WO2014024498A1 - Sludge treatment facility and treatment method - Google Patents

Sludge treatment facility and treatment method Download PDF

Info

Publication number
WO2014024498A1
WO2014024498A1 PCT/JP2013/004793 JP2013004793W WO2014024498A1 WO 2014024498 A1 WO2014024498 A1 WO 2014024498A1 JP 2013004793 W JP2013004793 W JP 2013004793W WO 2014024498 A1 WO2014024498 A1 WO 2014024498A1
Authority
WO
WIPO (PCT)
Prior art keywords
dryer
sludge
exhaust gas
cement
dried
Prior art date
Application number
PCT/JP2013/004793
Other languages
French (fr)
Japanese (ja)
Inventor
昇 市谷
篤志 橋元
孝夫 松内
祐二 小渕
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201380040833.4A priority Critical patent/CN104507878B/en
Publication of WO2014024498A1 publication Critical patent/WO2014024498A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • C04B7/4407Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes
    • C04B7/4446Treatment or selection of the fuel therefor, e.g. use of hazardous waste as secondary fuel ; Use of particular energy sources, e.g. waste hot gases from other processes the fuel being treated in a separate gasifying or decomposing chamber, e.g. a separate combustion chamber
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Definitions

  • the present invention relates to a technique for treating sludge using a cement manufacturing facility.
  • Patent Document 1 describes that dehydrated sludge is put into a cement kiln or calcining furnace and incinerated without drying the dewatered sludge.
  • Patent Document 2 describes that after dewatered sludge is dried by an oil temperature dryer, it is put into a rotary kiln and burned without removing oil.
  • the exhaust gas generated when drying the sludge is introduced into the kiln bottom of the rotary kiln to decompose odor components, and the volatilized oil contained in the exhaust gas burns.
  • Patent Document 3 relating to the application of the present applicant describes a treatment method in which dehydrated sludge is dried by an air dryer and then conveyed to a cement calciner or a rotary kiln and burned.
  • the exhaust gas from the air dryer is heated by an exhaust gas heater provided in the calciner and deodorized, and then a part of the exhaust gas is circulated to the air dryer, and the remainder passes through the heat exchanger. Bleed out of the system.
  • Patent Document 3 describes that the increased gas content of the dryer exhaust gas is bleed out of the system, but does not describe the dust collection treatment of the bleed gas.
  • the object of the present invention is to treat sludge using a cement manufacturing facility without adversely affecting the cement manufacturing process as much as possible, and to prevent odors and dioxins. It is intended to suppress an increase in cost while allowing a sufficient amount of sludge to be processed without causing problems due to the kind.
  • the present invention is directed to a calcining furnace, a calcining furnace, and a cement raw material mill and a sludge treatment facility installed adjacent to a cement production facility equipped with a dust collector provided in an exhaust passage thereof, and dehydrated sludge is dried.
  • a drying machine, a drying sludge transporting apparatus that transports the dried sludge dried by the drying machine to at least one of the calcining furnace and the baking furnace, and a dryer exhaust gas generated by the drying machine is transported to the dust collector
  • dehydrated sludge having a high water content can be dried by a dryer and then burned in a calcining furnace or a firing furnace of a cement manufacturing facility. Since the dried sludge has a sufficient calorific value, it does not adversely affect the combustion in the calcining furnace or the firing furnace, and can contribute to the maintenance of the combustion. Since dry sludge is granular, it is easy to secure combustion time even in a calcining furnace where the exhaust from the firing furnace circulates, and it is possible to suppress the production of dioxins, and nitrogen generated by cement production by ammonia contained in the dry sludge Reduction of oxide is also possible.
  • the dryer exhaust gas generated in the dryer is collected by a dust collector provided in the exhaust passage of the cement raw material mill.
  • Exhaust gas from the dryer contains a large amount of water vapor, but a large amount of exhaust gas is usually introduced into the exhaust gas treatment equipment of a cement raw material mill from a cement raw material preheater, etc. Therefore, the dust can be collected by a dry dust collector.
  • a large amount of dewatered sludge can be dried and co-fired in a calcining furnace or kiln without adversely affecting the cement manufacturing process, and dryer exhaust gas containing a large amount of water vapor can also be produced in cement. Dust collection processing can be performed using equipment, and an increase in cost can be suppressed.
  • a deodorizing device may be provided in the transport path of the dryer exhaust gas from the dryer to the dust collector.
  • Various devices such as adsorption by a catalyst, chemical deodorization, and the like are conceivable as the deodorization device.
  • the deodorization device may be a device that performs deodorization treatment by heating the exhaust gas of the dryer to a predetermined temperature or higher.
  • a deodorizing apparatus that heats exhaust gas from a dryer using a high-temperature part such as a calcining furnace or a baking furnace of a cement raw material may be used.
  • a hot air generating furnace for heating the dryer exhaust gas by burning fuel in the furnace may be provided as the deodorizing device.
  • a dryer exhaust gas heated to, for example, 650 to 700 ° C. or more in a hot air generator may be used as a heat source for the dryer.
  • the temperature of the dryer exhaust gas can be lowered to a suitable temperature before the dust collection treatment, which is advantageous in ensuring the durability of the dust collector.
  • the dryer can be configured to dry the dewatered sludge with the drying gas heated by the dryer exhaust gas after being discharged from the deodorizer (hot air generator).
  • the drying gas may be directly heated, for example, by being mixed with the heated dryer exhaust gas, or may be indirectly heated by the heated dryer exhaust gas.
  • branching from the dryer exhaust gas conveyance path from the dryer to the deodorization device (hot air generator) a part of the dryer exhaust gas is sent to the dryer as drying gas, and discharged from the deodorizer
  • the sludge treatment facility may be provided with a heat exchanger that exchanges heat between the heated dryer exhaust gas and the dryer exhaust gas flowing through the reflux path.
  • the exhaust gas from the dryer is circulated to the dryer to be used for drying the dewatered sludge, and the increased gas due to the drying is deodorized by heating with the deodorizer (hot air generator).
  • the deodorizer hot air generator
  • dust collection can be performed in a dust collector of a cement raw material mill.
  • the exhaust gas of the dryer corresponding to the increased gas released to the environment is heated and deodorized, so that fuel consumption in the deodorizing device (hot air generating furnace) can be suppressed.
  • the temperature of the dryer exhaust gas for dust collection can be lowered while making use of the high temperature dryer exhaust gas after the heat deodorization to increase the temperature of the dryer exhaust gas circulating in the dryer.
  • a fuel supply device that supplies a part or all of the dried sludge dried by a dryer as fuel to a deodorizing device (hot air generating furnace) may be provided.
  • a combustion air supply device that supplies, as combustion air, exhaust air from a cooler that cools a cement fired product fired in a firing furnace in a cement production facility to a deodorizing device (hot air generator) as combustion air May be provided. In either case, fuel consumption in the deodorizing device (hot air generating furnace) can be suppressed.
  • the present invention relates to a method of sludge treatment performed in a cement production facility and a sludge treatment facility, and drying sludge with a dryer of the sludge treatment facility, and drying sludge (hereinafter, dry sludge), Transport to at least one of the calcining furnace and firing furnace of the cement manufacturing facility, and transport the dryer exhaust gas generated in the dryer to the dust collector provided in the exhaust path of the cement raw material mill of the cement manufacturing facility. And removing dry sludge dust from the dryer exhaust gas.
  • the sludge is dried and mixed in a calcining furnace or the like of the cement production facility, and the exhaust gas of the dryer is provided in the exhaust path of the cement raw material mill. It can be processed by a dust collector, and even if a large amount of sludge is processed, the cement manufacturing process is not adversely affected, and an increase in cost can be suppressed.
  • FIG. 1 is a system diagram of a sludge treatment facility and a cement manufacturing facility according to the first embodiment of the present invention.
  • FIG. 2 is a view corresponding to FIG. 1 according to a second embodiment in which dry sludge is supplied to the hot-air generator and cooler exhaust is introduced.
  • FIG. 3 is a diagram (Modification 1) when the sludge treatment facility according to the present invention is applied to another form of cement plant.
  • FIG. 4 is a diagram (Modification 2) when the sludge treatment facility according to the present invention is applied to another form of cement plant.
  • FIG. 5 is a diagram (Modification 3) in a case where the sludge treatment facility according to the present invention is applied to another form of cement plant.
  • FIG. 6 is a diagram (Modification 4) when the sludge treatment facility according to the present invention is applied to another form of cement plant.
  • FIG. 1 is an overall system diagram of a sludge treatment facility 100 according to the first embodiment and a cement plant 200 (a cement production facility) installed adjacent to the sludge treatment facility 100.
  • the sludge treatment facility 100 shown on the left side of FIG. 1 is for drying dehydrated sludge having a high water content by the air dryer 1 to obtain a dry sludge having a low water content. This dried sludge is co-fired with the cement raw material in the cement plant 200.
  • the sludge treatment facility 100 can be constructed next to the cement plant 200 without greatly modifying the existing cement plant 200.
  • a pipe for sending the exhaust gas from the dryer, which will be described later, from the sludge treatment facility 100 to the cement plant 200, and the sludge dry powder from the sludge treatment facility 100 to the cement.
  • the sludge treatment facility 100 and the cement plant 200 are adjacent to each other.
  • these pipes dry powder conveyance duct 19 and third exhaust gas duct 28
  • other structures for example, roads, buildings, etc.
  • the sludge treatment facility 100 includes an airflow dryer 1 for drying sludge, a sludge tank 2 for storing dewatered sludge to be dried by the airflow dryer 1, and a dried sludge dried by the airflow dryer 1.
  • a hot air generating furnace 22 for heating the exhaust gas, and a dryer exhaust gas conveying device 4 for conveying the heated dryer exhaust gas to the exhaust treatment device 66 of the cement raw material mill 65 of the cement plant 200 are provided.
  • a dewatered cake of sludge such as sewage sludge and industrial waste sludge (hereinafter referred to as sludge cake) has been transported and stored by land transportation or the like.
  • a sludge pump 5 that sucks and discharges sludge cake is connected to the sludge tank 2, and the sludge cake is pumped from the sludge pump 5 to the air dryer 1 through the sludge pumping duct 6.
  • the operating speed of the sludge pump 5 can be changed, and the supply amount per hour of the dewatered cake to the air dryer 1 can be adjusted.
  • the air dryer 1 includes a mixing feeder 14 provided at a lower portion of the dry powder receiving tank 13, a crusher 10, a pipe connecting the mixing feeder 14 and the crusher 10, and a drying duct 11 connecting the crusher 10 and the cyclone 12. It is comprised by.
  • the sludge cake pumped to the air dryer 1 by the sludge pumping duct 6 is supplied to the mixing feeder 14.
  • the mixing feeder 14 the powdery dry sludge (dry powder) and the sludge cake accommodated in the dry powder receiving tank 13 are mixed.
  • the moisture content of the mixture of sludge cake and dried sludge is adjusted by adjusting the mixing amount of at least one of the sludge cake and dried sludge.
  • the moisture content of the sludge cake is about 80%, and the amount of dry sludge mixed with the sludge cake (circulating dry powder amount so that the moisture content of the mixture is 25-30% for easy handling) ) Is adjusted.
  • the mixture whose water content has been adjusted is sent to the crusher 10.
  • the crusher 10 crushes a mixture of sludge cake and dried sludge by rotating a cage.
  • the mixture is crushed to a size suitable for airflow drying.
  • a drying duct 11 is connected to the crusher 10 so as to extend upward.
  • a high-temperature drying gas (circulation gas) flows through the drying duct 11 as described later.
  • the mixture crushed by the crusher 10 is accompanied by the drying gas that blows up the drying duct 11 and is dried while being carried on the flow of the drying gas, so that powdery dry sludge is formed.
  • the upper end of the drying duct 11 is connected to the cyclone 12.
  • the cyclone 12 is a linden type high-efficiency cyclone.
  • the dryer exhaust gas is an exhaust gas from the air dryer 1, and includes a drying gas, water vapor evaporated from sludge, a small amount of dry sludge dust, and the like.
  • the separated dried sludge falls to a dry powder receiving tank 13 connected to the lower part of the cyclone 12.
  • a part of the dry sludge in the dry powder receiving tank 13 is used for adjusting the moisture content of the sludge cake as described above, and the remainder is used in the calcining furnace 35 of the cement plant 200 by the dry sludge conveying device 3.
  • the dried sludge is not limited to powder, but may be granular or thin pieces.
  • an unloading feeder 15 for unloading a part of the dried sludge is provided at an intermediate portion in the vertical direction of the dry powder receiving tank 13 in the same manner as the mixing feeder 14.
  • the dry sludge carried out from the dry powder receiving tank 13 by the carry-out feeder 15 is carried into the dry sludge hopper 17 by a dry powder transporter 16 such as a conveyor as an example.
  • the dried sludge hopper 17 functions as a buffer for temporarily storing the dried sludge.
  • the moisture content of the dried sludge stored in the dried sludge hopper 17 is about 10 to 15%, and this dried sludge can be suspended and transported by an air current.
  • a metering supply device (not shown) such as a rotary valve is provided under the dry sludge hopper 17, a metering supply device (not shown) such as a rotary valve is provided.
  • the measured dry sludge is transported to the cement plant 200 through the dry powder transport duct 19 by the airflow transport device 18.
  • the dry powder transfer duct 19 extends from the sludge treatment facility 100 toward the cement plant 200, and the downstream end of the dry powder transfer duct 19 is connected to the dry powder supply port of the calciner 35.
  • a first exhaust gas duct 20 is connected to the upper part of the cyclone 12, and a lower end of the first exhaust gas duct 20 is connected to a hot air generating furnace 22.
  • the first exhaust gas duct 20 is provided with a first exhaust gas fan 21 for sending the dryer exhaust gas.
  • the dryer exhaust gas separated from the dried sludge by the cyclone 12 is discharged to the first exhaust gas duct 20 and sent to the hot air generating furnace 22 through the first exhaust gas duct 20.
  • the hot air generating furnace 22 functions as a deodorizing device that performs a deodorizing process by burning fuel such as coal in the furnace and heating the exhaust gas of the dryer to a predetermined temperature or higher.
  • the hot air generating furnace 22 includes a combustion burner 22a provided at one end (right end in the figure) of a substantially cylindrical housing as an example.
  • the combustion burner 22a combusts pulverized coal (natural gas, heavy oil, etc.) supplied from a fuel supply device 23 with combustion air supplied by a fan 24, and generates high-temperature combustion gas (hot air) in the housing. It ejects toward the other end side (the left end in the figure).
  • the dryer exhaust gas wrapped in the combustion gas has a temperature at which organic substances at 650 to 700 ° C. or higher are decomposed as an example, and the contained organic substances are deodorized by thermal decomposition.
  • a second exhaust gas duct 25 is connected to the other end (the left end in the figure) of the hot air generating furnace 22, and the second exhaust gas duct 25 transfers high-temperature combustion gas and dryer exhaust gas from the hot air generating furnace 22 to the heat exchanger 26.
  • a circulation duct 27 (recirculation path) is connected to the first exhaust gas duct 20 so as to branch from between the first exhaust gas fan 21 and the hot air generating furnace 22, and the circulation duct 27 is connected to the heat exchanger 26. Is connected to the crusher 10.
  • a part of the dryer exhaust gas discharged to the first exhaust gas duct 20 is diverted before the hot air generating furnace 22 and flows to the circulation duct 27.
  • the dryer exhaust gas flowing into the circulation duct 27 exchanges heat with hot air from the hot air generator 22 (that is, high-temperature combustion gas and dryer exhaust gas) in the heat exchanger 26 to become a sufficiently high drying gas. And returned to the crusher 10 (that is, the air dryer 1).
  • the dryer 1 is formed with a circulation path for circulating the dryer exhaust gas (drying gas).
  • most of the amount of heat applied to heat and deodorize the dryer exhaust gas in the hot air generating furnace 22 is given to the circulating gas (drying gas) in the heat exchanger 26 and used for drying sludge in the air dryer 1. Is done.
  • the remainder of the dryer exhaust gas excluding the amount recirculated to the air dryer 1 flows into the hot air generator 22.
  • the dryer exhaust gas that has flowed into the hot air generator 22 is heated and deodorized in the hot air generator 22 and heat-exchanged with the dryer exhaust gas (drying gas) by the heat exchanger 26 to lower the temperature. It flows out to the 3rd exhaust gas duct 28 connected to.
  • the third exhaust gas duct 28 extends from the heat exchanger 26 toward the cement plant 200, and conveys the dryer exhaust gas sent by the second exhaust gas fan 29 to the exhaust treatment device 66 of the cement raw material mill 65 or the upstream side thereof. To do.
  • the second exhaust gas fan 29 is not always necessary, and the dryer exhaust gas may be sucked by the draft of the induction fan 62 of the cement plant 200.
  • the dry sludge transport device 3 In the sludge treatment facility 100 described above, the dry sludge transport device 3, the dry sludge hopper 17, the airflow transport device 18, and the dry powder transport duct 19 transport the dry sludge to the calcining furnace 35 of the cement plant 200.
  • the first, second and third exhaust gas ducts 20, 25, 28 and the first and second exhaust gas fans 21, 29 convey the dryer exhaust gas to the exhaust treatment device 66 of the cement material mill 65.
  • An exhaust gas transfer device 4 is configured.
  • a return duct 28 a for returning a part of the dryer exhaust gas to the hot air generating furnace 22 is connected so as to branch from the third exhaust gas duct 28, and fuel in the hot air generating furnace 22 is saved. Yes.
  • the cement plant 200 includes a general NSP kiln (new suspension preheater kiln). That is, the cement plant 200 includes a suspension preheater 30 that is a preheater, a rotary kiln 40 that is a firing furnace, and a calcining furnace 35 provided therebetween.
  • the cement raw material is preheated in the suspension preheater 30, then heated to about 900 ° C. in the calcining furnace 35 (calcination), and fired in the rotary kiln 40 at a high temperature of about 1450 ° C.
  • the cement baked product is sent from the rotary kiln 40 to an air quenching cooler (AQC) 50, rapidly cooled by the AQC 50 to become a granular cement clinker, and further sent to a finishing process (not shown).
  • AQC air quenching cooler
  • the suspension preheater 30 is formed by connecting a plurality of cyclones 31 arranged in series in the vertical direction in series.
  • each cyclone 31 the cement raw material is heated by high-temperature exhaust gas blown from the lower stage.
  • the flow of the exhaust gas is high-temperature exhaust gas (hereinafter referred to as kiln exhaust gas) blown out from the rotary kiln 40.
  • the kiln exhaust gas flows from the calcining furnace 35 to the lowermost cyclone 31 and moves up the cyclone 31 step by step. It reaches the uppermost cyclone 31 and flows out to the exhaust line 60.
  • the exhaust line 60 is provided with an attracting fan 62 that attracts exhaust gas flowing out from the uppermost cyclone 31 of the suspension preheater 30 (hereinafter referred to as SP exhaust gas) and sends it to the chimney 61.
  • the induction fan 62 has a large capacity according to the scale of the cement plant 200 in order to attract the kiln exhaust from the rotary kiln 40 through the suspension preheater 30 and the calcining furnace 35.
  • a boiler 63 collects waste heat from the SP exhaust of approximately 300 ° C. or higher and supplies high-temperature steam to a steam turbine (not shown) to generate electric power.
  • the cement raw material mill 65 is a known vertical roller mill as an example, and is crushed by rotation of a plurality of rollers and a rotary table while drying the cement raw material under the supply of SP exhaust.
  • the ground powdery cement raw material is supplied to the uppermost cyclone 31 of the suspension preheater 30 by a cement raw material transfer device (not shown).
  • fine powder of cement raw material floats in the SP exhaust gas that has passed through the cement raw material mill 65.
  • the SP exhaust is collected by a bag filter 66a (dust collector) of the exhaust treatment device 66, and fine powder of cement raw material is collected.
  • the collected fine powder of cement raw material is mixed into the cement raw material supplied to the uppermost cyclone 31 of the suspension preheater 30.
  • the exhaust treatment device 66 provided in the exhaust path of the cement raw material mill 65 includes, for example, two bag filters 66a provided in parallel, and a switching valve (not shown) for selectively allowing gas to flow through one of them. It has. With the above configuration, even when one of the two bag filters 66a is stopped for maintenance such as filter cloth replacement, the other of the two bag filters 66a can be used.
  • the dust collector is not limited to the bag filter 66a, and for example, an electric dust collector may be used.
  • the downstream end of the third exhaust gas duct 28 that conveys the dryer exhaust gas from the sludge treatment facility 100 is connected between the cement raw material mill 65 and the exhaust treatment device 66 of the exhaust line 60.
  • the dryer exhaust gas conveyed by the third exhaust gas duct 28 flows into the exhaust treatment device 66 together with the SP exhaust sent through the exhaust line 60.
  • both the SP exhaust and the dryer exhaust gas are subjected to dust collection processing by the exhaust processing device 66.
  • fine powder of cement raw material is removed from the SP exhaust by the bag filter 66a, and dust is removed from the dryer exhaust gas.
  • the fine powder of the cement raw material accompanying the SP exhaust and the dust accompanying the dryer exhaust gas are collected by the bag filter 66a.
  • the dust accompanying the exhaust gas from the dryer includes combustion ash of dried sludge generated in the hot air generator 22 and combustion ash of fuel. Dust containing the collected fine powder of cement raw material and the combustion ash of dried sludge is used as a cement raw material.
  • the cement raw material supplied to the uppermost cyclone 31 of the suspension preheater 30 by the cement raw material conveyance device is sufficiently preheated by the high-temperature kiln exhaust while passing through the cyclone 31 one by one in order, and is supplied to the calcining furnace 35. Supplied.
  • the calcining furnace 35 is provided at the bottom of the kiln 40 of the rotary kiln 40 so as to extend in the vertical direction. High-temperature kiln exhaust gas flows from the rotary kiln 40 and blows upward as a jet.
  • the calcining furnace 35 has a supply port for pulverized coal as fuel, a dry powder supply port to which the downstream end of the dry powder transport duct 19 is connected, and an air supply port for burning them. And are provided respectively.
  • High-temperature cooler exhaust from the AQC 50 is used as combustion air, and the cooler exhaust is sucked by the negative pressure in the calcining furnace 35.
  • an upward flow of the kiln exhaust gas is formed in the calcining furnace 35, but both solid pulverized coal and dry sludge are burned well in the calcining furnace 35.
  • the cement raw material powder put into the calcining furnace 35 is also sufficiently heated while being blown up on the jet of the kiln exhaust, and the cyclone 31 at the lowest stage of the suspension preheater 30 from the uppermost part of the calcining furnace 35.
  • the kiln exhaust gas is separated from the cement raw material and goes to the upper cyclone 31, while the cement raw material falls from the lower end of the cyclone 31 and reaches the entrance of the rotary kiln 40.
  • the rotary kiln 40 is composed of a horizontal cylindrical rotary kiln, which is installed in a posture inclined slightly downward from the entrance to the exit.
  • the rotary kiln slowly rotates around its axis, whereby the cement raw material is conveyed to the outlet side.
  • a burner 41 is disposed on the outlet side, and high-temperature combustion gas from combustion of pulverized coal, natural gas, heavy oil or the like is jetted toward the inlet side.
  • the cement raw material wrapped in the combustion gas causes a chemical reaction (cement firing reaction) and is fired until a part of the cement raw material is in a semi-molten state.
  • the cement baked product is cooled rapidly by receiving cold air at AQC50, and becomes a granular cement clinker.
  • a cement clinker is stored in a clinker silo, and after adding gypsum etc. and adjusting components, it is then finely pulverized by a mill (finishing step).
  • Most of the cooler exhaust that has been deprived of heat from the fired cement and heated to 750 ° C. or higher is supplied to the calcining furnace 35 as combustion air as described above. Thereby, the combustion efficiency in the calciner 35 is improved.
  • a part of the cooler exhaust gas is exhausted from the chimney after passing through a dust collector such as a bag filter after the waste heat is recovered by a boiler (not shown).
  • This boiler like the boiler 63 that recovers the waste heat of the SP exhaust, supplies hot steam to the steam turbine to generate power.
  • the sludge treatment facility 100 described above is basically not restricted by the operating conditions of the cement plant 200 and is operated based on a daily treatment plan for dewatered sludge. That is, the supply amount of dewatered sludge to the air dryer 1 per hour is determined according to the scheduled daily processing amount, and thereby the operation speed of the sludge pump 5 is controlled.
  • the sludge cake pumped through the sludge pumping duct 6 by the sludge pump 5 is mixed with the dried sludge in the mixing feeder 14.
  • the mixture of the sludge cake and the dried sludge is crushed by the crusher 10 and then dried while the drying duct 11 is blown up by the drying gas.
  • the dried powdery sludge (dried sludge) is centrifuged from the dryer exhaust gas (drying gas) in the sludge cyclone 12 and stored in the dry powder receiving tank 13.
  • Dry sludge carried out from the dry powder receiving tank 13 is put into a dry sludge hopper 17.
  • the dry sludge in the dry sludge hopper 17 is weighed according to the demand on the cement plant 200 side, is air-flowed through the dry powder transport duct 19 and is blown into the cement calcining furnace 35.
  • An upward flow of kiln exhaust is formed in the calcining furnace 35, but solid pulverized coal and dried sludge remain in the calcining furnace 35 for about 4 seconds and burn well.
  • the calorific value of the organic matter contained in the dried sludge is effectively used, and the amount of pulverized coal supplied to the calcining furnace 35 can be reduced.
  • sufficient burning time of dry sludge is ensured in the calcining furnace 35, the production
  • a part of the dryer exhaust gas separated by the cyclone 12 is returned to the air dryer 1 as a drying gas.
  • the remainder of the dryer exhaust gas containing the water vapor of the dewatered sludge is heated to a high temperature and deodorized in the hot air generator 22.
  • dryer exhaust gas can be completely deodorized by heating to 650-700 ° C or higher. Therefore, in the hot air generating furnace 22, the temperature of the discharged hot air is measured, and the amount of pulverized coal supplied to the combustion burner 22a is controlled so that the temperature of the hot air becomes, for example, 650 ° C. or higher.
  • the hot air discharged from the hot air generating furnace 22 includes high-temperature combustion gas and dryer exhaust gas.
  • the hot air flows through the third exhaust gas duct 28 in a state in which heat is exchanged with the circulating gas in the heat exchanger 26 and the temperature is lowered to about 200 ° C., and is introduced into the exhaust treatment device 66 of the cement raw material mill 65.
  • the dryer exhaust gas introduced into the exhaust treatment device 66 contains a large amount of water vapor, but is mixed with a large amount of SP exhaust gas and the water vapor concentration becomes low. Therefore, the bag filter 66a of the exhaust treatment device 66 collects dust without any problem. It can be processed.
  • the sludge treatment facility 100 only the increased gas released to the environment from the dryer exhaust gas generated in the air dryer 1 is heated and deodorized in the hot air generator 22. Therefore, fuel consumption in the hot air generating furnace 22 can be suppressed. Further, the high-temperature dryer exhaust gas discharged from the hot air generating furnace 22 is subjected to dust collection processing by the exhaust treatment device 66 of the cement plant 200 after the temperature is lowered by the heat exchanger 26. In the heat exchanger 26, the amount of heat of the high-temperature dryer exhaust gas is used to raise the temperature of the dryer exhaust gas (drying gas) that is refluxed to the airflow dryer 1.
  • the dryer exhaust gas and the dried sludge supplied from the sludge treatment facility 100 adversely affect the cement manufacturing process (for example, the thermal balance is lost or the fuel consumption is reduced).
  • the effect of increasing the amount or lowering the quality of the cement is not exerted.
  • dry sludge generated in the sludge treatment facility 100 is used as a fuel in the cement plant 200, and further, dust collection processing of the dryer exhaust gas generated in the sludge treatment facility 100 is performed in the cement plant 200.
  • An increase in sludge treatment costs can also be suppressed.
  • a sludge treatment facility according to a second embodiment of the present invention will be described with reference to FIG.
  • a portion of the sludge dry powder primarily stored in the dry sludge hopper 17 is supplied to the hot air generator 22 as fuel, and the hot air generator 22 is used as combustion air.
  • cooler exhaust is made to flow in, since the other configuration is the same as that of the first embodiment, the same reference numeral 100 is given.
  • other devices having the same configuration are denoted by the same reference numerals, and description thereof is omitted.
  • a dry sludge distributor 7 is provided in the middle of the dry powder transport duct 19.
  • the extracted dried sludge is supplied to the fuel supply device 23 of the hot air generating furnace 22.
  • the dried sludge is supplied to the combustion burner 22a together with the pulverized coal.
  • the dry sludge is used as the fuel for the combustion burner 22a, whereby the amount of pulverized coal supplied to the hot air generating furnace 22 can be reduced.
  • a supply device for blowing dry sludge into the hot air generating furnace 22 may be provided.
  • a cooler exhaust duct 8 that conveys high-temperature cooler exhaust from the AQC 50 of the cement plant 200 is connected to the fan 24 that sends combustion air to the combustion burner 22a. Since the cooler exhaust gas is 300 ° C. or higher, if a part of the cooler exhaust gas is supplied to the combustion burner 22a as combustion air, the amount of pulverized coal supplied to the hot air generating furnace 22 can be reduced.
  • the dry powder distribution device 7 that takes out a part of the dry powder from the dry powder transport duct 19 and supplies the dry powder to the fuel supply device 23 constitutes a dry sludge supply device that supplies the dry powder to the hot air generator 22 and burns it.
  • the above description of the first and second embodiments is merely an example, and is not intended to limit the present invention, its application, or its use.
  • the dewatered sludge is dried by the air dryer 1, but a dryer other than the air dryer may be used.
  • the dried sludge is sent to the calcining furnace 35 of the cement plant 200, but the dried sludge may be sent to at least one of the calcining furnace 35 and the rotary kiln 40. A part of the dried sludge may be supplied to the suspension preheater 30. That is, as long as the dried sludge is effectively used as fuel in the cement plant 200, the supply destination of the dried sludge is not limited.
  • the downstream end of the 3rd exhaust gas duct 28 which conveys drying machine exhaust gas from the sludge treatment equipment 100 is between the cement raw material mill 65 and the exhaust treatment apparatus 66 in the exhaust line 60 of the cement plant 200.
  • the third exhaust gas duct 28 may be connected between the boiler 63 and the cement raw material mill 65 in the exhaust line 60, or may be connected to an outlet from the suspension preheater 30. That is, the downstream end of the third exhaust gas duct 28 is connected to an appropriate position on the upstream side of the exhaust treatment device 66 so that the combustion ash of the dried sludge contained in the dryer exhaust gas is collected by the exhaust treatment device 66. Just do it.
  • dryer exhaust gas in order to deodorize dryer exhaust gas, dryer exhaust gas is heated at high temperature with the hot air generation furnace 22,
  • the deodorization method of dryer exhaust gas is not limited to this.
  • the dryer exhaust gas may be deodorized by heating the dryer exhaust gas using a high-temperature gas such as the calcining furnace 35, the rotary kiln 40, or the AQC 50 of the cement plant 200.
  • the dryer exhaust gas may be deodorized using a ceramic catalyst or a chemical adsorbent.
  • it is desirable that the dryer exhaust gas is deodorized in the exhaust system, but depending on the situation, the dryer exhaust gas may be sent to the exhaust treatment device 66 of the cement plant 200 without being deodorized. In this case, dry sludge dust accompanying the exhaust gas from the dryer is collected by the exhaust treatment device 66.
  • the heat exchanger 26 exchanges heat between the hot air (hot combustion gas and dryer exhaust gas) from the hot air generator 22 and the dryer exhaust gas circulated to the air flow dryer 1.
  • the method for cooling the hot air and the method for heating the circulating gas are not limited thereto.
  • the circulating gas may be heated by mixing hot air with the circulating gas.
  • the temperature of the dryer exhaust gas to be dust collected must be lowered to the heat resistance temperature of the bag filter 66a. Therefore, for example, the heat of the dryer exhaust gas may be recovered with a boiler.
  • dry sludge is supplied as fuel and cooler exhaust of AQC50 as combustion air is supplied to the combustion burner 22a of the hot air generating furnace 22, respectively. Only one of them may be supplied to the combustion burner 22a. Further, instead of the cooler exhaust, air heated by the cooler exhaust may be supplied to the combustion burner 22a as combustion air.
  • the configuration of the cement plant 200 is not limited to the above-described embodiments, and the sludge treatment facility according to the present invention includes, for example, various types as shown in FIGS. 3 to 6 (Modifications 1 to 4). It can also be applied to cement plants.
  • the cement plant illustrated below has a different point from the said each embodiment, respectively, since the whole structure is the same, the same code
  • the cement plant 200 (Modification 1) shown in FIG. 3 is provided with a bypass line 67 in order to prevent the concentration of chlorine and alkali in the gas while circulating through the suspension preheater 30 and the calcining furnace 35. It has been.
  • the lower end of the bypass line 67 is connected to the lower part of the calcining furnace 35 and the like, and a part of the gas is extracted.
  • the extracted gas is cooled by the cooler 67a and then sent to the cyclone 67b to classify the dust.
  • Cold air is sent to the cooler 67a by a fan 67c, and the extracted gas is rapidly cooled to the melting point or lower of a chlorine compound or the like, thereby separating the chlorine content or alkali content in the extracted gas as a solid (dust).
  • the dust in the extracted gas is classified into coarse powder and fine powder in the cyclone 67b, and the coarse powder containing almost no chlorine or alkali is dropped from the lower end of the cyclone 67b, and a part thereof is omitted. It is returned to the calcining furnace 35 by a return line 67d.
  • fine powder having a high concentration of chlorine and alkali is carried on the extraction gas sucked out from the cyclone 67b, flows into the dust collector 67f from the exhaust duct 67e, and is collected by the dust collector 67f.
  • the extracted gas that has passed through the dust collector 67f is returned to the calcining furnace via the blower 67g or sent to another exhaust gas treatment facility.
  • the suspension preheater 30 is divided into two systems, and each system is provided with a five-stage cyclone 31 as an example. Except that the kiln exhaust gas is blown into the system on the left side of the figure from the lower stage and the calcining furnace 35 is not provided, the same configuration as the suspension preheater 30 of the first and second embodiments described above. It is.
  • the calcining furnace 35 is provided in the system on the right side of the figure, but not the kiln exhaust but the high-temperature cooler exhaust from the AQC 50 flows into the system.
  • the cooler exhaust flows into the lower end of the calcining furnace 35 and blows upward (indicated by a one-dot chain line in the figure) in the same manner as the kiln exhaust in the first and second embodiments.
  • This cooler exhaust gas mixes with the dry powder of sludge introduced into the calcining furnace 35, blows up the cement raw material while burning it, and reaches the lowermost cyclone 31. Then, the cyclone 31 is raised step by step and flows out from the uppermost cyclone 31 to the exhaust line 60.
  • the structure of the calciner is different from those of the first and second embodiments. That is, the calcining furnace 70 has a mixing chamber 71 provided at the bottom of the kiln 40 of the rotary kiln 40 and a swirling calcining chamber 72 communicating with the lower portion thereof. It is arranged and ejects high-temperature combustion gas from combustion of coal, natural gas, heavy oil and the like. As shown in the figure, the swirling calcining chamber 72 is supplied with the high-temperature cooler exhaust (air) from the AQC 50 as a swirling flow, and the preheated cement raw material is supplied from the cyclone 31 on the lowermost level.
  • the calcining furnace 70 has a mixing chamber 71 provided at the bottom of the kiln 40 of the rotary kiln 40 and a swirling calcining chamber 72 communicating with the lower portion thereof. It is arranged and ejects high-temperature combustion gas from combustion of coal, natural gas, heavy oil and the like.
  • the cement raw material moves to the mixing chamber 71 while being calcined by receiving the combustion gas from the combustion device 73, and is blown upward by a jet of kiln exhaust from below. That is, in the mixing chamber 71, the flow of the combustion gas containing the cement raw material is merged with the flow of the kiln exhaust gas, and the two flow upward while being mixed.
  • the cement raw material is sufficiently calcined while being blown up on this upward flow, and is conveyed from the uppermost outlet of the mixing chamber 71 to the lowermost cyclone 31 through the duct.
  • the dry powder conveyed from the sludge treatment facility 100 may be introduced, for example, between the rotary kiln 40 and the mixing chamber 71 or between the swirling calcining chamber 72 and the mixing chamber 71.
  • a rising pipe 75 connected to the entrance of the rotary kiln 40 extends upward, and an upper end portion thereof. Is connected to the lowermost cyclone 31 of the suspension preheater 30.
  • the rising pipe 75 is supplied with cement raw material and sludge dry powder, respectively, and blown up by a jet of kiln exhaust. The dry powder reacts with oxygen contained in the kiln exhaust gas and burns in the riser 75 and the suspension preheater 30.
  • the cement firing furnace is not limited to the rotary kiln 40, and may be a fluidized bed kiln, for example.
  • a large amount of dewatered sludge can be treated in a sludge treatment facility adjacent to an existing cement production facility without adversely affecting the cement production process as much as possible. high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Treatment Of Sludge (AREA)

Abstract

In the present invention, sludge is treated by means of a sludge treatment facility (100) using a cement plant (200). The sludge treatment facility (100) is provided with: a dryer (1) that dries dehydrated sludge; a dried sludge conveyance device (3) that conveys the dried sludge that has been dried by the drier to a calcination furnace (35) and/or a firing furnace (for example, a rotary kiln (40)) for cement starting materials; and a drier exhaust gas conveyance device (4) that conveys the exhaust gas from the drier (1) to the dust collector (66a) of the exhaust treatment device (66) of a cement starting material mill (65). The dust collection process for the exhaust gas from the drier is performed by means of a dust collector (for example, a bag filter (66a)) of the exhaust treatment device (66) of the cement plant.

Description

汚泥の処理設備及び処理方法Sludge treatment equipment and treatment method
 本発明は、セメントの製造設備を利用して汚泥を処理する技術に関する。 The present invention relates to a technique for treating sludge using a cement manufacturing facility.
 近年、途上国においては生活ごみや下水汚泥の発生量が増大し、その衛生的な処理が求められており、特に下水汚泥の処理が問題となりつつある。下水汚泥は脱水した上で埋め立てるのが一般的であるが、埋め立てる場合には地下水の汚染や悪臭の発生が懸念され、焼却処理することが望ましい。従来より既存のごみ焼却炉にて少量の脱水汚泥を混焼することは行われているが、焼却場の建設コストが高く、焼却するために大きなエネルギが必要であることから、下水汚泥の焼却処理は進んでいないのが実情である。 In recent years, in developing countries, the amount of domestic waste and sewage sludge generated has increased, and sanitary treatment has been demanded. In particular, the treatment of sewage sludge is becoming a problem. Sewage sludge is generally dehydrated and then landfilled. However, when landfilled, there is concern about contamination of groundwater and the generation of bad odors, so incineration is desirable. Conventionally, a small amount of dewatered sludge has been co-fired in an existing waste incinerator, but the construction cost of the incineration plant is high and a large amount of energy is required to incinerate, so incineration of sewage sludge The situation is not progressing.
 これに対し、セメントの製造設備の廃熱に着目し、これを利用することによって低コストで下水汚泥の焼却処理を実現しようとする動きがある。一例として特許文献1には、脱水汚泥を乾燥させることなく、含水スラリー状のままセメントキルンや仮焼炉に投入して焼却することが記載されている。 On the other hand, there is a movement to pay attention to the waste heat of the cement production facility and to incinerate sewage sludge at low cost by using this. As an example, Patent Document 1 describes that dehydrated sludge is put into a cement kiln or calcining furnace and incinerated without drying the dewatered sludge.
 また、特許文献2には、脱水汚泥を油温乾燥機により乾燥させた後に、油分を除去することなくロータリキルンに投入して燃焼させることが記載されている。汚泥を乾燥させる際に発生した排ガスは、ロータリキルンの窯尻に導入して臭気成分を分解するとともに、排ガス中に含まれる揮発した油分は燃焼する。 Patent Document 2 describes that after dewatered sludge is dried by an oil temperature dryer, it is put into a rotary kiln and burned without removing oil. The exhaust gas generated when drying the sludge is introduced into the kiln bottom of the rotary kiln to decompose odor components, and the volatilized oil contained in the exhaust gas burns.
 さらに、本出願人の出願に係る特許文献3には、脱水汚泥を気流乾燥機により乾燥させた後に、セメントの仮焼炉やロータリキルンに搬送して燃焼させる処理方法が記載されている。この処理方法において気流乾燥機からの排ガスは、仮焼炉内に設けた排ガス加熱器で加熱し脱臭した後に、その一部を気流乾燥機に循環させ、残部は熱交換器を通した上で系外にブリードする。 Further, Patent Document 3 relating to the application of the present applicant describes a treatment method in which dehydrated sludge is dried by an air dryer and then conveyed to a cement calciner or a rotary kiln and burned. In this treatment method, the exhaust gas from the air dryer is heated by an exhaust gas heater provided in the calciner and deodorized, and then a part of the exhaust gas is circulated to the air dryer, and the remainder passes through the heat exchanger. Bleed out of the system.
特許第3969018号公報Japanese Patent No. 3969018 特許第4231739号公報Japanese Patent No. 4231737 特開2002-273492号公報JP 2002-273492 A
 しかしながら、前記特許文献1のように脱水汚泥を高含水率のままロータリキルンや仮焼炉に投入する場合は、水分の蒸発潜熱によって局所的に温度が低下する懸念があるので、実際には処理できる汚泥の量がかなり少ない。 However, when dehydrated sludge is introduced into a rotary kiln or calcining furnace with a high water content as in Patent Document 1, there is a concern that the temperature may locally decrease due to the latent heat of vaporization of water, so in actual treatment The amount of sludge that can be produced is quite small.
 一方、特許文献2、3のように汚泥を乾燥させてから処理する場合は、その乾燥機からの排ガスの処理が問題になる。すなわち、乾燥機排ガスは多量の水蒸気を含むため、バグフィルタのような乾式集塵機によって集塵処理することには問題があり、仮に湿式集塵機を用いるとすれば設備コストの増大は免れない。 On the other hand, when the sludge is dried and treated as in Patent Documents 2 and 3, the treatment of the exhaust gas from the dryer becomes a problem. That is, since the dryer exhaust gas contains a large amount of water vapor, there is a problem in dust collection using a dry dust collector such as a bag filter. If a wet dust collector is used, an increase in equipment cost is inevitable.
 また、多量の水蒸気を含む乾燥機排ガスを前記特許文献2のようにロータリキルンの窯尻に導入すると、仮焼炉から予熱器にかけての熱的なバランスを崩すおそれがあり、その結果として燃料消費の増大やセメントの品質低下など、セメント製造設備への悪い影響が懸念される。 Moreover, if a dryer exhaust gas containing a large amount of water vapor is introduced into the kiln bottom of the rotary kiln as in Patent Document 2, the thermal balance from the calciner to the preheater may be lost, resulting in fuel consumption. There are concerns about adverse effects on cement production facilities, such as an increase in cement and a decrease in cement quality.
 この点、特許文献2のように乾燥機排ガスに揮発した油分が含まれている場合は、それが燃焼することによって前記熱的なバランスの問題は緩和されることになるが、油温乾燥機も設備コストが高くつくし、汚泥の処理量に見合うだけの廃油を常時、確保しなくてはならないという難もある。なお、特許文献3には、乾燥機排ガスの増加ガス分を系外にブリードすると記載されているが、このブリードガスの集塵処理については記載されていない。 In this regard, when the oil content volatilized in the dryer exhaust gas as in Patent Document 2, the thermal balance problem is alleviated by burning it, but the oil temperature dryer However, the cost of the equipment is high, and there is a problem that it is always necessary to secure waste oil that is commensurate with the amount of sludge treated. Patent Document 3 describes that the increased gas content of the dryer exhaust gas is bleed out of the system, but does not describe the dust collection treatment of the bleed gas.
 以上のような問題点を考慮して本発明の目的は、セメントの製造設備を利用して汚泥を処理する場合に、セメントの製造プロセスに極力、悪い影響を及ぼすことなく、また、臭気やダイオキシン類による問題を発生させることなく、十分な量の汚泥を処理可能としながら、コストの上昇を抑制することにある。 In view of the above-mentioned problems, the object of the present invention is to treat sludge using a cement manufacturing facility without adversely affecting the cement manufacturing process as much as possible, and to prevent odors and dioxins. It is intended to suppress an increase in cost while allowing a sufficient amount of sludge to be processed without causing problems due to the kind.
 本発明は、仮焼炉、焼成炉、並びに、セメント原料ミル及びその排気路に設けられた集塵機を備えたセメントの製造設備に隣設される汚泥の処理設備が対象であり、脱水汚泥を乾燥させる乾燥機と、該乾燥機で乾燥させた乾燥汚泥を前記仮焼炉及び前記焼成炉の少なくとも一方に搬送する乾燥汚泥搬送装置と、前記乾燥機で発生した乾燥機排ガスを前記集塵機に搬送する乾燥機排ガス搬送装置と、を備えて、集塵機により前記乾燥機排ガスの集塵処理を行うようにしたものである。 The present invention is directed to a calcining furnace, a calcining furnace, and a cement raw material mill and a sludge treatment facility installed adjacent to a cement production facility equipped with a dust collector provided in an exhaust passage thereof, and dehydrated sludge is dried. A drying machine, a drying sludge transporting apparatus that transports the dried sludge dried by the drying machine to at least one of the calcining furnace and the baking furnace, and a dryer exhaust gas generated by the drying machine is transported to the dust collector A dryer exhaust gas transfer device, and the dust collector performs dust collection processing of the dryer exhaust gas.
 かかる構成の汚泥処理設備では、まず、含水率の高い脱水汚泥を乾燥機で乾燥させてから、セメントの製造設備の仮焼炉や焼成炉で燃焼させることができる。乾燥汚泥は十分な発熱量を有するので、仮焼炉や焼成炉での燃焼に悪い影響を及ぼさないばかりか、その燃焼の維持に寄与することも可能である。乾燥汚泥は粉粒状なので、焼成炉からの排気が流通する仮焼炉においても燃焼時間を確保し易く、ダイオキシンの生成も抑制可能であり、乾燥汚泥に含まれるアンモニアによって、セメント製造により発生する窒素酸化物の低減も可能である。 In the sludge treatment facility having such a configuration, first, dehydrated sludge having a high water content can be dried by a dryer and then burned in a calcining furnace or a firing furnace of a cement manufacturing facility. Since the dried sludge has a sufficient calorific value, it does not adversely affect the combustion in the calcining furnace or the firing furnace, and can contribute to the maintenance of the combustion. Since dry sludge is granular, it is easy to secure combustion time even in a calcining furnace where the exhaust from the firing furnace circulates, and it is possible to suppress the production of dioxins, and nitrogen generated by cement production by ammonia contained in the dry sludge Reduction of oxide is also possible.
 一方、乾燥機において発生した乾燥機排ガスは、セメント原料ミルの排気路に設けられた集塵機によって集塵処理される。乾燥機排ガスには多量の水蒸気が含まれているが、セメント原料ミルの排気処理装置には通常、セメント原料の予熱器等から多量の排気が導入されており、この排気との混合により水蒸気濃度が低くなるので、乾式集塵機によって集塵処理することができる。 On the other hand, the dryer exhaust gas generated in the dryer is collected by a dust collector provided in the exhaust passage of the cement raw material mill. Exhaust gas from the dryer contains a large amount of water vapor, but a large amount of exhaust gas is usually introduced into the exhaust gas treatment equipment of a cement raw material mill from a cement raw material preheater, etc. Therefore, the dust can be collected by a dry dust collector.
 つまり、多量の脱水汚泥を乾燥させて、セメントの製造プロセスに悪い影響を及ぼすことなく仮焼炉や焼成炉(キルン)で混焼することができるとともに、多量の水蒸気を含む乾燥機排ガスもセメント製造設備を利用して集塵処理することができ、コストの上昇を抑制できる。 In other words, a large amount of dewatered sludge can be dried and co-fired in a calcining furnace or kiln without adversely affecting the cement manufacturing process, and dryer exhaust gas containing a large amount of water vapor can also be produced in cement. Dust collection processing can be performed using equipment, and an increase in cost can be suppressed.
 ところで汚泥を乾燥させた排ガスは異臭を放つので、前記乾燥機から前記集塵機へ至る前記乾燥機排ガスの搬送路には脱臭装置を設けてもよい。脱臭装置は触媒等による吸着、化学的脱臭など種々のものが考えられるが、乾燥機排ガスを所定の温度以上に加熱して脱臭処理するものであってもよい。例えば前記特許文献3のもののように、セメント原料の仮焼炉や焼成炉等の高温部を利用して乾燥機排ガスを加熱する脱臭装置であってもよい。 By the way, since the exhaust gas from which the sludge has been dried gives off a strange odor, a deodorizing device may be provided in the transport path of the dryer exhaust gas from the dryer to the dust collector. Various devices such as adsorption by a catalyst, chemical deodorization, and the like are conceivable as the deodorization device. However, the deodorization device may be a device that performs deodorization treatment by heating the exhaust gas of the dryer to a predetermined temperature or higher. For example, as in the above-mentioned Patent Document 3, a deodorizing apparatus that heats exhaust gas from a dryer using a high-temperature part such as a calcining furnace or a baking furnace of a cement raw material may be used.
 セメントの製造プロセスへの影響を極小化するという観点からは、前記脱臭装置として、炉内で燃料を燃焼させて前記乾燥機排ガスを加熱する熱風発生炉を設けてもよい。この場合には、熱風発生炉で例えば650~700℃以上まで加熱した乾燥機排ガスを乾燥機の熱源として利用してもよい。こうすれば、集塵処理する前に乾燥機排ガスの温度を好適な温度まで低下させることができ、集塵機の耐久性を確保する上で有利になる。 From the viewpoint of minimizing the influence on the cement manufacturing process, a hot air generating furnace for heating the dryer exhaust gas by burning fuel in the furnace may be provided as the deodorizing device. In this case, a dryer exhaust gas heated to, for example, 650 to 700 ° C. or more in a hot air generator may be used as a heat source for the dryer. In this way, the temperature of the dryer exhaust gas can be lowered to a suitable temperature before the dust collection treatment, which is advantageous in ensuring the durability of the dust collector.
 乾燥機を、脱臭装置(熱風発生炉)から排出された加熱後の前記乾燥機排ガスにより加熱された乾燥用ガスで、脱水汚泥を乾燥させるように構成することができる。乾燥用ガスは、例えば、加熱後の乾燥機排ガスと混合されることによって直接的に加熱されてもよいし、加熱後の乾燥機排ガスにより間接的に加熱されてもよい。また、例えば、乾燥機から脱臭装置(熱風発生炉)までの乾燥機排ガスの搬送路から分岐して、乾燥機排ガスの一部を乾燥用ガスとして乾燥機へ送る還流路と、脱臭装置から排出された加熱後の乾燥機排ガスと還流路を流れる乾燥機排ガスとを熱交換させる熱交換器とを、汚泥処理設備に備えてもよい。 The dryer can be configured to dry the dewatered sludge with the drying gas heated by the dryer exhaust gas after being discharged from the deodorizer (hot air generator). The drying gas may be directly heated, for example, by being mixed with the heated dryer exhaust gas, or may be indirectly heated by the heated dryer exhaust gas. Also, for example, branching from the dryer exhaust gas conveyance path from the dryer to the deodorization device (hot air generator), a part of the dryer exhaust gas is sent to the dryer as drying gas, and discharged from the deodorizer The sludge treatment facility may be provided with a heat exchanger that exchanges heat between the heated dryer exhaust gas and the dryer exhaust gas flowing through the reflux path.
 上記構成によれば、基本的には乾燥機排ガスを乾燥機に循環させて脱水汚泥の乾燥に利用するとともに、その乾燥に伴い増加したガス分を脱臭装置(熱風発生炉)で加熱脱臭した上で、セメント原料ミルの集塵機において集塵処理することができる。言い換えると、環境に放出する増加ガス分だけの乾燥機排ガスを加熱脱臭することになるので、脱臭装置(熱風発生炉)における燃料の消費を抑制できる。しかも、加熱脱臭後の高温の乾燥機排ガスを、乾燥機に循環させる乾燥機排ガスの昇温に役立てつつ、集塵処理する乾燥機排ガスの温度は下げることができる。 According to the above configuration, basically, the exhaust gas from the dryer is circulated to the dryer to be used for drying the dewatered sludge, and the increased gas due to the drying is deodorized by heating with the deodorizer (hot air generator). Thus, dust collection can be performed in a dust collector of a cement raw material mill. In other words, the exhaust gas of the dryer corresponding to the increased gas released to the environment is heated and deodorized, so that fuel consumption in the deodorizing device (hot air generating furnace) can be suppressed. Moreover, the temperature of the dryer exhaust gas for dust collection can be lowered while making use of the high temperature dryer exhaust gas after the heat deodorization to increase the temperature of the dryer exhaust gas circulating in the dryer.
 さらに、乾燥機で乾燥させた乾燥汚泥の一部又は全部を、脱臭装置(熱風発生炉)へ燃料として供給する燃料供給装置を備えていてもよい。また、セメント製造設備において焼成炉で焼成されたセメント焼成物を冷却するクーラの排気又はクーラの排気で加熱された空気を燃焼用空気として脱臭装置(熱風発生炉)へ供給する燃焼用空気供給装置を備えていてもよい。いずれの場合も脱臭装置(熱風発生炉)における燃料の消費を抑制することができる。 Furthermore, a fuel supply device that supplies a part or all of the dried sludge dried by a dryer as fuel to a deodorizing device (hot air generating furnace) may be provided. Also, a combustion air supply device that supplies, as combustion air, exhaust air from a cooler that cools a cement fired product fired in a firing furnace in a cement production facility to a deodorizing device (hot air generator) as combustion air May be provided. In either case, fuel consumption in the deodorizing device (hot air generating furnace) can be suppressed.
 見方を変えれば本発明は、セメント製造設備及び汚泥処理設備で行われる汚泥処理の方法に係り、汚泥処理設備の乾燥機で汚泥を乾燥させることと、乾燥した汚泥(以下、乾燥汚泥)を、セメント製造設備の仮焼炉及び焼成炉の少なくとも一方に搬送することと、乾燥機で生じた乾燥機排ガスを、セメント製造設備のセメント原料ミルの排気路に設けられた集塵機へ搬送し、当該集塵機で前記乾燥機排ガスから乾燥汚泥の粉塵を取り除くことと、を含むものである。 In other words, the present invention relates to a method of sludge treatment performed in a cement production facility and a sludge treatment facility, and drying sludge with a dryer of the sludge treatment facility, and drying sludge (hereinafter, dry sludge), Transport to at least one of the calcining furnace and firing furnace of the cement manufacturing facility, and transport the dryer exhaust gas generated in the dryer to the dust collector provided in the exhaust path of the cement raw material mill of the cement manufacturing facility. And removing dry sludge dust from the dryer exhaust gas.
 以上、述べたように本発明に係る汚泥の処理設備によると、汚泥を乾燥させてセメント製造設備の仮焼炉等で混焼させるとともに、乾燥機の排ガスはセメント原料ミルの排気路に設けられた集塵機によって処理することができ、多量の汚泥を処理してもセメントの製造プロセスに悪い影響を及ぼすことがなく、コストの上昇も抑制できる。 As described above, according to the sludge treatment facility according to the present invention, the sludge is dried and mixed in a calcining furnace or the like of the cement production facility, and the exhaust gas of the dryer is provided in the exhaust path of the cement raw material mill. It can be processed by a dust collector, and even if a large amount of sludge is processed, the cement manufacturing process is not adversely affected, and an increase in cost can be suppressed.
図1は、本発明の第1の実施形態に係る汚泥処理設備及びセメントの製造設備の系統図である。FIG. 1 is a system diagram of a sludge treatment facility and a cement manufacturing facility according to the first embodiment of the present invention. 図2は、熱風発生炉に乾燥汚泥を供給し、かつクーラ排気を流入させるようにした第2の実施形態に係る図1相当図である。FIG. 2 is a view corresponding to FIG. 1 according to a second embodiment in which dry sludge is supplied to the hot-air generator and cooler exhaust is introduced. 図3は、本発明に係る汚泥処理設備を他の形態のセメントプラントに適用した場合の図(変形例1)である。FIG. 3 is a diagram (Modification 1) when the sludge treatment facility according to the present invention is applied to another form of cement plant. 図4は、本発明に係る汚泥処理設備を他の形態のセメントプラントに適用した場合の図(変形例2)である。FIG. 4 is a diagram (Modification 2) when the sludge treatment facility according to the present invention is applied to another form of cement plant. 図5は、本発明に係る汚泥処理設備を他の形態のセメントプラントに適用した場合の図(変形例3)である。FIG. 5 is a diagram (Modification 3) in a case where the sludge treatment facility according to the present invention is applied to another form of cement plant. 図6は、本発明に係る汚泥処理設備を他の形態のセメントプラントに適用した場合の図(変形例4)である。FIG. 6 is a diagram (Modification 4) when the sludge treatment facility according to the present invention is applied to another form of cement plant.
 以下、本発明の実施の形態について図面を参照しながら説明する。図1は、第1の実施形態に係る汚泥処理設備100と、この汚泥処理設備100に隣設されたセメントプラント200(セメントの製造設備)との全体的な系統図である。図1の左側に示す汚泥処理設備100は、含水率の高い脱水汚泥を気流乾燥機1によって乾燥させ、含水率の低い乾燥汚泥とするものである。この乾燥汚泥は、セメントプラント200でセメント原料と混焼される。既設のセメントプラント200に大きな改修を加えることなく、汚泥処理設備100をセメントプラント200の隣に建設することができる。なお、イニシャルコストとエネルギーロスの削減の観点から、後述する乾燥機排ガスを汚泥処理設備100からセメントプラント200へ送る配管(第3排ガスダクト28)、及び、汚泥の乾粉を汚泥処理設備100からセメントプラント200へ送る配管(乾粉搬送ダクト19)の配管長を短くするために、汚泥処理設備100とセメントプラント200は隣り合っていることが望ましい。但し、これらの配管(乾粉搬送ダクト19及び第3排ガスダクト28)を経済的に敷設できるのであれば、汚泥処理設備100とセメントプラント200との間に他の構造物(例えば、道路、ビル、塀、川など)が在ったり、これらの間が離れていたりしても構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall system diagram of a sludge treatment facility 100 according to the first embodiment and a cement plant 200 (a cement production facility) installed adjacent to the sludge treatment facility 100. The sludge treatment facility 100 shown on the left side of FIG. 1 is for drying dehydrated sludge having a high water content by the air dryer 1 to obtain a dry sludge having a low water content. This dried sludge is co-fired with the cement raw material in the cement plant 200. The sludge treatment facility 100 can be constructed next to the cement plant 200 without greatly modifying the existing cement plant 200. From the viewpoint of reducing the initial cost and energy loss, a pipe (third exhaust gas duct 28) for sending the exhaust gas from the dryer, which will be described later, from the sludge treatment facility 100 to the cement plant 200, and the sludge dry powder from the sludge treatment facility 100 to the cement. In order to shorten the piping length of the piping (dry powder conveyance duct 19) to be sent to the plant 200, it is desirable that the sludge treatment facility 100 and the cement plant 200 are adjacent to each other. However, if these pipes (dry powder conveyance duct 19 and third exhaust gas duct 28) can be economically laid, other structures (for example, roads, buildings, etc.) between the sludge treatment facility 100 and the cement plant 200 can be used. There may be a kite, a river, etc.) or they may be separated.
 -汚泥処理設備-
 汚泥処理設備100は、汚泥を乾燥するための気流乾燥機1と、気流乾燥機1で乾燥させる脱水汚泥を貯留しておくための汚泥タンク2と、気流乾燥機1で乾燥させた乾燥汚泥と乾燥機排ガスとを分離するためのサイクロン12と、乾燥汚泥を収容するための乾粉受入タンク13と、乾燥汚泥をセメントプラント200の仮焼炉35に搬送するための乾燥汚泥搬送装置3と、乾燥排ガスを加熱するための熱風発生炉22と、加熱された乾燥機排ガスをセメントプラント200のセメント原料ミル65の排気処理装置66に搬送するための乾燥機排ガス搬送装置4と、を備えている。
-Sludge treatment equipment-
The sludge treatment facility 100 includes an airflow dryer 1 for drying sludge, a sludge tank 2 for storing dewatered sludge to be dried by the airflow dryer 1, and a dried sludge dried by the airflow dryer 1. A cyclone 12 for separating the dryer exhaust gas, a dry powder receiving tank 13 for containing the dried sludge, a dried sludge conveying device 3 for conveying the dried sludge to the calcining furnace 35 of the cement plant 200, and drying A hot air generating furnace 22 for heating the exhaust gas, and a dryer exhaust gas conveying device 4 for conveying the heated dryer exhaust gas to the exhaust treatment device 66 of the cement raw material mill 65 of the cement plant 200 are provided.
 汚泥タンク2には、一例として、下水汚泥及び産廃汚泥等の汚泥の脱水ケーキ(以下、汚泥ケーキという)が陸送等によって運搬されてきて貯留されている。汚泥タンク2には汚泥ケーキを吸い込んで吐出する汚泥ポンプ5が接続されており、汚泥ポンプ5から汚泥圧送ダクト6を通じて汚泥ケーキが気流乾燥機1へ圧送される。汚泥ポンプ5は動作速度を変更可能であり、気流乾燥機1への脱水ケーキの時間当たりの供給量を調整することができる。 In the sludge tank 2, for example, a dewatered cake of sludge such as sewage sludge and industrial waste sludge (hereinafter referred to as sludge cake) has been transported and stored by land transportation or the like. A sludge pump 5 that sucks and discharges sludge cake is connected to the sludge tank 2, and the sludge cake is pumped from the sludge pump 5 to the air dryer 1 through the sludge pumping duct 6. The operating speed of the sludge pump 5 can be changed, and the supply amount per hour of the dewatered cake to the air dryer 1 can be adjusted.
 気流乾燥機1は、乾粉受入タンク13の下部に設けられた混合フィーダ14と、解砕機10と、混合フィーダ14と解砕機10を繋ぐ配管と、解砕機10とサイクロン12を繋ぐ乾燥ダクト11とにより構成されている。汚泥圧送ダクト6により気流乾燥機1に圧送されてくる汚泥ケーキは、混合フィーダ14へ供給される。混合フィーダ14において、乾粉受入タンク13に収容された粉末状の乾燥汚泥(乾粉)と汚泥ケーキが混合される。汚泥ケーキと乾燥汚泥の混合物は、汚泥ケーキと乾燥汚泥の少なくとも一方の混合量が調整されることにより、含水率が調整される。一例として、汚泥ケーキの含水率は80%くらいであり、ハンドリングの容易化のために混合物の含水率が25~30%になるように、汚泥ケーキと混合される乾燥汚泥の量(循環乾粉量)が調節される。含水率が調整された混合物は、解砕機10へ送られる。 The air dryer 1 includes a mixing feeder 14 provided at a lower portion of the dry powder receiving tank 13, a crusher 10, a pipe connecting the mixing feeder 14 and the crusher 10, and a drying duct 11 connecting the crusher 10 and the cyclone 12. It is comprised by. The sludge cake pumped to the air dryer 1 by the sludge pumping duct 6 is supplied to the mixing feeder 14. In the mixing feeder 14, the powdery dry sludge (dry powder) and the sludge cake accommodated in the dry powder receiving tank 13 are mixed. The moisture content of the mixture of sludge cake and dried sludge is adjusted by adjusting the mixing amount of at least one of the sludge cake and dried sludge. As an example, the moisture content of the sludge cake is about 80%, and the amount of dry sludge mixed with the sludge cake (circulating dry powder amount so that the moisture content of the mixture is 25-30% for easy handling) ) Is adjusted. The mixture whose water content has been adjusted is sent to the crusher 10.
 解砕機10は、一例として、ケージの回転により汚泥ケーキと乾燥汚泥との混合物を解砕するものである。混合物は、気流乾燥に適した大きさに解砕される。解砕機10には、乾燥ダクト11が上方に延びるように接続されている。乾燥ダクト11には、後述のように高温の乾燥用ガス(循環ガス)が流れている。解砕機10で解砕された混合物は、乾燥ダクト11を吹き上がる乾燥用ガスに同伴し、乾燥用ガスの流れに載って運ばれながら乾燥されて、粉末状の乾燥汚泥となる。 As an example, the crusher 10 crushes a mixture of sludge cake and dried sludge by rotating a cage. The mixture is crushed to a size suitable for airflow drying. A drying duct 11 is connected to the crusher 10 so as to extend upward. A high-temperature drying gas (circulation gas) flows through the drying duct 11 as described later. The mixture crushed by the crusher 10 is accompanied by the drying gas that blows up the drying duct 11 and is dried while being carried on the flow of the drying gas, so that powdery dry sludge is formed.
 乾燥ダクト11の上端は、サイクロン12と接続されている。サイクロン12は一例としてリンデン型の高効率サイクロンである。サイクロン12では、乾燥ダクト11から流入した乾燥汚泥が乾燥機排ガスから遠心分離される。乾燥機排ガスは、気流乾燥機1からの排気ガスであって、乾燥用ガスや、汚泥から蒸発した水蒸気や、微量の乾燥汚泥の粉塵などが含まれている。分離された乾燥汚泥はサイクロン12の下部に接続された乾粉受入タンク13へ落下する。乾粉受入タンク13の乾燥汚泥は、その一部が前述の通り汚泥ケーキの含水率調整に利用され、残余は乾燥汚泥搬送装置3によってセメントプラント200の仮焼炉35で利用される。なお、乾燥汚泥は粉末状に限らず、粒状や薄小片状であってもよい。 The upper end of the drying duct 11 is connected to the cyclone 12. For example, the cyclone 12 is a linden type high-efficiency cyclone. In the cyclone 12, the dried sludge that has flowed from the drying duct 11 is centrifuged from the dryer exhaust gas. The dryer exhaust gas is an exhaust gas from the air dryer 1, and includes a drying gas, water vapor evaporated from sludge, a small amount of dry sludge dust, and the like. The separated dried sludge falls to a dry powder receiving tank 13 connected to the lower part of the cyclone 12. A part of the dry sludge in the dry powder receiving tank 13 is used for adjusting the moisture content of the sludge cake as described above, and the remainder is used in the calcining furnace 35 of the cement plant 200 by the dry sludge conveying device 3. The dried sludge is not limited to powder, but may be granular or thin pieces.
 また、乾粉受入タンク13の上下方向の中間部位には、混合フィーダ14と同様に乾燥汚泥の一部を搬出する搬出フィーダ15が設けられている。搬出フィーダ15により乾粉受入タンク13から搬出された乾燥汚泥は、一例としてコンベアなどの乾粉搬送機16によって、乾燥汚泥ホッパ17へ搬入される。乾燥汚泥ホッパ17は、乾燥汚泥を一時的に貯留するためのバッファとして機能する。 Further, an unloading feeder 15 for unloading a part of the dried sludge is provided at an intermediate portion in the vertical direction of the dry powder receiving tank 13 in the same manner as the mixing feeder 14. The dry sludge carried out from the dry powder receiving tank 13 by the carry-out feeder 15 is carried into the dry sludge hopper 17 by a dry powder transporter 16 such as a conveyor as an example. The dried sludge hopper 17 functions as a buffer for temporarily storing the dried sludge.
 乾燥汚泥ホッパ17に貯留されている乾燥汚泥の含水率は10~15%くらいであり、この乾燥汚泥は気流により浮遊させて搬送することができる。乾燥汚泥ホッパ17の下部には、ロータリバルブ等の計量供給装置(図示せず)が設けられている。計量された乾燥汚泥は、気流搬送装置18によって乾粉搬送ダクト19を通ってセメントプラント200へ搬送される。この乾粉搬送ダクト19は、汚泥処理設備100からセメントプラント200に向かって延びていて、乾粉搬送ダクト19の下流端は仮焼炉35の乾粉供給口に接続されている。 The moisture content of the dried sludge stored in the dried sludge hopper 17 is about 10 to 15%, and this dried sludge can be suspended and transported by an air current. Under the dry sludge hopper 17, a metering supply device (not shown) such as a rotary valve is provided. The measured dry sludge is transported to the cement plant 200 through the dry powder transport duct 19 by the airflow transport device 18. The dry powder transfer duct 19 extends from the sludge treatment facility 100 toward the cement plant 200, and the downstream end of the dry powder transfer duct 19 is connected to the dry powder supply port of the calciner 35.
 サイクロン12の上部には第1排ガスダクト20が接続されていて、第1排ガスダクト20の下端は熱風発生炉22に接続されている。この第1排ガスダクト20には乾燥機排ガスを送るための第1排ガスファン21が設けられている。サイクロン12で乾燥汚泥から分離された乾燥機排ガスは、第1排ガスダクト20へ排出され、第1排ガスダクト20を通じて熱風発生炉22へ送られる。 A first exhaust gas duct 20 is connected to the upper part of the cyclone 12, and a lower end of the first exhaust gas duct 20 is connected to a hot air generating furnace 22. The first exhaust gas duct 20 is provided with a first exhaust gas fan 21 for sending the dryer exhaust gas. The dryer exhaust gas separated from the dried sludge by the cyclone 12 is discharged to the first exhaust gas duct 20 and sent to the hot air generating furnace 22 through the first exhaust gas duct 20.
 熱風発生炉22は、炉内で石炭等の燃料を燃焼させて乾燥機排ガスを所定の温度以上に加熱することにより脱臭処理を行う、脱臭装置として機能する。詳細には、熱風発生炉22は、一例として略円筒状のハウジングの一端(図の右端)に設けられた燃焼バーナ22aを備えている。この燃焼バーナ22aは、燃料供給装置23から供給される微粉炭(天然ガスや重油等でもよい)をファン24により供給される燃焼用空気で燃焼させて、高温の燃焼ガス(熱風)をハウジングの他端側(図の左端)に向かって噴出する。この燃焼ガスに包まれた乾燥機排ガスは、一例として650~700℃以上の有機物が分解される温度となり、含有有機物が熱分解により脱臭される。 The hot air generating furnace 22 functions as a deodorizing device that performs a deodorizing process by burning fuel such as coal in the furnace and heating the exhaust gas of the dryer to a predetermined temperature or higher. Specifically, the hot air generating furnace 22 includes a combustion burner 22a provided at one end (right end in the figure) of a substantially cylindrical housing as an example. The combustion burner 22a combusts pulverized coal (natural gas, heavy oil, etc.) supplied from a fuel supply device 23 with combustion air supplied by a fan 24, and generates high-temperature combustion gas (hot air) in the housing. It ejects toward the other end side (the left end in the figure). The dryer exhaust gas wrapped in the combustion gas has a temperature at which organic substances at 650 to 700 ° C. or higher are decomposed as an example, and the contained organic substances are deodorized by thermal decomposition.
 熱風発生炉22の他端(図の左端)には第2排ガスダクト25が接続されており、この第2排ガスダクト25は高温の燃焼ガス及び乾燥機排ガスを熱風発生炉22から熱交換器26に導いている。一方で第1排ガスダクト20には、第1排ガスファン21と熱風発生炉22との間から分岐するように循環ダクト27(還流路)が接続されており、この循環ダクト27が熱交換器26を介して解砕機10に接続されている。 A second exhaust gas duct 25 is connected to the other end (the left end in the figure) of the hot air generating furnace 22, and the second exhaust gas duct 25 transfers high-temperature combustion gas and dryer exhaust gas from the hot air generating furnace 22 to the heat exchanger 26. Leading to. On the other hand, a circulation duct 27 (recirculation path) is connected to the first exhaust gas duct 20 so as to branch from between the first exhaust gas fan 21 and the hot air generating furnace 22, and the circulation duct 27 is connected to the heat exchanger 26. Is connected to the crusher 10.
 上記構成により、第1排ガスダクト20に排出された乾燥機排ガスの一部が、熱風発生炉22の手前で分流して循環ダクト27へ流れる。循環ダクト27に流入した乾燥機排ガスは、熱交換器26において熱風発生炉22からの熱風(即ち、高温の燃焼ガス及び乾燥機排ガス)と熱交換して十分に温度の高い乾燥用ガスとなって、解砕機10(即ち、気流乾燥機1)へ戻される。このように、乾燥機1には、乾燥機排ガス(乾燥用ガス)を循環させる循環路が形成されている。そして、熱風発生炉22で乾燥機排ガスを加熱脱臭するために加えられた熱量の大半は、熱交換器26において循環ガス(乾燥用ガス)に与えられ、気流乾燥機1において汚泥の乾燥に利用される。 With the above configuration, a part of the dryer exhaust gas discharged to the first exhaust gas duct 20 is diverted before the hot air generating furnace 22 and flows to the circulation duct 27. The dryer exhaust gas flowing into the circulation duct 27 exchanges heat with hot air from the hot air generator 22 (that is, high-temperature combustion gas and dryer exhaust gas) in the heat exchanger 26 to become a sufficiently high drying gas. And returned to the crusher 10 (that is, the air dryer 1). Thus, the dryer 1 is formed with a circulation path for circulating the dryer exhaust gas (drying gas). Then, most of the amount of heat applied to heat and deodorize the dryer exhaust gas in the hot air generating furnace 22 is given to the circulating gas (drying gas) in the heat exchanger 26 and used for drying sludge in the air dryer 1. Is done.
 一方、気流乾燥機1へ還流される分を除いた乾燥機排ガスの残部(即ち、汚泥の乾燥に伴い増加した分の乾燥機排ガス)は、熱風発生炉22へ流入する。熱風発生炉22へ流入した乾燥機排ガスは、熱風発生炉22で加熱され脱臭され、熱交換器26で乾燥機排ガス(乾燥用ガス)と熱交換して温度が低下した後に、熱交換器26に接続された第3排ガスダクト28に流出する。この第3排ガスダクト28は、熱交換器26からセメントプラント200に向かって延びており、第2排ガスファン29によって送られる乾燥機排ガスをセメント原料ミル65の排気処理装置66又はその上流側に搬送する。なお、第2排ガスファン29は必ずしも必要ではなく、セメントプラント200の誘引ファン62のドラフトで乾燥機排ガスを吸気してもよい。 On the other hand, the remainder of the dryer exhaust gas excluding the amount recirculated to the air dryer 1 (that is, the dryer exhaust gas increased as the sludge is dried) flows into the hot air generator 22. The dryer exhaust gas that has flowed into the hot air generator 22 is heated and deodorized in the hot air generator 22 and heat-exchanged with the dryer exhaust gas (drying gas) by the heat exchanger 26 to lower the temperature. It flows out to the 3rd exhaust gas duct 28 connected to. The third exhaust gas duct 28 extends from the heat exchanger 26 toward the cement plant 200, and conveys the dryer exhaust gas sent by the second exhaust gas fan 29 to the exhaust treatment device 66 of the cement raw material mill 65 or the upstream side thereof. To do. Note that the second exhaust gas fan 29 is not always necessary, and the dryer exhaust gas may be sucked by the draft of the induction fan 62 of the cement plant 200.
 以上、説明した汚泥処理設備100において、乾粉搬送機16、乾燥汚泥ホッパ17、気流搬送装置18及び乾粉搬送ダクト19が、乾燥汚泥をセメントプラント200の仮焼炉35に搬送する乾燥汚泥搬送装置3を構成している。また、第1、第2及び第3の排ガスダクト20,25,28並びに第1及び第2の排ガスファン21,29が、乾燥機排ガスをセメント原料ミル65の排気処理装置66に搬送する乾燥機排ガス搬送装置4を構成している。なお、図1の例では第3排ガスダクト28から分岐するように、乾燥機排ガスの一部を熱風発生炉22に戻す戻しダクト28aが接続されており、熱風発生炉22の燃料を節減させている。 In the sludge treatment facility 100 described above, the dry sludge transport device 3, the dry sludge hopper 17, the airflow transport device 18, and the dry powder transport duct 19 transport the dry sludge to the calcining furnace 35 of the cement plant 200. Is configured. The first, second and third exhaust gas ducts 20, 25, 28 and the first and second exhaust gas fans 21, 29 convey the dryer exhaust gas to the exhaust treatment device 66 of the cement material mill 65. An exhaust gas transfer device 4 is configured. In addition, in the example of FIG. 1, a return duct 28 a for returning a part of the dryer exhaust gas to the hot air generating furnace 22 is connected so as to branch from the third exhaust gas duct 28, and fuel in the hot air generating furnace 22 is saved. Yes.
 -セメント製造設備-
 セメントプラント200は、図1の例では一般的なNSPキルン(new suspension preheater kiln)を備えたものである。つまり、セメントプラント200は、予熱器であるサスペンションプレヒータ30と、焼成炉であるロータリキルン40と、これらの間に設けられた仮焼炉35とを備えている。セメント原料は、サスペンションプレヒータ30において予熱された後に、仮焼炉35において900℃くらいまで加熱され(仮焼)、ロータリキルン40において1450℃くらいの高温で焼成される。セメント焼成物は、ロータリキルン40からエアクエンチングクーラ(AQC)50へ送られて、AQC50で急冷されて粒状のセメントクリンカとなり、さらに、図外の仕上げ工程に送られる。
-Cement production facility-
In the example of FIG. 1, the cement plant 200 includes a general NSP kiln (new suspension preheater kiln). That is, the cement plant 200 includes a suspension preheater 30 that is a preheater, a rotary kiln 40 that is a firing furnace, and a calcining furnace 35 provided therebetween. The cement raw material is preheated in the suspension preheater 30, then heated to about 900 ° C. in the calcining furnace 35 (calcination), and fired in the rotary kiln 40 at a high temperature of about 1450 ° C. The cement baked product is sent from the rotary kiln 40 to an air quenching cooler (AQC) 50, rapidly cooled by the AQC 50 to become a granular cement clinker, and further sent to a finishing process (not shown).
 サスペンションプレヒータ30は、上下方向に並んで設けられた複数段のサイクロン31を直列に接続したものである。各サイクロン31で、セメント原料は、下段から吹き込まれる高温の排気によって昇温される。この排気の流れは、ロータリキルン40から吹き出す高温の排気(以下、キルン排気という)であり、このキルン排気が仮焼炉35から最下段のサイクロン31に流通し、一段ずつサイクロン31を上昇して最上段のサイクロン31に至り、排気ライン60に流出する。 The suspension preheater 30 is formed by connecting a plurality of cyclones 31 arranged in series in the vertical direction in series. In each cyclone 31, the cement raw material is heated by high-temperature exhaust gas blown from the lower stage. The flow of the exhaust gas is high-temperature exhaust gas (hereinafter referred to as kiln exhaust gas) blown out from the rotary kiln 40. The kiln exhaust gas flows from the calcining furnace 35 to the lowermost cyclone 31 and moves up the cyclone 31 step by step. It reaches the uppermost cyclone 31 and flows out to the exhaust line 60.
 排気ライン60には、サスペンションプレヒータ30の最上段のサイクロン31から流出した排気(以下、SP排気という)を誘引して、煙突61に送り出す誘引ファン62が設けられている。この誘引ファン62は、サスペンションプレヒータ30及び仮焼炉35を間に介してロータリキルン40からキルン排気を誘引するために、セメントプラント200の規模に応じた大容量のものとされている。 The exhaust line 60 is provided with an attracting fan 62 that attracts exhaust gas flowing out from the uppermost cyclone 31 of the suspension preheater 30 (hereinafter referred to as SP exhaust gas) and sends it to the chimney 61. The induction fan 62 has a large capacity according to the scale of the cement plant 200 in order to attract the kiln exhaust from the rotary kiln 40 through the suspension preheater 30 and the calcining furnace 35.
 誘引ファン62とサスペンションプレヒータ30との間には、SP排気の流れに沿ってボイラ63、SP排気ファン64、セメント原料ミル65及び排気処理装置66が順に介設されている。ボイラ63は、概ね300℃以上のSP排気から廃熱を回収し、高温の水蒸気を蒸気タービン(図示せず)に供給して発電させるものである。セメント原料ミル65は一例として公知の竪型ローラミルであり、SP排気の供給下でセメント原料を乾燥させながら複数のローラと回転テーブルとの回転により摺りつぶす。 Between the induction fan 62 and the suspension preheater 30, a boiler 63, an SP exhaust fan 64, a cement raw material mill 65, and an exhaust treatment device 66 are provided in this order along the SP exhaust flow. The boiler 63 collects waste heat from the SP exhaust of approximately 300 ° C. or higher and supplies high-temperature steam to a steam turbine (not shown) to generate electric power. The cement raw material mill 65 is a known vertical roller mill as an example, and is crushed by rotation of a plurality of rollers and a rotary table while drying the cement raw material under the supply of SP exhaust.
 摺りつぶされた粉末状のセメント原料が、セメント原料搬送装置(図示せず)によってサスペンションプレヒータ30の最上段のサイクロン31に供給される。一方、セメント原料ミル65を通過したSP排気には、セメント原料の微粉が浮遊している。このSP排気は、排気処理装置66のバグフィルタ66a(集塵機)によって集塵処理がなされ、セメント原料の微粉が集められる。集められたセメント原料の微粉は、サスペンションプレヒータ30の最上段のサイクロン31へ供給されるセメント原料に混入される。 The ground powdery cement raw material is supplied to the uppermost cyclone 31 of the suspension preheater 30 by a cement raw material transfer device (not shown). On the other hand, fine powder of cement raw material floats in the SP exhaust gas that has passed through the cement raw material mill 65. The SP exhaust is collected by a bag filter 66a (dust collector) of the exhaust treatment device 66, and fine powder of cement raw material is collected. The collected fine powder of cement raw material is mixed into the cement raw material supplied to the uppermost cyclone 31 of the suspension preheater 30.
 セメント原料ミル65の排気路に設けられた排気処理装置66は、例えば、並列に設けられた2つのバグフィルタ66aと、それらの一方に選択的にガスを流通させる切換えバルブ(図示せず)とを備えている。上記構成により、2つのバグフィルタ66aの一方をろ布交換などのメンテナンスのために停止するときでも、2つのバグフィルタ66aの他方を使用することができる。なお、集塵機としてはバグフィルタ66aに限らず、例えば電気集塵機を用いてもよい。 The exhaust treatment device 66 provided in the exhaust path of the cement raw material mill 65 includes, for example, two bag filters 66a provided in parallel, and a switching valve (not shown) for selectively allowing gas to flow through one of them. It has. With the above configuration, even when one of the two bag filters 66a is stopped for maintenance such as filter cloth replacement, the other of the two bag filters 66a can be used. The dust collector is not limited to the bag filter 66a, and for example, an electric dust collector may be used.
 本実施形態では、排気ライン60のセメント原料ミル65と排気処理装置66との間に、汚泥処理設備100から乾燥機排ガスを搬送する第3排ガスダクト28の下流端が接続されている。この第3排ガスダクト28により搬送されてくる乾燥機排ガスは、排気ライン60を通じて送られてくるSP排気と共に、排気処理装置66へ流入する。よって、SP排気と乾燥機排ガスとは共に排気処理装置66で集塵処理が施される。集塵処理では、バグフィルタ66aにより、SP排気からセメント原料の微粉が取り除かれるとともに、乾燥機排ガスから粉塵が取り除かれる。換言すれば、SP排気に同伴するセメント原料の微粉と、乾燥機排ガスに同伴する粉塵とが、バグフィルタ66aで集められる。乾燥機排ガスに同伴する粉塵には、熱風発生炉22で生じた乾燥汚泥の燃焼灰や燃料の燃焼灰などが含まれている。集められたセメント原料の微粉と乾燥汚泥の燃焼灰を含む粉塵は、セメント原料として利用される。 In this embodiment, the downstream end of the third exhaust gas duct 28 that conveys the dryer exhaust gas from the sludge treatment facility 100 is connected between the cement raw material mill 65 and the exhaust treatment device 66 of the exhaust line 60. The dryer exhaust gas conveyed by the third exhaust gas duct 28 flows into the exhaust treatment device 66 together with the SP exhaust sent through the exhaust line 60. Thus, both the SP exhaust and the dryer exhaust gas are subjected to dust collection processing by the exhaust processing device 66. In the dust collection process, fine powder of cement raw material is removed from the SP exhaust by the bag filter 66a, and dust is removed from the dryer exhaust gas. In other words, the fine powder of the cement raw material accompanying the SP exhaust and the dust accompanying the dryer exhaust gas are collected by the bag filter 66a. The dust accompanying the exhaust gas from the dryer includes combustion ash of dried sludge generated in the hot air generator 22 and combustion ash of fuel. Dust containing the collected fine powder of cement raw material and the combustion ash of dried sludge is used as a cement raw material.
 ところで、セメント原料搬送装置によってサスペンションプレヒータ30の最上段のサイクロン31に供給されたセメント原料は、一段ずつ順にサイクロン31を通過しながら高温のキルン排気によって十分に予熱されて、仮焼炉35へと供給される。仮焼炉35は、ロータリキルン40の窯尻に上下方向に延びるように設けられており、そのロータリキルン40から高温のキルン排気が流入して、噴流となって上方へと吹き上がっている。 By the way, the cement raw material supplied to the uppermost cyclone 31 of the suspension preheater 30 by the cement raw material conveyance device is sufficiently preheated by the high-temperature kiln exhaust while passing through the cyclone 31 one by one in order, and is supplied to the calcining furnace 35. Supplied. The calcining furnace 35 is provided at the bottom of the kiln 40 of the rotary kiln 40 so as to extend in the vertical direction. High-temperature kiln exhaust gas flows from the rotary kiln 40 and blows upward as a jet.
 また、図示しないが仮焼炉35には、燃料である微粉炭の供給口と、上述した乾粉搬送ダクト19の下流端が接続される乾粉供給口と、これらを燃焼させるための空気の供給口とがそれぞれ設けられている。燃焼用の空気としてはAQC50からの高温のクーラ排気が利用され、クーラ排気が仮焼炉35内の負圧によって吸引されている。前記したように仮焼炉35内にはキルン排気の上昇流が形成されているが、固形状の微粉炭及び乾燥汚泥はいずれも仮焼炉35内で良好に燃焼される。 Although not shown, the calcining furnace 35 has a supply port for pulverized coal as fuel, a dry powder supply port to which the downstream end of the dry powder transport duct 19 is connected, and an air supply port for burning them. And are provided respectively. High-temperature cooler exhaust from the AQC 50 is used as combustion air, and the cooler exhaust is sucked by the negative pressure in the calcining furnace 35. As described above, an upward flow of the kiln exhaust gas is formed in the calcining furnace 35, but both solid pulverized coal and dry sludge are burned well in the calcining furnace 35.
 そして、仮焼炉35内に投入されるセメント原料粉も、キルン排気の噴流に乗って吹き上げられる間に十分に加熱されて、仮焼炉35の最上部からサスペンションプレヒータ30の最下段のサイクロン31に搬送される。ここにおいてキルン排気はセメント原料と分離されて一つ上段のサイクロン31へと向かい、一方、セメント原料はサイクロン31の下端から落下してロータリキルン40の入り口へと至る。 The cement raw material powder put into the calcining furnace 35 is also sufficiently heated while being blown up on the jet of the kiln exhaust, and the cyclone 31 at the lowest stage of the suspension preheater 30 from the uppermost part of the calcining furnace 35. To be transported. Here, the kiln exhaust gas is separated from the cement raw material and goes to the upper cyclone 31, while the cement raw material falls from the lower end of the cyclone 31 and reaches the entrance of the rotary kiln 40.
 ロータリキルン40は横長円筒状の回転窯からなり、この回転窯を入り口から出口に向かって僅かに下向きに傾斜した姿勢で設置されている。回転窯がその軸心の周りに緩やかに回転することによって、セメント原料が出口側に搬送される。この出口側にはバーナ41が配設されていて、微粉炭や天然ガス、重油等の燃焼による高温の燃焼ガスを入り口側に向かって噴出している。燃焼ガスに包まれたセメント原料は化学反応(セメント焼成反応)を起こし、その一部が半溶融状態になるまで焼成される。 The rotary kiln 40 is composed of a horizontal cylindrical rotary kiln, which is installed in a posture inclined slightly downward from the entrance to the exit. The rotary kiln slowly rotates around its axis, whereby the cement raw material is conveyed to the outlet side. A burner 41 is disposed on the outlet side, and high-temperature combustion gas from combustion of pulverized coal, natural gas, heavy oil or the like is jetted toward the inlet side. The cement raw material wrapped in the combustion gas causes a chemical reaction (cement firing reaction) and is fired until a part of the cement raw material is in a semi-molten state.
 セメント焼成物がAQC50において冷風を受けて急冷され、粒状のセメントクリンカとなる。そして、図示及び説明を省略するが、セメントクリンカはクリンカサイロに貯蔵された後に、石膏等を加えて成分調整された上でミルにより微粉砕される(仕上げ工程)。セメント焼成物から熱を奪って750℃以上に昇温されたクーラ排気の大半が、前記したように燃焼用の空気として仮焼炉35に供給される。これにより仮焼炉35での燃焼効率の向上が図られている。 The cement baked product is cooled rapidly by receiving cold air at AQC50, and becomes a granular cement clinker. And although illustration and description are abbreviate | omitted, a cement clinker is stored in a clinker silo, and after adding gypsum etc. and adjusting components, it is then finely pulverized by a mill (finishing step). Most of the cooler exhaust that has been deprived of heat from the fired cement and heated to 750 ° C. or higher is supplied to the calcining furnace 35 as combustion air as described above. Thereby, the combustion efficiency in the calciner 35 is improved.
 なお、クーラ排気の一部は、ボイラ(図示せず)によって廃熱を回収された後にバグフィルタ等の集塵機を通過し、煙突から排気される。このボイラは、SP排気の廃熱を回収するボイラ63と同じく、高温の水蒸気を蒸気タービンに供給して発電させる。 A part of the cooler exhaust gas is exhausted from the chimney after passing through a dust collector such as a bag filter after the waste heat is recovered by a boiler (not shown). This boiler, like the boiler 63 that recovers the waste heat of the SP exhaust, supplies hot steam to the steam turbine to generate power.
 -汚泥処理設備の運転動作-
 上述した汚泥処理設備100は、基本的にセメントプラント200の運転条件に拘束されず、脱水汚泥の毎日の処理計画に基づいて運転される。すなわち、予定されている1日の処理量に応じて、脱水汚泥の気流乾燥機1への時間当たりの供給量が決定され、これにより汚泥ポンプ5の動作速度が制御される。汚泥ポンプ5により汚泥圧送ダクト6を圧送される汚泥ケーキは、混合フィーダ14において乾燥汚泥と混合される。汚泥ケーキと乾燥汚泥の混合物は、解砕機10で解砕された後に乾燥用ガスにより乾燥ダクト11を吹き上げられながら乾燥される。そして、乾燥した粉末状の汚泥(乾燥汚泥)は、汚泥サイクロン12において乾燥機排ガス(乾燥用ガス)から遠心分離されて、乾粉受入タンク13へ収容される。
-Operation of sludge treatment equipment-
The sludge treatment facility 100 described above is basically not restricted by the operating conditions of the cement plant 200 and is operated based on a daily treatment plan for dewatered sludge. That is, the supply amount of dewatered sludge to the air dryer 1 per hour is determined according to the scheduled daily processing amount, and thereby the operation speed of the sludge pump 5 is controlled. The sludge cake pumped through the sludge pumping duct 6 by the sludge pump 5 is mixed with the dried sludge in the mixing feeder 14. The mixture of the sludge cake and the dried sludge is crushed by the crusher 10 and then dried while the drying duct 11 is blown up by the drying gas. The dried powdery sludge (dried sludge) is centrifuged from the dryer exhaust gas (drying gas) in the sludge cyclone 12 and stored in the dry powder receiving tank 13.
 乾粉受入タンク13から搬出された乾燥汚泥は、乾燥汚泥ホッパ17に投入される。この乾燥汚泥ホッパ17内の乾燥汚泥は、セメントプラント200側の要求に応じて計量され、乾粉搬送ダクト19を気流搬送されて、セメントの仮焼炉35に吹き込まれる。この仮焼炉35内にはキルン排気の上昇流が形成されているが、固形状の微粉炭及び乾燥汚泥は仮焼炉35内に4秒程度留まって良好に燃焼する。このように、乾燥汚泥に含まれる有機物の発熱量が有効利用され、仮焼炉35への微粉炭の供給量を削減できる。また、仮焼炉35で乾燥汚泥の十分な燃焼時間が確保されるので、乾燥汚泥の不完全燃焼に起因するダイオキシンの生成を抑制できる。 Dry sludge carried out from the dry powder receiving tank 13 is put into a dry sludge hopper 17. The dry sludge in the dry sludge hopper 17 is weighed according to the demand on the cement plant 200 side, is air-flowed through the dry powder transport duct 19 and is blown into the cement calcining furnace 35. An upward flow of kiln exhaust is formed in the calcining furnace 35, but solid pulverized coal and dried sludge remain in the calcining furnace 35 for about 4 seconds and burn well. Thus, the calorific value of the organic matter contained in the dried sludge is effectively used, and the amount of pulverized coal supplied to the calcining furnace 35 can be reduced. Moreover, since sufficient burning time of dry sludge is ensured in the calcining furnace 35, the production | generation of dioxin resulting from incomplete combustion of dry sludge can be suppressed.
 サイクロン12で分離された乾燥機排ガスの一部が、乾燥用ガスとして気流乾燥機1へ還流される。一方、脱水汚泥の水蒸気を含んで体積の増大した乾燥機排ガスの残部は、熱風発生炉22において高温に加熱され脱臭される。通常、乾燥機排ガスは、650~700℃以上に加熱すれば完全に脱臭できる。そこで、熱風発生炉22においては、放出される熱風の温度を計測し、熱風の温度が例えば650℃以上になるように燃焼バーナ22aへの微粉炭の供給量を制御している。 A part of the dryer exhaust gas separated by the cyclone 12 is returned to the air dryer 1 as a drying gas. On the other hand, the remainder of the dryer exhaust gas containing the water vapor of the dewatered sludge is heated to a high temperature and deodorized in the hot air generator 22. Usually, dryer exhaust gas can be completely deodorized by heating to 650-700 ° C or higher. Therefore, in the hot air generating furnace 22, the temperature of the discharged hot air is measured, and the amount of pulverized coal supplied to the combustion burner 22a is controlled so that the temperature of the hot air becomes, for example, 650 ° C. or higher.
 熱風発生炉22から放出される熱風は、高温の燃焼ガス及び乾燥機排ガスを含んでいる。この熱風は、熱交換器26において循環ガスと熱交換し200℃くらいまで温度が低下した状態で、第3排ガスダクト28を流れて、セメント原料ミル65の排気処理装置66に導入される。排気処理装置66に導入された乾燥機排ガスは多量の水蒸気を含んでいるが、多量のSP排気と混じり合って水蒸気濃度が低くなることから、排気処理装置66のバグフィルタ66aで問題なく集塵処理できる。 The hot air discharged from the hot air generating furnace 22 includes high-temperature combustion gas and dryer exhaust gas. The hot air flows through the third exhaust gas duct 28 in a state in which heat is exchanged with the circulating gas in the heat exchanger 26 and the temperature is lowered to about 200 ° C., and is introduced into the exhaust treatment device 66 of the cement raw material mill 65. The dryer exhaust gas introduced into the exhaust treatment device 66 contains a large amount of water vapor, but is mixed with a large amount of SP exhaust gas and the water vapor concentration becomes low. Therefore, the bag filter 66a of the exhaust treatment device 66 collects dust without any problem. It can be processed.
 上記汚泥処理設備100によれば、気流乾燥機1で発生した乾燥機排ガスのうち、環境に放出される増加ガス分だけが、熱風発生炉22で加熱及び脱臭処理される。よって、熱風発生炉22における燃料の消費を抑制できる。また、熱風発生炉22から放出された高温の乾燥機排ガスは、熱交換器26で温度を低下させた後に、セメントプラント200の排気処理装置66で集塵処理される。熱交換器26において、高温の乾燥機排ガスの熱量は、気流乾燥機1に還流される乾燥機排ガス(乾燥用ガス)の昇温に利用される。よって、汚泥処理設備100で多量の汚泥が処理されても、汚泥処理設備100から供給される乾燥機排ガス及び乾燥汚泥はセメントの製造プロセスに悪い影響(例えば、熱的バランスが崩れたり、燃料消費量が増大したり、セメントの品質が低下したりするような影響)を及ぼすことがない。また、汚泥処理設備100で発生した乾燥汚泥がセメントプラント200で燃料として利用され、更に、汚泥処理設備100で発生した乾燥機排ガスの集塵処理がセメントプラント200で行われることで、セメント製造及び汚泥処理のコストの上昇も抑制できる。 According to the sludge treatment facility 100, only the increased gas released to the environment from the dryer exhaust gas generated in the air dryer 1 is heated and deodorized in the hot air generator 22. Therefore, fuel consumption in the hot air generating furnace 22 can be suppressed. Further, the high-temperature dryer exhaust gas discharged from the hot air generating furnace 22 is subjected to dust collection processing by the exhaust treatment device 66 of the cement plant 200 after the temperature is lowered by the heat exchanger 26. In the heat exchanger 26, the amount of heat of the high-temperature dryer exhaust gas is used to raise the temperature of the dryer exhaust gas (drying gas) that is refluxed to the airflow dryer 1. Therefore, even if a large amount of sludge is processed in the sludge treatment facility 100, the dryer exhaust gas and the dried sludge supplied from the sludge treatment facility 100 adversely affect the cement manufacturing process (for example, the thermal balance is lost or the fuel consumption is reduced). The effect of increasing the amount or lowering the quality of the cement is not exerted. Further, dry sludge generated in the sludge treatment facility 100 is used as a fuel in the cement plant 200, and further, dust collection processing of the dryer exhaust gas generated in the sludge treatment facility 100 is performed in the cement plant 200. An increase in sludge treatment costs can also be suppressed.
 -第2の実施形態-
 次に、本発明の第2の実施形態に係る汚泥処理設備について図2を参照して説明する。この第2の実施形態の汚泥処理設備では、乾燥汚泥ホッパ17に一次貯留している汚泥の乾粉の一部を燃料として熱風発生炉22に供給するとともに、この熱風発生炉22に燃焼用空気としてクーラ排気を流入させるようにしているが、それ以外の構成については第1実施形態と同じなので、同じ符号100を付する。また、それ以外の同じ構成の装置等にも同じ符号を付して、その説明は省略する。
-Second Embodiment-
Next, a sludge treatment facility according to a second embodiment of the present invention will be described with reference to FIG. In the sludge treatment facility of the second embodiment, a portion of the sludge dry powder primarily stored in the dry sludge hopper 17 is supplied to the hot air generator 22 as fuel, and the hot air generator 22 is used as combustion air. Although cooler exhaust is made to flow in, since the other configuration is the same as that of the first embodiment, the same reference numeral 100 is given. In addition, other devices having the same configuration are denoted by the same reference numerals, and description thereof is omitted.
 より具体的に、この第2の実施形態の汚泥処理設備100においては、乾粉搬送ダクト19の途中に、乾燥汚泥の分配装置7が設けられている。分配装置7では、乾粉搬送ダクト19で搬送される乾燥汚泥の一部が取りだされる。取り出された乾燥汚泥は熱風発生炉22の燃料供給装置23へ供給される。燃料供給装置23では、乾燥汚泥が微粉炭と共に燃焼バーナ22aへ供給される。このように、乾燥汚泥が燃焼バーナ22aの燃料として利用されることで、熱風発生炉22への微粉炭の供給量を削減できる。なお、燃料供給装置23とは別に、熱風発生炉22内に乾燥汚泥を吹き込むための供給装置を設けてもよい。 More specifically, in the sludge treatment facility 100 of the second embodiment, a dry sludge distributor 7 is provided in the middle of the dry powder transport duct 19. In the distribution device 7, a part of the dried sludge transported by the dry powder transport duct 19 is taken out. The extracted dried sludge is supplied to the fuel supply device 23 of the hot air generating furnace 22. In the fuel supply device 23, the dried sludge is supplied to the combustion burner 22a together with the pulverized coal. In this way, the dry sludge is used as the fuel for the combustion burner 22a, whereby the amount of pulverized coal supplied to the hot air generating furnace 22 can be reduced. In addition to the fuel supply device 23, a supply device for blowing dry sludge into the hot air generating furnace 22 may be provided.
 また、燃焼バーナ22aに燃焼用空気を送るファン24には、セメントプラント200のAQC50から高温のクーラ排気を搬送するクーラ排気ダクト8が接続されている。クーラ排気は300℃以上であるので、クーラ排気の一部が燃焼用空気として燃焼バーナ22aに供給されれば、熱風発生炉22への微粉炭の供給量を削減できる。 Further, a cooler exhaust duct 8 that conveys high-temperature cooler exhaust from the AQC 50 of the cement plant 200 is connected to the fan 24 that sends combustion air to the combustion burner 22a. Since the cooler exhaust gas is 300 ° C. or higher, if a part of the cooler exhaust gas is supplied to the combustion burner 22a as combustion air, the amount of pulverized coal supplied to the hot air generating furnace 22 can be reduced.
 前記のように乾粉搬送ダクト19から乾粉の一部を取り出して、燃料供給装置23に供給する乾粉分配装置7が、乾粉を熱風発生炉22に供給して燃焼させる乾燥汚泥供給装置を構成する。 As described above, the dry powder distribution device 7 that takes out a part of the dry powder from the dry powder transport duct 19 and supplies the dry powder to the fuel supply device 23 constitutes a dry sludge supply device that supplies the dry powder to the hot air generator 22 and burns it.
 -他の実施形態-
 なお、上述した第1及び第2の実施形態の説明は例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。例えば、前記各実施形態の汚泥処理設備100では、脱水汚泥を気流乾燥機1によって乾燥させるようにしているが、気流乾燥機以外の乾燥機を用いてもよい。
-Other embodiments-
Note that the above description of the first and second embodiments is merely an example, and is not intended to limit the present invention, its application, or its use. For example, in the sludge treatment facility 100 of each of the above embodiments, the dewatered sludge is dried by the air dryer 1, but a dryer other than the air dryer may be used.
 また、前記各実施形態では、乾燥汚泥はセメントプラント200の仮焼炉35へ送られるが、乾燥汚泥が仮焼炉35及びロータリキルン40の少なくとも一方へ送られてもよい。また、乾燥汚泥の一部がサスペンションプレヒータ30へ供給されてもよい。つまり、乾燥汚泥がセメントプラント200で燃料として有効に利用されれば、乾燥汚泥の供給先は限定されない。 In each of the above embodiments, the dried sludge is sent to the calcining furnace 35 of the cement plant 200, but the dried sludge may be sent to at least one of the calcining furnace 35 and the rotary kiln 40. A part of the dried sludge may be supplied to the suspension preheater 30. That is, as long as the dried sludge is effectively used as fuel in the cement plant 200, the supply destination of the dried sludge is not limited.
 また、前記各実施形態では、汚泥処理設備100から乾燥機排ガスを搬送する第3排ガスダクト28の下流端が、セメントプラント200の排気ライン60においてセメント原料ミル65と排気処理装置66との間に接続されているが、これに限定されない。例えば、第3排ガスダクト28は、排気ライン60においてボイラ63とセメント原料ミル65との間に接続されてもよいし、サスペンションプレヒータ30からの出口に接続されてもよい。つまり、乾燥機排ガスに含まれる乾燥汚泥の燃焼灰が排気処理装置66で集塵処理されるように、第3排ガスダクト28の下流端が排気処理装置66より上流側の適宜位置に接続されていればよい。 Moreover, in each said embodiment, the downstream end of the 3rd exhaust gas duct 28 which conveys drying machine exhaust gas from the sludge treatment equipment 100 is between the cement raw material mill 65 and the exhaust treatment apparatus 66 in the exhaust line 60 of the cement plant 200. Although connected, it is not limited to this. For example, the third exhaust gas duct 28 may be connected between the boiler 63 and the cement raw material mill 65 in the exhaust line 60, or may be connected to an outlet from the suspension preheater 30. That is, the downstream end of the third exhaust gas duct 28 is connected to an appropriate position on the upstream side of the exhaust treatment device 66 so that the combustion ash of the dried sludge contained in the dryer exhaust gas is collected by the exhaust treatment device 66. Just do it.
 さらに、前記各実施形態においては、乾燥機排ガスを脱臭するために、乾燥機排ガスを熱風発生炉22で高温加熱しているが、乾燥機排ガスの脱臭方法はこれに限定されない。例えば、セメントプラント200の仮焼炉35やロータリキルン40、AQC50などの高温ガスを利用して乾燥機排ガスを加熱することにより、乾燥機排ガスを脱臭するようにしてもよい。或いは、セラミック触媒や化学吸着剤を利用して乾燥機排ガスを脱臭してもよい。また、乾燥機排ガスは排気系で脱臭されることが望ましいが、状況によっては、乾燥機排ガスが脱臭されずにセメントプラント200の排気処理装置66へ送られてもよい。この場合には、乾燥機排ガスに同伴する乾燥汚泥の粉塵などが、排気処理装置66で回収される。 Furthermore, in each said embodiment, in order to deodorize dryer exhaust gas, dryer exhaust gas is heated at high temperature with the hot air generation furnace 22, However, The deodorization method of dryer exhaust gas is not limited to this. For example, the dryer exhaust gas may be deodorized by heating the dryer exhaust gas using a high-temperature gas such as the calcining furnace 35, the rotary kiln 40, or the AQC 50 of the cement plant 200. Alternatively, the dryer exhaust gas may be deodorized using a ceramic catalyst or a chemical adsorbent. In addition, it is desirable that the dryer exhaust gas is deodorized in the exhaust system, but depending on the situation, the dryer exhaust gas may be sent to the exhaust treatment device 66 of the cement plant 200 without being deodorized. In this case, dry sludge dust accompanying the exhaust gas from the dryer is collected by the exhaust treatment device 66.
 また、前記各実施形態では、熱風発生炉22からの熱風(高温の燃焼ガス及び乾燥機排ガス)と気流乾燥機1に循環する乾燥機排ガスとを熱交換器26で熱交換させるようにしているが、熱風の冷却方法及び循環ガスの加熱方法はこれに限定されない。例えば、熱風を循環ガスと混合して、循環ガスを加熱してもよい。但し、この場合には、集塵処理される乾燥機排ガスの温度をバグフィルタ66aの耐熱温度まで下げなくてはならないので、例えばボイラで乾燥機排ガスの熱を回収するようにしてもよい。 In each of the above embodiments, the heat exchanger 26 exchanges heat between the hot air (hot combustion gas and dryer exhaust gas) from the hot air generator 22 and the dryer exhaust gas circulated to the air flow dryer 1. However, the method for cooling the hot air and the method for heating the circulating gas are not limited thereto. For example, the circulating gas may be heated by mixing hot air with the circulating gas. However, in this case, the temperature of the dryer exhaust gas to be dust collected must be lowered to the heat resistance temperature of the bag filter 66a. Therefore, for example, the heat of the dryer exhaust gas may be recovered with a boiler.
 また、前記第2の実施形態では、燃料として乾燥汚泥を、燃焼用空気としてAQC50のクーラ排気を、それぞれ熱風発生炉22の燃焼バーナ22aに供給するようにしているが、乾燥汚泥及びクーラ排気のいずれか一方のみが燃焼バーナ22aに供給されてもよい。また、クーラ排気に代えて、クーラ排気で加熱された空気が燃焼用空気として燃焼バーナ22aへ供給されてもよい。 In the second embodiment, dry sludge is supplied as fuel and cooler exhaust of AQC50 as combustion air is supplied to the combustion burner 22a of the hot air generating furnace 22, respectively. Only one of them may be supplied to the combustion burner 22a. Further, instead of the cooler exhaust, air heated by the cooler exhaust may be supplied to the combustion burner 22a as combustion air.
 -セメントプラントの他の形態-
 さらにまた、セメントプラント200の構成についても前記の各実施形態に限定されることはなく、本発明にかかる汚泥処理設備は、例えば図3~6(変形例1~4)に示すような種々のセメントプラントにも適用できる。なお、以下に例示するセメントプラントは、それぞれ前記各実施形態のものと異なる点はあるものの、全体的な構成は同じなので、同じ符号200を付する。また、セメントプラント200を構成する装置や部材についても同一の場合は同一の符号を付して、その説明は省略する。
-Other forms of cement plant-
Furthermore, the configuration of the cement plant 200 is not limited to the above-described embodiments, and the sludge treatment facility according to the present invention includes, for example, various types as shown in FIGS. 3 to 6 (Modifications 1 to 4). It can also be applied to cement plants. In addition, although the cement plant illustrated below has a different point from the said each embodiment, respectively, since the whole structure is the same, the same code | symbol 200 is attached | subjected. Moreover, the same code | symbol is attached | subjected when it is the same about the apparatus and member which comprise the cement plant 200, The description is abbreviate | omitted.
 図3に示すセメントプラント200(変形例1)には、サスペンションプレヒータ30や仮焼炉35を循環する間にガス中の塩素分やアルカリ分が濃縮されることを防ぐために、バイパスライン67が設けられている。このバイパスライン67は、下端部が仮焼炉35の下部等に接続されてガスの一部を抽出し、この抽気ガスを冷却器67aで冷却した後にサイクロン67bに送ってダストを分級する。冷却器67aにはファン67cにより冷風が送られていて、抽気ガスを塩素化合物等の融点以下まで急冷することにより、抽気ガス中の塩素分あるいはアルカリ分を固体(ダスト)として分離する。 The cement plant 200 (Modification 1) shown in FIG. 3 is provided with a bypass line 67 in order to prevent the concentration of chlorine and alkali in the gas while circulating through the suspension preheater 30 and the calcining furnace 35. It has been. The lower end of the bypass line 67 is connected to the lower part of the calcining furnace 35 and the like, and a part of the gas is extracted. The extracted gas is cooled by the cooler 67a and then sent to the cyclone 67b to classify the dust. Cold air is sent to the cooler 67a by a fan 67c, and the extracted gas is rapidly cooled to the melting point or lower of a chlorine compound or the like, thereby separating the chlorine content or alkali content in the extracted gas as a solid (dust).
 そして、サイクロン67bにおいて抽気ガス中のダストが粗粉と微粉とに分級され、塩素分やアルカリ分が殆ど含まれていない粗粉は、サイクロン67bの下端から落下し、一部を省略して示す戻しライン67dによって仮焼炉35へと戻される。一方、塩素分やアルカリ分の濃度が高い微粉は、サイクロン67bから吸い出される抽気ガスに乗って排気ダクト67eから集塵機67fに流入し、集塵機67fにて捕集される。集塵機67fを通過した抽気ガスは、送風機67gを経て仮焼炉へ戻されるか、別の排ガス処理設備へ送られる。 The dust in the extracted gas is classified into coarse powder and fine powder in the cyclone 67b, and the coarse powder containing almost no chlorine or alkali is dropped from the lower end of the cyclone 67b, and a part thereof is omitted. It is returned to the calcining furnace 35 by a return line 67d. On the other hand, fine powder having a high concentration of chlorine and alkali is carried on the extraction gas sucked out from the cyclone 67b, flows into the dust collector 67f from the exhaust duct 67e, and is collected by the dust collector 67f. The extracted gas that has passed through the dust collector 67f is returned to the calcining furnace via the blower 67g or sent to another exhaust gas treatment facility.
 次に、図4に示すセメントプラント200(変形例2)では、サスペンションプレヒータ30が2系統に分かれていて、系統毎に一例として5段のサイクロン31を備えている。図の左側の系統には下段からキルン排気が吹き込まれるようになっており、仮焼炉35が設けられていないことを除けば、前記した第1、第2実施形態のサスペンションプレヒータ30と同じ構成である。 Next, in the cement plant 200 (Modification 2) shown in FIG. 4, the suspension preheater 30 is divided into two systems, and each system is provided with a five-stage cyclone 31 as an example. Except that the kiln exhaust gas is blown into the system on the left side of the figure from the lower stage and the calcining furnace 35 is not provided, the same configuration as the suspension preheater 30 of the first and second embodiments described above. It is.
 一方、図の右側の系統には仮焼炉35が設けられているが、ここにはキルン排気ではなく、AQC50からの高温のクーラ排気が流入している。クーラ排気は、前記の第1、第2実施形態におけるキルン排気と同様に仮焼炉35の下端に流入して、上方へと吹き上がっている(図には一点鎖線で示す)。このクーラ排気は仮焼炉35内に導入される汚泥の乾粉と混ざり合い、これを燃焼させながらセメント原料を吹き上げて、最下段のサイクロン31に至る。そして、一段ずつサイクロン31を上昇して最上段のサイクロン31から排気ライン60に流出する。 On the other hand, the calcining furnace 35 is provided in the system on the right side of the figure, but not the kiln exhaust but the high-temperature cooler exhaust from the AQC 50 flows into the system. The cooler exhaust flows into the lower end of the calcining furnace 35 and blows upward (indicated by a one-dot chain line in the figure) in the same manner as the kiln exhaust in the first and second embodiments. This cooler exhaust gas mixes with the dry powder of sludge introduced into the calcining furnace 35, blows up the cement raw material while burning it, and reaches the lowermost cyclone 31. Then, the cyclone 31 is raised step by step and flows out from the uppermost cyclone 31 to the exhaust line 60.
 また、図5に示すセメントプラント200(変形例3)においては仮焼炉の構造が第1、第2実施形態と異なっている。すなわち、仮焼炉70は、ロータリキルン40の窯尻に設けられた混合室71と、その下部に連通する旋回仮焼室72とを有し、この旋回仮焼室72には燃焼装置73が配設されていて、石炭、天然ガス、重油等の燃焼による高温の燃焼ガスを噴出している。図示のように旋回仮焼室72には、AQC50からの高温のクーラ排気(空気)が旋回流として導入されるとともに、最下段の一つ上のサイクロン31からは予熱されたセメント原料が供給される。 Further, in the cement plant 200 (Modification 3) shown in FIG. 5, the structure of the calciner is different from those of the first and second embodiments. That is, the calcining furnace 70 has a mixing chamber 71 provided at the bottom of the kiln 40 of the rotary kiln 40 and a swirling calcining chamber 72 communicating with the lower portion thereof. It is arranged and ejects high-temperature combustion gas from combustion of coal, natural gas, heavy oil and the like. As shown in the figure, the swirling calcining chamber 72 is supplied with the high-temperature cooler exhaust (air) from the AQC 50 as a swirling flow, and the preheated cement raw material is supplied from the cyclone 31 on the lowermost level. The
 そのセメント原料が燃焼装置73からの燃焼ガスを受けて仮焼されながら混合室71へと移動し、ここでは下方からのキルン排気の噴流によって上方に吹き上げられる。すなわち、混合室71ではキルン排気の流れにセメント原料を含んだ燃焼ガスの流れが合流し、両者が混じり合いながら上昇するようになる。この上昇流に乗って吹き上げられる間にセメント原料は十分に仮焼され、混合室71の最上部の出口からダクトを介して最下段のサイクロン31へと搬送される。なお、汚泥処理設備100から搬送されてくる乾粉は、例えばロータリキルン40の入り口から混合室71の出口までの間、或いは旋回仮焼室72と混合室71との間に導入すればよい。 The cement raw material moves to the mixing chamber 71 while being calcined by receiving the combustion gas from the combustion device 73, and is blown upward by a jet of kiln exhaust from below. That is, in the mixing chamber 71, the flow of the combustion gas containing the cement raw material is merged with the flow of the kiln exhaust gas, and the two flow upward while being mixed. The cement raw material is sufficiently calcined while being blown up on this upward flow, and is conveyed from the uppermost outlet of the mixing chamber 71 to the lowermost cyclone 31 through the duct. The dry powder conveyed from the sludge treatment facility 100 may be introduced, for example, between the rotary kiln 40 and the mixing chamber 71 or between the swirling calcining chamber 72 and the mixing chamber 71.
 さらに、図6に示すセメントプラント200(変形例4)においては仮焼炉が設けられておらず、ロータリキルン40の入り口に接続された立ち上がり管75が上方に向かって延びていて、その上端部がサスペンションプレヒータ30の最下段のサイクロン31に接続されている。この立ち上がり管75にセメント原料と汚泥の乾粉とがそれぞれ供給されて、キルン排気の噴流により吹き上げられる。乾粉は、キルン排気に含まれている酸素と反応して、立ち上がり管75及びサスペンションプレヒータ30の中で燃焼する。 Further, in the cement plant 200 (Modification 4) shown in FIG. 6, no calcining furnace is provided, and a rising pipe 75 connected to the entrance of the rotary kiln 40 extends upward, and an upper end portion thereof. Is connected to the lowermost cyclone 31 of the suspension preheater 30. The rising pipe 75 is supplied with cement raw material and sludge dry powder, respectively, and blown up by a jet of kiln exhaust. The dry powder reacts with oxygen contained in the kiln exhaust gas and burns in the riser 75 and the suspension preheater 30.
 その他、前記図3~6に示すものも含めて実施形態のセメントプラント200において、セメントの焼成炉はロータリキルン40に限定されず、例えば流動層キルンであってもよい。 In addition, in the cement plant 200 of the embodiment including those shown in FIGS. 3 to 6, the cement firing furnace is not limited to the rotary kiln 40, and may be a fluidized bed kiln, for example.
 本発明によると、セメントの製造プロセスに極力、悪い影響を及ぼすことなく、既存のセメント製造設備に隣設した汚泥処理設備において多量の脱水汚泥を処理することができるから、産業上の利用性は高い。 According to the present invention, a large amount of dewatered sludge can be treated in a sludge treatment facility adjacent to an existing cement production facility without adversely affecting the cement production process as much as possible. high.
100   汚泥処理設備
1     気流乾燥機(乾燥機)
3     乾燥汚泥搬送装置
4     乾燥機排ガス搬送装置
7     乾粉分配装置(乾燥汚泥供給装置)
8     クーラ排気ダクト
20    第1排ガスダクト(乾燥機排ガスの搬送路)
22    熱風発生炉(脱臭装置)
23    燃料供給装置
24    ファン(燃焼用空気供給装置)
25    第2排ガスダクト(乾燥機排ガスの搬送路)
26    熱交換器
27    循環ダクト(還流路)
200   セメントプラント(セメントの製造設備)
30    サスペンションプレヒータ(予熱器)
35    仮焼炉
40    ロータリキルン(焼成炉)
50    エアクエンチングクーラ(AQC)
65    セメント原料ミル
66    セメント原料ミルの排気処理装置
66a   バグフィルタ(集塵機)
 
100 Sludge treatment facility 1 Airflow dryer (dryer)
3 Dry sludge transfer device 4 Dryer exhaust gas transfer device 7 Dry powder distribution device (Dry sludge supply device)
8 Cooler exhaust duct 20 First exhaust gas duct (Dryer exhaust gas transport path)
22 Hot air generator (deodorization equipment)
23 Fuel Supply Device 24 Fan (Combustion Air Supply Device)
25 Second exhaust gas duct (conveying path for dryer exhaust gas)
26 Heat Exchanger 27 Circulation Duct (Reflux Path)
200 Cement plant (Cement production facility)
30 Suspension preheater (preheater)
35 Calcining furnace 40 Rotary kiln (firing furnace)
50 Air quenching cooler (AQC)
65 Cement raw material mill 66 Cement raw material mill exhaust treatment device 66a Bag filter (dust collector)

Claims (10)

  1.  仮焼炉、焼成炉、並びに、セメント原料ミル及びその排気路に設けられた集塵機を備えたセメント製造設備に隣設される汚泥処理設備であって、
     脱水汚泥を乾燥させる乾燥機と、
     前記乾燥機で乾燥させた汚泥(以下、乾燥汚泥)を、前記仮焼炉及び前記焼成炉の少なくとも一方に搬送する乾燥汚泥搬送装置と、
     前記乾燥機で発生した乾燥機排ガスを、前記集塵機に搬送する乾燥機排ガス搬送装置と、を備えている、汚泥処理設備。
    A calcining furnace, a firing furnace, and a cement raw material mill and a sludge treatment facility installed next to a cement production facility equipped with a dust collector provided in its exhaust path,
    A dryer for drying the dewatered sludge;
    A dried sludge conveying device that conveys the sludge dried by the dryer (hereinafter, dried sludge) to at least one of the calcining furnace and the calcining furnace;
    A sludge treatment facility, comprising: a dryer exhaust gas transport device that transports a dryer exhaust gas generated in the dryer to the dust collector.
  2.  前記乾燥機から前記集塵機へ至る前記乾燥機排ガスの搬送路に、脱臭装置を更に備えており、
     前記脱臭装置が、前記乾燥機排ガスを所定の温度以上に加熱することにより、前記乾燥機排ガスを脱臭するように構成されている、請求項1に記載の汚泥処理設備。
    The transport path of the dryer exhaust gas from the dryer to the dust collector further includes a deodorizing device,
    The sludge treatment facility according to claim 1, wherein the deodorizer is configured to deodorize the dryer exhaust gas by heating the dryer exhaust gas to a predetermined temperature or higher.
  3.  前記脱臭装置が、炉内で燃料を燃焼させて前記乾燥機排ガスを加熱する熱風発生炉である、請求項2に記載の汚泥処理設備。 The sludge treatment facility according to claim 2, wherein the deodorizing device is a hot air generating furnace that heats the dryer exhaust gas by burning fuel in the furnace.
  4.  前記乾燥機が、前記脱臭装置から排出された加熱後の前記乾燥機排ガスにより加熱された乾燥用ガスで前記脱水汚泥を乾燥させるように構成されている、請求項2又は3に記載の汚泥処理設備。 The sludge treatment according to claim 2 or 3, wherein the dryer is configured to dry the dehydrated sludge with a drying gas heated by the dryer exhaust gas discharged from the deodorizing apparatus. Facility.
  5.  前記乾燥機から前記脱臭装置までの前記乾燥機排ガスの搬送路から分岐して、前記乾燥機排ガスの一部を前記乾燥用ガスとして前記乾燥機へ送る還流路と、
     前記脱臭装置から排出された加熱後の前記乾燥機排ガスと前記還流路を流れる前記乾燥機排ガスとを熱交換させる熱交換器とを、備えている請求項2~4のいずれか一項に記載の汚泥処理設備。
    A reflux path that branches from the dryer exhaust gas transport path from the dryer to the deodorizer and sends a part of the dryer exhaust gas as the drying gas to the dryer;
    The heat exchanger for exchanging heat between the heated exhaust gas discharged from the deodorizing apparatus and the exhaust gas flowing through the reflux path is provided. Sludge treatment equipment.
  6.  前記乾燥機で乾燥させた乾燥汚泥の一部又は全部を、前記脱臭装置へ燃料として供給する燃料供給装置を備えている、請求項2~5のいずれかに記載の汚泥処理設備。 The sludge treatment facility according to any one of claims 2 to 5, further comprising a fuel supply device that supplies part or all of the dried sludge dried by the dryer as fuel to the deodorization device.
  7.  前記セメント製造設備が、前記焼成炉で焼成されたセメント焼成物を冷却するクーラを備えており、
     前記クーラの排気又は前記クーラの排気で加熱された空気を燃焼用空気として前記脱臭装置へ供給する燃焼用空気供給装置を備えている、請求項2~6のいずれか一項に記載の汚泥処理設備。
    The cement manufacturing facility includes a cooler for cooling the cement fired product fired in the firing furnace;
    The sludge treatment according to any one of claims 2 to 6, further comprising a combustion air supply device that supplies the air discharged from the cooler or air heated by the cooler exhaust as combustion air to the deodorization device. Facility.
  8.  セメント製造設備及び汚泥処理設備で行われる汚泥処理の方法であって、
     前記汚泥処理設備の乾燥機で汚泥を乾燥させることと、
     乾燥した汚泥(以下、乾燥汚泥)を、前記セメント製造設備の仮焼炉及び焼成炉の少なくとも一方に搬送することと、
     前記乾燥機で生じた乾燥機排ガスを、前記セメント製造設備のセメント原料ミルの排気路に設けられた集塵機へ搬送し、当該集塵機で前記乾燥機排ガスから乾燥汚泥の粉塵を取り除くことと、を含む方法。
    A method of sludge treatment performed in a cement production facility and a sludge treatment facility,
    Drying the sludge with a dryer of the sludge treatment facility;
    Conveying the dried sludge (hereinafter, dried sludge) to at least one of the calcining furnace and the firing furnace of the cement manufacturing facility;
    Transporting the dryer exhaust gas generated in the dryer to a dust collector provided in an exhaust passage of a cement raw material mill of the cement manufacturing facility, and removing dust of dried sludge from the dryer exhaust gas with the dust collector. Method.
  9.  前記乾燥機排ガスを前記集塵機へ搬送する前に加熱して脱臭することを、更に含む請求項8に記載の方法。 The method according to claim 8, further comprising heating and deodorizing the dryer exhaust gas before conveying it to the dust collector.
  10.  前記乾燥機排ガスの一部を脱臭せずに前記乾燥機へ戻すことと、
     前記乾燥機へ戻される前記乾燥機排ガスを、加熱して脱臭された前記乾燥機排ガスを熱源として加熱することとを、更に含む請求項9に記載の方法。
     
    Returning a portion of the dryer exhaust gas to the dryer without deodorizing;
    The method according to claim 9, further comprising heating the dryer exhaust gas returned to the dryer using the dryer exhaust gas deodorized by heating as a heat source.
PCT/JP2013/004793 2012-08-08 2013-08-08 Sludge treatment facility and treatment method WO2014024498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380040833.4A CN104507878B (en) 2012-08-08 2013-08-08 Sludge treatment device and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-176475 2012-08-08
JP2012176475A JP6018458B2 (en) 2012-08-08 2012-08-08 Sludge treatment equipment and treatment method

Publications (1)

Publication Number Publication Date
WO2014024498A1 true WO2014024498A1 (en) 2014-02-13

Family

ID=50067748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004793 WO2014024498A1 (en) 2012-08-08 2013-08-08 Sludge treatment facility and treatment method

Country Status (2)

Country Link
JP (1) JP6018458B2 (en)
WO (1) WO2014024498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108640544A (en) * 2018-06-05 2018-10-12 广州机械设计研究所 A kind of system of multithreading waste-material-preparing cement
WO2019193671A1 (en) * 2018-04-04 2019-10-10 太平洋エンジニアリング株式会社 Apparatus and method for treating organic sludge
CN111924921A (en) * 2020-09-17 2020-11-13 成都建筑材料工业设计研究院有限公司 System and method for realizing cement production and seawater desalination in coastal region in combined manner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6359902B2 (en) * 2014-07-17 2018-07-18 初雁興業株式会社 Firewood system
JP6413894B2 (en) * 2015-03-31 2018-10-31 住友大阪セメント株式会社 Method and apparatus for producing solid fuel for cement firing
JP6565097B2 (en) * 2015-06-18 2019-08-28 月島機械株式会社 Organic waste processing apparatus and processing method
CN111417599A (en) * 2018-01-18 2020-07-14 川崎重工业株式会社 Sludge treatment method and cement production system
JP6678263B2 (en) * 2019-02-15 2020-04-08 月島機械株式会社 Organic waste treatment apparatus and treatment method
WO2023105709A1 (en) * 2021-12-09 2023-06-15 太平洋エンジニアリング株式会社 Burning device for cement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280898A (en) * 1989-04-21 1990-11-16 Kawasaki Heavy Ind Ltd Method and apparatus for melting pretreatment of sludge
JPH11116291A (en) * 1997-10-14 1999-04-27 Tokuyama Corp Production of cement
JP2001334296A (en) * 2000-05-26 2001-12-04 Sanyo Kako Kk Method and apparatus for treating organic waste
JP2002273492A (en) * 2001-03-22 2002-09-24 Kawasaki Heavy Ind Ltd Sludge treatment method and equipment therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4987428B2 (en) * 2006-11-06 2012-07-25 住友大阪セメント株式会社 High moisture content organic waste treatment method and treatment equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280898A (en) * 1989-04-21 1990-11-16 Kawasaki Heavy Ind Ltd Method and apparatus for melting pretreatment of sludge
JPH11116291A (en) * 1997-10-14 1999-04-27 Tokuyama Corp Production of cement
JP2001334296A (en) * 2000-05-26 2001-12-04 Sanyo Kako Kk Method and apparatus for treating organic waste
JP2002273492A (en) * 2001-03-22 2002-09-24 Kawasaki Heavy Ind Ltd Sludge treatment method and equipment therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193671A1 (en) * 2018-04-04 2019-10-10 太平洋エンジニアリング株式会社 Apparatus and method for treating organic sludge
US11591246B2 (en) 2018-04-04 2023-02-28 Taiheiyo Engineering Corporation Organic sludge treatment device and treatment method
CN108640544A (en) * 2018-06-05 2018-10-12 广州机械设计研究所 A kind of system of multithreading waste-material-preparing cement
CN111924921A (en) * 2020-09-17 2020-11-13 成都建筑材料工业设计研究院有限公司 System and method for realizing cement production and seawater desalination in coastal region in combined manner

Also Published As

Publication number Publication date
JP6018458B2 (en) 2016-11-02
JP2014033997A (en) 2014-02-24
CN104507878A (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2014024498A1 (en) Sludge treatment facility and treatment method
CN101528614B (en) Method of disposing of organic waste of high water content and disposal apparatus therefor
KR101428831B1 (en) Plant and method for dry extracting / cooling heavy ashes and for controlling the combustion of high unburnt content residues
JPS5911545B2 (en) Portland cement production and waste utilization
WO2008001747A1 (en) Cement burning apparatus and method of drying highly hydrous organic waste
JP5048573B2 (en) Sludge treatment method and treatment system
JP6083864B2 (en) Organic waste drying system
JP2008280244A (en) Method of processing organic based waste
TWI722316B (en) Sludge treatment method and cement manufacturing system
JP2006035189A (en) Method for treating organic sludge utilizing cement production process
JP2010167369A (en) System and method for drying water-containing organic waste
JP2010214319A (en) Apparatus and method of drying water-containing organic sludge
TWI826700B (en) Sludge treatment method and cement manufacturing system
CN102452803B (en) Waste treatment equipment
JP5425958B2 (en) Sludge treatment method and treatment system
JP3782425B2 (en) Method and system for drying and deodorizing organic sludge
CN109563991B (en) Staged combustion
JP2008207160A (en) Method and device for processing inorganic waste with high water content
WO2023026370A1 (en) Sludge incineration system and sludge incineration method
CN104507878B (en) Sludge treatment device and processing method
WO2014150695A1 (en) Using kiln waste heat to reduce moisture content of class a biosolids and other biomass fuels
RU2716656C1 (en) Boiler unit
JP5704562B2 (en) Transporting dehydrated cake
JP2010194381A (en) System and method of drying water-containing organic waste
JPH11294960A (en) Waste treatment device for cement calcination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827626

Country of ref document: EP

Kind code of ref document: A1