WO2014028321A1 - System and method for delivery of oilfield materials - Google Patents

System and method for delivery of oilfield materials Download PDF

Info

Publication number
WO2014028321A1
WO2014028321A1 PCT/US2013/054299 US2013054299W WO2014028321A1 WO 2014028321 A1 WO2014028321 A1 WO 2014028321A1 US 2013054299 W US2013054299 W US 2013054299W WO 2014028321 A1 WO2014028321 A1 WO 2014028321A1
Authority
WO
WIPO (PCT)
Prior art keywords
silo
support structure
modular
oilfield material
silos
Prior art date
Application number
PCT/US2013/054299
Other languages
English (en)
French (fr)
Inventor
Hau Nguyen-Phuc Pham
Rajesh Luharuka
William Bradford STONE
Nikki MORRISON
Jakub Pawel JODLOWSKI
William Troy Huey
Travis ALMER
Laurent Coquilleau
Original Assignee
Schlumberger Canada Limited
Services Petroliers Schlumberger
Schlumberger Holdings Limited
Schlumberger Technology B.V.
Prad Research And Development Limited
Schlumberger Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Limited, Services Petroliers Schlumberger, Schlumberger Holdings Limited, Schlumberger Technology B.V., Prad Research And Development Limited, Schlumberger Technology Corporation filed Critical Schlumberger Canada Limited
Publication of WO2014028321A1 publication Critical patent/WO2014028321A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B15/00Supports for the drilling machine, e.g. derricks or masts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/128Large containers rigid specially adapted for transport tank containers, i.e. containers provided with supporting devices for handling
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/22Containers for fluent solids, e.g. silos, bunkers; Supports therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • B65D88/30Hoppers, i.e. containers having funnel-shaped discharge sections specially adapted to facilitate transportation from one utilisation site to another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/30Methods or devices for filling or emptying bunkers, hoppers, tanks, or like containers, of interest apart from their use in particular chemical or physical processes or their application in particular machines, e.g. not covered by a single other subclass
    • B65G65/32Filling devices

Definitions

  • Hydraulic fracturing may be used to create cracks in subsurface formations to allow oil and/or gas to move toward the well.
  • the formation is fractured by introducing a specially engineered fluid, sometimes referred to as fracturing fluid or fracturing slurry, at high pressure and high flow rates into the formation through one or more wellbores.
  • the fracturing fluids may be loaded with proppant which are sized particles that may be mixed with the liquids of the fracturing fluid to help form an efficient conduit for production of hydrocarbons from the formation to the wellbore.
  • Proppant may comprise naturally occurring sand grains or gravel, man-made proppants, e.g. fibers or resin coated sand, high-strength ceramic materials, e.g. sintered bauxite, or other suitable materials.
  • the proppant collects heterogeneously or homogeneously inside the fractures to prop open the fractures formed in the formation. Effectively, the proppant creates planes of permeable conduits through which production fluids can flow to the wellbore.
  • proppant and other fracturing fluid components are blended at a low- pressure side of the system.
  • the oilfield materials often are delivered from storage facilities to a blender by pneumatic systems which blow the oilfield materials. Water-based liquid is added and the resulting fracturing fluid is delivered downhole under high pressure.
  • handling of the proppant prior to blending tends to create substantial dust as the proppant is moved to the blender via blowers.
  • dust control devices e.g. vacuums, are employed in an effort to control the dust.
  • the variety of equipment used in the process also tends to create a large footprint at the well site, and operating the equipment is generally a manually intensive process.
  • the present disclosure provides a system and method which facilitate the handling of oilfield materials in a space efficient manner.
  • the oilfield material is stored in at least one silo which may enable use of gravity to feed the oilfield material to a blending system or other suitable equipment.
  • the oilfield material is delivered to each silo l without blowers.
  • a mobile support structure is disclosed, which receives one or more modular silos at the wellsite.
  • Each modular silo is transportable and may be engaged with a support structure that may be transported to the wellsite separately via a connection that allows for controlled movement of the modular silo during erection. Once engaged, the modular silo may be pivoted to a raised, upright position on the support structure.
  • the oilfield material is then moved to an interior of the silo, and gravity may be used to feed the oilfield material to a blender or other equipment in a controlled manner.
  • Figure 1 is an illustration of an example of a proppant delivery system positioned at a well site, according to an embodiment of the disclosure
  • Figure 2 is an illustration of another embodiment of a proppant delivery system in which a plurality of closed, modular silos are used for holding oilfield materials, according to an embodiment of the disclosure
  • Figure 3 is a schematic illustration of an example of a vertical conveyor system enclosed within a silo, according to an embodiment of the disclosure
  • Figure 4 is an illustration of an example of a support structure with silo receiving areas on which modular silos may be mounted in an upright orientation, according to an embodiment of the disclosure
  • Figure 5 is an illustration of a plurality of modular silos transported by over-the-road trucks and erected into position on the support structure, according to an embodiment of the disclosure
  • Figure 6 is an illustration of an example of a pivot connection used in pivoting a modular silo from a lateral position to an upright position on the support structure, according to an embodiment of the disclosure
  • Figure 8 is an illustration of an example of a mat system on which the support structure may be mounted at a well site, according to an embodiment of the disclosure
  • Figure 9 is an illustration of an example of the support structure positioned on the mat system illustrated in Figure 8, according to an embodiment of the disclosure.
  • Figures 10-12 depict various illustrations of installing a mobile support structure at a location according to an embodiment of the disclosure.
  • Figures 13-15 depict various illustrations of aligning a modular silo with connections of the mobile support structure at a location according to an embodiment of the disclosure.
  • Figures 16-17 depict various illustrations of erecting the modular silos onto the mobile support structure according to an embodiment of the disclosure.
  • Figure 19 is a perspective view of another embodiment of a mobile support structure constructed in accordance with the present disclosure having a blending system integrated into a support base of the mobile support structure and within a passage defined by a frame structure.
  • any references to "one embodiment” or “an embodiment” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrase “in one embodiment” in various places in the specification are not necessarily referring to the same embodiment.
  • the present disclosure generally involves a system and methodology to facilitate handling of oilfield materials in a space efficient manner.
  • the oilfield materials may be carried to a wellsite by suitable trucks and loaded into at least one modular silo without using air to carry the oilfield material.
  • the oilfield materials may be moved into a plurality of modular silos by using vertical conveyors to move the oilfield material without blowers.
  • each modular silo comprises an outer housing defining an enclosed interior for receiving the oilfield material.
  • a corresponding vertical conveyor is positioned within the enclosed interior and is used to lift the oilfield material from a silo inlet, e.g. a hopper, to an upper portion of the modular silo without utilizing airflow to carry the oilfield materials.
  • the outflow of oilfield material through a silo outlet may be gravity controlled so as to selectively release the desired amount of material into a blending system or other suitable equipment positioned underneath the modular silo.
  • a vertical silo is designed as a modular silo which may be carried to the well site by an over-the-road truck before being mounted in a generally upright position on the support structure.
  • Truck refers to a transport vehicle, such as an articulated truck having a trailer pulled by a tractor.
  • the modular silo is carried by the trailer of the truck.
  • the truck also may comprise a straight truck or other suitable truck designed to carry the modular silo and to transport the modular silo over public roadways.
  • the support structure may be designed in a manner which allows the silo to be erected from its lateral position on the truck to an upright, e.g. vertical, position at the well site.
  • a crane may be used to lift the modular silo and place the modular silo onto a support structure.
  • the use of upright silos provides an efficient solution for proppant delivery in many applications. Gravity effectively causes the oilfield material to flow downwardly to desired equipment, such as a blending system.
  • the support structure may be designed in a variety of forms and configurations to support individual modular silos or a plurality of modular silos.
  • the support structure may be constructed of struts arranged in an A-frame configuration or other type of configuration able to support and secure the at least one modular silo in the desired upright position.
  • the support structure is designed to engage each modular silo while the modular silo is positioned on the transport truck. This allows the modular silo to be pivoted upwardly directly from the truck to its operational, upright position.
  • the support structure also may be constructed to support each modular silo at a sufficient height to enable oilfield material to be gravity fed through a bottom end feeder and into a portable blender positioned below.
  • load cells are incorporated into the support structure to monitor the loading caused by each modular silo which enables tracking of the amount of oilfield material in each modular silo.
  • the support structure is a mobile support structure implemented as a trailer having wheels and a gooseneck portion for connection to the truck.
  • the gooseneck portion may convert to a ramp to aid in positioning a blending system underneath the modular silos.
  • the blending system may be integrated on the deck of the mobile support structure.
  • a conveyor such as a mechanical belt conveyor, may be utilized to move oilfield material unloaded from a gravity dump transport into an intake hopper of a vertical conveyor enclosed within the modular silo.
  • the mechanical belt conveyor can be backed over by a trailer hauling the oilfield material with multiple nozzles overlapping the mechanical belt conveyor, or other types of haulers may be used, such as tail dumps and live bottom trailers.
  • the vertical conveyor may comprise a bucket elevator or other type of vertical conveyor capable of conveying the oilfield material to an upper end of the modular silo a substantial distance, e.g. 30 to 70 feet, above the well site surface.
  • the conveyor moving the oilfield material to the silo and the vertical conveyor may be enclosed to provide a dust free solution for handling oilfield material at much higher rates with greater energy efficiency and lower attrition than that achieved with existing pneumatic, e.g. blower, type conveyance systems.
  • the outer housing may have a substantially rectangular shape defining four corners (which may form pointed vertices or be rounded).
  • the modular silo may be transported on a trailer having a gooseneck.
  • the vertical conveyor may extend beyond a top of the outer housing and be offset towards one of the corners so as to avoid the gooseneck of the trailer.
  • a plurality of the modular silos may be grouped together so that feeders of the plurality of modular silos provide oilfield material to a common area, e.g. to a truck mounted blending system having a proppant metering/rate control system, or other portable blender or blending system positioned beneath the modular silos.
  • the common area may be located below the outer housings of the modular silos. In this example, the outer housings of the modular silos overlap the common area. Additionally, some or all of the modular silos may be divided into compartments.
  • individual modular silos may have a plurality of internal compartments for holding different types of oilfield materials.
  • Individual silos also may be divided into main storage compartments and secondary storage compartments located below the main storage compartments.
  • the main storage compartment may be used to gravity feed oilfield material to an outlet feeder for distribution into the blending system.
  • Some systems may utilize a belt feeder or other type of feeder system instead of gravity feed.
  • the secondary storage compartment may be exposed to the internal vertical conveyor and proppant from the secondary storage compartment may continually be lifted and discharged into the main storage compartment.
  • the secondary compartments or other compartments of the modular silo may have separate features which enable independent filling of those particular compartments.
  • outlet feeders may be designed with controllable mechanisms, e.g. gates, which are adjustable to control the outflow of oilfield material.
  • the modular silos may be designed in a variety of sizes and shapes, including cylindrical shapes or rectangular shapes, selected to enable transport via a suitable over-the-road truck.
  • the modular silos may vary in size according to the proppant delivery plan for a given fracturing operation, but an example of a suitable modular silo may hold 2000-4000 cubic feet of oilfield material.
  • the modular silos are provided with sufficient clearance on the bottom side to form an unobstructed passage to enable a portable blending system, such as a truck mounted blending system, to be driven under a system of combined modular silos to receive oilfield material via gravity feed.
  • the portable blending system may be mounted on a truck trailer which is backed into position under the outlet feeders of a plurality of modular silos.
  • the modular silos may be designed as standalone silos and in other embodiments, the modular silos may be designed for placement on a framework/support structure which supports the modular silos at a desired height.
  • the blending system may be skid mounted in order to be transported on a trailer to the wellsite and then placed under the silo system by a suitable mechanical device, such as a winch.
  • the individual motive systems e.g., vertical conveyor and enclosed conveyor extending from the unload area
  • the individual motive systems may be powered individually or collectively by a variety of sources, including various motors, engines, or other devices.
  • the proppant delivery system may comprise many types of equipment, including vehicles, storage containers, material handling equipment, pumps, control systems, and other equipment designed to facilitate the fracturing process.
  • a proppant delivery system 20 is illustrated in position at a wellsite 22 having a well 24 with at least one wellbore 26 extending down into a reservoir/formation.
  • the proppant delivery system 20 may comprise many types and arrangements of equipment, and the types or arrangements may vary from one fracturing operation to another.
  • the proppant delivery system 20 may comprise at least one modular silo 28, e.g. a plurality of modular silos that may be transported over-the-road by trucks able to operate on public roadways.
  • the modular silos 28 are designed to store oilfield material such as a proppant used to prop open fractures upon fracturing of the subterranean formation, or guar used to increase the viscosity of a hydraulic fracturing fluid.
  • oilfield material such as a proppant used to prop open fractures upon fracturing of the subterranean formation, or guar used to increase the viscosity of a hydraulic fracturing fluid.
  • several modular silos 28 receive oilfield material via conveyors 30, e.g. belt conveyors, and the oilfield material is lifted to an upper portion 31 of each modular silo 28 by corresponding vertical conveyors 32.
  • the conveyors 30 and the vertical conveyors 32 may operate by carrying the oilfield material instead of blowing the oilfield material to avoid erosion of components and dusting of the area. Additionally, the conveyors 30 and vertical conveyors 32 may be enclosed to further reduce dust as the oilfield material is delivered from an unload area 34 and into the modular silos 28.
  • oilfield material transport trucks 36 may be used to deliver oilfield material to the unload area 34.
  • the trucks 36 are tractor-trailer trucks having trailers 37 which may be backed over a portion of a selected conveyor 30.
  • the trailers 37 can be gravity feed trailers or other types of trailers capable of moving the oilfield material to the wellsite 22.
  • the trailers may be operated to release the oilfield material onto a belt or other suitable carrier of the selected conveyor 30 for transfer to the associated modular silo or silos 28 along an enclosed pathway within the conveyor 30.
  • the proppant delivery system 20 may comprise a variety of other components including water tanks (not shown) for supplying water that is mixed with the oilfield material to form the hydraulic fracturing fluid, e.g. proppant slurry, that may be pumped downhole into wellbore 26 via a plurality of pumps (not shown).
  • pumps may be truck mounted pumps, e.g. pumping systems mounted on truck trailers designed for over- the-road transport.
  • the multiple pumps may be coupled to a common manifold (not shown) designed to deliver the hydraulic fracturing fluid to the wellbore 26.
  • the proppant delivery system 20 also may comprise a blending system 44 designed to blend oilfield material delivered from modular silos 28.
  • the blending system 44 may be a portable blender, such as a truck mounted blender or a skid mounted blender.
  • blending system 44 is mounted on a truck trailer 46 that may be driven, e.g. backed up, into a common area 47 (shown in Figure 3) that is positioned underneath or proximate to the modular silos 28.
  • the proppant delivery system 20 also may comprise a variety of other components, such as a control facility 48 and/or other components designed to facilitate a given fracturing operation.
  • the common area 47 is located below the outer housings 49 of the modular silos 28. In this embodiment, the outer housings 49 of the modular silos 28 overlap the common area 47.
  • FIG. 2 an embodiment of modular silos 28 coupled together into a cooperating unit is illustrated.
  • a plurality of the modular silos 28, e.g. four modular silos 28, is coupled together on a modular support structure, or framework, 50 which may be mounted on a mat system 52 which may be placed upon a pad, such as a concrete pad, gravel or the like.
  • the mat system 52 distributes the load from the modular silos 28 onto the ground.
  • the modular silos 28 may be releasably mounted in a generally upright or vertical orientation on support structure 50.
  • Support structure 50 is constructed with a plurality of silo receiving regions 54 on which the individual modular silos 28 may be mounted in a generally upright or vertical orientation.
  • the support structure 50 and the silo receiving regions 54 may be designed to elevate the modular silos 28 to a sufficient height so as to allow movement of portable blending system 44 to a position sufficiently beneath the modular silos 28 within the common area 47 in order to receive a controlled outflow of oilfield material.
  • the support structure 50 may be designed to allow a truck mounted blending system 44 to be driven, e.g. backed up, into position beneath the modular silos 28, as illustrated.
  • the pad may be constructed in a variety of sizes and forms, including cement pads, compacted aggregate pads, pads constructed as portable structures, mixtures of these various structural elements, and/or other suitable pad types for supporting the plurality of modular silos 28.
  • modular silos 28 each may be constructed with a silo frame 56 supporting the outer housing 49 which defines an enclosed interior 60 for holding oilfield material 62 (see also Figure 3).
  • oilfield material 62 may comprise naturally occurring sand grains or gravel, man-made proppants, resin coated sand, high-strength ceramic materials, e.g. sintered bauxite, other solids such as fibers, mica, mixtures of different sized oilfield materials, mixtures of different types of oilfield materials, and/or other suitable oilfield materials.
  • selected modular silos 28 or each of the modular silos 28 may be divided into the compartments 64 designed to hold different types of oilfield materials 62 that may be selectively released from the modular silo 28 and blended via the blending system 44.
  • Each enclosed vertical conveyor 32 is designed to lift oilfield material (e.g., with or without blowing) from an inlet 66, e.g. an inlet hopper, disposed at a lower portion 68 to an upper discharge portion 70 for release into enclosed interior 60 through a vertical conveyor head 72.
  • the conveyor head 72 may have a pivotable or otherwise movable discharge which is selectively controllable to deliver the desired oilfield material to a corresponding desired compartment 64 within a given modular silo 28.
  • the vertical conveyor 32 may be positioned within enclosed interior 60 in a manner which limits escape of dust while providing a uniform modular unit that may be readily transported via an over-the-road truck, such as truck 36 with a suitably designed trailer.
  • Vertical conveyor 32 also may be constructed in a variety of forms.
  • the vertical conveyor 32 may be constructed as a bucket elevator 74 having a plurality of buckets 75 conveyed in a continuous loop lifting oilfield material 62 from inlet 66 to upper discharge portion 70 for discharge into enclosed interior 60 via vertical conveyor head 72.
  • the outflow of oilfield material 62 to the blending system 44 may be through an outlet, e.g.
  • the blending system 44 may include a hopper 79-1 having an inlet 79-2 positioned below the feeder 76.
  • the outer housing 58 overlaps the inlet 79-2 of the hopper 79-1.
  • the inlet 79-2 of the hopper 79-1 may have a width 79-3 up to 12 feet, and desirably between 8 feet to 8.5 feet.
  • the hopper 79-1 may also have an outflow control mechanism 79-4 which is similar to the outflow control mechanism 78.
  • outflow control mechanisms 78 and 79-4 may comprise a controllable gate, e.g.
  • oilfield material 62 is gravity fed through feeder 76 and the amount of outflow is governed by the outflow control mechanism 78.
  • the amount of oilfield material 62 discharged into a blender 79-5 of the blending system 44 may be regulated by both of the outflow control mechanisms 78 and 79-4.
  • the outflow control mechanism 79-4 may be maintained in a fixed open position while the outflow control mechanism 78 is regulated in real-time by the control facility 48 to control an amount of oilfield material 62 discharged into the blender 79-5.
  • the outflow control mechanism 79-4 is self-regulating and the outflow control mechanism 78 and the control facility 48 may solely control the amount of oilfield material 62 discharged into the blender 79-5.
  • the support structure 50 comprises a plurality of struts 82 which are connected by suitable fastening methods to create a strong, stable structure for supporting at least one modular silo 28.
  • Fastening methods may utilize welds, bolt and nut fasteners, and/or other suitable types of fasteners.
  • the struts 82 are connected to form at least one silo receiving region 54.
  • struts 82 are arranged to create a plurality of the silo receiving regions 54 designed to receive and support, for example, two modular silos 28.
  • support structure 50 may be constructed in a variety of configurations for supporting various numbers of modular silos 28 in many types of arrangements and configurations.
  • struts 82 also are arranged to create support structure 50 with a drive under region or passage 84 which provides space for system equipment, such as portable blending system 44 as well as encompasses the common area 47.
  • support structure 50 may be arranged so that silo receiving regions 54 are able to support modular silos 28 via silo frames 56 at a raised position which allows bottom feeders 76 to meter the outflow of oilfield material 62 down into the portable blending system 44 when the portable blending system 44 is positioned and/or driven into the passage 84.
  • upper struts 86 may be used to connect silo receiving regions 54 and to provide an upper support for a portion of the modular silo frames 56.
  • the upper struts 86 may be placed at a sufficient height to enable a truck mounted portable blending system 44 to be driven, e.g. backed up, into drive under region or passage 84 for receiving oilfield material 62 from the modular silos 28. In other embodiments, however, the upper struts 86 may be split and supported by additional vertical struts to allow separation of the silo receiving regions 54. The separation of silo receiving regions 54 allows individual silos 28 or groups of silos 28 to be separated and to provide a space through which equipment, e.g. the portable blending system 44, may be driven between the separated modular silos 28.
  • Support structure 50 also may comprise a variety of additional features, including strengthening cross struts 88 which may be positioned at various locations throughout the structure of support structure 50 to enhance the strength of the support structure.
  • the support structure 50 also may comprise pivot struts 90 to which pivot connectors (shown in Figure 6) may be attached, as discussed in greater detail below.
  • the pivot struts 90 provide a strong region of the support structure 50 to which each modular silo 28 may initially be engaged and then pivoted against during erection of each modular silo 28 from a lateral position to an upright, operational position.
  • the pivot struts 90 are located at a height which matches corresponding pivot connectors of the modular silo frame 56 when the modular silo 28 is mounted laterally, e.g. horizontally, on a suitable over-the-road truck 36.
  • Each truck 36 may be backed up to move the laterally positioned silo 28 into engagement with a corresponding silo receiving region 54 of support structure 50.
  • the support structure 50 may comprise pivot struts 90 or other suitable structures located at an appropriate height to receive and engage each modular silo 28 when in the lateral position on truck 36.
  • the support structure 50 and the corresponding modular silos 28 may use pivot connectors 102 by which the silo 28 may be selectively engaged with the support structure 50.
  • the pivot connectors 102 are positioned to allow engagement and connection of each silo 28 with the support structure 50 while the silo 28 is in a lateral position on truck 36.
  • the pivot connectors 102 also are designed to maintain engagement of the modular silo 28 with the support structure 50 as the silo is pivoted from the lateral position to an operational upright, e.g. vertical, orientation.
  • the modular silos 28 may be pivoted or moved about pivot connectors 102 from the lateral position on truck 36 to the operational, upright position on the support structure 50 by a variety of mechanisms.
  • a ram 104 (shown in dashed lines) may be used to erect each silo 28 between the lateral and upright positions.
  • the ram 104 may be a hydraulic or pneumatic ram positioned on trailer 100 to act against frame 56 of each modular silo 28 to pivot the modular silo 28 about pivot connectors 102 until the silo 28 is securely received in its upright position by silo receiving region 54.
  • the ram 104 may be designed to operate off a hydraulic (or pneumatic) system of truck 36.
  • the ram 104 may be designed to pivot trailer 100 or a portion of trailer 100 upwardly while the modular silo 28 remains attached to the pivoting portion of the trailer 100.
  • Other techniques may utilize cranes, pulleys, and/or other mechanisms to pivot each modular silo 28 about the pivot connection as the modular silo 28 is transitioned from the lateral position to the operational, upright orientation.
  • each pivot connector 102 is used to facilitate formation of the pivot connection between each modular silo 28 and the support structure 50 and may comprise a variety of individual or plural connector mechanisms.
  • each pivot connector 102 comprises a pivot member 106 mounted to the silo 28 and a corresponding pivot member 108 mounted on the support structure 50, e.g. mounted on pivot struts 90, as illustrated in Figure 6.
  • each modular silo 28 is pivotably engaged with support structure 50 via a pair of the pivot connectors 102.
  • each pivot member 106 may comprise a pin 1 10 rotatably, e.g. pivotably, received in a corresponding pin receiver 1 12 which forms part of corresponding pivot member 108.
  • the support structure 50 and/or modular silos 28 may comprise other features for detecting and/or monitoring certain system functions.
  • various sensors 1 16 may be positioned on support structure 50 and/or on modular silos 28 to detect and/or monitor parameters related to the delivery of oilfield material 62 for a given fracturing operation.
  • sensors 1 16 may comprise load cells mounted at silo receiving regions 54 to monitor the loads applied by individual modular silos 28. The loading data may be used to track the amount of oilfield material that remains in enclosed interior 60 of each modular silo 28.
  • the mat system 52 is initially constructed at well site 22 as shown in Figure 8.
  • the mat system 52 52 may be constructed in a variety of sizes and forms depending on the environment and on the size and parameters of a given fracturing operation.
  • the mat system 52 may comprise of a structural material formed of steel or another suitable structural material, and positioned on the pad to distribute the weight of the modular silos 28 to the ground, as illustrated in Figure 8.
  • At least one support structure 50 may be assembled and/or positioned on the mat system 52, as illustrated in Figure 9.
  • the support structure 50 is oriented for receipt of modular silos 28 in a desired orientation at well site 22.
  • the support structure 50 is constructed and positioned to receive a plurality of the modular silos 28, e.g. two, three or four modular silos 28.
  • trucks 36 are used to deliver modular silos 28.
  • the mat system 52 may be integrated into a base of the support structure 50.
  • an individual modular silo 28 may be mounted in a horizontal position on trailer 100 of truck 36.
  • each modular silo 28 may be designed as a modular unit used alone or in cooperation with other silos 28.
  • the modularity along with the design and sizing of the modular silos 28 enables transport of individual modular silos 28 over public highways via trucks 36.
  • trucks 36 When truck 36 and the corresponding modular silo 28 arrive at the well site 22, the truck 36 is used to back modular silo 28 into engagement with a first support connection of the support structure 50 on the mat system 52.
  • the first support connection of the support structure may include the pivot members 106.
  • the modular silo 28 is moved toward support structure 50 until pivot members 106 of silo frame 56 engage corresponding pivot members 108 of support structure 50 to form pivot connectors 102.
  • the pivot connectors 102 provide a connection between the modular silo 28 and the support structure 50 which allows the modular silo 28 to be securely erected in a controlled manner from a lateral, e.g. horizontal, position to an operational, upright position.
  • the hydraulic ram 104 depicted in Figure 5 may be used to erect the modular silo 28 toward the upright position.
  • feeders of the modular silos 28 may be positioned to discharge the oilfield material into the passage 84.
  • enclosed conveyor systems 30 may be connected to the inlet hoppers 66 of vertical conveyors 32.
  • oilfield material 62 may be delivered to the well site 22 and loaded into modular silos 28 via conveyors 30 and vertical conveyors 32.
  • the external conveyor or conveyors 30 have a section with an exposed belt which allows oilfield material to be unloaded via gravity from appropriately designed gravity feed trucks which are backed over the exposed belt. The oilfield material fed onto the belt is then conveyed into an enclosed section of the conveyor 30 and transported along an incline for release into at least one inlet 66 of a corresponding modular silo 28.
  • the modular silos 28 may comprise an enclosed interior divided into a plurality of compartments for holding different types of oilfield material that may be selectively metered to the blender system 44 for blending into a desired mixture which is then pumped downhole into the wellbore.
  • various belt conveyors or other types of conveyors may be enclosed to deliver oilfield material from the unload area to the upright, modular silos 28.
  • the modular silos 28 also may incorporate a variety of vertical conveyors for lifting the oilfield material to an upper discharge region of the modular silos 28.
  • Various arrangements of upright modular silos 28 enable storage of a substantial quantity of oilfield materials that may be readily supplied for use in a fracturing operation.
  • the upright arrangement of modular silos 28 also provides for an efficient use of well site space.
  • the enclosed system for storing and delivering oilfield material provides a clean well site substantially free of dust production.
  • various numbers and arrangements of modular silos 28, conveyors 30 and 32, blending systems 44, and other well site equipment may be employed.
  • the mat system 52 may be constructed with a variety of materials and in a variety of configurations depending on the parameters of the fracturing operation and on the characteristics of the corresponding equipment, e.g. modular silos 28, blending systems 44, and other equipment which facilitate the hydraulic fracturing.
  • FIG. 10-17 Shown in Figures 10-17, is a mobile support structure 200 for supporting one or more modular silos 28 in accordance with the present disclosure.
  • Figure 10 shows the mobile support structure 200 in a transport configuration in which the mobile support structure 200 is configured to be transported on roadways by being pulled behind a truck 201.
  • Figure 1 1 shows the mobile support structure 200 in the process of being converted into an operational configuration for supporting one or more of the modular silos 28 while attached to the truck 201.
  • Figure 12 shows the mobile support structure 200 in the operational configuration and detached from the truck 201.
  • the mobile support structure 200 may be designed to comply with various state and federal regulations for transport over the highways.
  • the mobile support structure 200 may have a width and a height of less than about 14 feet and a length less than 53 feet.
  • the mobile support structure 200 is provided with a support base 202, a frame structure 204, a gooseneck portion 206 and a plurality of wheels 208 for supporting the support base 202, the frame structure 204 and the gooseneck portion 206.
  • the gooseneck portion 206 of the mobile support structure 200 can be attached to the truck 201 such that the truck 201 can move the mobile support structure 200 between various locations such as wellsites.
  • the mobile support structure 200 is designed to be transported to a wellsite, and then set up to support one or more of the modular silos 28.
  • the mobile support structure 200 is designed to support up to four modular silos 28 (as shown in Figure 1 ).
  • the mobile support structure 200 can be designed to support more or less of the modular silos 28 depending upon state and federal regulations determining the size of the mobile support structure 200 as well as the width and/or size of the modular silos 28.
  • the support base 202 is provided with a first end 220, a second end 222, a top surface 224 and a bottom surface (not shown).
  • the frame structure 204 is connected to the support base 202.
  • the frame structure 204 extends above the support base 202 to define a passage 230 generally located between the top surface 224 and the frame structure 204.
  • the frame structure 204 has at least one silo receiving region 232 sized and configured to receive at least one of the modular silo 28.
  • the frame structure 204 has four silo receiving regions 232 with each of the silo receiving regions 232 designed to support one of the modular silos 28.
  • the gooseneck portion 206 extends from the first end 220 of the support base 202 and is configured to connect to the truck 210 as discussed above.
  • the axles 208 can be located proximate to the second end 222 of the support base 202 as shown in Figure 10, for example.
  • the mobile support structure 200 is provided with two axles. However, it should be understood that more than two axles can be used and positioned at various locations relative to the support base 202 to support the components of the mobile support structure 200.
  • the mobile support structure 200 is also provided with a first expandable base 240 and a second expandable base 242 to provide further lateral support to the modular silos 28 to prevent the modular silos 28 from falling over.
  • the support base 202 is provided with a first side 244 and a second side 246.
  • the first expandable base 240 is positioned on the first side 244 of the support base 202 and the second expandable base 242 is positioned on the second side 246 of the support base 202.
  • the first and second expandable bases 240 and 242 may be movably connected to at least one of the frame structure 204 and the support base 202 via a mechanical linkage 248 so that the first and second expandable bases 240 and 242 may be selectively positioned between a travel position as shown in Figure 10 and a support position as shown in Figure 1 1.
  • the first and second expandable bases 240 and 242 extend substantially vertically and adjacent to the frame structure 204 so as to be within acceptable size limits for transporting the mobile support structure 200 on public roads and highways.
  • the first and second expandable bases 240 and 242 extend substantially horizontally from the frame structure 204 to provide additional lateral support for the modular silos 28.
  • the support base 202 is provided with a linkage (not shown) supported by the wheels 208 for moving the support base 202 in a vertical direction relative to the wheels 208 between a travel position in which the support base 202 is located above in a lower portion 249 of the wheels 208 (as shown in Figure 10) and a support position in which the support base 202 is positioned on the ground and at least a portion of the support base 202 is aligned with the lower portion 249 of the wheels 208.
  • the support base 202 and the first and second expandable bases 240 and 242 may be coplanar.
  • the support base 202 and the first and second expandable bases 240 and 242 may be positioned on a pad to aid in stabilizing the support base 202 and the expandable bases on the ground at the wellsite prior to erecting the modular silos 28 onto the mobile support structure 200.
  • the support base 202 may provide support to the one or more silos in sub-optimal ground surface conditions.
  • the mechanical linkage 248 movably connecting the frame structure 204 and/or support base 202 with the first and second expandable bases 240 and 242 can be implemented in a variety of manners.
  • the mechanical linkage 248 may be provided with a first set of hinges connecting the first expandable base 240 to the frame structure 204 and a second set of hinges connecting the second expandable base 242 to the frame structure 204.
  • the mechanical linkage 248 may be provided with a first set of actuators 260 and a second set of actuators 262.
  • the first set of actuators 260 are connected to the frame structure 204 and the first expandable base 240.
  • the second set of actuators 262 are connected to the frame structure 204 and the second expandable base 242.
  • the first set of actuators 260 and the second set of actuators 262 are configured to selectively move the first and second expandable bases 240 and 242 between the support position and the travel position.
  • the first and second sets of actuators 260 and 262 can be constructed in a variety of manners and may include a hydraulic cylinder, a pneumatic cylinder, or a solenoid.
  • the first set of actuators 260 is provided with two actuators and the second set of actuators 262 is also provided with two actuators. However, it should be understood that more or less actuators can be provided within the first and second set of actuators 260 and 262 depending upon the size of the actuators which are used.
  • FIG. 1 1 Shown in Figure 1 1 is a diagram of the mobile support structure 200 having the first and second expandable bases 240 and 242 positioned in the support position and showing the frame structure 204 more clearly than in Figure 10.
  • the frame structure 204 is provided with a plurality of frames 270 which are interconnected with a plurality of struts 272.
  • the frame structure 204 is provided with four frames 270 (which are labeled in Figure 1 1 with reference numerals 270-1 , 270-2, 270-3 and 270-4.
  • frame structure 204 may include more than four frames 270 or less than four frames 270.
  • each of the frames 270 positioned in parallel and substantially identical in construction and function. For this reason, only one of the frames 270 will be described in detail hereinafter.
  • the frame 270-1 is provided with a top member 280, a bottom member 282, and two side members 284 and 286 that are connected to form a closed structure surrounding at least a portion of the passage 230.
  • the bottom member 282 is positioned within a passageway (not shown) extending through the support base 202 and is connected to the side members 284 and 286 to maintain the side members 284 and 286 a fixed distance apart.
  • the side members 284 and 286, and top member 280 may be shaped and connected to form an arch shape so as to increase the structural strength of the frame 270- 1.
  • the top member 280 is provided with an apex 290 which may be centrally located between the side members 284 and 286.
  • the top member 280 includes a first leg 292 and a second leg 294 which are connected together at the apex 290.
  • the first leg 292 is connected to the side member 284 and the second leg 294 is connected to the side member 286.
  • the top member 280 may also be provided with a support beam 296 so as to increase the strength of the top member 280.
  • the support beam 296 reinforces the first leg 292 and the second leg 294 to prevent the first leg 292 from deflecting relative to the second leg 294 and vice-versa when the modular silos 28 are being supported.
  • the frame 270-1 can be made of any suitably strong and durable material to be able to support the load from the modular silos 28.
  • the top member 280, a bottom member 282, and two side members 284 and 286 may be constructed of pieces of tubular steel that are connected together using any suitable technique, such as mechanical fastening techniques utilizing combinations of bolts, plates and welds.
  • the frames 270-1 and 270-2 are connected by the struts 272 and are adapted to jointly support two modular silos 28.
  • the frames 270-3 and 270-4 are connected by the struts and are adapted to jointly support two modular silos 28 as shown in Figure 17.
  • the frames 270-1 and 270-2 form two silo receiving regions 232 of the mobile support structure 200
  • the frames 270-3 and 270-4 form two other silo receiving regions 232.
  • the mobile support structure 200 is provided with a first connection 300 and a second connection 302.
  • the first connection 300 within each of the silo receiving regions 232 is located at the apex 290 of the frames 270-1-4.
  • the second connection 302 within each silo receiving region 232 is located on either the first expandable base 240 or the second expandable base 242 and at a lower elevation than the first connection 300 to engage the silo frame 56 when the modular silo 28 is on the trailer 37.
  • the first connection 300 within each of the silo receiving regions 232 includes a first connector 306 and a second connector 308 that are configured to attach to the silo frame 56 of the modular silos 28.
  • the second connection 302 within each of the silo receiving regions 232 includes a first connector 310 and a second connector 312 that are configured to attach to the silo frame 56 of the modular silos 28.
  • the first connector 310 and the second connector 312 of the second connection 302 are configured to connect to the silo frame 56 of the modular silo 28 when the modular silo 28 is positioned on the trailer 37 as discussed above.
  • the trailer 37 can be backed to align the silo frame 56 with the first connector 310 and the second connector 312 of the second connection 302.
  • alignment guides 320 may be provided on the first expandable base 240 and the second expandable base 242 within each of the silo receiving regions 232.
  • the modular silo 28 may be moved into the vertical position as discussed above using a ram, crane or other suitable mechanical assembly.
  • the silo frame 56 is connected to the frame structure 204 via the first connection 300 to maintain the modular silo 28 securely on the mobile support structure 200.
  • the truck 201 can be disconnected from the gooseneck portion 206 of the mobile support structure 200.
  • the gooseneck portion 206 may be manipulated to lie on the ground and be generally co-planar with the support base 202. In this configuration, the gooseneck portion 206 may form a ramp to aid the operator in positioning the blending system 44 within the passage 230 as shown in Figure 1.
  • the gooseneck portion 206 may be provided with a first section 320 and a second section 322.
  • the first section 320 extends from the first end 220 of the support base 202.
  • the first section 320 has a first end 324 and a second end 326.
  • the first end 324 of the first section 320 is movably connected to the support base 208, such as by the use of a set of hinges, voids and pins or other types of connectors which may be locked at more than one position.
  • the second section 322 is movably connected to the second end 326 of the first section 320.
  • the first section 320 may be a four bar linkage which can be locked in an elevated position to form the gooseneck, or a lowered position to form the ramp
  • FIG. 12 Shown in Figure 12 is the mobile support structure 200 in the operational configuration.
  • the modular silos 28 can be loaded onto the mobile support structure 200, as shown for example, in Figures 1 and 13-17, and the blending system 44 can be positioned within the passage 230.
  • Each truck 36 may be backed up to move the laterally positioned modular silo 28 into engagement with a corresponding silo receiving region 232 of the mobile support structure 200.
  • Additional guide rails may be designed into the first and second expandable bases 240 and 242 to aid in the alignment of the silo trailer to the silo receiving region 232.
  • the first and second expandable bases 240 and 242 may also serve as a reference elevation for the silo trailer.
  • the mobile support structure 200 may comprise the second connection 302 or other suitable structures located at an appropriate height to receive and engage each modular silo 28 when in the lateral position on the truck 36.
  • the mobile support structure 200 and the corresponding modular silos 28 may use the first and second connectors 310 and 312 by which the modular silo 28 may be selectively engaged with the mobile support structure 200.
  • the first and second connectors 310 and 312 may be pivot connectors that are positioned to allow engagement and connection of each modular silo 28 with the mobile support structure 200 while the modular silo 28 is in a lateral position on the truck 36.
  • the first and second connectors 310 and 312 also are designed to maintain engagement of the modular silo 28 with the mobile support structure 200 as the modular silo 28 is pivoted from the lateral position to an operational upright, e.g. vertical, orientation.
  • the modular silos 28 may be pivoted or moved about the first and second connectors 310 and 312 from the lateral position on the truck 36 to the operational, upright position on the support frame 204 of the mobile support structure 200 by a variety of mechanisms.
  • the ram 104 may be used to erect each modular silo 28 between the lateral and upright positions.
  • the ram 104 may be a hydraulic or pneumatic ram positioned on trailer 100 to act against frame 56 of each modular silo 28 to pivot the modular silo 28 about the first and second connectors 310 and 312 until the modular silo 28 is securely received in its upright position by the silo receiving region 232.
  • the ram 104 may be designed to operate off a hydraulic (or pneumatic) system of the truck 36.
  • the ram 104 may be designed to pivot the trailer 100 or a portion of the trailer 100 upwardly while the modular silo 28 remains attached to the pivoting portion of the trailer 100.
  • Other techniques may utilize cranes, pulleys, and/or other mechanisms to pivot each modular silo 28 about the first and second connectors 310 and 312 as the modular silo 28 is transitioned from the lateral position to the operational, upright orientation.
  • the first and second connectors 310 and 312 are shown in more detail in Figures 14 and 15.
  • the first and second connectors 310 and 312 are used to facilitate formation of the connection between each modular silo 28 and the mobile support structure 200 and may comprise a variety of individual or plural connector mechanisms.
  • each of the first and second connectors 310 and 312 are designed to permit controlled movement of the modular silo 28 relative to the mobile support structure 200.
  • the first and second connectors 310 and 312 may comprise a pivot member mounted to the silo 28 and a corresponding pivot member mounted on the mobile support structure 200, e.g. mounted on struts 330, as illustrated in Figures 14 and 15.
  • each modular silo 28 is pivotably engaged with the mobile support structure 200 via a pair of the pivot members.
  • each pivot member may comprise a pin rotatably, e.g. pivotably, received in a corresponding pin receiver of the pivot member.
  • pin may be connected to frame 56 of modular silo 28 and pin receiver may be connected to pivot struts 330 of support structure 50, the pin and the pin receiver can be reversed.
  • the first and second connectors 310 and 312 may comprise a variety of other structures designed to enable selective engagement of the modular silos 28 with the mobile support structure 200 and controlled movement of the modular silos 28 with respect to the mobile support structure 200.
  • first and second connectors 310 and 312 a variety of retention features such as an expanded pin head may be used to maintain the pivotable connection between the modular silo 28 and the mobile support structure 200 during transition of the modular silo 28 from the lateral position to the upright position.
  • retention features such as an expanded pin head may be used to maintain the pivotable connection between the modular silo 28 and the mobile support structure 200 during transition of the modular silo 28 from the lateral position to the upright position.
  • the mobile support structure 200 may also be provided with other types of equipment to facilitate the handling of the oilfield material and/or the blending of the oilfield material to form the slurry as discussed above.
  • the mobile support structure 200 may be provided with a power generation system 340 that is supported by the wheels 208.
  • the power generation system 340 may be utilized to generate electrical power which may be provided to the conveyors 30 and 32 as well as other equipment at the proppant delivery system 20.
  • the mobile support structure 200 may also be provided with a dry additives feeder, power sources, controls and controllers, a skid for supporting a blender system integrated into the support base 202. Further, the mobile support structure 200 may be provided with weather proofing to protect from the harsh environmental conditions.
  • FIG. 18 Shown in Figure 18 is a top plan view of the mobile support structure 200.
  • the connectors 306, 308, 310 and 312 may be arranged in a truncated triangle configuration 350, such as a trapezoid to enhance the stability of the modular silo 28 supported within the silo receiving region 232.
  • the combined horizontal area of the support base 202, first expandable base 240 and second expandable base 242 is much larger than the horizontal area occupied by one of the modular silos 28 when installed on the mobile support structure 200.
  • a first horizontal area 352 occupied by one of the modular silos 28 when positioned in a vertical orientation is shown in Figure 18.
  • the support base 202, first expandable base 240 and the second expandable base 242 occupy a combined second horizontal area that is at least one and a half times as large as the first horizontal area 352 and may be eight or ten times as large as the first horizontal area 352.
  • Shown in Figure 19 is a second embodiment of a mobile portable structure 400, which is similar in construction and function as the mobile portable structure 200, with the exception that the mobile portable structure 400 has an integrated blending system 410.
  • the integrated blending system may be transported with the other components of the mobile portable structure 400 and provided on skids or tracks to be moved off of a support base 412 of the mobile portable structure 400.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
PCT/US2013/054299 2012-08-13 2013-08-09 System and method for delivery of oilfield materials WO2014028321A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201261682734P 2012-08-13 2012-08-13
US61/682,734 2012-08-13
US201261746154P 2012-12-27 2012-12-27
US201261746158P 2012-12-27 2012-12-27
US61/746,154 2012-12-27
US61/746,158 2012-12-27
US13/839,368 US20140041322A1 (en) 2012-08-13 2013-03-15 System and method for delivery of oilfield materials
US13/839,368 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014028321A1 true WO2014028321A1 (en) 2014-02-20

Family

ID=50065115

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/054294 WO2014028319A1 (en) 2012-08-13 2013-08-09 System and method for delivery of oilfield materials
PCT/US2013/054299 WO2014028321A1 (en) 2012-08-13 2013-08-09 System and method for delivery of oilfield materials

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2013/054294 WO2014028319A1 (en) 2012-08-13 2013-08-09 System and method for delivery of oilfield materials

Country Status (7)

Country Link
US (4) US9752389B2 (zh)
CN (1) CN104640787B (zh)
AU (2) AU2013302971A1 (zh)
CA (1) CA2880909C (zh)
RU (1) RU2639079C2 (zh)
SA (1) SA515360032B1 (zh)
WO (2) WO2014028319A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2524809A (en) * 2014-04-03 2015-10-07 Nectar Group Ltd Bulk hopper
US20170065954A1 (en) * 2014-03-04 2017-03-09 Basf Corporation Temporary addition or injection system
WO2018022064A1 (en) * 2016-07-28 2018-02-01 Halliburton Energy Services, Inc. Modular bulk material container
US9925904B2 (en) 2013-12-12 2018-03-27 Schlumberger Technology Corporation Adjustment apparatus for container installation

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836568B2 (en) 2011-10-24 2020-11-17 Solaris Oilfield Site Services Operating Llc Blender hopper control system for multi-component granular compositions
US10300830B2 (en) 2011-10-24 2019-05-28 Solaris Oilfield Site Services Operating Llc Storage and blending system for multi-component granular compositions
CA2851290C (en) * 2011-10-24 2017-07-11 Huntland Properties, Ltd. Fracture sand silo system and methods of deployment and retraction of same
US9421899B2 (en) 2014-02-07 2016-08-23 Oren Technologies, Llc Trailer-mounted proppant delivery system
US9752389B2 (en) 2012-08-13 2017-09-05 Schlumberger Technology Corporation System and method for delivery of oilfield materials
US10533406B2 (en) 2013-03-14 2020-01-14 Schlumberger Technology Corporation Systems and methods for pairing system pumps with fluid flow in a fracturing structure
US9534604B2 (en) * 2013-03-14 2017-01-03 Schlumberger Technology Corporation System and method of controlling manifold fluid flow
US9452394B2 (en) * 2013-06-06 2016-09-27 Baker Hughes Incorporated Viscous fluid dilution system and method thereof
US10633174B2 (en) 2013-08-08 2020-04-28 Schlumberger Technology Corporation Mobile oilfield materialtransfer unit
US10150612B2 (en) 2013-08-09 2018-12-11 Schlumberger Technology Corporation System and method for delivery of oilfield materials
US9593565B2 (en) 2013-09-18 2017-03-14 Schlumberger Technology Corporation Wellsite handling system for packaged wellsite materials and method of using same
US10464071B2 (en) 2013-09-18 2019-11-05 Schlumberger Technology Corporation System and method for preparing a treatment fluid
US9322246B2 (en) * 2013-09-20 2016-04-26 Schlumberger Technology Corporation Solids delivery apparatus and method for a well
CA2830145C (en) * 2013-10-17 2018-03-20 Quickthree Solutions Inc. Granular material storage with input and output
US9862538B2 (en) * 2013-12-12 2018-01-09 Schlumberger Technology Corporation Mobile erector system
US11819810B2 (en) 2014-02-27 2023-11-21 Schlumberger Technology Corporation Mixing apparatus with flush line and method
US11453146B2 (en) 2014-02-27 2022-09-27 Schlumberger Technology Corporation Hydration systems and methods
WO2016003785A1 (en) * 2014-06-30 2016-01-07 Schlumberger Canada Limited Compact articulation mechanism
US10213755B2 (en) 2014-08-15 2019-02-26 Schlumberger Technology Corporation Wellsite mixer sensing assembly and method of using same
US20160152421A1 (en) * 2014-11-28 2016-06-02 Binod Kumar Bawri System and method for loading and unloading material in bulk form
US10551819B2 (en) * 2014-12-11 2020-02-04 Schlumberger Technology Corporation Automated multi-silo aggregate management
CA2885668C (en) 2015-03-24 2022-05-03 Quickthree Solutions Inc. Transportable receiving and storage system with redundancy
US11192731B2 (en) 2015-05-07 2021-12-07 Halliburton Energy Services, Inc. Container bulk material delivery system
CA2978271C (en) * 2015-05-07 2020-06-16 Halliburton Energy Services, Inc. On-location sand delivery system & conveyor and process
CN105019878B (zh) * 2015-07-21 2019-08-16 三一石油智能装备有限公司 一种压裂车
AU2015402766A1 (en) 2015-07-22 2017-05-18 Halliburton Energy Services, Inc. Mobile support structure for bulk material containers
WO2017014771A1 (en) 2015-07-22 2017-01-26 Halliburton Energy Services, Inc. Blender unit with integrated container support frame
EP3686225B1 (en) * 2015-08-27 2021-09-22 FUJIFILM Corporation Photosensitive composition, image forming method, film forming method, resin, image, and film
CA2996055C (en) 2015-11-25 2022-04-26 Halliburton Energy Services, Inc. Sequencing bulk material containers for continuous material usage
WO2017111968A1 (en) 2015-12-22 2017-06-29 Halliburton Energy Services, Inc. System and method for determining slurry sand concentration and continuous calibration of metering mechanisms for transferring same
US11320079B2 (en) 2016-01-27 2022-05-03 Liberty Oilfield Services Llc Modular configurable wellsite surface equipment
WO2017151694A1 (en) 2016-03-01 2017-09-08 Schlumberger Technology Corporation Well treatment methods
WO2017160283A1 (en) 2016-03-15 2017-09-21 Halliburton Energy Services, Inc. Mulling device and method for treating bulk material released from portable containers
CA3008583C (en) 2016-03-24 2020-07-14 Halliburton Energy Services, Inc. Fluid management system for producing treatment fluid using containerized fluid additives
WO2017171797A1 (en) 2016-03-31 2017-10-05 Halliburton Energy Services, Inc. Loading and unloading of bulk material containers for on site blending
CA3014878C (en) * 2016-05-24 2021-04-13 Halliburton Energy Services, Inc. Containerized system for mixing dry additives with bulk material
US10919693B2 (en) 2016-07-21 2021-02-16 Halliburton Energy Services, Inc. Bulk material handling system for reduced dust, noise, and emissions
US11338260B2 (en) 2016-08-15 2022-05-24 Halliburton Energy Services, Inc. Vacuum particulate recovery systems for bulk material containers
US11186454B2 (en) 2016-08-24 2021-11-30 Halliburton Energy Services, Inc. Dust control systems for discharge of bulk material
WO2018038721A1 (en) 2016-08-24 2018-03-01 Halliburton Energy Services, Inc. Dust control systems for bulk material containers
WO2018081901A1 (en) * 2016-11-03 2018-05-11 Darrell Ford Mobile collapsible storage silo
US11186318B2 (en) 2016-12-02 2021-11-30 Halliburton Energy Services, Inc. Transportation trailer with space frame
US10315850B2 (en) 2017-07-13 2019-06-11 1875452 Alberta Ltd. Proppant conveyor systems and methods of use
WO2019140331A1 (en) * 2018-01-12 2019-07-18 Mgb Oilfield Solutions, Llc Dry additive and fluid mixing system, assembly and method
CA3001219C (en) * 2018-04-12 2020-04-28 Quickthree Solutions Inc. Silo transport safe retrieval system
MX2021000961A (es) 2018-07-23 2021-06-15 Westcap Ag Corp Sistema de almacenamiento montado en deslizador con silo plegable para material fluido.
US20210354910A1 (en) * 2018-09-14 2021-11-18 National Oilwell Varco, L.P. Proppant supply system
US11506314B2 (en) 2018-12-10 2022-11-22 National Oilwell Varco Uk Limited Articulating flow line connector
US11267663B2 (en) 2019-01-15 2022-03-08 Quickthree Technology, Llc Bottom dump pneumatic material handling system
MX2021008721A (es) 2019-01-22 2021-10-26 Westcap Ag Corp Sistema de transporte portatil que incluye transportadores de alimentacion giratorios y extensibles para la alimentacion de material particulado en un ensamble de elevacion.
CA3143497A1 (en) 2019-07-01 2021-01-07 National Oilwell Varco, L.P. Smart manifold
WO2021055885A1 (en) * 2019-09-18 2021-03-25 Bowlin Enterprises, Llc Portable sand drying system and method
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing
US11661291B2 (en) 2019-10-31 2023-05-30 Sandbox Enterprises, Llc Support apparatus for proppant storage containers
US11885206B2 (en) * 2019-12-30 2024-01-30 U.S. Well Services, LLC Electric motor driven transportation mechanisms for fracturing blenders
US11880804B1 (en) 2020-04-29 2024-01-23 Prop Sense Canada Ltd. System and method for automated inventory, transport, management, and storage control in hydraulic fracturing operations
US11760584B2 (en) 2020-07-14 2023-09-19 Quickthree Technology, Llc Flow control for bottom dump pneumatic material handling
US11702916B2 (en) 2020-12-22 2023-07-18 National Oilwell Varco, L.P. Controlling the flow of fluid to high pressure pumps
AR125694A1 (es) 2021-04-15 2023-08-09 Rocky Mountain Investor Holdings Inc Sistema de contenedor recargable para materiales apuntalantes húmedos y secos y métodos de fabricación y uso de este
WO2022225814A1 (en) * 2021-04-19 2022-10-27 Proppant Express Solutions, Llc Proppant dispensing system
US11465155B1 (en) 2021-06-16 2022-10-11 Propflow, Llc Wellsite wet screening systems for proppants and methods of using same
US20230013683A1 (en) * 2021-07-14 2023-01-19 Jdl Canada Inc. Storage Silo Apparatus with an Integrated Vertical Conveyor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985254A (en) * 1973-07-25 1976-10-12 Societe Mobiliere Industrielle System and method for loading and unloading a storage apparatus from a vehicle
US4621972A (en) * 1985-02-19 1986-11-11 Grotte Walter D Silo mover
US4832561A (en) * 1986-04-25 1989-05-23 Hydro Mecanique Research S.A. Loading system with trash silos
US5018932A (en) * 1987-09-30 1991-05-28 Interpatent Anstalt Apparatus for handling a load by arm, notably for a truck or trailer
US20100071284A1 (en) * 2008-09-22 2010-03-25 Ed Hagan Self Erecting Storage Unit

Family Cites Families (241)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US559965A (en) 1896-05-12 bierstadt
US896233A (en) 1907-06-20 1908-08-18 Finlay R Mcqueen Storage-bin.
US1576940A (en) 1923-03-02 1926-03-16 Specialty Engineering Company Pocket or storage bin
US1526527A (en) 1924-02-01 1925-02-17 Morgan R Butler Material-handling equipment
US1560826A (en) 1924-04-24 1925-11-10 Kirschbraun Lester Apparatus for making bituminous emulsion
US2099898A (en) 1935-09-16 1937-11-23 Charles A Criqui Portable foundation for machinery
US2073652A (en) 1936-03-12 1937-03-16 John F Robb Central mixing plant
US2357583A (en) 1942-07-29 1944-09-05 John S Franco System and apparatus for handling concrete
BE505947A (zh) 1950-12-27
US2774497A (en) 1953-04-16 1956-12-18 William E Martin Notched gooseneck trailer construction
US2792262A (en) 1955-04-08 1957-05-14 Halliburton Oil Well Cementing Pneumatically discharged vessel for pulverulent materials
US2858950A (en) 1956-05-18 1958-11-04 Hyster Co Heavy duty bed ramp trailer
US3155248A (en) * 1962-12-31 1964-11-03 Seatrain Lines Inc Vehicle-container
US3208616A (en) 1963-07-19 1965-09-28 Haskins Roy Portable storage bin
US3170560A (en) * 1963-07-22 1965-02-23 Robert W Obmascher Portable unloaders
FR1410243A (fr) 1964-06-04 1965-09-10 Aquitaine Petrole Procédé et appareillage pour la polymérisation de composés arylvinyliques en masse
US3263436A (en) 1965-02-05 1966-08-02 Koehring Co Method of and apparatus for precooling concrete mix ingredients
US3314557A (en) 1965-04-16 1967-04-18 Sr Walter J Sackett Tank type bulk blending plant
US3497327A (en) 1966-02-01 1970-02-24 Wolfgang Kehse Apparatus for reacting flowable and gaseous materials with each other
US3394961A (en) 1966-06-07 1968-07-30 Matte Gedeon Collapsible camper
US3490632A (en) 1967-11-08 1970-01-20 Hoover Ball & Bearing Co Portable bin assembly
US3560053A (en) 1968-11-19 1971-02-02 Exxon Production Research Co High pressure pumping system
US3666129A (en) 1970-02-16 1972-05-30 Roy Haskins Detachable storage bin and trailer
CH521302A (de) 1970-03-05 1972-04-15 Inventa Ag Verfahren zum kontinuierlichen Umestern von Dicarbonsäurealkylestern mit Diolen
US3618801A (en) 1970-05-08 1971-11-09 Dow Chemical Co Combination tank-trailer assembly
US3687319A (en) 1971-01-14 1972-08-29 Vernon F Adam Trailer for erecting and transporting storage tanks
BE794051A (fr) 1972-01-31 1973-05-02 Clark Equipment Co Bras de stabilisation pour vehicules de manutention et de transfert de charges
US3756443A (en) * 1972-06-02 1973-09-04 Hyster Co Folding gooseneck trailer
US3883019A (en) 1973-09-04 1975-05-13 Jr O Duane Hansen Power actuated folding goose neck trailer
US3842910A (en) 1973-10-04 1974-10-22 Dow Chemical Co Well fracturing method using liquefied gas as fracturing fluid
CA1041994A (en) 1973-12-04 1978-11-07 Ronald J. Ricciardi Prewetting air-atomized powdered polyelectrolytes
US3883148A (en) 1974-02-11 1975-05-13 Certified Stainless Services Trailer tank
CH604861A5 (zh) 1974-05-10 1978-09-15 Hiroyuki Iwako
US3894645A (en) 1974-07-26 1975-07-15 Transport Trailers Inc Folding gooseneck trailer
US3938673A (en) 1974-10-07 1976-02-17 Perry Jr L F Portable concrete batch plant
US3974602A (en) 1975-02-10 1976-08-17 Robert Pohl Mono-coque building structure and methods
DE2602626A1 (de) 1976-01-24 1977-07-28 Plate Kofasil Gmbh Siliermittel fuer futterpflanzen und verfahren zu ihrer einsaeuerung
US4026441A (en) 1976-04-05 1977-05-31 Jones Richard C Roof-gravel removal apparatus
US4090623A (en) * 1977-02-22 1978-05-23 Societe Internationale d'Investissements et de Participations par abreviation Interpar System for handling a container
US4103793A (en) * 1977-05-06 1978-08-01 Talbert Manufacturing, Inc. Folding gooseneck trailer with positioning system
US4111314A (en) * 1977-05-18 1978-09-05 Walnut Sand & Gravel Co. Transportable silo
US4209278A (en) 1978-02-21 1980-06-24 Halliburton Company Chassis having articulated frame
US4187047A (en) * 1978-03-09 1980-02-05 Boeing Construction Equipment Company System and apparatus for erecting a portable silo and elevator structure
US4248359A (en) 1978-06-05 1981-02-03 Astec Industries, Inc. Weigh-out system for collapsible surge bin
US4348146A (en) 1978-06-05 1982-09-07 Astec Industries, Inc. Self-erecting surge bin
US4222498A (en) * 1979-01-17 1980-09-16 Astec Industries, Inc. Control system for aggregate delivery system
US4249848A (en) * 1979-10-05 1981-02-10 Griffin Cecil A Transportable, collapsible vehicle loading hopper
US4268208A (en) * 1979-12-13 1981-05-19 Cmi Corporation Portable self-erecting silo apparatus
US4427133A (en) * 1980-01-23 1984-01-24 Halliburton Company Additive material metering system with weighing means
JPS5715828A (en) 1980-07-03 1982-01-27 Yamato Boring Kk Continuous type mixer for powder and liquid
US4373857A (en) 1980-07-14 1983-02-15 Ruan, Incorporated Method for transporting bulk fluid or particulate material
US4375343A (en) 1980-08-25 1983-03-01 Halliburton Company Railcar transporting trailer
EP0048312A1 (en) 1980-09-19 1982-03-31 Nemo Ivarson Method and apparatus for continuously mixing a liquid and powder
US4337014A (en) 1980-11-28 1982-06-29 Barber-Greene Company Method and apparatus for erecting a portable silo and elevator
US4400126A (en) 1981-08-13 1983-08-23 Bernard Desourdy Roadable storage container for bituminous mix
US4465420A (en) * 1982-03-03 1984-08-14 Bituma-Stor, Inc. Self-erecting portable paving mix silo
US4855960A (en) * 1982-04-30 1989-08-08 Janssen Wilhelmus G E Process and apparatus for the preparation of mortars
US4453829A (en) 1982-09-29 1984-06-12 The Dow Chemical Company Apparatus for mixing solids and fluids
EP0163641A4 (en) * 1983-01-17 1986-07-08 Michael Manning Lowing STORAGE STRUCTURES.
WO1985000046A1 (en) 1983-06-14 1985-01-03 Weyerhaeuser Company Low consistency ozone bleaching reactor
US4579496A (en) * 1984-12-18 1986-04-01 Gerlach Stanley C Mobile concrete batch plant
US4561821A (en) * 1984-12-20 1985-12-31 Bituma-Stor, Inc. Portable self-erecting surge storage silo
US4701095A (en) 1984-12-28 1987-10-20 Halliburton Company Transportable material conveying apparatus
US4614435A (en) 1985-03-21 1986-09-30 Dowell Schlumberger Incorporated Machine for mixing solid particles with a fluid composition
US4850750A (en) 1985-07-19 1989-07-25 Halliburton Company Integrated blending control system
US4899832A (en) * 1985-08-19 1990-02-13 Bierscheid Jr Robert C Modular well drilling apparatus and methods
US4626166A (en) 1985-11-06 1986-12-02 Jolly Arthur E Method for the placement of a trailer-mounted sand hopper
SU1341161A1 (ru) 1986-01-06 1987-09-30 Предприятие П/Я А-3732 Способ автоматического управлени процессом получени гидроксида кальци
FR2596290B1 (fr) 1986-03-27 1990-09-14 Schlumberger Cie Dowell Dispositif pour le melange d'un materiau pulverulent et d'un liquide, ou liquide-liquide
US4925358B1 (en) 1986-11-14 1996-03-05 Hcc Inc Trailerable earth digging apparatus
US5035269A (en) 1986-11-21 1991-07-30 Emergency Containment Systems Safety gas cylinder containment system
US4775275A (en) 1987-04-13 1988-10-04 Perry L F Mobile batch plants
FR2620044B1 (fr) 1987-09-08 1989-12-22 Pillon Francis Procede et dispositif pour epandre ou melanger des pulverulents par depot de particules en suspension dans l'air
US4808004A (en) 1988-05-05 1989-02-28 Dowell Schlumberger Incorporated Mixing apparatus
US5006034A (en) 1988-05-27 1991-04-09 Halliburton Company Lifting apparatus
US4907712A (en) * 1988-09-19 1990-03-13 Stempin David R Tank stabilizer
US4944646A (en) 1989-01-12 1990-07-31 Astec Industries, Inc. Highway transportable material storage apparatus and frame assembly therefor
US4917560A (en) * 1989-01-19 1990-04-17 Cmi Corporation Twin bin self erect silo
US5195861A (en) 1989-04-13 1993-03-23 Halliburton Company Automatic rate matching system
US5052486A (en) 1989-09-08 1991-10-01 Smith Energy Services Method and apparatus for rapid and continuous hydration of polymer-based fracturing fluids
US5046856A (en) 1989-09-12 1991-09-10 Dowell Schlumberger Incorporated Apparatus and method for mixing fluids
FR2655007B1 (fr) 1989-11-28 1994-12-09 Leveques Somerel Sa Ste Montbr Ensemble d'attelage d'un vehicule tracteur et d'une remorque.
US5121989A (en) 1990-03-12 1992-06-16 Mcneilus Truck And Manufacturing, Inc. Transportable concrete batching apparatus
US5190374A (en) 1991-04-29 1993-03-02 Halliburton Company Method and apparatus for continuously mixing well treatment fluids
US5201498A (en) 1992-01-21 1993-04-13 Akins Edward A Flexible fencing system
US5236261A (en) 1992-01-24 1993-08-17 Hagenbuch Roy George Le Conditioned ash surge bin
CA2114294A1 (en) 1993-01-05 1995-07-27 Thomas Earle Allen Apparatus and method for continuously mixing fluids
US5382411A (en) 1993-01-05 1995-01-17 Halliburton Company Apparatus and method for continuously mixing fluids
US5362193A (en) 1993-02-25 1994-11-08 Astec Industries, Inc. Self erecting asphalt production plant
US5339996A (en) * 1993-04-26 1994-08-23 Midwest Pre-Mix, Inc. Portable mini silo system
US5387736A (en) * 1993-08-30 1995-02-07 Salomone Bros., Inc. Portable decontamination system and method for environmental well drilling rigs
US5413154A (en) * 1993-10-14 1995-05-09 Bulk Tank, Inc. Programmable modular system providing controlled flows of granular materials
US5427497A (en) * 1993-10-15 1995-06-27 Dillman; Bruce A. Horizontal surge/storage silo
US5775713A (en) 1995-10-26 1998-07-07 Peterson; Thomas W. Collapsible goose-neck van trailer
FR2741645B1 (fr) 1995-11-28 1998-01-02 Medinger Jean Claude Epandeur pour traitement de terrain
US5667298A (en) 1996-01-16 1997-09-16 Cedarapids, Inc. Portable concrete mixer with weigh/surge systems
US5784837A (en) 1996-01-24 1998-07-28 Klein; Darrel J. Collapsible transportable deck for a house trailer or mobile home
US5571281A (en) 1996-02-09 1996-11-05 Allen; Thomas E. Automatic cement mixing and density simulator and control system and equipment for oil well cementing
US5777234A (en) * 1996-08-01 1998-07-07 Kistler-Morse Corporation Pre-straining apparatus and method for strain sensors
US5795062A (en) 1996-10-03 1998-08-18 Hamilton Beach/Proctor-Silex, Inc. Milkshake machine
US5785421A (en) * 1996-10-22 1998-07-28 Milek; Robert C. Mobile modular concrete batch plant
US20050028979A1 (en) 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US6000840A (en) 1997-12-17 1999-12-14 Charles Ross & Son Company Rotors and stators for mixers and emulsifiers
US6193402B1 (en) 1998-03-06 2001-02-27 Kristian E. Grimland Multiple tub mobile blender
DE19831818C2 (de) 1998-07-15 2000-05-25 Windmoeller & Hoelscher Siloanlage
RU10418U1 (ru) 1998-10-13 1999-07-16 Открытое акционерное общество "Татарский научно-исследовательский и проектно-конструкторский институт нефтяного машиностроения" Агрегат смесительный
DE19901904A1 (de) * 1999-01-19 2000-07-20 Heilit & Woerner Bau Ag Container-Betonmischanlage
US6186654B1 (en) * 1999-02-23 2001-02-13 Guntert & Zimmerman Construction Division, Inc. Portable and modular batching and mixing plant for concrete and the like
US6410801B1 (en) 1999-11-18 2002-06-25 Basf Corporation Continuous process for the production of polyether polyols
DE10016757A1 (de) 2000-04-04 2001-10-11 Juergen Posch Mobiler Vorratsbehälter sowie Transportfahrzeug für einen solchen Behälter und Verfahren zu dessen Aufstellung
US6447674B1 (en) 2000-08-17 2002-09-10 Material Systems Engineers Gravity flow sludge load-out system
US6527428B2 (en) * 2000-09-20 2003-03-04 Guntert & Zimmerman Const. Div., Inc. High volume portable concrete batching and mixing plant having compulsory mixer with overlying supported silo
US6293689B1 (en) * 2000-09-20 2001-09-25 Guntert & Zimmerman Const. Div., Inc. High volume portable concrete batching and mixing plant having compulsory mixer with overlying supported silo
US6491421B2 (en) 2000-11-29 2002-12-10 Schlumberger Technology Corporation Fluid mixing system
US6474926B2 (en) * 2001-03-28 2002-11-05 Rose Industries, Inc. Self-erecting mobile concrete batch plant
US6817376B2 (en) 2002-02-08 2004-11-16 Halliburton Energy Services, Inc. Gel hydration tank and method
AU2003219848A1 (en) 2002-02-22 2003-09-09 Flotek Indutries, Inc. Mobile blending apparatus
US20030227817A1 (en) 2002-04-11 2003-12-11 Mobius Technologies, Inc., A California Corporation Mixer
AU2003213129A1 (en) * 2002-04-15 2003-11-03 Boasso America Corporation (A Louisiana Corporation) Method and apparatus for supplying bulk product to an end user
US6820694B2 (en) 2002-04-23 2004-11-23 Schlumberger Technology Corporation Method for preparing improved high temperature fracturing fluids
AU2003260800A1 (en) 2002-07-11 2004-02-02 Marc A. Chalmers Apparatus and method for accelerating hydration of particulate polymer
US20050123385A1 (en) 2002-07-12 2005-06-09 Kirsch Jason R. Unloading system for particulate material
RU2228842C2 (ru) 2002-08-01 2004-05-20 Ооо "Нтф Унисон" Смесительная установка
US6854874B2 (en) 2002-10-29 2005-02-15 Halliburton Energy Services, Inc. Gel hydration system
CN2601189Y (zh) 2003-01-29 2004-01-28 中国石油天然气股份有限公司 油田压裂连续输砂车
US20040209780A1 (en) 2003-04-18 2004-10-21 Harris Phillip C. Methods of treating subterranean formations using hydrophobically modified polymers and compositions of the same
US7419296B2 (en) 2003-04-30 2008-09-02 Serva Corporation Gel mixing system
US7048432B2 (en) 2003-06-19 2006-05-23 Halliburton Energy Services, Inc. Method and apparatus for hydrating a gel for use in a subterranean formation
US6939031B2 (en) * 2003-07-01 2005-09-06 Schlumberger Technology Corporation Apparatus for mounting a frac blender on a transport vehicle
US7258522B2 (en) 2003-07-01 2007-08-21 Schlumberger Technology Corp Method for mounting a frac blender on a transport vehicle
US8066955B2 (en) 2003-10-17 2011-11-29 James M. Pinchot Processing apparatus fabrication
US7194842B2 (en) 2003-10-29 2007-03-27 Baird Jeffery D Portable observation tower
US6948535B2 (en) 2004-01-15 2005-09-27 Halliburton Energy Services, Inc. Apparatus and method for accurately metering and conveying dry powder or granular materials to a blender in a substantially closed system
KR100589613B1 (ko) 2004-01-27 2006-06-15 대한시멘트 주식회사 차량 이동식 하역기
CN2693601Y (zh) 2004-02-18 2005-04-20 中油特种车辆有限公司 钻机整体移运装置
US7308953B2 (en) 2004-03-02 2007-12-18 Barnes R Michael Mobile drilling rig
US7284898B2 (en) 2004-03-10 2007-10-23 Halliburton Energy Services, Inc. System and method for mixing water and non-aqueous materials using measured water concentration to control addition of ingredients
CA2559951C (en) * 2004-03-14 2013-12-03 Ozmotech Pty Ltd Process and plant for conversion of waste material to liquid fuel
US20060065400A1 (en) 2004-09-30 2006-03-30 Smith David R Method and apparatus for stimulating a subterranean formation using liquefied natural gas
US7794135B2 (en) 2004-11-05 2010-09-14 Schlumberger Technology Corporation Dry polymer hydration apparatus and methods of use
US8137051B2 (en) 2005-05-19 2012-03-20 Schlumberger Technology Corporation System and method for facilitating well construction
CA2508953A1 (en) 2005-06-01 2006-12-01 Frac Source Inc. High-pressure injection proppant system
US7540308B2 (en) 2005-06-07 2009-06-02 Schlumberger Technology Corporation Method of supplying a powdered chemical composition to a wellsite
US20070014653A1 (en) 2005-07-15 2007-01-18 Scott Glenn System and method for use in completing a well
US7828087B2 (en) 2005-08-16 2010-11-09 Theodore Chen Vora Rocket rig drilling apparatus
US7497263B2 (en) 2005-11-22 2009-03-03 Schlumberger Technology Corporation Method and composition of preparing polymeric fracturing fluids
US7841394B2 (en) 2005-12-01 2010-11-30 Halliburton Energy Services Inc. Method and apparatus for centralized well treatment
US7836949B2 (en) 2005-12-01 2010-11-23 Halliburton Energy Services, Inc. Method and apparatus for controlling the manufacture of well treatment fluid
US20070201305A1 (en) 2006-02-27 2007-08-30 Halliburton Energy Services, Inc. Method and apparatus for centralized proppant storage and metering
CA2538936A1 (en) 2006-03-03 2007-09-03 Dwight N. Loree Lpg mix frac
US7845413B2 (en) 2006-06-02 2010-12-07 Schlumberger Technology Corporation Method of pumping an oilfield fluid and split stream oilfield pumping systems
US7837427B2 (en) 2006-07-07 2010-11-23 Schlumberger Technology Corporation Method of transporting and storing an oilfield proppant
CA2560109A1 (en) 2006-09-14 2008-03-14 Sand Castle Enterprises Inc. Portable storage apparatus for granular material
US8844615B2 (en) 2006-09-15 2014-09-30 Schlumberger Technology Corporation Oilfield material delivery mechanism
US20080179054A1 (en) 2007-01-30 2008-07-31 Halliburton Energy Services, Inc. Methods for expandable storage and metering
US7614451B2 (en) 2007-02-16 2009-11-10 Halliburton Energy Services, Inc. Method for constructing and treating subterranean formations
US20080264641A1 (en) 2007-04-30 2008-10-30 Slabaugh Billy F Blending Fracturing Gel
US7703518B2 (en) 2007-05-09 2010-04-27 Halliburton Energy Services, Inc. Dust control system for transferring dry material used in subterranean wells
US9475974B2 (en) 2007-07-17 2016-10-25 Schlumberger Technology Corporation Controlling the stability of water in water emulsions
CA2600216C (en) 2007-09-04 2013-11-05 Alvin Herman Transportable bin or like object
US20090078410A1 (en) 2007-09-21 2009-03-26 David Krenek Aggregate Delivery Unit
US8118283B2 (en) 2007-09-21 2012-02-21 Lanny Vlasak Apparatus for aerating an aqueous solution
US7832257B2 (en) 2007-10-05 2010-11-16 Halliburton Energy Services Inc. Determining fluid rheological properties
US8146665B2 (en) 2007-11-13 2012-04-03 Halliburton Energy Services Inc. Apparatus and method for maintaining boost pressure to high-pressure pumps during wellbore servicing operations
WO2009065858A1 (en) 2007-11-19 2009-05-28 M-I Swaco Norge As Wellbore fluid mixing system
US7815222B2 (en) 2008-05-03 2010-10-19 Markham Gary R Fluid storage tank trailer
CA2634861C (en) 2008-06-11 2011-01-04 Hitman Holdings Ltd. Combined three-in-one fracturing system
CN201317413Y (zh) 2008-07-29 2009-09-30 上海三高石油设备有限公司 新型钻机整体运输装置
CN101434836B (zh) 2008-12-12 2010-12-15 中国石油集团川庆钻探工程有限公司 压裂液连续混配方法
US9102855B2 (en) 2008-12-18 2015-08-11 Schlumberger Technology Corporation Removal of crystallinity in guar based materials and related methods of hydration and subterranean applications
US8840298B2 (en) 2009-01-28 2014-09-23 Halliburton Energy Services, Inc. Centrifugal mixing system
US7931088B2 (en) 2009-01-29 2011-04-26 Halliburton Energy Services, Inc. Methods for treating a well by simultaneously introducing into a mixer streams of water, a viscosity-increasing agent, and a particulate and introducing the mixture into the well
CA2653370C (en) 2009-02-10 2014-12-16 Alvin Herman Rotatable bin or like object
US20100243251A1 (en) 2009-03-31 2010-09-30 Rajesh Luharuka Apparatus and Method for Oilfield Material Delivery
US20100243252A1 (en) 2009-03-31 2010-09-30 Rajesh Luharuka Apparatus and Method for Oilfield Material Delivery
US8127844B2 (en) 2009-03-31 2012-03-06 Schlumberger Technology Corporation Method for oilfield material delivery
CA2701937A1 (en) 2009-04-30 2010-10-30 Johan Redekop Bulk material container and container discharging apparatus
CN201458370U (zh) 2009-06-11 2010-05-12 浙江日昌升建材有限公司 粉尘的入库装置
US20100329072A1 (en) 2009-06-30 2010-12-30 Hagan Ed B Methods and Systems for Integrated Material Processing
US8083083B1 (en) 2009-07-30 2011-12-27 Brad Mohns Bulk material container with adaptable base
US8444312B2 (en) * 2009-09-11 2013-05-21 Halliburton Energy Services, Inc. Methods and systems for integral blending and storage of materials
US8834012B2 (en) 2009-09-11 2014-09-16 Halliburton Energy Services, Inc. Electric or natural gas fired small footprint fracturing fluid blending and pumping equipment
US8734081B2 (en) * 2009-11-20 2014-05-27 Halliburton Energy Services, Inc. Methods and systems for material transfer
US8434990B2 (en) * 2009-12-02 2013-05-07 Alternative Energy, Inc. Bulk material storage apparatus
CN102884275A (zh) 2010-01-20 2013-01-16 泰科流体服务公司 贮藏设备
US8354602B2 (en) 2010-01-21 2013-01-15 Halliburton Energy Services, Inc. Method and system for weighting material storage units based on current output from one or more load sensors
CN201610285U (zh) 2010-02-09 2010-10-20 中冶宝钢技术服务有限公司 组合式筒仓结构
US8061106B2 (en) 2010-02-16 2011-11-22 Vinyl Fences, Inc. Pergola structure
US8313269B2 (en) 2010-03-03 2012-11-20 Halliburton Energy Services Inc. Pneumatic particulate material fill systems and methods
CA2732170C (en) 2010-04-16 2014-03-25 Henry Friesen Portable silo with adjustable legs
CA2799551C (en) 2010-05-17 2017-06-27 Schlumberger Canada Limited Methods for providing proppant slugs in fracturing treatments
US8790055B2 (en) 2010-08-30 2014-07-29 Schlumberger Technology Corporation System and method for conducting operations to subterranean formations
US9428348B2 (en) 2010-10-21 2016-08-30 Ty-Crop Manufacturing Ltd. Mobile material handling and metering system
US8944740B2 (en) 2010-10-21 2015-02-03 Ty-Crop Manufacturing Ltd. Mobile material handling and metering system
US8882428B2 (en) 2010-11-22 2014-11-11 Halliburton Energy Services, Inc. Proppant transfer system
US20120127820A1 (en) 2010-11-23 2012-05-24 Noles Jr Jerry W Polymer Blending System
US8905627B2 (en) 2010-11-23 2014-12-09 Jerry W. Noles, Jr. Polymer blending system
US20120134772A1 (en) 2010-11-30 2012-05-31 Alvin Herman Transportable Bin
US9027287B2 (en) 2010-12-30 2015-05-12 T&T Engineering Services, Inc. Fast transportable drilling rig system
US8746338B2 (en) 2011-03-10 2014-06-10 Baker Hughes Incorporated Well treatment methods and systems
EP4265883A3 (en) 2011-04-07 2024-01-10 Typhon Technology Solutions, LLC Electrically powered system for use in fracturing underground formations
US9022120B2 (en) 2011-04-26 2015-05-05 Lubrizol Oilfield Solutions, LLC Dry polymer mixing process for forming gelled fluids
US10661316B2 (en) 2011-05-27 2020-05-26 Schlumberger Technology Corporation Oilfield material metering gate obstruction removal system
RU2535857C1 (ru) 2011-05-27 2014-12-20 Шлюмбергер Текнолоджи Б.В. Система дозирования и смешивания проппанта
US9097033B2 (en) 2011-07-08 2015-08-04 Walbridge Equipment Installation Llc Tower lifting stand system
ES2693547T3 (es) 2011-10-14 2018-12-12 Council Of Scientific & Industrial Research Reactor modular continuo
CA2851290C (en) 2011-10-24 2017-07-11 Huntland Properties, Ltd. Fracture sand silo system and methods of deployment and retraction of same
US8899823B2 (en) 2011-12-09 2014-12-02 Advanced Stimulation Technology, Inc. Gel hydration unit
US10464741B2 (en) * 2012-07-23 2019-11-05 Oren Technologies, Llc Proppant discharge system and a container for use in such a proppant discharge system
JP2013132575A (ja) 2011-12-26 2013-07-08 Jtekt Corp 混合分散システム
JP2013132572A (ja) 2011-12-26 2013-07-08 Jtekt Corp 混合分散装置
US20130269735A1 (en) 2011-12-29 2013-10-17 Green Oilfield Environmental Services, Inc. System and method for treating a contaminated substrate
CN202398329U (zh) 2011-12-30 2012-08-29 北京矿冶研究总院 一种压裂液大流量撬装式配液装置
US9790022B2 (en) 2012-02-10 2017-10-17 SandCan, Inc. Container to deliver bulk granular material
CN202506322U (zh) 2012-02-16 2012-10-31 中国海洋石油总公司 一种压裂液连续混配装置
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US20130288934A1 (en) 2012-04-30 2013-10-31 Trican Well Service, Ltd. Composite Solids System to Prepare Polymer Solutions for Hydraulic Fracturing Treatments
US9624036B2 (en) 2012-05-18 2017-04-18 Schlumberger Technology Corporation System and method for mitigating dust migration at a wellsite
US20130324444A1 (en) 2012-06-01 2013-12-05 Timothy Lesko System and method for delivering treatment fluid
US8661743B2 (en) 2012-06-21 2014-03-04 Mark Flusche Brace support mast assembly for a transportable rig
RU2644738C2 (ru) 2012-08-13 2018-02-13 Шлюмбергер Текнолоджи Б.В. Система и способ доставки нефтепромысловых материалов
US9752389B2 (en) 2012-08-13 2017-09-05 Schlumberger Technology Corporation System and method for delivery of oilfield materials
US8931996B2 (en) 2012-10-01 2015-01-13 Fb Industries Inc. Portable silo with solar powered actuators
US9017001B1 (en) 2013-03-13 2015-04-28 V-Bins.com GP Inc. Integrated elevator bin system
US8726584B1 (en) 2013-03-15 2014-05-20 Kontek Industries, Inc. Mobile elevated building
US10633174B2 (en) 2013-08-08 2020-04-28 Schlumberger Technology Corporation Mobile oilfield materialtransfer unit
US10150612B2 (en) 2013-08-09 2018-12-11 Schlumberger Technology Corporation System and method for delivery of oilfield materials
US9475029B2 (en) 2013-08-28 2016-10-25 Louisiana Eco Green, L.L.C. Method of manufacturing bio-diesel and reactor
CN203486442U (zh) 2013-08-29 2014-03-19 潍坊汇一重工机械设备有限公司 一种车载移动式输送机
US9663303B2 (en) 2013-10-17 2017-05-30 Norstar Industries Ltd. Portable conveyor system with drive-over unloading ramp and a longitudinal conveyor feeding a bucket elevator
US9688178B2 (en) 2013-12-12 2017-06-27 Schlumberger Technology Corporation Chassis and support structure alignment
US9862538B2 (en) 2013-12-12 2018-01-09 Schlumberger Technology Corporation Mobile erector system
CN103721619B (zh) 2014-01-08 2016-01-13 北京神州卓越石油科技有限公司 一种压裂液连续混配装置
US20150238914A1 (en) 2014-02-27 2015-08-27 Schlumberger Technology Corporation Integrated process delivery at wellsite
US10137420B2 (en) 2014-02-27 2018-11-27 Schlumberger Technology Corporation Mixing apparatus with stator and method
US9457335B2 (en) 2014-11-07 2016-10-04 Schlumberger Technology Corporation Hydration apparatus and method
US11453146B2 (en) 2014-02-27 2022-09-27 Schlumberger Technology Corporation Hydration systems and methods
US11819810B2 (en) 2014-02-27 2023-11-21 Schlumberger Technology Corporation Mixing apparatus with flush line and method
CN204109871U (zh) 2014-09-19 2015-01-21 能诚集团有限公司 一种物料运输车
US20160130924A1 (en) 2014-11-07 2016-05-12 Schlumberger Technology Corporation Hydration apparatus and method
US20170327309A1 (en) 2014-12-23 2017-11-16 Halliburton Energy Services, Inc. Silo with reconfigurable orientation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985254A (en) * 1973-07-25 1976-10-12 Societe Mobiliere Industrielle System and method for loading and unloading a storage apparatus from a vehicle
US4621972A (en) * 1985-02-19 1986-11-11 Grotte Walter D Silo mover
US4832561A (en) * 1986-04-25 1989-05-23 Hydro Mecanique Research S.A. Loading system with trash silos
US5018932A (en) * 1987-09-30 1991-05-28 Interpatent Anstalt Apparatus for handling a load by arm, notably for a truck or trailer
US20100071284A1 (en) * 2008-09-22 2010-03-25 Ed Hagan Self Erecting Storage Unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9925904B2 (en) 2013-12-12 2018-03-27 Schlumberger Technology Corporation Adjustment apparatus for container installation
US20170065954A1 (en) * 2014-03-04 2017-03-09 Basf Corporation Temporary addition or injection system
US10449503B2 (en) 2014-03-04 2019-10-22 Basf Corporation Temporary addition or injection system
GB2524809A (en) * 2014-04-03 2015-10-07 Nectar Group Ltd Bulk hopper
WO2018022064A1 (en) * 2016-07-28 2018-02-01 Halliburton Energy Services, Inc. Modular bulk material container
US11186431B2 (en) 2016-07-28 2021-11-30 Halliburton Energy Services, Inc. Modular bulk material container

Also Published As

Publication number Publication date
CN104640787B (zh) 2017-06-06
RU2639079C2 (ru) 2017-12-19
US10895114B2 (en) 2021-01-19
AU2013302971A1 (en) 2015-02-26
US20140041319A1 (en) 2014-02-13
CA2880909A1 (en) 2014-02-20
SA515360032B1 (ar) 2018-07-30
CA2880909C (en) 2020-08-04
US9752389B2 (en) 2017-09-05
US20140041317A1 (en) 2014-02-13
US20140041322A1 (en) 2014-02-13
RU2015108760A (ru) 2016-09-27
AU2017210598A1 (en) 2017-08-24
US20140044508A1 (en) 2014-02-13
CN104640787A (zh) 2015-05-20
WO2014028319A1 (en) 2014-02-20
US10077610B2 (en) 2018-09-18

Similar Documents

Publication Publication Date Title
US10625933B2 (en) System and method for delivery of oilfield materials
CA2880909C (en) System and method for delivery of oilfield materials
CA2881142C (en) System and method for delivery of oilfield materials
US10633174B2 (en) Mobile oilfield materialtransfer unit
US9862538B2 (en) Mobile erector system
US9688178B2 (en) Chassis and support structure alignment
CA2874599C (en) Adjustment apparatus for container installation
CA2874405C (en) Chassis and support structure alignment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13829583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13829583

Country of ref document: EP

Kind code of ref document: A1