WO2014027400A1 - 列車情報管理装置および機器制御方法 - Google Patents

列車情報管理装置および機器制御方法 Download PDF

Info

Publication number
WO2014027400A1
WO2014027400A1 PCT/JP2012/070698 JP2012070698W WO2014027400A1 WO 2014027400 A1 WO2014027400 A1 WO 2014027400A1 JP 2012070698 W JP2012070698 W JP 2012070698W WO 2014027400 A1 WO2014027400 A1 WO 2014027400A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
regenerative
compressor
state
brake
Prior art date
Application number
PCT/JP2012/070698
Other languages
English (en)
French (fr)
Inventor
卓也 澤
知明 池嶋
哲朗 甲村
尚吾 辰巳
新吾 本田
敏子 角野
隆史 宮内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020157003656A priority Critical patent/KR101635330B1/ko
Priority to JP2012548294A priority patent/JP5174999B1/ja
Priority to CN201280075239.4A priority patent/CN104540714B/zh
Priority to US14/417,997 priority patent/US9387774B2/en
Priority to PCT/JP2012/070698 priority patent/WO2014027400A1/ja
Priority to EP12891386.0A priority patent/EP2886406B1/en
Priority to TW101143209A priority patent/TW201406588A/zh
Publication of WO2014027400A1 publication Critical patent/WO2014027400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/228Devices for monitoring or checking brake systems; Signal devices for railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a train information management device, and more particularly, to a train management device that contributes to efficient use of regenerative power generated when using an electric brake.
  • the train information management device collects and manages the status data of various devices mounted on each vehicle of the train, and can individually control the devices based on the collected status data.
  • the control target device is a power converter, an air conditioner, a lighting device, a brake device, or the like that converts power supplied from an overhead wire and supplies the power to a main motor or an auxiliary device (auxiliary device).
  • the above-described conventional technique has a problem in that, if the pressure of the original air reservoir is reduced when the regeneration expires, the electric power can only be used, and sufficient effective use of the regenerative power cannot be realized.
  • the present invention has been made in view of the above, and a train information management device and a device control method capable of reducing the probability of regeneration invalidation through the control of devices mounted on a vehicle and realizing effective use of regenerative power.
  • the purpose is to obtain.
  • the present invention is a train information management device that manages information on devices installed in a train and installed in a vehicle, and controls each device.
  • a position detection unit that detects the position of the vehicle, a regenerative state detection unit that detects whether or not the regenerative brake is being used, and a route information holding unit that holds information on a section that is likely to use the brake
  • An air remaining amount calculation unit that calculates the remaining amount of air in an air tank in which compressed air used in an air brake is stored, a detection result by the position detection unit, a detection result by the regenerative state detection unit, and the route information
  • a compressor control unit that controls the compressor that generates the compressed air based on information held by the holding unit and a calculation result by the remaining air amount calculation unit, and the compressor control unit includes a brake
  • the In the regenerative preparation state in which the distance to the section that is highly likely to be used is traveling toward the section at a certain distance or less and the regenerative brake is not used, the remaining air amount
  • the compressor In the regenerative state where the regenerative brake is used, causing the compressor to generate compressed air when the remaining amount of air is less than 100%, In a normal state that does not correspond to either the regeneration preparation state or the regeneration state, the compressor starts generating compressed air when the remaining amount of air reaches a first threshold value greater than 0%, The generation of compressed air is terminated when the remaining amount of air reaches a second threshold value that is greater than the first threshold value and less than 100%.
  • FIG. 1 is a diagram illustrating an example of train organization on which a train information management device is mounted.
  • FIG. 2 is a diagram illustrating a connection example of the power conversion device.
  • FIG. 3 is a diagram illustrating a configuration example of the compressor control function unit.
  • FIG. 4 is a diagram illustrating a configuration example of the air brake system.
  • FIG. 5 is a diagram illustrating a correspondence example between the pressure in the air tank and the remaining amount of air.
  • FIG. 6 is a flowchart illustrating an example of the operation of the compressor control function unit.
  • FIG. 7 is a diagram illustrating a variation example of the remaining amount of air in the air tank.
  • FIG. 1 is a diagram showing an example of train organization on which the train information management device according to the present embodiment is mounted.
  • a train organization is composed of, for example, six vehicles, and specifically includes vehicles TC1, M2-1, M1-1, M2-2, M1-2, and TC2.
  • a central device (hereinafter simply referred to as “central device”) 1 of a train information management device is mounted on each of the vehicles TC1 and TC2, which are vehicles at both ends of the train.
  • the vehicles M2-1, M1-1, M2-2, and M1-2, which are intermediate vehicles, are respectively terminal devices (hereinafter simply referred to as “terminal devices”) 2-1 and 2-2 of the train information management device. , 2-3 and 2-4.
  • the train information management device according to the present embodiment includes a central device 1 and terminal devices 2-1 to 2-4. When the train is running, one of the vehicles TC1 and TC2 is the leading vehicle and the other is the trailing vehicle.
  • the central device 1 and the terminal devices 2-1 to 2-4 are communicably connected to each other via a backbone transmission line (inter-vehicle transmission line) 4 disposed between the vehicles.
  • the vehicle TC1 includes a central device 1, devices 3-1 to 3-3 connected to the central device 1 via branch line transmission lines (in-vehicle transmission lines) 5, and a central device 1 via the branch line transmission line 5.
  • a master controller (main controller) 3-4 connected to the central device 1 and a brake device 3-10 connected to the central device 1 via a branch transmission line 5.
  • the branch line transmission path 5 is a communication path disposed in the vehicle.
  • the devices 3-1 to 3-3 are air conditioners, for example.
  • the central device 1 transmits control information for controlling the devices 3-1 to 3-3 and the brake device 3-10, respectively, and the device information from the devices 3-1 to 3-3 and the brake device 3-10, respectively. (Status data) is acquired.
  • the master controller 3-4 is also controlled and managed by the central device 1 in the same manner as the devices 3-1 to 3-3. Further, the master controller 3-4 transmits control information such as power running notch information (acceleration information) and brake notch information (deceleration information) input from the cab (not shown) to the central device 1, for example.
  • control information such as power running notch information (acceleration information) and brake notch information (deceleration information) input from the cab (not shown) to the central device 1, for example.
  • the vehicle M2-1 includes the terminal device 2-1, the devices 3-5 to 3-7 connected to the terminal device 2-1 via the branch transmission line 5, and the branch transmission line 5 to the terminal device 2-1. And a brake device 3-10 connected to each other.
  • the devices 3-5 to 3-7 are, for example, air conditioners.
  • the terminal device 2-1 transmits control information for controlling the devices 3-5 to 3-7 and the brake device 3-10, and from the devices 3-5 to 3-7 and the brake device 3-10, respectively.
  • Device information (status data) is acquired.
  • the vehicle M1-1 includes a terminal device 2-2, devices 3-5, 3-6, and 3-8 connected to the terminal device 2-2 via the branch line transmission path 5, and a terminal device 2-2.
  • a VVVF 3-9 connected via the branch line transmission line 5; and a brake device 3-10 connected to the terminal device 2-2 via the branch line transmission line 5.
  • the brake device 3-10 is an air brake.
  • the devices 3-5, 3-6, 3-8 are, for example, air conditioners.
  • VVVF3-9 is a VVVF (Variable Voltage Variable Frequency) inverter, and controls vehicle propulsion by varying the voltage and frequency of a motor (not shown).
  • the terminal device 2-2 transmits control information for controlling the devices 3-5, 3-6, 3-8, the VVVF 3-9, and the brake device 3-10, and the devices 3-5, 3-6. , 3-8, VVVF 3-9 and brake device 3-10, respectively, device information (status data) is acquired.
  • Vehicle TC2 has the same configuration as vehicle TC1.
  • the vehicle M2-2 has the same configuration as the vehicle M2-1, and the terminal device 2-3 has the same function as the terminal device 2-1.
  • the vehicle M1-2 has the same configuration as the vehicle M1-1, and the terminal device 2-4 has the same function as the terminal device 2-2.
  • the predetermined vehicle of the train includes the power conversion device 6 and the auxiliary power supply device 8 shown in FIG. 2, and the power collected by the current collector 101 from the overhead line 100.
  • the driving power of the motor 7 and the auxiliary machine 9 is generated by conversion.
  • the power conversion device 6 corresponds to the VVVF 3-9 shown in FIG.
  • the power converter 6 and the motor 7 operate as a regenerative brake when the train is decelerated.
  • the auxiliary power supply device 8 converts the power supplied from the overhead line 100 in normal operation to generate driving power for the auxiliary machine 9, but when the regenerative brake is used to generate power, the power conversion device The drive power of the auxiliary machine 9 is generated using part or all of the power (regenerative power) returned from 6 to the overhead line 100.
  • FIG. 3 is a diagram illustrating a configuration example of the compressor control function unit 10 constituting the train information management device according to the present embodiment.
  • the compressor control function unit 10 is formed in the central device 1, for example. Further, the compressor control function unit 10 starts the compressed air generation operation for the compressor that generates compressed air to be stored in the air tank (original air reservoir) constituting the air brake system together with the brake device 3-10. And instruct the end.
  • the compressor control function unit 10 includes a position detection unit 11, a compressor control unit 12, a regenerative state detection unit 13, a track information holding unit 14, and a remaining air amount calculation unit 15.
  • the position detection unit 11 detects the position of the own train on the traveling route by using, for example, a vehicle upper and ground element (not shown) and a speed generator. The position may be detected using other methods.
  • the compressor control unit 12 controls a compressor that generates compressed air stored in an air tank provided in the air brake device (brake device 3-10).
  • FIG. 4 is a diagram illustrating a configuration example of an air brake system including the brake device 3-10.
  • the air brake system 20 includes a compressor 21, a brake control unit (BCU) 22, an air tank (original air reservoir) 23, a relay valve 24, a brake cylinder 25, and a restrictor 26.
  • the brake control unit 22, the relay valve 24, the brake cylinder 25, and the control 26 constitute a brake device 3-10.
  • the brake device 3-10 is used when the regenerative brake cannot be used or when a necessary brake force cannot be obtained only by the regenerative brake.
  • the compressor 21 and the air tank 23 constitute a compressor. As shown in FIG.
  • the brake device 3-10 (the brake control unit 22, the relay valve 24, the brake cylinder 25, and the brake device 26) is mounted on all vehicles.
  • the compressor (the compressor 21 and the air tank 23) is mounted only on some vehicles (for example, the vehicles 2-1 and 2-2). Note that a vehicle equipped with a compressor is not particularly defined. It does not matter as a structure mounted on all vehicles.
  • the compressor 21 operates in accordance with instructions from the compressor control function unit 10 and sends air into the air tank 23.
  • the air tank 23 stores the compressed air generated by the compressor 21.
  • the brake control unit 22 controls the relay valve based on operation information for designating the operation of the air brake device, such as the driver's brake operation content, and the compressed air stored in the air tank 23 is discharged to the brake cylinder 25. Adjust the competence (including 0). Further, the pressure in the air tank 23 (pressure of the stored compressed air) is detected, and the detection result is output as the tank pressure.
  • the brake cylinder 25 presses the brake member 26 by generating a predetermined brake cylinder pressure based on the compressed air output from the air tank 23.
  • the restrictor 26 is pressed against the wheel with a strength corresponding to the brake cylinder pressure, and decelerates the train.
  • the brake control unit 22 that outputs the tank pressure is only the brake control device 22 in the vehicle in which the compressor is mounted, and the brake control device 22 in the vehicle in which the compressor is not mounted outputs the tank pressure. do not do.
  • the regenerative state detection unit 13 monitors the operating state of the power converter 6 (see FIG. 2), and whether or not the power converter 6 and the motor 7 are operating as a regenerative brake. (Regenerative state).
  • the power conversion device 6 is configured to output a bit indicating the regenerative state to the regenerative state detection unit 13, and the regenerative state detection unit 13 determines the state by confirming the state of this bit.
  • the operation result by the driver may be monitored, and the regenerative state may be determined when the brake operation is performed.
  • the route information holding unit 14 is information on a traveling route, specifically, a section where there is a high possibility of using a brake (such as a regenerative brake) (for example, a section in front of a station, a downhill section, a slow section, an emergency section). (Speed section, etc.) information (for example, kilometer information at both ends of the section) is held. Information that is highly likely to be updated, such as a quick section, may be acquired and held from a system on the ground side using a wireless communication device that is not shown every time it is updated.
  • a brake such as a regenerative brake
  • Speed section, etc. information (for example, kilometer information at both ends of the section) is held.
  • Information that is highly likely to be updated, such as a quick section may be acquired and held from a system on the ground side using a wireless communication device that is not shown every time it is updated.
  • the remaining air amount calculation unit 15 calculates the remaining air amount corresponding to the pressure of the compressed air stored in the air tank 23 of the air brake system 20. That is, the remaining air amount is calculated based on the tank pressure output from the brake control device 22 in the vehicle in which the compressor is mounted. When the remaining amount of air is 100%, the compressed air pressure is equal to the maximum pressure resistance of the air tank. And For example, as shown in FIG. 5, the remaining amount of air is 100% when the pressure is 880 kPa, and 0% when the pressure is 780 kPa.
  • the compressor control function unit 10 determines whether the state of the own train corresponds to a regeneration preparation state, a regeneration state, or a normal state, and performs different control on the compressor 21 of the air brake system 20 for each state.
  • the ⁇ regenerative preparation state '' means a state where the vehicle is traveling at a point where the regenerative brake is likely to be used soon, i.e., a point where the distance from the section where the regenerative brake is likely to be used is less than a certain value.
  • a state in which the vehicle is traveling toward the section “regenerative state” is a state in which a regenerative brake is used and the motor is generating power, and “normal state” is other states.
  • the compressor control function unit 10 based on the detection result by the position detection unit 11, the detection result by the regenerative state detection unit 13, and the route information held by the route state holding unit 14, It is determined whether the train state corresponds to a regeneration preparation state, a regeneration state, or a normal state (steps S10 and S20). Specifically, the vehicle is traveling toward a section where the possibility of using the regenerative brake is high, and the current position (the current position indicated by the detection result by the position detection unit 11) and the section where the possibility of using the regenerative brake is high.
  • the regenerative preparation state is set.
  • the power converter 6 and the motor 7 are operating as a regenerative brake, it is determined as a regenerative state. Other than these are determined to be normal states.
  • step S10 Yes
  • control according to steps S11 to S15 is performed.
  • step S11 it is confirmed whether or not the compressor 21 is operating (step S11).
  • step S11: Yes the air remaining amount in the air tank 23 (hereinafter simply referred to as air remaining amount) is 80%. It is confirmed whether it is above (step S12).
  • step S12: No the remaining amount of air is less than 80%
  • step S12: Yes the compressor 21 is instructed to stop (step S13). Thereafter, the process proceeds to step S10, and the operation according to the flowchart is continued.
  • step S11 when the compressor 21 is stopped (step S11: No), it is checked whether the remaining air amount is 0% (step S14). If the remaining air amount is not 0%, the remaining air amount is 0%. The state where the compressor 21 is stopped is maintained until it becomes (step S14: No). When the remaining air amount is 0% (step S14: Yes), the compressor 21 is instructed to start operation (step S15). Thereafter, the process proceeds to step S10, and the operation according to the flowchart is continued.
  • step S10 it is determined whether or not the vehicle is in the regeneration preparation state based on the current position of the own train and the route information.
  • the speed of the own train is taken into consideration. You may make it perform determination. For example, when the vehicle is traveling at a high speed, the timing for determining the regeneration preparation state (point on the route) is advanced, and when the vehicle is traveling at a low speed, the timing for determining the regeneration preparation is delayed. By adjusting the judgment timing according to the speed, it becomes possible to start the control in the regeneration ready state at an appropriate timing. As a result, the frequency at which the compressor 21 starts to operate in the regenerative preparation state can be kept low, and a large amount of power can be consumed in the regenerative state.
  • step S10 No, and step S20: Yes
  • control according to steps S21 to S25 is performed.
  • step S21 it is confirmed whether or not the compressor 21 is operating (step S21). If it is operating (step S21: Yes), it is confirmed whether or not the remaining amount of air is 100% (step S22). When the remaining air amount is not 100%, the operation of the compressor 21 is continued until the remaining air amount reaches 100% (step S22: No). When the remaining amount of air is 100% (step S22: Yes), the compressor 21 is instructed to stop (step S23). Thereafter, the process proceeds to step S10, and the operation according to the flowchart is continued.
  • step S24 it is confirmed whether the remaining air amount is less than 100% (step S24). If the remaining air amount is not less than 100%, the remaining air amount is 100. The state where the compressor 21 is stopped is maintained until it becomes less than% (step S24: No). When the remaining amount of air is less than 100% (step S24: Yes), the compressor 21 is instructed to start operation (step S25). Thereafter, the process proceeds to step S10, and the operation according to the flowchart is continued.
  • control is performed so that the compressor 21 is operated when the remaining amount of air is other than 100%, so that the operation time of the compressor 21 can be maximized and is generated by using the regenerative brake. More power can be consumed by the train.
  • control in the regeneration preparation state already described more electric power is consumed by the own train in the regeneration state. Therefore, by executing the control in the regeneration preparation state and the control in the regeneration state, it is possible to reduce the probability of occurrence of regeneration invalidation and realize effective use of regenerative power.
  • step S10 No and step S20: No
  • control according to steps S31 to S35 is performed.
  • step S31 it is confirmed whether or not the compressor 21 is operating (step S31). If it is operating (step S31: Yes), it is confirmed whether or not the remaining amount of air is 80% or more (step S32). When the remaining air amount is not 80% or more, the operation of the compressor 21 is continued until the remaining air amount becomes 80% or more (step S32: No). When the remaining air amount is 80% or more (step S32: Yes), the compressor 21 is instructed to stop (step S33). Thereafter, the process proceeds to step S10, and the operation according to the flowchart is continued.
  • step S34 it is confirmed whether the remaining air amount is 20% or less (step S34). If the remaining air amount is not 20% or less, the remaining air amount is 20%. The state where the compressor 21 is stopped is maintained until it becomes less than or equal to% (step S34: No). When the remaining air amount is 80% or less (step S34: Yes), the compressor 21 is instructed to start operation (step S35). Thereafter, the process proceeds to step S10, and the operation according to the flowchart is continued.
  • the upper and lower thresholds (20% and 80%) of the remaining air amount are examples. Other values may be used.
  • the compressor control function unit 10 controls one compressor 21.
  • the compressor control function unit 10 controls two or more compressors 21. Also good.
  • the remaining air amount calculation unit 15 of the compressor control function unit 10 individually calculates the remaining air amount of the air tank 23 provided in each air brake system 20, and the compressor control unit 12 The operation of each compressor 21 is controlled based on the remaining amount of air 23.
  • the air brake system 20 includes the same number of compressor control function units 10 as the air brake systems 20 and is associated with one compressor control function unit 10. The compressor 21 may be controlled.
  • FIG. 7 is a diagram showing a variation example of the remaining amount of air in the air tank 23 included in the air brake system 20.
  • fluctuations in the remaining amount of air when the control by the train information management apparatus according to the present embodiment is shown by a solid line, and the remaining amount of air when conventional control is performed.
  • the fluctuation is indicated by a broken line.
  • the section indicated by diagonal lines is a section where there is a possibility of regeneration invalidation when conventional control is performed.
  • the remaining air amount is normal in the normal state (the state that does not correspond to either the regenerative preparation state or the regenerative state; “normal” section in FIG. 7).
  • the operation of the compressor is started, and the operation is continued until the remaining amount of air reaches 80%.
  • the compressor is not operated until the remaining amount of air becomes 20% again.
  • the regenerative preparation state (“preparing" section in FIG. 7)
  • the operation of the compressor is started when the remaining air amount becomes 0%, and the operation is continued until the remaining air amount reaches 80%.
  • the compressor After the remaining amount of air becomes 80% and the compressor is stopped, the compressor is not operated until the remaining amount of air becomes 0% again. Further, in the regenerative state (the “regenerating” section in FIG. 7), the compressor is operated if the remaining air amount is less than 100%. When the regeneration preparation state is changed to the regeneration state, if the remaining air amount is less than 100% and the compressor is stopped, the compressor is immediately operated.
  • the compressor is not operated until the remaining air amount becomes 0%. Do not operate.
  • the compressor in the regenerative state, the compressor is operated without waiting for the remaining amount of air to reach 0%, and the power consumption in the own train is increased. Therefore, according to the control of the present embodiment, the regenerative power generated by using the regenerative brake can be used efficiently. Moreover, since more electric power is consumed by the own train, the probability that the regeneration will be invalidated can be lowered. As shown in FIG.
  • the compressor when the control of the present embodiment is applied, the compressor is not operated until the remaining air amount becomes 0% in the regeneration preparation state, so that the time for driving the compressor in the subsequent regeneration state can be lengthened. And more regenerative power can be consumed in the train.
  • the air remaining amount in the air tank of the air brake system is in a certain range. If the compressor that feeds compressed air to the air tank is controlled so that it is likely to be in the range of 20% to 80%, and the unit is approaching a section where there is a high possibility of using the regenerative brake, The compressor is not operated until the remaining air amount becomes 0%. After that, the regenerative brake was used, and the compressor was operated in a state where power generation was performed by the motor (regenerative state).
  • the usage-amount in the own train of the electric power generated at the time of use of a regenerative brake (regenerative electric power) can be increased more than before, and the electric energy returned to an overhead line can be decreased.
  • regenerative electric power regenerative electric power
  • One-car train may be used.
  • the train information management device is useful for realizing an economical electric railway system that can effectively use regenerative power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Fluid Mechanics (AREA)

Abstract

 本発明は、位置検知部11と、回生ブレーキを使用している状態を検知する回生状態検知部13と、ブレーキを使用する可能性が高い区間の情報を保持している路線情報保持部14と、空気タンクの空気残量を算出する空気残量算出部15と、圧縮機を制御する圧縮機制御部12と、を備え、圧縮機制御部12は、ブレーキを使用する可能性が高い区間との距離が一定値以下の地点を走行中、かつ回生ブレーキを使用していない回生準備状態では、空気残量が0%となったときに圧縮機に圧縮空気の生成を開始させ、回生ブレーキを使用している回生状態では、空気残量が100%未満のときに圧縮機に圧縮空気を生成させ、通常状態では、空気残量が0%よりも大きい第1のしきい値となったときに圧縮機に圧縮空気の生成を開始させ、空気残量が第1のしきい値よりも大きくかつ100%よりも小さい第2のしきい値となったときに圧縮空気の生成を終了させる。

Description

列車情報管理装置および機器制御方法
 本発明は、列車情報管理装置に関し、特に、電気ブレーキ使用時に発生する回生電力の効率的な利用に寄与する列車管理装置に関する。
 列車情報管理装置は、列車の各車両に搭載された各種機器の状態データを収集して管理するとともに、収集した状態データに基づいて機器を個別に制御することができる。制御対象機器は、架線から供給された電力を変換して主電動機や補機(補助機器)に供給する電力変換器、空調装置や照明機器、ブレーキ装置などである。
 また、近年の列車は、主電動機を利用して制動を行い、その際に発電された電力を架線に戻して他の列車で利用する回生ブレーキを備えているのが一般的である。回生ブレーキの課題として、周囲に電力を消費する列車等が存在しない場合には、電力を架線に戻すことができず、回生絞込みや回生失効となり、回生ブレーキで発生した電力を有効に使用することができない問題がある。このような問題に対し、下記特許文献1に記載の発明では、回生ブレーキ失効時に空気ブレーキの元空気だめの圧力を確認し、圧力が適正値よりも低い場合には、電気ブレーキ(回生ブレーキ)を作動させ、それにより発生した電力で圧縮機を動作させるようにして、回生電力の有効活用を実現している。
特開2009-119963号公報
 しかしながら、上記従来の技術は、回生失効時にたまたま元空気だめの圧力が低下していれば電力を使用できるにすぎず、回生電力の十分な有効利用が実現できていない、という問題があった。
 本発明は、上記に鑑みてなされたものであって、車両に搭載された機器の制御を通じて回生失効の発生確率を低減し、回生電力の有効利用を実現可能な列車情報管理装置および機器制御方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、列車に搭載され、車両に設置された機器の情報を管理するとともに各機器を制御する列車情報管理装置であって、自列車の位置を検知する位置検知部と、回生ブレーキを使用している状態か否かを検知する回生状態検知部と、ブレーキを使用する可能性が高い区間の情報を保持している路線情報保持部と、空気ブレーキで使用する圧縮空気が貯留されている空気タンクの空気残量を算出する空気残量算出部と、前記位置検知部による検知結果、前記回生状態検知部による検知結果、前記路線情報保持部が保持している情報および前記空気残量算出部による算出結果に基づいて、前記圧縮空気を生成する圧縮機を制御する圧縮機制御部と、を備え、前記圧縮機制御部は、ブレーキを使用する可能性が高い区間との距離が一定値以下の地点を当該区間に向かって走行中、かつ回生ブレーキを使用していない状態である回生準備状態では、前記空気残量が0%となったときに前記圧縮機に圧縮空気の生成を開始させ、回生ブレーキを使用している状態である回生状態では、前記空気残量が100%未満のときに前記圧縮機に圧縮空気を生成させ、前記回生準備状態および回生状態のいずれにも該当しない通常状態では、前記空気残量が0%よりも大きい第1のしきい値となったときに前記圧縮機に圧縮空気の生成を開始させ、前記空気残量が前記第1のしきい値よりも大きくかつ100%よりも小さい第2のしきい値となったときに圧縮空気の生成を終了させる、ことを特徴とする。
 この発明によれば、回生ブレーキ使用時に発電される電力の自列車内における使用量を増加させ、架線に戻す電力量を少なくできる。その結果、周囲の列車等が必要としている電力が少ない場合などにおいて回生失効となってしまう可能性を低減でき、回生電力の有効利用を実現できる、という効果を奏する。
図1は、列車情報管理装置が搭載された列車の編成の一例を示す図である。 図2は、電力変換装置の接続例を示す図である。 図3は、圧縮機制御機能部の構成例を示す図である。 図4は、空気ブレーキシステムの構成例を示す図である。 図5は、空気タンク内の圧力と空気残量の対応例を示す図である。 図6は、圧縮機制御機能部の動作の一例を示すフローチャートである。 図7は、空気タンクの空気残量の変動例を示す図である。
 以下に、本発明にかかる列車情報管理装置および機器制御方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本実施の形態に係る列車情報管理装置が搭載された列車の編成の一例を示す図である。図1では、列車の編成は例えば6台の車両からなり、具体的には、車両TC1,M2-1,M1-1,M2-2,M1-2,TC2で構成される。
 編成の両端の車両である車両TC1,TC2には、それぞれ、列車情報管理装置の中央装置(以下、単に「中央装置」という。)1が搭載されている。中間車両である車両M2-1,M1-1,M2-2,M1-2には、それぞれ、列車情報管理装置の端末装置(以下、単に「端末装置」という。)2-1,2-2,2-3,2-4が搭載されている。本実施の形態の列車情報管理装置は、中央装置1及び端末装置2-1~2-4で構成される。列車の走行時には、車両TC1,TC2のうちの一方が先頭車両となり、他方が後尾車両となる。中央装置1及び端末装置2-1~2-4は、車両間にわたって配設された基幹伝送路(車両間伝送路)4を介して互いに通信可能に接続されている。
 車両TC1は、中央装置1と、中央装置1に支線伝送路(車両内伝送路)5を介してそれぞれ接続された機器3-1~3-3と、中央装置1に支線伝送路5を介して接続されたマスターコントローラ(主幹制御器)3-4と、中央装置1に支線伝送路5を介して接続されたブレーキ装置3-10と、を備える。支線伝送路5は、車両内に配設された通信路である。機器3-1~3-3は、例えば、空調装置等である。中央装置1は、機器3-1~3-3およびブレーキ装置3-10をそれぞれ制御するための制御情報を送信するとともに、機器3-1~3-3およびブレーキ装置3-10からそれぞれ機器情報(状態データ)を取得している。マスターコントローラ3-4も、機器3-1~3-3と同様に中央装置1により制御管理されている。また、マスターコントローラ3-4は、例えば運転台(図示せず)から入力された力行ノッチ情報(加速情報)やブレーキノッチ情報(減速情報)等の制御情報を中央装置1に送信する。
 車両M2-1は、端末装置2-1と、端末装置2-1に支線伝送路5を介してそれぞれ接続された機器3-5~3-7と、端末装置2-1に支線伝送路5を介して接続されたブレーキ装置3-10と、を備える。機器3-5~3-7は、例えば、空調装置等である。端末装置2-1は、機器3-5~3-7およびブレーキ装置3-10をそれぞれ制御するための制御情報を送信するとともに、機器3-5~3-7およびブレーキ装置3-10からそれぞれ機器情報(状態データ)を取得している。
 車両M1-1は、端末装置2-2と、端末装置2-2に支線伝送路5を介してそれぞれ接続された機器3-5,3-6,3-8と、端末装置2-2に支線伝送路5を介して接続されたVVVF3-9と、端末装置2-2に支線伝送路5を介して接続されたブレーキ装置3-10と、を備える。なお、ブレーキ装置3-10は空気ブレーキとする。機器3-5,3-6,3-8は、例えば、空調装置等である。VVVF3-9は、VVVF(Variable Voltage Variable Frequency)インバータであり、モータ(図示せず)の電圧及び周波数を可変することで車両推進の制御を行う。端末装置2-2は、機器3-5,3-6,3-8、VVVF3-9およびブレーキ装置3-10をそれぞれ制御するための制御情報を送信するとともに、機器3-5,3-6,3-8、VVVF3-9およびブレーキ装置3-10からそれぞれ機器情報(状態データ)を取得している。
 車両TC2は、車両TC1と同様の構成である。車両M2-2は、車両M2-1と同様の構成であり、端末装置2-3は端末装置2-1と同様の機能を有する。車両M1-2は、車両M1-1と同様の構成であり、端末装置2-4は端末装置2-2と同様の機能を有する。
 また、図1では記載を一部省略しているが、列車の所定車両は、図2に示した電力変換装置6および補助電源装置8を備え、集電装置101が架線100から取り入れた電力を変換してモータ7や補機9の駆動電力を生成する。電力変換装置6は図1に示したVVVF3-9に相当する。電力変換装置6およびモータ7は、列車を減速させる場合には回生ブレーキとして動作する。補助電源装置8は、通常動作では架線100から供給された電力を変換して補機9の駆動電力を生成するが、回生ブレーキが使用されて発電が行われている場合には、電力変換装置6から架線100に戻される電力(回生電力)の一部または全てを利用して補機9の駆動電力を生成する。
 図3は、本実施の形態にかかる列車情報管理装置を構成している圧縮機制御機能部10の構成例を示す図である。圧縮機制御機能部10は、例えば中央装置1内に形成されている。また、圧縮機制御機能部10は、ブレーキ装置3-10とともに空気ブレーキシステムを構成している空気タンク(元空気溜)に貯留させる圧縮空気を生成する圧縮機に対し、圧縮空気生成動作の開始と終了を指示する。
 図示したように、圧縮機制御機能部10は、位置検知部11、圧縮機制御部12、回生状態検知部13、線路情報保持部14および空気残量算出部15を備えている。
 位置検知部11は、例えば、図示を省略している車上子および地上子と速度発電機を利用して、走行中の路線における自列車の位置を検知する。なお、位置の検知は他の方法を用いて行うようにしてもよい。圧縮機制御部12は、空気ブレーキ装置(ブレーキ装置3-10)が備えている空気タンクに貯留する圧縮空気を生成する圧縮機を制御する。
 ここで、ブレーキ装置3-10について説明する。図4は、ブレーキ装置3-10を含む空気ブレーキシステムの構成例を示す図である。空気ブレーキシステム20は、圧縮機21、ブレーキ制御部(BCU)22、空気タンク(元空気溜)23、中継弁24、ブレーキシリンダ25および制輪子26を備えている。なお、ブレーキ制御部22、中継弁24、ブレーキシリンダ25および制輪子26がブレーキ装置3-10を構成している。ブレーキ装置3-10は、回生ブレーキが使用できない状態や回生ブレーキだけでは必要なブレーキ力が得られない状態のときに使用される。また、圧縮機21および空気タンク23は圧縮器を構成している。図1に示したように、ブレーキ装置3-10(ブレーキ制御部22、中継弁24、ブレーキシリンダ25および制輪子26)は全ての車両に搭載されている。一方、圧縮器(圧縮機21および空気タンク23)は、一部の車両(例えば、車両2-1および2-2)にのみ搭載されている。なお、圧縮器を搭載する車両は特に規定しない。全ての車両に搭載する構成としても構わない。
 圧縮機21は、圧縮機制御機能部10からの指示に従い動作し、空気タンク23に空気を送り込む。空気タンク23は、圧縮機21で生成された圧縮空気を貯留する。ブレーキ制御部22は、運転士のブレーキ操作内容など、空気ブレーキ装置の動作を指定する操作情報に基づいて中継弁を制御し、空気タンク23に貯留されている圧縮空気のブレーキシリンダ25への出力量(0を含む)を調整する。また、空気タンク23内の圧力(貯留されている圧縮空気の圧力)を検出し、検出結果をタンク圧力として出力する。ブレーキシリンダ25は、空気タンク23から出力された圧縮空気に基づいて所定のブレーキシリンダ圧力を生成することにより制輪子26を押圧する。制輪子26は、ブレーキシリンダ圧力に応じた強さで車輪に押し当てられ、列車を減速させる。なお、タンク圧力を出力するブレーキ制御部22は、圧縮器が搭載されている車両内のブレーキ制御装置22のみであり、圧縮器が搭載されていない車両内のブレーキ制御装置22はタンク圧力を出力しない。
 圧縮機制御機能部10の説明に戻り、回生状態検知部13は、電力変換装置6(図2参照)の動作状態を監視し、電力変換装置6とモータ7が回生ブレーキとして動作しているか否か(回生状態か否か)を判定する。例えば、電力変換装置6が回生状態を示すビットを回生状態検知部13に出力するように構成し、回生状態検知部13は、このビットの状態を確認することにより状態を判定する。運転士による操作結果を監視する構成とし、ブレーキ操作が行われた場合に回生状態と判定してもよい。
 路線情報保持部14は、走行中の路線の情報、具体的には、ブレーキ(回生ブレーキなど)を使用する可能性が高い区間(例えば、駅手前の区間、下り坂の区間、徐行区間、臨速区間、など)の情報(例えば区間両端のキロ程情報)を保持している。臨速区間など更新される可能性が高い情報は、更新されるごとに、図示を省略している無線通信装置を利用して地上側のシステムから取得して保持するようにしてもよい。
 空気残量算出部15は、空気ブレーキシステム20の空気タンク23に貯留されている圧縮空気の圧力に対応する空気残量を算出する。すなわち、圧縮器が搭載されている車両内のブレーキ制御装置22から出力されたタンク圧力に基づいて空気残量を算出する。空気残量100%は圧縮空気の圧力が空気タンクの最高耐圧に等しい場合、0%は圧縮空気の圧力がブレーキ力を得られる最低圧力(ブレーキ装置が動作可能な圧力の下限値)に等しい場合とする。例えば、図5に示すように、圧力が880kPaのとき空気残量100%、780kPaのとき0%とする。
 次に、本実施の形態の列車情報管理装置における圧縮機制御機能部10の詳細動作について、図6を用いて説明する。なお、簡単化のために、圧縮機制御機能部10が1台の圧縮機を制御する場合について説明する。
 圧縮機制御機能部10は、自列車の状態が回生準備状態、回生状態および通常状態のいずれに該当するかを判別し、状態ごとに異なる制御を空気ブレーキシステム20の圧縮機21に対して行う。ここで、「回生準備状態」とは、間もなく回生ブレーキを使用する可能性が高い地点を走行中の状態、すなわち、回生ブレーキを使用する可能性が高い区間との距離が一定値以下の地点を当該区間に向かって走行中の状態、「回生状態」とは、回生ブレーキを使用しており、モータが発電を行っている状態、「通常状態」とはその他の状態である。
 圧縮機制御機能部10の具体的な動作を示すと、まず、位置検知部11による検知結果、回生状態検知部13による検知結果および路線状態保持部14が保持している路線情報に基づいて、列車の状態が回生準備状態、回生状態および通常状態のいずれに該当するかを判定する(ステップS10,S20)。具体的には、回生ブレーキを使用する可能性が高い区間に向かって走行中、かつ現在位置(位置検知部11による検知結果が示す現在位置)と回生ブレーキを使用する可能性が高い区間との距離が一定値以下であり、なおかつ、電力変換装置6とモータ7が回生ブレーキとして動作していない場合は回生準備状態と判定する。電力変換装置6とモータ7が回生ブレーキとして動作している場合は回生状態と判定する。これら以外は通常状態と判定する。
 回生準備状態の場合(ステップS10:Yes)、ステップS11~S15に従った制御を行う。
 すなわち、圧縮機21が動作中かどうかを確認し(ステップS11)、動作中の場合(ステップS11:Yes)、空気タンク23の空気残量(以下、単に空気残量と記載する)が80%以上かどうかを確認する(ステップS12)。空気残量が80%未満の場合、空気残量が80%以上となるまで圧縮機21の動作を継続させる(ステップS12:No)。空気残量が80%以上の場合(ステップS12:Yes)、圧縮機21に対して停止を指示する(ステップS13)。その後、ステップS10に遷移し、フローチャートに従った動作を継続する。
 一方、圧縮機21が停止中の場合(ステップS11:No)、空気残量が0%かどうかを確認し(ステップS14)、空気残量が0%ではない場合、空気残量が0%となるまで圧縮機21が停止した状態を維持させる(ステップS14:No)。空気残量が0%の場合(ステップS14:Yes)、圧縮機21に対して動作開始を指示する(ステップS15)。その後、ステップS10に遷移し、フローチャートに従った動作を継続する。
 このように、回生準備状態においては、空気残量が0%~80%となるよう制御する。上限を80%とすることにより、後述する回生状態において圧縮機21を確実に動作させるようにして、自列車において多くの電力を消費できるようにする。また、下限を0%とすることにより、回生状態となる前に圧縮機21が動作開始となるタイミングを可能な限り遅らせ、回生状態における圧縮機21の動作時間がより長くなるようにする。その結果、回生状態において、より多くの電力を自列車で消費できる。
 なお、上記のステップS10では、自列車の現在位置と路線情報に基づいて回生準備状態か否かの判定を行うようにしているが、これらの情報に加えて、自列車の速度を考慮して判定を行うようにしてもよい。例えば、高速走行中の場合は回生準備状態と判断するタイミング(路線上の地点)を早くし、低速走行中の場合には回生準備中と判断するタイミングを遅くする。速度に応じて判断タイミングを調整することにより、的確なタイミングで回生準備状態における制御を開始できるようになる。その結果、回生準備状態において圧縮機21が動作を開始する頻度を低く抑え、回生状態において多くの電力を消費するようにできる。
 回生状態の場合(ステップS10:No、かつステップS20:Yes)、ステップS21~S25に従った制御を行う。
 すなわち、圧縮機21が動作中かどうかを確認し(ステップS21)、動作中の場合(ステップS21:Yes)、空気残量が100%かどうかを確認する(ステップS22)。空気残量が100%ではない場合、空気残量が100%となるまで圧縮機21の動作を継続させる(ステップS22:No)。空気残量が100%の場合(ステップS22:Yes)、圧縮機21に対して停止を指示する(ステップS23)。その後、ステップS10に遷移し、フローチャートに従った動作を継続する。
 一方、圧縮機21が停止中の場合(ステップS21:No)、空気残量が100%未満かどうかを確認し(ステップS24)、空気残量が100%未満ではない場合、空気残量が100%未満となるまで圧縮機21が停止した状態を維持させる(ステップS24:No)。空気残量が100%未満の場合(ステップS24:Yes)、圧縮機21に対して動作開始を指示する(ステップS25)。その後、ステップS10に遷移し、フローチャートに従った動作を継続する。
 このように、回生状態においては、空気残量が100%以外の場合に圧縮機21を動作させるように制御するので、圧縮機21の稼働時間を最大にすることができ、回生ブレーキ使用により発生する電力を自列車でより多く消費できる。また、すでに説明した回生準備状態における制御を行うことにより、回生状態における自列車でより多くの電力を消費するようになる。したがって、上記の回生準備状態における制御と回生状態における制御を実施することにより回生失効の発生確率を低減し、回生電力の有効利用を実現できる。
 通常状態の場合(ステップS10:No、かつステップS20:No)、ステップS31~S35に従った制御を行う。
 すなわち、圧縮機21が動作中かどうかを確認し(ステップS31)、動作中の場合(ステップS31:Yes)、空気残量が80%以上かどうかを確認する(ステップS32)。空気残量が80%以上ではない場合、空気残量が80%以上となるまで圧縮機21の動作を継続させる(ステップS32:No)。空気残量が80%以上の場合(ステップS32:Yes)、圧縮機21に対して停止を指示する(ステップS33)。その後、ステップS10に遷移し、フローチャートに従った動作を継続する。
 一方、圧縮機21が停止中の場合(ステップS31:No)、空気残量が20%以下かどうかを確認し(ステップS34)、空気残量が20%以下ではない場合、空気残量が20%以下となるまで圧縮機21が停止した状態を維持させる(ステップS34:No)。空気残量が80%以下の場合(ステップS34:Yes)、圧縮機21に対して動作開始を指示する(ステップS35)。その後、ステップS10に遷移し、フローチャートに従った動作を継続する。
 なお、空気残量の上限と下限の閾値(20%,80%)は一例である。他の値としても構わない。
 本実施の形態では1台の圧縮機制御機能部10が1台の圧縮機21を制御する場合について説明したが、圧縮機制御機能部10が2台以上の圧縮機21を制御するようにしてもよい。この場合、圧縮機制御機能部10の空気残量算出部15は、各空気ブレーキシステム20が備えている空気タンク23の空気残量を個別に算出し、圧縮機制御部12は、各空気タンク23の空気残量に基づいて、各圧縮機21の動作を制御する。空気ブレーキシステム20が1編成に複数搭載されている場合、空気ブレーキシステム20と同数の圧縮機制御機能部10を備え、1台の圧縮機制御機能部10が対応付けられている空気ブレーキシステム20の圧縮機21を制御するようにしてもよい。
 次に、従来の圧縮機制御動作と本実施の形態の列車情報管理装置による圧縮機制御動作の違いについて、図7を用いて説明する。
 図7は、空気ブレーキシステム20に含まれている空気タンク23の空気残量の変動例を示す図である。図7では、本実施の形態の列車情報管理装置による制御(上記の図6に従った制御)を行った場合の空気残量変動を実線で示し、従来の制御を行った場合の空気残量変動を破線で示している。斜線で示した区間は従来の制御を行った場合に回生失効となる可能性が有る区間である。
 まず、従来の制御では、自列車の走行位置やモータの動作状態に関係なく、空気残量(空気ブレーキシステムの空気タンクの残量)が0%になると圧縮機の動作を開始させ、空気残量が100%になるまで動作を継続させる。空気残量が100%となり圧縮機を停止させた後は、空気残量が再び0%になるまで、圧縮機を動作させない。
 これに対して、本実施の形態の列車情報管理装置による制御では、通常状態(回生準備状態と回生状態のいずれにも該当しない状態。図7の「通常」区間)においては、空気残量が20%になると圧縮機の動作を開始させ、空気残量が80%になるまで動作を継続させる。空気残量が80%となり圧縮機を停止させた後は、空気残量が再び20%になるまで、圧縮機を動作させない。回生準備状態(図7の「準備中」区間)においては、空気残量が0%になると圧縮機の動作を開始させ、空気残量が80%になるまで動作を継続させる。空気残量が80%となり圧縮機を停止させた後は、空気残量が再び0%になるまで、圧縮機を動作させない。また、回生状態(図7の「回生中」区間)においては、空気残量が100%未満であれば圧縮機を動作させる。なお、回生準備状態から回生状態に変化した場合、空気残量が100%未満でありかつ圧縮機が停止中であれば、圧縮機を直ちに動作させる。
 以上のように、従来の制御では、回生状態(回生ブレーキを使用している状態)かつ空気残量が100%未満の状態であっても、空気残量が0%になるまでは圧縮機を動作させない。一方、本実施の形態の制御では、回生状態の場合、空気残量が0%になるのを待つことなく、圧縮機を動作させ、自列車における電力消費量を増加させる。よって、本実施の形態の制御によれば、回生ブレーキ使用により発生する回生電力を効率的に利用できる。また、自列車でより多くの電力を消費するので、回生失効となる確率を下げることができる。図7に示したように、従来の制御では、回生状態となっても空気残量が0%になるまでは圧縮機を動作させないため、回生失効となる可能性が高くなる(自列車内における電力消費量が少ない区間である、回生失効の可能性有の区間が多く存在する)。
 また、本実施の形態の制御を適用した場合、回生準備状態においては空気残量が0%となるまで圧縮機を動作させないので、その後の回生状態において圧縮機を駆動させる時間を長くすることができ、より多くの回生電力を自列車内で消費できる。
 なお、上記の特許文献1に記載の発明では、元空気だめ(空気タンク)の圧力が適正値よりも低い場合には、回生電力で圧縮機を動作させるようにしているが、本実施の形態が行っているような、通常状態および回生準備状態において空気残量が80%以下を維持するように制御することはしていないので、回生電力発生時に空気タンクの圧力が適正値またはそれに近い値となっているケースが考えられる。すなわち、本実施の形態の制御を適用した場合と同程度に効率良く回生電力を利用して回生失効の発生を回避することは、特許文献1に記載の発明では不可能である。
 このように、本実施の形態の列車情報管理装置は、回生ブレーキを使用する可能性の低い区間を走行中の場合(通常状態の場合)、空気ブレーキシステムの空気タンクの空気残量が一定範囲(20%~80%の範囲)となるように、空気タンクへ圧縮空気を送り込む圧縮機を制御し、回生ブレーキを使用する可能性が高い区間に近づいた場合、回生準備状態として、空気タンクの空気残量が0%となるまで圧縮機を動作させないようにする。その後、回生ブレーキが使用され、モータにより発電が行われている状態(回生状態)で圧縮機を動作させることとした。これにより、回生ブレーキ使用時に発電する電力(回生電力)の自列車内における使用量を従来よりも多くして架線に戻す電力量を少なくできる。その結果、周囲の列車等が必要としている電力が少ない場合などにおいて回生失効となってしまう可能性を低減でき、回生電力の有効利用を実現できる。
 本実施の形態では、複数の車両(6両)が1編成を構成する場合について説明したが、1編成を構成する車両の数は6両以上でもよいし6両以下でもよい。1両編成であっても構わない。
 以上のように、本発明にかかる列車情報管理装置は、回生電力を有効に利用することが可能な、経済性の高い電気鉄道システムを実現する場合に有用である。
 1 中央装置、2-1~2-4 端末装置、3-1~3-3,3-5~3-8 機器、3-4 マスターコントローラ、3-9 VVVF、3-10 ブレーキ装置、4 基幹伝送路、5 支線伝送路、6 電力変換装置(VVVF)、7 モータ、8 補助電源装置、9 補機、10 圧縮機制御機能部、11 位置検知部、12 圧縮機制御部、13 回生状態検知部、14 路線情報保持部、15 空気残量算出部、20 空気ブレーキシステム、21 圧縮機、22 ブレーキ制御部(BCU)、23 空気タンク(元空気溜)、24 中継弁、25 ブレーキシリンダ、26 制輪子。
 

Claims (4)

  1.  列車に搭載され、車両に設置された機器の情報を管理するとともに各機器を制御する列車情報管理装置であって、
     自列車の位置を検知する位置検知部と、
     回生ブレーキを使用している状態か否かを検知する回生状態検知部と、
     ブレーキを使用する可能性が高い区間の情報を保持している路線情報保持部と、
     空気ブレーキで使用する圧縮空気が貯留されている空気タンクの空気残量を算出する空気残量算出部と、
     前記位置検知部による検知結果、前記回生状態検知部による検知結果、前記路線情報保持部が保持している情報および前記空気残量算出部による算出結果に基づいて、前記圧縮空気を生成する圧縮機を制御する圧縮機制御部と、
     を備え、
     前記圧縮機制御部は、
     ブレーキを使用する可能性が高い区間との距離が一定値以下の地点を当該区間に向かって走行中、かつ回生ブレーキを使用していない状態である回生準備状態では、前記空気残量が0%となったときに前記圧縮機に圧縮空気の生成を開始させ、
     回生ブレーキを使用している状態である回生状態では、前記空気残量が100%未満のときに前記圧縮機に圧縮空気を生成させ、
     前記回生準備状態および回生状態のいずれにも該当しない通常状態では、前記空気残量が0%よりも大きい第1のしきい値となったときに前記圧縮機に圧縮空気の生成を開始させ、前記空気残量が前記第1のしきい値よりも大きくかつ100%よりも小さい第2のしきい値となったときに圧縮空気の生成を終了させる、
     ことを特徴とする列車情報管理装置。
  2.  前記圧縮機制御部は、
     前記回生準備状態において前記圧縮機に圧縮空気を生成させている場合、前記空気残量が100%よりも小さい第3のしきい値となったときに圧縮空気の生成を終了させる、
     ことを特徴とする請求項1に記載の列車情報管理装置。
  3.  列車に搭載され、車両に設置された機器の情報を管理するとともに各機器を制御する列車情報管理装置における機器制御方法であって、
     自列車の位置と、回生ブレーキの使用状況と、ブレーキを使用する可能性が高い区間の情報とに基づいて、自列車の状態が、ブレーキを使用する可能性が高い区間との距離が一定値以下の地点を当該区間に向かって走行中、かつ回生ブレーキを使用していない状態である回生準備状態、回生ブレーキを使用している状態である回生状態、当該回生準備状態および回生状態のいずれにも該当しない通常状態、のうち、どの状態かを判定する状態判定ステップと、
     自列車の状態が前記回生準備状態の場合、空気ブレーキで使用する圧縮空気が貯留されている空気タンクの空気残量が0%となったときに、前記圧縮空気を生成する圧縮機に圧縮空気の生成を開始させる第1の制御ステップと、
     自列車の状態が前記回生状態の場合、前記空気残量が100%未満のときに前記圧縮機に圧縮空気を生成させる第2の制御ステップと、
     自列車の状態が前記通常状態の場合、前記空気残量が0%よりも大きい第1のしきい値となったときに前記圧縮機に圧縮空気の生成を開始させ、前記空気残量が前記第1のしきい値よりも大きくかつ100%よりも小さい第2のしきい値となったときに圧縮空気の生成を終了させる第3の制御ステップと、
     を含むことを特徴とする機器制御方法。
  4.  前記第1の制御ステップでは、
     前記圧縮機に圧縮空気を生成させている場合、前記空気残量が100%よりも小さい第3のしきい値となったときに圧縮空気の生成を終了させる、
     ことを特徴とする請求項3に記載の機器制御方法。
     
PCT/JP2012/070698 2012-08-14 2012-08-14 列車情報管理装置および機器制御方法 WO2014027400A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157003656A KR101635330B1 (ko) 2012-08-14 2012-08-14 열차 정보 관리 장치 및 기기 제어 방법
JP2012548294A JP5174999B1 (ja) 2012-08-14 2012-08-14 列車情報管理装置および機器制御方法
CN201280075239.4A CN104540714B (zh) 2012-08-14 2012-08-14 列车信息管理装置及设备控制方法
US14/417,997 US9387774B2 (en) 2012-08-14 2012-08-14 Train-information management device and device control method
PCT/JP2012/070698 WO2014027400A1 (ja) 2012-08-14 2012-08-14 列車情報管理装置および機器制御方法
EP12891386.0A EP2886406B1 (en) 2012-08-14 2012-08-14 Train-information management device and device control method
TW101143209A TW201406588A (zh) 2012-08-14 2012-11-20 列車資訊管理裝置及機器控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/070698 WO2014027400A1 (ja) 2012-08-14 2012-08-14 列車情報管理装置および機器制御方法

Publications (1)

Publication Number Publication Date
WO2014027400A1 true WO2014027400A1 (ja) 2014-02-20

Family

ID=48189379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070698 WO2014027400A1 (ja) 2012-08-14 2012-08-14 列車情報管理装置および機器制御方法

Country Status (7)

Country Link
US (1) US9387774B2 (ja)
EP (1) EP2886406B1 (ja)
JP (1) JP5174999B1 (ja)
KR (1) KR101635330B1 (ja)
CN (1) CN104540714B (ja)
TW (1) TW201406588A (ja)
WO (1) WO2014027400A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551765A (en) * 2016-06-30 2018-01-03 Arrival Ltd Predictive compressed air system
JPWO2021024462A1 (ja) * 2019-08-08 2021-02-11

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207952A1 (de) * 2013-04-30 2014-10-30 Siemens Aktiengesellschaft Vorrichtung zum Betreiben zumindest eines elektrischen Verbrauchers eines Schienenfahrzeugs
US9522613B2 (en) * 2013-08-05 2016-12-20 Mitsubishi Electric Corporation Electric vehicle control system and power conversion device
CN104724098B (zh) * 2013-12-20 2017-11-03 广州地铁集团有限公司 一种城轨列车制动***故障诊断方法
CN105917616B (zh) * 2014-01-27 2019-10-25 三菱电机株式会社 通信装置、列车网络***以及网络设定方法
EP2992944A1 (de) * 2014-09-03 2016-03-09 Siemens Aktiengesellschaft Verfahren zur Reduzierung der Luftfeuchte in einem Gehäuse
EP3150419B1 (en) * 2015-09-30 2021-06-23 Mitsubishi Electric R&D Centre Europe B.V. Method and a system for reducing the energy consumption of railway systems
DE102015222218A1 (de) * 2015-11-11 2017-05-11 DB RegioNetz Verkehrs GmbH Verfahren zur koordinierten Steuerung von Komponenten eines Schienenfahrzeugs mit Hybridantrieb zur Senkung des Energiebedarfs, insbesondere des Kraftstoffverbrauchs
DE102015224328B4 (de) * 2015-12-04 2020-08-20 Siemens Mobility GmbH Verfahren zum Betreiben eines Schienenfahrzeugs entlang einer Bahnstrecke
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
CN106364333B (zh) * 2016-10-12 2018-12-11 南京中车浦镇海泰制动设备有限公司 轨道交通车辆的制动控制装置及其电空混合制动控制方法
US10363946B2 (en) 2016-12-02 2019-07-30 Harris Corporation Hybrid pneumatic regenerative system for railway vehicles
CN111516660A (zh) * 2018-10-30 2020-08-11 瑞立集团瑞安汽车零部件有限公司 一种用于无轨电车的制动力分配方法及***
DE102018130726A1 (de) 2018-12-03 2020-06-04 Bombardier Transportation Gmbh Verfahren zum betreiben eines elektrisch antreibbaren fahrzeugs und fahrzeug
JP7220561B2 (ja) * 2018-12-26 2023-02-10 ナブテスコ株式会社 鉄道車両用空気圧縮システム
CN110356227B (zh) * 2019-07-10 2020-10-23 深圳市威尔电器有限公司 汽车酒精检测控制方法及其***
JP2021139343A (ja) * 2020-03-06 2021-09-16 ナブテスコ株式会社 鉄道車両用空気圧縮装置、鉄道車両用空気圧縮装置の制御方法
CN113511078B (zh) * 2020-04-10 2024-03-26 广州汽车集团股份有限公司 一种低速反扭矩制动方法、装置、汽车及计算机可读存储介质
CN112319726B (zh) * 2020-11-09 2021-09-21 广州黄船海洋工程有限公司 一种火车运输船用加长轨道安装方法及工装车

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225742A (ja) * 2003-01-20 2004-08-12 Hitachi Ltd 電車の機械ブレーキの摩擦要素の摩耗量の検出方法および検出装置ならびに電車の回生失効防止に要する費用の算出方法および算出装置ならびに電車の回生失効防止サービスにおける課金方法
JP2009119963A (ja) 2007-11-13 2009-06-04 Railway Technical Res Inst 電気鉄道車両

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889005A (ja) 1981-11-19 1983-05-27 Mitsubishi Electric Corp 列車自動運転制御装置
JPH01270703A (ja) 1988-04-21 1989-10-30 Toshiba Corp 電車のエネルギー有効利用システム
JPH0285057A (ja) 1988-09-21 1990-03-26 Hitachi Ltd 鉄道車両の運行制御方式
US6273521B1 (en) * 1998-07-31 2001-08-14 Westinghouse Air Brake Technologies Corporation Electronic air brake control system for railcars
JP4027521B2 (ja) 1998-12-28 2007-12-26 日本信号株式会社 列車運転制御装置
JP2001030903A (ja) 1999-07-23 2001-02-06 Fuji Electric Co Ltd 電車稼働データ収集システム
JP2001204102A (ja) 2000-01-17 2001-07-27 Hitachi Ltd 電力回生ブレーキ制御装置
JP5079535B2 (ja) 2008-01-31 2012-11-21 株式会社日立製作所 鉄道車両駆動装置
JP2009225630A (ja) 2008-03-18 2009-10-01 Toshiba Corp 負荷調整装置を有する電気車
US20100174484A1 (en) * 2009-01-05 2010-07-08 Manthram Sivasubramaniam System and method for optimizing hybrid engine operation
US20110304198A1 (en) * 2010-06-11 2011-12-15 Cottrell V Daniel D Method for controlling regenerative and hydraulic braking
JP5043162B2 (ja) * 2010-08-02 2012-10-10 株式会社日立製作所 駆動システム
US9403517B2 (en) * 2010-12-22 2016-08-02 Wabtec Holding Corp. System and method for determining air propagation data in a braking arrangement of a train

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225742A (ja) * 2003-01-20 2004-08-12 Hitachi Ltd 電車の機械ブレーキの摩擦要素の摩耗量の検出方法および検出装置ならびに電車の回生失効防止に要する費用の算出方法および算出装置ならびに電車の回生失効防止サービスにおける課金方法
JP2009119963A (ja) 2007-11-13 2009-06-04 Railway Technical Res Inst 電気鉄道車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2886406A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551765A (en) * 2016-06-30 2018-01-03 Arrival Ltd Predictive compressed air system
GB2551765B (en) * 2016-06-30 2021-09-22 Arrival Ltd Predictive compressed air system
JPWO2021024462A1 (ja) * 2019-08-08 2021-02-11
WO2021024462A1 (ja) * 2019-08-08 2021-02-11 三菱電機株式会社 データ収集システム、補助電源装置、モニタ装置およびデータ収集方法
JP7126620B2 (ja) 2019-08-08 2022-08-26 三菱電機株式会社 データ収集システム、補助電源装置、モニタ装置およびデータ収集方法

Also Published As

Publication number Publication date
CN104540714B (zh) 2017-05-10
JP5174999B1 (ja) 2013-04-03
KR101635330B1 (ko) 2016-06-30
US20150165930A1 (en) 2015-06-18
CN104540714A (zh) 2015-04-22
KR20150038052A (ko) 2015-04-08
EP2886406B1 (en) 2017-03-15
EP2886406A4 (en) 2016-06-01
TW201406588A (zh) 2014-02-16
EP2886406A1 (en) 2015-06-24
US9387774B2 (en) 2016-07-12
JPWO2014027400A1 (ja) 2016-07-25

Similar Documents

Publication Publication Date Title
JP5174999B1 (ja) 列車情報管理装置および機器制御方法
EP2886386B1 (en) Train-information management device and device control method
CN109795518B (zh) 一种轨道列车制动控制***及列车
CN102602386B (zh) 高速列车制动方法、***和制动控制装置
JP5079535B2 (ja) 鉄道車両駆動装置
US20160075350A1 (en) Device for Operating at Least one Electrical Consumer of a Rail Vehicle
JPWO2010026786A1 (ja) 電力供給制御システムおよび電力供給制御方法
EP2650186B1 (en) Drive system and control method of train
CN105923018A (zh) 一种动力分散性列车恒速集中控制方法
CN102343898B (zh) 轨道车辆复合制动时的车轮防滑保护控制方法及其***
CN107697056A (zh) 轨道列车制动控制***及控制方法
TWI619623B (zh) 列車控制裝置
CN108790840A (zh) 一种混合动力有轨电车再生制动能量回收优化方法和***
JP6169287B2 (ja) 車両に電力を供給するカテナリの電圧を制御するための方法及び装置
RU2666499C1 (ru) Способ эксплуатации транспортного средства
CN103802677A (zh) 一种电动汽车制动***通讯故障处理方法
EP2623361A1 (en) Brake control apparatus for vehicle, and brake control apparatus for multi-car train
CN104842983A (zh) 基于多智能体的高铁制动方法和***
JP2010284032A (ja) 列車総括制御システム
JP2015139336A (ja) 自動列車運転装置
CN106183898A (zh) 车载超级电容控制装置
JP5793458B2 (ja) 鉄道車両の運転支援装置
CN110456686B (zh) 一种特种载人有轨电车满载牵引启动控制方法
JP2014144755A (ja) 列車制御システム
CN117601658A (zh) 磁浮列车制动控制方法及***

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012548294

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14417997

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012891386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012891386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157003656

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE