method is used in order to support a capacitor layer, when roll forming a capacitor layer.
  • a material constituting the first support inorganic materials and organic materials can be used without limitation as long as the capacitor layer can be formed on the first support.
  • metal foil such as aluminum foil and copper foil; plastic film; paper and the like can be mentioned.
  • paper and thermoplastic resin film are preferable from the viewpoint of versatility and handling, and among paper and thermoplastic resin film, in particular, PET (polyethylene terephthalate) film, polyolefin film, PVA (polyvinyl alcohol) film, PVB (Polyvinyl butyral film) and PVC (polyvinyl chloride) film are preferable.
  • PET polyethylene terephthalate
  • PVA polyvinyl alcohol
  • PVB Polyvinyl butyral film
  • PVC polyvinyl chloride
  • the surface of the first support in contact with the capacitor layer is roughened or released. Since the surface of the first support that is in contact with the capacitor layer is roughened, it can be in close contact with the capacitor layer due to the anchoring effect and can be rolled up. Moreover, when manufacturing the lead storage battery electrode, the capacitor layer can be easily transferred from the first support to the second support.
  • the surface roughness Ra of the roughened surface of the first support is determined from the viewpoint of adhesion between the capacitor layer and the first support, and the capacitor layer from the first support to the second support. From the viewpoint of facilitating transfer of the film, it is preferably in the range of 0.1 to 5 ⁇ m, more preferably 0.2 to 3 ⁇ m, and still more preferably 0.2 to 1 ⁇ m.
  • the surface roughness Ra can be calculated from the equation shown below by drawing a roughness curve using, for example, a nanoscale hybrid microscope (VN-8010, manufactured by Keyence Corporation) in accordance with JIS B0601.
  • L is the measurement length
  • x is the deviation from the average line to the measurement curve.
  • a method for roughening the surface of the first support is not particularly limited, a method for embossing the surface of the first support; a method for sandblasting the surface of the first support; a mat material for the first support And a method of coating a layer containing a mat material on the surface of the first support.
  • the method of sandblasting the first support surface from the viewpoint of adhesion to the capacitor layer is preferable.
  • the roughening treatment of the first support may be performed only on one side or on both sides.
  • the method of releasing is not particularly limited.
  • a thermosetting resin such as an alkyd resin is applied on the first support and is cured.
  • Method It is preferable to use a method in which a silicone resin is coated on a first support and cured, and a method in which a fluororesin is coated on the first support.
  • release treatment using a thermosetting resin is preferable, and the moldability of the capacitor layer and the first support to the second support are preferred.
  • a release treatment by coating and curing of an alkyd resin is preferable.
  • the thickness of the first support is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, and particularly preferably 20 to 100 ⁇ m.
  • the width is not particularly limited, but is preferably 100 to 1000 mm, more preferably 100 to 500 mm.
  • the tensile strength of the first support is not particularly limited, but is preferably 30 to 500 MPa, more preferably 30 to 300 MPa, from the viewpoint of preventing breakage during the production of the capacitor layer.
  • the 1st support body used for this invention can also be used repeatedly, and can reduce the production cost of an electrode further by using it repeatedly.
  • Capacitor layer (Capacitor layer)
  • the capacitor layer obtained by the first manufacturing method and the second manufacturing method will be described.
  • the density of the capacitor layer obtained by roll forming is not particularly limited, but is usually 0.30 to 10 g / cm 3 , preferably 0.35 to 5.0 g / cm 3 , more preferably 0.40 to 3.0 g. / Cm 3 .
  • the thickness of the capacitor layer is not particularly limited, but is usually 5 to 1000 ⁇ m, preferably 20 to 500 ⁇ m, more preferably 30 to 400 ⁇ m.
  • the density of the binder in the capacitor layer obtained by roll forming is 0.45 to 0.52 g / cm 3 on each of the negative electrode side and the positive electrode side when producing a lead capacitor storage battery described later, It is preferably 0.49 to 0.51 g / cm 3 .
  • the binder density in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side means that the capacitor layer is positioned at the intermediate point in the thickness direction between the positive electrode side and the negative electrode side. When divided into two regions, the binder density is in the above range on both the positive electrode side and the negative electrode side.
  • the density of the binder in the capacitor layer is dyed by allowing the binder in the electrode to stand overnight in an osmium environment, and a cross section is cut out from the dyed electrode using a cross section polisher (CP). The cross section cut out using an electron microscope (SEM) can be observed and converted from the result.
  • SEM electron microscope
  • the capacitor electrode composition may be heated when being supplied to the pair of press rolls or belts arranged substantially horizontally.
  • the temperature of the capacitor electrode composition at that time is such that there is no slip of the capacitor electrode composition on the surface of the press roll or belt, and the capacitor electrode composition is continuously and uniformly supplied to the press roll or belt.
  • the temperature is preferably 40 to 160 ° C., more preferably 70 to 140 ° C., from the viewpoint of obtaining a capacitor layer having a uniform film thickness and small variation in density.
  • the temperature at the time of molding in roll molding is usually 25 to 200 ° C., preferably 50 to 150 ° C., more preferably 60 to 120 ° C. from the viewpoint of developing good adhesive force.
  • the molding speed is usually 0.1 to 20 m / min, preferably 4 to 20 m / min.
  • the press linear pressure between the rolls is usually 10 to 1000 kN / m, preferably 200 to 900 kN / m, more preferably 300 to 600 kN / m from the viewpoint of forming a uniform capacitor layer. Further, the forming speed when using a belt is usually 1 to 15 m / min, preferably 5 to 10 m / min. The pressure between the pressing belts is usually 5 to 50 MPa, preferably 10 to 30 MPa.
  • post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the molded capacitor layer and increase the density of the capacitor layer to increase the capacity.
  • the post-pressing method is generally a roll press process. In the roll press process, two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction. The temperature of the roll may be adjusted by heating or cooling.
  • the lead capacitor storage battery of the present invention includes a positive electrode and a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolytic solution, and is described above at least between the positive electrode and the separator and between the negative electrode and the separator.
  • the capacitor electrode for lead acid battery is arrange
  • a lead capacitor storage battery is usually arranged such that a positive electrode and a negative electrode face each other with a separator interposed therebetween, and the above-mentioned lead storage battery capacitor electrode is arranged between at least one of the positive electrode and the separator and between the negative electrode and the separator.
  • the positive electrodes or the negative electrodes are electrically short-circuited.
  • capacitance of a lead capacitor storage battery can be enlarged.
  • the constituent elements other than those described above include a battery case and a lid for storing the above constituent elements.
  • the positive electrode and the negative electrode comprise a lead active material layer.
  • Lead active material layer contains lead and lead compounds such as lead, lead monoxide, lead dioxide, dilead trioxide, trilead tetroxide (lead red), lead sulfate, etc. Refers to the main layer. These lead and lead compounds can be used alone or in a suitable mixture. From the viewpoint of increasing the energy density of the active material layer, the proportion of lead atoms in the lead active material layer is usually 50% by weight or more, preferably 70% by weight or more, based on the weight of the entire layer.
  • the lead-containing material used in the positive electrode active material layer that is the lead active material layer included in the positive electrode is preferably lead dioxide or lead monoxide, and is used in the negative electrode active material layer that is the lead active material layer included in the negative electrode.
  • lead-containing material lead monoxide or lead is preferable.
  • the lead active material layer may contain a reinforcing material such as polyester fiber, a surfactant such as lignin, barium sulfate and the like in addition to the lead-containing material. Further, an additive selected from oxides, hydroxides or sulfates of antimony, zinc, cadmium, silver and bismuth can be used. Further, when a lead active material layer is formed by producing a paste of a lead-containing material, sulfuric acid can be added.
  • the lead active material layer can be formed by preparing a paste by adding a solvent and an additive to a lead-containing material and filling the paste on a grid-like current collector.
  • a lead active material layer is formed on a part of the grid plane of the grid current collector, a lead active material layer is formed on the entire grid surface of the grid current collector, and the like. It is done.
  • a lead storage battery capacitor electrode is pressure-molded on the lead active material layer filled in the grid-like current collector by the above-described method of forming a lead active material layer. At this time, it arrange
  • the current collector used in the present invention is for establishing electrical continuity between the capacitor electrode active material and the lead-containing material and the outside of the lead storage battery.
  • Examples of the current collector include a plate-shaped, foil-shaped, clad-type porous tube in which a lead alloy core is inserted, and a grid-shaped current collector.
  • a grid-like current collector is preferable from the viewpoint of maintaining the electrode active material layer and excellent current collecting properties.
  • the grid current collector any of a standard grid, a radial grid, and an expanded type can be used.
  • a lead-containing alloy such as a lead-calcium alloy, a lead-antimony alloy, or a lead-tin alloy is used.
  • Arsenic, tin, copper, silver, aluminum, or the like may be included as part of the composition of the lead alloy.
  • separator As the separator used in the lead capacitor storage battery of the present invention, one or a combination of separators such as papermaking, microporous polyethylene, microporous polypropylene, microporous rubber, retainer mat, glass mat, etc., should be used. Can do.
  • the electrolytic solution used in the lead capacitor storage battery of the present invention is usually sulfuric acid.
  • the density of sulfuric acid varies depending on the charge / discharge state, the density is preferably 1.25 to 1.30 g / cm 3 (20 ° C.) in a fully charged state after chemical conversion treatment of the lead storage battery.
  • the positive electrode, the negative electrode, the separator, the capacitor electrode for the lead storage battery, and the battery case and the lid for storing the electrolyte are ethylene-propylene copolymer, polyethylene, polypropylene, polyacrylonitrile-styrene copolymer.
  • a polyacrylonitrile-butadiene-styrene copolymer as a raw material can be used.
  • a plurality of partitions are provided in one battery case, and the structure including the above-described positive electrode, negative electrode, separator, and lead-acid battery capacitor electrode is provided for each partition. If it is housed and connected in series, an integrated lead capacitor battery with high electromotive force can be produced.
  • the determination of the capacitor electrode layer strength, the adhesion with the lead electrode, the dispersibility of the electrolyte-dispersible cellulose in the electrolyte, the internal resistance, and the input characteristics were performed as follows.
  • Capacitor electrode layer strength It measured according to JIS K6251. After the capacitor electrode obtained by forming the capacitor electrode layer into a sheet on a support made of electrolyte-dispersible cellulose having a thickness of 25 ⁇ m was dried at 160 ° C. for 40 minutes, the shape of No. 1 dumbbell-shaped test piece Then, a tensile test was performed at an atmospheric temperature of 25 ° C. and a tensile speed of 10 mm / min, and the maximum load at break was measured. This measurement was repeated 6 times, and the value obtained by dividing the average value of the maximum load by the cross-sectional area of the sheet was taken as the tensile strength of the capacitor electrode, and evaluated according to the following criteria. The results are shown in Table 1.
  • the capacitor electrode was pressure-bonded to a 1 cm square lead plate at 160 ° C. and 2 MPa for 30 minutes, and the penetration resistance was measured. After measuring for 10 minutes at 10 mA, the volume resistivity was calculated and evaluated by the increase in resistance value with respect to the capacitor electrodes prepared in Examples and Comparative Examples. Evaluation was performed according to the following criteria, and the results are shown in Table 1.
  • Electrode dispersible cellulose dispersible In a 200 mL beaker, a support (thickness 25 ⁇ m) made of an electrolytic solution-dispersible cellulose, which is a 2 cm square test sample, and 100 mL of 38% sulfuric acid, which is an electrolytic solution, were left for 1 week. The mixture was stirred for 30 seconds with a stirrer and then left for 5 minutes. The degree of dispersion of the test sample was determined according to the following criteria, and the results are shown in Table 1. A: There is no precipitate, and the electrolyte is transparent or translucent, and no fiber derived from the test piece is observed.
  • the amount of the electrolyte-dispersible cellulose relative to 100 parts by weight of the capacitor electrode active material was measured as follows. A capacitor electrode including a capacitor layer formed into a sheet shape on a support made of electrolyte-dispersible cellulose was punched out to a size of 12 ⁇ and immersed in sulfuric acid adjusted to 38% for 1 week. Thereafter, the capacitor electrode was taken out and dried to measure the weight. The amount of change in weight before and after immersion in sulfuric acid was shown as parts by weight relative to 100 parts of the capacitor electrode active material.
  • the capacitor electrodes obtained in the examples and comparative examples were punched into a circular shape having a diameter of 12 mm, the capacitor electrodes and the glass fiber separator were sufficiently impregnated with the electrolyte, and then the two capacitor electrodes were opposed to each other through the separator. Then, each capacitor electrode was arranged so as not to be in electrical contact, and an electric double layer capacitor was manufactured. Sulfuric acid was used as the electrolyte.
  • the internal resistance was determined by conducting a charge / discharge test of the electric double layer capacitor. That is, the charging current is performed using a current value at which the current value per unit area of the electrode is 6.6 mA / cm 2, and when the voltage reaches 1.0 V, the voltage is maintained for 10 minutes for constant voltage charging. Completed charging. Then, immediately after the end of charging, constant current discharging is performed until the voltage reaches 0 V at a current value similar to that used during charging. The capacitance was calculated from the amount of electric power at the time of discharge using an energy conversion method.
  • charging is started at a constant current of 5 mA / F so that the charging / discharging speed of the electric double layer capacitor is constant, and the charging times of constant current charging and constant voltage charging are matched.
  • Charging was completed at the time when the charging was performed for 20 minutes, and further, constant current discharging was performed immediately after the end of charging until the voltage reached 0 V at a current value similar to that used during charging.
  • the internal resistance is a value obtained by dividing the amount of voltage drop at the start of discharge from the extrapolation of the approximate curve by the least square method of the voltage data from the start of discharge to the predetermined time divided by the discharge current value, and the resistivity per volume, that is, the volume Expressed as resistivity and evaluated according to the following criteria.
  • the predetermined time was 10% of the total discharge time.
  • Table 1 A: Less than 0.6 ⁇ B: 0.6 or more and less than 0.8 ⁇ C: 0.8 or more and 1.0 ⁇ or more D: 1.0 ⁇ or more
  • SOC 70% refers to a state in which the capacity of the lead storage battery is 100% and the capacity of 70% remains.
  • 2CA and 10CA are the capacity of the produced storage battery for 1/2 hour, It refers to the amount of current for discharging in 1/10 hours. The smaller the voltage value difference, the better the acceptance of large current charging.
  • Example 1 (Preparation of binder)
  • acrylonitrile (AN) 45 parts
  • 1,3-butadiene (BD) 50 parts
  • methacrylic acid (MMA) 5 parts
  • t-dodecyl mercaptan (TDM) 0.2 parts
  • soft water 132 parts 3.0 parts of sodium dodecylbenzenesulfonate
  • 0.5 part of ⁇ -naphthalenesulfonic acid formalin condensate sodium salt 0.3 part of potassium persulfate and 0.05 part of ethylenediaminetetraacetic acid sodium salt
  • the polymerization temperature was 40 ° C.
  • the obtained copolymer particle aqueous dispersion was stored for one week, and then BIT (1,2-benz-2-methyl-4-isothiazolin-3-one) as a preservative was solidified in the copolymer particle aqueous dispersion. 0.2 part was added to 100 parts per minute and stirred to obtain Binder A (NBR1). Binder A had a Tg of ⁇ 20 ° C. and a volume average particle size of 100 nm.
  • This slurry is spray-dried using a spray dryer (Okawara Chemical Co., Ltd.) at a rotational speed of 25,000 rpm of a rotating disk type atomizer (diameter 65 mm), a hot air temperature of 150 ° C., and a particle recovery outlet temperature of 90 ° C.
  • Granulation was performed to obtain spherical composite particles.
  • the spherical composite particles had an average volume particle size of 63 ⁇ m.
  • the obtained capacitor layer is transferred onto a support (thickness 25 ⁇ m) made of electrolyte-dispersible cellulose (short fibers: length 1 to 2 mm, width 20 ⁇ m) to obtain a capacitor electrode for a lead storage battery. It was. Note that the lead storage battery capacitor electrode does not include a PET film.
  • a paste was obtained by adding and mixing 100 parts of lead oxide with 0.3 parts of conductive agent carbon black, 0.3 parts of barium sulfate, 10 parts of ion-exchanged water, and 10 parts of diluted sulfuric acid with a specific gravity of 1.36. .
  • the obtained paste was filled in a grid-like current collector (100 mm ⁇ 100 mm ⁇ 3 mm) made of a lead-calcium alloy to produce a negative electrode.
  • the capacitor electrode for a lead storage battery was pressure-bonded at 100 ° C. and 2 MPa with a batch press on one surface of the negative electrode filled with the paste in a grid-like current collector.
  • the negative electrode and the capacitor electrode for the lead storage battery were laminated by press-molding the capacitor electrode for the lead storage battery on the negative electrode.
  • the lead-acid battery capacitor electrode was pressure-molded with the capacitor layer side facing the current collector side of the negative electrode.
  • FIG. 2 A multilayer lead capacitor storage battery shown in FIG. 2 was produced using the positive electrode, the stacked negative electrode, and the capacitor electrode for a lead storage battery.
  • a glass microfiber separator 5 is disposed between the negative electrode 2 and the positive electrode 4
  • a microporous polypropylene separator 6 is disposed between the lead storage battery capacitor electrode 3 and the positive electrode 4. did.
  • 1 indicates a current collector.
  • the electrolyte dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) was used. After subjected to overcharge chemical conversion process to this, the density of the electrolyte solution to obtain a lead-capacitor battery is adjusted with sulfuric acid of density 1.4 g / cm 3 so that the 1.28 g / cm 3. Further, the amount of the electrolyte-dispersible cellulose in the electrolyte with respect to 100 parts of the capacitor electrode active material was 25 parts.
  • Example 2 Capacitor electrode for lead-acid battery, lead as in Example 1, except that activated carbon derived from phenol resin (specific surface area 1700 m 2 / g, weight average particle size 5 ⁇ m) was used instead of the capacitor electrode active material derived from petroleum pitch A capacitor storage battery was produced.
  • Example 3 Capacitor electrode for lead-acid battery, lead as in Example 1, except that activated carbon derived from coconut shell (specific surface area 2000 m 2 / g, weight average particle diameter 5 ⁇ m) was used instead of the capacitor electrode active material derived from petroleum pitch A capacitor storage battery was produced.
  • Binder B (SBR) was obtained by using styrene (ST) instead of acrylonitrile when preparing the binder.
  • the binder B had a Tg of ⁇ 20 ° C. and a volume average particle size of 100 nm.
  • a lead-acid battery capacitor electrode and a lead-capacitor battery were produced in the same manner as in Example 1 except that the binder B was used when producing the composite particles.
  • Binder C (NBR2) was obtained by using 63 parts of acrylonitrile, 32 parts of 1,3-butadiene, and 5 parts of methacrylic acid as the composition of the monomer used in preparing the binder.
  • the binder C had a Tg of 14 ° C. and a volume average particle size of 100 nm.
  • a capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Example 1 except that the binder C was used when preparing the composite particles.
  • Binder D (NBR3) was obtained by using 35 parts of acrylonitrile, 55 parts of 1,3-butadiene, and 10 parts of methacrylic acid as the composition of the monomer used in preparing the binder.
  • the binder D had a Tg of ⁇ 26 ° C. and a volume average particle size of 100 nm.
  • a lead-acid battery capacitor electrode and a lead-capacitor battery were produced in the same manner as in Example 1 except that the binder D was used when producing the composite particles.
  • Example 7 A lead-acid battery capacitor as in Example 1 except that a support made of electrolyte-dispersible cellulose was used so that the amount of electrolyte-dispersible cellulose in the electrolyte with respect to 100 parts of the capacitor electrode active material was 10 parts. Electrodes and lead capacitor storage batteries were produced. In addition, adjustment of the quantity of electrolyte solution dispersible cellulose was performed by changing the fiber diameter of the electrolyte solution dispersible cellulose which comprises a support body.
  • Example 8 A lead-acid battery capacitor as in Example 1 except that a support made of electrolyte-dispersible cellulose was used so that the amount of electrolyte-dispersible cellulose in the electrolyte was 30 parts with respect to 100 parts of the capacitor electrode active material. Electrodes and lead capacitor storage batteries were produced. In addition, adjustment of the quantity of electrolyte solution dispersible cellulose was performed by changing the fiber diameter of the electrolyte solution dispersible cellulose which comprises a support body.
  • Example 9 In the production of a lead-acid battery capacitor electrode, the obtained spherical composite particles were dispersed on a support made of electrolyte-dispersed cellulose having a thickness of 25 ⁇ m and heated to 65 ° C. (molding speed 10 m / min, The sheet was molded at a press linear pressure of 5.0 kN / cm), and the same as in Example 1 except that a capacitor electrode for a lead storage battery having a capacitor layer with a thickness of 200 ⁇ m and a density of 0.54 g / cm 3 was obtained. A capacitor electrode for a lead storage battery and a lead capacitor storage battery were produced.
  • Comparative Example 1 instead of roll forming in preparation of composite particles and lead storage battery capacitor electrode, cast slurry containing binder A (slurry used for manufacture of composite particles in Example 1) on electrolyte-dispersible cellulose, A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Example 1 except that the capacitor electrode for a lead storage battery was obtained by drying at 100 ° C. The density of the binder in the capacitor layer was 0.35 g / cm 3 on each of the negative electrode side and the positive electrode side.
  • Comparative Example 2 A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Comparative Example 1 except that the drying temperature after casting the slurry containing the binder A onto the electrolyte-dispersible cellulose was 60 ° C. The density of the binder in the capacitor layer was 0.45 g / cm 3 on each of the negative electrode side and the positive electrode side.
  • Example 3 A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Example 1 except that the capacitor layer was directly transferred to the negative electrode and then the PET film was peeled to laminate the negative electrode and the capacitor layer. It was.
  • Example 4 A lead-acid battery capacitor electrode and a lead-capacitor battery were prepared in the same manner as in Example 1 except that electrolyte-insoluble paper was used instead of the electrolyte-dispersible cellulose.
  • a capacitor electrode for a lead storage battery that is disposed between a negative electrode and a positive electrode and includes a capacitor layer, the capacitor layer including a capacitor electrode active material, a conductive agent, and a binder,
  • the binder density of the layer is in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side, and when the electrolytic solution-dispersible cellulose compound is dispersed in the electrolytic solution, The adhesiveness with the lead electrode, electrolyte dispersibility, cellulose dispersibility, internal resistance, and input characteristics were all good.

Abstract

The present invention provides: a lead battery capacitor electrode having superior strength and low resistance; a lead capacitor battery; and, in order to obtain same, a method for producing a lead battery capacitor electrode and a method for producing a lead capacitor battery. The lead battery capacitor electrode includes a capacitor layer disposed between an anode and a cathode; the capacitor layer includes a capacitor electrode active material, a conductive agent, and a binder; the binder density of the capacitor layer is in the range of 0.48-0.52 g/cm3 at the cathode side and anode side; and an electrolyte solution dispersive cellulose compound that disperses in an electrolyte solution is included.

Description

鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、鉛蓄電池用キャパシタ電極の製造方法および鉛キャパシタ蓄電池の製造方法Capacitor electrode for lead storage battery, lead capacitor storage battery, method of manufacturing capacitor electrode for lead storage battery, and method of manufacturing lead capacitor storage battery
 本発明は、強度に優れ、抵抗が小さい鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、鉛蓄電池用キャパシタ電極の製造方法および鉛キャパシタ蓄電池の製造方法に関するものである。 The present invention relates to a lead-acid battery capacitor electrode having excellent strength and low resistance, a lead-capacitor battery, a method for producing a lead-acid battery capacitor electrode, and a method for producing a lead-capacitor battery.
 正極活物質として二酸化鉛、負極活物質として鉛を使用し、電解液に硫酸を使用した鉛蓄電池は、他の二次電池と比較して安価で大電流放電に適することから多くの産業にて使用されており、リチウムイオン二次電池等の高容量二次電池が隆盛を誇る今日もその重要性は失われておらず、現在でも鉛蓄電池性能向上の検討が精力的に行われている。 Lead-acid batteries that use lead dioxide as the positive electrode active material, lead as the negative electrode active material, and sulfuric acid as the electrolyte are inexpensive and suitable for high-current discharge in many industries compared to other secondary batteries. Even today, the importance of high-capacity secondary batteries such as lithium-ion secondary batteries is prominent, and their importance has not been lost.
 近年、鉛蓄電池の長所である短時間の大電流放電特性の向上、ならびに短所である放電深度の大きいサイクル特性の向上に関して、活性炭を使用した技術が報告されている。 In recent years, a technique using activated carbon has been reported regarding the improvement of short-time high-current discharge characteristics, which is an advantage of lead-acid batteries, and the improvement of cycle characteristics with a large discharge depth, which is a disadvantage.
 例えば、鉛蓄電池の充電速度を速めたり、放電深度の改善のために正極と負極との間にキャパシタ層を設けたりすることが行われている。特許文献1においては、鉛極板上にキャパシタ層形成用のスラリーを塗工することにより、キャパシタ層を形成している。また、特許文献2においては、(i)支持体として用いられるPET(ポリエチレンテレフタレート)フィルム上にキャパシタ層を乾式法により成形し、鉛極板上にキャパシタ層を圧着してからPETフィルムを剥離する方法、(ii)支持体として用いられるPETフィルム上にキャパシタ層を乾式法により成形してからPETフィルムを剥離し、鉛極板上にキャパシタ層を圧着する方法が開示されている。 For example, increasing the charging speed of a lead storage battery or providing a capacitor layer between the positive electrode and the negative electrode in order to improve the depth of discharge. In Patent Document 1, a capacitor layer is formed by applying a slurry for forming a capacitor layer on a lead electrode plate. In Patent Document 2, (i) a capacitor layer is formed on a PET (polyethylene terephthalate) film used as a support by a dry method, the capacitor layer is pressure-bonded on a lead electrode plate, and then the PET film is peeled off. Method (ii) A method of forming a capacitor layer on a PET film used as a support by a dry method, peeling the PET film, and pressing the capacitor layer on a lead electrode plate is disclosed.
特開2011-71110号公報JP 2011-71110 A 特開2010-192417号公報JP 2010-192417 A
 しかし、特許文献1のようにスラリーを塗工し乾燥させると、バインダーのマイグレーションが起こるため、得られる鉛キャパシタ蓄電池の抵抗が増加する。また、特許文献2の場合、(i)のように鉛電極に圧着後にPETフィルムを剥離するとキャパシタ層の強度が弱くなり、さらに強度を保つためにPETフィルムをキャパシタ層に密着させたままにするとPETフィルムが抵抗成分となるため、得られる鉛キャパシタ蓄電池の抵抗が増加する。さらに、(ii)のようにキャパシタ層を乾式法により成形して後にPETフィルムを剥離し、鉛極板上にキャパシタ層を圧着する場合には、支持体がない状態で鉛極板上にキャパシタ層を圧着することとなるため、キャパシタ層の強度が弱くなる。 However, when the slurry is applied and dried as in Patent Document 1, binder migration occurs, and thus the resistance of the obtained lead capacitor storage battery increases. Further, in the case of Patent Document 2, if the PET film is peeled off after being pressure-bonded to the lead electrode as in (i), the strength of the capacitor layer is weakened. Since the PET film becomes a resistance component, the resistance of the obtained lead capacitor storage battery increases. Further, when the capacitor layer is formed by a dry method as in (ii) and the PET film is peeled off and the capacitor layer is pressure-bonded on the lead electrode plate, the capacitor is formed on the lead electrode plate without a support. Since the layers are pressure-bonded, the strength of the capacitor layer is weakened.
 本発明の目的は、強度に優れ、抵抗が小さい鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、鉛蓄電池用キャパシタ電極の製造方法および、鉛キャパシタ蓄電池の製造方法を提供することである。 An object of the present invention is to provide a capacitor electrode for a lead storage battery, a lead capacitor storage battery, a method for manufacturing a capacitor electrode for lead storage battery, and a method for manufacturing a lead capacitor storage battery, which have excellent strength and low resistance.
 本発明者は、上記課題を解決するために鋭意検討の結果、キャパシタ電極に電解液分散性セルロースを含有させることにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has found that the above-mentioned object can be achieved by containing an electrolyte-dispersible cellulose in the capacitor electrode, and has completed the present invention.
 即ち、本発明によれば、
(1) 負極、正極の間に配置され、キャパシタ層を含む鉛蓄電池用キャパシタ電極であって、前記キャパシタ層は、キャパシタ電極活物質、導電剤および結着剤を含み、前記キャパシタ層の結着剤密度は、前記正極側と前記負極側とにおいて0.48~0.52g/cm3の範囲であり、
 電解液に分散する電解液分散性セルロース化合物を含む鉛蓄電池用キャパシタ電極。
(2) 前記キャパシタ層は、電解液不溶性セルロースを含む(1)記載の鉛蓄電池用キャパシタ電極。
(3) キャパシタ層における前記電解液不溶性セルロースの比率は、キャパシタ電極活物質100重量部に対して0.1~10重量部である、請求項2記載の鉛蓄電池用キャパシタ電極、
(4) 前記キャパシタ電極活物質は、石油ピッチを出発原料とする活性炭である(1)~(3)のいずれかに記載の鉛蓄電池用キャパシタ電極、
(5) 前記結着剤は、ジエン重合体である(1)~(4)のいずれかに記載の鉛蓄電池用キャパシタ電極、
(6) (1)~(5)の何れか一項に記載の鉛蓄電池用キャパシタ電極、負極、正極、セパレータおよび電解液を含んでなる鉛キャパシタ蓄電池、
(7) キャパシタ電極活物質、導電剤および結着剤を含有してなる複合粒子を造粒する工程と、電解液分散性セルロースからなる支持体上に乾式法で前記複合粒子を含むキャパシタ層をシート成形する工程とを含む鉛蓄電池用キャパシタ電極の製造方法、
(8) 前記シート成形する工程は、前記複合粒子と、電解液分散性セルロースからなる支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより、前記複合粒子をシート状成形体に成形することによりキャパシタ層を得るとともに、これを前記支持体の面に圧着する工程である、(7)に記載の鉛蓄電池用キャパシタ電極の製造方法、
(9) キャパシタ電極活物質、導電剤および結着剤を含有してなる複合粒子を造粒する工程と、粗面化または離型処理された支持体表面に前記複合粒子を含むキャパシタ層を形成する工程と、前記キャパシタ層を電解液分散性セルロースからなる支持体上に転写する工程とを含む鉛蓄電池用キャパシタ電極の製造方法、
(10) 前記キャパシタ層を形成する工程は、前記複合粒子と、粗面化または離型処理された支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより、前記複合粒子をシート状成形体に成形することによりキャパシタ層を得るとともに、これを前記支持体の面に圧着する工程である、(9)に記載の鉛蓄電池用キャパシタ電極の製造方法、
(11) (7)~(10)のいずれかに記載の鉛キャパシタ蓄電池の製造方法により得られる鉛蓄電池用キャパシタ電極と鉛活物質層とを積層させる工程を含む鉛キャパシタ蓄電池の製造方法
が提供される。
That is, according to the present invention,
(1) A capacitor electrode for a lead storage battery that is disposed between a negative electrode and a positive electrode and includes a capacitor layer, the capacitor layer including a capacitor electrode active material, a conductive agent, and a binder, and binding of the capacitor layer The agent density is in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side,
A capacitor electrode for a lead storage battery comprising an electrolytic solution-dispersible cellulose compound dispersed in an electrolytic solution.
(2) The capacitor electrode for a lead storage battery according to (1), wherein the capacitor layer contains electrolyte-insoluble cellulose.
(3) The capacitor electrode for a lead storage battery according to claim 2, wherein the ratio of the electrolyte-insoluble cellulose in the capacitor layer is 0.1 to 10 parts by weight with respect to 100 parts by weight of the capacitor electrode active material.
(4) The capacitor electrode active material according to any one of (1) to (3), wherein the capacitor electrode active material is activated carbon starting from petroleum pitch.
(5) The capacitor electrode for a lead storage battery according to any one of (1) to (4), wherein the binder is a diene polymer,
(6) A lead capacitor storage battery comprising the capacitor electrode for a lead storage battery according to any one of (1) to (5), a negative electrode, a positive electrode, a separator, and an electrolytic solution,
(7) A step of granulating composite particles containing a capacitor electrode active material, a conductive agent and a binder, and a capacitor layer containing the composite particles by a dry method on a support made of electrolyte-dispersible cellulose. A method for producing a lead-acid battery capacitor electrode, comprising a sheet forming step,
(8) In the step of forming the sheet, the composite particles and a support made of electrolyte-dispersible cellulose are supplied to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls Alternatively, a capacitor layer is obtained by molding the composite particles into a sheet-like molded body using a belt, and the capacitor layer is produced by pressure-bonding it to the surface of the support. (7) Method,
(9) A step of granulating composite particles containing a capacitor electrode active material, a conductive agent and a binder, and forming a capacitor layer containing the composite particles on the roughened or release-treated support surface A method for producing a capacitor electrode for a lead storage battery, comprising: a step of transferring the capacitor layer onto a support made of an electrolyte-dispersible cellulose;
(10) The step of forming the capacitor layer includes supplying the composite particles and a roughened or release-treated support to a pair of press rolls or belts arranged substantially horizontally, A lead-acid battery according to (9), which is a step of obtaining a capacitor layer by molding the composite particles into a sheet-like molded body with a pressing roll or belt, and crimping the capacitor layer to the surface of the support. Manufacturing method of capacitor electrode,
(11) A method of manufacturing a lead capacitor storage battery including a step of laminating a lead storage battery capacitor electrode obtained by the method of manufacturing a lead capacitor storage battery according to any one of (7) to (10) and a lead active material layer is provided. Is done.
 本発明によれば、強度に優れ、抵抗が小さい鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池、およびこれらを得るための鉛蓄電池用キャパシタ電極の製造方法、鉛キャパシタ蓄電池の製造方法が提供される。 According to the present invention, there are provided a lead-acid battery capacitor electrode having excellent strength and low resistance, a lead-capacitor battery, a method for producing a lead-acid battery capacitor electrode for obtaining these, and a method for producing a lead-capacitor battery.
本発明のキャパシタ層の製造工程の具体的な態様を示す図である。It is a figure which shows the specific aspect of the manufacturing process of the capacitor layer of this invention. 本発明の鉛キャパシタ蓄電池を示す概略断面図である。It is a schematic sectional drawing which shows the lead capacitor storage battery of this invention.
 以下、本発明の実施の形態に係る鉛蓄電池用キャパシタ電極について説明する。本発明の鉛蓄電池用キャパシタ電極は、負極、正極の間に配置され、キャパシタ層を含む鉛蓄電池用キャパシタ電極であって、前記キャパシタ層はキャパシタ電極活物質、導電剤および結着剤を含み、前記キャパシタ層の結着剤密度は、前記正極側と前記負極側とにおいて0.48~0.52g/cm3の範囲であり、電解液に分散する電解液分散性セルロース化合物を含む。 Hereinafter, a capacitor electrode for a lead storage battery according to an embodiment of the present invention will be described. The capacitor electrode for a lead storage battery of the present invention is a capacitor electrode for a lead storage battery that is disposed between a negative electrode and a positive electrode and includes a capacitor layer, the capacitor layer including a capacitor electrode active material, a conductive agent, and a binder, The capacitor layer has a binder density in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side, and includes an electrolytic solution-dispersible cellulose compound dispersed in the electrolytic solution.
 (キャパシタ層)
 本発明に用いるキャパシタ層は、キャパシタ電極活物質、導電剤および結着剤を含む。
(Capacitor layer)
The capacitor layer used in the present invention includes a capacitor electrode active material, a conductive agent, and a binder.
 (キャパシタ電極活物質)
 本発明に用いるキャパシタ電極活物質は、電極内で電子の受け渡しをする物質である。
 本発明に用いるキャパシタ電極活物質としては、電気二重層キャパシタ用電極に用いる電極活物質、具体的には、炭素の同素体が用いられる。炭素の同素体の具体例としては、活性炭、ポリアセン、カーボンウィスカ及びグラファイト等が挙げられ、これらの粉末または繊維を使用することができる。好ましい電極活物質は活性炭であり、具体的にはフェノール樹脂、レーヨン、アクリロニトリル樹脂、石油ピッチ、およびヤシ殻等を原料とする活性炭が好ましく、鉛板との密着性の観点から、石油ピッチを原料とする活性炭がより好ましい。
(Capacitor electrode active material)
The capacitor electrode active material used in the present invention is a substance that transfers electrons in the electrode.
As the capacitor electrode active material used in the present invention, an electrode active material used for an electric double layer capacitor electrode, specifically, an allotrope of carbon is used. Specific examples of the allotrope of carbon include activated carbon, polyacene, carbon whisker, and graphite, and these powders or fibers can be used. The preferred electrode active material is activated carbon. Specifically, activated carbon made from phenol resin, rayon, acrylonitrile resin, petroleum pitch, coconut shell, etc. is preferred. From the viewpoint of adhesion to the lead plate, petroleum pitch is used as a raw material. More preferred is activated carbon.
 キャパシタ電極活物質の体積平均粒子径は、通常0.1~100μm、好ましくは1~50μm、更に好ましくは5~20μmである。 The volume average particle diameter of the capacitor electrode active material is usually 0.1 to 100 μm, preferably 1 to 50 μm, more preferably 5 to 20 μm.
 キャパシタ電極活物質の比表面積は、30m2/g以上、好ましくは500~5,000m2/g、より好ましくは1,000~3,000m2/gである。キャパシタ電極活物質の比表面積が大きいほど得られるキャパシタ層の密度は小さくなる傾向があるので、キャパシタ電極活物質を適宜選択することで、所望の密度を有するキャパシタ層を得ることができる。 The specific surface area of the capacitor electrode active material is 30 m 2 / g or more, preferably 500 to 5,000 m 2 / g, more preferably 1,000 to 3,000 m 2 / g. Since the density of the obtained capacitor layer tends to decrease as the specific surface area of the capacitor electrode active material increases, a capacitor layer having a desired density can be obtained by appropriately selecting the capacitor electrode active material.
 (導電剤)
 本発明に用いる導電剤は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびケッチェンブラックが好ましい。
(Conductive agent)
The conductive agent used in the present invention comprises an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer, and specifically includes furnace black, acetylene black, and ketjen. Examples thereof include conductive carbon black such as black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and ketjen black are preferable.
 本発明に用いる導電剤の体積平均粒子径は、キャパシタ電極活物質の体積平均粒子径よりも小さいものが好ましく、より少ない使用量で高い導電性が得られる観点から、通常0.001~10μm、好ましくは0.005~5μm、より好ましくは0.01~1μmである。これらの導電剤は、単独でまたは二種類以上を組み合わせて用いることができる。
導電剤の量は、得られる鉛蓄電池用電極を使用した鉛蓄電池の容量を高く且つ内部抵抗を低くすることができる観点から、キャパシタ電極活物質100重量部に対して通常0.1~50重量部、好ましくは0.5~15重量部、より好ましくは1~10重量部の範囲である。
The volume average particle diameter of the conductive agent used in the present invention is preferably smaller than the volume average particle diameter of the capacitor electrode active material, and is usually 0.001 to 10 μm from the viewpoint of obtaining high conductivity with a smaller use amount. The thickness is preferably 0.005 to 5 μm, more preferably 0.01 to 1 μm. These conductive agents can be used alone or in combination of two or more.
The amount of the conductive agent is usually 0.1 to 50 weights with respect to 100 parts by weight of the capacitor electrode active material from the viewpoint of increasing the capacity of the lead storage battery using the obtained lead storage battery electrode and reducing the internal resistance. Parts, preferably 0.5 to 15 parts by weight, more preferably 1 to 10 parts by weight.
 (結着剤)
 キャパシタ層に用いる結着剤は、キャパシタ電極活物質や上記導電剤を相互に結着させることができる化合物であれば特に制限はない。好適な結着剤は、溶媒に分散する性質のある分散型結着剤である。分散型結着剤として、例えば、フッ素重合体、ジエン重合体、アクリル重合体、ポリイミド、ポリアミド、ポリウレタン重合体等の高分子化合物が挙げられ、ジエン重合体、アクリル重合体が好ましい。
(Binder)
The binder used for the capacitor layer is not particularly limited as long as it is a compound that can bind the capacitor electrode active material and the conductive agent to each other. A suitable binder is a dispersion type binder having a property of being dispersed in a solvent. Examples of the dispersion-type binder include polymer compounds such as fluoropolymers, diene polymers, acrylic polymers, polyimides, polyamides, polyurethane polymers, and diene polymers and acrylic polymers are preferable.
 ジエン重合体は、共役ジエンの単独重合体もしくは共役ジエンを含む単量体混合物を重合して得られる共重合体、またはそれらの水素添加物である。ジエン重合体の具体例としては、ポリブタジエンやポリイソプレンなどの共役ジエン単独重合体;カルボキシ変性されていてもよいスチレン・ブタジエン共重合体(SBR)などの芳香族ビニル・共役ジエン共重合体;アクリロニトリル・ブタジエン共重合体(NBR)などのシアン化ビニル・共役ジエン共重合体;水素化SBR、水素化NBR等が挙げられる。 The diene polymer is a homopolymer of a conjugated diene or a copolymer obtained by polymerizing a monomer mixture containing a conjugated diene, or a hydrogenated product thereof. Specific examples of the diene polymer include conjugated diene homopolymers such as polybutadiene and polyisoprene; aromatic vinyl / conjugated diene copolymers such as carboxy-modified styrene / butadiene copolymer (SBR); acrylonitrile -Vinyl cyanide * conjugated diene copolymers, such as a butadiene copolymer (NBR); Hydrogenated SBR, hydrogenated NBR, etc. are mentioned.
 アクリル重合体は、アクリル酸エステルもしくはメタクリル酸エステルの単独重合体またはこれらと共重合可能な単量体を含む単量体混合物を重合して得られる共重合体である。前記共重合可能な単量体としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸などの不飽和カルボン酸類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、ヒドロキシメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;エチレン、プロピレン等のオレフィン類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、安息香酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類;N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;β-ヒドロキシエチルアクリレート、β-ヒドロキシエチルメタクリレート等のヒドロキシアルキル基含有化合物等が挙げられる。 The acrylic polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester or methacrylic ester or a monomer mixture containing a monomer copolymerizable therewith. Examples of the copolymerizable monomer include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, and fumaric acid; two or more carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, and trimethylolpropane triacrylate. Carboxylates having carbon double bonds; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, vinyl naphthalene, chloromethyl styrene, hydroxymethyl styrene, α-methyl styrene, Styrenic monomers such as divinylbenzene; Amide monomers such as acrylamide, N-methylolacrylamide, and acrylamide-2-methylpropanesulfonic acid; α, β-insoluble such as acrylonitrile and methacrylonitrile Japanese nitrile compounds; olefins such as ethylene and propylene; diene monomers such as butadiene and isoprene; monomers containing halogen atoms such as vinyl chloride and vinylidene chloride; vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate Vinyl esters such as methyl vinyl ether, ethyl vinyl ether, and butyl vinyl ether; vinyl ketones such as methyl vinyl ketone, ethyl vinyl ketone, butyl vinyl ketone, hexyl vinyl ketone, and isopropenyl vinyl ketone; N-vinyl pyrrolidone, Examples thereof include heterocyclic compounds containing vinyl rings such as vinylpyridine and vinylimidazole; compounds containing hydroxyalkyl groups such as β-hydroxyethyl acrylate and β-hydroxyethyl methacrylate.
 これらのなかでも、キャパシタ電極活物質や導電剤とともに複合粒子にして乾式成形を行う場合の強度の観点から、ジエン重合体を用いることが好ましく、アクリロニトリル・ブタジエン共重合体(以下、「NBR」と記載することがある。)を用いることがより好ましい。また、前記アクリロニトリル・ブタジエン共重合体を用いる場合における結着剤中の1,3-ブタジエン単量体単位の比率は、40~75重量%であることが好ましく、45~75重量%であることがより好ましい。また、アクリロニトリル・ブタジエン共重合体を用いる場合における結着剤中のアクリロニトリル単量体単位の比率は、20~60重量%であることが好ましく、20~45重量%であることがより好ましい。 Among these, it is preferable to use a diene polymer from the viewpoint of strength when dry forming into composite particles together with a capacitor electrode active material and a conductive agent, and an acrylonitrile-butadiene copolymer (hereinafter referred to as “NBR”). It is more preferable to use. In the case of using the acrylonitrile-butadiene copolymer, the ratio of the 1,3-butadiene monomer unit in the binder is preferably 40 to 75% by weight, and 45 to 75% by weight. Is more preferable. Further, when the acrylonitrile-butadiene copolymer is used, the ratio of the acrylonitrile monomer unit in the binder is preferably 20 to 60% by weight, and more preferably 20 to 45% by weight.
 アクリロニトリル・ブタジエン共重合体は、1,3-ブタジエンおよびアクリロニトリルの他に、さらにアクリル酸やメタクリル酸等の上述の不飽和カルボン酸類の単量体単位を含むことが好ましい。不飽和カルボン酸類としては、メタクリル酸が好ましい。この場合において、結着剤中の、不飽和カルボン酸類の単量体の比率は、下限は3重量%以上であることが好ましく、5重量%以上であることがより好ましく、上限は39重量%以下であることが好ましく、35重量%以下であることがより好ましい。 The acrylonitrile-butadiene copolymer preferably further contains monomer units of the aforementioned unsaturated carboxylic acids such as acrylic acid and methacrylic acid in addition to 1,3-butadiene and acrylonitrile. As unsaturated carboxylic acids, methacrylic acid is preferable. In this case, the lower limit of the ratio of the unsaturated carboxylic acid monomer in the binder is preferably 3% by weight or more, more preferably 5% by weight or more, and the upper limit is 39% by weight. Or less, more preferably 35% by weight or less.
 本発明に用いる結着剤のガラス転移温度(以下、「Tg」という)は、好ましくは-40~+40℃、より好ましくは-30~+30℃である。結着剤のTgが高すぎると得られるキャパシタ層が柔軟性に劣り、結着剤のTgが低すぎるとキャパシタ層の成形が困難となる。また、結着剤は融点を有するものであってもよい。 The glass transition temperature (hereinafter referred to as “Tg”) of the binder used in the present invention is preferably −40 to + 40 ° C., more preferably −30 to + 30 ° C. When the Tg of the binder is too high, the obtained capacitor layer is inferior in flexibility, and when the Tg of the binder is too low, it is difficult to mold the capacitor layer. Further, the binder may have a melting point.
 結着剤の形状は、結着性の向上、電極の容量の低下、および内部抵抗の増大を最小限に抑えるために、粒子状であることが最も好ましく、例えば、ラテックスのような結着剤樹脂の粒子が溶媒に分散した状態のものや、このような分散液を乾燥して得られる粉末状のものが挙げられる。 The shape of the binder is most preferably particulate in order to minimize binding, increase in electrode capacity, and increase in internal resistance, for example, a binder such as latex. Examples include resin particles dispersed in a solvent and powders obtained by drying such a dispersion.
 結着剤の粒子径は特に限定されないが、体積平均粒子径で、100~500nmであることが好ましい。 The particle size of the binder is not particularly limited, but the volume average particle size is preferably 100 to 500 nm.
 結着剤の製造方法は特に限定されず、所定の比率で各単量体を含む組成物を用いた乳化重合法、懸濁重合法、分散重合法または溶液重合法等の公知の重合法を採用することができる。中でも、乳化重合法で製造することが、結着剤の粒子径の制御が容易であるので好ましい。特に水を主溶媒とした水系での重合法が好ましい。 The method for producing the binder is not particularly limited, and a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method using a composition containing each monomer at a predetermined ratio is used. Can be adopted. Among them, it is preferable to produce by an emulsion polymerization method because the particle diameter of the binder is easy to control. In particular, an aqueous polymerization method using water as a main solvent is preferred.
 (電解液不溶性セルロース)
 本発明に用いるキャパシタ層は、さらに電解液不溶性セルロースを含むことが好ましい。
電解液不溶性セルロースとしては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩等が挙げられ、電解液として用いられる硫酸に溶けにくい結果、得られる鉛キャパシタ蓄電池の内部抵抗を低下できる観点から、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩をもちいることが好ましく、カルボキシメチルセルロースのアンモニウム塩を用いることがより好ましい。本発明における電解液不溶性セルロースは、電解液として用いられる硫酸に不溶であり、後述の電解液分散性セルロースとは異なる。
(Electrolyte insoluble cellulose)
The capacitor layer used in the present invention preferably further contains an electrolyte-insoluble cellulose.
Examples of the electrolyte-insoluble cellulose include cellulose polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose, and hydroxypropylcellulose, and ammonium salts or alkali metal salts thereof. From the viewpoint of reducing the internal resistance of the lead capacitor storage battery, it is preferable to use carboxymethyl cellulose, an ammonium salt or an alkali metal salt thereof, and more preferably an ammonium salt of carboxymethyl cellulose. The electrolyte-insoluble cellulose in the present invention is insoluble in sulfuric acid used as the electrolyte and is different from the electrolyte-dispersible cellulose described below.
 また、電解液不溶性セルロースの比率は、キャパシタ電極活物質100重量部に対して、0.1~10重量部であることが好ましく、0.8~2.5重量部であることがより好ましい。電解液不溶性セルロースの比率を上記範囲とすることにより、後述するスラリーの安定性を向上させることができ、得られる鉛キャパシタ蓄電池の寿命特性を向上させることができる。 In addition, the ratio of the electrolyte-insoluble cellulose is preferably 0.1 to 10 parts by weight, more preferably 0.8 to 2.5 parts by weight with respect to 100 parts by weight of the capacitor electrode active material. By setting the ratio of the electrolyte-insoluble cellulose in the above range, the stability of the slurry described later can be improved, and the life characteristics of the obtained lead capacitor storage battery can be improved.
 なお、電解液不溶性セルロースに加えて、または、電解液不溶性セルロースに代えて、(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体等などの増粘剤を用いてもよい。 In addition to or in place of the electrolyte-insoluble cellulose, (modified) poly (meth) acrylic acid and ammonium salts thereof and alkali metal salts; (modified) polyvinyl alcohol, acrylic acid or acrylic acid Polyvinyl alcohols such as copolymers of salts and vinyl alcohol, maleic anhydride or maleic acid or copolymers of fumaric acid and vinyl alcohol; polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, phosphoric acid Thickeners such as starch, casein, various modified starches, chitin and chitosan derivatives may be used.
 上記増粘剤を分散剤として用いる場合には、これらの分散剤は、それぞれ単独でまたは2種以上を組み合わせて使用でき、中でも、分散剤としては、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。分散剤の使用量は、特に限定されないが、電極活物質100重量部に対して、通常は0.1~10重量部、好ましくは0.5~5重量部、より好ましくは0.8~2.5重量部の範囲である。分散剤を用いることで、スラリー中の固形分の沈降や凝集を抑制できる。 When the above thickener is used as a dispersant, these dispersants can be used alone or in combination of two or more. Among them, the dispersant is preferably a cellulosic polymer, such as carboxymethylcellulose or ammonium thereof. Particularly preferred are salts or alkali metal salts. The amount of the dispersant used is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0.8 to 2 parts per 100 parts by weight of the electrode active material. .5 parts by weight. By using a dispersing agent, sedimentation and aggregation of solid content in the slurry can be suppressed.
 キャパシタ層は、さらに必要に応じてその他の添加剤を含有していてもよい。具体的には、後述するスラリーの電気的な安定性向上のため、アニオン性、カチオン性、ノニオン性、あるいはノニオニックアニオン等の両性の界面活性剤や、アミノカルボン酸系キレート化合物、ホスホン酸系キレート化合物、グルコン酸、クエン酸、リンゴ酸、酒石酸などのキレート化合物などが挙げられる。 The capacitor layer may further contain other additives as necessary. Specifically, in order to improve the electrical stability of the slurry described later, amphoteric surfactants such as anionic, cationic, nonionic or nonionic anions, aminocarboxylic acid chelate compounds, phosphonic acids And chelate compounds such as chelates, gluconic acid, citric acid, malic acid and tartaric acid.
 (キャパシタ層の製造方法)
 本発明に用いるキャパシタ層は、キャパシタ電極活物質、導電剤、結着剤および必要に応じて用いられるその他の成分を含む。また、本発明の鉛蓄電池用キャパシタ電極は、キャパシタ層が支持体上に設けられるが、キャパシタ層の支持体上への形成方法は制限されない。
(Capacitor layer manufacturing method)
The capacitor layer used in the present invention includes a capacitor electrode active material, a conductive agent, a binder, and other components used as necessary. In the capacitor electrode for a lead storage battery of the present invention, the capacitor layer is provided on the support, but the method of forming the capacitor layer on the support is not limited.
 キャパシタ層の支持体上への形成方法としては、キャパシタ電極活物質、結着剤及び導電剤と、必要に応じて用いる前記任意成分とからなる複合粒子を調製し、これを支持体上にシート成形し、必要に応じてロール成形して得る方法(乾式成形法)が、鉛蓄電池の容量を高く、且つ内部抵抗を低減できる点で好ましい。 As a method for forming a capacitor layer on a support, composite particles comprising a capacitor electrode active material, a binder and a conductive agent and the optional components used as necessary are prepared, and this is formed on a sheet. A method (dry molding method) obtained by molding and roll molding as necessary is preferable in that the capacity of the lead storage battery can be increased and the internal resistance can be reduced.
 (乾式成形法)
 (複合粒子の調製)
 本発明に用いるキャパシタ層を、乾式成形法により成形する場合において、キャパシタ層を形成するキャパシタ層組成物は、前述のようにキャパシタ電極活物質、導電剤および結着剤の必須成分と、電解液不溶性セルロース、分散剤などの任意成分とを含んでなる複合粒子であることが好ましい。キャパシタ層スラリーが複合粒子であることにより、得られる鉛蓄電池用電極の電極強度を高くしたり、内部抵抗を低減したりすることができる。
本発明でいう複合粒子とは、キャパシタ電極活物質、導電剤および結着剤の必須成分、並びに分散剤などの任意成分等、複数の材料が一体化した粒子をさす。また、好適に用いることができる複合粒子は、キャパシタ電極活物質、導電剤および結着剤の必須成分、並びに電解液不溶性セルロース、分散剤などの任意成分を用いて造粒することにより製造される。
(Dry molding method)
(Preparation of composite particles)
When the capacitor layer used in the present invention is molded by a dry molding method, the capacitor layer composition for forming the capacitor layer includes, as described above, the essential components of the capacitor electrode active material, the conductive agent and the binder, and the electrolytic solution. A composite particle comprising an optional component such as insoluble cellulose and a dispersant is preferred. When the capacitor layer slurry is composite particles, the electrode strength of the obtained lead storage battery electrode can be increased, or the internal resistance can be reduced.
The composite particle as used in the present invention refers to a particle in which a plurality of materials such as a capacitor electrode active material, an essential component of a conductive agent and a binder, and an optional component such as a dispersant are integrated. In addition, composite particles that can be suitably used are produced by granulation using an essential component of a capacitor electrode active material, a conductive agent and a binder, and optional components such as an electrolyte-insoluble cellulose and a dispersant. .
 複合粒子の造粒方法は特に制限されず、噴霧乾燥造粒法、転動層造粒法、圧縮型造粒法、攪拌型造粒法、押出し造粒法、破砕型造粒法、流動層造粒法、流動層多機能型造粒法、および溶融造粒法などの公知の造粒法により製造することができる。中でも、表面付近に結着剤および導電剤が偏在した複合粒子を容易に得られるので、噴霧乾燥造粒法が好ましい。噴霧乾燥造粒法で得られる複合粒子を用いることにより、鉛蓄電池用電極を高い生産性で得ることができる。また、該電極の内部抵抗をより低減することができる。 The granulation method of the composite particles is not particularly limited, and is spray drying granulation method, rolling bed granulation method, compression granulation method, stirring granulation method, extrusion granulation method, crushing granulation method, fluidized bed It can be produced by a known granulation method such as a granulation method, a fluidized bed multifunctional granulation method, or a melt granulation method. Among these, the spray-drying granulation method is preferable because composite particles in which a binder and a conductive agent are unevenly distributed near the surface can be easily obtained. By using the composite particles obtained by the spray-drying granulation method, the lead-acid battery electrode can be obtained with high productivity. In addition, the internal resistance of the electrode can be further reduced.
 前記噴霧乾燥造粒法では、まず上記したキャパシタ電極活物質、導電剤および結着剤の必須成分、並びに電解液不溶性セルロース、分散剤などの任意成分を溶媒に分散または溶解して、キャパシタ電極活物質、導電剤および結着剤の必須成分、並びに電解液不溶性セルロース、分散剤などの任意成分が分散または溶解されてなるスラリーを得る。 In the spray-drying granulation method, first, the capacitor electrode active material, the essential components of the conductive agent and the binder, and optional components such as the electrolyte solution insoluble cellulose and the dispersant are dispersed or dissolved in a solvent to obtain the capacitor electrode active material. A slurry is obtained in which the essential components of the substance, conductive agent and binder, and optional components such as electrolyte-insoluble cellulose and dispersant are dispersed or dissolved.
 スラリーを得るために用いる溶媒は、特に限定されないが、上記の分散剤を用いる場合には、分散剤を溶解可能な溶媒が好適に用いられる。具体的には、通常水が用いられるが、有機溶媒を用いることもできるし、水と有機溶媒との混合溶媒を用いてもよい。有機溶媒としては、例えば、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類;アセトン、メチルエチルケトン等のアルキルケトン類;テトラヒドロフラン、ジオキサン、ジグライム等のエーテル類;ジエチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイド、スルホラン等のイオウ系溶剤;等が挙げられる。この中でも有機溶媒としては、アルコール類が好ましい。水と、水よりも沸点の低い有機溶媒とを併用すると、噴霧乾燥時に、乾燥速度を速くすることができる。また、水と併用する有機溶媒の量または種類によって、結着剤の分散性または分散剤の溶解性が変わる。これにより、スラリーの粘度や流動性を調整することができ、生産効率を向上させることができる。 The solvent used for obtaining the slurry is not particularly limited, but when the above dispersant is used, a solvent capable of dissolving the dispersant is preferably used. Specifically, water is usually used, but an organic solvent may be used, or a mixed solvent of water and an organic solvent may be used. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; diethylformamide, dimethylacetamide and N-methyl- Amides such as 2-pyrrolidone and dimethylimidazolidinone; sulfur solvents such as dimethyl sulfoxide and sulfolane; and the like. Among these, alcohols are preferable as the organic solvent. When water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying. Further, the dispersibility of the binder or the solubility of the dispersant varies depending on the amount or type of the organic solvent used in combination with water. Thereby, the viscosity and fluidity | liquidity of a slurry can be adjusted and production efficiency can be improved.
 スラリーを調製するときに使用する溶媒の量は、スラリーの固形分濃度が、通常1~50重量%、好ましくは5~50重量%、より好ましくは10~30重量%の範囲となる量である。固形分濃度がこの範囲にあるときに、結着剤が均一に分散するため好適である。 The amount of the solvent used when preparing the slurry is such that the solid content concentration of the slurry is usually in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. . When the solid content concentration is in this range, the binder is preferably dispersed uniformly.
 キャパシタ電極活物質、導電剤および結着剤の必須成分と、電解液不溶性セルロース、分散剤などの任意成分とを溶媒に分散または溶解する方法または手順は特に限定されず、例えば、溶媒に、キャパシタ電極活物質、導電剤、結着剤、電解液不溶性セルロースおよび分散剤等を添加し混合する方法;溶媒に分散剤を溶解した後、溶媒に分散させた結着剤(例えば、ラテックス)を添加して混合し、最後にキャパシタ電極活物質、導電剤および電解液不溶性セルロースを添加して混合する方法;溶媒に分散させた結着剤にキャパシタ電極活物質、導電剤および電解液不溶性セルロースを添加して混合し、この混合物に溶媒に溶解させた分散剤を添加して混合する方法等が挙げられる。混合の手段としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等の混合機器が挙げられる。混合は、通常、室温~80℃の範囲で、10分~数時間行う。 A method or procedure for dispersing or dissolving the essential components of the capacitor electrode active material, the conductive agent and the binder and the optional components such as the electrolyte-insoluble cellulose and the dispersant in the solvent is not particularly limited. A method in which an electrode active material, a conductive agent, a binder, an electrolyte-insoluble cellulose and a dispersant are added and mixed; after the dispersant is dissolved in a solvent, a binder (for example, latex) dispersed in the solvent is added Finally, the capacitor electrode active material, conductive agent and electrolyte-insoluble cellulose are added and mixed; the capacitor electrode active material, conductive agent and electrolyte-insoluble cellulose are added to the binder dispersed in the solvent And a method in which a dispersant dissolved in a solvent is added to the mixture and mixed. Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
 スラリーの粘度は、室温において、通常10~3,000mPa・s、好ましくは30~1,500mPa・s、より好ましくは50~1,000mPa・sの範囲である。スラリーの粘度がこの範囲にあると、複合粒子の生産性を上げることができる。また、スラリーの粘度が高いほど、噴霧液滴が大きくなり、得られる複合粒子の体積平均粒子径が大きくなる。 The viscosity of the slurry is usually in the range of 10 to 3,000 mPa · s, preferably 30 to 1,500 mPa · s, more preferably 50 to 1,000 mPa · s at room temperature. When the viscosity of the slurry is within this range, the productivity of the composite particles can be increased. Moreover, the higher the viscosity of the slurry, the larger the spray droplets, and the larger the volume average particle diameter of the resulting composite particles.
 次に、上記で得たスラリーを噴霧乾燥して造粒し、複合粒子を得る。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥することにより行う。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーは、回転円盤方式と加圧方式との二種類の装置がある。回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。円盤の回転速度は円盤の大きさに依存するが、通常は5,000~30,000rpm、好ましくは15,000~30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の体積平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、好ましくはピン型アトマイザーである。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円状に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、スラリーを加圧してノズルから霧状にして乾燥する方式である。 Next, the slurry obtained above is spray-dried and granulated to obtain composite particles. Spray drying is performed by spraying the slurry in hot air and drying. An atomizer is used as an apparatus used for spraying slurry. There are two types of atomizers: a rotating disk method and a pressure method. The rotating disk system is a system in which slurry is introduced almost at the center of a disk that rotates at a high speed, and the slurry is released out of the disk by the centrifugal force of the disk, and the slurry is atomized at that time. The rotational speed of the disk depends on the size of the disk, but is usually 5,000 to 30,000 rpm, preferably 15,000 to 30,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the volume average particle diameter of the resulting composite particles. Examples of the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable. A pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers attached between upper and lower mounting disks in a substantially concentric manner along its periphery. It consists of The slurry is introduced from the center of the spray platen, adheres to the spraying roller by centrifugal force, moves outside the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry is pressurized and sprayed from a nozzle to be dried.
 噴霧されるスラリーの温度は、通常は室温であるが、加温して室温以上にしたものであってもよい。また、噴霧乾燥時の熱風温度は、通常80~250℃、好ましくは100~200℃である。噴霧乾燥において、熱風の吹き込み方法は特に制限されず、例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。 The temperature of the slurry to be sprayed is usually room temperature, but it may be heated to room temperature or higher. The hot air temperature at the time of spray drying is usually 80 to 250 ° C., preferably 100 to 200 ° C. In spray drying, the method of blowing hot air is not particularly limited, for example, a method in which the hot air and the spray direction flow in the horizontal direction, a method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air are in countercurrent contact. And a system in which sprayed droplets first flow in parallel with hot air and then drop by gravity to make countercurrent contact.
 上記の噴霧乾燥により、複合粒子が得られる。該複合粒子の体積平均粒子径は、流動性がよく、薄膜化が可能である観点から、通常0.1~1000μm、好ましくは1~80μm、より好ましくは10~65μmである。ここで、複合粒子の体積平均粒子径は、レーザ回折式粒度分布測定装置を用いて複合粒子を圧搾空気により加圧噴霧して測定される体積平均粒子径である。 複合 Composite particles are obtained by spray drying. The volume average particle diameter of the composite particles is usually 0.1 to 1000 μm, preferably 1 to 80 μm, more preferably 10 to 65 μm, from the viewpoint of good fluidity and enabling thinning. Here, the volume average particle diameter of the composite particles is a volume average particle diameter measured by pressurizing and spraying the composite particles with compressed air using a laser diffraction particle size distribution analyzer.
 また、前記複合粒子は、球状であることが好ましい。前記複合粒子が球状であるか否かの評価は、複合粒子の短軸径をLs、長軸径をLlとしたときに(Ll-Ls)/{(Ls+Ll)/2}で算出される値(以下、「球状度」という。)により行う。ここで、短軸径Lsおよび長軸径Llは、反射型電子顕微鏡を用いて複合粒子を観察した写真像より測定される100ケの任意の複合粒子についての平均値である。この数値が小さいほど球状複合粒子が真球に近いことを示す。 The composite particles are preferably spherical. Whether the composite particles are spherical or not is evaluated by (Ll−Ls) / {(Ls + Ll) / 2} where Ls is the minor axis diameter of the composite particles and Ll is the major axis diameter. (Hereinafter referred to as “sphericity”). Here, the minor axis diameter Ls and the major axis diameter Ll are average values for 100 arbitrary composite particles measured from a photographic image obtained by observing the composite particles using a reflection electron microscope. The smaller this value, the closer the spherical composite particle is to a true sphere.
 たとえば、上記写真像で正方形として観察される粒子は、上記球状度は34.4%と計算されるので、34.4%を超える球状度を示す複合粒子は、少なくとも球状とはいえない。複合粒子の球状度は、好ましくは20%以下であり、さらに好ましくは15%以下である。 For example, the particle observed as a square in the photographic image has a sphericity of 34.4%, so the composite particle showing a sphericity exceeding 34.4% is not at least spherical. The sphericity of the composite particles is preferably 20% or less, and more preferably 15% or less.
 上記の製造方法で得られた複合粒子は、必要に応じて粒子製造後の後処理を実施することもできる。具体例としては、複合粒子に上記のキャパシタ電極活物質、導電剤、結着剤、電解液不溶性セルロースあるいは添加剤等と混合することによって、粒子表面を改質して、球状複合粒子の流動性を向上または低下させる、連続加圧成形性を向上させる、球状複合粒子の電気伝導性を向上させることなどができる。 The composite particles obtained by the above production method can be subjected to post-treatment after production of the particles, if necessary. As a specific example, the fluidity of spherical composite particles is improved by modifying the particle surface by mixing the composite electrode with the capacitor electrode active material, conductive agent, binder, electrolyte-insoluble cellulose, or additive. Can be improved or decreased, continuous pressure moldability can be improved, and the electrical conductivity of the spherical composite particles can be improved.
 (ロール成形)
 本発明のキャパシタ層を乾式成形法で製造する場合は、複合粒子等のキャパシタ電極組成物からなるキャパシタ層をロール成形により直接支持体上に成形することにより鉛蓄電池用キャパシタ電極を得る方法(以下、「第1の製造方法」という。)、複合粒子等のキャパシタ電極組成物からなるキャパシタ層をロール成形により第1の支持体上に成形し、得られたキャパシタ層を第2の支持体上に転写することにより鉛蓄電池用キャパシタ電極を得る方法(以下、「第2の製造方法」という。)が挙げられる。なお、第1の製造方法における支持体、第2の製造方法における第1の支持体および第2の支持体には、鉛電極に使用される集電体は含まれない。
(Roll molding)
When the capacitor layer of the present invention is produced by a dry molding method, a capacitor layer made of a capacitor electrode composition such as composite particles is directly formed on a support by roll molding to obtain a capacitor electrode for a lead storage battery (hereinafter referred to as “capacitor electrode”). , “First manufacturing method”), a capacitor layer composed of a capacitor electrode composition such as composite particles is formed on a first support by roll forming, and the obtained capacitor layer is formed on a second support. And a method of obtaining a capacitor electrode for a lead storage battery (hereinafter referred to as “second manufacturing method”). In addition, the collector used for a lead electrode is not contained in the support body in a 1st manufacturing method, and the 1st support body and 2nd support body in a 2nd manufacturing method.
 (第1の製造方法)
 第1の製造方法においては、複合粒子等のキャパシタ電極組成物と、支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより前記キャパシタ電極組成物をシート状成形体に成形することによりキャパシタ層を得るとともに、これを前記支持体の面に圧着する。
(First manufacturing method)
In the first production method, the capacitor electrode composition such as composite particles and the support are supplied to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls or belts A capacitor layer is obtained by molding the capacitor electrode composition into a sheet-like molded body, and this is pressure-bonded to the surface of the support.
 第1の製造方法に使用される支持体は、キャパシタ層を支持し、さらに、キャパシタ層を鉛電極に貼り合わせるために使用するものであり、本発明においては、支持体を構成する材料としては、電解液分散性セルロースを用いることができる。電解液分散性セルロースからなる支持体の厚さは特に限定されないが、10~50μmが好ましく、20~40μmがより好ましい。また、幅も特に限定されないが100~1000mm、さらには100~500mmが好適である。電解液分散性セルロースからなる支持体の引っ張り強度は特に限定されないが、キャパシタ層の製造時の破断を防ぐ観点から、30~500MPaが好適であり、30~300MPaがより好適である。電解液分散性セルロースからなる支持体の製造方法は特に限定されないが、パルプ化工程、調整工程、抄造工程、仕上げ工程を経て製造されることが好ましい。 The support used in the first manufacturing method is used for supporting the capacitor layer and further bonding the capacitor layer to the lead electrode. In the present invention, as the material constituting the support, Electrolyte-dispersible cellulose can be used. The thickness of the support made of the electrolyte-dispersible cellulose is not particularly limited, but is preferably 10 to 50 μm, and more preferably 20 to 40 μm. The width is not particularly limited, but is preferably 100 to 1000 mm, more preferably 100 to 500 mm. The tensile strength of the support made of the electrolyte-dispersible cellulose is not particularly limited, but is preferably 30 to 500 MPa, more preferably 30 to 300 MPa from the viewpoint of preventing breakage during the production of the capacitor layer. Although the manufacturing method of the support body which consists of electrolyte solution dispersible cellulose is not specifically limited, It is preferable to manufacture through a pulping process, an adjustment process, a papermaking process, and a finishing process.
 (電解液分散性セルロース)
 本発明に用いる電解液分散性セルロースは、前記のキャパシタ層形成の際の支持体として用いられる。また、電解液分散性セルロースは、電解液として用いられる硫酸に分散する。
(Electrolyte dispersible cellulose)
The electrolytic solution-dispersible cellulose used in the present invention is used as a support in forming the capacitor layer. Further, the electrolytic solution-dispersible cellulose is dispersed in sulfuric acid used as an electrolytic solution.
 電解液分散性セルロースとしては、木材由来のセルロースが好ましく、短繊維(例えば長さ1~2mm、幅20μm程度)であることが好ましい。電解液分散性セルロースの繊維の長さや幅が大きすぎると電解液中に分散されにくくなり、電解液分散性セルロースの繊維の長さや幅が小さすぎると得られるキャパシタ層の強度が弱くなる。 The electrolyte-dispersible cellulose is preferably wood-derived cellulose, and is preferably a short fiber (for example, a length of 1 to 2 mm and a width of about 20 μm). If the length or width of the electrolyte-dispersible cellulose fiber is too large, it is difficult to disperse in the electrolyte solution, and if the length or width of the electrolyte-dispersible cellulose fiber is too small, the strength of the obtained capacitor layer becomes weak.
 また、得られる鉛キャパシタ蓄電池における電解液中の電解液分散性セルロースの量は、鉛キャパシタ蓄電池が長寿命となる観点から、キャパシタ層中のキャパシタ電極活物質100重量部に対して好ましくは3~30重量部、より好ましくは10~30重量部である。電解液中の電解液分散性セルロースの量が多すぎると電解液中の電解液分散性セルロースの影響により鉛キャパシタ蓄電池の抵抗が増加する。また、電解液中の電解液分散性セルロースの量を上記範囲とすることにより、得られる鉛キャパシタ蓄電池の寿命特性をより向上させることができる。なお、電解液中の電解液分散性セルロースの量は、用いる電解液分散性セルロースの種類で調整することができる。 In addition, the amount of the electrolyte-dispersible cellulose in the electrolyte in the obtained lead capacitor storage battery is preferably 3 to 100 parts by weight with respect to 100 parts by weight of the capacitor electrode active material in the capacitor layer from the viewpoint of extending the life of the lead capacitor storage battery. 30 parts by weight, more preferably 10 to 30 parts by weight. If the amount of the electrolyte-dispersible cellulose in the electrolyte is too large, the resistance of the lead capacitor storage battery increases due to the influence of the electrolyte-dispersible cellulose in the electrolyte. Moreover, the lifetime characteristic of the lead capacitor storage battery obtained can be improved more by making the quantity of the electrolyte-dispersible cellulose in electrolyte solution into the said range. In addition, the quantity of the electrolyte solution dispersible cellulose in electrolyte solution can be adjusted with the kind of electrolyte solution dispersible cellulose to be used.
 (第2の製造方法)
 第2の製造方法においては、複合粒子等のキャパシタ電極組成物と、第1の支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより前記キャパシタ電極組成物をシート状成形体に成形することによりキャパシタ層を得るとともに、これを前記第1の支持体の面に圧着する。次いで、第1の支持体に圧着されたキャパシタ層を第2の支持体に転写する。
(Second manufacturing method)
In the second production method, the capacitor electrode composition such as composite particles and the first support are supplied to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls or A capacitor layer is obtained by molding the capacitor electrode composition into a sheet-like molded body using a belt, and this is pressure-bonded to the surface of the first support. Next, the capacitor layer bonded to the first support is transferred to the second support.
 第1の支持体としては、表面が粗面化された支持体または離型処理された支持体を用いる。また、第2の支持体としては、上述の第1の製造方法において支持体として用いられる電解液分散型セルロースからなる支持体を用いることができる。 As the first support, a support having a roughened surface or a release-treated support is used. In addition, as the second support, a support made of an electrolytic solution-dispersed cellulose used as the support in the first manufacturing method described above can be used.
 図1は、キャパシタ電極組成物と、表面が粗面化または離型処理された第1の支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより前記キャパシタ電極組成物をシート状成形体に成形するとともに、これを前記支持体の粗面化された面と圧着する工程の具体的な態様を表す図である。 FIG. 1 shows a method of supplying a capacitor electrode composition and a first support having a surface roughened or released to a pair of press rolls or belts disposed substantially horizontally. It is a figure showing the specific aspect of the process of shape | molding the said capacitor electrode composition into a sheet-like molded object with a roll or belt, and crimping | bonding this to the roughened surface of the said support body.
 図1では、第1の支持体14の巻収体をアンワイダー11に取り付け、これを送り出す。次いで、前記キャパシタ電極組成物(図では複合粒子)13をスクリューフィーダー等の供給装置により略水平に配置された一対のプレス用ロール12に供給し、一対のプレス用ロールにより加圧成形することにより、前記キャパシタ電極組成物をシート状成形体に成形するとともに、これを第1の支持体14の面に圧着する。そして、キャパシタ層を形成した第1の支持体をワインダー10で巻き取り、第1の支持体およびキャパシタ層の巻収体が得られる。 In FIG. 1, the roll of the first support 14 is attached to the unwinder 11 and sent out. Next, the capacitor electrode composition (composite particles in the figure) 13 is supplied to a pair of press rolls 12 arranged substantially horizontally by a supply device such as a screw feeder, and is pressure-formed by a pair of press rolls. The capacitor electrode composition is molded into a sheet-like molded body, and this is pressure-bonded to the surface of the first support 14. And the 1st support body in which the capacitor layer was formed is wound up with the winder 10, and the 1st support body and the winding-up body of a capacitor layer are obtained.
 なお、図1に示されている一対のプレス用ロールは、一対のプレス用ベルトに置き換えることができる。また、図1においては、表面が粗面化または離型処理された第1の支持体1として説明したが、第1の支持体1を第1の製造方法における支持体に変更した場合には、第1の製造方法における工程を示す図となる。 The pair of press rolls shown in FIG. 1 can be replaced with a pair of press belts. Moreover, in FIG. 1, although demonstrated as the 1st support body 1 by which the surface was roughened or released, when the 1st support body 1 was changed into the support body in a 1st manufacturing method, It becomes a figure which shows the process in a 1st manufacturing method.
 (第1の支持体)
 第2の製造方法に使用される第1の支持体は、キャパシタ層をロール成形する際にキャパシタ層を支持するために使用するものである。第1の支持体を構成する材料としては、キャパシタ層を第1の支持体上に形成することができれば無機材料、有機材料、制限なく使用することができる。例えば、アルミニウム箔、銅箔などの金属箔;プラスチックフィルム;紙などが挙げられる。また、上記フィルムを重ねた多層構造のフィルムを用いても良い。これらの中でも、汎用性や取扱いの観点から紙、熱可塑性樹脂フィルムが好ましく、特に紙、熱可塑性樹脂フィルムの中では、PET(ポリエチレンテレフタレート)フィルム、ポリオレフィン系フィルム、PVA(ポリビニルアルコール)フィルム、PVB(ポリビニルブチラールフィルム)、PVC(ポリ塩化ビニル)フィルムが好ましい。
(First support)
The 1st support body used for the 2nd manufacturing method is used in order to support a capacitor layer, when roll forming a capacitor layer. As a material constituting the first support, inorganic materials and organic materials can be used without limitation as long as the capacitor layer can be formed on the first support. For example, metal foil such as aluminum foil and copper foil; plastic film; paper and the like can be mentioned. Moreover, you may use the film of the multilayered structure which accumulated the said film. Among these, paper and thermoplastic resin film are preferable from the viewpoint of versatility and handling, and among paper and thermoplastic resin film, in particular, PET (polyethylene terephthalate) film, polyolefin film, PVA (polyvinyl alcohol) film, PVB (Polyvinyl butyral film) and PVC (polyvinyl chloride) film are preferable.
 第2の製造方法においては、キャパシタ層に接する第1の支持体の面が、粗面化または離型処理されている。第1の支持体のキャパシタ層に接する面が粗面化されていることにより、アンカリング効果によりキャパシタ層と密着しロール巻き取りが可能となる。また、鉛蓄電池用電極を製造する際に、第1の支持体から第2の支持体へキャパシタ層を容易に転写することができる。第1の支持体の粗面化された面の表面粗さRaは、キャパシタ層と第1の支持体との密着性の観点および、第1の支持体から第2の支持体へのキャパシタ層の転写が容易となる観点から、好ましくは0.1~5μm、より好ましくは0.2~3μm、さらに好ましくは0.2~1μmの範囲にある。 In the second manufacturing method, the surface of the first support in contact with the capacitor layer is roughened or released. Since the surface of the first support that is in contact with the capacitor layer is roughened, it can be in close contact with the capacitor layer due to the anchoring effect and can be rolled up. Moreover, when manufacturing the lead storage battery electrode, the capacitor layer can be easily transferred from the first support to the second support. The surface roughness Ra of the roughened surface of the first support is determined from the viewpoint of adhesion between the capacitor layer and the first support, and the capacitor layer from the first support to the second support. From the viewpoint of facilitating transfer of the film, it is preferably in the range of 0.1 to 5 μm, more preferably 0.2 to 3 μm, and still more preferably 0.2 to 1 μm.
 表面粗さRaは、JIS B0601に準拠して、例えばナノスケールハイブリッド顕微鏡(VN-8010、キーエンス社製)を用いて、粗さ曲線を描き、下式に示す式より算出することができる。下式において、Lは測定長さ、xは平均線から測定曲線までの偏差である。 The surface roughness Ra can be calculated from the equation shown below by drawing a roughness curve using, for example, a nanoscale hybrid microscope (VN-8010, manufactured by Keyence Corporation) in accordance with JIS B0601. In the following formula, L is the measurement length, and x is the deviation from the average line to the measurement curve.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の支持体表面を粗面化する方法は特に制限されず、第1の支持体表面をエンボス処理する方法;第1の支持体表面をサンドブラスト処理する方法;マット材を第1の支持体を構成する材料に練り込む方法;マット材を含む層を第1の支持体表面にコーティングする方法などが挙げられる。中でも、キャパシタ層との密着性の観点から第1の支持体表面をサンドブラスト処理する方法が好ましい。第1の支持体の粗面化処理は、片面のみに施してもよく、両面に施してもよい。 A method for roughening the surface of the first support is not particularly limited, a method for embossing the surface of the first support; a method for sandblasting the surface of the first support; a mat material for the first support And a method of coating a layer containing a mat material on the surface of the first support. Among these, the method of sandblasting the first support surface from the viewpoint of adhesion to the capacitor layer is preferable. The roughening treatment of the first support may be performed only on one side or on both sides.
 第1の支持体表面を離型処理する場合において、離型処理の方法は特に限定されないが、例えばアルキド樹脂などの熱硬化性樹脂を第1の支持体上に塗工し、これを硬化する方法;シリコーン樹脂を第1の支持体上に塗工し、これを硬化する方法;フッ素樹脂を第1の支持体上に塗工する方法を用いることが好ましい。特に、均質な離型処理層を容易に形成できる観点からは、熱硬化性樹脂を用いた離型処理が好ましく、キャパシタ層の成形性、および第1の支持体から第2の支持体へのキャパシタ層の転写の容易性のバランスの観点からは、アルキド樹脂の塗工、硬化による離型処理が好ましい。 In the case of releasing the surface of the first support, the method of releasing is not particularly limited. For example, a thermosetting resin such as an alkyd resin is applied on the first support and is cured. Method: It is preferable to use a method in which a silicone resin is coated on a first support and cured, and a method in which a fluororesin is coated on the first support. In particular, from the viewpoint of easily forming a homogeneous release treatment layer, release treatment using a thermosetting resin is preferable, and the moldability of the capacitor layer and the first support to the second support are preferred. From the viewpoint of the balance of ease of transfer of the capacitor layer, a release treatment by coating and curing of an alkyd resin is preferable.
 第1の支持体の厚さは特に限定されないが、10~200μmが好ましく、20~150μmがより好ましく、20~100μmが特に好ましい。また、幅も特に限定されないが100~1000mm、さらには100~500mmが好適である。 The thickness of the first support is not particularly limited, but is preferably 10 to 200 μm, more preferably 20 to 150 μm, and particularly preferably 20 to 100 μm. The width is not particularly limited, but is preferably 100 to 1000 mm, more preferably 100 to 500 mm.
 第1の支持体の引っ張り強度は特に限定されないが、キャパシタ層の製造時の破断を防ぐ観点から、30~500MPaが好適であり、30~300MPaがより好適である。
 本発明に使用される第1の支持体は繰り返し使用することも可能であり、繰り返し使用することで、さらに電極の生産コストを安くできる。
The tensile strength of the first support is not particularly limited, but is preferably 30 to 500 MPa, more preferably 30 to 300 MPa, from the viewpoint of preventing breakage during the production of the capacitor layer.
The 1st support body used for this invention can also be used repeatedly, and can reduce the production cost of an electrode further by using it repeatedly.
 (キャパシタ層)
 以下、第1の製造方法および第2の製造方法により得られるキャパシタ層について説明する。
(Capacitor layer)
Hereinafter, the capacitor layer obtained by the first manufacturing method and the second manufacturing method will be described.
 ロール成形により得られるキャパシタ層の密度は、特に制限されないが、通常は0.30~10g/cm3、好ましくは0.35~5.0g/cm3、より好ましくは0.40~3.0g/cm3である。また、キャパシタ層の厚さは、特に制限されないが、通常は5~1000μm、好ましくは20~500μm、より好ましくは30~400μmである。 The density of the capacitor layer obtained by roll forming is not particularly limited, but is usually 0.30 to 10 g / cm 3 , preferably 0.35 to 5.0 g / cm 3 , more preferably 0.40 to 3.0 g. / Cm 3 . The thickness of the capacitor layer is not particularly limited, but is usually 5 to 1000 μm, preferably 20 to 500 μm, more preferably 30 to 400 μm.
 また、ロール成形により得られるキャパシタ層における結着剤の密度は、後述する鉛キャパシタ蓄電池を製造する際に、負極側および正極側のそれぞれにおいて、0.45~0.52g/cm3であり、0.49~0.51g/cm3であることが好ましい。本発明において、結着剤密度が、正極側と負極側とにおいて0.48~0.52g/cm3の範囲であるとは、キャパシタ層を厚さ方向の中間点で正極側と負極側と2つの領域にわけたとき、正極側、負極側、双方において、結着剤密度が上記範囲にあることを示す。キャパシタ層における、正極側又は負極側の結着剤の密度が、大きすぎたり、小さすぎたりすると、得られる鉛蓄電池用キャパシタ電極の抵抗が増加する。キャパシタ層における結着剤の密度は、電極中の結着剤をオスミウム環境下で1晩放置することによりで染色し、クロスセクションポリッシャー(CP)を用いて染色した電極から断面を切り出し、走査型電子顕微鏡(SEM)を用いて切り出した断面を観察し、その結果から換算することができる。 Further, the density of the binder in the capacitor layer obtained by roll forming is 0.45 to 0.52 g / cm 3 on each of the negative electrode side and the positive electrode side when producing a lead capacitor storage battery described later, It is preferably 0.49 to 0.51 g / cm 3 . In the present invention, the binder density in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side means that the capacitor layer is positioned at the intermediate point in the thickness direction between the positive electrode side and the negative electrode side. When divided into two regions, the binder density is in the above range on both the positive electrode side and the negative electrode side. When the density of the binder on the positive electrode side or the negative electrode side in the capacitor layer is too large or too small, the resistance of the obtained capacitor electrode for lead storage battery increases. The density of the binder in the capacitor layer is dyed by allowing the binder in the electrode to stand overnight in an osmium environment, and a cross section is cut out from the dyed electrode using a cross section polisher (CP). The cross section cut out using an electron microscope (SEM) can be observed and converted from the result.
 また、前記略水平に配置された一対のプレス用ロール又はベルトに供給する際に、キャパシタ電極組成物は加温されていてもよい。そのときのキャパシタ電極組成物の温度は、プレス用ロール又はベルトの表面にキャパシタ電極組成物の滑りがなく、キャパシタ電極組成物が連続的にかつ均一にプレス用ロール又はベルトに供給されるので、膜厚が均一で、密度のばらつきが小さいキャパシタ層を得ることができる観点から、好ましくは40~160℃、より好ましくは70~140℃である。 Further, the capacitor electrode composition may be heated when being supplied to the pair of press rolls or belts arranged substantially horizontally. The temperature of the capacitor electrode composition at that time is such that there is no slip of the capacitor electrode composition on the surface of the press roll or belt, and the capacitor electrode composition is continuously and uniformly supplied to the press roll or belt. The temperature is preferably 40 to 160 ° C., more preferably 70 to 140 ° C., from the viewpoint of obtaining a capacitor layer having a uniform film thickness and small variation in density.
 また、ロール成形における成形時の温度は、良好な接着力が発現する観点から、通常25~200℃、好ましくは50~150℃、より好ましくは60~120℃である。また、成形速度は通常0.1~20m/分、好ましくは4~20m/分である。 Further, the temperature at the time of molding in roll molding is usually 25 to 200 ° C., preferably 50 to 150 ° C., more preferably 60 to 120 ° C. from the viewpoint of developing good adhesive force. The molding speed is usually 0.1 to 20 m / min, preferably 4 to 20 m / min.
 また、ロール間のプレス線圧は、均一なキャパシタ層を成形する観点から、通常10~1000kN/m、好ましくは200~900kN/m、より好ましくは300~600kN/mである。また、ベルトを用いる場合の成形速度は、通常1~15m/分、好ましくは5~10m/分である。また、プレス用ベルト間の圧力は、通常5~50MPa、好ましくは10~30MPaである。 The press linear pressure between the rolls is usually 10 to 1000 kN / m, preferably 200 to 900 kN / m, more preferably 300 to 600 kN / m from the viewpoint of forming a uniform capacitor layer. Further, the forming speed when using a belt is usually 1 to 15 m / min, preferably 5 to 10 m / min. The pressure between the pressing belts is usually 5 to 50 MPa, preferably 10 to 30 MPa.
 本発明において、成形したキャパシタ層の厚さのばらつきをなくし、キャパシタ層の密度を上げて高容量化をはかるために、必要に応じてさらに後加圧を行っても良い。後加圧の方法は、ロールプレス工程が一般的である。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませ加圧する。ロールは加熱または冷却等して温度調節しても良い。 In the present invention, post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the molded capacitor layer and increase the density of the capacitor layer to increase the capacity. The post-pressing method is generally a roll press process. In the roll press process, two cylindrical rolls are arranged in parallel at a narrow interval in the vertical direction, and each is rotated in the opposite direction. The temperature of the roll may be adjusted by heating or cooling.
 (鉛キャパシタ蓄電池)
 本発明の鉛キャパシタ蓄電池は、正極と負極と、正極と負極の間に配置されるセパレータと、電解液とを含み、前記正極とセパレータとの間および負極とセパレータとの間の少なくとも一方に上述の鉛蓄電池用キャパシタ電極が配置される。
(Lead capacitor battery)
The lead capacitor storage battery of the present invention includes a positive electrode and a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolytic solution, and is described above at least between the positive electrode and the separator and between the negative electrode and the separator. The capacitor electrode for lead acid battery is arrange | positioned.
 鉛キャパシタ蓄電池は通常、セパレータを介して正極と負極が対向するように配置され、正極とセパレータとの間および負極とセパレータとの間の少なくとも一方に上述の鉛蓄電池用キャパシタ電極が配置された構造を複数対有しており、正極同士、または負極同士はそれぞれ電気的に短絡された構造である。このような構造とすることにより、鉛キャパシタ蓄電池の容量を大きくすることができる。
 本発明の鉛キャパシタ蓄電池において、上述した以外の構成要素としては、上述の構成要素を収納する電槽及びふたが挙げられる。
A lead capacitor storage battery is usually arranged such that a positive electrode and a negative electrode face each other with a separator interposed therebetween, and the above-mentioned lead storage battery capacitor electrode is arranged between at least one of the positive electrode and the separator and between the negative electrode and the separator. The positive electrodes or the negative electrodes are electrically short-circuited. By setting it as such a structure, the capacity | capacitance of a lead capacitor storage battery can be enlarged.
In the lead capacitor storage battery of the present invention, examples of the constituent elements other than those described above include a battery case and a lid for storing the above constituent elements.
 (正極電極および負極電極)
 正極電極および負極電極は、鉛活物質層を含んでなる。鉛活物質層は、通常の鉛蓄電池の活物質として使用される鉛、一酸化鉛、二酸化鉛、三酸化二鉛、四酸化三鉛(鉛丹)、硫酸鉛などの、鉛および鉛化合物を主体とする層を指す。これらの鉛および鉛化合物は、単独でまたは混合物を適宜選択して使用することができる。鉛活物質層中の鉛原子が占める割合は、活物質層のエネルギー密度を高める観点から、通常は層全体の重量に対して50重量%以上、好ましくは70重量%以上である。正極電極に含まれる鉛活物質層である正極活物質層に用いられる鉛含有材料としては二酸化鉛または一酸化鉛が好ましく、負極電極に含まれる鉛活物質層である負極活物質層に用いられる鉛含有材料としては一酸化鉛または鉛が好ましい。
(Positive electrode and negative electrode)
The positive electrode and the negative electrode comprise a lead active material layer. Lead active material layer contains lead and lead compounds such as lead, lead monoxide, lead dioxide, dilead trioxide, trilead tetroxide (lead red), lead sulfate, etc. Refers to the main layer. These lead and lead compounds can be used alone or in a suitable mixture. From the viewpoint of increasing the energy density of the active material layer, the proportion of lead atoms in the lead active material layer is usually 50% by weight or more, preferably 70% by weight or more, based on the weight of the entire layer. The lead-containing material used in the positive electrode active material layer that is the lead active material layer included in the positive electrode is preferably lead dioxide or lead monoxide, and is used in the negative electrode active material layer that is the lead active material layer included in the negative electrode. As the lead-containing material, lead monoxide or lead is preferable.
 鉛活物質層は、鉛含有材料の他に、ポリエステル繊維などの強化材、リグニンなどの界面活性剤、硫酸バリウムなどを含んでいてもよい。また、アンチモン、亜鉛、カドミウム、銀およびビスマスの酸化物、水酸化物もしくは硫酸塩から選ばれる添加剤なども使用することができる。さらに、鉛含有材料のペーストを作製して鉛活物質層を形成する場合は、硫酸を加えることもできる。 The lead active material layer may contain a reinforcing material such as polyester fiber, a surfactant such as lignin, barium sulfate and the like in addition to the lead-containing material. Further, an additive selected from oxides, hydroxides or sulfates of antimony, zinc, cadmium, silver and bismuth can be used. Further, when a lead active material layer is formed by producing a paste of a lead-containing material, sulfuric acid can be added.
 (鉛活物質層の形成方法)
 鉛活物質層は、鉛含有材料に溶媒、添加剤を加えてペーストを作製し、このペーストを格子状集電体上に充填させることにより形成することができる。
(Method for forming lead active material layer)
The lead active material layer can be formed by preparing a paste by adding a solvent and an additive to a lead-containing material and filling the paste on a grid-like current collector.
 例えば格子状集電体を用いる場合、格子状集電体の格子平面の一部に鉛活物質層を形成する、格子状集電体の格子全面に鉛活物質層を形成する、などが挙げられる。 For example, when using a grid current collector, a lead active material layer is formed on a part of the grid plane of the grid current collector, a lead active material layer is formed on the entire grid surface of the grid current collector, and the like. It is done.
 (鉛活物質層とキャパシタ層の積層方法)
 鉛活物質層とキャパシタ層は、電気的に導通がとれている必要がある。そのため、これらの層は加圧接着することが好ましい。例えば、上記の鉛活物質層の形成方法によって格子状集電体に充填された鉛活物質層の上に、鉛蓄電池用キャパシタ電極を加圧成形する。
このとき、鉛蓄電池用キャパシタ電極のキャパシタ層側が鉛活物質層に対向するように配置して加圧成形する。
(Lamination method of lead active material layer and capacitor layer)
The lead active material layer and the capacitor layer must be electrically connected. Therefore, these layers are preferably pressure bonded. For example, a lead storage battery capacitor electrode is pressure-molded on the lead active material layer filled in the grid-like current collector by the above-described method of forming a lead active material layer.
At this time, it arrange | positions so that the capacitor layer side of the capacitor electrode for lead acid batteries may oppose a lead active material layer, and it pressure-molds.
 (集電体)
 本発明で使用される集電体は、キャパシタ電極活物質および鉛含有材料と鉛蓄電池外との電気的導通をとるためのものである。集電体としては、板状、箔状、クラッド式と呼ばれる多孔性チューブの中心に鉛合金芯金を挿入したもの、および格子状集電体などが挙げられる。中でも、電極活物質層の維持と集電性に優れる点から格子状集電体が好ましい。格子状集電体としては、標準格子、ラジアル格子、エキスパンド式のいずれも使用できる。
(Current collector)
The current collector used in the present invention is for establishing electrical continuity between the capacitor electrode active material and the lead-containing material and the outside of the lead storage battery. Examples of the current collector include a plate-shaped, foil-shaped, clad-type porous tube in which a lead alloy core is inserted, and a grid-shaped current collector. Among these, a grid-like current collector is preferable from the viewpoint of maintaining the electrode active material layer and excellent current collecting properties. As the grid current collector, any of a standard grid, a radial grid, and an expanded type can be used.
 格子状集電体の材質としては、鉛-カルシウム合金、鉛-アンチモン合金、鉛-錫合金等の鉛含有合金が用いられる。前記鉛合金の組成の一部として、砒素、錫、銅、銀、アルミなどを含んでいても良い。 As the material of the grid current collector, a lead-containing alloy such as a lead-calcium alloy, a lead-antimony alloy, or a lead-tin alloy is used. Arsenic, tin, copper, silver, aluminum, or the like may be included as part of the composition of the lead alloy.
 (セパレータ)
 本発明の鉛キャパシタ蓄電池で使用されるセパレータとしては、抄紙、微多孔性ポリエチレン、微多孔性ポリプロピレン、微多孔性ゴム、リテイナーマット、ガラスマット、などのセパレータを1つまたは複数組み合わせて使用することができる。
(Separator)
As the separator used in the lead capacitor storage battery of the present invention, one or a combination of separators such as papermaking, microporous polyethylene, microporous polypropylene, microporous rubber, retainer mat, glass mat, etc., should be used. Can do.
 (電解液)
 本発明の鉛キャパシタ蓄電池で使用される電解液は通常、硫酸が使用される。充放電状態によって硫酸の密度は変動するが、鉛蓄電池を化成処理後、満充電の状態で密度1.25~1.30g/cm3(20℃)であることが好ましい。
(Electrolyte)
The electrolytic solution used in the lead capacitor storage battery of the present invention is usually sulfuric acid. Although the density of sulfuric acid varies depending on the charge / discharge state, the density is preferably 1.25 to 1.30 g / cm 3 (20 ° C.) in a fully charged state after chemical conversion treatment of the lead storage battery.
 (電槽、ふた)
 本発明の鉛キャパシタ蓄電池において、正極、負極、セパレータ、鉛蓄電池用キャパシタ電極および電解液を収納する電槽及びふたとしては、エチレン-プロピレン共重合体、ポリエチレン、ポリプロピレン、ポリアクリロニトリル-スチレン共重合体、ポリアクリロニトリル-ブタジエン-スチレン共重合体を原料とするものを使用することができる。
(Battery, lid)
In the lead capacitor storage battery of the present invention, the positive electrode, the negative electrode, the separator, the capacitor electrode for the lead storage battery, and the battery case and the lid for storing the electrolyte are ethylene-propylene copolymer, polyethylene, polypropylene, polyacrylonitrile-styrene copolymer. In addition, a polyacrylonitrile-butadiene-styrene copolymer as a raw material can be used.
 (組電池)
 上述のようにセパレータを介して正極と負極が対向するように配置され、正極とセパレータとの間および負極とセパレータとの間の少なくとも一方に上述の鉛蓄電池用キャパシタ電極が配置された構造を複数対有し、正極同士および負極同士のそれぞれを短絡させた構造である鉛キャパシタ蓄電池を複数用意して直列に接続することができる。このようにすることで鉛キャパシタ蓄電池の全体の起電力を大きくすることができる。直列に接続するために電槽を複数用意する必要はなく、1つの電槽の中に複数の仕切りを設け、その仕切り毎に上述の正極、負極、セパレータおよび鉛蓄電池用キャパシタ電極を含む構造を収納し、それを直列接続すれば、一体化した起電力の高い鉛キャパシタ蓄電池を作製することができる。
(Battery)
As described above, a plurality of structures in which the positive electrode and the negative electrode are opposed to each other with the separator interposed therebetween, and the above-described lead storage battery capacitor electrode is disposed between at least one of the positive electrode and the separator and between the negative electrode and the separator. A plurality of lead capacitor storage batteries having a structure in which a pair of positive electrodes and negative electrodes are short-circuited can be prepared and connected in series. By doing in this way, the electromotive force of the whole lead capacitor storage battery can be enlarged. There is no need to prepare a plurality of battery cases in order to connect in series. A plurality of partitions are provided in one battery case, and the structure including the above-described positive electrode, negative electrode, separator, and lead-acid battery capacitor electrode is provided for each partition. If it is housed and connected in series, an integrated lead capacitor battery with high electromotive force can be produced.
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。なお、本実施例における部および%は、特記しない限り重量基準である。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In the examples, parts and% are based on weight unless otherwise specified.
 実施例および比較例において、キャパシタ電極層強度、鉛電極との密着性、電解液分散性セルロースの電解液への分散性、内部抵抗および入力特性の判定は、以下のように行った。 In the examples and comparative examples, the determination of the capacitor electrode layer strength, the adhesion with the lead electrode, the dispersibility of the electrolyte-dispersible cellulose in the electrolyte, the internal resistance, and the input characteristics were performed as follows.
 (キャパシタ電極層強度)
 JIS K6251に準じて測定した。厚み25μmの電解液分散性セルロースからなる支持体上にキャパシタ電極層をシート状に成形することにより得られたキャパシタ電極を160℃で40分乾燥した後、1号形のダンベル状試験片の形状に打ち抜き、雰囲気温度25℃にて引張速度10mm/分で引張試験を行い、破断時の最大荷重を測定した。この測定を6回繰り返し、最大荷重の平均値をシートの断面積で除した値をこのキャパシタ電極の引張り強度とし、以下の基準により評価した。結果を表1に示した。
キャパシタ電極の引張り強度が大きいほど、亀裂、破壊が生じにくく、形状保持性に優れることを示す。
A:0.5MPa以上
B:0.4MPa以上0.5MPa未満
C:0.3MPa以上0.4MPa未満
D:0.3MPa未満
(Capacitor electrode layer strength)
It measured according to JIS K6251. After the capacitor electrode obtained by forming the capacitor electrode layer into a sheet on a support made of electrolyte-dispersible cellulose having a thickness of 25 μm was dried at 160 ° C. for 40 minutes, the shape of No. 1 dumbbell-shaped test piece Then, a tensile test was performed at an atmospheric temperature of 25 ° C. and a tensile speed of 10 mm / min, and the maximum load at break was measured. This measurement was repeated 6 times, and the value obtained by dividing the average value of the maximum load by the cross-sectional area of the sheet was taken as the tensile strength of the capacitor electrode, and evaluated according to the following criteria. The results are shown in Table 1.
It shows that as the tensile strength of the capacitor electrode is larger, cracking and breakage are less likely to occur and the shape retention is better.
A: 0.5 MPa or more B: 0.4 MPa or more and less than 0.5 MPa C: 0.3 MPa or more and less than 0.4 MPa D: Less than 0.3 MPa
 (鉛電極との密着性)
 1cm角の鉛板にキャパシタ電極を温度160℃、2MPaで30分圧着し貫通抵抗を測定した。10mAで10分間測定後に体積抵抗率を算出し、実施例および比較例で作製したキャパシタ電極に対する抵抗値の増加分で評価した。評価は以下の基準により行い、結果を表1に示した。
A:0.1以上1倍未満
B:1以上2倍未満
C:2以上5倍未満
D:5倍以上
(Adhesion with lead electrode)
The capacitor electrode was pressure-bonded to a 1 cm square lead plate at 160 ° C. and 2 MPa for 30 minutes, and the penetration resistance was measured. After measuring for 10 minutes at 10 mA, the volume resistivity was calculated and evaluated by the increase in resistance value with respect to the capacitor electrodes prepared in Examples and Comparative Examples. Evaluation was performed according to the following criteria, and the results are shown in Table 1.
A: 0.1 or more and less than 1 time B: 1 or more and less than 2 times C: 2 or more and less than 5 times D: 5 or more times
 (電解液分散性セルロース分散性)
 200mLビーカーに、2cm角の試験サンプルである電解液分散性セルロースからなる支持体(厚さ25μm)と、電解液である38%硫酸100mLとを入れて1週間放置した。スターラーで30秒間撹拌したのち5分間放置した。以下の基準により試験サンプルの分散の程度を判断し、結果を表1に示した。
A:沈殿物がなく、電解液が透明か半透明で、試験片由来の繊維は見られない
B:沈殿物があり、電解液が透明か半透明で、ビーカーの底部1cmの厚さの試験片由来の繊維が見られる
C:沈殿物があり、電解液が透明か半透明で、ビーカーの底部2cmの厚さの試験片由来の繊維が見られるが見られる
D:試験片が形状を残している
(Electrolyte dispersible cellulose dispersible)
In a 200 mL beaker, a support (thickness 25 μm) made of an electrolytic solution-dispersible cellulose, which is a 2 cm square test sample, and 100 mL of 38% sulfuric acid, which is an electrolytic solution, were left for 1 week. The mixture was stirred for 30 seconds with a stirrer and then left for 5 minutes. The degree of dispersion of the test sample was determined according to the following criteria, and the results are shown in Table 1.
A: There is no precipitate, and the electrolyte is transparent or translucent, and no fiber derived from the test piece is observed. B: There is a precipitate, the electrolyte is transparent or translucent, and the thickness of the bottom of the beaker is 1 cm. C: A fiber derived from a piece is observed C: There is a precipitate, the electrolyte is transparent or translucent, and a fiber derived from a test piece having a thickness of 2 cm at the bottom of the beaker is seen D: The test piece remains in shape ing
 また、キャパシタ電極活物質100重量部に対する電解液分散性セルロースの量は以下のようにして測定した。
 電解液分散性セルロースからなる支持体上にシート状に成形したキャパシタ層を含むキャパシタ電極を12φの大きさに打抜き、38%に調整した硫酸中に1週間浸漬させた。その後、キャパシタ電極を取り出し、乾燥させて重量を測定した。硫酸浸漬前後の重量変化量をキャパシタ電極活物質100部に対する重量部で示した。
The amount of the electrolyte-dispersible cellulose relative to 100 parts by weight of the capacitor electrode active material was measured as follows.
A capacitor electrode including a capacitor layer formed into a sheet shape on a support made of electrolyte-dispersible cellulose was punched out to a size of 12φ and immersed in sulfuric acid adjusted to 38% for 1 week. Thereafter, the capacitor electrode was taken out and dried to measure the weight. The amount of change in weight before and after immersion in sulfuric acid was shown as parts by weight relative to 100 parts of the capacitor electrode active material.
 (内部抵抗)
 実施例および比較例において得られたキャパシタ電極を、直径12mmの円形状に打ち抜き、このキャパシタ電極およびガラスファイバー製セパレータに十分電解液を含浸させ、次いで2枚のキャパシタ電極を、セパレータを介して対向させ、それぞれのキャパシタ電極が電気的に接触しないように配置して、電気二重層キャパシタを作製した。電解液には硫酸を用いた。
(Internal resistance)
The capacitor electrodes obtained in the examples and comparative examples were punched into a circular shape having a diameter of 12 mm, the capacitor electrodes and the glass fiber separator were sufficiently impregnated with the electrolyte, and then the two capacitor electrodes were opposed to each other through the separator. Then, each capacitor electrode was arranged so as not to be in electrical contact, and an electric double layer capacitor was manufactured. Sulfuric acid was used as the electrolyte.
 この電気二重層キャパシタの充放電試験を行うことにより内部抵抗を求めた。即ち、充電電流は、電極の単位面積あたりの電流値が6.6mA/cm2となる電流値を用いて行い、電圧が1.0Vに達したら、10分間その電圧を保って定電圧充電とし、充電を完了した。次いで、充電終了直後に定電流放電を充電時に用いたのと同様な電流値で0Vに達するまで行う。静電容量は放電時の電力量からエネルギー換算法を用いて算出した。 The internal resistance was determined by conducting a charge / discharge test of the electric double layer capacitor. That is, the charging current is performed using a current value at which the current value per unit area of the electrode is 6.6 mA / cm 2, and when the voltage reaches 1.0 V, the voltage is maintained for 10 minutes for constant voltage charging. Completed charging. Then, immediately after the end of charging, constant current discharging is performed until the voltage reaches 0 V at a current value similar to that used during charging. The capacitance was calculated from the amount of electric power at the time of discharge using an energy conversion method.
 次に、この静電容量を用いて、電気二重層キャパシタの充放電速度が一定になるように5mA/Fの定電流で充電を開始し、定電流充電と定電圧充電の充電時間を合わせて20分間行った時点で充電完了とし、さらに、充電終了直後に定電流放電を充電時に用いたのと同様な電流値で0Vに達するまで行った。 Next, using this capacitance, charging is started at a constant current of 5 mA / F so that the charging / discharging speed of the electric double layer capacitor is constant, and the charging times of constant current charging and constant voltage charging are matched. Charging was completed at the time when the charging was performed for 20 minutes, and further, constant current discharging was performed immediately after the end of charging until the voltage reached 0 V at a current value similar to that used during charging.
 内部抵抗は、放電開始から所定時間までの電圧データの最小二乗法による近似曲線の外挿からもとめた放電開始時電圧降下量を放電電流値で除した値とし、体積当たりの抵抗率、すなわち体積抵抗率として表し、以下の基準により評価した。但し、所定時間は全放電時間の10%とした。結果を表1に示した。
A:0.6Ω未満
B:0.6以上0.8Ω未満
C:0.8以上1.0Ω以上
D:1.0Ω以上
The internal resistance is a value obtained by dividing the amount of voltage drop at the start of discharge from the extrapolation of the approximate curve by the least square method of the voltage data from the start of discharge to the predetermined time divided by the discharge current value, and the resistivity per volume, that is, the volume Expressed as resistivity and evaluated according to the following criteria. However, the predetermined time was 10% of the total discharge time. The results are shown in Table 1.
A: Less than 0.6Ω B: 0.6 or more and less than 0.8Ω C: 0.8 or more and 1.0Ω or more D: 1.0Ω or more
 (入力特性)
 実施例および比較例において得られた鉛キャパシタ蓄電池を、25℃で、充電電圧2.2VからSOC70%まで2CAの電流で充放電する操作を10回繰り返し、最後の放電状態から10CAで充電したときの0.2秒後の電圧を測定した。10CAで放電する直前の電圧との差を実施例および比較例に対する相対値として表したものをサイクル後の入力特性とし、以下の基準により評価した。結果を表1に示した。
(Input characteristics)
When the lead capacitor storage battery obtained in the example and the comparative example is charged at 10 CA from the last discharge state by repeating the operation of charging / discharging the lead capacitor storage battery obtained at 25 ° C. with a current of 2 CA from a charging voltage of 2.2 V to SOC 70%. The voltage after 0.2 seconds was measured. The difference from the voltage immediately before discharging at 10 CA was expressed as a relative value with respect to the example and the comparative example as the input characteristics after the cycle, and evaluated according to the following criteria. The results are shown in Table 1.
 なお、SOC70%とは、鉛蓄電池の満充電時の容量を100%として、70%の容量が残っている状態を指し、2CAおよび10CAとは、作製した蓄電池の容量をそれぞれ1/2時間、1/10時間で放電するための電流量のことを指す。電圧値の差が小さいほど大電流充電の受入が優れていることを示す。
A:100以上110%未満
B:110以上120%未満
C:120以上130%未満
D:130%以上
Note that SOC 70% refers to a state in which the capacity of the lead storage battery is 100% and the capacity of 70% remains. 2CA and 10CA are the capacity of the produced storage battery for 1/2 hour, It refers to the amount of current for discharging in 1/10 hours. The smaller the voltage value difference, the better the acceptance of large current charging.
A: 100 or more and less than 110% B: 110 or more and less than 120% C: 120 or more and less than 130% D: 130% or more
 (実施例1)
 (バインダーの作製)
 窒素置換した重合反応器に、アクリロニトリル(AN)45部、1,3-ブタジエン(BD)50部、メタクリル酸(MMA)5部、t-ドデシルメルカプタン(TDM)0.2部、軟水132部、ドデシルベンゼンスルホン酸ナトリウム3.0部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部及びエチレンジアミン四酢酸ナトリウム塩0.05部を仕込み、重合温度40℃を保持しながら重合転化率が90%に達するまで反応させた。その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。得られた共重合体粒子水分散液から未反応単量体を除去した後、共重合体粒子水分散駅のpH及び固形分濃度を調整して、固形分濃度40%、pH8の共重合体粒子水分散液を得た。得られた共重合体粒子水分散液を1週間保存した後、防腐剤としてBIT(1,2-ベンズ-2-メチル-4-イソチアゾリン-3-オン)を共重合体粒子水分散液の固形分100部に対して0.2部添加、撹拌し、バインダーA(NBR1)を得た。バインダーAのTgは-20℃、体積平均粒子径は100nmであった。
(Example 1)
(Preparation of binder)
In a nitrogen-substituted polymerization reactor, acrylonitrile (AN) 45 parts, 1,3-butadiene (BD) 50 parts, methacrylic acid (MMA) 5 parts, t-dodecyl mercaptan (TDM) 0.2 parts, soft water 132 parts, 3.0 parts of sodium dodecylbenzenesulfonate, 0.5 part of β-naphthalenesulfonic acid formalin condensate sodium salt, 0.3 part of potassium persulfate and 0.05 part of ethylenediaminetetraacetic acid sodium salt were charged, and the polymerization temperature was 40 ° C. While maintaining, the reaction was continued until the polymerization conversion reached 90%. Thereafter, 0.1 part of sodium dimethyldithiocarbamate was added as a polymerization terminator to terminate the polymerization reaction. After removing unreacted monomers from the obtained copolymer particle aqueous dispersion, the pH and solid content concentration of the copolymer particle water dispersion station are adjusted to obtain a copolymer having a solid content concentration of 40% and pH of 8. An aqueous particle dispersion was obtained. The obtained copolymer particle aqueous dispersion was stored for one week, and then BIT (1,2-benz-2-methyl-4-isothiazolin-3-one) as a preservative was solidified in the copolymer particle aqueous dispersion. 0.2 part was added to 100 parts per minute and stirred to obtain Binder A (NBR1). Binder A had a Tg of −20 ° C. and a volume average particle size of 100 nm.
 (複合粒子の作製)
 キャパシタ電極活物質として比表面積が2,200m2/gで重量平均粒子径が5μmの石油ピッチ由来の高純度活性炭粉末を100部、導電剤としてアセチレンブラック(商品名「デンカブラック粉状」:電気化学工業社製)を5部、電解液不溶性セルロースとしてカルボキシメチルセルロースの1.5%水溶液(商品名「WS-C」:ダイセル化学工業社製)を固形分相当量で1.4部となる量、結着剤としてバインダーAを固形分相当量で9部となる量を混合し、さらにイオン交換水を固形分濃度が20%となるように加え、混合分散を行い、スラリーを得た。このスラリーを、スプレー乾燥機(大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65mm)の回転数25,000rpm、熱風温度150℃、粒子回収出口の温度が90℃で噴霧乾燥造粒を行い、球状複合粒子を得た。この球状複合粒子の平均体積粒子径は63μmであった。
(Production of composite particles)
100 parts of petroleum pitch-derived high-purity activated carbon powder having a specific surface area of 2,200 m 2 / g and a weight average particle diameter of 5 μm as a capacitor electrode active material, and acetylene black (trade name “DENKA BLACK POWDER”: Electric 5 parts by chemical industry), 1.5 parts aqueous solution of carboxymethyl cellulose (trade name “WS-C”: manufactured by Daicel Chemical Industries, Ltd.) as electrolyte-insoluble cellulose in an amount equivalent to 1.4 parts by solid content Then, the binder A as a binder was mixed in an amount of 9 parts in terms of solid content, and ion-exchanged water was further added so that the solid content concentration was 20%, followed by mixing and dispersion to obtain a slurry. This slurry is spray-dried using a spray dryer (Okawara Chemical Co., Ltd.) at a rotational speed of 25,000 rpm of a rotating disk type atomizer (diameter 65 mm), a hot air temperature of 150 ° C., and a particle recovery outlet temperature of 90 ° C. Granulation was performed to obtain spherical composite particles. The spherical composite particles had an average volume particle size of 63 μm.
 (鉛蓄電池用キャパシタ電極の作製)
 得られた球状複合粒子を、粗面化処理したPETフィルム(表面粗さRa=0.3μm)の粗面化された面上に散布し、65℃に加熱した加圧ロール(成形速度20m/分、プレス線圧5.0kN/cm(500kN/m))でシート成形を行い、厚さ200μm、密度0.54g/cm3のキャパシタ層を得た。また、キャパシタ層における結着剤の密度は、後述する鉛キャパシタ蓄電池を製造する際の、負極側および正極側のそれぞれにおいて0.5g/cm3であった。
(Production of capacitor electrodes for lead-acid batteries)
The obtained spherical composite particles were sprayed on a roughened surface of a roughened PET film (surface roughness Ra = 0.3 μm) and heated to 65 ° C. (molding speed 20 m / m). Sheet forming was performed at a press linear pressure of 5.0 kN / cm (500 kN / m)) to obtain a capacitor layer having a thickness of 200 μm and a density of 0.54 g / cm 3 . Further, the density of the binder in the capacitor layer was 0.5 g / cm 3 on each of the negative electrode side and the positive electrode side when a lead capacitor storage battery described later was manufactured.
 さらに、得られたキャパシタ層を、電解液分散性セルロース(短繊維:長さ1~2mm、幅20μm)からなる支持体(厚さ25μm)上に転写することで、鉛蓄電池用キャパシタ電極を得た。なお、鉛蓄電池用キャパシタ電極にはPETフィルムは含まれない。 Furthermore, the obtained capacitor layer is transferred onto a support (thickness 25 μm) made of electrolyte-dispersible cellulose (short fibers: length 1 to 2 mm, width 20 μm) to obtain a capacitor electrode for a lead storage battery. It was. Note that the lead storage battery capacitor electrode does not include a PET film.
 (負極電極の作製)
 鉛含有材料として酸化鉛100部に導電剤のカーボンブラック0.3部、硫酸バリウム0.3部、イオン交換水10部、比重1.36の希硫酸を10部添加、混合しペーストを得た。得られたペーストを、鉛-カルシウム合金からなる格子状集電体(100mm×100mm×3mm)に充填し、負極電極を作製した。
(Preparation of negative electrode)
As a lead-containing material, a paste was obtained by adding and mixing 100 parts of lead oxide with 0.3 parts of conductive agent carbon black, 0.3 parts of barium sulfate, 10 parts of ion-exchanged water, and 10 parts of diluted sulfuric acid with a specific gravity of 1.36. . The obtained paste was filled in a grid-like current collector (100 mm × 100 mm × 3 mm) made of a lead-calcium alloy to produce a negative electrode.
 (負極電極と鉛蓄電池用キャパシタ電極の積層)
 鉛蓄電池用キャパシタ電極を、前記のペーストを格子状集電体に充填した負極電極の一面にバッチプレスにて100℃、2MPaで加圧圧着した。
(Lamination of negative electrode and capacitor electrode for lead acid battery)
The capacitor electrode for a lead storage battery was pressure-bonded at 100 ° C. and 2 MPa with a batch press on one surface of the negative electrode filled with the paste in a grid-like current collector.
 前記のように負極電極に鉛蓄電池用キャパシタ電極を加圧成形することにより、負極電極と鉛蓄電池用キャパシタ電極とを積層した。このとき、鉛蓄電池用キャパシタ電極のキャパシタ層側が負極電極の集電体側が対向するように配置して加圧成形した。 As described above, the negative electrode and the capacitor electrode for the lead storage battery were laminated by press-molding the capacitor electrode for the lead storage battery on the negative electrode. At this time, the lead-acid battery capacitor electrode was pressure-molded with the capacitor layer side facing the current collector side of the negative electrode.
 (正極電極の作製)
 鉛含有材料として酸化鉛100部にイオン交換水10部、比重1.27の希硫酸10部を加えて混合し、正極用活物質合剤ペーストを製造した。このペーストを鉛-カルシウム合金からなる格子状集電体(100mm×100mm×3mm)に充填した後、40℃、湿度95%の雰囲気で24時間熟成し、乾燥することで未化成の正極電極を作製した。
(Preparation of positive electrode)
As a lead-containing material, 10 parts of ion-exchanged water and 10 parts of dilute sulfuric acid having a specific gravity of 1.27 were added to 100 parts of lead oxide and mixed to produce a positive electrode active material mixture paste. After filling this paste into a grid-like current collector (100 mm × 100 mm × 3 mm) made of lead-calcium alloy, the paste was aged in an atmosphere of 40 ° C. and 95% humidity for 24 hours and dried to form an unformed positive electrode. Produced.
 (鉛キャパシタ蓄電池の作製)
 上記の正極電極および積層された負極電極と鉛蓄電池用キャパシタ電極を用い、図2に示す積層鉛キャパシタ蓄電池を作製した。セパレータとしては、負極電極2と正極電極4の間には、ガラスマイクロファイバー製のセパレータ5を、鉛蓄電池用キャパシタ電極3と正極電極4の間には、微孔性ポリプロピレンのセパレータ6をそれぞれ配置した。なお、図2における1は集電体を示す。
(Production of lead capacitor battery)
A multilayer lead capacitor storage battery shown in FIG. 2 was produced using the positive electrode, the stacked negative electrode, and the capacitor electrode for a lead storage battery. As the separator, a glass microfiber separator 5 is disposed between the negative electrode 2 and the positive electrode 4, and a microporous polypropylene separator 6 is disposed between the lead storage battery capacitor electrode 3 and the positive electrode 4. did. In FIG. 2, 1 indicates a current collector.
 電解液には、比重1.225(20℃)の希硫酸を使用した。これに過充電を施して化成処理を行った後、電解液の密度が1.28g/cm3になるように密度1.4g/cm3の硫酸で調整して鉛キャパシタ蓄電池を得た。また、キャパシタ電極活物質100部に対する電解液中の電解液分散性セルロースの量は25部であった。 As the electrolyte, dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) was used. After subjected to overcharge chemical conversion process to this, the density of the electrolyte solution to obtain a lead-capacitor battery is adjusted with sulfuric acid of density 1.4 g / cm 3 so that the 1.28 g / cm 3. Further, the amount of the electrolyte-dispersible cellulose in the electrolyte with respect to 100 parts of the capacitor electrode active material was 25 parts.
 (実施例2)
 石油ピッチ由来のキャパシタ電極活物質に代えて、フェノール樹脂由来の活性炭(比表面積1700m2/g、重量平均粒子径5μm)を用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
(Example 2)
Capacitor electrode for lead-acid battery, lead as in Example 1, except that activated carbon derived from phenol resin (specific surface area 1700 m 2 / g, weight average particle size 5 μm) was used instead of the capacitor electrode active material derived from petroleum pitch A capacitor storage battery was produced.
 (実施例3)
 石油ピッチ由来のキャパシタ電極活物質に代えて、ヤシ殻由来の活性炭(比表面積2000m2/g、重量平均粒子径5μm)を用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
(Example 3)
Capacitor electrode for lead-acid battery, lead as in Example 1, except that activated carbon derived from coconut shell (specific surface area 2000 m 2 / g, weight average particle diameter 5 μm) was used instead of the capacitor electrode active material derived from petroleum pitch A capacitor storage battery was produced.
 (実施例4)
 バインダーを作製する際にアクリロニトリルに代えて、スチレン(ST)を用いることによりバインダーB(SBR)を得た。バインダーBのTgは-20℃、体積平均粒子径は100nmであった。複合粒子の作製の際にバインダーBを用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
Example 4
Binder B (SBR) was obtained by using styrene (ST) instead of acrylonitrile when preparing the binder. The binder B had a Tg of −20 ° C. and a volume average particle size of 100 nm. A lead-acid battery capacitor electrode and a lead-capacitor battery were produced in the same manner as in Example 1 except that the binder B was used when producing the composite particles.
 (実施例5)
 バインダーを作製する際に用いる単量体の組成をアクリロニトリル63部、1,3-ブタジエン32部、メタクリル酸5部としてバインダーC(NBR2)を得た。バインダーCのTgは14℃、体積平均粒子径は100nmであった。複合粒子の作製の際にバインダーCを用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
(Example 5)
Binder C (NBR2) was obtained by using 63 parts of acrylonitrile, 32 parts of 1,3-butadiene, and 5 parts of methacrylic acid as the composition of the monomer used in preparing the binder. The binder C had a Tg of 14 ° C. and a volume average particle size of 100 nm. A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Example 1 except that the binder C was used when preparing the composite particles.
 (実施例6)
 バインダーを作製する際に用いる単量体の組成をアクリロニトリル35部、1,3-ブタジエン55部、メタクリル酸10部としてバインダーD(NBR3)を得た。バインダーDのTgは-26℃、体積平均粒子径は100nmであった。複合粒子の作製の際にバインダーDを用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
(Example 6)
Binder D (NBR3) was obtained by using 35 parts of acrylonitrile, 55 parts of 1,3-butadiene, and 10 parts of methacrylic acid as the composition of the monomer used in preparing the binder. The binder D had a Tg of −26 ° C. and a volume average particle size of 100 nm. A lead-acid battery capacitor electrode and a lead-capacitor battery were produced in the same manner as in Example 1 except that the binder D was used when producing the composite particles.
 (実施例7)
 キャパシタ電極活物質100部に対する電解液中の電解液分散性セルロースの量が10部となるような電解液分散性セルロースからなる支持体を用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。なお、電解液分散性セルロースの量の調整は、支持体を構成する電解液分散性セルロースの繊維径を変えることにより行った。
(Example 7)
A lead-acid battery capacitor as in Example 1 except that a support made of electrolyte-dispersible cellulose was used so that the amount of electrolyte-dispersible cellulose in the electrolyte with respect to 100 parts of the capacitor electrode active material was 10 parts. Electrodes and lead capacitor storage batteries were produced. In addition, adjustment of the quantity of electrolyte solution dispersible cellulose was performed by changing the fiber diameter of the electrolyte solution dispersible cellulose which comprises a support body.
 (実施例8)
 キャパシタ電極活物質100部に対する電解液中の電解液分散性セルロースの量が30部となるような電解液分散性セルロースからなる支持体を用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。なお、電解液分散性セルロースの量の調整は、支持体を構成する電解液分散性セルロースの繊維径を変えることにより行った。
(Example 8)
A lead-acid battery capacitor as in Example 1 except that a support made of electrolyte-dispersible cellulose was used so that the amount of electrolyte-dispersible cellulose in the electrolyte was 30 parts with respect to 100 parts of the capacitor electrode active material. Electrodes and lead capacitor storage batteries were produced. In addition, adjustment of the quantity of electrolyte solution dispersible cellulose was performed by changing the fiber diameter of the electrolyte solution dispersible cellulose which comprises a support body.
 (実施例9)
 鉛蓄電池用キャパシタ電極の作製において、得られた球状複合粒子を、厚さ25μmの電解液分散型セルロースからなる支持体上に散布し、65℃に加熱した加圧ロール(成形速度10m/分、プレス線圧5.0kN/cm)でシート成形を行い、厚さ200μm、密度0.54g/cm3のキャパシタ層が形成された鉛蓄電池用キャパシタ電極を得た以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
Example 9
In the production of a lead-acid battery capacitor electrode, the obtained spherical composite particles were dispersed on a support made of electrolyte-dispersed cellulose having a thickness of 25 μm and heated to 65 ° C. (molding speed 10 m / min, The sheet was molded at a press linear pressure of 5.0 kN / cm), and the same as in Example 1 except that a capacitor electrode for a lead storage battery having a capacitor layer with a thickness of 200 μm and a density of 0.54 g / cm 3 was obtained. A capacitor electrode for a lead storage battery and a lead capacitor storage battery were produced.
 (比較例1)
 複合粒子の作製および鉛蓄電池用キャパシタ電極の作製におけるロール成形に代えて、電解液分散性セルロース上に、バインダーAを含むスラリー(実施例1において複合粒子の製造に用いたスラリー)をキャストし、100℃で乾燥することにより鉛蓄電池用キャパシタ電極を得た以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。なお、キャパシタ層における結着剤の密度は、負極側および正極側のそれぞれにおいて0.35g/cm3であった。
(Comparative Example 1)
Instead of roll forming in preparation of composite particles and lead storage battery capacitor electrode, cast slurry containing binder A (slurry used for manufacture of composite particles in Example 1) on electrolyte-dispersible cellulose, A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Example 1 except that the capacitor electrode for a lead storage battery was obtained by drying at 100 ° C. The density of the binder in the capacitor layer was 0.35 g / cm 3 on each of the negative electrode side and the positive electrode side.
 (比較例2)
 バインダーAを含むスラリーの、電解液分散性セルロース上へのキャスト後の乾燥温度を60℃としたこと以外は、比較例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。なお、キャパシタ層における結着剤の密度は、負極側および正極側のそれぞれにおいて0.45g/cm3であった。
(Comparative Example 2)
A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Comparative Example 1 except that the drying temperature after casting the slurry containing the binder A onto the electrolyte-dispersible cellulose was 60 ° C. The density of the binder in the capacitor layer was 0.45 g / cm 3 on each of the negative electrode side and the positive electrode side.
 (比較例3)
 キャパシタ層を、負極電極に直接転写したのちにPETフィルムを剥離することにより負極電極とキャパシタ層とを積層した以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
(Comparative Example 3)
A capacitor electrode for a lead storage battery and a lead capacitor storage battery were prepared in the same manner as in Example 1 except that the capacitor layer was directly transferred to the negative electrode and then the PET film was peeled to laminate the negative electrode and the capacitor layer. It was.
 (比較例4)
 電解液分散性セルロースに代えて、電解液不溶性の紙を用いた以外は、実施例1と同様に鉛蓄電池用キャパシタ電極、鉛キャパシタ蓄電池の作製を行った。
(Comparative Example 4)
A lead-acid battery capacitor electrode and a lead-capacitor battery were prepared in the same manner as in Example 1 except that electrolyte-insoluble paper was used instead of the electrolyte-dispersible cellulose.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、負極電極、正極電極の間に配置され、キャパシタ層を含む鉛蓄電池用キャパシタ電極であって、キャパシタ層が、キャパシタ電極活物質、導電剤および結着剤を含み、キャパシタ層の結着剤密度は、正極電極側と負極側電極とにおいて0.48~0.52g/cm3の範囲であり、電解液に分散する電解液分散性セルロース化合物を含むと、キャパシタ層強度、鉛電極との密着性、電解液分散性セルロース分散性、内部抵抗および入力特性のいずれもが良好であった。 As shown in Table 1, a capacitor electrode for a lead storage battery that is disposed between a negative electrode and a positive electrode and includes a capacitor layer, the capacitor layer including a capacitor electrode active material, a conductive agent, and a binder, The binder density of the layer is in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side, and when the electrolytic solution-dispersible cellulose compound is dispersed in the electrolytic solution, The adhesiveness with the lead electrode, electrolyte dispersibility, cellulose dispersibility, internal resistance, and input characteristics were all good.

Claims (11)

  1.  負極、正極の間に配置され、キャパシタ層を含む鉛蓄電池用キャパシタ電極であって、
     前記キャパシタ層は、キャパシタ電極活物質、導電剤および結着剤を含み、
     前記キャパシタ層の結着剤密度は、前記正極側と前記負極側とにおいて0.48~0.52g/cm3の範囲であり、
     電解液に分散する電解液分散性セルロース化合物を含む鉛蓄電池用キャパシタ電極。
    A capacitor electrode for a lead storage battery, which is disposed between a negative electrode and a positive electrode and includes a capacitor layer,
    The capacitor layer includes a capacitor electrode active material, a conductive agent and a binder,
    The binder density of the capacitor layer is in the range of 0.48 to 0.52 g / cm 3 on the positive electrode side and the negative electrode side,
    A capacitor electrode for a lead storage battery comprising an electrolytic solution-dispersible cellulose compound dispersed in an electrolytic solution.
  2.  前記キャパシタ層は、電解液不溶性セルロースを含む請求項1記載の鉛蓄電池用キャパシタ電極。 The lead-acid battery capacitor electrode according to claim 1, wherein the capacitor layer contains an electrolyte-insoluble cellulose.
  3.  キャパシタ層における前記電解液不溶性セルロースの比率は、キャパシタ電極活物質100重量部に対して0.1~10重量部である、請求項2記載の鉛蓄電池用キャパシタ電極。 The lead-acid battery capacitor electrode according to claim 2, wherein a ratio of the electrolyte-insoluble cellulose in the capacitor layer is 0.1 to 10 parts by weight with respect to 100 parts by weight of the capacitor electrode active material.
  4.  前記キャパシタ電極活物質は、石油ピッチを出発原料とする活性炭である請求項1~3のいずれかに記載の鉛蓄電池用キャパシタ電極。 The lead-acid battery capacitor electrode according to any one of claims 1 to 3, wherein the capacitor electrode active material is activated carbon starting from petroleum pitch.
  5.  前記結着剤は、ジエン重合体である請求項1~4のいずれかに記載の鉛蓄電池用キャパシタ電極。 The lead-acid battery capacitor electrode according to any one of claims 1 to 4, wherein the binder is a diene polymer.
  6.  請求項1~5の何れか一項に記載の鉛蓄電池用キャパシタ電極、負極、正極、セパレータおよび電解液を含んでなる鉛キャパシタ蓄電池。 A lead capacitor storage battery comprising the capacitor electrode for a lead storage battery according to any one of claims 1 to 5, a negative electrode, a positive electrode, a separator, and an electrolytic solution.
  7.  キャパシタ電極活物質、導電剤および結着剤を含有してなる複合粒子を造粒する工程と、
     電解液分散性セルロースからなる支持体上に乾式法で前記複合粒子を含むキャパシタ層をシート成形する工程と
    を含む鉛蓄電池用キャパシタ電極の製造方法。
    A step of granulating composite particles comprising a capacitor electrode active material, a conductive agent and a binder;
    A method for producing a capacitor electrode for a lead storage battery, comprising: forming a capacitor layer containing the composite particles on a support made of an electrolyte-dispersible cellulose by a dry method.
  8.  前記シート成形する工程は、前記複合粒子と、電解液分散性セルロースからなる支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより、前記複合粒子をシート状成形体に成形することによりキャパシタ層を得るとともに、これを前記支持体の面に圧着する工程である、
     請求項7に記載の鉛蓄電池用キャパシタ電極の製造方法。
    The sheet forming step supplies the composite particles and a support made of an electrolyte-dispersible cellulose to a pair of press rolls or belts arranged substantially horizontally, and the pair of press rolls or belts In addition, a capacitor layer is obtained by molding the composite particles into a sheet-like molded body, and this is a step of pressure-bonding this to the surface of the support.
    The manufacturing method of the capacitor electrode for lead acid batteries of Claim 7.
  9.  キャパシタ電極活物質、導電剤および結着剤を含有してなる複合粒子を造粒する工程と、
     粗面化または離型処理された支持体表面に前記複合粒子を含むキャパシタ層を形成する工程と、
     前記キャパシタ層を電解液分散性セルロースからなる支持体上に転写する工程と
    を含む鉛蓄電池用キャパシタ電極の製造方法。
    A step of granulating composite particles comprising a capacitor electrode active material, a conductive agent and a binder;
    Forming a capacitor layer containing the composite particles on a roughened or release-treated support surface;
    And transferring the capacitor layer onto a support made of an electrolyte-dispersible cellulose.
  10.  前記キャパシタ層を形成する工程は、前記複合粒子と、粗面化または離型処理された支持体とを、略水平に配置された一対のプレス用ロール又はベルトに供給し、前記一対のプレス用ロール又はベルトにより、前記複合粒子をシート状成形体に成形することによりキャパシタ層を得るとともに、これを前記支持体の面に圧着する工程である、
     請求項9に記載の鉛蓄電池用キャパシタ電極の製造方法。
    The step of forming the capacitor layer includes supplying the composite particles and a roughened or release-treated support to a pair of pressing rolls or belts arranged substantially horizontally, A step of forming a capacitor layer by molding the composite particles into a sheet-like molded body with a roll or a belt, and crimping the capacitor layer to the surface of the support.
    The manufacturing method of the capacitor electrode for lead acid batteries of Claim 9.
  11.  請求項7~10のいずれかに記載の鉛キャパシタ蓄電池の製造方法により得られる鉛蓄電池用キャパシタ電極と鉛活物質層とを積層させる工程を含む鉛キャパシタ蓄電池の製造方法。 A method for producing a lead capacitor storage battery, comprising the step of laminating a lead storage battery capacitor electrode and a lead active material layer obtained by the method for producing a lead capacitor storage battery according to any one of claims 7 to 10.
PCT/JP2013/072541 2012-08-23 2013-08-23 Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery WO2014030735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012184072 2012-08-23
JP2012-184072 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030735A1 true WO2014030735A1 (en) 2014-02-27

Family

ID=50150038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072541 WO2014030735A1 (en) 2012-08-23 2013-08-23 Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery

Country Status (1)

Country Link
WO (1) WO2014030735A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219974A (en) * 2014-05-14 2015-12-07 日本ゼオン株式会社 Composite particle oriented for capacitor electrode composition layer for lead-acid battery, method for manufacturing capacitor electrode composition layer for lead-acid battery, and electrode for lead-acid battery
JP2016054091A (en) * 2014-09-04 2016-04-14 日本ゼオン株式会社 Capacitor electrode for lead storage battery, and method for manufacturing capacitor electrode for lead storage battery
CN108832078A (en) * 2018-05-16 2018-11-16 辽宁科技大学 A kind of Fe3O4The preparation method of/Fe- coal tar pitch base complex spherical active carbon
WO2023123029A1 (en) * 2021-12-29 2023-07-06 宁德新能源科技有限公司 Electrochemical device and electronic device
EP4068320A3 (en) * 2014-11-21 2023-07-12 Zeon Corporation Composite particles for electrochemical element electrodes, use of the electrodes in a lithium ion capacitor or in lithium ion secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231996A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Manufacture of sealed lead acid battery
JP2007027076A (en) * 2005-07-19 2007-02-01 Mase Shunzo Lead accumulator for hybrid car
JP2009259803A (en) * 2008-03-24 2009-11-05 Nippon Zeon Co Ltd Electrode for lead storage cell, and lead storage cell
JP2010192417A (en) * 2009-01-26 2010-09-02 Nippon Zeon Co Ltd Capacitor electrode composition layer with support for lead-acid battery and method for manufacturing electrode for lead-acid battery
JP2011175747A (en) * 2010-02-23 2011-09-08 Furukawa Battery Co Ltd:The Method of manufacturing compound capacitor negative plate, compound capacitor negative plate, and lead acid battery
JP2012009775A (en) * 2010-06-28 2012-01-12 Nippon Zeon Co Ltd Polarized electrode, electrochemical element, and lead acid storage battery
JP2012133959A (en) * 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The Composite capacitor negative electrode plate for lead storage battery, and lead storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231996A (en) * 1996-02-22 1997-09-05 Matsushita Electric Ind Co Ltd Manufacture of sealed lead acid battery
JP2007027076A (en) * 2005-07-19 2007-02-01 Mase Shunzo Lead accumulator for hybrid car
JP2009259803A (en) * 2008-03-24 2009-11-05 Nippon Zeon Co Ltd Electrode for lead storage cell, and lead storage cell
JP2010192417A (en) * 2009-01-26 2010-09-02 Nippon Zeon Co Ltd Capacitor electrode composition layer with support for lead-acid battery and method for manufacturing electrode for lead-acid battery
JP2011175747A (en) * 2010-02-23 2011-09-08 Furukawa Battery Co Ltd:The Method of manufacturing compound capacitor negative plate, compound capacitor negative plate, and lead acid battery
JP2012009775A (en) * 2010-06-28 2012-01-12 Nippon Zeon Co Ltd Polarized electrode, electrochemical element, and lead acid storage battery
JP2012133959A (en) * 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The Composite capacitor negative electrode plate for lead storage battery, and lead storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219974A (en) * 2014-05-14 2015-12-07 日本ゼオン株式会社 Composite particle oriented for capacitor electrode composition layer for lead-acid battery, method for manufacturing capacitor electrode composition layer for lead-acid battery, and electrode for lead-acid battery
JP2016054091A (en) * 2014-09-04 2016-04-14 日本ゼオン株式会社 Capacitor electrode for lead storage battery, and method for manufacturing capacitor electrode for lead storage battery
EP4068320A3 (en) * 2014-11-21 2023-07-12 Zeon Corporation Composite particles for electrochemical element electrodes, use of the electrodes in a lithium ion capacitor or in lithium ion secondary battery
CN108832078A (en) * 2018-05-16 2018-11-16 辽宁科技大学 A kind of Fe3O4The preparation method of/Fe- coal tar pitch base complex spherical active carbon
CN108832078B (en) * 2018-05-16 2021-10-22 辽宁科技大学 Fe3O4Preparation method of/Fe-coal pitch-based composite spherical activated carbon
WO2023123029A1 (en) * 2021-12-29 2023-07-06 宁德新能源科技有限公司 Electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
JP5412909B2 (en) Lead-acid battery electrode and lead-acid battery
JP5652322B2 (en) Manufacturing method of all-solid-state secondary battery
JP5413368B2 (en) Method for producing electrode for electrochemical device
JP5663976B2 (en) Polarized electrodes, electrochemical devices and lead-acid batteries
JP4929792B2 (en) Composite particles for electrochemical device electrodes
JP5494487B2 (en) Lead-acid battery electrode and lead-acid battery
JP4605467B2 (en) Method for producing electrochemical element
JP5348131B2 (en) Lead-acid battery electrode and use thereof
JP5423991B2 (en) Lithium ion capacitor electrode and lithium ion capacitor
JP6197789B2 (en) Composite particles for electrochemical element electrodes, electrochemical element electrodes, and electrochemical elements
WO2013039131A1 (en) Electrode for electrochemical element
JP2010097830A (en) Manufacturing method of electrode for electrochemical element
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
JP5311706B2 (en) Method for producing composite particle for electrochemical device electrode
JP2010109354A (en) Method of manufacturing electrode for electrochemical element
WO2014030735A1 (en) Lead battery capacitor electrode, lead capacitor battery, method for producing lead battery capacitor electrode and method for producing lead capacitor battery
JPWO2005117043A1 (en) Electrode device electrode manufacturing method and apparatus
JP2008098590A (en) Electrode for electrochemical device and electrochemical device using the same
JP2013247050A (en) Composite particle for electrochemical element electrode, electrochemical element electrode, and electrochemical element
JP6569198B2 (en) Capacitor electrode for lead acid battery and method for producing capacitor electrode for lead acid battery
US8124474B2 (en) Method for producing electrode for electric double layer capacitor
JP6349945B2 (en) Composite particle for capacitor electrode composition layer for lead storage battery, and method for producing capacitor electrode composition layer for lead storage battery
JP2013077558A (en) Electrode for electrochemical element
JP6394203B2 (en) Capacitor electrode for lead acid battery
JP2010073355A (en) Electrode for lead storage battery, manufacturing method of electrode for lead storage battery and lead storage battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP