WO2014024487A1 - Energy conversion device - Google Patents

Energy conversion device Download PDF

Info

Publication number
WO2014024487A1
WO2014024487A1 PCT/JP2013/004772 JP2013004772W WO2014024487A1 WO 2014024487 A1 WO2014024487 A1 WO 2014024487A1 JP 2013004772 W JP2013004772 W JP 2013004772W WO 2014024487 A1 WO2014024487 A1 WO 2014024487A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
elastic body
energy conversion
block
rectifier circuit
Prior art date
Application number
PCT/JP2013/004772
Other languages
French (fr)
Japanese (ja)
Inventor
建太朗 野村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014024487A1 publication Critical patent/WO2014024487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • H02M7/106With physical arrangement details

Definitions

  • the present invention relates to an energy conversion device.
  • Document 1 describes a power generation device 100 configured as shown in FIGS. 25 to 27 as an energy conversion device.
  • the power generation device 100 includes a support body 110 provided with a storage portion 110a, and a permanent magnet 120 and a coil spring 130 disposed in the storage portion 110a.
  • the support 110 is composed of three printed boards 111-113.
  • a storage portion 110 a is formed by a rectangular opening 112 a of the printed circuit board 112 disposed between the two printed circuit boards 111 and 113.
  • planar coils 114a and 114b are formed on the lower surface of the printed circuit board 113. As shown in FIG. 27, the planar coils 114a and 114b are arranged in a checkered pattern when viewed from the lower surface side. Each of the planar coils 114a and 114b is formed in a spiral shape. The planar coils 114a and 114b are formed so that the winding directions are opposite to each other.
  • an opening 113a is formed in a region corresponding to the central portion of the planar coils 114a and 114b.
  • a magnetic core (core) 115 made of Fe, Co, or the like is embedded in the opening 113a.
  • the magnetic core 115 is formed so as to protrude from the lower surface of the printed circuit board 113, and is disposed in the center of the planar coils 114a and 114b.
  • the permanent magnet 120 is disposed inside the storage portion 110a so as to be movable in the arrow X1 direction (arrow X2 direction). Further, as shown in FIG. 26, the permanent magnet 120 is restricted from moving in the direction of the arrow Y1 (the direction of the arrow Y2).
  • the permanent magnet 120 is formed in a plate shape and is disposed to face the planar coils 114a and 114b with a predetermined interval.
  • the permanent magnet 120 includes a portion (magnetic domain) 120a whose magnetization direction is the arrow Z1 direction and a portion 120b whose magnetization direction is the arrow Z2 direction, and is configured as a multipolar magnet.
  • a magnetic field represented by magnetic lines indicated by broken lines in FIG. 25 is formed in the vicinity of the printed circuit board 113.
  • the portions 120a and 120b are arranged in a state of being alternately adjacent (checkered pattern) as viewed in a plan view.
  • the portion 120a is disposed in the region corresponding to the planar coil 114a
  • the portion 120b is disposed in the region corresponding to the planar coil 114b. Has been placed.
  • the coil spring 130 is disposed between the side surface 112b of the opening 112a and the end 120c of the permanent magnet 120, and the side surface 112c of the opening 112a and the end of the permanent magnet 120. 120d.
  • the pair of coil springs 130 has a function of urging the support 110 so that the permanent magnet 120 is disposed at a predetermined reference position in the arrow X1 direction (arrow X2 direction).
  • the coil spring 130 that biases the permanent magnet 120 so as to be disposed at a predetermined reference position is provided, so that when the force is applied to the power generation apparatus 100, the permanent magnet 120 is easily supported.
  • the body 110 can be vibrated.
  • the power generation apparatus 100 is provided with a circuit unit 116 on the upper surface of the printed circuit board 113 for controlling and outputting the induced electromotive force generated in the planar coils 114a and 114b.
  • the planar coil 114a When force is applied to the power generation apparatus 100, when the permanent magnet 120 moves in the arrow X1 direction with respect to the support 110, the planar coil 114a generates an induced current in the arrow A direction by electromagnetic induction as shown in FIG. In the planar coil 114b, an induced current in the direction of arrow B is generated by electromagnetic induction as shown in FIG. Therefore, an induced current in the C direction is supplied to the circuit unit 116 as shown in FIG. Further, when the permanent magnet 120 moves in the direction of the arrow X2 with respect to the support 110, the planar coil 114a generates an induced current in the direction of arrow B by electromagnetic induction, and the planar coil 114b generates in the direction of the arrow A by electromagnetic induction. An induced current is generated. For this reason, the induced current in the direction opposite to the C direction is supplied to the circuit unit 116.
  • Document 2 describes a wireless switch equipped with an electromagnetic induction type power generator (power generator).
  • a multipole magnet 202 a multilayer printed circuit board 206 including a conductor 204 that generates a dielectric current by electromagnetic induction, a suspension sheet ( A power generator including a suspension sheet 200 is described.
  • the suspension seat 200 is coupled to four flexures 208 to form a spring-massstructure. Note that an arrow 210 in FIG. 28 indicates the vibration direction of the suspension seat 200.
  • Document 2 describes the structure shown in FIG.
  • This structure includes a substrate 1202, a proof mass 1208 floated from the substrate 1202 by two suspensions 1210, two suspensions 1210, and a rotary dial ( rotary dial) 1200.
  • This structure also includes a multi-lobed cam 1204 that rotates when the rotary dial 1200 rotates, and a follower 1206 that is pushed by the multi-leaf cam 1204.
  • the follower 1206 is coupled to the proof mass 1208.
  • the suspension 1210 is coupled to the follower 1206 and the proof mass 1208 at the central portion 1212.
  • the suspension 1210 has an end 1214 coupled to the substrate 1202.
  • the multi-leaf cam 1204 displaces the follower 1206 and operates the proof mass 1208 after the displacement. This structure thus allows the proof mass 1208 to be actuated using the rotary dial 1200.
  • Document 2 describes a power management circuit 700 as shown in FIG.
  • the power management circuit 700 includes a diode rectifier 702, a capacitor 704, a DC-DC converter 706, a battery 708, and an electronic load 710.
  • the permanent magnet 120 and the planar coils 114a and 114b are disposed to face each other with a gap in the thickness direction of the support 110. Further, the power generation apparatus 100 is biased by the pair of coil springs 130 so that the permanent magnet 120 is disposed at a predetermined reference position in the arrow X1 direction (arrow X2 direction) with respect to the support 110. However, in such a power generation device 100, it is assumed that the intermediate portion of the coil spring 130 can be displaced in the direction of the arrow Z1.
  • the electric power generating apparatus 100 there exists a possibility that the above-mentioned space
  • the power generation device 100 described above restricts the movement of the permanent magnet 120 in the direction of the arrow Y1 (the direction of the arrow Y2) when the side surface 112b of the opening 112a of the printed circuit board 112 is in contact with the permanent magnet 120. Is done. However, in such a case, it is considered that when the permanent magnet 120 vibrates in the direction of the arrow X1 (the direction of the arrow X2), sliding resistance is generated and power generation efficiency is reduced.
  • the proof mass 1208 can be operated using the rotary dial 1200 as described above.
  • the proof mass 1208 of the power generator dampens and vibrates, so that the output voltage attenuates over time, while the voltage at the two diodes D1, D4 or D2, D3 of the diode rectifier 702 Loss (forward voltage drop) occurs.
  • the input voltage of the DC-DC converter 706 becomes too low.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an energy conversion device that can be operated by displacing a movable part and that can improve energy conversion efficiency. It is to provide.
  • the energy conversion device includes a vibration power generation device and a rectifier circuit.
  • the vibration power generator includes a magnet block and a coil block facing each other in a facing direction, and outputs an alternating voltage by electromagnetic induction caused by relative displacement of the coil block with respect to the magnet block in a specified direction orthogonal to the facing direction.
  • the rectifier circuit is configured to rectify and output the AC voltage output from the vibration power generator.
  • the vibration power generation apparatus includes a movable portion including one of the magnet block and the coil block, a support portion on which the movable portion is disposed inside, and a plurality of elastic body portions that connect the movable portion to the support portion. And comprising.
  • the plurality of elastic body portions are arranged side by side along a direction orthogonal to the prescribed direction on each of both sides of the movable portion in the prescribed direction.
  • Each of the plurality of elastic body portions is configured to be easily deformed in the prescribed direction from a direction orthogonal to the prescribed direction.
  • the rectifier circuit is a voltage doubler rectifier circuit in which different capacitors are charged depending on whether the polarity of the AC voltage output from the vibration power generator is positive or negative.
  • the elastic body portion is a spring.
  • the voltage doubler rectifier circuit is a double wave voltage doubler rectifier circuit.
  • the voltage doubler rectifier circuit is a Cockcroft-Walton circuit.
  • a DC-DC converter that converts the voltage output from the rectifier circuit to a constant voltage is provided.
  • FIG. 1 is a circuit diagram of an energy conversion device according to Embodiment 1.
  • FIG. It is a schematic sectional drawing of the vibration electric power generating apparatus in the energy converter of Embodiment 1. It is a principal part schematic plan view of the energy converter of Embodiment 1.
  • FIG. It is a principal part enlarged view of the vibration electric power generating apparatus in the energy converter of Embodiment 1.
  • 1 is a schematic perspective view of a vibration power generation device in an energy conversion device according to Embodiment 1.
  • FIG. 1 is a schematic exploded perspective view of a vibration power generator in an energy conversion device according to a first embodiment.
  • FIG. 3 is an operation explanatory diagram of the vibration power generation device in the energy conversion device of the first embodiment.
  • FIG. 3 is an operation explanatory diagram of the vibration power generation device in the energy conversion device of the first embodiment. It is a wave form diagram of the output voltage of the vibration power generator in the energy converter of Embodiment 1. It is operation
  • FIG. It is operation
  • FIG. It is a circuit diagram which shows the other structural example of the rectifier circuit in the energy converter of Embodiment 1. It is a circuit diagram which shows another structural example of the rectifier circuit in the energy converter of Embodiment 1. It is a circuit diagram which shows the other structural example of the energy conversion apparatus of Embodiment 1. It is a circuit diagram of the energy conversion device of Embodiment 2.
  • FIG. 5 is a schematic exploded perspective view of a vibration power generator in the energy conversion device according to the second embodiment.
  • FIG. It is operation
  • FIG. It is operation
  • FIG. It is operation
  • FIG. It is operation
  • FIG. It is sectional drawing which showed the structure of the power generator of a prior art example. It is a top view for demonstrating the structure of the electric power generating apparatus shown in FIG. It is a figure for demonstrating the structure of the electric power generating apparatus shown in FIG. It is a general
  • the energy conversion device 1 includes an electromagnetic induction type vibration power generation device EH and a rectifier circuit 71.
  • the vibration power generator EH includes a magnet block 3 and a coil block 4 that face each other in the facing direction, and an AC voltage (by an electromagnetic induction caused by relative displacement of the coil block 4 with respect to the magnet block 3 in a specified direction orthogonal to the facing direction.
  • the power generation voltage is output.
  • the vibration power generation apparatus EH includes a movable portion 12, a support portion 14 on which the movable portion 12 is disposed, and a plurality of elastic body portions 15 that couple the movable portion 12 to the support portion 14.
  • One of the magnet block 3 and the coil block 4 is attached to the movable part 12, and the other of the magnet block 3 and the coil block 4 is attached to the support part 14 (directly or indirectly).
  • the magnet block 3 is attached to the movable portion 12, and the coil block 4 is attached to the support portion 14 using the first cap 21 and the second cap 31.
  • the vibration power generation device EH includes a magnet block 3 including a magnet 2 and a coil block 4 including a coil 4a, and the magnet block 3 and the coil block 4 are disposed to face each other.
  • This vibration power generation device EH converts kinetic energy into electrical energy by electromagnetic induction generated when the magnet block 3 and the coil block 4 are relatively displaced in a specified direction orthogonal to the opposing direction.
  • the up-down direction in FIG. 2 is the facing direction
  • the left-right direction in FIG. 2 is the specified direction.
  • the vibration power generation apparatus EH can operate the movable part 12 including the magnet block 3 from the outside to dampen and vibrate the movable part 12. That is, the vibration power generation apparatus EH outputs an alternating voltage by electromagnetic induction generated with vibration (damped vibration) in the specified direction of the movable portion 12.
  • the vibration power generation device EH includes a movable portion 12, a support portion 14, and an elastic body portion 15 that connects the movable portion 12 and the support portion 14.
  • the elastic body portion 15 connects the movable portion 12 and the support portion 14 in the prescribed direction. Thereby, in the vibration power generator EH, the movable portion 12 can vibrate in the specified direction.
  • the elastic body portion 15 has a smaller rigidity in the specified direction than that in a direction orthogonal to the specified direction. That is, the elastic body portion 15 is configured to be easily deformed in the specified direction from the direction orthogonal to the specified direction. Thereby, the energy conversion device 1 can make the vibration direction of the movable part 12 unidirectional in the specified direction.
  • the vibration power generation apparatus EH includes the vibration block 11 having the above-described movable portion 12, the support portion 14, and each elastic body portion 15.
  • the vibration block 11 assumes orthogonal coordinates with the center of gravity of the movable part 12 as the origin, determines the positive direction of the x axis along the prescribed direction, and is orthogonal to the prescribed direction in plan view of the vibration block 11. If the positive direction of the y-axis is determined along the direction, and the positive direction of the z-axis orthogonal to the prescribed direction is determined along the thickness direction of the movable part 12, the vibration direction of the movable part 12 is simply set in the positive / negative direction of the x-axis. It becomes possible to make the direction, and vibration components in the positive and negative directions of the y axis and the positive and negative directions of the z axis can be suppressed.
  • the vibration direction of the movable portion 12 is unidirectional in the left-right direction, which is the prescribed direction, as shown in FIG. 3, and the vertical direction in FIG. 3 and the thickness direction of the movable portion 12 (in FIG. Vibration in the direction perpendicular to the paper surface) is suppressed. Therefore, the vibration power generation apparatus EH can suppress the generation of unnecessary vibration components, and can improve the energy conversion efficiency.
  • the vibration power generation device EH includes a first cap 21 disposed on one surface side in the thickness direction of the vibration block 11 (upper surface side in FIG. 2), and a thickness direction of the vibration block 11. And a second cap 31 disposed on the other surface side (the lower surface side in FIG. 2).
  • the vibration power generator EH the above-described coil block 4 is held in each of the first cap 21 and the second cap 31.
  • the vibration power generator EH includes a first spacer 41 disposed between the first cap 21 and the vibration block 11 and a second spacer 42 disposed between the second cap 31 and the vibration block 11. I have.
  • the rectifier circuit 71 rectifies the AC voltage output from the vibration power generator EH.
  • the rectifier circuit 71 is a voltage doubler rectifier circuit in which different capacitors (here, capacitors C11 and C12) are charged depending on whether the polarity of the AC voltage output from the vibration power generator EH is positive or negative. That is, the rectifier circuit 71 is a voltage doubler rectifier circuit that outputs a voltage that is an integral multiple of the peak value of the AC voltage of the vibration power generator EH.
  • the rectifier circuit 71 includes a first capacitor circuit (capacitor C11) that is charged when the polarity of the AC voltage of the vibration power generator EH is positive, and the polarity of the AC voltage of the vibration power generator EH is negative.
  • a second capacitance circuit (capacitor C12) that is sometimes charged, and outputs a total voltage of the first capacitance circuit and the second capacitance circuit.
  • the rectifier circuit 71 in the present embodiment is a double-wave voltage doubler rectifier circuit.
  • the capacitor C11 is changed. It becomes possible to charge.
  • the rectifier circuit 71 in the present embodiment can charge the capacitor C12 when the polarity of the AC voltage output from the vibration power generator EH is negative by the combination of the diode D12 and the capacitor C12.
  • the vibration block 11 has a frame shape in plan view of the support portion 14.
  • the movable portion main body 13 is disposed inside the support portion 14.
  • the movable portion main body 13 is disposed away from the inner surface of the support portion 14.
  • the vibration block 11 has elastic body portions 15 disposed on both sides of the movable portion main body 13 in the specified direction.
  • the vibration block 11 has a frame shape in plan view of the movable part main body 13, and the magnet block 3 is disposed inside the movable part main body 13.
  • the magnet block 3 is fixed to the movable part main body 13.
  • the inner peripheral shape of the movable part main body 13 is a rectangular shape.
  • the outer peripheral shape of the magnet block 3 is a rectangular shape slightly smaller than the inner peripheral shape of the movable part main body 13.
  • a method of fixing the magnet block 3 to the movable part main body 13 for example, a method of fixing with an adhesive can be employed. In this case, a bonding portion made of an adhesive is interposed between the outer peripheral surface of the magnet block 3 and the inner surface of the movable portion main body 13.
  • the method of fixing the magnet block 3 to the movable part main body 13 is not limited to this, and for example, a method of fixing by pressing another member into the gap between the magnet block 3 and the movable part main body 13 is adopted. Can do.
  • the method of fixing the magnet block 3 to the movable part main body 13 can also employ
  • the planar view shape of the movable part 12 composed of the movable part main body 13 and the magnet block 3 is an octagonal shape.
  • the planar view shape of the movable part 12 is not limited to the octagonal shape, and may be a rectangular shape, for example.
  • the outer peripheral shape and the inner peripheral shape of the movable portion main body 13 may be rectangular shapes having different sizes.
  • the planar view shape of the movable part 12 is good also as circular shape and a regular polygon shape, for example.
  • the magnet block 3 includes a plurality of (for example, four) magnets 2 (2A, 2B, 2C, 2D), and the plurality of magnets 2 are arranged side by side in the prescribed direction.
  • the four magnets 2A, 2B, 2C, 2D are arranged in this order along the prescribed direction. That is, the magnet block 3 has a plurality of magnets 2 arranged in an array.
  • the magnet 2 is preferably composed of a permanent magnet.
  • a material for the permanent magnet for example, neodymium (NdFeB), samarium cobalt (SmCo), alnico (Al—Ni—Co), ferrite, or the like can be employed.
  • the magnet 2 is formed in a strip shape.
  • the magnet 2 is magnetized so that one surface side in the thickness direction is an N pole and the other surface side is an S pole.
  • the permanent magnet constituting the magnet 2 can be formed by, for example, shaping a magnet material by cutting, polishing, etc., and then magnetizing it by a pulse magnetization method or the like.
  • the plurality of magnets 2 are arranged so that the width direction of each magnet 2 coincides with the specified direction.
  • a plurality of magnets 2 are arranged so that N poles and S poles are alternately arranged in the prescribed direction on both sides in the thickness direction of the magnet block 3.
  • the magnets 2A and 2C are N poles
  • the magnets 2B and 2D are S poles.
  • the magnetization directions of the magnets 2 adjacent to each other in the prescribed direction are reversed.
  • the magnet block 3 has a plurality of magnets 2 arranged in a one-dimensional array.
  • the present invention is not limited to this.
  • the magnet block 3 may be arranged in a two-dimensional array.
  • the vibration block 11 can form the movable part main body 13, the support part 14, and each elastic body part 15 from the substrate 10, for example.
  • the substrate 10 is preferably an insulating substrate having a low attenuation with respect to the lines of magnetic force and having an electrical insulating property.
  • a silicon substrate having a high resistivity can be used.
  • the material of the movable part main body 13, the support part 14, and each elastic body part 15 is silicon.
  • Such a vibration block 11 can be manufactured by using, for example, a manufacturing technology of MEMS (micro electro mechanical systems).
  • MEMS micro electro mechanical systems
  • the vibration block 11 in the vibration block 11, the movable part main body 13, the support part 14, and each elastic body part 15 can be formed integrally.
  • the vibration block 11 can be configured such that the movable portion main body 13, the support portion 14, and the elastic body portions 15 are integrally formed from a single silicon substrate.
  • each elastic body portion 15 and the movable portion main body 13 and the support portion 14 are connected by a connecting portion made of an adhesive resin, vibration energy is lost as thermal energy at the connecting portion during vibration.
  • each elastic body 15, the movable body 13, and the support 14. are integrally formed of silicon, which is a low-damping material, so that energy loss during vibration can be reduced and energy conversion efficiency can be improved.
  • the high resistivity silicon substrate preferably has a resistivity of 100 ⁇ cm or more, and more preferably 1000 ⁇ cm or more.
  • the substrate 10 is not limited to a high resistivity silicon substrate, and for example, a high resistivity SOI (Silicon On Insulator) substrate can be used.
  • the vibration block 11 may be provided with an appropriate insulating film according to the material and resistivity of the substrate 10.
  • the elastic body portion 15 is preferably a spring. That is, the elastic body portion 15 is formed in a spring shape. As a result, the vibration power generation apparatus EH can increase the stored energy per elastic body portion 15, and the vibration power generation apparatus EH can be reduced in size.
  • a plurality of (for example, five) elastic body portions 15 are provided side by side on both sides of the movable portion 12 in the prescribed direction. That is, the plurality of elastic body portions 15 are arranged side by side along a direction orthogonal to the prescribed direction on each side of the movable portion 12 in the prescribed direction.
  • the vibration power generator EH can further unidirectionally change the vibration direction of the movable portion 12 as compared with the case where one elastic body portion 15 is provided on each of both sides of the movable portion 12. It becomes possible to further improve the energy conversion efficiency. Furthermore, the vibration power generator EH can reduce the stress applied to each elastic body portion 15 and can improve durability.
  • the number of elastic body portions 15 on both sides of the movable portion 12 is not particularly limited to five.
  • the material of the spring constituting the elastic body portion 15 may be silicon or metal which is a semiconductor, but is preferably silicon rather than metal. As a result, the energy conversion device 1 can reduce the loss of kinetic energy due to vibration damping in the elastic body portion 15 as compared with the case where the spring material constituting the elastic body portion 15 is a metal. Therefore, the energy conversion efficiency can be improved.
  • the material of the elastic body portion 15 is not limited to silicon, and for example, stainless steel (for example, SUS304), steel, copper, copper alloy (brass, beryllium copper), Ti alloy, Al alloy, or the like can be employed.
  • the material of the elastic body portion 15 is preferably a material having a low logarithmic attenuation rate, for example, a material having a logarithmic attenuation rate of 0.04 or less.
  • the vibration power generation apparatus EH if the spring material constituting the elastic body portion 15 is silicon, it is possible to improve the durability of the elastic body portion 15 as compared with the case where it is a metal. Further, the vibration power generation apparatus EH employs a silicon substrate as the above-described substrate 10 because the material of the spring constituting the elastic body portion 15 is silicon, and each of the substrates 10 utilizes a manufacturing technique such as MEMS. It becomes possible to form each elastic body part 15 which consists of a part of. Thereby, the vibration power generator EH can increase the aspect ratio represented by the ratio of the width dimension H1 (see FIG. 2) to the thickness dimension W1 (see FIG. 4) in the elastic body portion 15 in the shape of a spring. Become.
  • the thickness dimension W1 of the spring-shaped elastic body portion 15 can be controlled with high accuracy by performing bulk micromachining of the substrate 10 using lithography technology and etching technology. It becomes possible, and the width dimension H1 of the spring-shaped elastic body portion 15 can be set to the same value as the thickness of the substrate 10. Therefore, the spring-shaped elastic body portion 15 having a large aspect ratio is formed with high dimensional accuracy. It becomes possible.
  • the shape of the elastic body portion 15 is a spiral spring shape, and the thickness dimension W1 of the spring-shaped elastic body portion 15 is set to 0. .4 mm and the width dimension H1 is 1 mm.
  • the aspect ratio is 2.5.
  • the rigidity in the x-axis direction is about 2754 N / m
  • the rigidity in the y-axis direction is about 3267 N / m
  • the rigidity in the z-axis direction is about 3146 N / m. That is, the rigidity in the specified direction is smaller than the rigidity in the direction orthogonal to the specified direction.
  • the number of folded portions is increased by two, and the interval between adjacent portions is set to W3, x-axis.
  • the length of the entire elastic body portion 15 in the direction is defined as X11
  • the length of the entire elastic body portion 15 in the y-axis direction is defined as Y11
  • W3 0.12 mm
  • X11 7 mm
  • Y11 7 mm. is there.
  • the spring constant can be calculated by measuring the displacement when a force in each of the axial direction and the z-axis direction is applied.
  • the vibration power generator EH when a plurality of elastic body portions 15 are provided side by side on both sides of the movable portion 12 in the prescribed direction, all the materials of the plurality of elastic body portions 15 are made of silicon. It can be.
  • at least one material of the plurality of elastic body portions 15 may be silicon, and the material of the other elastic body portions 15 may be metal.
  • the shape of the spring constituting the elastic body portion 15 is, for example, a folded shape.
  • the shape of the elastic body portion 15 formed in a U shape without a corner in the folded portion in the plan view shape is more than the shape formed in a U shape having a corner in the folded portion in the plan view shape.
  • the vibration power generation apparatus EH can suppress the occurrence of breakage or cracks due to stress concentration at the folded portion of the elastic body portion 15 by adopting a shape without a corner at the folded portion of the elastic body portion 15. It becomes.
  • the zigzag-shaped elastic body portion 15 may have a shape in which the thickness dimension of the folded portion is larger than the thickness dimension of other portions in plan view, and is caused by stress concentration at the folded portion of the elastic body portion 15. It is possible to suppress the occurrence of breakage and cracks.
  • the zigzag elastic body portion 15 may have a shape in which the distance between the folded portions is gradually shortened in a plan view.
  • the elastic body portion 15 is not limited to a zigzag shape as long as it has a meandering shape in plan view, and may be, for example, a wave shape (sinusoidal shape in plan view).
  • the shape of the spring constituting the elastic body portion 15 is not limited to a meandering shape such as a zigzag shape or a wave shape, but may be another shape.
  • the thickness dimension of the movable part main body 13 is set to be the same as the thickness dimension of each elastic body part 15, the thickness is not limited to this, and the thickness of each elastic body part 15 is determined based on the desired mass of the movable part 12. May be larger. Moreover, the thickness dimension of the movable part main body 13 may be smaller than the thickness dimension of each elastic body part 15. In this case, the rigidity of the elastic body portion 15 in the facing direction can be increased.
  • the vibration power generator EH when the shape of the spring constituting the elastic body portion 15 in a plan view is a meandering shape, the area of the dead space generated between the movable portion 12 and the support portion 14 in the specified direction. Is preferably smaller. Thereby, the vibration power generator EH can increase the amount of energy stored as strain energy. Therefore, the vibration power generation apparatus EH can reduce the size and the height of the elastic body portion 15 as long as the amount of energy stored as strain energy is the same.
  • the size of the elastic body portion 15 In the machining of metal or the like, it is difficult to reduce the size of the elastic body portion 15 by reducing the thickness W1 of the elastic body portion 15 to about 200 to 300 ⁇ m and the size W3 between the folded portions to about 200 to 300 ⁇ m. .
  • the elastic body portion 15 when the elastic body portion 15 is formed using the micromachining technology, the elastic body portion 15 can be further reduced in size, and the area of the dead space is reduced. It becomes possible.
  • the thickness W1 of the elastic body 15 may be about 10 ⁇ m, and the dimension W3 between the folded portions may be about 10 ⁇ m. This can be realized by forming the body part 15.
  • the elastic body portion 15 may have a corrugated plate shape (corrugated plate shape) in a side view.
  • the first spacer 41 and the second spacer 42 are formed in a frame shape.
  • the shape of the first spacer 41 and the shape of the second spacer 42 are preferably set to the same shape. As a result, the vibration power generation apparatus EH can achieve cost reduction by sharing parts.
  • the outer dimensions of the first spacer 41 and the second spacer 42 are matched with the outer dimensions of the vibration block 11.
  • each of the first spacer 41 and the second spacer 42 for example, resin such as engineering plastic (for example, polycarbonate), ceramic, silicon, or the like can be used.
  • resin such as engineering plastic (for example, polycarbonate), ceramic, silicon, or the like
  • silicon is employed as the material of each of the first spacer 41 and the second spacer 42
  • each of the first spacer 41 and the second spacer 42 can be formed from a silicon substrate.
  • a bonding method of each of the first spacer 41 and the second spacer 42 and the support portion 14 of the vibration block 11 for example, a surface activated bonding method, a eutectic bonding method, a resin bonding method, or the like is adopted. can do.
  • the outer dimensions of the first cap 21 and the second cap 31 are preferably matched with the outer dimensions of the vibration block 11.
  • the shape of the first cap 21 and the shape of the second cap 31 are preferably set to the same shape. As a result, the vibration power generation apparatus EH can achieve cost reduction by sharing parts.
  • each of the first cap 21 and the second cap 31 for example, resin such as engineering plastic (for example, polycarbonate), ceramic, silicon, or the like can be used.
  • each of the first cap 21 and the second cap 31 can be formed from a silicon substrate.
  • a joining method of the 1st cap 21 and the 2nd cap 31, and each of the 1st spacer 41 and the 2nd spacer 42 for example, a surface activation joining method, a eutectic joining method, a resin joining method, etc. Can be adopted.
  • vibration power generator EH may be configured such that the first cap 21 and the second cap 31 are fixed to the vibration block 11 without providing the first spacer 41 and the second spacer 42.
  • the vibration power generator EH fixes the first cap 21, the first spacer 41, the vibration block 11, the second spacer 42, and the second cap 31 with a plurality of (for example, four) screws (not shown). You may make it, it may make it fix with an adhesive agent, and may use a screw and an adhesive agent together as a fixing member.
  • the vibration power generation apparatus EH includes members adjacent to each other in the thickness direction of the vibration power generation apparatus EH among the members formed of the first cap 21, the first spacer 41, the vibration block 11, the second spacer 42, and the second cap 31, respectively. Further, a structure that can be fitted to each other may be provided and fixed by fitting.
  • the vibration power generator EH shown in FIG. 6 includes through holes 21a through which fixing screws can be inserted into the four corners of the first cap 21, the first spacer 41, the vibration block 11, the second spacer 42, and the second cap 31, respectively. , 41a, 11a, 42a and 31a are formed.
  • the opening shape of each through hole 21a, 41a, 11a, 42a and 31a in plan view is a circular shape. These opening shapes may be other than circular shapes.
  • the vibration block 11 is integrally provided with two protrusions 13b protruding from the movable part main body 13 in a direction orthogonal to the prescribed direction in plan view.
  • Each of the protrusions 13b is formed in a rectangular shape in plan view. Further, the vibration block 11 is formed with two first cutout portions 14b on the inner surface of the frame-shaped support portion 14 that allow each of the protrusions 13b to be displaced in the specified direction.
  • first cap 21 and the second cap 31 rectangular through holes 21b and 31b are formed in the respective projection areas of the first cutout portions 14b. Further, on the inner side surfaces of the first spacer 41 and the second spacer 42, second cutout portions 41b and 42b are formed in the respective projection regions of the respective first cutout portions 14b.
  • the movable portion 12 is defined as described above by applying an external force to the protrusions 13b with an appropriate jig through the through holes 21b and 31b and the second notches 41b and 42b from the outside. It can be displaced in the direction. Thereby, in the vibration power generation device EH, if the jig is pulled out after displacing both protrusions 13b, the movable part 12 vibrates in the specified direction.
  • the vibration power generator EH can be operated by displacing the movable portion 12.
  • the vibration of the movable part 12 in this case is a damped vibration.
  • the waveform of the output voltage of the vibration power generator EH becomes a waveform that attenuates over time as shown in FIG. 9, for example.
  • a bifurcated fork-shaped one can be adopted.
  • the vibration block 11 is provided with a tapered stopper portion 14 c that restricts the amount of displacement of the movable portion 12 in the specified direction on the support portion 14.
  • an inclined surface 12c substantially parallel to the stopper portion 14c is provided on the outer peripheral surface of the movable portion 12 (the outer surface of the movable portion main body 13).
  • the stopper portion 14 c provided on the support portion 14 is inclined with respect to a plane parallel to the prescribed direction on the inner side surface of the support portion 14.
  • An inclined surface 12 c provided on the movable portion 12 is inclined with respect to a surface parallel to the prescribed direction on the outer peripheral surface of the movable portion 12.
  • the vibration power generator EH when the movable portion 12 is displaced in the specified direction by applying an external force to the both protrusions 13b with an appropriate jig as described above, the inclined surface 12c comes into contact with the stopper portion 14c. The displacement of the movable part 12 is limited. As a result, the vibration power generator EH can set the displacement amount of the movable portion 12 (initial displacement of the movable portion 12) to a substantially constant value when the movable portion 12 is operated.
  • the vibration power generation apparatus EH it is possible to suppress the displacement of the movable part 12 in a direction different from the prescribed direction. As a result, the vibration power generation apparatus EH can suppress the variation in power generation output each time an external force is applied, and a force in a direction other than the prescribed direction acts on the elastic body portion 15 when the external force is applied. Therefore, it is possible to suppress the occurrence of reliability and to improve the reliability.
  • the arrow in FIG. 7 shows an example of the direction in which the movable part 12 is displaced.
  • the vibration power generator EH can be displaced in the direction opposite to the arrow in FIG.
  • the coil block 4 includes a plurality of (for example, five) coils 4a.
  • the plurality of coils 4a are arranged side by side in the prescribed direction.
  • the plurality of coils 4a are arranged side by side in the prescribed direction and are blocked by an adhesive.
  • the coil block 4 is configured by a coil array in which the coils 4a are arranged in an array.
  • the magnet block 3 is configured by a magnet array in which the magnets 2 are arranged in an array.
  • the number of coils 4 a of the coil block 4 is one more than the number of magnets 2 of the magnet block 3.
  • the number of coils 4a in the coil block 4 is preferably m + 1.
  • the pitch of the coil 4a in the coil block 4 and the pitch of the magnet 2 in the magnet block 3 are the same.
  • each coil 4a is arrange
  • the coil 4a is composed of a coil wire wound around the core material 4b.
  • a copper wire with an insulation coating can be employed.
  • the coil wire is wound around the core 4b by a winding machine and fixed with an adhesive or the like.
  • a resin such as engineering plastic (for example, polycarbonate) or an insulating material such as ceramic.
  • a material for the insulating film covering the copper wire for example, urethane, formal, polyester, polyesterimide, polyamideimide and the like can be employed.
  • the core material 4b is formed in a strip shape.
  • the core material 4b is disposed so that the thickness direction matches the specified direction, the width direction matches the thickness direction of the vibration block 11, and the longitudinal direction matches the direction orthogonal to the specified direction in plan view. .
  • the coil block 4 has each coil 4a wound around one end on the magnet block 3 side in the width direction of each core member 4b so that the surface facing the magnet block 3 is flattened.
  • the coil block 4 held by the first cap 21 is fixed by inserting the other end of each core member 4b in the width direction into each of a plurality of positioning through holes 21c formed in the first cap 21. is there.
  • the coil block 4 in the first cap 21 for example, in a state where the side facing the magnet block 3 is abutted against the flat surface of a separately prepared dummy member (assembly jig), What is necessary is just to fix each core material 4b to the 1st cap 21, and remove a dummy member after that.
  • the coil surfaces of the plurality of coils 4a are aligned, and the surface facing the magnet block 3 is substantially flat.
  • the coil block 4 held by the second cap 31 is fixed by inserting the other end portion of each core member 4b in the width direction into each of the plurality of positioning through holes 31c formed in the second cap 31. It is.
  • assembling the coil block 4 in the second cap 31 for example, in a state where the side facing the magnet block 3 is abutted against the flat surface of a separately prepared dummy member (assembly jig), What is necessary is just to fix each core material 4b to the 2nd cap 31, and remove a dummy member after that.
  • the coil surfaces of the plurality of coils 4a are aligned, and the surface facing the magnet block 3 is substantially flat.
  • the adjacent coils 4a in the coil block 4 are joined and electrically connected by a first conductive joining material.
  • a material of the first conductive bonding material for example, solder or silver paste can be employed.
  • the adjacent coils 4a are connected in series so as to be in the reverse winding direction.
  • first cap 21 and the second cap 31 are electrodes (not shown) to which the wire ends that are not connected to the adjacent coils 4 a in the coils 4 a at both ends of the coil block 4 are electrically connected. ) Is provided.
  • the wire end and the electrode are joined and electrically connected by the second conductive joining material.
  • the material of the second conductive bonding material for example, solder or silver paste can be employed.
  • a metal screw or the like may be used as the second conductive bonding material.
  • each of the coils 4a includes a core material 4b (that is, each of the coils 4a is a so-called cored coil), but does not include the core material 4b. (So-called air-core coil) may be used.
  • the core material 4b is not provided, for example, ribs for positioning the coils 4a individually may be provided in each of the first cap 21 and the second cap 31. In this case, for example, the rib and the coil 4a may be bonded with an adhesive or the like in a state where the coil 4a is wound around the rib.
  • each of the coils 4a may be constituted by a planar coil, for example.
  • a planar coil may be formed in each of the first cap 21 and the second cap 31.
  • planar coil for example, copper, gold, silver or the like can be adopted. Further, as the material of the planar coil, permalloy, cobalt-based amorphous alloy, ferrite, or the like may be employed.
  • the planar coil can be formed by using a thin film forming technique such as a vapor deposition method or a sputtering method, a photolithography technique, an etching technique, or the like.
  • the vibration power generation apparatus EH described above includes the magnet block 3 and the coil block 4, and the magnet block 3 and the coil block 4 are arranged to face each other.
  • the vibration power generation apparatus EH includes a movable portion 12 including the magnet block 3, a support portion 14, and an elastic body portion 15 that connects the movable portion 12 and the support portion 14. Further, the elastic body portion 15 has a smaller rigidity in the specified direction than that in a direction orthogonal to the specified direction.
  • the vibration power generator EH can unidirectionally change the vibration direction of the movable portion 12 in the specified direction orthogonal to the facing direction of the magnet block 3 and the coil block 4, thereby improving the energy conversion efficiency. It becomes possible to plan.
  • the vibration power generator EH is provided with a plurality of elastic body portions 15 on both sides of the movable portion 12 in the specified direction. Thereby, the vibration power generator EH can further unidirectionally change the vibration direction of the movable portion 12 as compared with the case where one elastic body portion 15 is provided on each of both sides of the movable portion 12. It becomes possible to further improve the energy conversion efficiency.
  • the vibration power generator EH the coil block 4 is held in each of the first cap 21 and the second cap 31.
  • the vibration power generator EH can improve the energy conversion efficiency as compared with the case where the coil block 4 is held only in one of the first cap 21 and the second cap 31.
  • the vibration power generator EH includes a series circuit of a plurality of coils 4 a in the coil block 4 held by the first cap 21 and a series circuit of a plurality of coils 4 a in the coil block 4 held by the second cap 31. Can be connected in series to increase the output.
  • the vibration power generator EH includes a frame-shaped first spacer 41 disposed between the first cap 21 and the vibration block 11. Thereby, the vibration power generation device EH can define the gap length between the coil block 4 of the first cap 21 and the magnet block 3 of the vibration block 11 by the thickness of the first spacer 41. Therefore, the vibration power generation device EH reduces the gap between the coil block 4 of the first cap 21 and the magnet block 3 of the vibration block 11, while reducing the gap between the coil block 4 of the first cap 21 and the vibration block 11. It is possible to prevent contact with the magnet block 3.
  • the vibration power generation device EH can improve the use efficiency of magnetic flux by narrowing the gap between the coil block 4 of the first cap 21 and the magnet block 3 of the vibration block 11, thereby converting energy. Efficiency can be improved.
  • the vibration power generation device EH includes a frame-shaped second spacer 42 disposed between the second cap 31 and the vibration block 11.
  • the vibration power generator EH can define the gap length between the coil block 4 of the second cap 31 and the magnet block 3 of the vibration block 11 by the thickness of the second spacer 42. Therefore, the vibration power generator EH reduces the gap between the coil block 4 of the second cap 31 and the magnet block 3 of the vibration block 11, while reducing the gap between the coil block 4 of the second cap 31 and the vibration block 11. It is possible to prevent contact with the magnet block 3.
  • the vibration power generation device EH can improve the use efficiency of magnetic flux by narrowing the gap between the coil block 4 of the second cap 31 and the magnet block 3 of the vibration block 11, thereby converting energy. Efficiency can be improved.
  • the vibration power generation apparatus EH an alternating induced electromotive force is generated by electromagnetic induction generated in accordance with the vibration of the movable portion 12 in the specified direction.
  • the open circuit voltage of the vibration power generator EH is an AC voltage corresponding to the vibration of the movable part 12.
  • the vibration power generation device EH generates an AC voltage corresponding to the damped vibration because the movable portion 12 oscillates when the jig is pulled out after applying external force to the both protrusions 13b with a jig as described above. To do.
  • the rectifier circuit 71 includes two diodes (first and second diodes) D11 and D12 and two capacitors (first and second capacitors) C11 and C12. This is a double-wave voltage doubler rectifier circuit 71A.
  • the double voltage rectifier circuit 71A a series circuit of two diodes D11 and D12 and a series circuit of two capacitors C11 and C12 are connected in parallel.
  • the double-wave voltage doubler rectifier circuit 71A includes two diodes D11 and D12 and two capacitors C11 and C12 that are bridge-connected. Specifically, the cathode of the diode D11 is connected to the anode of the diode D12 via a series circuit of two capacitors C11 and C12, and the cathode of the diode D12 is connected to the anode of the diode D11.
  • connection point of the diodes D11 and D12 and the connection point of the capacitors C11 and C12 constitute an input terminal
  • the connection point of the diode D11 and the capacitor C11 and the connection point of the diode D12 and the capacitor C12 constitute an output terminal.
  • one output end of the vibration power generation device EH is connected to a connection point between the two diodes D11 and D12 in the series circuit of the two diodes D11 and D12, and the other end of the vibration power generation device EH.
  • the output terminal is connected to a connection point between both capacitors C11 and C12 in a series circuit of two capacitors C11 and C12.
  • the energy conversion device 1 functions as a power source for the load.
  • the load for example, a sensor, an LED (Light Emitting Diode), a wireless circuit, or the like can be used.
  • the diode D11 and the diode D12 have the same specifications and have the same characteristics.
  • Each of the diodes D11 and D12 is a silicon diode and has a forward voltage drop of about 0.6 to 0.7V.
  • Each of the diodes D11 and D12 may be a Schottky barrier diode, which makes it possible to further reduce the forward voltage drop.
  • capacitor C11 and the capacitor C12 have the same specifications and have the same characteristics.
  • the capacitors C11 and C12 are charged every half cycle of the voltage waveform of the output voltage (AC voltage) of the vibration power generator EH. That is, the first capacitor C11 is charged in the positive half cycle of the output voltage of the vibration power generator EH, and the second capacitor C12 is charged in the negative half cycle of the output voltage of the vibration power generator EH. Therefore, the output voltage of the rectifier circuit 71 in the energy conversion device 1 is approximately twice the peak value of the output voltage of the vibration power generator EH.
  • the energy conversion device 1 includes the double-wave voltage doubler rectifier circuit 71A as the rectifier circuit 71, so that the output voltage of the rectifier circuit 71 is increased as compared with the case where the diode rectifier 702 as shown in FIG. 30 is employed. Can be achieved.
  • the number of diodes through which current passes is two, but in this embodiment, the number of diodes through which current passes is one. Therefore, the energy conversion device 1 can improve energy conversion efficiency.
  • the movable part 12 can be operated by being displaced, and the energy conversion efficiency can be improved.
  • the voltage doubler rectifier circuit constituting the rectifier circuit 71 may be, for example, a Cockcroft-Walton circuit 71B as shown in FIG.
  • the Cockcroft-Walton circuit 71B shown in FIG. 12 includes four diodes D 21 to D 24 and four capacitors C 21 to C 24, and is approximately 4 of the peak value of the output voltage of the vibration power generator EH. Double output voltage can be obtained.
  • the diode D 21 and the capacitor C 21 form a set
  • the diode D 22 and the capacitor C 22 form a set
  • the diode D 23 and the capacitor C 23 form a set
  • the diode D 24 and the capacitor C 24 and a pair In short, in FIG. 12, the subscript numerals of the symbols are the same for each set.
  • Rectifier circuit 71B includes a series of a series circuit of a diode D 21 and the capacitor C 21 connected between the output end of the vibration-powered generator EH, a diode D 22 and a capacitor C 22 connected in reverse parallel with the diode D 21 a circuit, a series circuit of a diode D 23 and a capacitor C 23 connected in reverse parallel with the diode D 22, a series circuit of a diode D 24 and a capacitor C 24 connected in reverse parallel with the diode D 23, a Prepare.
  • the rectifier circuit (cockcroft-Walton circuit) 71B includes a first capacity circuit (capacitors C 21 and C 23 ) charged when the polarity of the output voltage (AC voltage) of the vibration power generator EH is positive, and the vibration power generator.
  • a second capacitance circuit (capacitors C 22 and C 24 ) that is charged when the polarity of the output voltage (AC voltage) of EH is negative, and outputs the total voltage of the first capacitance circuit and the second capacitance circuit This is a voltage doubler rectifier circuit.
  • the voltage of the first capacitance circuit is the total value of the voltages of the capacitors C 21 and C 23
  • the voltage of the second capacitance circuit is the total value of the voltages of the capacitors C 22 and C 24 .
  • the voltage doubler rectifier circuit constituting the rectifier circuit 71 may be, for example, a Cockcroft-Walton circuit 71C as shown in FIG.
  • the Cockcroft-Walton circuit 71C shown in FIG. 13 includes n (n ⁇ 6 in the illustrated example) diodes D 21 to D 2n and n capacitors C 21 to C 2n , and the vibration power generator EH It is possible to obtain an output voltage approximately n times the peak value of the output voltage.
  • the subscript numerals are the same for each set.
  • the rectifier circuit 71C includes a series circuit of n diodes D 2k and capacitors C 2k (k is an integer of 1 to n).
  • Series circuit of diode D 21 and capacitor C 21 (the first series circuit is connected between the output terminals of vibration power generator EH.
  • Series circuit of diode D 2k and capacitor C 2k (kth series circuit) Are connected in anti-parallel to a diode D 2k-1 in a series circuit (k- 1th series circuit) of a diode D 2k-1 and a capacitor C 2k-1 .
  • the output voltage can be further increased as compared with the case where the double wave voltage doubler rectifier circuit 71A is adopted. .
  • the energy conversion device 1 includes a DC-DC converter 72 that makes the output voltage of the rectifier circuit 71 (voltage output from the rectifier circuit 71) constant after the rectifier circuit 71. Also good. That is, the energy conversion device 1 may include a DC-DC converter 72 that converts the voltage output from the rectifier circuit 71 into a predetermined DC voltage and outputs the voltage. Thereby, the energy conversion device 1 can operate the load more stably.
  • the preceding stage of the DC-DC converter 72 is not limited to the Cockcroft-Walton circuit (71B, 71C), but may be a voltage doubler rectifier circuit. The double wave voltage doubler rectifier circuit constituting the rectifier circuit 71 in FIG. 71A may be sufficient.
  • the DC / DC converter 72 includes, for example, a step-up DC-DC converter integrated circuit, a step-up inductor, a first capacitor connected between the output terminals of the rectifier circuit 71, and an output terminal and a GND terminal of the integrated circuit.
  • a configuration including a second capacitor or the like connected in between can be employed.
  • the integrated circuit for example, MCP1640 / B / C / D manufactured by Microchip Technology, TPS61097-33 manufactured by TEXAS INSTRUMENT, or the like can be used.
  • the configuration of the DC / DC converter 72 is not particularly limited, and may be, for example, a step-up DC-DC converter including a step-up transformer or a step-up chopper such as the DC-DC converter 706 of FIG.
  • the energy conversion device 1 of the present embodiment includes the following first feature.
  • the energy conversion device 1 is an electromagnetic induction that converts kinetic energy into electric energy by electromagnetic induction that occurs when the magnet block 3 and the coil block 4 are relatively displaced in a specified direction orthogonal to the opposing direction.
  • Type vibration power generator EH and a rectifier circuit 71 that rectifies an AC voltage output from the vibration power generator EH.
  • the vibration power generator EH includes a movable block 12 including one of the magnet block 3 and the coil block 4.
  • the movable portion 12 can be damped and oscillated from the outside, and includes the movable portion 12, the support portion 14, and the elastic body portion 15 connecting the movable portion 12 and the support portion 14.
  • the elastic body portion 15 is smaller in rigidity in the prescribed direction than that in the direction orthogonal to the prescribed direction, and a plurality of elastic body portions 1 are provided on both sides of the movable portion 12 in the prescribed direction.
  • the rectifier circuit 71 are different from each other in the time the polarity of the AC voltage outputted from the vibration generator unit EH is when the positive and negative capacitor (C11, C12, C 21, C 22, C 23 , C 24 ,..., C 2n ) are charged voltage doubler rectifier circuits (71A, 71B, 71C).
  • the energy conversion device 1 includes the vibration power generation device EH and the rectifier circuit 71.
  • the vibration power generator EH includes a magnet block 3 and a coil block 4 that face each other in the facing direction, and generates an alternating voltage by electromagnetic induction caused by relative displacement of the coil block 4 with respect to the magnet block 3 in a specified direction orthogonal to the facing direction. Configured to output.
  • the rectifier circuit 71 is configured to rectify and output the AC voltage output from the vibration power generator EH.
  • the vibration power generator EH includes a movable part 12 including one of the magnet block 3 and the coil block 4, a support part 14 on which the movable part 12 is disposed, and a plurality of elastic members that connect the movable part 12 to the support part 14.
  • the plurality of elastic body portions 15 are arranged side by side along a direction orthogonal to the prescribed direction on each side of the movable portion 12 in the prescribed direction. Each of the plurality of elastic body portions 15 is configured to be easily deformed in the specified direction from the direction orthogonal to the specified direction.
  • the rectifier circuit 71 is a voltage doubler rectifier circuit in which different capacitors are charged depending on whether the polarity of the AC voltage output from the vibration power generator EH is positive or negative.
  • the energy conversion device 1 of the present embodiment has the following second feature in addition to the first feature.
  • the elastic body portion 15 is a spring.
  • the second feature is an arbitrary feature.
  • the energy conversion device 1 of the present embodiment has the following third or fourth feature.
  • the voltage doubler rectifier circuit (rectifier circuit 71) is a double wave voltage doubler rectifier circuit 71A.
  • the voltage doubler rectifier circuit (rectifier circuit 71) is a Cockcroft-Walton circuit (71B, 71C).
  • the third and fourth characteristics are arbitrary characteristics.
  • the energy conversion device 1 of the present embodiment has the following fifth feature.
  • the fifth feature includes a DC-DC converter that makes the output voltage of the rectifier circuit 71 (voltage output from the rectifier circuit 71) constant.
  • the fifth feature is an arbitrary feature.
  • the movable part 12 can be operated by being displaced, and the energy conversion efficiency can be improved.
  • the vibration power generation apparatus EH in the present embodiment can also generate power using environmental vibration (external vibration) that matches the resonance frequency of the vibration power generation apparatus EH.
  • environmental vibration include various environmental vibrations such as vibrations generated by an operating FA device, vibrations generated by traveling of the vehicle, and vibrations generated by walking of a person.
  • the frequency of the alternating voltage generated by the vibration power generation device EH is the same as the resonance frequency of the vibration power generation device EH when the frequency of the environmental vibration matches the resonance frequency of the energy conversion device 1.
  • the energy conversion device 1A of the present embodiment includes an input mechanism 5 for displacing the movable part 12 along the specified direction. Further, the energy conversion device 1 ⁇ / b> A of the present embodiment includes a first magnetic material unit 7 connected to the movable unit 12 and a second magnetic material unit 6 connected to the input mechanism 5, and the first magnetic material unit 7. The movable portion 12 can be displaced by the magnetic force generated between the second magnetic material portion 6 and the second magnetic material portion 6.
  • the first magnetic material portion 7 can be composed of either a magnet (first magnet) or a magnetic body (first magnetic body).
  • the second magnetic material portion 6 can be composed of either a magnet (second magnet) or a magnetic body (second magnetic body).
  • the vibration block 11 in the present embodiment has a C-shaped plan view shape of the support portion 14.
  • the movable portion 12 includes one projecting portion 18 that projects from the outer surface of the movable portion main body 13 along the specified direction.
  • the first magnetic material portion 7 described above is connected to the distal end surface of the protruding portion 18.
  • the protrusion 18 and the first magnetic material portion 7 are connected by an adhesive.
  • the shape of the projection 18 in plan view is a rectangular shape with the specified direction as a longitudinal direction.
  • the dimension in the short direction of the projecting portion 18 is set to be slightly smaller than the dimension between both end faces of the support portion 14.
  • the first magnetic material portion 7 has a rectangular shape in plan view.
  • the first magnetic material portion 7 is composed of the first magnetic body, but is not limited thereto, and may be composed of the first magnet.
  • iron-cobalt alloy, electromagnetic soft iron, electromagnetic stainless steel, permalloy, or the like can be used as the material for forming the first magnetic material portion 7 with the first magnetic body.
  • neodymium, samarium cobalt, alnico, a ferrite, etc. are employable, for example.
  • the vibration block 11 can form the movable part main body 13, the projecting part 18, the support part 14, and each elastic body part 15 from the substrate 10, for example.
  • the movable part main body 13, the protruding part 18, the support part 14, and each elastic body part 15 can be formed integrally.
  • the vibration block 11 can be configured such that the movable portion main body 13, the projecting portion 18, the support portion 14, and each elastic body portion 15 are integrally formed from a single silicon substrate. Thereby, when manufacturing the vibration power generation apparatus EH, when the vibration block 11 is formed, the assembly process of the movable part main body 13, the projecting part 18, the support part 14, and each elastic body part 15 becomes unnecessary, and the manufacture becomes easy. .
  • each elastic body portion 15, the movable portion main body 13, the protruding portion Since 18 and the support portion 14 are integrally formed of silicon, which is a low damping material, energy loss during vibration can be reduced, and energy conversion efficiency can be improved.
  • the vibration block 11 is preferably provided with a plurality of elastic body portions 15 arranged on both sides of the movable portion 12 in the prescribed direction.
  • the vibration direction of the movable portion 12 can be further unidirectional. It becomes possible to further improve the energy conversion efficiency.
  • the energy conversion device 1 can reduce the stress applied to each elastic body portion 15 and can improve the durability.
  • the number of the elastic body portions 15 on both sides of the movable portion 12 is not particularly limited.
  • the first spacer 41 and the second spacer 42 are C-shaped in plan view.
  • the shape of the first spacer 41 and the shape of the second spacer 42 are set to the same shape.
  • the energy conversion device 1 ⁇ / b> A can achieve cost reduction by sharing parts.
  • the outer dimensions of the first spacer 41 and the second spacer 42 are matched with the outer dimensions of the vibration block 11.
  • vibration power generation apparatus EHA may be configured such that the first cap 21 and the second cap 31 are fixed to the vibration block 11 without providing the first spacer 41 and the second spacer 42.
  • the vibration power generation apparatus EHA described above includes the magnet block 3 and the coil block 4 as in the vibration power generation apparatus EH of the first embodiment, and the magnet block 3 and the coil block 4 are arranged to face each other.
  • the vibration power generator EHA includes a movable portion 12 including the magnet block 3, a support portion 14, and an elastic body portion 15 that connects the movable portion 12 and the support portion 14.
  • the elastic body portion 15 has a smaller rigidity in the specified direction than that in a direction orthogonal to the specified direction.
  • the vibration power generation apparatus EHA can unidirectionally change the vibration direction of the movable portion 12 in the specified direction orthogonal to the opposing direction of the magnet block 3 and the coil block 4, thereby improving the energy conversion efficiency. It becomes possible to plan.
  • the vibration power generator EHA is provided with a plurality of elastic body portions 15 on both sides of the movable portion 12 in the specified direction. Thereby, the vibration power generator EHA can further unidirectionally change the vibration direction of the movable portion 12 as compared with the case where one elastic body portion 15 is provided on each of both sides of the movable portion 12. It becomes possible to further improve the energy conversion efficiency.
  • an AC induced electromotive force is generated by electromagnetic induction generated in accordance with the vibration of the movable portion 12 in the specified direction.
  • the open circuit voltage of the vibration power generator EHA is an AC voltage corresponding to the vibration of the movable part 12.
  • the vibration power generator EHA can be operated by displacing the movable portion 12.
  • the energy conversion device 1A includes a mounting substrate 8 on which the vibration power generation device EHA is mounted.
  • the mounting board 8 for example, a circuit board such as a printed wiring board can be adopted.
  • the input mechanism 5 is fixed to the mounting board 8.
  • 1 A of energy converters can prescribe
  • the input mechanism 5 includes a columnar rotation shaft 51 fixed to a mounting substrate (circuit board) 8, a rotation portion main body 52 rotatably held on the rotation shaft 51, and a rotation portion main body 52. And an operation portion 53 protruding from the rotation portion main body 52 and a protrusion portion 54 protruding to the opposite side of the operation portion 53.
  • the operation unit 53 is formed, for example, in such a size that a user of the energy conversion device 1 can operate with a finger or the like.
  • the operation part 53, the rotation part main body 52, and the protrusion part 54 can be formed with resin, for example.
  • the second magnetic material portion 6 is connected to the distal end surface of the protruding portion 54.
  • the protruding portion 54 and the second magnetic material portion 6 are connected by an adhesive.
  • the planar view shape of the second magnetic material portion 6 is a rectangular shape.
  • the second magnetic material portion 6 is composed of the second magnet, but is not limited thereto, and may be composed of the second magnetic body.
  • neodymium, samarium cobalt, alnico, ferrite, or the like can be used as the material when the second magnetic material portion 6 is formed of the second magnet.
  • iron-cobalt alloy, electromagnetic soft iron, electromagnetic stainless steel, permalloy, or the like can be employed as a material in the case where the second magnetic material portion 6 is composed of the second magnetic body.
  • the direction of the magnetic force generated between the first magnetic material portion 7 and the second magnetic material portion 6 is the direction of attraction, but is not limited thereto, and may be a repulsive direction.
  • the 1st magnetic material part 7 is comprised by the 1st magnet
  • the 2nd magnetic material part 6 is comprised by the 2nd magnet
  • the 1st magnet so that the same polarity of a 1st magnet and a 2nd magnet may oppose
  • the second magnet are arranged, the direction of the magnetic force generated between the first magnetic material part 7 and the second magnetic material part 6 is a repulsive direction.
  • the operation portion 53, the protruding portion 54, and the second magnetic material portion 6 are arranged in a straight line, and a straight line connecting the operating portion 53, the protruding portion 54, and the second magnetic material portion 6 is defined as described above. It arrange
  • the input mechanism 5 includes a return spring 55 made of a torsion coil spring, for example, as shown in FIG.
  • the return spring 55 is disposed so as to surround the rotation shaft 51 in the rotation unit main body 52, one end 55 a is fixed to the mounting substrate 8, and the other end 55 b is fixed to the operation unit 53.
  • the input mechanism 5 shown in FIG. 20 applies an external force against the spring force of the return spring 55 to the operating portion 53 in the initial position, so that the protruding portion 54 extends from the protruding portion 18 along the specified direction. Displaces away.
  • the input mechanism 5 is configured such that when the external force applied to the operation unit 53 disappears, the operation unit 53 returns to the initial position by the spring force of the return spring 55. Note that the input mechanism 5 is not limited to the configuration shown in FIG. 20 and may have other configurations.
  • the input mechanism 5 is a magnet that can magnetize the second magnetic material portion 6 (hereinafter, referred to as a magnet). (Referred to as magnetizing magnet).
  • the input mechanism 5 generates a magnetic force between the second magnetic material portion 6 and the first magnetic material portion 7 by magnetizing the second magnetic material portion 6 by bringing the magnetizing magnet into contact with the second magnetic material portion 6.
  • the magnetism of the second magnetic material portion 6 is lost by separating the magnetizing magnet from the second magnetic material portion 6 so that the magnetic force between the second magnetic material portion 6 and the first magnetic material portion 7 is lost. do it.
  • the vibration block 11 is provided with a stopper portion 14c on the support portion 14 for limiting the amount of displacement of the movable portion 12 in the specified direction to a specified value.
  • the stopper portion 14c has a tapered shape inclined on the inner side surface of the support portion 14 with respect to a plane parallel to the specified direction.
  • an inclined surface 12c substantially parallel to the stopper portion 14c is provided on the outer peripheral surface of the movable portion 12 (the outer surface of the movable portion main body 13).
  • An inclined surface 12 c provided on the movable portion 12 is inclined with respect to a surface parallel to the prescribed direction on the outer peripheral surface of the movable portion 12.
  • the displacement amount of the movable part 12 can be set to a substantially constant value.
  • the energy conversion device 1A it is possible to suppress the displacement of the movable part 12 in a direction different from the prescribed direction.
  • the second magnetic material portion 6 is composed of the second magnet
  • the first magnetic material portion 7 is the first magnetic material portion 7. It is for demonstrating the operation example in the case of being comprised by 1 magnetic body.
  • the energy conversion device 1 ⁇ / b> A uses the second magnetic material by the magnetic force generated between the second magnetic material unit 6 and the first magnetic material unit 7.
  • the first magnetic material portion 7 is adsorbed to the portion 6.
  • the energy conversion device 1A When the external force in the direction in which the operation unit 53 approaches the vibration power generation device EHA (direction of the arrow in FIG. 21) is given to the operation unit 53 in the initial position, the energy conversion device 1A is indicated by the arrow in FIG. Thus, the operation part 53 and the protrusion part 54 rotate counterclockwise. At this time, in the energy conversion device 1A, the movable part 12 moves against the elastic force of the elastic body part 15 on the right side in FIG. 22 and the first magnetic material part 7 is adsorbed by the second magnetic material part 6. Is maintained. In FIG. 22, the arrow attached to the input mechanism 5 indicates the rotation direction of the input mechanism 5.
  • the energy conversion device 1 ⁇ / b> A is shown in FIG. 23.
  • the first magnetic material portion 7 is separated from the second magnetic material portion 6 and the movable portion 12 vibrates along the prescribed direction. This vibration is a damped vibration.
  • an arrow attached to the movable part 12 indicates a vibration direction of the movable part 12
  • an arrow attached to the input mechanism 5 indicates a rotation direction of the input mechanism 5.
  • an arrow attached to the input mechanism 5 indicates the rotation direction of the input mechanism 5.
  • the operation unit 53 when the operation unit 53 is rotated from the initial position by a (first) predetermined angle (for example, 5 °), the movable unit 12 is displaced by the specified value and the stopper unit 14c.
  • a (second) predetermined angle for example, 10 °
  • the spring force of the elastic body portion 15 is applied to the first magnetic material portion 7 and the second magnetic material portion.
  • the spring force of the elastic body portion 15 is designed so as to be larger than the magnetic force between the elastic body portion 15 and the magnetic force.
  • the first predetermined angle and the second predetermined angle are not particularly limited, but it is preferable to design the second magnetic material portion 6 so as to be displaced on a straight line along the specified direction.
  • the multi-leaf cam 1204 applies a force to the suspension 1210 in an unnecessary direction, so that the energy conversion efficiency is improved. It seems difficult.
  • the energy conversion device 1A of the present embodiment includes an input mechanism 5 for displacing the movable part 12 along the specified direction, a first magnetic material part 7 connected to the movable part 12, and an input.
  • the second magnetic material portion 6 connected to the mechanism 5 is provided, and the movable portion 12 can be displaced by a magnetic force generated between the first magnetic material portion 7 and the second magnetic material portion 6.
  • the energy conversion device 1A can be operated by displacing the movable portion 12 by appropriately applying an external force to the input mechanism 5, and a force in a direction different from the prescribed direction is applied to the movable portion 12. It becomes possible to suppress the action, and it becomes possible to improve energy conversion efficiency (power generation efficiency) and reliability.
  • the input mechanism 5, the second magnetic material portion 6, and the first magnetic material portion 7 constitute an actuator that displaces the movable portion 12.
  • the first magnetic material portion 7 is made of either the first magnetic body or the first magnet
  • the second magnetic material portion 6 is made of either the second magnetic body or the second magnet.
  • the magnetic force generated between the first magnetic material portion 7 and the second magnetic material portion 6 can be set as appropriate.
  • the direction of the magnetic force generated between the first magnetic material part 7 and the second magnetic material part 6 is the attracting direction, so that the direction of the magnetic force is a repulsive direction.
  • the movable part 12 can be stably displaced along the prescribed direction.
  • the voltage doubler rectifier circuit constituting the rectifier circuit 71 is not limited to the double wave voltage doubler rectifier circuit 71A of FIG. 15, and for example, Cockcroft-Walton circuits 71B and 71C as shown in FIGS. Further, a configuration in which a DC-DC converter 72 as shown in FIG. Thereby, the energy conversion device 1 ⁇ / b> A can operate the load more stably.
  • the energy conversion device 1A of the present embodiment described above has the first feature as in the first embodiment. Therefore, also in the energy conversion device 1A of the present embodiment, the movable part 12 can be operated by being displaced, and the energy conversion efficiency can be improved. Note that the energy conversion device 1A of the present embodiment may have the second to fifth features as in the first embodiment.
  • the movable portion 12 includes the magnet block 3 and each of the first cap 21 and the second cap 31 includes the coil block 4.
  • 12 may include the coil block 4, and at least one of the first cap 21 and the second cap 31 may include the magnet block 3.
  • the elastic body portion 15 may be formed of rubber or resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This energy conversion device is equipped with a vibration energy harvester and a rectifier circuit. The vibration energy harvester outputs an alternating-current voltage by means of electromagnetic induction caused by displacement of the position of a coil block relative to a magnet block in a prescribed direction. The vibration energy harvester is equipped with multiple elastic body sections which deform more easily in the prescribed direction than in a direction orthogonal to the prescribed direction and which connect a movable section having the magnet block or the coil block to a support section. The multiple elastic body sections are arranged along the direction orthogonal to the prescribed direction on either end of the movable section in the prescribed direction. The rectifier circuit is a voltage doubler rectifier circuit wherein different capacitors are charged when the polarity of the alternating-current voltage is positive and when the polarity is negative.

Description

エネルギ変換装置Energy conversion device
 本発明は、エネルギ変換装置に関するものである。 The present invention relates to an energy conversion device.
 近年、エネルギ変換装置として、電磁誘導作用により運動エネルギを電気エネルギに変換するエネルギ変換装置が提案されている(例えば、文献1[日本国公開特許公報第2009-11149号],文献2[米国特許出願公開第2011/0063057号明細書])。 In recent years, energy conversion devices that convert kinetic energy into electrical energy by electromagnetic induction have been proposed as energy conversion devices (for example, Document 1 [Japanese Patent Publication No. 2009-111149], Document 2 [US Patents]. Application Publication No. 2011/0063057]]).
 文献1には、エネルギ変換装置として、図25~図27に示す構成の発電装置100が記載されている。 Document 1 describes a power generation device 100 configured as shown in FIGS. 25 to 27 as an energy conversion device.
 この発電装置100は、収納部110aが設けられた支持体110と、収納部110aに配置された永久磁石120およびコイルバネ130とを備えている。 The power generation device 100 includes a support body 110 provided with a storage portion 110a, and a permanent magnet 120 and a coil spring 130 disposed in the storage portion 110a.
 支持体110は、3枚のプリント基板111~113により構成されている。この支持体110は、2枚のプリント基板111、113間に配置されたプリント基板112の矩形状の開口部112aにより、収納部110aが形成されている。 The support 110 is composed of three printed boards 111-113. In the support 110, a storage portion 110 a is formed by a rectangular opening 112 a of the printed circuit board 112 disposed between the two printed circuit boards 111 and 113.
 ここで、発電装置100は、プリント基板113の下面に、平面コイル114aおよび114bが形成されている。この平面コイル114aおよび114bは、図27に示すように、下面側から見て、市松模様状に配置されている。平面コイル114aおよび114bの各々は、渦巻状に形成されている。なお、平面コイル114aおよび114bは、巻き方向が互いに逆になるように形成されている。 Here, in the power generation apparatus 100, planar coils 114a and 114b are formed on the lower surface of the printed circuit board 113. As shown in FIG. 27, the planar coils 114a and 114b are arranged in a checkered pattern when viewed from the lower surface side. Each of the planar coils 114a and 114b is formed in a spiral shape. The planar coils 114a and 114b are formed so that the winding directions are opposite to each other.
 また、プリント基板113には、平面コイル114aおよび114bの中央部と対応する領域に、開口部113aが形成されている。この開口部113aには、FeおよびCoなどからなる磁心(コア)115が埋め込まれている。また、磁心115は、プリント基板113の下面から突出するように形成されており、平面コイル114aおよび114bの中央部に配置されている。 In the printed board 113, an opening 113a is formed in a region corresponding to the central portion of the planar coils 114a and 114b. A magnetic core (core) 115 made of Fe, Co, or the like is embedded in the opening 113a. The magnetic core 115 is formed so as to protrude from the lower surface of the printed circuit board 113, and is disposed in the center of the planar coils 114a and 114b.
 永久磁石120は、図25および図26に示すように、収納部110aの内部に矢印X1方向(矢印X2方向)に移動可能に配置されている。また、永久磁石120は、図26に示すように、矢印Y1方向(矢印Y2方向)に対する移動が規制されている。また、永久磁石120は、図25に示すように、板状に形成されるとともに、平面コイル114aおよび114bと所定の間隔を隔てて対向配置されている。また、永久磁石120は、磁化方向が矢印Z1方向である部分(磁区)120aと、磁化方向が矢印Z2方向である部分120bとを含んでおり、多極磁石として構成されている。このため、プリント基板113近傍では、図25中に破線で示した磁力線で表される磁界が形成されている。また、部分120aおよび120bは、図26に示すように、平面的に見て、交互に隣接した状態(市松模様状)で配置されている。また、図25に示すように、永久磁石120が基準位置に配置されている場合に、部分120aが平面コイル114aと対応する領域に配置されるとともに、部分120bが平面コイル114bと対応する領域に配置されている。 As shown in FIGS. 25 and 26, the permanent magnet 120 is disposed inside the storage portion 110a so as to be movable in the arrow X1 direction (arrow X2 direction). Further, as shown in FIG. 26, the permanent magnet 120 is restricted from moving in the direction of the arrow Y1 (the direction of the arrow Y2). In addition, as shown in FIG. 25, the permanent magnet 120 is formed in a plate shape and is disposed to face the planar coils 114a and 114b with a predetermined interval. The permanent magnet 120 includes a portion (magnetic domain) 120a whose magnetization direction is the arrow Z1 direction and a portion 120b whose magnetization direction is the arrow Z2 direction, and is configured as a multipolar magnet. For this reason, in the vicinity of the printed circuit board 113, a magnetic field represented by magnetic lines indicated by broken lines in FIG. 25 is formed. Further, as shown in FIG. 26, the portions 120a and 120b are arranged in a state of being alternately adjacent (checkered pattern) as viewed in a plan view. As shown in FIG. 25, when the permanent magnet 120 is disposed at the reference position, the portion 120a is disposed in the region corresponding to the planar coil 114a, and the portion 120b is disposed in the region corresponding to the planar coil 114b. Has been placed.
 コイルバネ130は、図25および図26に示すように、開口部112aの側面112bと永久磁石120の端部120cとの間に配置されるとともに、開口部112aの側面112cと永久磁石120の端部120dとの間に配置されている。この一対のコイルバネ130は、支持体110に対して永久磁石120が矢印X1方向(矢印X2方向)において所定の基準位置に配置されるように付勢する機能を有する。 As shown in FIGS. 25 and 26, the coil spring 130 is disposed between the side surface 112b of the opening 112a and the end 120c of the permanent magnet 120, and the side surface 112c of the opening 112a and the end of the permanent magnet 120. 120d. The pair of coil springs 130 has a function of urging the support 110 so that the permanent magnet 120 is disposed at a predetermined reference position in the arrow X1 direction (arrow X2 direction).
 発電装置100では、永久磁石120が所定の基準位置に配置されるように付勢するコイルバネ130を設けてあるので、発電装置100に力が加えられた際に、容易に、永久磁石120を支持体110に対して振動させることができる。 In the power generation apparatus 100, the coil spring 130 that biases the permanent magnet 120 so as to be disposed at a predetermined reference position is provided, so that when the force is applied to the power generation apparatus 100, the permanent magnet 120 is easily supported. The body 110 can be vibrated.
 発電装置100は、プリント基板113の上面に、平面コイル114aおよび114bにおいて発生する誘導起電力を制御するとともに、出力するための回路部116が設けられている。 The power generation apparatus 100 is provided with a circuit unit 116 on the upper surface of the printed circuit board 113 for controlling and outputting the induced electromotive force generated in the planar coils 114a and 114b.
 発電装置100に力が加えられることにより、永久磁石120が支持体110に対して矢印X1方向に移動したとき、平面コイル114aでは、電磁誘導により図27に示すように矢印A方向の誘導電流が発生し、平面コイル114bでは、電磁誘導により図27に示すように矢印B方向の誘導電流が発生する。このため、回路部116には、図27に示すようにC方向の誘導電流が供給される。また、永久磁石120が支持体110に対して矢印X2方向に移動したとき、平面コイル114aでは、電磁誘導により矢印B方向の誘導電流が発生し、平面コイル114bでは、電磁誘導により矢印A方向の誘導電流が発生する。このため、回路部116には、C方向とは反対方向の誘導電流が供給される。 When force is applied to the power generation apparatus 100, when the permanent magnet 120 moves in the arrow X1 direction with respect to the support 110, the planar coil 114a generates an induced current in the arrow A direction by electromagnetic induction as shown in FIG. In the planar coil 114b, an induced current in the direction of arrow B is generated by electromagnetic induction as shown in FIG. Therefore, an induced current in the C direction is supplied to the circuit unit 116 as shown in FIG. Further, when the permanent magnet 120 moves in the direction of the arrow X2 with respect to the support 110, the planar coil 114a generates an induced current in the direction of arrow B by electromagnetic induction, and the planar coil 114b generates in the direction of the arrow A by electromagnetic induction. An induced current is generated. For this reason, the induced current in the direction opposite to the C direction is supplied to the circuit unit 116.
 また、文献2には、電磁誘導型の発電装置(power generator)を備えたワイヤレススイッチ(wireless switch)が記載されている。 Also, Document 2 describes a wireless switch equipped with an electromagnetic induction type power generator (power generator).
 文献2には、図28に示すように、多極磁石(multipole magnet)202と、電磁誘導により誘電電流が発生する導体(conductor)204を含む多層プリント基板(multilayer circuitboard)206と、サスペンションシート(suspension sheet)200とを備えた発電装置(power generator)が記載されている。サスペンションシート200は、4つのたわみ部(flexures)208に結合されており、ばね-マス系構造(spring-massstructure)が形成されている。なお、図28中の矢印210は、サスペンションシート200の振動方向を示している。 In Document 2, as shown in FIG. 28, a multipole magnet 202, a multilayer printed circuit board 206 including a conductor 204 that generates a dielectric current by electromagnetic induction, a suspension sheet ( A power generator including a suspension sheet 200 is described. The suspension seat 200 is coupled to four flexures 208 to form a spring-massstructure. Note that an arrow 210 in FIG. 28 indicates the vibration direction of the suspension seat 200.
 また、文献2には、図29に示す構造が記載されている。この構造は、基板(substrate)1202と、2つのサスペンション(suspension)1210によって基板1202から浮かせたプルーフマス(proofmass)1208と、2つのサスペンション(suspension)1210と、基板1202に固定された回転ダイヤル(rotary dial)1200とを備えている。また、この構造は、回転ダイヤル1200が回転したときに回転する多葉カム(multi-lobed cam)1204と、多葉カム1204により押されるフォロア(follower)1206とを備えている。フォロア1206は、プルーフマス1208に結合されている。サスペンション1210は、中央部1212でフォロア1206とプルーフマス1208とに結合されている。また、サスペンション1210は、端部1214が基板1202に結合されている。多葉カム1204は、フォロア1206を変位させ当該変位させた後でプルーフマス1208を作動させる。これにより、この構造は、回転ダイヤル1200を使ってプルーフマス1208を作動させることができる。 Further, Document 2 describes the structure shown in FIG. This structure includes a substrate 1202, a proof mass 1208 floated from the substrate 1202 by two suspensions 1210, two suspensions 1210, and a rotary dial ( rotary dial) 1200. This structure also includes a multi-lobed cam 1204 that rotates when the rotary dial 1200 rotates, and a follower 1206 that is pushed by the multi-leaf cam 1204. The follower 1206 is coupled to the proof mass 1208. The suspension 1210 is coupled to the follower 1206 and the proof mass 1208 at the central portion 1212. The suspension 1210 has an end 1214 coupled to the substrate 1202. The multi-leaf cam 1204 displaces the follower 1206 and operates the proof mass 1208 after the displacement. This structure thus allows the proof mass 1208 to be actuated using the rotary dial 1200.
 文献2に記載された発電装置では、例えば、サスペンションシート200と4つのたわみ部208との代わりに、図29の構造のプルーフマス1208と2つのサスペンション1210とを採用し、回転ダイヤル1200、多葉カム1204、フォロア1206を設けることが考えられる。 In the power generation device described in Document 2, for example, a proof mass 1208 and two suspensions 1210 having the structure shown in FIG. It is conceivable to provide a cam 1204 and a follower 1206.
 また、文献2には、図30に示すような電力マネジメント回路(powermanagement circuit)700が記載されている。この電力マネジメント回路700は、ダイオード整流器(diode rectifier)702と、コンデンサ704と、DC-DCコンバータ706と、バッテリ708と、電子負荷(electronic load)710とからなる。 Also, Document 2 describes a power management circuit 700 as shown in FIG. The power management circuit 700 includes a diode rectifier 702, a capacitor 704, a DC-DC converter 706, a battery 708, and an electronic load 710.
 また、文献2には、図31に示すように、プルーフマスを作動させた後に発生する電圧と時間との関係のグラフが記載されている。 Further, in Document 2, as shown in FIG. 31, a graph of the relationship between the voltage generated after operating the proof mass and time is described.
 上述の発電装置100は、永久磁石120と平面コイル114aおよび114bとが支持体110の厚み方向において間隔を隔てて対向配置されている。また、発電装置100は、一対のコイルバネ130により、支持体110に対して永久磁石120が矢印X1方向(矢印X2方向)において所定の基準位置に配置されるように付勢されている。しかしながら、このような発電装置100では、矢印Z1方向へコイルバネ130の中間部が変位可能であると推考される。このため、発電装置100では、永久磁石120の厚み方向の振動に起因して上述の間隔が変動し、発電特性が不安定となったり、発電効率が低下する懸念がある。つまり、発電装置100のようなエネルギ変換装置では、エネルギ変換特性が不安定となったり、エネルギ変換効率が低下する懸念がある。また、発電装置100は、上述の間隔を狭くすると、永久磁石120が平面コイル114aおよび114bに接触してしまう懸念がある。 In the above-described power generation apparatus 100, the permanent magnet 120 and the planar coils 114a and 114b are disposed to face each other with a gap in the thickness direction of the support 110. Further, the power generation apparatus 100 is biased by the pair of coil springs 130 so that the permanent magnet 120 is disposed at a predetermined reference position in the arrow X1 direction (arrow X2 direction) with respect to the support 110. However, in such a power generation device 100, it is assumed that the intermediate portion of the coil spring 130 can be displaced in the direction of the arrow Z1. For this reason, in the electric power generating apparatus 100, there exists a possibility that the above-mentioned space | interval will fluctuate | deviate due to the vibration of the permanent magnet 120 in the thickness direction, an electric power generation characteristic may become unstable, or electric power generation efficiency may fall. That is, in an energy conversion device such as the power generation device 100, there is a concern that the energy conversion characteristics become unstable or the energy conversion efficiency decreases. Moreover, when the above-mentioned space | interval is narrowed, there exists a possibility that the permanent magnet 120 may contact the planar coils 114a and 114b.
 また、上述の発電装置100は、プリント基板112の開口部112aの側面112bと永久磁石120とが接することで矢印Y1方向(矢印Y2方向)に対する永久磁石120の移動が規制されているものと推考される。しかしながら、このような場合には、永久磁石120が矢印X1方向(矢印X2方向)に振動する際に摺動抵抗が生じて発電効率が低下してしまうものと考えられる。 In addition, it is assumed that the power generation device 100 described above restricts the movement of the permanent magnet 120 in the direction of the arrow Y1 (the direction of the arrow Y2) when the side surface 112b of the opening 112a of the printed circuit board 112 is in contact with the permanent magnet 120. Is done. However, in such a case, it is considered that when the permanent magnet 120 vibrates in the direction of the arrow X1 (the direction of the arrow X2), sliding resistance is generated and power generation efficiency is reduced.
 また、文献2に記載された発電装置では、上述のように、回転ダイヤル1200を使ってプルーフマス1208を作動させることができる。しかしながら、上述のパワーマネジメント回路700では、発電装置のプルーフマス1208が減衰振動するので出力電圧が時間経過とともに減衰する一方で、ダイオード整流器702の2個のダイオードD1,D4又はD2,D3での電圧損失(順方向電圧降下)が生じる。このため、上述のパワーマネジメント回路700では、DC-DCコンバータ706の入力電圧が低くなりすぎることが考えられる。 In the power generation device described in Document 2, the proof mass 1208 can be operated using the rotary dial 1200 as described above. However, in the power management circuit 700 described above, the proof mass 1208 of the power generator dampens and vibrates, so that the output voltage attenuates over time, while the voltage at the two diodes D1, D4 or D2, D3 of the diode rectifier 702 Loss (forward voltage drop) occurs. For this reason, in the power management circuit 700 described above, it is conceivable that the input voltage of the DC-DC converter 706 becomes too low.
 本発明は上記事由に鑑みて為されたものであり、その目的は、可動部を変位させて作動させることが可能であり、且つ、エネルギ変換効率の向上を図ることが可能なエネルギ変換装置を提供することにある。 The present invention has been made in view of the above reasons, and an object of the present invention is to provide an energy conversion device that can be operated by displacing a movable part and that can improve energy conversion efficiency. It is to provide.
 本発明に係る第1の形態のエネルギ変換装置は、振動発電装置と、整流回路と、を備える。前記振動発電装置は、対向方向において互いに対向する磁石ブロック及びコイルブロックを有し、前記対向方向に直交する規定方向における前記磁石ブロックに対するコイルブロックの相対変位に起因する電磁誘導によって交流電圧を出力するように構成される。前記整流回路は、前記振動発電装置から出力される前記交流電圧を整流して出力するように構成される。前記振動発電装置は、前記磁石ブロックと前記コイルブロックとの一方を備える可動部と、前記可動部が内側に配置される支持部と、前記可動部を前記支持部に連結する複数の弾性体部と、を備える。前記複数の弾性体部は、前記規定方向における前記可動部の両側の各々に前記規定方向に直交する方向に沿って並べて配置される。前記複数の弾性体部の各々は、前記規定方向に直交する方向より前記規定方向において変形しやすく構成される。前記整流回路は、前記振動発電装置から出力される前記交流電圧の極性が正のときと負のときとで互いに異なるコンデンサが充電される倍電圧整流回路である。 The energy conversion device according to the first aspect of the present invention includes a vibration power generation device and a rectifier circuit. The vibration power generator includes a magnet block and a coil block facing each other in a facing direction, and outputs an alternating voltage by electromagnetic induction caused by relative displacement of the coil block with respect to the magnet block in a specified direction orthogonal to the facing direction. Configured as follows. The rectifier circuit is configured to rectify and output the AC voltage output from the vibration power generator. The vibration power generation apparatus includes a movable portion including one of the magnet block and the coil block, a support portion on which the movable portion is disposed inside, and a plurality of elastic body portions that connect the movable portion to the support portion. And comprising. The plurality of elastic body portions are arranged side by side along a direction orthogonal to the prescribed direction on each of both sides of the movable portion in the prescribed direction. Each of the plurality of elastic body portions is configured to be easily deformed in the prescribed direction from a direction orthogonal to the prescribed direction. The rectifier circuit is a voltage doubler rectifier circuit in which different capacitors are charged depending on whether the polarity of the AC voltage output from the vibration power generator is positive or negative.
 本発明に係る第2の形態のエネルギ変換装置では、第1の形態において、前記弾性体部は、ばねである。 In the energy conversion device according to the second aspect of the present invention, in the first aspect, the elastic body portion is a spring.
 本発明に係る第3の形態のエネルギ変換装置では、第1または第2の形態において、前記倍電圧整流回路は、両波倍電圧整流回路である。 In the energy conversion device according to the third aspect of the present invention, in the first or second aspect, the voltage doubler rectifier circuit is a double wave voltage doubler rectifier circuit.
 本発明に係る第4の形態のエネルギ変換装置では、第1または第2の形態において、前記倍電圧整流回路は、コッククロフト-ウォルトン回路である。 In the energy conversion device according to the fourth aspect of the present invention, in the first or second aspect, the voltage doubler rectifier circuit is a Cockcroft-Walton circuit.
 本発明に係る第5の形態のエネルギ変換装置では、第1~第4の形態のいずれか1つにおいて、前記整流回路から出力される電圧を定電圧化するDC-DCコンバータを備える。 In the energy conversion device according to the fifth aspect of the present invention, in any one of the first to fourth aspects, a DC-DC converter that converts the voltage output from the rectifier circuit to a constant voltage is provided.
実施形態1のエネルギ変換装置の回路図である。1 is a circuit diagram of an energy conversion device according to Embodiment 1. FIG. 実施形態1のエネルギ変換装置における振動発電装置の概略断面図である。It is a schematic sectional drawing of the vibration electric power generating apparatus in the energy converter of Embodiment 1. 実施形態1のエネルギ変換装置の要部概略平面図である。It is a principal part schematic plan view of the energy converter of Embodiment 1. FIG. 実施形態1のエネルギ変換装置における振動発電装置の要部拡大図である。It is a principal part enlarged view of the vibration electric power generating apparatus in the energy converter of Embodiment 1. 実施形態1のエネルギ変換装置における振動発電装置の概略斜視図である。1 is a schematic perspective view of a vibration power generation device in an energy conversion device according to Embodiment 1. FIG. 実施形態1のエネルギ変換装置における振動発電装置の概略分解斜視図である。1 is a schematic exploded perspective view of a vibration power generator in an energy conversion device according to a first embodiment. 実施形態1のエネルギ変換装置における振動発電装置の動作説明図である。FIG. 3 is an operation explanatory diagram of the vibration power generation device in the energy conversion device of the first embodiment. 実施形態1のエネルギ変換装置における振動発電装置の動作説明図である。FIG. 3 is an operation explanatory diagram of the vibration power generation device in the energy conversion device of the first embodiment. 実施形態1のエネルギ変換装置における振動発電装置の出力電圧の波形図である。It is a wave form diagram of the output voltage of the vibration power generator in the energy converter of Embodiment 1. 実施形態1のエネルギ変換装置の動作説明図である。It is operation | movement explanatory drawing of the energy converter of Embodiment 1. FIG. 実施形態1のエネルギ変換装置の動作説明図である。It is operation | movement explanatory drawing of the energy converter of Embodiment 1. FIG. 実施形態1のエネルギ変換装置における整流回路の他の構成例を示す回路図である。It is a circuit diagram which shows the other structural example of the rectifier circuit in the energy converter of Embodiment 1. 実施形態1のエネルギ変換装置における整流回路の別の構成例を示す回路図である。It is a circuit diagram which shows another structural example of the rectifier circuit in the energy converter of Embodiment 1. 実施形態1のエネルギ変換装置の他の構成例を示す回路図である。It is a circuit diagram which shows the other structural example of the energy conversion apparatus of Embodiment 1. 実施形態2のエネルギ変換装置の回路図である。It is a circuit diagram of the energy conversion device of Embodiment 2. 実施形態2のエネルギ変換装置における振動発電装置の概略断面図である。It is a schematic sectional drawing of the vibration electric power generating apparatus in the energy converter of Embodiment 2. 実施形態2のエネルギ変換装置の要部概略平面図である。It is a principal part schematic plan view of the energy converter of Embodiment 2. 実施形態2のエネルギ変換装置における振動発電装置の概略斜視図である。It is a schematic perspective view of the vibration electric power generating apparatus in the energy converter of Embodiment 2. 実施形態2のエネルギ変換装置における振動発電装置の概略分解斜視図である。FIG. 5 is a schematic exploded perspective view of a vibration power generator in the energy conversion device according to the second embodiment. 実施形態2のエネルギ変換装置における入力機構の構成例の説明図である。It is explanatory drawing of the structural example of the input mechanism in the energy conversion apparatus of Embodiment 2. FIG. 実施形態2のエネルギ変換装置の動作説明図である。It is operation | movement explanatory drawing of the energy converter of Embodiment 2. FIG. 実施形態2のエネルギ変換装置の動作説明図である。It is operation | movement explanatory drawing of the energy converter of Embodiment 2. FIG. 実施形態2のエネルギ変換装置の動作説明図である。It is operation | movement explanatory drawing of the energy converter of Embodiment 2. FIG. 実施形態2のエネルギ変換装置の動作説明図である。It is operation | movement explanatory drawing of the energy converter of Embodiment 2. FIG. 従来例の発電装置の構造を示した断面図である。It is sectional drawing which showed the structure of the power generator of a prior art example. 図16に示した発電装置の構造を説明するための平面図である。It is a top view for demonstrating the structure of the electric power generating apparatus shown in FIG. 図16に示した発電装置の構造を説明するための図である。It is a figure for demonstrating the structure of the electric power generating apparatus shown in FIG. 他の従来例の発電装置の概略分解斜視図である。It is a general | schematic disassembled perspective view of the electric power generating apparatus of another prior art example. 他の従来例の回転ダイヤルを使ってプルーフマスを作動させるための構造の説明図である。It is explanatory drawing of the structure for operating a proof mass using the rotary dial of another prior art example. 他の従来例における電力マネジメント回路の回路図である。It is a circuit diagram of the power management circuit in another conventional example. 他の従来例におけるプルーフマスを作動させた後に発生する電圧と時間との関係のグラフである。It is a graph of the relationship between the voltage which generate | occur | produces after operating the proof mass in another prior art example, and time.
 (実施形態1)
 以下では、本実施形態のエネルギ変換装置1について図1~図11に基づいて説明する。
(Embodiment 1)
Hereinafter, the energy conversion device 1 of the present embodiment will be described with reference to FIGS.
 エネルギ変換装置1は、電磁誘導型の振動発電装置EHと、整流回路71とを備えている。 The energy conversion device 1 includes an electromagnetic induction type vibration power generation device EH and a rectifier circuit 71.
 振動発電装置EHは、対向方向において互いに対向する磁石ブロック3及びコイルブロック4を有し、対向方向に直交する規定方向における磁石ブロック3に対するコイルブロック4の相対変位に起因する電磁誘導によって交流電圧(発電電圧)を出力するように構成される。 The vibration power generator EH includes a magnet block 3 and a coil block 4 that face each other in the facing direction, and an AC voltage (by an electromagnetic induction caused by relative displacement of the coil block 4 with respect to the magnet block 3 in a specified direction orthogonal to the facing direction. The power generation voltage) is output.
 振動発電装置EHは、可動部12と、可動部12が内側に配置される支持部14と、可動部12を支持部14に連結する複数の弾性体部15と、を備える。磁石ブロック3及びコイルブロック4の一方は可動部12に取り付けられ、磁石ブロック3及びコイルブロック4の他方は(直接的または間接的に)支持部14に取り付けられる。本実施形態では、磁石ブロック3が可動部12に取り付けられ、コイルブロック4は、第1キャップ21および第2キャップ31を用いて支持部14に取り付けられている。 The vibration power generation apparatus EH includes a movable portion 12, a support portion 14 on which the movable portion 12 is disposed, and a plurality of elastic body portions 15 that couple the movable portion 12 to the support portion 14. One of the magnet block 3 and the coil block 4 is attached to the movable part 12, and the other of the magnet block 3 and the coil block 4 is attached to the support part 14 (directly or indirectly). In the present embodiment, the magnet block 3 is attached to the movable portion 12, and the coil block 4 is attached to the support portion 14 using the first cap 21 and the second cap 31.
 以下、振動発電装置EHについてさらに詳細に説明する。振動発電装置EHは、磁石2を備えた磁石ブロック3と、コイル4aを備えたコイルブロック4とを有し、磁石ブロック3とコイルブロック4とが対向配置されている。この振動発電装置EHは、磁石ブロック3とコイルブロック4とが対向方向に直交する規定方向において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換する。なお、本実施形態における振動発電装置EHでは、図2の上下方向が上記対向方向であり、図2の左右方向を規定方向である。 Hereinafter, the vibration power generator EH will be described in more detail. The vibration power generation device EH includes a magnet block 3 including a magnet 2 and a coil block 4 including a coil 4a, and the magnet block 3 and the coil block 4 are disposed to face each other. This vibration power generation device EH converts kinetic energy into electrical energy by electromagnetic induction generated when the magnet block 3 and the coil block 4 are relatively displaced in a specified direction orthogonal to the opposing direction. In the vibration power generator EH in the present embodiment, the up-down direction in FIG. 2 is the facing direction, and the left-right direction in FIG. 2 is the specified direction.
 振動発電装置EHは、磁石ブロック3を備えた可動部12を外部から作動させ可動部12を減衰振動させることが可能なものである。つまり、振動発電装置EHは、可動部12の規定方向への振動(減衰振動)に伴って発生する電磁誘導によって交流電圧を出力する。 The vibration power generation apparatus EH can operate the movable part 12 including the magnet block 3 from the outside to dampen and vibrate the movable part 12. That is, the vibration power generation apparatus EH outputs an alternating voltage by electromagnetic induction generated with vibration (damped vibration) in the specified direction of the movable portion 12.
 振動発電装置EHは、可動部12と、支持部14と、可動部12と支持部14とを接続している弾性体部15とを備えている。弾性体部15は、上記規定方向において、可動部12と支持部14とを連結している。これにより、振動発電装置EHは、可動部12が上記規定方向に振動可能となっている。 The vibration power generation device EH includes a movable portion 12, a support portion 14, and an elastic body portion 15 that connects the movable portion 12 and the support portion 14. The elastic body portion 15 connects the movable portion 12 and the support portion 14 in the prescribed direction. Thereby, in the vibration power generator EH, the movable portion 12 can vibrate in the specified direction.
 弾性体部15は、上記規定方向における剛性が上記規定方向に直交する方向の剛性に比べて小さい。つまり、弾性体部15は、上記規定方向に直交する方向より上記規定方向において変形しやすく構成されている。これにより、エネルギ変換装置1は、可動部12の振動方向を上記規定方向に単方向化することが可能となる。 The elastic body portion 15 has a smaller rigidity in the specified direction than that in a direction orthogonal to the specified direction. That is, the elastic body portion 15 is configured to be easily deformed in the specified direction from the direction orthogonal to the specified direction. Thereby, the energy conversion device 1 can make the vibration direction of the movable part 12 unidirectional in the specified direction.
 振動発電装置EHは、上述の可動部12と支持部14と各弾性体部15とを有する振動ブロック11を備えている。 The vibration power generation apparatus EH includes the vibration block 11 having the above-described movable portion 12, the support portion 14, and each elastic body portion 15.
 ここで、振動ブロック11は、可動部12の重心を原点とする直交座標を仮定し、上記規定方向に沿ってx軸の正方向を決め、振動ブロック11の平面視において上記規定方向に直交する方向に沿ってy軸の正方向を決め、可動部12の厚み方向に沿って上記規定方向に直交するz軸の正方向を決めれば、可動部12の振動方向をx軸の正負方向に単方向化することが可能となり、y軸の正負方向やz軸の正負方向への振動成分を抑制することが可能となる。 Here, the vibration block 11 assumes orthogonal coordinates with the center of gravity of the movable part 12 as the origin, determines the positive direction of the x axis along the prescribed direction, and is orthogonal to the prescribed direction in plan view of the vibration block 11. If the positive direction of the y-axis is determined along the direction, and the positive direction of the z-axis orthogonal to the prescribed direction is determined along the thickness direction of the movable part 12, the vibration direction of the movable part 12 is simply set in the positive / negative direction of the x-axis. It becomes possible to make the direction, and vibration components in the positive and negative directions of the y axis and the positive and negative directions of the z axis can be suppressed.
 したがって、振動発電装置EHは、図3でみれば、可動部12の振動方向が上記規定方向である左右方向に単方向化され、図3の上下方向や可動部12の厚み方向(図3の紙面に直交する方向)などへの振動が抑制される。よって、振動発電装置EHは、不要な振動成分の発生を抑制することが可能となり、エネルギ変換効率の向上を図ることが可能となる。 Therefore, in the vibration power generation device EH, the vibration direction of the movable portion 12 is unidirectional in the left-right direction, which is the prescribed direction, as shown in FIG. 3, and the vertical direction in FIG. 3 and the thickness direction of the movable portion 12 (in FIG. Vibration in the direction perpendicular to the paper surface) is suppressed. Therefore, the vibration power generation apparatus EH can suppress the generation of unnecessary vibration components, and can improve the energy conversion efficiency.
 また、振動発電装置EHは、図2および図5に示すように、振動ブロック11の厚み方向の一面側(図2における上面側)に配置される第1キャップ21と、振動ブロック11の厚み方向の他面側(図2における下面側)に配置される第2キャップ31とを備えている。 Further, as shown in FIGS. 2 and 5, the vibration power generation device EH includes a first cap 21 disposed on one surface side in the thickness direction of the vibration block 11 (upper surface side in FIG. 2), and a thickness direction of the vibration block 11. And a second cap 31 disposed on the other surface side (the lower surface side in FIG. 2).
 振動発電装置EHは、第1キャップ21および第2キャップ31の各々に、上述のコイルブロック4が保持されている。また、振動発電装置EHは、第1キャップ21と振動ブロック11との間に配置された第1スペーサ41と、第2キャップ31と振動ブロック11との間に配置された第2スペーサ42とを備えている。 In the vibration power generator EH, the above-described coil block 4 is held in each of the first cap 21 and the second cap 31. In addition, the vibration power generator EH includes a first spacer 41 disposed between the first cap 21 and the vibration block 11 and a second spacer 42 disposed between the second cap 31 and the vibration block 11. I have.
 整流回路71は、振動発電装置EHから出力される交流電圧を整流する。整流回路71は、振動発電装置EHから出力される交流電圧の極性が正のときと負のときとで互いに異なるコンデンサ(ここでは、コンデンサC11,C12)が充電される倍電圧整流回路である。つまり、整流回路71は、振動発電装置EHの交流電圧のピーク値の整数倍の電圧を出力する倍電圧整流回路である。 The rectifier circuit 71 rectifies the AC voltage output from the vibration power generator EH. The rectifier circuit 71 is a voltage doubler rectifier circuit in which different capacitors (here, capacitors C11 and C12) are charged depending on whether the polarity of the AC voltage output from the vibration power generator EH is positive or negative. That is, the rectifier circuit 71 is a voltage doubler rectifier circuit that outputs a voltage that is an integral multiple of the peak value of the AC voltage of the vibration power generator EH.
 整流回路71は、図1に示すように、振動発電装置EHの交流電圧の極性が正の時に充電される第1容量回路(コンデンサC11)と、振動発電装置EHの交流電圧の極性が負のときに充電される第2容量回路(コンデンサC12)と、を備え、第1容量回路と第2容量回路との合計電圧を出力する。 As shown in FIG. 1, the rectifier circuit 71 includes a first capacitor circuit (capacitor C11) that is charged when the polarity of the AC voltage of the vibration power generator EH is positive, and the polarity of the AC voltage of the vibration power generator EH is negative. A second capacitance circuit (capacitor C12) that is sometimes charged, and outputs a total voltage of the first capacitance circuit and the second capacitance circuit.
 つまり、本実施形態における整流回路71は、両波倍電圧整流回路であり、ダイオードD11とコンデンサC11との組み合わせにより、振動発電装置EHから出力される交流電圧の極性が正のときにコンデンサC11を充電することが可能となる。また、本実施形態における整流回路71は、ダイオードD12とコンデンサC12との組み合わせにより、振動発電装置EHから出力される交流電圧の極性が負のときにコンデンサC12を充電することが可能となる。 That is, the rectifier circuit 71 in the present embodiment is a double-wave voltage doubler rectifier circuit. When the polarity of the AC voltage output from the vibration power generator EH is positive by the combination of the diode D11 and the capacitor C11, the capacitor C11 is changed. It becomes possible to charge. In addition, the rectifier circuit 71 in the present embodiment can charge the capacitor C12 when the polarity of the AC voltage output from the vibration power generator EH is negative by the combination of the diode D12 and the capacitor C12.
 次に、エネルギ変換装置1の各構成要素について詳細に説明する。 Next, each component of the energy conversion device 1 will be described in detail.
 振動ブロック11は、支持部14の平面視形状を枠状としてある。また、振動ブロック11は、支持部14の内側に可動部本体13が配置されている。この可動部本体13は、支持部14の内側面から離れて配置されている。また、振動ブロック11は、上記規定方向において可動部本体13の両側に弾性体部15が配置されている。また、振動ブロック11は、可動部本体13の平面視形状を枠状としてあり、可動部本体13の内側に磁石ブロック3が配置されている。磁石ブロック3は、可動部本体13に固定されている。 The vibration block 11 has a frame shape in plan view of the support portion 14. In the vibration block 11, the movable portion main body 13 is disposed inside the support portion 14. The movable portion main body 13 is disposed away from the inner surface of the support portion 14. The vibration block 11 has elastic body portions 15 disposed on both sides of the movable portion main body 13 in the specified direction. The vibration block 11 has a frame shape in plan view of the movable part main body 13, and the magnet block 3 is disposed inside the movable part main body 13. The magnet block 3 is fixed to the movable part main body 13.
 可動部本体13の内周形状は、矩形状である。磁石ブロック3の外周形状は、可動部本体13の内周形状よりも若干小さな矩形状としてある。磁石ブロック3を可動部本体13に固定する方法としては、例えば、接着剤により固定する方法を採用することができる。この場合には、磁石ブロック3の外周面と可動部本体13の内側面との間に接着剤からなる接合部が介在することになる。磁石ブロック3を可動部本体13に固定する方法は、これに限らず、例えば、磁石ブロック3と可動部本体13との間の隙間に別部材を圧入することで固定する方法などを採用することができる。また、磁石ブロック3を可動部本体13に固定する方法は、可動部本体13の外側面側から螺子により固定する方法を採用することもできる。 The inner peripheral shape of the movable part main body 13 is a rectangular shape. The outer peripheral shape of the magnet block 3 is a rectangular shape slightly smaller than the inner peripheral shape of the movable part main body 13. As a method of fixing the magnet block 3 to the movable part main body 13, for example, a method of fixing with an adhesive can be employed. In this case, a bonding portion made of an adhesive is interposed between the outer peripheral surface of the magnet block 3 and the inner surface of the movable portion main body 13. The method of fixing the magnet block 3 to the movable part main body 13 is not limited to this, and for example, a method of fixing by pressing another member into the gap between the magnet block 3 and the movable part main body 13 is adopted. Can do. Moreover, the method of fixing the magnet block 3 to the movable part main body 13 can also employ | adopt the method of fixing with a screw from the outer surface side of the movable part main body 13. FIG.
 可動部本体13と磁石ブロック3とで構成される可動部12の平面視形状は、八角形状としてある。可動部12の平面視形状は、八角形状に限らず、例えば、矩形状の形状としてもよい。振動ブロック11では、可動部本体13の外周形状および内周形状それぞれが大きさの異なる矩形状となっていてもよい。また、可動部12の平面視形状は、例えば、円形状や正多角形状としてもよい。 The planar view shape of the movable part 12 composed of the movable part main body 13 and the magnet block 3 is an octagonal shape. The planar view shape of the movable part 12 is not limited to the octagonal shape, and may be a rectangular shape, for example. In the vibration block 11, the outer peripheral shape and the inner peripheral shape of the movable portion main body 13 may be rectangular shapes having different sizes. Moreover, the planar view shape of the movable part 12 is good also as circular shape and a regular polygon shape, for example.
 磁石ブロック3は、複数個(例えば、4個)の磁石2(2A,2B,2C,2D)を備えており、これら複数個の磁石2が上記規定方向に並んで配置されている。本実施形態では、4つの磁石2A,2B,2C,2Dが規定方向に沿ってこの順で並んでいる。つまり、磁石ブロック3は、複数個の磁石2がアレイ状に配置されている。磁石2は、永久磁石により構成することが好ましい。永久磁石の材料としては、例えば、ネオジム(NdFeB)、サマリウムコバルト(SmCo)、アルニコ(Al-Ni-Co)、フェライトなどを採用することができる。 The magnet block 3 includes a plurality of (for example, four) magnets 2 (2A, 2B, 2C, 2D), and the plurality of magnets 2 are arranged side by side in the prescribed direction. In the present embodiment, the four magnets 2A, 2B, 2C, 2D are arranged in this order along the prescribed direction. That is, the magnet block 3 has a plurality of magnets 2 arranged in an array. The magnet 2 is preferably composed of a permanent magnet. As a material for the permanent magnet, for example, neodymium (NdFeB), samarium cobalt (SmCo), alnico (Al—Ni—Co), ferrite, or the like can be employed.
 磁石2は、短冊状に形成されている。また、磁石2は、厚み方向の一面側がN極、他面側がS極となるように着磁されている。磁石2を構成する永久磁石は、例えば、磁石材料を切削、研磨などで整形加工した後、パルス着磁法などによって着磁することにより、形成することができる。 The magnet 2 is formed in a strip shape. The magnet 2 is magnetized so that one surface side in the thickness direction is an N pole and the other surface side is an S pole. The permanent magnet constituting the magnet 2 can be formed by, for example, shaping a magnet material by cutting, polishing, etc., and then magnetizing it by a pulse magnetization method or the like.
 上述の複数個の磁石2は、各磁石2の幅方向が上記規定方向に一致するように配置されている。また、磁石ブロック3は、この磁石ブロック3の厚み方向の両面側それぞれで、上記規定方向においてN極とS極とが交互に並ぶように、複数個の磁石2が配置されている。図2に示すように、可動部12の厚み方向の一面側(図2の上面側)では、磁石2A,2CがN極、磁石2B,2DがS極となっている。要するに、磁石ブロック3は、上記規定方向において隣り合う磁石2同士の磁化の向きを逆向きとしてある。なお、磁石ブロック3は、複数個の磁石2が1次元のアレイ状に配置されているが、これに限らず、例えば、2次元のアレイ状に配置された構成としてもよい。 The plurality of magnets 2 are arranged so that the width direction of each magnet 2 coincides with the specified direction. In the magnet block 3, a plurality of magnets 2 are arranged so that N poles and S poles are alternately arranged in the prescribed direction on both sides in the thickness direction of the magnet block 3. As shown in FIG. 2, on one surface side of the movable portion 12 in the thickness direction (upper surface side in FIG. 2), the magnets 2A and 2C are N poles, and the magnets 2B and 2D are S poles. In short, in the magnet block 3, the magnetization directions of the magnets 2 adjacent to each other in the prescribed direction are reversed. The magnet block 3 has a plurality of magnets 2 arranged in a one-dimensional array. However, the present invention is not limited to this. For example, the magnet block 3 may be arranged in a two-dimensional array.
 振動ブロック11は、可動部本体13と支持部14と各弾性体部15とを、例えば、基板10から形成することができる。この基板10としては、磁力線に対して低減衰で且つ電気絶縁性を有する絶縁性基板が好ましく、例えば、高抵抗率のシリコン基板を用いることができる。これにより、振動ブロック11は、可動部本体13、支持部14および各弾性体部15の材料がシリコンとなる。 The vibration block 11 can form the movable part main body 13, the support part 14, and each elastic body part 15 from the substrate 10, for example. The substrate 10 is preferably an insulating substrate having a low attenuation with respect to the lines of magnetic force and having an electrical insulating property. For example, a silicon substrate having a high resistivity can be used. Thereby, in the vibration block 11, the material of the movable part main body 13, the support part 14, and each elastic body part 15 is silicon.
 このような振動ブロック11は、例えば、MEMS(micro electro mechanical systems)の製造技術を利用して製造することができる。この場合、振動ブロック11では、可動部本体13、支持部14および各弾性体部15を一体に形成することができる。要するに、振動ブロック11は、可動部本体13と支持部14と各弾性体部15とが、1枚のシリコン基板から一体に形成された構成とすることができる。これにより、振動発電装置EHの製造時には、振動ブロック11を形成する際に、可動部本体13、支持部14および各弾性体部15のアセンブリ工程が不要となり、製造が容易になる。 Such a vibration block 11 can be manufactured by using, for example, a manufacturing technology of MEMS (micro electro mechanical systems). In this case, in the vibration block 11, the movable part main body 13, the support part 14, and each elastic body part 15 can be formed integrally. In short, the vibration block 11 can be configured such that the movable portion main body 13, the support portion 14, and the elastic body portions 15 are integrally formed from a single silicon substrate. As a result, when the vibration power generation apparatus EH is manufactured, when the vibration block 11 is formed, the assembly process of the movable portion main body 13, the support portion 14, and each elastic body portion 15 becomes unnecessary, and the manufacture becomes easy.
 また、各弾性体部15と可動部本体13および支持部14とが接着用の樹脂からなる接続部で接続されている場合には、振動時に振動エネルギが接続部において熱エネルギとなって損なわれる。これに対して、可動部本体13と支持部14と各弾性体部15とが、1枚のシリコン基板から一体に形成された構成では、各弾性体部15と可動部本体13および支持部14とが低減衰材料であるシリコンにより一体に形成されているので、振動時のエネルギ損失を低減することが可能となり、エネルギ変換効率を向上することが可能となる。 In addition, when each elastic body portion 15 and the movable portion main body 13 and the support portion 14 are connected by a connecting portion made of an adhesive resin, vibration energy is lost as thermal energy at the connecting portion during vibration. . On the other hand, in the configuration in which the movable body 13, the support 14, and each elastic body 15 are integrally formed from a single silicon substrate, each elastic body 15, the movable body 13, and the support 14. Are integrally formed of silicon, which is a low-damping material, so that energy loss during vibration can be reduced and energy conversion efficiency can be improved.
 なお、基板10の材料に関して、磁力線に対して影響を及ぼさないという点では、比透磁率が低いほうが好ましい。高抵抗率のシリコン基板は、例えば、抵抗率が100Ωcm以上であることが好ましく、1000Ωcm以上であることがより好ましい。 In addition, regarding the material of the substrate 10, it is preferable that the relative permeability is low in that it does not affect the magnetic field lines. For example, the high resistivity silicon substrate preferably has a resistivity of 100 Ωcm or more, and more preferably 1000 Ωcm or more.
 基板10は、高抵抗率のシリコン基板に限らず、例えば、高抵抗率のSOI(Silicon on Insulator)基板などを用いることができる。また、振動ブロック11は、基板10の材料や抵抗率に応じて、適宜の絶縁膜を設けてもよい。 The substrate 10 is not limited to a high resistivity silicon substrate, and for example, a high resistivity SOI (Silicon On Insulator) substrate can be used. The vibration block 11 may be provided with an appropriate insulating film according to the material and resistivity of the substrate 10.
 弾性体部15は、ばねであることが好ましい。つまり、弾性体部15は、ばね状に形成されている。これにより、振動発電装置EHは、弾性体部15の1個当たりの蓄積エネルギを大きくすることが可能となり、振動発電装置EHの小型化を図ることが可能となる。 The elastic body portion 15 is preferably a spring. That is, the elastic body portion 15 is formed in a spring shape. As a result, the vibration power generation apparatus EH can increase the stored energy per elastic body portion 15, and the vibration power generation apparatus EH can be reduced in size.
 弾性体部15は、上記規定方向における可動部12の両側の各々に、複数個(例えば、5個)ずつ並んで設けられていることが好ましい。つまり、複数の弾性体部15は、上記規定方向における可動部12の両側の各々に上記規定方向に直交する方向に沿って並べて配置される。これにより、振動発電装置EHは、可動部12の両側の各々に弾性体部15が1個ずつ設けられている場合に比べて、可動部12の振動方向の更なる単方向化が可能となり、エネルギ変換効率の更なる向上を図ることが可能となる。更に、振動発電装置EHは、個々の弾性体部15にかかる応力を低減することが可能となり、耐久性の向上を図ることが可能となる。可動部12の両側の弾性体部15の数は、特に5個に限定するものではない。 It is preferable that a plurality of (for example, five) elastic body portions 15 are provided side by side on both sides of the movable portion 12 in the prescribed direction. That is, the plurality of elastic body portions 15 are arranged side by side along a direction orthogonal to the prescribed direction on each side of the movable portion 12 in the prescribed direction. Thereby, the vibration power generator EH can further unidirectionally change the vibration direction of the movable portion 12 as compared with the case where one elastic body portion 15 is provided on each of both sides of the movable portion 12. It becomes possible to further improve the energy conversion efficiency. Furthermore, the vibration power generator EH can reduce the stress applied to each elastic body portion 15 and can improve durability. The number of elastic body portions 15 on both sides of the movable portion 12 is not particularly limited to five.
 弾性体部15を構成するばねの材料は、半導体であるシリコンや金属などを採用することができるが、金属よりもシリコンであることが好ましい。これにより、エネルギ変換装置1は、弾性体部15を構成するばねの材料が金属である場合に比べて、弾性体部15での振動減衰に起因した運動エネルギの損失を低減することが可能となるから、エネルギ変換効率の向上を図れる。 The material of the spring constituting the elastic body portion 15 may be silicon or metal which is a semiconductor, but is preferably silicon rather than metal. As a result, the energy conversion device 1 can reduce the loss of kinetic energy due to vibration damping in the elastic body portion 15 as compared with the case where the spring material constituting the elastic body portion 15 is a metal. Therefore, the energy conversion efficiency can be improved.
 弾性体部15の材料としては、シリコンに限らず、例えば、ステンレス(例えば、SUS304など)、鋼、銅、銅合金(真鍮、ベリリウム銅)、Ti合金、Al合金などを採用することができる。弾性体部15の材料は、対数減衰率の低い材料が好ましく、例えば、対数減衰率が0.04以下の材料が好ましい。 The material of the elastic body portion 15 is not limited to silicon, and for example, stainless steel (for example, SUS304), steel, copper, copper alloy (brass, beryllium copper), Ti alloy, Al alloy, or the like can be employed. The material of the elastic body portion 15 is preferably a material having a low logarithmic attenuation rate, for example, a material having a logarithmic attenuation rate of 0.04 or less.
 また、振動発電装置EHは、弾性体部15を構成するばねの材料がシリコンであれば、金属である場合に比べて、弾性体部15の耐久性を向上させることが可能となる。また、振動発電装置EHは、弾性体部15を構成するばねの材料が、シリコンであることにより、上述の基板10としてシリコン基板を採用し、MEMSなどの製造技術を利用して各々が基板10の一部からなる各弾性体部15を形成することが可能となる。これにより、振動発電装置EHは、ばねの形状の弾性体部15において厚み寸法W1(図4参照)に対する幅寸法H1(図2参照)の比で表されるアスペクト比を大きくすることが可能となる。MEMSなどの製造技術を利用する場合には、リソグラフィ技術およびエッチング技術を利用して基板10をバルクマイクロマシニングすることにより、ばね形状の弾性体部15の厚み寸法W1を高精度に制御することが可能となり、且つ、ばね形状の弾性体部15の幅寸法H1を基板10の厚みと同じ値とすることが可能となるから、アスペクト比の大きなばね形状の弾性体部15を寸法精度良く形成することが可能となる。 Further, in the vibration power generator EH, if the spring material constituting the elastic body portion 15 is silicon, it is possible to improve the durability of the elastic body portion 15 as compared with the case where it is a metal. Further, the vibration power generation apparatus EH employs a silicon substrate as the above-described substrate 10 because the material of the spring constituting the elastic body portion 15 is silicon, and each of the substrates 10 utilizes a manufacturing technique such as MEMS. It becomes possible to form each elastic body part 15 which consists of a part of. Thereby, the vibration power generator EH can increase the aspect ratio represented by the ratio of the width dimension H1 (see FIG. 2) to the thickness dimension W1 (see FIG. 4) in the elastic body portion 15 in the shape of a spring. Become. When manufacturing technology such as MEMS is used, the thickness dimension W1 of the spring-shaped elastic body portion 15 can be controlled with high accuracy by performing bulk micromachining of the substrate 10 using lithography technology and etching technology. It becomes possible, and the width dimension H1 of the spring-shaped elastic body portion 15 can be set to the same value as the thickness of the substrate 10. Therefore, the spring-shaped elastic body portion 15 having a large aspect ratio is formed with high dimensional accuracy. It becomes possible.
 なお、図1~図3に示した振動発電装置EHでは、弾性体部15の形状として、つづら折れ状のばねの形状を採用しており、ばね形状の弾性体部15の厚み寸法W1を0.4mm、幅寸法H1を1mmとしてある。この場合のアスペクト比は、2.5である。また、この一例の場合には、x軸方向の剛性が約2754N/m、y軸方向の剛性が約3267N/m、z軸方向の剛性が約3146N/mである。つまり、上記規定方向における剛性が上記規定方向に直交する方向の剛性に比べて小さい。 In the vibration power generation apparatus EH shown in FIGS. 1 to 3, the shape of the elastic body portion 15 is a spiral spring shape, and the thickness dimension W1 of the spring-shaped elastic body portion 15 is set to 0. .4 mm and the width dimension H1 is 1 mm. In this case, the aspect ratio is 2.5. In this example, the rigidity in the x-axis direction is about 2754 N / m, the rigidity in the y-axis direction is about 3267 N / m, and the rigidity in the z-axis direction is about 3146 N / m. That is, the rigidity in the specified direction is smaller than the rigidity in the direction orthogonal to the specified direction.
 ただし、これらの数値例は、図4に示すように、つづら折れ状のばね形状の弾性体部15自身において、折り返し箇所を2箇所だけ増やし、また、隣り合う部位同士の間隔をW3、x軸方向における弾性体部15全体の長さをX11、y軸方向における弾性体部15全体の長さをY11と規定し、W3=0.12mm、X11=7mm、Y11=7mmとした場合の値である。 However, in these numerical examples, as shown in FIG. 4, in the spring-shaped elastic body portion 15 itself, the number of folded portions is increased by two, and the interval between adjacent portions is set to W3, x-axis. The length of the entire elastic body portion 15 in the direction is defined as X11, the length of the entire elastic body portion 15 in the y-axis direction is defined as Y11, and W3 = 0.12 mm, X11 = 7 mm, and Y11 = 7 mm. is there.
 なお、剛性の測定に関しては、例えば、支持部14を冶具で固定した後、微小引張試験機、あるいはフォースゲージとμメータとを組み合わせたものを用い、可動部12に対してx軸方向、y軸方向およびz軸方向それぞれの力を加えたときの変位を測定することで、ばね定数を算出することができる。 Regarding the measurement of the stiffness, for example, after fixing the support portion 14 with a jig, a micro tensile tester or a combination of a force gauge and a μ meter is used, and the x-axis direction, y The spring constant can be calculated by measuring the displacement when a force in each of the axial direction and the z-axis direction is applied.
 振動発電装置EHは、弾性体部15が上記規定方向における可動部12の両側の各々に、複数個ずつ並んで設けられている場合、各複数個ずつの弾性体部15の全ての材料をシリコンとすることができる。振動ブロック11は、各複数個ずつの弾性体部15のうち少なくとも1個ずつの材料がシリコンであればよく、他の弾性体部15の材料を金属としてもよい。 In the vibration power generator EH, when a plurality of elastic body portions 15 are provided side by side on both sides of the movable portion 12 in the prescribed direction, all the materials of the plurality of elastic body portions 15 are made of silicon. It can be. In the vibration block 11, at least one material of the plurality of elastic body portions 15 may be silicon, and the material of the other elastic body portions 15 may be metal.
 弾性体部15を構成するばねの形状は、例えば、つづら折れ状であることが好ましい。この場合、弾性体部15は、平面視形状において折り返し部分に角のないU字状に形成された形状のほうが、平面視形状において折り返し部分に角のあるU字状に形成された形状よりも好ましい。振動発電装置EHは、弾性体部15の折り返し部分に角のない形状を採用することにより、弾性体部15の折り返し部分での応力集中に起因した破損やクラックの発生などを抑制することが可能となる。 It is preferable that the shape of the spring constituting the elastic body portion 15 is, for example, a folded shape. In this case, the shape of the elastic body portion 15 formed in a U shape without a corner in the folded portion in the plan view shape is more than the shape formed in a U shape having a corner in the folded portion in the plan view shape. preferable. The vibration power generation apparatus EH can suppress the occurrence of breakage or cracks due to stress concentration at the folded portion of the elastic body portion 15 by adopting a shape without a corner at the folded portion of the elastic body portion 15. It becomes.
 また、つづら折れ状の弾性体部15としては、平面視において折り返し部分の厚み寸法を他の部位の厚み寸法よりも大きくした形状としてもよく、弾性体部15の折り返し部分での応力集中に起因した破損やクラックの発生などを抑制することが可能となる。 Further, the zigzag-shaped elastic body portion 15 may have a shape in which the thickness dimension of the folded portion is larger than the thickness dimension of other portions in plan view, and is caused by stress concentration at the folded portion of the elastic body portion 15. It is possible to suppress the occurrence of breakage and cracks.
 また、つづら折れ状の弾性体部15としては、平面視において折り返し部分間の距離が徐々に短くなる形状としてもよい。 Further, the zigzag elastic body portion 15 may have a shape in which the distance between the folded portions is gradually shortened in a plan view.
 また、弾性体部15は、平面視において蛇行した形状であれば、つづら折れ状の形状に限らず、例えば、波形状(平面視で正弦波状)の形状でもよい。 Further, the elastic body portion 15 is not limited to a zigzag shape as long as it has a meandering shape in plan view, and may be, for example, a wave shape (sinusoidal shape in plan view).
 また、弾性体部15を構成するばねの形状は、つづら折れ状や波形状などの蛇行した形状に限らず、他の形状でもよい。 Further, the shape of the spring constituting the elastic body portion 15 is not limited to a meandering shape such as a zigzag shape or a wave shape, but may be another shape.
 可動部本体13の厚み寸法は、各弾性体部15の厚み寸法と同じに設定してあるが、これに限らず、可動部12の所望の質量などに基づいて各弾性体部15の厚みよりも大きくしてもよい。また、可動部本体13の厚み寸法は、各弾性体部15の厚み寸法よりも小さくしてもよい。この場合は、弾性体部15の上記対向方向の剛性を高くすることが可能となる。 Although the thickness dimension of the movable part main body 13 is set to be the same as the thickness dimension of each elastic body part 15, the thickness is not limited to this, and the thickness of each elastic body part 15 is determined based on the desired mass of the movable part 12. May be larger. Moreover, the thickness dimension of the movable part main body 13 may be smaller than the thickness dimension of each elastic body part 15. In this case, the rigidity of the elastic body portion 15 in the facing direction can be increased.
 ところで、振動発電装置EHは、弾性体部15を構成するばねの平面視の形状を、蛇行した形状とした場合、上記規定方向において可動部12と支持部14との間に生じるデッドスペースの面積をより小さくすることが好ましい。これにより、振動発電装置EHは、歪みエネルギとして蓄えられるエネルギ量を増加させることが可能となる。よって、振動発電装置EHは、歪みエネルギとして蓄えるエネルギ量が同じであれば、弾性体部15の小型化および低背化を図ることが可能となる。 By the way, in the vibration power generator EH, when the shape of the spring constituting the elastic body portion 15 in a plan view is a meandering shape, the area of the dead space generated between the movable portion 12 and the support portion 14 in the specified direction. Is preferably smaller. Thereby, the vibration power generator EH can increase the amount of energy stored as strain energy. Therefore, the vibration power generation apparatus EH can reduce the size and the height of the elastic body portion 15 as long as the amount of energy stored as strain energy is the same.
 金属などの機械加工では、弾性体部15の小型化に関し、弾性体部15の厚み寸法W1を200~300μm程度、折り返した部位間の寸法W3を200~300μm程度よりも小型化するのが難しい。これに対して、マイクロマシニング技術を利用して弾性体部15を形成するようにした場合には、弾性体部15のより一層の小型化を図ることが可能となり、デッドスペースの面積を小さくすることが可能となる。 In the machining of metal or the like, it is difficult to reduce the size of the elastic body portion 15 by reducing the thickness W1 of the elastic body portion 15 to about 200 to 300 μm and the size W3 between the folded portions to about 200 to 300 μm. . On the other hand, when the elastic body portion 15 is formed using the micromachining technology, the elastic body portion 15 can be further reduced in size, and the area of the dead space is reduced. It becomes possible.
 デッドスペースの面積を小さくする設計例としては、例えば、弾性体部15の厚み寸法W1を10μm程度とし、折り返した部位間の寸法W3を10μm程度とすればよく、マイクロマシニング技術を利用して弾性体部15を形成することで実現できる。 As a design example for reducing the area of the dead space, for example, the thickness W1 of the elastic body 15 may be about 10 μm, and the dimension W3 between the folded portions may be about 10 μm. This can be realized by forming the body part 15.
 また、振動ブロック11は、弾性体部15が、側面視で波板状(コルゲート板状)の形状でもよい。 Further, in the vibration block 11, the elastic body portion 15 may have a corrugated plate shape (corrugated plate shape) in a side view.
 第1スペーサ41および第2スペーサ42は、枠状に形成されている。 The first spacer 41 and the second spacer 42 are formed in a frame shape.
 振動発電装置EHは、第1スペーサ41の形状と第2スペーサ42の形状とを同じ形状に設定してあることが好ましい。これにより、振動発電装置EHは、部品共通化による低コスト化を図ることが可能となる。 In the vibration power generator EH, the shape of the first spacer 41 and the shape of the second spacer 42 are preferably set to the same shape. As a result, the vibration power generation apparatus EH can achieve cost reduction by sharing parts.
 また、第1スペーサ41および第2スペーサ42の外形寸法は、振動ブロック11の外形寸法に合わせてあることが好ましい。 Further, it is preferable that the outer dimensions of the first spacer 41 and the second spacer 42 are matched with the outer dimensions of the vibration block 11.
 第1スペーサ41および第2スペーサ42の各々の材料としては、例えば、エンジニヤリングプラスチック(例えば、ポリカーボネートなど)などの樹脂、セラミック、シリコンなどを採用することができる。第1スペーサ41および第2スペーサ42の各々の材料としてシリコンを採用した場合、第1スペーサ41および第2スペーサ42の各々をシリコン基板から形成することができる。これにより、第1スペーサ41および第2スペーサ42の各々と振動ブロック11の支持部14との接合方法としては、例えば、表面活性化接合法や、共晶接合法や、樹脂接合法などを採用することができる。 As the material of each of the first spacer 41 and the second spacer 42, for example, resin such as engineering plastic (for example, polycarbonate), ceramic, silicon, or the like can be used. When silicon is employed as the material of each of the first spacer 41 and the second spacer 42, each of the first spacer 41 and the second spacer 42 can be formed from a silicon substrate. Thereby, as a bonding method of each of the first spacer 41 and the second spacer 42 and the support portion 14 of the vibration block 11, for example, a surface activated bonding method, a eutectic bonding method, a resin bonding method, or the like is adopted. can do.
 第1キャップ21および第2キャップ31の外形寸法は、振動ブロック11の外形寸法に合わせてあることが好ましい。 The outer dimensions of the first cap 21 and the second cap 31 are preferably matched with the outer dimensions of the vibration block 11.
 振動発電装置EHは、第1キャップ21の形状と第2キャップ31の形状とを同じ形状に設定してあることが好ましい。これにより、振動発電装置EHは、部品共通化による低コスト化を図ることが可能となる。 In the vibration power generator EH, the shape of the first cap 21 and the shape of the second cap 31 are preferably set to the same shape. As a result, the vibration power generation apparatus EH can achieve cost reduction by sharing parts.
 第1キャップ21および第2キャップ31の各々の材料としては、例えば、エンジニヤリングプラスチック(例えば、ポリカーボネートなど)などの樹脂、セラミック、シリコンなどを採用することができる。 As the material of each of the first cap 21 and the second cap 31, for example, resin such as engineering plastic (for example, polycarbonate), ceramic, silicon, or the like can be used.
 第1キャップ21および第2キャップ31の各々の材料としてシリコンを採用した場合には、第1キャップ21および第2キャップ31の各々をシリコン基板から形成することができる。これにより、第1キャップ21および第2キャップ31と、第1スペーサ41および第2スペーサ42それぞれとの接合方法としては、例えば、表面活性化接合法や、共晶接合法や、樹脂接合法などを採用することができる。 When silicon is employed as the material for each of the first cap 21 and the second cap 31, each of the first cap 21 and the second cap 31 can be formed from a silicon substrate. Thereby, as a joining method of the 1st cap 21 and the 2nd cap 31, and each of the 1st spacer 41 and the 2nd spacer 42, for example, a surface activation joining method, a eutectic joining method, a resin joining method, etc. Can be adopted.
 また、振動発電装置EHは、第1スペーサ41および第2スペーサ42を設けずに、第1キャップ21および第2キャップ31を振動ブロック11に固定した構成としてもよい。 Further, the vibration power generator EH may be configured such that the first cap 21 and the second cap 31 are fixed to the vibration block 11 without providing the first spacer 41 and the second spacer 42.
 振動発電装置EHは、第1キャップ21と第1スペーサ41と振動ブロック11と第2スペーサ42と第2キャップ31とを、複数個(例えば、4個)のねじ(図示せず)により固定するようにしてもよいし、接着剤により固定するようにしてもよいし、固定部材として、ねじと接着剤とを併用してもよい。また、振動発電装置EHは、第1キャップ21、第1スペーサ41、振動ブロック11、第2スペーサ42および第2キャップ31それぞれからなる部材のうち、振動発電装置EHの厚み方向において隣り合う部材同士に、相互に嵌合可能な構造を設けて嵌合させることで固定するようにしてもよい。 The vibration power generator EH fixes the first cap 21, the first spacer 41, the vibration block 11, the second spacer 42, and the second cap 31 with a plurality of (for example, four) screws (not shown). You may make it, it may make it fix with an adhesive agent, and may use a screw and an adhesive agent together as a fixing member. The vibration power generation apparatus EH includes members adjacent to each other in the thickness direction of the vibration power generation apparatus EH among the members formed of the first cap 21, the first spacer 41, the vibration block 11, the second spacer 42, and the second cap 31, respectively. Further, a structure that can be fitted to each other may be provided and fixed by fitting.
 図6に示した振動発電装置EHは、第1キャップ21、第1スペーサ41、振動ブロック11、第2スペーサ42および第2キャップ31それぞれの四隅に、固定用のねじを挿通可能な貫通孔21a、41a、11a、42aおよび31aをそれぞれ形成してある。各貫通孔21a、41a、11a、42aおよび31aの平面視での開口形状は、円形状としてある。これらの開口形状は、円形状以外の形状でもよい。 The vibration power generator EH shown in FIG. 6 includes through holes 21a through which fixing screws can be inserted into the four corners of the first cap 21, the first spacer 41, the vibration block 11, the second spacer 42, and the second cap 31, respectively. , 41a, 11a, 42a and 31a are formed. The opening shape of each through hole 21a, 41a, 11a, 42a and 31a in plan view is a circular shape. These opening shapes may be other than circular shapes.
 また、振動ブロック11は、可動部本体13から平面視において上記規定方向に直交する方向に突出する2つの突部13bを一体に設けてある。 Further, the vibration block 11 is integrally provided with two protrusions 13b protruding from the movable part main body 13 in a direction orthogonal to the prescribed direction in plan view.
 各突部13bの各々は、平面視矩形状に形成されている。また、振動ブロック11は、枠状の支持部14の内側面に、各突部13bの各々を上記規定方向に変位可能とする2つの第1切欠部14bが形成されている。 Each of the protrusions 13b is formed in a rectangular shape in plan view. Further, the vibration block 11 is formed with two first cutout portions 14b on the inner surface of the frame-shaped support portion 14 that allow each of the protrusions 13b to be displaced in the specified direction.
 そして、第1キャップ21および第2キャップ31には、各第1切欠部14bの各々の投影領域に、矩形状の貫通孔21b,31bがそれぞれ形成されている。また、第1スペーサ41および第2スペーサ42の内側面には、各第1切欠部14bの各々の投影領域に、第2切欠部41b,42bがそれぞれ形成されている。 In the first cap 21 and the second cap 31, rectangular through holes 21b and 31b are formed in the respective projection areas of the first cutout portions 14b. Further, on the inner side surfaces of the first spacer 41 and the second spacer 42, second cutout portions 41b and 42b are formed in the respective projection regions of the respective first cutout portions 14b.
 したがって、本実施形態における振動発電装置EHでは、外部から貫通孔21b,31bおよび第2切欠部41b,42bを通して、両突部13bに対して適宜の冶具により外力を与えて可動部12を上記規定方向へ変位させることが可能となっている。これにより、振動発電装置EHでは、両突部13bを変位させた後に冶具を引き抜けば、可動部12が上記規定方向に振動することとなる。 Therefore, in the vibration power generator EH according to the present embodiment, the movable portion 12 is defined as described above by applying an external force to the protrusions 13b with an appropriate jig through the through holes 21b and 31b and the second notches 41b and 42b from the outside. It can be displaced in the direction. Thereby, in the vibration power generation device EH, if the jig is pulled out after displacing both protrusions 13b, the movable part 12 vibrates in the specified direction.
 要するに、振動発電装置EHは、可動部12を変位させて作動させることが可能である。この場合の可動部12の振動は、減衰振動である。これにより、振動発電装置EHの出力電圧の波形は、例えば、図9に示すように時間の経過とともに減衰する波形となる。なお、冶具としては、例えば、二股のフォーク状の形状のものを採用することができる。 In short, the vibration power generator EH can be operated by displacing the movable portion 12. The vibration of the movable part 12 in this case is a damped vibration. As a result, the waveform of the output voltage of the vibration power generator EH becomes a waveform that attenuates over time as shown in FIG. 9, for example. As the jig, for example, a bifurcated fork-shaped one can be adopted.
 振動ブロック11は、図3,図7,図8に示すように、支持部14に、上記規定方向への可動部12の変位量を制限するテーパ状のストッパ部14cを設けてある。一方、可動部12の外周面(可動部本体13の外側面)には、ストッパ部14cと略平行な傾斜面12cを設けてある。支持部14に設けられたストッパ部14cは、支持部14の内側面において上記規定方向に平行な面に対して傾斜している。可動部12に設けられた傾斜面12cは、可動部12の外周面において上記規定方向に平行な面に対して傾斜している。 As shown in FIGS. 3, 7, and 8, the vibration block 11 is provided with a tapered stopper portion 14 c that restricts the amount of displacement of the movable portion 12 in the specified direction on the support portion 14. On the other hand, an inclined surface 12c substantially parallel to the stopper portion 14c is provided on the outer peripheral surface of the movable portion 12 (the outer surface of the movable portion main body 13). The stopper portion 14 c provided on the support portion 14 is inclined with respect to a plane parallel to the prescribed direction on the inner side surface of the support portion 14. An inclined surface 12 c provided on the movable portion 12 is inclined with respect to a surface parallel to the prescribed direction on the outer peripheral surface of the movable portion 12.
 振動発電装置EHでは、上述のように両突部13bに対して適宜の冶具により外力を与えて可動部12を上記規定方向へ変位させる際に、傾斜面12cがストッパ部14cに接触することで可動部12の変位が制限される。これにより、振動発電装置EHは、可動部12を作動させる際に可動部12の変位量(可動部12の初期変位)を略一定値とすることが可能となる。 In the vibration power generator EH, when the movable portion 12 is displaced in the specified direction by applying an external force to the both protrusions 13b with an appropriate jig as described above, the inclined surface 12c comes into contact with the stopper portion 14c. The displacement of the movable part 12 is limited. As a result, the vibration power generator EH can set the displacement amount of the movable portion 12 (initial displacement of the movable portion 12) to a substantially constant value when the movable portion 12 is operated.
 また、振動発電装置EHでは、上記規定方向とは異なる方向への可動部12の変位を抑制することが可能となる。これらにより、振動発電装置EHでは、外力を与える度に発電出力がばらつくのを抑制することが可能となり、また、外力を与える際に弾性体部15に上記規定方向以外の方向への力が作用するのを抑制することが可能となり信頼性の向上を図ることが可能となる。 In the vibration power generator EH, it is possible to suppress the displacement of the movable part 12 in a direction different from the prescribed direction. As a result, the vibration power generation apparatus EH can suppress the variation in power generation output each time an external force is applied, and a force in a direction other than the prescribed direction acts on the elastic body portion 15 when the external force is applied. Therefore, it is possible to suppress the occurrence of reliability and to improve the reliability.
 なお、図7中の矢印は、可動部12を変位させる向きの一例を示している。振動発電装置EHは、図7中の矢印とは逆向きへ変位させることも可能である。 In addition, the arrow in FIG. 7 shows an example of the direction in which the movable part 12 is displaced. The vibration power generator EH can be displaced in the direction opposite to the arrow in FIG.
 コイルブロック4は、複数個(例えば、5個)のコイル4aを備えている。複数個のコイル4aは、上記規定方向に並んで配置されている。例えば、これら複数個のコイル4aは、上記規定方向に並んで配置され接着剤によりブロック化されている。要するに、コイルブロック4は、コイル4aがアレイ状に配置されたコイルアレイにより構成されている。また、磁石ブロック3は、磁石2がアレイ状に配置された磁石アレイにより構成されている。 The coil block 4 includes a plurality of (for example, five) coils 4a. The plurality of coils 4a are arranged side by side in the prescribed direction. For example, the plurality of coils 4a are arranged side by side in the prescribed direction and are blocked by an adhesive. In short, the coil block 4 is configured by a coil array in which the coils 4a are arranged in an array. The magnet block 3 is configured by a magnet array in which the magnets 2 are arranged in an array.
 コイルブロック4のコイル4aの数は、磁石ブロック3の磁石2の数より1だけ多いほうが好ましい。要するに、磁石ブロック3の磁石2の数をm(mは自然数)とすれば、コイルブロック4のコイル4aの数は、m+1とすることが好ましい。また、コイルブロック4におけるコイル4aのピッチと、磁石ブロック3における磁石2のピッチとは同じであることが好ましい。また、コイルブロック4は、対向する磁石ブロック3において隣り合う磁石2同士の境界とコイル4aの中心線(口軸)とが同一平面上に揃うように各コイル4aが配置されていることが好ましい。これにより、振動発電装置EHは、エネルギ変換効率を向上させることが可能となる。 It is preferable that the number of coils 4 a of the coil block 4 is one more than the number of magnets 2 of the magnet block 3. In short, if the number of magnets 2 in the magnet block 3 is m (m is a natural number), the number of coils 4a in the coil block 4 is preferably m + 1. Moreover, it is preferable that the pitch of the coil 4a in the coil block 4 and the pitch of the magnet 2 in the magnet block 3 are the same. Moreover, it is preferable that each coil 4a is arrange | positioned so that the boundary of the adjacent magnets 2 and the centerline (mouth axis) of the coil 4a may be on the same plane. . Thereby, the vibration power generator EH can improve the energy conversion efficiency.
 コイル4aは、芯材4bに巻回されたコイル線材により構成されている。コイル線材としては、絶縁被覆付きの銅線を採用することができる。コイル線材は、巻線機により芯材4bに巻き付けて接着剤などにより固定されている。芯材4bの材料としては、例えば、エンジニヤリングプラスチック(例えば、ポリカーボネートなど)などの樹脂や、セラミックなどの絶縁性材料を採用することが好ましい。銅線を被覆する絶縁膜の材料としては、例えば、ウレタン、ホルマール、ポリエステル、ポリエステルイミド、ポリアミドイミドなどを採用することができる。 The coil 4a is composed of a coil wire wound around the core material 4b. As the coil wire, a copper wire with an insulation coating can be employed. The coil wire is wound around the core 4b by a winding machine and fixed with an adhesive or the like. As the material of the core material 4b, it is preferable to employ, for example, a resin such as engineering plastic (for example, polycarbonate) or an insulating material such as ceramic. As a material for the insulating film covering the copper wire, for example, urethane, formal, polyester, polyesterimide, polyamideimide and the like can be employed.
 芯材4bは、短冊状に形成されている。芯材4bは、厚み方向が上記規定方向に一致し、幅方向が振動ブロック11の厚み方向に一致し、長手方向が平面視において上記規定方向に直交する方向に一致するように配置されている。 The core material 4b is formed in a strip shape. The core material 4b is disposed so that the thickness direction matches the specified direction, the width direction matches the thickness direction of the vibration block 11, and the longitudinal direction matches the direction orthogonal to the specified direction in plan view. .
 コイルブロック4は、磁石ブロック3との対向面側が平坦化されるように、各コイル4aを各芯材4bの幅方向において磁石ブロック3側の一端部に巻回してある。 The coil block 4 has each coil 4a wound around one end on the magnet block 3 side in the width direction of each core member 4b so that the surface facing the magnet block 3 is flattened.
 第1キャップ21に保持されるコイルブロック4は、各芯材4bの幅方向の他端部を、第1キャップ21に形成された複数の位置決め用の貫通孔21cの各々に挿入し固定してある。第1キャップ21にコイルブロック4を組み込む際には、例えば、別途に用意したダミー部材(組立用の冶具)の平坦面に、磁石ブロック3との対向面となる側を突き当てた状態で、各芯材4bを第1キャップ21に固定し、その後、ダミー部材を取り去ればよい。これにより、コイルブロック4では、複数のコイル4aのコイル面が揃うこととなり磁石ブロック3との対向面側が略平坦となる。 The coil block 4 held by the first cap 21 is fixed by inserting the other end of each core member 4b in the width direction into each of a plurality of positioning through holes 21c formed in the first cap 21. is there. When assembling the coil block 4 in the first cap 21, for example, in a state where the side facing the magnet block 3 is abutted against the flat surface of a separately prepared dummy member (assembly jig), What is necessary is just to fix each core material 4b to the 1st cap 21, and remove a dummy member after that. Thereby, in the coil block 4, the coil surfaces of the plurality of coils 4a are aligned, and the surface facing the magnet block 3 is substantially flat.
 また、第2キャップ31に保持されるコイルブロック4は、各芯材4bの幅方向の他端部を、第2キャップ31に形成された複数の位置決め用の貫通孔31cの各々に挿入し固定してある。第2キャップ31にコイルブロック4を組み込む際には、例えば、別途に用意したダミー部材(組立用の冶具)の平坦面に、磁石ブロック3との対向面となる側を突き当てた状態で、各芯材4bを第2キャップ31に固定し、その後、ダミー部材を取り去ればよい。これにより、コイルブロック4では、複数のコイル4aのコイル面が揃うこととなり磁石ブロック3との対向面側が略平坦となる。 The coil block 4 held by the second cap 31 is fixed by inserting the other end portion of each core member 4b in the width direction into each of the plurality of positioning through holes 31c formed in the second cap 31. It is. When assembling the coil block 4 in the second cap 31, for example, in a state where the side facing the magnet block 3 is abutted against the flat surface of a separately prepared dummy member (assembly jig), What is necessary is just to fix each core material 4b to the 2nd cap 31, and remove a dummy member after that. Thereby, in the coil block 4, the coil surfaces of the plurality of coils 4a are aligned, and the surface facing the magnet block 3 is substantially flat.
 コイルブロック4において隣り合うコイル4a同士は、第1の導電性接合材で接合され電気的に接続されている。第1の導電性接合材の材料としては、例えば、半田や銀ペーストなどを採用することができる。ここで、隣り合うコイル4a同士は、それぞれ逆巻き方向となるように直列接続されている。 The adjacent coils 4a in the coil block 4 are joined and electrically connected by a first conductive joining material. As a material of the first conductive bonding material, for example, solder or silver paste can be employed. Here, the adjacent coils 4a are connected in series so as to be in the reverse winding direction.
 また、第1キャップ21および第2キャップ31には、コイルブロック4の両端のコイル4aそれぞれにおいて隣り合うコイル4aに接続されていない側の線端部が電気的に接続される電極(図示せず)が設けられている。 In addition, the first cap 21 and the second cap 31 are electrodes (not shown) to which the wire ends that are not connected to the adjacent coils 4 a in the coils 4 a at both ends of the coil block 4 are electrically connected. ) Is provided.
 線端部と電極とは、第2の導電性接合材で接合され電気的に接続されている。第2の導電性接合材の材料としては、例えば、半田や銀ペーストなどを採用することができる。第2の導電性接合材としては、金属製ねじなどを用いてもよい。 The wire end and the electrode are joined and electrically connected by the second conductive joining material. As the material of the second conductive bonding material, for example, solder or silver paste can be employed. A metal screw or the like may be used as the second conductive bonding material.
 本実施形態における振動発電装置EHでは、各コイル4aの各々が芯材4bを備えている(つまり、各コイル4aの各々は、いわゆる有芯コイルである)が、芯材4bを備えていないもの(いわゆる空芯コイル)でもよい。芯材4bを備えない構成とする場合には、例えば、第1キャップ21および第2キャップ31の各々に各コイル4aを各別に位置決めするリブを設ければよい。この場合には、例えばリブにコイル4aが巻装された状態で、リブとコイル4aとを接着剤などで接着すればよい。 In the vibration power generator EH in the present embodiment, each of the coils 4a includes a core material 4b (that is, each of the coils 4a is a so-called cored coil), but does not include the core material 4b. (So-called air-core coil) may be used. In the case where the core material 4b is not provided, for example, ribs for positioning the coils 4a individually may be provided in each of the first cap 21 and the second cap 31. In this case, for example, the rib and the coil 4a may be bonded with an adhesive or the like in a state where the coil 4a is wound around the rib.
 また、各コイル4aの各々は、例えば、平面コイルにより構成してもよい。この場合には、例えば、第1キャップ21および第2キャップ31の各々に平面コイルを形成すればよい。 Further, each of the coils 4a may be constituted by a planar coil, for example. In this case, for example, a planar coil may be formed in each of the first cap 21 and the second cap 31.
 平面コイルの材料としては、例えば、銅、金、銀などを採用することができる。また、平面コイルの材料としては、パーマロイ、コバルト基アモルファス合金、フェライトなどを採用してもよい。平面コイルは、蒸着法、スパッタ法などの薄膜形成技術、フォトリソグラフィ技術およびエッチング技術などを利用して形成することができる。 As the material of the planar coil, for example, copper, gold, silver or the like can be adopted. Further, as the material of the planar coil, permalloy, cobalt-based amorphous alloy, ferrite, or the like may be employed. The planar coil can be formed by using a thin film forming technique such as a vapor deposition method or a sputtering method, a photolithography technique, an etching technique, or the like.
 以上説明した振動発電装置EHでは、磁石ブロック3と、コイルブロック4とを有し、磁石ブロック3とコイルブロック4とが対向配置されている。そして、振動発電装置EHは、磁石ブロック3を備えた可動部12と、支持部14と、可動部12と支持部14とを接続している弾性体部15とを有している。また、弾性体部15は、上記規定方向における剛性が上記規定方向に直交する方向の剛性に比べて小さい。しかして、振動発電装置EHは、可動部12の振動方向を、磁石ブロック3とコイルブロック4との対向方向に直交する上記規定方向に単方向化することが可能となり、エネルギ変換効率の向上を図ることが可能となる。 The vibration power generation apparatus EH described above includes the magnet block 3 and the coil block 4, and the magnet block 3 and the coil block 4 are arranged to face each other. The vibration power generation apparatus EH includes a movable portion 12 including the magnet block 3, a support portion 14, and an elastic body portion 15 that connects the movable portion 12 and the support portion 14. Further, the elastic body portion 15 has a smaller rigidity in the specified direction than that in a direction orthogonal to the specified direction. Thus, the vibration power generator EH can unidirectionally change the vibration direction of the movable portion 12 in the specified direction orthogonal to the facing direction of the magnet block 3 and the coil block 4, thereby improving the energy conversion efficiency. It becomes possible to plan.
 また、振動発電装置EHは、上記規定方向における可動部12の両側それぞれに複数の弾性体部15が設けられている。これにより、振動発電装置EHは、可動部12の両側の各々に弾性体部15が1個ずつ設けられている場合に比べて、可動部12の振動方向の更なる単方向化が可能となり、エネルギ変換効率の更なる向上を図ることが可能となる。 The vibration power generator EH is provided with a plurality of elastic body portions 15 on both sides of the movable portion 12 in the specified direction. Thereby, the vibration power generator EH can further unidirectionally change the vibration direction of the movable portion 12 as compared with the case where one elastic body portion 15 is provided on each of both sides of the movable portion 12. It becomes possible to further improve the energy conversion efficiency.
 また、振動発電装置EHは、第1キャップ21および第2キャップ31の各々に、コイルブロック4が保持されている。これにより、振動発電装置EHは、第1キャップ21と第2キャップ31との一方のみにコイルブロック4が保持されている場合に比べて、エネルギ変換効率の向上を図れる。 Further, in the vibration power generator EH, the coil block 4 is held in each of the first cap 21 and the second cap 31. Thereby, the vibration power generator EH can improve the energy conversion efficiency as compared with the case where the coil block 4 is held only in one of the first cap 21 and the second cap 31.
 また、振動発電装置EHは、第1キャップ21に保持されたコイルブロック4における複数個のコイル4aの直列回路と、第2キャップ31に保持されたコイルブロック4における複数個のコイル4aの直列回路とを直列接続することで、出力を高めることも可能となる。 The vibration power generator EH includes a series circuit of a plurality of coils 4 a in the coil block 4 held by the first cap 21 and a series circuit of a plurality of coils 4 a in the coil block 4 held by the second cap 31. Can be connected in series to increase the output.
 また、振動発電装置EHは、第1キャップ21と振動ブロック11との間に配置された枠状の第1スペーサ41を備えている。これにより、振動発電装置EHは、第1キャップ21のコイルブロック4と振動ブロック11の磁石ブロック3との間のギャップ長を第1スペーサ41の厚みで規定することが可能となる。したがって、振動発電装置EHは、第1キャップ21のコイルブロック4と振動ブロック11の磁石ブロック3との間のギャップの狭ギャップ化を図りながらも、第1キャップ21のコイルブロック4と振動ブロック11の磁石ブロック3との接触を防止することが可能となる。振動発電装置EHは、第1キャップ21のコイルブロック4と振動ブロック11の磁石ブロック3との間のギャップの狭ギャップ化により、磁束の利用効率の向上を図ることが可能となって、エネルギ変換効率の向上を図ることが可能となる。 The vibration power generator EH includes a frame-shaped first spacer 41 disposed between the first cap 21 and the vibration block 11. Thereby, the vibration power generation device EH can define the gap length between the coil block 4 of the first cap 21 and the magnet block 3 of the vibration block 11 by the thickness of the first spacer 41. Therefore, the vibration power generation device EH reduces the gap between the coil block 4 of the first cap 21 and the magnet block 3 of the vibration block 11, while reducing the gap between the coil block 4 of the first cap 21 and the vibration block 11. It is possible to prevent contact with the magnet block 3. The vibration power generation device EH can improve the use efficiency of magnetic flux by narrowing the gap between the coil block 4 of the first cap 21 and the magnet block 3 of the vibration block 11, thereby converting energy. Efficiency can be improved.
 また、振動発電装置EHは、第2キャップ31と振動ブロック11との間に配置された枠状の第2スペーサ42を備えている。これにより、振動発電装置EHは、第2キャップ31のコイルブロック4と振動ブロック11の磁石ブロック3との間のギャップ長を第2スペーサ42の厚みで規定することが可能となる。したがって、振動発電装置EHは、第2キャップ31のコイルブロック4と振動ブロック11の磁石ブロック3との間のギャップの狭ギャップ化を図りながらも、第2キャップ31のコイルブロック4と振動ブロック11の磁石ブロック3との接触を防止することが可能となる。振動発電装置EHは、第2キャップ31のコイルブロック4と振動ブロック11の磁石ブロック3との間のギャップの狭ギャップ化により、磁束の利用効率の向上を図ることが可能となって、エネルギ変換効率の向上を図ることが可能となる。 Further, the vibration power generation device EH includes a frame-shaped second spacer 42 disposed between the second cap 31 and the vibration block 11. As a result, the vibration power generator EH can define the gap length between the coil block 4 of the second cap 31 and the magnet block 3 of the vibration block 11 by the thickness of the second spacer 42. Therefore, the vibration power generator EH reduces the gap between the coil block 4 of the second cap 31 and the magnet block 3 of the vibration block 11, while reducing the gap between the coil block 4 of the second cap 31 and the vibration block 11. It is possible to prevent contact with the magnet block 3. The vibration power generation device EH can improve the use efficiency of magnetic flux by narrowing the gap between the coil block 4 of the second cap 31 and the magnet block 3 of the vibration block 11, thereby converting energy. Efficiency can be improved.
 振動発電装置EHは、可動部12の上記規定方向への振動に伴って発生する電磁誘導によって、交流の誘導起電力が発生する。この場合、振動発電装置EHの開放電圧は、可動部12の振動に応じた交流電圧となる。ここで、振動発電装置EHは、上述のように両突部13bに冶具などにより外力を与え後に冶具を引き抜けば、可動部12が減衰振動するので、この減衰振動に応じた交流電圧を発生する。 In the vibration power generation apparatus EH, an alternating induced electromotive force is generated by electromagnetic induction generated in accordance with the vibration of the movable portion 12 in the specified direction. In this case, the open circuit voltage of the vibration power generator EH is an AC voltage corresponding to the vibration of the movable part 12. Here, the vibration power generation device EH generates an AC voltage corresponding to the damped vibration because the movable portion 12 oscillates when the jig is pulled out after applying external force to the both protrusions 13b with a jig as described above. To do.
 本実施形態における整流回路71は、図1に示すように、2個のダイオード(第1および第2ダイオード)D11,D12と2個のコンデンサ(第1および第2コンデンサ)C11,C12とを備えた両波倍電圧整流回路71Aである。 As shown in FIG. 1, the rectifier circuit 71 according to the present embodiment includes two diodes (first and second diodes) D11 and D12 and two capacitors (first and second capacitors) C11 and C12. This is a double-wave voltage doubler rectifier circuit 71A.
 両波倍電圧整流回路71Aは、2個のダイオードD11,D12の直列回路と2個のコンデンサC11,C12の直列回路とが並列接続されている。要するに、両波倍電圧整流回路71Aは、2個ダイオードD11,D12と2個のコンデンサC11,C12とがブリッジ接続されている。具体的には、ダイオードD11のカソードが、2個のコンデンサC11,C12の直列回路を介してダイオードD12のアノードに接続され、ダイオードD12のカソードがダイオードD11のアノードに接続されている。ここで、ダイオードD11,D12の接続点およびコンデンサC11,C12の接続点が入力端子を構成し、ダイオードD11とコンデンサC11との接続点およびダイオードD12とコンデンサC12との接続点が出力端子を構成している。 In the double voltage rectifier circuit 71A, a series circuit of two diodes D11 and D12 and a series circuit of two capacitors C11 and C12 are connected in parallel. In short, the double-wave voltage doubler rectifier circuit 71A includes two diodes D11 and D12 and two capacitors C11 and C12 that are bridge-connected. Specifically, the cathode of the diode D11 is connected to the anode of the diode D12 via a series circuit of two capacitors C11 and C12, and the cathode of the diode D12 is connected to the anode of the diode D11. Here, the connection point of the diodes D11 and D12 and the connection point of the capacitors C11 and C12 constitute an input terminal, and the connection point of the diode D11 and the capacitor C11 and the connection point of the diode D12 and the capacitor C12 constitute an output terminal. ing.
 ここで、エネルギ変換装置1は、振動発電装置EHの一方の出力端が、2個のダイオードD11,D12の直列回路における両ダイオードD11,D12の接続点に接続され、振動発電装置EHの他方の出力端が、2個のコンデンサC11,C12の直列回路における両コンデンサC11,C12の接続点に接続されている。 Here, in the energy conversion device 1, one output end of the vibration power generation device EH is connected to a connection point between the two diodes D11 and D12 in the series circuit of the two diodes D11 and D12, and the other end of the vibration power generation device EH. The output terminal is connected to a connection point between both capacitors C11 and C12 in a series circuit of two capacitors C11 and C12.
 エネルギ変換装置1は、2個のコンデンサC11,C12の直列回路の両端間に、負荷(図示せず)を接続すれば、負荷の電源として機能することとなる。負荷としては、例えば、センサ、LED(Light Emitting Diode)、無線回路などを用いることが可能である。 If the load (not shown) is connected between both ends of the series circuit of the two capacitors C11 and C12, the energy conversion device 1 functions as a power source for the load. As the load, for example, a sensor, an LED (Light Emitting Diode), a wireless circuit, or the like can be used.
 ダイオードD11とダイオードD12とは、仕様の同じものを用いており、同じ特性を有している。なお、各ダイオードD11,D12は、シリコンダイオードであり、順方向電圧降下が0.6~0.7V程度である。各ダイオードD11,D12は、ショットキーバリアダイオードでもよく、これにより、順方向電圧降下をより小さくすることが可能となる。 The diode D11 and the diode D12 have the same specifications and have the same characteristics. Each of the diodes D11 and D12 is a silicon diode and has a forward voltage drop of about 0.6 to 0.7V. Each of the diodes D11 and D12 may be a Schottky barrier diode, which makes it possible to further reduce the forward voltage drop.
 また、コンデンサC11とコンデンサC12とは、仕様の同じものを用いており、同じ特性を有している。 Further, the capacitor C11 and the capacitor C12 have the same specifications and have the same characteristics.
 以下、エネルギ変換装置1の回路動作について図10および図11に基づいて簡単に説明する。 Hereinafter, the circuit operation of the energy conversion device 1 will be briefly described with reference to FIGS. 10 and 11.
 振動発電装置EHの出力電圧の極性が正のときには、図10中に破線で示す経路で電流が流れてコンデンサ(第1コンデンサ)C11が充電される。すなわち、振動発電装置EH→ダイオードD11→コンデンサC11→振動発電装置EHの経路で電流が流れてコンデンサC11が充電される。 When the polarity of the output voltage of the vibration power generator EH is positive, a current flows through a path indicated by a broken line in FIG. 10 to charge the capacitor (first capacitor) C11. That is, current flows through the path of vibration power generation device EH → diode D11 → capacitor C11 → vibration power generation device EH, and capacitor C11 is charged.
 振動発電装置EHの出力電圧の極性が負のときには、図11中に一点鎖線で示す経路で電流が流れてコンデンサ(第2コンデンサ)C12が充電される。すなわち、振動発電装置EH→コンデンサC12→ダイオードD12→振動発電装置EHの経路で電流が流れてコンデンサC12が充電される。 When the polarity of the output voltage of the vibration power generator EH is negative, a current flows along a path indicated by a one-dot chain line in FIG. 11, and the capacitor (second capacitor) C12 is charged. That is, current flows through the path of vibration power generation device EH → capacitor C12 → diode D12 → vibration power generation device EH, and capacitor C12 is charged.
 要するに、整流回路71を構成する両波倍電圧整流回路71Aでは、振動発電装置EHの出力電圧(交流電圧)の電圧波形の半サイクルごとに各コンデンサC11,C12がそれぞれ充電される。つまり、第1コンデンサC11は振動発電装置EHの出力電圧の正の半サイクルにおいて充電され、第2コンデンサC12は振動発電装置EHの出力電圧の負の半サイクルにおいて充電される。したがって、エネルギ変換装置1における整流回路71の出力電圧は、振動発電装置EHの出力電圧のピーク値の略2倍になる。 In short, in the double wave voltage doubler rectifier circuit 71A constituting the rectifier circuit 71, the capacitors C11 and C12 are charged every half cycle of the voltage waveform of the output voltage (AC voltage) of the vibration power generator EH. That is, the first capacitor C11 is charged in the positive half cycle of the output voltage of the vibration power generator EH, and the second capacitor C12 is charged in the negative half cycle of the output voltage of the vibration power generator EH. Therefore, the output voltage of the rectifier circuit 71 in the energy conversion device 1 is approximately twice the peak value of the output voltage of the vibration power generator EH.
 エネルギ変換装置1は、整流回路71として両波倍電圧整流回路71Aを備えていることにより、図30のようなダイオード整流器702を採用する場合に比べて、整流回路71の出力電圧の高出力化を図ることが可能となる。また、図30に示す例では電流が通過するダイオードの数は2つであるが、本実施形態では電流が通過するダイオードの数が1つになる。そのため、エネルギ変換装置1は、エネルギ変換効率の向上を図ることが可能となる。 The energy conversion device 1 includes the double-wave voltage doubler rectifier circuit 71A as the rectifier circuit 71, so that the output voltage of the rectifier circuit 71 is increased as compared with the case where the diode rectifier 702 as shown in FIG. 30 is employed. Can be achieved. In the example shown in FIG. 30, the number of diodes through which current passes is two, but in this embodiment, the number of diodes through which current passes is one. Therefore, the energy conversion device 1 can improve energy conversion efficiency.
 以上説明した本実施形態のエネルギ変換装置1においては、可動部12を変位させて作動させることが可能であり、且つ、エネルギ変換効率の向上を図ることが可能となる。 In the energy conversion device 1 of the present embodiment described above, the movable part 12 can be operated by being displaced, and the energy conversion efficiency can be improved.
 整流回路71を構成する倍電圧整流回路は、例えば、図12に示すようなコッククロフト-ウォルトン回路(Cockcroft-Walton circuit)71Bでもよい。 The voltage doubler rectifier circuit constituting the rectifier circuit 71 may be, for example, a Cockcroft-Walton circuit 71B as shown in FIG.
 図12に示したコッククロフト-ウォルトン回路71Bは、4個のダイオードD21~D24と4個のコンデンサC21~C24とを備えており、振動発電装置EHの出力電圧のピーク値の略4倍の出力電圧を得ることが可能である。なお、図12では、ダイオードD21とコンデンサC21とが組をなし、ダイオードD22とコンデンサC22とが組をなし、ダイオードD23とコンデンサC23とが組をなし、ダイオードD24とコンデンサC24とが組をなしている。要するに、図12では、組ごとに符号の下付き数字を同じ数字としてある。 The Cockcroft-Walton circuit 71B shown in FIG. 12 includes four diodes D 21 to D 24 and four capacitors C 21 to C 24, and is approximately 4 of the peak value of the output voltage of the vibration power generator EH. Double output voltage can be obtained. In FIG. 12, the diode D 21 and the capacitor C 21 form a set, the diode D 22 and the capacitor C 22 form a set, the diode D 23 and the capacitor C 23 form a set, and the diode D 24 and the capacitor C 24 and a pair. In short, in FIG. 12, the subscript numerals of the symbols are the same for each set.
 整流回路71Bは、振動発電装置EHの出力端間に接続されるダイオードD21とコンデンサC21との直列回路と、ダイオードD21に逆並列に接続されるダイオードD22とコンデンサC22との直列回路と、ダイオードD22に逆並列に接続されるダイオードD23とコンデンサC23との直列回路と、ダイオードD23に逆並列に接続されるダイオードD24とコンデンサC24との直列回路と、を備える。 Rectifier circuit 71B includes a series of a series circuit of a diode D 21 and the capacitor C 21 connected between the output end of the vibration-powered generator EH, a diode D 22 and a capacitor C 22 connected in reverse parallel with the diode D 21 a circuit, a series circuit of a diode D 23 and a capacitor C 23 connected in reverse parallel with the diode D 22, a series circuit of a diode D 24 and a capacitor C 24 connected in reverse parallel with the diode D 23, a Prepare.
 つまり、整流回路(コッククロフト-ウォルトン回路)71Bは、振動発電装置EHの出力電圧(交流電圧)の極性が正の時に充電される第1容量回路(コンデンサC21,C23)と、振動発電装置EHの出力電圧(交流電圧)の極性が負のときに充電される第2容量回路(コンデンサC22,C24)と、を備え、第1容量回路と第2容量回路との合計電圧を出力する倍電圧整流回路である。第1容量回路の電圧は、コンデンサC21,C23の電圧の合計値であり、第2容量回路の電圧は、コンデンサC22,C24の電圧の合計値である。 That is, the rectifier circuit (cockcroft-Walton circuit) 71B includes a first capacity circuit (capacitors C 21 and C 23 ) charged when the polarity of the output voltage (AC voltage) of the vibration power generator EH is positive, and the vibration power generator. A second capacitance circuit (capacitors C 22 and C 24 ) that is charged when the polarity of the output voltage (AC voltage) of EH is negative, and outputs the total voltage of the first capacitance circuit and the second capacitance circuit This is a voltage doubler rectifier circuit. The voltage of the first capacitance circuit is the total value of the voltages of the capacitors C 21 and C 23 , and the voltage of the second capacitance circuit is the total value of the voltages of the capacitors C 22 and C 24 .
 整流回路71を構成する倍電圧整流回路は、例えば、図13に示すようなコッククロフト-ウォルトン回路71Cでもよい。 The voltage doubler rectifier circuit constituting the rectifier circuit 71 may be, for example, a Cockcroft-Walton circuit 71C as shown in FIG.
 図13に示したコッククロフト-ウォルトン回路71Cは、n個(図示例では、n≧6)のダイオードD21~D2nとn個のコンデンサC21~C2nとを備えており、振動発電装置EHの出力電圧のピーク値の略n倍の出力電圧を得ることが可能である。なお、図13では、組ごとに符号の下付き数字を同じ数字としてある。 The Cockcroft-Walton circuit 71C shown in FIG. 13 includes n (n ≧ 6 in the illustrated example) diodes D 21 to D 2n and n capacitors C 21 to C 2n , and the vibration power generator EH It is possible to obtain an output voltage approximately n times the peak value of the output voltage. In FIG. 13, the subscript numerals are the same for each set.
 整流回路71Cは、n個のダイオードD2kとコンデンサC2kとの直列回路を備える(kは1以上n以下の整数)。ダイオードD21とコンデンサC21との直列回路(第1の直列回路は、振動発電装置EHの出力端間に接続される。ダイオードD2kとコンデンサC2kとの直列回路(第kの直列回路)は、ダイオードD2k-1とコンデンサC2k-1との直列回路(第k-1の直列回路)のダイオードD2k-1に逆並列に接続される。 The rectifier circuit 71C includes a series circuit of n diodes D 2k and capacitors C 2k (k is an integer of 1 to n). Series circuit of diode D 21 and capacitor C 21 (the first series circuit is connected between the output terminals of vibration power generator EH. Series circuit of diode D 2k and capacitor C 2k (kth series circuit) Are connected in anti-parallel to a diode D 2k-1 in a series circuit (k- 1th series circuit) of a diode D 2k-1 and a capacitor C 2k-1 .
 エネルギ変換装置1は、倍電圧整流回路としてコッククロフト-ウォルトン回路を採用することにより、両波倍電圧整流回路71Aを採用する場合よりも、出力電圧の更なる高出力化を図ることが可能となる。 In the energy conversion device 1, by adopting the Cockcroft-Walton circuit as the voltage doubler rectifier circuit, the output voltage can be further increased as compared with the case where the double wave voltage doubler rectifier circuit 71A is adopted. .
 エネルギ変換装置1は、図14に示すように、整流回路71の後段に、整流回路71の出力電圧(整流回路71から出力される電圧)を定電圧化するDC-DCコンバータ72を備える構成としてもよい。つまり、エネルギ変換装置1は、整流回路71から出力される電圧を所定の直流電圧に変換して出力するDC-DCコンバータ72を備えてもよい。これにより、エネルギ変換装置1は、負荷をより安定して動作させることが可能となる。なお、DC-DCコンバータ72の前段は、コッククロフト-ウォルトン回路(71B,71C)に限らず、倍電圧整流回路であればよく、図1における整流回路71を構成している両波倍電圧整流回路71Aでもよい。 As shown in FIG. 14, the energy conversion device 1 includes a DC-DC converter 72 that makes the output voltage of the rectifier circuit 71 (voltage output from the rectifier circuit 71) constant after the rectifier circuit 71. Also good. That is, the energy conversion device 1 may include a DC-DC converter 72 that converts the voltage output from the rectifier circuit 71 into a predetermined DC voltage and outputs the voltage. Thereby, the energy conversion device 1 can operate the load more stably. The preceding stage of the DC-DC converter 72 is not limited to the Cockcroft-Walton circuit (71B, 71C), but may be a voltage doubler rectifier circuit. The double wave voltage doubler rectifier circuit constituting the rectifier circuit 71 in FIG. 71A may be sufficient.
 DC/DCコンバータ72は、例えば、昇圧型DC-DCコンバータ用の集積回路、昇圧用インダクタ、整流回路71の出力端間に接続される第1のコンデンサ、集積回路の出力端子とGND端子との間に接続される第2のコンデンサなどを備えた構成を採用することができる。集積回路としては、例えば、Microchip Technology社のMCP1640/B/C/Dや、TEXAS INSTRUMENT社のTPS61097-33などを用いることができる。 The DC / DC converter 72 includes, for example, a step-up DC-DC converter integrated circuit, a step-up inductor, a first capacitor connected between the output terminals of the rectifier circuit 71, and an output terminal and a GND terminal of the integrated circuit. A configuration including a second capacitor or the like connected in between can be employed. As the integrated circuit, for example, MCP1640 / B / C / D manufactured by Microchip Technology, TPS61097-33 manufactured by TEXAS INSTRUMENT, or the like can be used.
 DC/DCコンバータ72の構成は特に限定するものではなく、例えば、昇圧用トランスを備えた昇圧型DC-DCコンバータや、図30のDC-DCコンバータ706のような昇圧チョッパでもよい。 The configuration of the DC / DC converter 72 is not particularly limited, and may be, for example, a step-up DC-DC converter including a step-up transformer or a step-up chopper such as the DC-DC converter 706 of FIG.
 以上述べたように、本実施形態のエネルギ変換装置1は、以下の第1の特徴を備える。第1の特徴では、エネルギ変換装置1は、磁石ブロック3とコイルブロック4とが対向方向に直交する規定方向において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換する電磁誘導型の振動発電装置EHと、振動発電装置EHから出力される交流電圧を整流する整流回路71とを備え、振動発電装置EHは、磁石ブロック3とコイルブロック4との一方を備えた可動部12を外部から作動させ可動部12を減衰振動させることが可能なものであり、可動部12と、支持部14と、可動部12と支持部14とを接続している弾性体部15とを備え、弾性体部15は、規定方向における剛性が規定方向に直交する方向の剛性に比べて小さく、規定方向における可動部12の両側それぞれには、複数の弾性体部15が並んで設けられており、整流回路71は、振動発電装置EHから出力される交流電圧の極性が正のときと負のときとで互いに異なるコンデンサ(C11,C12,C21,C22,C23,C24,...,C2n)が充電される倍電圧整流回路(71A,71B,71C)である。 As described above, the energy conversion device 1 of the present embodiment includes the following first feature. In the first feature, the energy conversion device 1 is an electromagnetic induction that converts kinetic energy into electric energy by electromagnetic induction that occurs when the magnet block 3 and the coil block 4 are relatively displaced in a specified direction orthogonal to the opposing direction. Type vibration power generator EH and a rectifier circuit 71 that rectifies an AC voltage output from the vibration power generator EH. The vibration power generator EH includes a movable block 12 including one of the magnet block 3 and the coil block 4. The movable portion 12 can be damped and oscillated from the outside, and includes the movable portion 12, the support portion 14, and the elastic body portion 15 connecting the movable portion 12 and the support portion 14. The elastic body portion 15 is smaller in rigidity in the prescribed direction than that in the direction orthogonal to the prescribed direction, and a plurality of elastic body portions 1 are provided on both sides of the movable portion 12 in the prescribed direction. Provided side by side, the rectifier circuit 71 are different from each other in the time the polarity of the AC voltage outputted from the vibration generator unit EH is when the positive and negative capacitor (C11, C12, C 21, C 22, C 23 , C 24 ,..., C 2n ) are charged voltage doubler rectifier circuits (71A, 71B, 71C).
 換言すれば、エネルギ変換装置1は、振動発電装置EHと、整流回路71と、を備える。振動発電装置EHは、対向方向において互いに対向する磁石ブロック3及びコイルブロック4を有し、対向方向に直交する規定方向における磁石ブロック3に対するコイルブロック4の相対変位に起因する電磁誘導によって交流電圧を出力するように構成される。整流回路71は、振動発電装置EHから出力される交流電圧を整流して出力するように構成される。振動発電装置EHは、磁石ブロック3とコイルブロック4との一方を備える可動部12と、可動部12が内側に配置される支持部14と、可動部12を支持部14に連結する複数の弾性体部15と、を備える。複数の弾性体部15は、規定方向における可動部12の両側の各々に規定方向に直交する方向に沿って並べて配置される。複数の弾性体部15の各々は、規定方向に直交する方向より規定方向において変形しやすく構成される。整流回路71は、振動発電装置EHから出力される交流電圧の極性が正のときと負のときとで互いに異なるコンデンサが充電される倍電圧整流回路である。 In other words, the energy conversion device 1 includes the vibration power generation device EH and the rectifier circuit 71. The vibration power generator EH includes a magnet block 3 and a coil block 4 that face each other in the facing direction, and generates an alternating voltage by electromagnetic induction caused by relative displacement of the coil block 4 with respect to the magnet block 3 in a specified direction orthogonal to the facing direction. Configured to output. The rectifier circuit 71 is configured to rectify and output the AC voltage output from the vibration power generator EH. The vibration power generator EH includes a movable part 12 including one of the magnet block 3 and the coil block 4, a support part 14 on which the movable part 12 is disposed, and a plurality of elastic members that connect the movable part 12 to the support part 14. A body part 15. The plurality of elastic body portions 15 are arranged side by side along a direction orthogonal to the prescribed direction on each side of the movable portion 12 in the prescribed direction. Each of the plurality of elastic body portions 15 is configured to be easily deformed in the specified direction from the direction orthogonal to the specified direction. The rectifier circuit 71 is a voltage doubler rectifier circuit in which different capacitors are charged depending on whether the polarity of the AC voltage output from the vibration power generator EH is positive or negative.
 また、本実施形態のエネルギ変換装置1は、第1の特徴に加えて、以下の第2の特徴を有する。第2の特徴では、弾性体部15は、ばねである。なお、第2の特徴は任意の特徴である。 Moreover, the energy conversion device 1 of the present embodiment has the following second feature in addition to the first feature. In the second feature, the elastic body portion 15 is a spring. The second feature is an arbitrary feature.
 また、本実施形態のエネルギ変換装置1は、第1の特徴に加えて、以下の第3または第4の特徴を有する。第3の特徴では、倍電圧整流回路(整流回路71)は、両波倍電圧整流回路71Aである。第4の特徴では、倍電圧整流回路(整流回路71)は、コッククロフト-ウォルトン回路(71B,71C)である。なお、第3および第4の特徴は任意の特徴である。 In addition to the first feature, the energy conversion device 1 of the present embodiment has the following third or fourth feature. In the third feature, the voltage doubler rectifier circuit (rectifier circuit 71) is a double wave voltage doubler rectifier circuit 71A. In the fourth feature, the voltage doubler rectifier circuit (rectifier circuit 71) is a Cockcroft-Walton circuit (71B, 71C). The third and fourth characteristics are arbitrary characteristics.
 また、本実施形態のエネルギ変換装置1は、第1の特徴に加えて、以下の第5の特徴を有する。第5の特徴では、整流回路71の出力電圧(整流回路71から出力される電圧)を定電圧化するDC-DCコンバータを備える。なお、第5の特徴は任意の特徴である。 In addition to the first feature, the energy conversion device 1 of the present embodiment has the following fifth feature. The fifth feature includes a DC-DC converter that makes the output voltage of the rectifier circuit 71 (voltage output from the rectifier circuit 71) constant. The fifth feature is an arbitrary feature.
 以上述べたように、本実施形態のエネルギ変換装置1においては、可動部12を変位させて作動させることが可能であり、且つ、エネルギ変換効率の向上を図ることが可能となる。 As described above, in the energy conversion device 1 of the present embodiment, the movable part 12 can be operated by being displaced, and the energy conversion efficiency can be improved.
 なお、本実施形態における振動発電装置EHは、この振動発電装置EHの共振周波数と一致する環境振動(外部振動)を利用して発電させることもできる。環境振動としては、例えば、稼動中のFA機器で発生する振動、車両の走行によって発生する振動、人の歩行によって発生する振動など、種々の環境振動がある。振動発電装置EHで発生する交流電圧の周波数は、環境振動の周波数がエネルギ変換装置1の共振周波数と一致する場合、振動発電装置EHの共振周波数と同じになる。 Note that the vibration power generation apparatus EH in the present embodiment can also generate power using environmental vibration (external vibration) that matches the resonance frequency of the vibration power generation apparatus EH. Examples of the environmental vibration include various environmental vibrations such as vibrations generated by an operating FA device, vibrations generated by traveling of the vehicle, and vibrations generated by walking of a person. The frequency of the alternating voltage generated by the vibration power generation device EH is the same as the resonance frequency of the vibration power generation device EH when the frequency of the environmental vibration matches the resonance frequency of the energy conversion device 1.
 (実施形態2)
 以下では、本実施形態のエネルギ変換装置1(1A)について図15~図24に基づいて説明する。なお、実施形態1のエネルギ変換装置1と同様の構成要素については同一の符号を付して説明を適宜省略する。
(Embodiment 2)
Hereinafter, the energy conversion device 1 (1A) of the present embodiment will be described with reference to FIGS. In addition, about the component similar to the energy conversion apparatus 1 of Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted suitably.
 本実施形態のエネルギ変換装置1Aは、可動部12を上記規定方向に沿って変位させるための入力機構5を備えている。また、本実施形態のエネルギ変換装置1Aは、可動部12に接続された第1磁性材料部7と、入力機構5に接続された第2磁性材料部6とを備え、第1磁性材料部7と第2磁性材料部6との間に発生する磁力により可動部12を変位可能である。 The energy conversion device 1A of the present embodiment includes an input mechanism 5 for displacing the movable part 12 along the specified direction. Further, the energy conversion device 1 </ b> A of the present embodiment includes a first magnetic material unit 7 connected to the movable unit 12 and a second magnetic material unit 6 connected to the input mechanism 5, and the first magnetic material unit 7. The movable portion 12 can be displaced by the magnetic force generated between the second magnetic material portion 6 and the second magnetic material portion 6.
 第1磁性材料部7は、磁石(第1磁石)もしくは磁性体(第1磁性体)のいずれかにより構成することができる。また、第2磁性材料部6は、磁石(第2磁石)もしくは磁性体(第2磁性体)のいずれかにより構成することができる。 The first magnetic material portion 7 can be composed of either a magnet (first magnet) or a magnetic body (first magnetic body). The second magnetic material portion 6 can be composed of either a magnet (second magnet) or a magnetic body (second magnetic body).
 本実施形態における振動ブロック11は、支持部14の平面視形状をC字状としてある。また、可動部12は、可動部本体13の外側面から上記規定方向に沿って突出する1つの突出部18を備えている。突出部18の先端面には、上述の第1磁性材料部7が接続されている。例えば、突出部18と第1磁性材料部7とは接着剤により接続されている。突出部18の平面視形状は、上記規定方向を長手方向とする長方形状としてある。ここで、突出部18の短手方向の寸法は、支持部14の両端面間の寸法よりもやや小さな寸法に設定してある。第1磁性材料部7の平面視形状は、矩形状としてある。 The vibration block 11 in the present embodiment has a C-shaped plan view shape of the support portion 14. In addition, the movable portion 12 includes one projecting portion 18 that projects from the outer surface of the movable portion main body 13 along the specified direction. The first magnetic material portion 7 described above is connected to the distal end surface of the protruding portion 18. For example, the protrusion 18 and the first magnetic material portion 7 are connected by an adhesive. The shape of the projection 18 in plan view is a rectangular shape with the specified direction as a longitudinal direction. Here, the dimension in the short direction of the projecting portion 18 is set to be slightly smaller than the dimension between both end faces of the support portion 14. The first magnetic material portion 7 has a rectangular shape in plan view.
 第1磁性材料部7は、第1磁性体により構成してあるが、これに限らず、第1磁石により構成してもよい。第1磁性材料部7を第1磁性体により構成する場合の材料としては、例えば、鉄-コバルト合金、電磁軟鉄、電磁ステンレス、パーマロイなどを採用することができる。また、第1磁性材料部7を第1磁石により構成する場合の材料としては、例えば、ネオジム、サマリウムコバルト、アルニコ、フェライトなどを採用することができる。 The first magnetic material portion 7 is composed of the first magnetic body, but is not limited thereto, and may be composed of the first magnet. For example, iron-cobalt alloy, electromagnetic soft iron, electromagnetic stainless steel, permalloy, or the like can be used as the material for forming the first magnetic material portion 7 with the first magnetic body. Moreover, as a material when the 1st magnetic material part 7 is comprised with a 1st magnet, neodymium, samarium cobalt, alnico, a ferrite, etc. are employable, for example.
 振動ブロック11は、可動部本体13と突出部18と支持部14と各弾性体部15とを、例えば、基板10から形成することができる。この場合、振動ブロック11では、可動部本体13、突出部18、支持部14および各弾性体部15を一体に形成することができる。 The vibration block 11 can form the movable part main body 13, the projecting part 18, the support part 14, and each elastic body part 15 from the substrate 10, for example. In this case, in the vibration block 11, the movable part main body 13, the protruding part 18, the support part 14, and each elastic body part 15 can be formed integrally.
 要するに、振動ブロック11は、可動部本体13と突出部18と支持部14と各弾性体部15とが、1枚のシリコン基板から一体に形成された構成とすることができる。これにより、振動発電装置EHの製造時には、振動ブロック11を形成する際に、可動部本体13、突出部18、支持部14および各弾性体部15のアセンブリ工程が不要となり、製造が容易になる。 In short, the vibration block 11 can be configured such that the movable portion main body 13, the projecting portion 18, the support portion 14, and each elastic body portion 15 are integrally formed from a single silicon substrate. Thereby, when manufacturing the vibration power generation apparatus EH, when the vibration block 11 is formed, the assembly process of the movable part main body 13, the projecting part 18, the support part 14, and each elastic body part 15 becomes unnecessary, and the manufacture becomes easy. .
 また、可動部本体13と突出部18と支持部14と各弾性体部15とが、1枚のシリコン基板から一体に形成された構成では、各弾性体部15と可動部本体13、突出部18および支持部14とが低減衰材料であるシリコンにより一体に形成されているので、振動時のエネルギ損失を低減することが可能となり、エネルギ変換効率を向上することが可能となる。 Further, in the configuration in which the movable portion main body 13, the protruding portion 18, the support portion 14, and each elastic body portion 15 are integrally formed from a single silicon substrate, each elastic body portion 15, the movable portion main body 13, the protruding portion Since 18 and the support portion 14 are integrally formed of silicon, which is a low damping material, energy loss during vibration can be reduced, and energy conversion efficiency can be improved.
 振動ブロック11は、上記規定方向における可動部12の両側それぞれに、複数の弾性体部15が並んで設けられていることが好ましい。これにより、エネルギ変換装置1は、可動部12の両側の各々に弾性体部15が1個ずつ設けられている場合に比べて、可動部12の振動方向の更なる単方向化が可能となり、エネルギ変換効率の更なる向上を図ることが可能となる。更に、エネルギ変換装置1は、個々の弾性体部15にかかる応力を低減することが可能となり、耐久性の向上を図ることが可能となる。可動部12の両側それぞれの弾性体部15の数は、特に限定するものではない。 The vibration block 11 is preferably provided with a plurality of elastic body portions 15 arranged on both sides of the movable portion 12 in the prescribed direction. Thereby, compared with the case where the energy conversion device 1 is provided with one elastic body portion 15 on each of both sides of the movable portion 12, the vibration direction of the movable portion 12 can be further unidirectional. It becomes possible to further improve the energy conversion efficiency. Furthermore, the energy conversion device 1 can reduce the stress applied to each elastic body portion 15 and can improve the durability. The number of the elastic body portions 15 on both sides of the movable portion 12 is not particularly limited.
 第1スペーサ41および第2スペーサ42は、平面視形状がC字状の形状である。 The first spacer 41 and the second spacer 42 are C-shaped in plan view.
 振動発電装置EH(EHA)は、第1スペーサ41の形状と第2スペーサ42の形状とを同じ形状に設定してあることが好ましい。これにより、エネルギ変換装置1Aは、部品共通化による低コスト化を図ることが可能となる。 In the vibration power generator EH (EHA), it is preferable that the shape of the first spacer 41 and the shape of the second spacer 42 are set to the same shape. As a result, the energy conversion device 1 </ b> A can achieve cost reduction by sharing parts.
 また、第1スペーサ41および第2スペーサ42の外形寸法は、振動ブロック11の外形寸法に合わせてあることが好ましい。 Further, it is preferable that the outer dimensions of the first spacer 41 and the second spacer 42 are matched with the outer dimensions of the vibration block 11.
 また、振動発電装置EHAは、第1スペーサ41および第2スペーサ42を設けずに、第1キャップ21および第2キャップ31を振動ブロック11に固定した構成としてもよい。 Further, the vibration power generation apparatus EHA may be configured such that the first cap 21 and the second cap 31 are fixed to the vibration block 11 without providing the first spacer 41 and the second spacer 42.
 以上説明した振動発電装置EHAでは、実施形態1の振動発電装置EHと同様に、磁石ブロック3と、コイルブロック4とを有し、磁石ブロック3とコイルブロック4とが対向配置されている。そして、振動発電装置EHAは、磁石ブロック3を備えた可動部12と、支持部14と、可動部12と支持部14とを接続している弾性体部15とを有している。 The vibration power generation apparatus EHA described above includes the magnet block 3 and the coil block 4 as in the vibration power generation apparatus EH of the first embodiment, and the magnet block 3 and the coil block 4 are arranged to face each other. The vibration power generator EHA includes a movable portion 12 including the magnet block 3, a support portion 14, and an elastic body portion 15 that connects the movable portion 12 and the support portion 14.
 また、弾性体部15は、上記規定方向における剛性が上記規定方向に直交する方向の剛性に比べて小さい。しかして、振動発電装置EHAは、可動部12の振動方向を、磁石ブロック3とコイルブロック4との対向方向に直交する上記規定方向に単方向化することが可能となり、エネルギ変換効率の向上を図ることが可能となる。 Further, the elastic body portion 15 has a smaller rigidity in the specified direction than that in a direction orthogonal to the specified direction. Thus, the vibration power generation apparatus EHA can unidirectionally change the vibration direction of the movable portion 12 in the specified direction orthogonal to the opposing direction of the magnet block 3 and the coil block 4, thereby improving the energy conversion efficiency. It becomes possible to plan.
 また、振動発電装置EHAは、上記規定方向における可動部12の両側それぞれに複数の弾性体部15が設けられている。これにより、振動発電装置EHAは、可動部12の両側の各々に弾性体部15が1個ずつ設けられている場合に比べて、可動部12の振動方向の更なる単方向化が可能となり、エネルギ変換効率の更なる向上を図ることが可能となる。 The vibration power generator EHA is provided with a plurality of elastic body portions 15 on both sides of the movable portion 12 in the specified direction. Thereby, the vibration power generator EHA can further unidirectionally change the vibration direction of the movable portion 12 as compared with the case where one elastic body portion 15 is provided on each of both sides of the movable portion 12. It becomes possible to further improve the energy conversion efficiency.
 振動発電装置EHAは、可動部12の上記規定方向への振動に伴って発生する電磁誘導によって、交流の誘導起電力が発生する。振動発電装置EHAの開放電圧は、可動部12の振動に応じた交流電圧となる。ここで、エネルギ変換装置1Aは、上述の入力機構5に外力を与えることで可動部12を上記規定方向に沿って変位させた後で、第2磁性材料部6が第1磁性材料部7から離れれば、可動部12が減衰振動するので、この減衰振動に応じた交流電圧を発生する。要するに、振動発電装置EHAは、可動部12を変位させて作動させることが可能である。 In the vibration power generation apparatus EHA, an AC induced electromotive force is generated by electromagnetic induction generated in accordance with the vibration of the movable portion 12 in the specified direction. The open circuit voltage of the vibration power generator EHA is an AC voltage corresponding to the vibration of the movable part 12. Here, after the energy conversion device 1 </ b> A displaces the movable part 12 along the specified direction by applying an external force to the input mechanism 5, the second magnetic material part 6 moves from the first magnetic material part 7. If it moves away, the movable part 12 dampens and vibrates, so that an alternating voltage corresponding to this damped vibration is generated. In short, the vibration power generator EHA can be operated by displacing the movable portion 12.
 ところで、エネルギ変換装置1Aは、振動発電装置EHAが実装される実装基板8を備えている。実装基板8としては、例えば、プリント配線板などの回路基板を採用することができる。そして、入力機構5は、実装基板8に固定されている。これにより、エネルギ変換装置1Aは、振動発電装置EHAと入力機構5との相対的な位置関係を規定することができる。 By the way, the energy conversion device 1A includes a mounting substrate 8 on which the vibration power generation device EHA is mounted. As the mounting board 8, for example, a circuit board such as a printed wiring board can be adopted. The input mechanism 5 is fixed to the mounting board 8. Thereby, 1 A of energy converters can prescribe | regulate the relative positional relationship of the vibration electric power generating apparatus EHA and the input mechanism 5. FIG.
 入力機構5は、実装基板(回路基板)8に固定される円柱状の回動軸51と、この回動軸51に回動自在に保持された回動部本体52と、回動部本体52から突出された操作部53と、回動部本体52から操作部53とは反対側に突出された突出部54とを備えている。 The input mechanism 5 includes a columnar rotation shaft 51 fixed to a mounting substrate (circuit board) 8, a rotation portion main body 52 rotatably held on the rotation shaft 51, and a rotation portion main body 52. And an operation portion 53 protruding from the rotation portion main body 52 and a protrusion portion 54 protruding to the opposite side of the operation portion 53.
 操作部53は、例えば、エネルギ変換装置1の使用者などが指などで操作可能な大きさに形成されている。操作部53と回動部本体52と突出部54とは、例えば、樹脂により形成することができる。 The operation unit 53 is formed, for example, in such a size that a user of the energy conversion device 1 can operate with a finger or the like. The operation part 53, the rotation part main body 52, and the protrusion part 54 can be formed with resin, for example.
 第2磁性材料部6は、突出部54の先端面に接続されている。例えば、突出部54と第2磁性材料部6とは接着剤により接続されている。第2磁性材料部6の平面視形状は、矩形状としてある。 The second magnetic material portion 6 is connected to the distal end surface of the protruding portion 54. For example, the protruding portion 54 and the second magnetic material portion 6 are connected by an adhesive. The planar view shape of the second magnetic material portion 6 is a rectangular shape.
 第2磁性材料部6は、第2磁石により構成されているが、これに限らず、第2磁性体により構成してもよい。第2磁性材料部6を第2磁石により構成する場合の材料としては、例えば、ネオジム、サマリウムコバルト、アルニコ、フェライトなどを採用することができる。また、第2磁性材料部6を第2磁性体により構成する場合の材料としては、例えば、鉄-コバルト合金、電磁軟鉄、電磁ステンレス、パーマロイなどを採用することができる。 The second magnetic material portion 6 is composed of the second magnet, but is not limited thereto, and may be composed of the second magnetic body. For example, neodymium, samarium cobalt, alnico, ferrite, or the like can be used as the material when the second magnetic material portion 6 is formed of the second magnet. Moreover, as a material in the case where the second magnetic material portion 6 is composed of the second magnetic body, for example, iron-cobalt alloy, electromagnetic soft iron, electromagnetic stainless steel, permalloy, or the like can be employed.
 第1磁性材料部7と第2磁性材料部6との間に発生する磁力の方向は、吸引する方向であるが、これに限らず、反発する方向でもよい。例えば、第1磁性材料部7を第1磁石により構成し、第2磁性材料部6を第2磁石により構成し、第1磁石と第2磁石との同極同士が対向するように第1磁石と第2磁石とを配置すれば、第1磁性材料部7と第2磁性材料部6との間に発生する磁力の方向は、反発する方向となる。 The direction of the magnetic force generated between the first magnetic material portion 7 and the second magnetic material portion 6 is the direction of attraction, but is not limited thereto, and may be a repulsive direction. For example, the 1st magnetic material part 7 is comprised by the 1st magnet, the 2nd magnetic material part 6 is comprised by the 2nd magnet, and the 1st magnet so that the same polarity of a 1st magnet and a 2nd magnet may oppose And the second magnet are arranged, the direction of the magnetic force generated between the first magnetic material part 7 and the second magnetic material part 6 is a repulsive direction.
 入力機構5は、操作部53と突出部54と第2磁性材料部6とが一直線上に配置されており、操作部53と突出部54と第2磁性材料部6とを結ぶ直線が上記規定方向と略直交するように配置されている。 In the input mechanism 5, the operation portion 53, the protruding portion 54, and the second magnetic material portion 6 are arranged in a straight line, and a straight line connecting the operating portion 53, the protruding portion 54, and the second magnetic material portion 6 is defined as described above. It arrange | positions so that it may orthogonally cross a direction.
 ここにおいて、入力機構5は、例えば、図20に示すように、ねじりコイルばねからなる復帰ばね55を備えている。復帰ばね55は、回動部本体52内で回動軸51を囲むように配置されており、一端部55aが実装基板8に固定され、他端部55bが操作部53に固定されている。 Here, the input mechanism 5 includes a return spring 55 made of a torsion coil spring, for example, as shown in FIG. The return spring 55 is disposed so as to surround the rotation shaft 51 in the rotation unit main body 52, one end 55 a is fixed to the mounting substrate 8, and the other end 55 b is fixed to the operation unit 53.
 図20に示した入力機構5は、初期位置にある操作部53に対して復帰ばね55のばね力に抗して外力を与えることにより、上記規定方向に沿って突出部54が突出部18から離れる向きへ変位する。そして、入力機構5は、操作部53へ与えられていた外力がなくなると、復帰ばね55のばね力によって、操作部53が初期位置に戻るようになっている。なお、入力機構5は、図20の構成に限定するものではなく、他の構成でもよい。 The input mechanism 5 shown in FIG. 20 applies an external force against the spring force of the return spring 55 to the operating portion 53 in the initial position, so that the protruding portion 54 extends from the protruding portion 18 along the specified direction. Displaces away. The input mechanism 5 is configured such that when the external force applied to the operation unit 53 disappears, the operation unit 53 returns to the initial position by the spring force of the return spring 55. Note that the input mechanism 5 is not limited to the configuration shown in FIG. 20 and may have other configurations.
 第1磁性材料部7が第1磁性体であり且つ第2磁性材料部6が第2磁性体である場合には、入力機構5が、第2磁性材料部6を磁化可能な磁石(以下、磁化用磁石と称する)を備えるようにすればよい。 When the first magnetic material portion 7 is a first magnetic body and the second magnetic material portion 6 is a second magnetic body, the input mechanism 5 is a magnet that can magnetize the second magnetic material portion 6 (hereinafter, referred to as a magnet). (Referred to as magnetizing magnet).
 入力機構5は、磁化用磁石を第2磁性材料部6に接触させて第2磁性材料部6を磁化することにより第2磁性材料部6と第1磁性材料部7との間に磁力を発生させ、第2磁性材料部6から磁化用磁石を離すことにより第2磁性材料部6の磁気を消失させ第2磁性材料部6と第1磁性材料部7との間の磁力を消失させるようにすればよい。 The input mechanism 5 generates a magnetic force between the second magnetic material portion 6 and the first magnetic material portion 7 by magnetizing the second magnetic material portion 6 by bringing the magnetizing magnet into contact with the second magnetic material portion 6. The magnetism of the second magnetic material portion 6 is lost by separating the magnetizing magnet from the second magnetic material portion 6 so that the magnetic force between the second magnetic material portion 6 and the first magnetic material portion 7 is lost. do it.
 振動ブロック11は、支持部14に、上記規定方向への可動部12の変位量を規定値に制限するストッパ部14cを設けてある。ストッパ部14cは、支持部14の内側面において上記規定方向に平行な面に対して傾斜したテーパ状である。これに対し、可動部12の外周面(可動部本体13の外側面)には、ストッパ部14cと略平行な傾斜面12cを設けてある。可動部12に設けられた傾斜面12cは、可動部12の外周面において上記規定方向に平行な面に対して傾斜している。 The vibration block 11 is provided with a stopper portion 14c on the support portion 14 for limiting the amount of displacement of the movable portion 12 in the specified direction to a specified value. The stopper portion 14c has a tapered shape inclined on the inner side surface of the support portion 14 with respect to a plane parallel to the specified direction. On the other hand, an inclined surface 12c substantially parallel to the stopper portion 14c is provided on the outer peripheral surface of the movable portion 12 (the outer surface of the movable portion main body 13). An inclined surface 12 c provided on the movable portion 12 is inclined with respect to a surface parallel to the prescribed direction on the outer peripheral surface of the movable portion 12.
 エネルギ変換装置1Aでは、上述の入力機構5に外力を与えて可動部12を上記規定方向へ変位させる際に、傾斜面12cがストッパ部14cに接触することで可動部12の変位量が規定値に制限されるから、可動部12の変位量を略一定値とすることが可能となる。 In the energy conversion device 1A, when an external force is applied to the input mechanism 5 to displace the movable part 12 in the prescribed direction, the inclined surface 12c contacts the stopper part 14c so that the displacement amount of the movable part 12 is a prescribed value. Therefore, the displacement amount of the movable part 12 can be set to a substantially constant value.
 また、エネルギ変換装置1Aでは、上記規定方向とは異なる方向への可動部12の変位を抑制することが可能となる。これらにより、エネルギ変換装置1Aでは、外力を与える度に発電出力がばらつくのを抑制することが可能となり、また、外力を与える際に弾性体部15に上記規定方向以外の方向へ過大な力が作用するのを抑制することが可能となり信頼性の向上を図ることが可能となる。 Moreover, in the energy conversion device 1A, it is possible to suppress the displacement of the movable part 12 in a direction different from the prescribed direction. Thus, in the energy conversion device 1A, it is possible to suppress the variation in the power generation output each time an external force is applied, and when the external force is applied, an excessive force is applied to the elastic body portion 15 in a direction other than the specified direction. It is possible to suppress the action, and it is possible to improve the reliability.
 エネルギ変換装置1Aの動作の一例について図21~図24に基づいて説明するが、図21~図24は、第2磁性材料部6が第2磁石により構成され、第1磁性材料部7が第1磁性体により構成されている場合の動作例を説明するためのものである。 An example of the operation of the energy conversion device 1A will be described with reference to FIGS. 21 to 24. In FIGS. 21 to 24, the second magnetic material portion 6 is composed of the second magnet, and the first magnetic material portion 7 is the first magnetic material portion 7. It is for demonstrating the operation example in the case of being comprised by 1 magnetic body.
 エネルギ変換装置1Aは、図21に示すように操作部53が初期位置にある状態では、第2磁性材料部6と第1磁性材料部7との間に発生している磁力により第2磁性材料部6に第1磁性材料部7が吸着されている。 In the state where the operation unit 53 is in the initial position as shown in FIG. 21, the energy conversion device 1 </ b> A uses the second magnetic material by the magnetic force generated between the second magnetic material unit 6 and the first magnetic material unit 7. The first magnetic material portion 7 is adsorbed to the portion 6.
 エネルギ変換装置1Aは、初期位置にある操作部53に対して、操作部53が振動発電装置EHAに近づく向き(図21中の矢印の向き)の外力が与えられると、図22の矢印で示すように、操作部53および突出部54が反時計回りに回動する。この際、エネルギ変換装置1Aは、可動部12が図22の右側の弾性体部15の弾性力に抗して移動し、第1磁性材料部7が第2磁性材料部6に吸着された状態が維持される。なお、図22において入力機構5に付した矢印は、入力機構5の回動方向を示している。 When the external force in the direction in which the operation unit 53 approaches the vibration power generation device EHA (direction of the arrow in FIG. 21) is given to the operation unit 53 in the initial position, the energy conversion device 1A is indicated by the arrow in FIG. Thus, the operation part 53 and the protrusion part 54 rotate counterclockwise. At this time, in the energy conversion device 1A, the movable part 12 moves against the elastic force of the elastic body part 15 on the right side in FIG. 22 and the first magnetic material part 7 is adsorbed by the second magnetic material part 6. Is maintained. In FIG. 22, the arrow attached to the input mechanism 5 indicates the rotation direction of the input mechanism 5.
 そして、エネルギ変換装置1Aは、操作部53が更に回動され弾性体部15のばね力が第1磁性材料部7と第2磁性材料部6との間の磁力よりも大きくなると、図23に示すように第1磁性材料部7が第2磁性材料部6から離れ、可動部12が上記規定方向に沿って振動する。この振動は、減衰振動である。 Then, when the operation unit 53 is further rotated and the spring force of the elastic body unit 15 becomes larger than the magnetic force between the first magnetic material unit 7 and the second magnetic material unit 6, the energy conversion device 1 </ b> A is shown in FIG. 23. As shown, the first magnetic material portion 7 is separated from the second magnetic material portion 6 and the movable portion 12 vibrates along the prescribed direction. This vibration is a damped vibration.
 なお、図23において、可動部12に付した矢印は、可動部12の振動方向を示し、入力機構5に付した矢印は、入力機構5の回動方向を示している。 In FIG. 23, an arrow attached to the movable part 12 indicates a vibration direction of the movable part 12, and an arrow attached to the input mechanism 5 indicates a rotation direction of the input mechanism 5.
 その後、入力機構5へ外力を与えるのを止めると、入力機構5は、復帰ばね55のばね力によって初期位置に戻る。なお、図24において入力機構5に付した矢印は、入力機構5の回動方向を示している。 Thereafter, when the application of external force to the input mechanism 5 is stopped, the input mechanism 5 returns to the initial position by the spring force of the return spring 55. In FIG. 24, an arrow attached to the input mechanism 5 indicates the rotation direction of the input mechanism 5.
 本実施形態のエネルギ変換装置1Aは、操作部53を初期位置から(第1)所定角(例えば、5°)だけ回動させたときに可動部12が上記規定値だけ変位してストッパ部14cに接触し、操作部53を初期位置から(第2)所定角(例えば、10°)だけ回動させたときに弾性体部15のばね力が第1磁性材料部7と第2磁性材料部6との間の磁力よりも大きくなるように、弾性体部15のばね力を設計してある。 In the energy conversion device 1A of the present embodiment, when the operation unit 53 is rotated from the initial position by a (first) predetermined angle (for example, 5 °), the movable unit 12 is displaced by the specified value and the stopper unit 14c. When the operation portion 53 is rotated by a (second) predetermined angle (for example, 10 °) from the initial position, the spring force of the elastic body portion 15 is applied to the first magnetic material portion 7 and the second magnetic material portion. The spring force of the elastic body portion 15 is designed so as to be larger than the magnetic force between the elastic body portion 15 and the magnetic force.
 第1所定角および第2所定角は、特に限定するものでないが、第2磁性材料部6が上記規定方向に沿った一直線上で変位するように設計することが好ましい。 The first predetermined angle and the second predetermined angle are not particularly limited, but it is preferable to design the second magnetic material portion 6 so as to be displaced on a straight line along the specified direction.
 ところで、文献2に記載された発電装置では、図29を参酌すれば分かるように、多葉カム1204がサスペンション1210に対して不要な方向にも力を与えてしまうため、エネルギ変換効率の向上が難しいと考えられる。 Incidentally, in the power generation device described in Document 2, as can be understood by referring to FIG. 29, the multi-leaf cam 1204 applies a force to the suspension 1210 in an unnecessary direction, so that the energy conversion efficiency is improved. It seems difficult.
 また、文献2に記載された発電装置では、多葉カム1204がサスペンション1210に対して不要な方向にも力を与えてしまうため、サスペンション1210に過大な負荷がかかり、サスペンション1210の構造破壊を引き起こしてしまうことが考えられる。 Further, in the power generation device described in Document 2, since the multi-leaf cam 1204 applies a force to the suspension 1210 in an unnecessary direction, an excessive load is applied to the suspension 1210, and the suspension 1210 is structurally broken. It can be considered.
 さらに、文献2に記載された発電装置では、多葉カム1204の各葉部(lobes)の各々の先端部とフォロア1206の先端部とにそれぞれの他の部位に比べて大きな応力がかかるため、摩耗による構造劣化が起こり、発電性能が低下してしまうことが考えられる。 Furthermore, in the power generation device described in Literature 2, a large stress is applied to each tip of each leaf (lobes) of the multi-leaf cam 1204 and the tip of the follower 1206 as compared to each other part. It is conceivable that structural degradation occurs due to wear and power generation performance decreases.
 これに対して、本実施形態のエネルギ変換装置1Aは、可動部12を上記規定方向に沿って変位させるための入力機構5と、可動部12に接続された第1磁性材料部7と、入力機構5に接続された第2磁性材料部6とを備え、第1磁性材料部7と第2磁性材料部6との間に発生する磁力により可動部12を変位可能である。これにより、エネルギ変換装置1Aは、入力機構5へ外力を適宜与えることで可動部12を変位させて作動させることが可能であり、且つ、可動部12へ上記規定方向とは異なる方向の力が作用するのを抑制することが可能となり、エネルギ変換効率(発電効率)および信頼性の向上を図ることが可能となる。エネルギ変換装置1Aは、入力機構5と第2磁性材料部6と第1磁性材料部7とで可動部12を変位させるアクチュエータを構成している。 In contrast, the energy conversion device 1A of the present embodiment includes an input mechanism 5 for displacing the movable part 12 along the specified direction, a first magnetic material part 7 connected to the movable part 12, and an input. The second magnetic material portion 6 connected to the mechanism 5 is provided, and the movable portion 12 can be displaced by a magnetic force generated between the first magnetic material portion 7 and the second magnetic material portion 6. Thereby, the energy conversion device 1A can be operated by displacing the movable portion 12 by appropriately applying an external force to the input mechanism 5, and a force in a direction different from the prescribed direction is applied to the movable portion 12. It becomes possible to suppress the action, and it becomes possible to improve energy conversion efficiency (power generation efficiency) and reliability. In the energy conversion device 1 </ b> A, the input mechanism 5, the second magnetic material portion 6, and the first magnetic material portion 7 constitute an actuator that displaces the movable portion 12.
 エネルギ変換装置1Aは、第1磁性材料部7が、第1磁性体もしくは第1磁石のいずれかからなり、第2磁性材料部6が、第2磁性体もしくは第2磁石のいずれかからなるので、第1磁性材料部7と第2磁性材料部6との間に発生する磁力を適宜設定することが可能となる。 In the energy conversion device 1A, the first magnetic material portion 7 is made of either the first magnetic body or the first magnet, and the second magnetic material portion 6 is made of either the second magnetic body or the second magnet. The magnetic force generated between the first magnetic material portion 7 and the second magnetic material portion 6 can be set as appropriate.
 また、エネルギ変換装置1Aは、第1磁性材料部7と第2磁性材料部6との間に発生する磁力の方向が、吸引する方向なので、磁力の方向が反発する方向である場合に比べて、可動部12を上記規定方向に沿って安定して変位させることが可能となる。 Further, in the energy conversion device 1A, the direction of the magnetic force generated between the first magnetic material part 7 and the second magnetic material part 6 is the attracting direction, so that the direction of the magnetic force is a repulsive direction. The movable part 12 can be stably displaced along the prescribed direction.
 整流回路71を構成する倍電圧整流回路は、図15の両波倍電圧整流回路71Aに限らず、例えば、図12や図13のようなコッククロフト-ウォルトン回路71B,71Cを採用してもよい。また、整流回路71の後段に、図14のようなDC-DCコンバータ72を備える構成としてもよい。これにより、エネルギ変換装置1Aは、負荷をより安定して動作させることが可能となる。 The voltage doubler rectifier circuit constituting the rectifier circuit 71 is not limited to the double wave voltage doubler rectifier circuit 71A of FIG. 15, and for example, Cockcroft- Walton circuits 71B and 71C as shown in FIGS. Further, a configuration in which a DC-DC converter 72 as shown in FIG. Thereby, the energy conversion device 1 </ b> A can operate the load more stably.
 以上述べた本実施形態のエネルギ変換装置1Aは、実施形態1と同様に、第1の特徴を有する。したがって、本実施形態のエネルギ変換装置1Aにおいても、可動部12を変位させて作動させることが可能であり、且つ、エネルギ変換効率の向上を図ることが可能となる。なお、本実施形態のエネルギ変換装置1Aは、実施形態1と同様に、第2~第5の特徴を有していてもよい。 The energy conversion device 1A of the present embodiment described above has the first feature as in the first embodiment. Therefore, also in the energy conversion device 1A of the present embodiment, the movable part 12 can be operated by being displaced, and the energy conversion efficiency can be improved. Note that the energy conversion device 1A of the present embodiment may have the second to fifth features as in the first embodiment.
 ところで、上述の各実施形態1,2では、可動部12が磁石ブロック3を備え、第1キャップ21および第2キャップ31の各々がコイルブロック4を備えているが、これらに限らず、可動部12がコイルブロック4を備え、第1キャップ21および第2キャップ31の少なくとも一方が磁石ブロック3を備えた構成としてもよい。また、弾性体部15は、ゴムや樹脂などにより形成してもよい。 By the way, in each of the above-described first and second embodiments, the movable portion 12 includes the magnet block 3 and each of the first cap 21 and the second cap 31 includes the coil block 4. 12 may include the coil block 4, and at least one of the first cap 21 and the second cap 31 may include the magnet block 3. The elastic body portion 15 may be formed of rubber or resin.

Claims (5)

  1.  対向方向において互いに対向する磁石ブロック及びコイルブロックを有し、前記対向方向に直交する規定方向における前記磁石ブロックに対するコイルブロックの相対変位に起因する電磁誘導によって交流電圧を出力する振動発電装置と、
     前記振動発電装置から出力される前記交流電圧を整流して出力する整流回路と、
     を備え、
     前記振動発電装置は、
      前記磁石ブロックと前記コイルブロックとの一方を備える可動部と、
      前記可動部が内側に配置される支持部と、
      前記可動部を前記支持部に連結する複数の弾性体部と、
     を備え、
     前記複数の弾性体部は、前記規定方向における前記可動部の両側の各々に前記規定方向に直交する方向に沿って並べて配置され、
     前記複数の弾性体部の各々は、前記規定方向に直交する方向より前記規定方向において変形しやすく構成されており、
     前記整流回路は、前記振動発電装置から出力される前記交流電圧の極性が正のときと負のときとで互いに異なるコンデンサが充電される倍電圧整流回路である
     ことを特徴とするエネルギ変換装置。
    A vibration power generator having a magnet block and a coil block facing each other in the facing direction, and outputting an alternating voltage by electromagnetic induction caused by relative displacement of the coil block with respect to the magnet block in a specified direction orthogonal to the facing direction;
    A rectifier circuit that rectifies and outputs the AC voltage output from the vibration power generator;
    With
    The vibration power generator
    A movable part comprising one of the magnet block and the coil block;
    A support part on which the movable part is disposed, and
    A plurality of elastic body parts connecting the movable part to the support part;
    With
    The plurality of elastic body parts are arranged side by side along a direction orthogonal to the prescribed direction on each of both sides of the movable part in the prescribed direction,
    Each of the plurality of elastic body portions is configured to be easily deformed in the prescribed direction from a direction orthogonal to the prescribed direction,
    The rectifier circuit is a voltage doubler rectifier circuit in which different capacitors are charged depending on whether the polarity of the AC voltage output from the vibration power generator is positive or negative.
  2.  前記弾性体部は、ばねである
     ことを特徴とする請求項1記載のエネルギ変換装置。
    The energy conversion device according to claim 1, wherein the elastic body portion is a spring.
  3.  前記倍電圧整流回路は、両波倍電圧整流回路である
     ことを特徴とする請求項1に記載のエネルギ変換装置。
    The energy conversion device according to claim 1, wherein the voltage doubler rectifier circuit is a double wave voltage doubler rectifier circuit.
  4.  前記倍電圧整流回路は、コッククロフト-ウォルトン回路である
     ことを特徴とする請求項1に記載のエネルギ変換装置。
    The energy conversion device according to claim 1, wherein the voltage doubler rectifier circuit is a Cockcroft-Walton circuit.
  5.  前記整流回路から出力される電圧を定電圧化するDC-DCコンバータを備える
     ことを特徴とする請求項1に記載のエネルギ変換装置。
    The energy conversion device according to claim 1, further comprising a DC-DC converter that converts the voltage output from the rectifier circuit to a constant voltage.
PCT/JP2013/004772 2012-08-07 2013-08-07 Energy conversion device WO2014024487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012174974A JP2014036462A (en) 2012-08-07 2012-08-07 Energy conversion device
JP2012-174974 2012-08-07

Publications (1)

Publication Number Publication Date
WO2014024487A1 true WO2014024487A1 (en) 2014-02-13

Family

ID=50067740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004772 WO2014024487A1 (en) 2012-08-07 2013-08-07 Energy conversion device

Country Status (3)

Country Link
JP (1) JP2014036462A (en)
TW (1) TW201414144A (en)
WO (1) WO2014024487A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101464677B1 (en) * 2014-05-26 2014-11-28 이형백 the vibration generator using a self-oscillating power, the vibration generator using torque and vibration in parallel and the vibration generator device using the combination of various kinetic energy
JP2016201972A (en) * 2015-04-14 2016-12-01 ミツミ電機株式会社 Full-wave voltage doubler rectifier circuit and power supply apparatus
TWI736128B (en) * 2020-02-11 2021-08-11 台睿精工股份有限公司 Linear vibration motor with compound elastic system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237582U (en) * 1988-08-31 1990-03-13
JPH0865992A (en) * 1994-06-13 1996-03-08 General Electric Co <Ge> Device for converting vibratory motion into electric energy
JP2004159407A (en) * 2002-11-05 2004-06-03 Shinano Kenshi Co Ltd Portable generator
JP2004527198A (en) * 2001-05-22 2004-09-02 エノーシャン ゲゼルシャフト ミット ベシュレンクテル ハフツング Inductive voltage control circuit
JP2008259264A (en) * 2007-04-02 2008-10-23 Toshiba Corp Oscillation power generating set
JP2009017769A (en) * 2007-07-06 2009-01-22 Tohoku Univ Vibration type generator
JP2009118582A (en) * 2007-11-02 2009-05-28 Shibatekku Kk Power generation element, power generator and electronic apparatus
JP2009247102A (en) * 2008-03-31 2009-10-22 Matsumoto Kenzai:Kk Low-energy vehicle
JP2011120360A (en) * 2009-12-02 2011-06-16 Takenaka Komuten Co Ltd Generation set
JP2013505698A (en) * 2009-09-16 2013-02-14 エコハーベスター,インコーポレイテッド Multi-pole electromagnetic generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237582U (en) * 1988-08-31 1990-03-13
JPH0865992A (en) * 1994-06-13 1996-03-08 General Electric Co <Ge> Device for converting vibratory motion into electric energy
JP2004527198A (en) * 2001-05-22 2004-09-02 エノーシャン ゲゼルシャフト ミット ベシュレンクテル ハフツング Inductive voltage control circuit
JP2004159407A (en) * 2002-11-05 2004-06-03 Shinano Kenshi Co Ltd Portable generator
JP2008259264A (en) * 2007-04-02 2008-10-23 Toshiba Corp Oscillation power generating set
JP2009017769A (en) * 2007-07-06 2009-01-22 Tohoku Univ Vibration type generator
JP2009118582A (en) * 2007-11-02 2009-05-28 Shibatekku Kk Power generation element, power generator and electronic apparatus
JP2009247102A (en) * 2008-03-31 2009-10-22 Matsumoto Kenzai:Kk Low-energy vehicle
JP2013505698A (en) * 2009-09-16 2013-02-14 エコハーベスター,インコーポレイテッド Multi-pole electromagnetic generator
JP2011120360A (en) * 2009-12-02 2011-06-16 Takenaka Komuten Co Ltd Generation set

Also Published As

Publication number Publication date
TW201414144A (en) 2014-04-01
JP2014036462A (en) 2014-02-24

Similar Documents

Publication Publication Date Title
US9350220B2 (en) Vibration generator moving vibrator by magnetic field generated by coil and holder used in vibration-generator
JP6955158B2 (en) Vibration actuators and mobile devices
JP5998879B2 (en) Power generator
US20190314860A1 (en) Linear vibration motor
JP7100239B2 (en) Vibration actuators and mobile devices
JP2012039824A (en) Vibration generator
JP5327095B2 (en) Vibration generator
JP2006054956A (en) Generating equipment and tire equipped therewith
JP2014207767A (en) Energy conversion device
Li et al. A miniaturized electromagnetic energy harvester with volt-level output based on stacked flexible coils
CN109450212A (en) A kind of linear vibration motor
WO2014024487A1 (en) Energy conversion device
JP2013126337A (en) Power generation device
WO2014207974A1 (en) Energy conversion apparatus
JP2014204482A (en) Energy conversion device
WO2012002109A1 (en) Oscillating power generator
JP2015126559A (en) Energy conversion apparatus
JP2012070535A (en) Thin vibration power generation device
JP2014166105A (en) Energy conversion device
WO2014006788A1 (en) Energy conversion device
JP2014187798A (en) Energy conversion device
JP2014204481A (en) Energy converting apparatus
WO2013136669A1 (en) Energy conversion device
WO2020241569A1 (en) Power generation element and device using power generation element
JP2014017939A (en) Energy conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827397

Country of ref document: EP

Kind code of ref document: A1