WO2014207974A1 - Energy conversion apparatus - Google Patents

Energy conversion apparatus Download PDF

Info

Publication number
WO2014207974A1
WO2014207974A1 PCT/JP2014/002150 JP2014002150W WO2014207974A1 WO 2014207974 A1 WO2014207974 A1 WO 2014207974A1 JP 2014002150 W JP2014002150 W JP 2014002150W WO 2014207974 A1 WO2014207974 A1 WO 2014207974A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
energy conversion
conversion device
movable portion
coil
Prior art date
Application number
PCT/JP2014/002150
Other languages
French (fr)
Japanese (ja)
Inventor
健雄 白井
有宇 和家佐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015523826A priority Critical patent/JPWO2014207974A1/en
Publication of WO2014207974A1 publication Critical patent/WO2014207974A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems

Definitions

  • the present invention relates to an energy conversion device, and more particularly, to an electromagnetic induction energy conversion device.
  • the energy conversion device for example, an energy conversion device having a function of converting kinetic energy into electric energy by an electromagnetic induction action has been proposed (for example, Japanese Patent Application Publication No. 2013-39021 (hereinafter referred to as "Document 1”) )).
  • Document 1 describes a power generation apparatus 100 having a configuration shown in FIG. 29 as an example of an energy conversion apparatus.
  • the power generation device 100 includes a lower case 121, a plurality of springs 122, a movable unit 123, a fixed unit 124, and an upper case 125.
  • the spring 122 is a torsion spring that expands and contracts in the left and right direction.
  • the movable unit 123 includes a lower yoke 131, an upper yoke 132, magnets 133A and 133B, and a connection plate 134.
  • the magnets 133A and 133B are formed in a rectangular plate shape.
  • the magnet 133A is magnetized such that the upper surface is an S pole and the lower surface is an N pole.
  • the magnet 133B is magnetized such that the upper surface is an N pole and the lower surface is an S pole.
  • connection plate 134 is a metal plate made of a nonmagnetic material such as brass.
  • the connection plate 134 is formed in a rectangular plate shape.
  • the connection plate 134 is connected to the magnets 133A and 133B.
  • the connection plate 134 functions as a weight when the movable unit 123 vibrates to the left and right.
  • the movable unit 123 can adjust the resonant frequency of the vibration by changing the weight of the connection plate 134.
  • the movable unit 123 is biased by the spring 122 from the left and right, and is positioned approximately at the center of the lower case 121.
  • the fixing unit 124 is configured to include a coil 141 and a yoke guide 142.
  • the power generation device 100 is configured such that the movable unit 123 can move laterally with respect to the coil 141 in the combined lower case 121 and upper case 125.
  • the magnets 133A and 133B of the movable unit 123 move to the left and right with respect to the coil 141 of the fixed unit 124, and a current flows in the coil 141 by electromagnetic induction.
  • the resonant frequency of the movable unit 123 is substantially determined by the spring constant of the spring 122 and the mass of the movable unit 123.
  • the energy conversion device such as the power generation device 100
  • improvement of the generated voltage and improvement of the energy conversion efficiency are desired.
  • An object of the present invention is to provide an energy conversion device capable of improving the generated voltage and the energy conversion efficiency.
  • the energy conversion device includes a magnet, a coil, and a support portion, the magnet and the coil are disposed to face each other in a first direction, and the magnet and the coil are orthogonal to the first direction.
  • An energy conversion device for converting kinetic energy into electrical energy by electromagnetic induction generated by relative displacement in a second direction comprising: a first spring deformable in the second direction; and the first spring A first movable portion connected to the support portion, a second spring deformable in the second direction, and the second movable portion connected to the first movable portion by the second spring; And a second movable part having one side.
  • the mass of the first movable portion is M1
  • the mass of the second movable portion is M2
  • the spring constant of the first spring in the second direction is k1
  • the second spring The spring constant of the second direction is k2
  • the velocity defined by the energy stored in the first spring according to the initial displacement of the first movable portion in the second direction is v
  • M1, M2, k1 and k2 are set such that v2> v when the maximum velocity of the movable part is v2.
  • the first spring and the second spring are each selected from the group consisting of silicon, stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon and glass. It is preferable to be formed of the following materials.
  • v2> v is obtained by setting the relationship between the first spring and the second spring to k1 ⁇ k2.
  • v2> v is obtained by setting the relationship between the mass of the first movable portion and the mass of the second movable portion to M1> M2.
  • the first spring is preferably a compression coil spring.
  • the first spring is preferably a leaf spring.
  • the support portion includes a fixed portion integrally formed on the plate spring on the side opposite to the first movable portion side of the plate spring, and the first spring is a portion of the first spring It is formed in the shape which thickness becomes thick gradually gradually as it leaves from the 1st movable part in the 3rd direction orthogonal to 1 direction and the 2nd direction, and the thickness of the fixed part and the 1st spring The maximum thickness is set to be the same.
  • the first spring has a shape in which the section coefficient is maximized at the boundary between the support portion and the first spring when deformed in the second direction.
  • the second spring has a shape in which the section coefficient is maximized at the boundary between the first movable portion and the second spring when it is deformed in the second direction.
  • FIG. 1 is a schematic exploded perspective view of the energy conversion device of the first embodiment.
  • FIG. 2 is a schematic perspective view of the energy conversion device of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of the energy conversion device of the first embodiment.
  • FIG. 4 is a schematic plan view of relevant parts of the energy conversion device of the first embodiment.
  • FIG. 5 is a schematic explanatory view of the energy conversion device of the first embodiment.
  • FIG. 6 is a schematic plan view of relevant parts of the energy conversion device of the first embodiment.
  • FIG. 7 is a schematic explanatory view of a comparative example of the energy conversion device of the first embodiment.
  • FIG. 8 is a schematic plan view of relevant parts of a first modification of the energy conversion device of the first embodiment.
  • FIG. 1 is a schematic exploded perspective view of the energy conversion device of the first embodiment.
  • FIG. 2 is a schematic perspective view of the energy conversion device of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of
  • FIG. 9 is a schematic exploded perspective view of a second modification of the energy conversion device of the first embodiment.
  • FIG. 10A is a schematic plan view of relevant parts of a second modification of the energy conversion device of the first embodiment.
  • FIG. 10B is a schematic front view of main parts of a second modification of the energy conversion device of the first embodiment.
  • FIG. 10C is a schematic side view of a main part of a second modification of the energy conversion device of the first embodiment.
  • FIG. 11 is a schematic exploded perspective view of the energy conversion device of the second embodiment.
  • FIG. 12 is a schematic exploded perspective view of the energy conversion device of the third embodiment.
  • FIG. 13 is a schematic perspective view of the energy conversion device of the third embodiment.
  • FIG. 14 is a schematic cross-sectional view of the energy conversion device of the third embodiment.
  • FIG. 15 is a schematic exploded perspective view of the energy conversion device of the third embodiment with the cover removed.
  • FIG. 16A is a schematic plan view of relevant parts of the energy conversion device of the third embodiment.
  • FIG. 16B is a schematic front view of main parts of the energy conversion device of the third embodiment.
  • FIG. 16C is a schematic bottom view of the essential parts of the energy conversion device of the third embodiment.
  • FIG. 16D is a schematic side view of main parts of the energy conversion device of the third embodiment.
  • 17A to 17D are explanatory views of a chair provided with the energy conversion device of the third embodiment.
  • FIG. 18 is a schematic exploded perspective view of a first modification of the energy conversion device of the third embodiment.
  • FIG. 18 is a schematic exploded perspective view of a first modification of the energy conversion device of the third embodiment.
  • FIG. 19 shows a first modification of the energy conversion device of the third embodiment, and is a schematic exploded perspective view with the cover removed.
  • FIG. 20A is a schematic plan view of relevant parts of a first modification of the energy conversion device of the third embodiment.
  • FIG. 20B is a schematic front view of main parts of a first modification of the energy conversion device of the third embodiment.
  • FIG. 20C is a schematic side view of a main part of a first modification of the energy conversion device of the third embodiment.
  • FIG. 21A is a schematic plan view of relevant parts of a second modification of the energy conversion device of the third embodiment.
  • FIG. 21B is a schematic front view of main parts of a second modification of the energy conversion device of the third embodiment.
  • FIG. 21 C is a principal part schematic side view of the 2nd modification of the energy conversion apparatus of Embodiment 3.
  • FIG. FIG. 22 is a schematic perspective view of the main part of a second modification of the energy conversion device of the third embodiment.
  • FIG. 23A is a schematic plan view of relevant parts of a third modification of the energy conversion device of the third embodiment.
  • FIG. 23B is a schematic front view of main parts of a third modification of the energy conversion device of the third embodiment.
  • FIG. 23C is a schematic side view of main parts of a third modification of the energy conversion device of the third embodiment.
  • FIG. 24 is a schematic perspective view of essential parts of a third modification of the energy conversion device of the third embodiment.
  • FIG. 25 is a schematic exploded perspective view of a fourth modification of the energy conversion device of the third embodiment.
  • FIG. 26 shows a fourth modification of the energy conversion device of the third embodiment, and is a schematic exploded perspective view with the cover removed.
  • FIG. 27A is a schematic plan view of relevant parts of a fourth modification of the energy conversion device of the third embodiment.
  • FIG. 27B is a schematic front view of the essential part of the fourth modification of the energy conversion device of the third embodiment.
  • FIG. 27C is a schematic side view of main parts of a fourth modification of the energy conversion device of the third embodiment.
  • FIG. 28 is a schematic perspective view of the main parts of a fourth modification of the energy conversion device of the third embodiment.
  • FIG. 29 is a cross-sectional view of a conventional power generation device.
  • the energy conversion device 1 a includes a magnet 2, a coil 4, and a support 9.
  • the magnet 2 and the coil 4 are disposed to face each other in the first direction F1 (see FIGS. 1 and 3).
  • the energy conversion device 1a converts kinetic energy into electrical energy by electromagnetic induction caused by relative displacement of the magnet 2 and the coil 4 in the second direction F2 (see FIGS. 1 and 3) orthogonal to the first direction F1.
  • the energy conversion device 1a includes a first spring 5 that can be deformed in the second direction F2, a first movable portion 6 connected to the support 9 by the first spring 5, and a shape that can be deformed in the second direction F2.
  • a second spring 7 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a magnet 2 are provided.
  • the energy conversion device 1a can increase the speed of the second movable part 8 vibrating in the second direction F2, and can improve the generated voltage and the energy conversion efficiency.
  • a direction orthogonal to the first direction F1 and the second direction F2 is referred to as a third direction F3 (see FIG. 1).
  • the first direction F1, the second direction F2, and the third direction F3 are directions orthogonal to each other.
  • the support part 9 is comprised by case 10 which accommodates the magnet 2, the coil 4, the 1st movable part 6, the 1st spring 5, 2nd spring 7 grade
  • the case 10 also accommodates a second movable portion 8 provided with the magnet 2.
  • the magnet 2 and the coil 4 are disposed to face each other in the first direction F1 in the case 10.
  • the case 10 is configured by combining a base 20 and a cover 30.
  • the base 20 is formed in a plate shape.
  • the cover 30 is formed in a box-like shape in which the base 20 side is opened. More specifically, in the case 10, the base 20 is formed in a rectangular plate shape, and the cover 30 is formed in a rectangular box shape.
  • a nonmagnetic material is preferable.
  • resin such as engineering plastic, ceramic, silicon, metal or the like can be adopted.
  • engineering plastic, polycarbonate resin etc. are employable, for example.
  • a metal although iron, copper, zinc etc. are employable, for example, nonmagnetic stainless steel is preferred.
  • the base 20 and the cover 30 may be coupled by a plurality of (for example, four) screws (not shown) or may be coupled by an adhesive.
  • the energy conversion device 1 a may use a screw and an adhesive together as a fixing member for connecting the base 20 and the cover 30.
  • the energy conversion device 1a may be coupled to the base 20 and the cover 30 by providing a structure that can be fitted to each other.
  • through holes 20a, 30a through which fixing screws can be inserted are formed at the four corners of the base 20 and the cover 30, respectively.
  • the opening shape of each of the through holes 20a and 30a in a plan view is circular.
  • the magnet 2 is preferably made of a permanent magnet.
  • a material of a permanent magnet neodymium, samarium cobalt, alnico (alnico), a ferrite etc. are employable, for example.
  • the magnet 2 is formed in a rectangular plate shape.
  • the magnet 2 is magnetized so that one surface side in the thickness direction is an N pole and the other surface side is an S pole.
  • the permanent magnet constituting the magnet 2 can be formed, for example, by shaping a magnet material by cutting, polishing or the like and then magnetizing the material by a pulse magnetizing method or the like.
  • the base 20 is formed with a first recess 24 for positioning the coil 4 at the center of the first surface 21.
  • a pair of external electrodes (not shown) electrically connected to both ends of the coil 4 are arranged.
  • a groove (not shown) for winding the coil wire material of the coil 4 connected to the external electrode is formed on the second surface 22 side of the base 20.
  • the cover 30 is formed with a second recess 34 for positioning the coil 4 at the center of the inner bottom surface 30aa (see FIG. 3).
  • the inner bottom surface 30 aa of the cover 30 is opposed to the first surface 21 of the base 20.
  • the coil 4 is fixed in a fixed position in the case 10 in the case 10.
  • the coil 4 is preferably arranged such that the center line (center axis) is parallel to the first direction F1.
  • the coil 4 is configured by winding a coil wire.
  • a coil wire material the copper wire with an insulation coating is employable, for example.
  • a material of the insulating film which covers a copper wire urethane, formal, polyester, polyester imide, polyamidoimide, etc. are employable, for example.
  • the coil 4 is an air core coil, but is not limited to this.
  • the coil 4 may be constituted by a coil wire wound around a bobbin.
  • a material of the bobbin for example, it is preferable to adopt an electrically insulating material.
  • resin such as engineering plastic or ceramic can be adopted.
  • engineering plastic polycarbonate resin etc. are employable, for example.
  • the outer peripheral shape of the coil 4 is formed in an oval shape, and the coil 4 is disposed so that the short direction coincides with the second direction F2 and the longitudinal direction coincides with the third direction F3.
  • the coil 4 has one end in the lateral direction inserted and fixed in the first recess 24 of the base 20 and the other end in the lateral direction inserted and fixed in the second recess 34 of the cover 30. .
  • the coil 4, the base 20 and the cover 30 may be fixed, for example, by bonding with an adhesive or the like.
  • the wire ends at both ends of the coil 4 are drawn to the side of the second surface 22 of the base 20 through holes (not shown) penetrating in the thickness direction of the base 20, respectively, and are led to the grooves to electrically connect to the external electrodes. Connected.
  • the wire end of the coil 4 and the external electrode are, for example, joined and electrically connected by a conductive bonding material.
  • a material of the conductive bonding material for example, solder, silver paste or the like can be adopted.
  • a metal screw or the like may be used as the conductive bonding material.
  • the coil 4 is not limited to one wound with a coil wire, and may be constituted by, for example, a planar coil.
  • a material of a planar coil copper, gold, silver etc. are employable, for example.
  • permalloy, a cobalt-based amorphous alloy, ferrite or the like may be employed as the material of the planar coil.
  • the planar coil can be formed, for example, using thin film formation technology, photolithography technology, etching technology, and the like. As a thin film formation technique, a vapor deposition method, a sputtering method, etc. are mentioned, for example.
  • the first spring 5 is, for example, a compression coil spring. Thereby, the energy conversion device 1a can increase the stored energy per one of the first springs 5, and the energy conversion device 1a can be miniaturized.
  • the energy stored per one first spring 5 is proportional to the product of the spring constant and the deflection at the time of compression.
  • the spring constant of the first spring 5 formed of a compression coil spring can be adjusted, for example, by the wire diameter, the outer diameter, the inner diameter, the free length, the material, and the like.
  • the first spring 5 is disposed such that the axial direction of the first spring 5 is along the second direction F2. When the first spring 5 is a compression coil spring, the axial direction of the first spring 5 is a direction along the free length direction.
  • the first movable portion 6 is formed in a frame shape. More specifically, the first movable portion 6 is formed in a rectangular frame shape. The first movable portion 6 is configured by overlapping and integrating a first weight portion 61 and a second weight portion 62 each formed in a rectangular frame shape.
  • the first movable portion 6 is provided with a cylindrical protrusion 61 a protruding from the first weight portion 61 toward the second weight portion 62, and the protrusion 61 a is inserted into the second weight portion 62.
  • a circular hole 62a is formed.
  • the first movable portion 6 has the protrusion 61 a of the first weight portion 61 inserted through the hole 62 a of the second weight portion 62 and is bonded with an adhesive or the like. Thereby, in the first movable portion 6, the first weight portion 61 and the second weight portion 62 are integrated.
  • the material of the first weight portion 61 is not limited to the same material as the second weight portion 62.
  • a resin such as engineering plastic (for example, polycarbonate etc.), ceramic, silicon or the like may be adopted.
  • first springs 5 are provided on both sides of the first movable portion 6 in the second direction F2.
  • a plurality of first springs 5 are provided on both sides of the first movable portion 6 in the second direction F2.
  • the energy conversion device 1a vibrates the first movable portion 6 in comparison with the case where one first spring 5 is provided on both sides of the first movable portion 6 in the second direction F2.
  • the number of first springs 5 on each side of the first movable portion 6 in the second direction F2 is not particularly limited.
  • the energy conversion device 1a has the same number of first springs 5 on both sides of the first movable portion 6.
  • the present invention is not limited thereto.
  • the number of first springs 5 on both sides of the first movable portion 6 May be different.
  • the first surface 21 of the base 20 is formed with a hole 25 for receiving one end side of the first spring 5 constituted by a compression coil spring.
  • a protrusion 25a (see FIG. 3) into which one end of the first spring 5 is fitted is integrally protruded.
  • the first movable portion 6 is provided with a protrusion 6 a (see FIG. 3) in which the other end of the first spring 5 is fitted on the surface facing the first surface 21 of the base 20. Therefore, the energy conversion device 1 a can hold the first spring 5 between the base 20 and the first movable portion 6, and the base 20 and the first movable portion 6 can be held by the first spring 5. It can be connected.
  • the first spring 5 and the base 20 and the first movable portion 6 may be fixed by an adhesive or the like.
  • the inner bottom surface 30aa of the cover 30 is formed with a hole 35 for receiving one end side of the first spring 5 disposed on the inner bottom surface 30aa side of the first movable portion 6.
  • a protrusion 35a (see FIG. 3) into which one end of the first spring 5 is fitted is integrally protruded.
  • a protrusion 6b (see FIG. 3) in which the other end of the first spring 5 is fitted is provided in a protruding manner.
  • the energy conversion device 1 a can hold the first spring 5 between the cover 30 and the first movable portion 6, and the cover 30 and the first movable portion 6 can be held by the first spring 5. It can be connected.
  • the first spring 5 and the cover 30 and the first movable portion 6 may be fixed by an adhesive or the like.
  • the first spring 5 disposed on the base 20 side of the first movable portion 6 in the second direction F2 is the first movable
  • the portion 6 is biased away from the base 20, and the first spring 5 disposed on the cover 30 side of the first movable portion 6 biases the first movable portion 6 away from the cover 30.
  • the first movable portion 6 is biased from both sides in the thickness direction, and is positioned approximately at the center of the case 10 in the thickness direction.
  • Energizing the first movable portion 6 away from the base 20 means applying a force to the first movable portion 6 in a direction away from the base 20.
  • Energizing the first movable part 6 away from the cover 30 means applying a force to the first movable part 6 in a direction away from the cover 30.
  • the thickness direction of the case 10 is a direction along the second direction F2, which is the vertical direction in FIG.
  • the first spring 5 preferably has a spring constant in the second direction F2 smaller than a spring constant in each of the first direction F1 and the third direction F3.
  • the rigidity of the first spring 5 in the second direction F2 is smaller than the rigidity in the direction orthogonal to the second direction F2.
  • the rigidity of the base 20 and the cover 30 in the second direction F2 of the portion holding the first spring 5 be greater than the rigidity of the first spring 5 in the second direction F2.
  • the spring constant of the portion holding the first spring 5 in the case 10 in the second direction F2 is larger than the spring constant of the first spring 5 in the second direction F2. Is preferred.
  • the energy conversion device 1a can suppress the bending of the case 10 when storing energy in the first spring 5, and can improve the energy conversion efficiency.
  • the spring constant of the part holding the first spring 5 in the case 10 in the second direction F2 be, for example, 10 times or more of the spring constant of the first spring 5 in the second direction F2. .
  • the second spring 7 is integrally formed on the second weight portion 62.
  • the material of the second spring 7 is preferably a material having a low logarithmic attenuation, for example, a material having a logarithmic attenuation of 0.08 or less.
  • the energy conversion device 1a can reduce the amount of vibration energy that is converted to heat energy in the second spring 7, and can improve the energy conversion efficiency.
  • the material of the second spring 7 is, for example, one selected from the group of stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon, and glass when the logarithmic attenuation factor is 0.08 or less.
  • it is formed of a material.
  • the material of the second spring 7 is more preferably a material having a logarithmic attenuation factor of 0.04 or less.
  • Table 1 below exemplifies the values of the logarithmic attenuation factor of various materials.
  • the numerical values in Table 1 are values based on Reference 1 ("Material Vibrational Damping Ability Data Book", edited by the Japan Society for the Promotion of Science, 2007 "Fine structure and functionality of materials” Committee).
  • the logarithmic decay rate of SUS 304 the value of Fe-22.5% Cr, which has a similar composition, is cited.
  • the logarithmic decay rate of beryllium copper the values of copper and beryllium are cited respectively.
  • the values of logarithmic decay rate of carbon and glass are 0.08 and 0.0006, respectively. These figures are based on Reference 1.
  • the above-mentioned material having a logarithmic attenuation factor of 0.04 or less means a material having a logarithmic attenuation factor equal to or less than that of copper, as can be seen from Table 1.
  • the logarithmic attenuation factor is ⁇ and the vibration energy loss rate per cycle of oscillation is ⁇ W / W
  • the logarithmic attenuation factor ⁇ can be expressed by the following equation (1).
  • the material of the second weight portion 62 is, for example, silicon, stainless steel (for example, SUS 304 or the like), steel, copper, copper alloy (brass (Beryllium copper), titanium alloy, aluminum alloy, carbon, glass, etc. are preferably employed.
  • the energy conversion device 1a can reduce the amount of vibration energy that is converted to heat energy in the second spring 7, and can improve the energy conversion efficiency.
  • the second weight 62 and the second spring 7 can be formed of, for example, a high resistivity silicon substrate.
  • the resistivity of the high resistivity silicon substrate is preferably 100 ⁇ cm or more, and more preferably 1000 ⁇ cm or more.
  • the second weight portion 62 and the second spring 7 can be integrally formed using, for example, a manufacturing technique of micro electro mechanical systems (MEMS).
  • MEMS micro electro mechanical systems
  • the energy conversion device 1a can be configured such that the second weight portion 62 and the second spring 7 are integrally formed from a single silicon substrate.
  • the vibrational energy of the second movable portion 8 becomes thermal energy at the connecting portion and damages it.
  • the second spring 7 and the second weight portion 62 have a low damping material. Since it is integrally formed of silicon, it is possible to reduce the energy loss at the time of vibration, and it is possible to improve the energy conversion efficiency.
  • the first movable portion 6 is not limited to the two members including the first weight portion 61 and the second weight portion 62, and may be, for example, one member, and the second spring 7 may be integrated. It may be formed.
  • a material of the first movable portion 6 a material having a low logarithmic attenuation rate is preferable, and for example, a material having a logarithmic attenuation rate of 0.08 or less is preferable.
  • the energy conversion device 1a can reduce the amount of vibration energy that is converted to heat energy in the second spring 7, and can improve the energy conversion efficiency.
  • the material of the first movable portion 6 is preferably a material having a logarithmic attenuation factor of 0.04 or less.
  • the material of the first spring 5 is preferably made of, for example, one material selected from the group of stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon and glass.
  • the material of the first spring 5 preferably has a logarithmic damping ratio of 0.08 or less.
  • the material of the first spring 5 is more preferably a material having a logarithmic attenuation factor of 0.04 or less.
  • a copper alloy brass and beryllium copper can be mentioned, for example.
  • the second movable portion 8 is disposed inside the first movable portion 6.
  • the second movable portion 8 is disposed apart from the inner side surface of the first movable portion 6.
  • the second movable portion 8 includes the magnet 2 and the magnetic plate 3.
  • the second movable portion 8 includes four magnets 2 and is arranged such that the two magnets 2 are aligned in the second direction F2 on both sides of the coil 4 in the first direction F1.
  • Each magnet 2 is disposed such that the thickness direction coincides with the first direction F1.
  • the two magnets 2 adjacent to each other in the second direction F2 are spaced apart.
  • the two magnets 2 facing each other in the first direction F1 have opposite magnetization directions.
  • the N pole of one magnet 2 and the S pole of the other magnet 2 face each other.
  • the two magnets 2 adjacent in the second direction F2 have the magnetizations in the opposite directions.
  • the N pole of one of the magnets 2 faces the coil 4 and the S pole of the other magnet 2 faces the coil 4.
  • iron-cobalt alloy As a material of the magnetic plate 3, for example, iron-cobalt alloy, electromagnetic soft iron, electromagnetic stainless steel, Permalloy or the like can be adopted.
  • the magnetic plate 3 is located farther from the coil 4 than the magnet 2 in the first direction F1. Moreover, the magnetic material board 3 is arrange
  • the magnetic plate 3 is preferably set to have the same dimension as the magnet 2 in the direction along the third direction F3. Moreover, the magnetic material board 3 matches the dimension of the direction along the 2nd direction F2 with the sum total dimension of the two adjacent magnets 2 in the 2nd direction F2, and the dimension between the said two magnets 2 It is preferable to set it to the same size.
  • the energy conversion device 1 a is provided with four second springs 7.
  • the second spring 7 is a plate spring, and is integrally formed with the second weight portion 62.
  • the second spring 7 is formed in a strip shape, and one end in the longitudinal direction is fixed to the first movable portion 6 and the other end is fixed to the second movable portion 8.
  • the spring constant of the second spring 7 can be adjusted by appropriately setting the length, width, thickness, material and the like of the second spring 7.
  • the energy conversion device 1a can have a configuration in which the second movable portion 8 includes a connection piece 81 that connects two adjacent second springs 7 in the third direction F3.
  • the energy conversion device 1 a has a configuration in which the second movable portion 8 is connected to the second spring 7 by fixing the magnet 2 and the magnetic plate 3 to the connection piece 81 with an adhesive. can do.
  • the energy conversion device 1 a may be configured such that the second movable portion 8 does not include the connection piece 81. In this case, the energy conversion device 1a fixes the magnet 2 and the magnetic plate 3 to the two second springs 7 adjacent to each other in the third direction F3 with an adhesive so as to form the second movable portion 8 Can be connected to the second spring 7.
  • the third concave portion 28 for securing the displacement space of the second movable portion 8 is formed on the first surface 21 of the base 20, and the second bottom surface 30aa of the cover 30 A fourth recess 38 (see FIG. 3) for securing a displacement space of the movable portion 8 is formed.
  • the energy conversion device 1a is configured such that the second movable portion 8 can be displaced in the case 10 along the second direction F2.
  • the energy conversion device 1a is capable of vibrating the second movable portion 8 in the direction along the second direction F2.
  • the second movable portion 8 is supported by the case 10 via the second spring 7, the first movable portion 6, and the first spring 5. It can be displaced in the direction F2.
  • the second movable portion 8 provided with the magnet 2 can vibrate in the second direction F2 in the case 10.
  • the energy conversion device 1a is formed with respect to the second spring 7 so that the spring constant in the second direction F2 is smaller than the spring constant of each of the first direction F1 and the third direction F3.
  • the energy conversion device 1a can make the vibration direction of the second movable portion 8 unidirectional in the second direction F2, and can improve the energy conversion efficiency. Therefore, the energy conversion device 1a can prevent the contact between the coil 4 and the second movable portion 8 while narrowing the gap between the coil 4 and the second movable portion 8 become.
  • the narrowing of the gap between the coil 4 and the second movable portion 8 makes it possible to improve the utilization efficiency of the magnetic flux, thereby improving the energy conversion efficiency. It becomes possible.
  • the measurement system which combined the micro tension tester or the force gauge (force gauge) and a micrometer (micrometer) can be used, for example.
  • the spring constant is calculated by measuring the displacement when the force of each of the first direction F1, the second direction F2 and the third direction F3 is applied to the second movable portion 8 be able to.
  • the energy conversion device 1 a includes two protrusions 64 that protrude from the outer side surface of the first movable portion 6 in the first direction F1.
  • the two protrusions 64 protrude in opposite directions from each other along the first direction F1.
  • the protrusion part 64 is integrally formed in the 1st weight part 61, it does not restrict to this.
  • an opening 11 (see FIG. 3) for exposing the protrusion 64 is formed on each of two side walls intersecting in the first direction F1.
  • the opening 11 is formed to allow displacement of the protrusion 64 in the direction along the second direction F2.
  • the energy conversion device 1a can store energy in the first spring 5 by displacing the first movable portion 6 along the second direction F2 by applying an external force to the projecting portion 64. Become. As a result, if the energy conversion device 1a stops applying the external force after displacing the first movable portion 6 and the second movable portion 8 along the second direction F2, the first movable portion 6 The second movable portion 8 damps and vibrates. Therefore, the energy conversion device 1a can generate an AC voltage according to the damped vibration. In short, in the energy conversion device 1a, an AC induced electromotive force is generated by the electromagnetic induction generated along with the vibration of the second movable portion 8 in the second direction F2. The open circuit voltage of the energy conversion device 1 a is an AC voltage corresponding to the vibration of the second movable portion 8.
  • the protrusion 64 is preferably formed in a size that allows the user of the energy conversion device 1a to operate with a finger or the like, for example.
  • the tip end portion of the protrusion 64 is formed such that the thickness in the second direction F2 decreases with distance from the outer side surface of the first movable portion 6 in the first direction F1.
  • the projection 64 of the energy conversion device 1a can also be operated by a cam or the like provided separately.
  • the energy conversion device 1a applies an external force to each of the protrusions 64 in the initial position, for example, against the spring force of the first spring 5 on the base 20 side, thereby the first movable portion 6 and each of the protrusions 64 is displaced toward the base 20 along the second direction F2. Then, when the external force applied to the protrusion 64 disappears, the energy conversion device 1a is displaced by the spring force of the first spring 5 so that the first movable portion 6 and each protrusion 64 return to the initial position. It is supposed to
  • the energy conversion device 1a applies an external force to each of the protrusions 64 in the initial position, for example, against the spring force of the first spring 5 on the cover 30 side, whereby the first movable portion 6 and each of The protrusion 64 is displaced in the direction approaching the cover 30 along the second direction F2. Then, when the external force applied to the protrusion 64 disappears, the energy conversion device 1a is displaced by the spring force of the first spring 5 so that the first movable portion 6 and each protrusion 64 return to the initial position. It is supposed to
  • the energy conversion device 1a can also define the amount of displacement of the first movable portion 6 in the second direction F2 by the opening 11.
  • the displacement amount of the first movable portion 6 is limited to a prescribed value.
  • the energy stored in the first spring 5 can be made substantially constant. Therefore, in the energy conversion device 1a, it is possible to suppress the variation of the power generation output each time an external force is applied.
  • the energy conversion device 1a can displace and operate the first movable portion 6.
  • the energy conversion device 1a can also generate power using, for example, environmental vibration (external vibration) coinciding with the resonance frequency of the energy conversion device 1a, compared to the case where environmental vibration not coincident with the resonance frequency is used. Power can be generated efficiently.
  • environmental vibration for example, a vibration generated by FA (factory automation) equipment in operation, a vibration generated by traveling of a vehicle, a vibration generated by walking of a person, or a vibration generated by an operation of an electronic device equipped with the energy conversion device 1a
  • the frequency of the AC voltage generated by the energy conversion device 1a is the same as the resonance frequency of the energy conversion device 1a when the frequency of the environmental vibration coincides with the resonance frequency of the energy conversion device 1a.
  • the energy conversion device 1a includes the first spring 5 that can be deformed in the second direction F2, the first movable portion 6 connected to the support portion 9 by the first spring 5, and the second movable portion 6 It comprises a second spring 7 deformable in the direction F 2 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a magnet 2.
  • the energy conversion device 1a can increase the speed of the second movable part 8 vibrating in the second direction F2, and can improve the generated voltage and the energy conversion efficiency. Become.
  • the energy conversion device 1a can be represented by a schematic diagram as shown in FIG. 5 as a model of a spring-mass point system.
  • FIG. 5 schematically shows only the connection relationship in which the first movable portion 6 and the second movable portion 8 are connected by the first spring 5 and the second spring 7.
  • FIG. 6 the energy conversion device of the comparative example in which the first movable portion 6 and the second movable portion 8 are directly connected is shown in FIG. 7 as a model of a spring-mass point system. It can be represented by a schematic diagram as shown.
  • the first movable portion 6 and the second movable portion 8 are directly connected means the first movable portion 6 of the energy conversion device 1a and the second movable portion 8 of the energy conversion device 1a. Are integrated without the intervention of the second spring 7 of the energy conversion device 1a.
  • the mass of the first spring 5 and the second spring 7 is assumed to be zero.
  • the mass of the first spring 5 is assumed to be zero.
  • the energy stored in the first spring 5 according to the initial displacement x in the second direction F2 of the first movable portion 6 in the second direction F2 of the first spring 5 is k1.
  • E energy
  • E is defined by the following equation (2).
  • the energy conversion apparatus of a comparative example is also the same.
  • the energy conversion apparatus of a comparative example is also the same.
  • the energy conversion device 1a sets M1, M2, and k1 so that v2> v when the spring constant of the second spring 7 in the second direction F2 is k2 and the maximum velocity of the second movable portion 8 is v2. And k2 are set. Thus, the energy conversion device 1a can improve the generated voltage and the energy conversion efficiency.
  • the energy conversion device 1a can improve the generated voltage by about 1.5 times as compared with the energy conversion device of the comparative example, and can improve the energy conversion efficiency.
  • the conventional power generation device 100 of FIG. 29 is a model similar to the energy conversion device of the comparative example when considered as a spring-mass point system model. Therefore, the energy conversion device 1a according to the present embodiment can improve the generated voltage and the energy conversion efficiency as compared to the conventional power generation device 100.
  • the power generation apparatus 100 it is conceivable to increase the speed of the movable unit 123 by reducing the mass of the magnets 133A and 133B, but in this case, the magnetic flux density of the magnets 133A and 133B decreases and the electromotive voltage by electromagnetic induction It becomes smaller.
  • the energy conversion device 1a can improve the generated voltage and the energy conversion efficiency by appropriately setting the mass, the spring constant, and the like of the components other than the magnet 2.
  • the energy conversion device 1a is preferably configured to have v2> v, for example, by setting the relationship between the first spring 5 and the second spring 7 to k1 ⁇ k2.
  • the energy conversion device 1a can reduce the amount of energy stored in the second spring 7, and can miniaturize the second spring 7. Therefore, the energy conversion device 1a can be miniaturized.
  • the spring constant k2 of the second spring 7 can be increased, for example, by widening the width of the second spring 7 or increasing the thickness of the second spring 7.
  • the shape of the second spring 7 can be, for example, a serpentine shape as shown in FIG.
  • the second movable portion 8 is formed in a rectangular frame shape.
  • One end of the second spring 7 is connected to the corner of the second movable portion 8 and the other end is connected to the inner side surface of the first movable portion 6 along the third direction F3.
  • the corner portion of the folded portion in the plan view shape has a round shape and has no corners, rather than a corner shape.
  • the energy conversion device 1a by adopting a shape without corners at the folded back portion of the second spring 7, it is possible to suppress the occurrence of breakage or crack due to stress concentration at the folded back portion of the second spring 7. Is possible.
  • the second spring 7 is not limited to the serpentine shape as long as it has a meandering shape in plan view, and may be, for example, a wave shape (for example, a sinusoidal shape in plan view).
  • the energy conversion device 1a is configured to satisfy v2> v, for example, by setting the relationship between the mass of the first movable portion 6 and the mass of the second movable portion 8 to M1> M2. Is preferred. As a result, the energy conversion device 1a can improve the vibrating speed of the second movable portion 8, and can improve the generated voltage and the energy conversion efficiency.
  • the energy conversion device 1a may be used, for example, for charging secondary batteries used in portable electronic devices such as portable terminals.
  • the energy conversion device 1 a includes the first movable portion 6 and the second movable portion 8 as movable portions.
  • the second movable portion 8 can be used as the first movable portion 6 by at least the second spring 7. It should just be connected.
  • the energy conversion device 1a may include one or more sets of the third spring and the third movable portion between the first movable portion 6 and the second spring 7.
  • the second movable portion 8 may be connected to the first movable portion 6 via the second spring 7, the third movable portion, and the third spring.
  • FIG. 9 is a schematic exploded perspective view of an energy conversion device 1aa of a second modification of the energy conversion device 1a.
  • the energy conversion device 1aa differs from the energy conversion device 1a in the shape of the second spring 7 (see FIG. 10A).
  • the same numerals are given to the same component as energy conversion device 1a, and explanation is omitted suitably.
  • the second spring 7 in the energy conversion device 1aa of the second modification has a shape in which the section coefficient becomes maximum at the boundary B2 between the first movable portion 6 and the second spring 7 when deformed in the second direction F2. is there. Thereby, in the energy conversion device 1aa, it is possible to suppress the load stress from becoming maximum at the boundary B2 between the first movable portion 6 and the second spring 7, and it is possible to improve the durability. Become.
  • the width gradually widens toward the second weight portion 62 (see FIGS. 9, 10A, 10B and 10C) at one end side in the longitudinal direction and near the boundary B2.
  • the width is constant.
  • the spring constant of the second spring 7 varies due to the relative displacement between the second weight portion 62 and the first weight portion 61 in the third direction F3.
  • the energy conversion device 1a according to the first embodiment improves the generated voltage by designing the natural frequency of the second spring 7 so that the first movable portion 6 and the second movable portion 8 resonate. It is possible to improve energy conversion efficiency.
  • the energy conversion device 1aa according to the second modification suppresses variation in the spring constant of the second spring 7 to suppress variation in the frequency of the first movable portion 6 and the second movable portion 8. It becomes possible to suppress the variation of the power generation characteristic and the energy conversion efficiency.
  • the both sides are formed in concave curve shape.
  • the second movable portion 8 includes the magnet 2, and the coil 4 is fixed to the support portion 9.
  • the second movable portion 8 includes the coil 4, and the magnet 2 is fixed to the support portion 9.
  • symbol same as Embodiment 1 is attached
  • the connection piece 81 of the second movable portion 8 is connected to the four second springs 7, and the coil 4 is fixed to the connection piece 81.
  • the energy conversion device 1 b includes two magnet blocks configured by two magnets 2 and one magnetic plate 3, and the two magnet blocks are fixed to the base 20.
  • two magnet blocks are disposed to face each other in the first direction F1, and between the two magnet blocks, the coil 4 is positioned so that the coil 4 can be displaced in the second direction F2. It has become.
  • the energy conversion device 1 b of the present embodiment includes the magnet 2, the coil 4, and the support portion 9.
  • the magnet 2 and the coil 4 are disposed to face each other in the first direction F1.
  • the energy conversion device 1b has a function of converting kinetic energy into electrical energy by electromagnetic induction generated by relative displacement of the magnet 2 and the coil 4 in the second direction F2 orthogonal to the first direction F1.
  • the energy conversion device 1 b is deformable in the second direction F 2 by the first spring 5 deformable in the second direction F 2, the first movable portion 6 connected to the support portion 9 by the first spring 5, and A second spring 7 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a coil 4 are provided.
  • the energy conversion device 1a can improve the generated voltage and the energy conversion efficiency.
  • the wire ends of both ends of the coil 4 are respectively connected to the lead wires.
  • Each lead wire is drawn to the side of the second surface 22 of the base 20 through a hole (not shown) penetrating in the thickness direction of the base 20, extends around the groove, and is electrically connected to each external electrode. There is.
  • Each lead wire is set in length so that disconnection due to vibration of the coil 4 does not occur.
  • the energy conversion device 1b may use a coil wire integral with the coil 4 instead of each lead wire.
  • the energy conversion device 1b may be used, for example, for charging secondary batteries used in portable electronic devices such as portable terminals.
  • the energy conversion device 1 b includes the first movable portion 6 and the second movable portion 8 as movable portions.
  • the second movable portion 8 may be replaced by the first movable portion 6 by at least the second spring 7. It should just be connected.
  • the energy conversion device 1 b may include one or more sets of the third spring and the third movable portion between the first movable portion 6 and the second spring 7.
  • the second movable portion 8 may be connected to the first movable portion 6 via the second spring 7, the third movable portion, and the third spring.
  • the energy conversion device 1 c includes a magnet 2, a coil 4, and a support 9.
  • the magnet 2 and the coil 4 are disposed to face each other in the first direction F1 (see FIG. 16A).
  • the energy conversion device 1c has a function of converting kinetic energy into electrical energy by electromagnetic induction caused by relative displacement of the magnet 2 and the coil 4 in the second direction F2 (see FIG. 16B) orthogonal to the first direction F1.
  • the energy conversion device 1c can be deformed in the second direction F2 and the first movable portion 6 connected to the support portion 9 by the first spring 5 and the first spring 5 that can be deformed in the second direction F2.
  • a second spring 7 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a magnet 2 are provided. Accordingly, the energy conversion device 1c can improve the generated voltage and the energy conversion efficiency.
  • the first spring 5 is constituted by a plate spring 51.
  • the energy conversion device 1c can make the spring constant of directions other than the second direction F2 larger than the spring constant of the second direction F2 regarding the first spring 5. Therefore, the energy conversion device 1c can suppress the generation of unnecessary vibration components other than in the second direction F2, and can improve the energy conversion efficiency.
  • the plate spring 51 is formed in a plate shape.
  • the thickness direction coincides with the second direction F2
  • the length direction coincides with the third direction F3 (see FIG. 16A) orthogonal to the first direction F1 and the second direction F2. It is arranged.
  • the supporting portion 9 includes a fixing portion 91 integrally formed with the plate spring 51 on the side opposite to the first movable portion 6 side of the plate spring 51 constituting the first spring 5 There is.
  • a support portion 9 includes a base 20, a cover 30, and a fixing portion 91.
  • the fixing portion 91 is formed to have the same thickness as the plate spring 51.
  • a fifth recess 20c (see FIGS. 14 and 15) on which the fixing portion 91 is placed is provided at a portion of the first surface 21 of the base 20 facing the first surface 31 of the cover 30. .
  • the depth of the fifth recess 20 c is set to be the same as the thickness of the fixing portion 91. Therefore, the energy conversion device 1c holds the fixing portion 91 between the inner bottom surface of the fifth recess 20c and the first surface 31 of the cover 30 (see FIG. 14), whereby the energy conversion device 1c is in the third direction F3. Positioning of the fixing portion 91 can be performed. Further, in the fixing portion 91, a hole 91b through which a screw for assembly (not shown) can be inserted is formed.
  • a hole 20 b is formed in a region overlapping with the hole 91 b of the fixing portion 91. Further, in the cover 30, a hole 30 b is formed in a region overlapping the hole 91 b of the fixing portion 91. Therefore, the energy conversion device 1c fixes the fixing portion 91 to the case 10 by inserting a screw into the holes 30b, 91b, 20b overlapping in the thickness direction of the case 10 and fitting the screw portion of the screw to a nut not shown. Be done.
  • a protrusion 20d for determining the position of the fixing portion 91 in the third direction F3 is formed to project from the inner bottom surface of the fifth recess 20c.
  • the protrusion 20 d is integrally formed on the base 20.
  • the case 10 accommodates approximately half of the coil 4 (the lower portion of the coil 4 in FIG. 14) on the first surface 21 of the base 20, and the first movable portion 6 and the first movable portion 6 on the base 20 side.
  • a sixth recess 24c (see FIG. 14) for securing a vibration space of the second movable portion 8 is formed.
  • the case 10 accommodates approximately half of the coil 4 (the upper portion of the coil 4 in FIG. 14) on the first surface 31 of the cover 30, and the first movable portion 6 on the cover 30 side
  • a seventh recess 34c (see FIG. 14) for securing a vibration space of the second movable portion 8 is formed.
  • the first surface 51a of the plate spring 51 is formed flush with the first surface 91a of the fixed portion 91, as shown in FIGS. 16B and 16C.
  • a second surface 51 c opposite to the first surface 51 a of the spring 51 is flush with the second surface 91 c of the fixing portion 91.
  • the boundary B1 between the leaf spring 51 and the fixing portion 91 corresponds to one cross section orthogonal to the third direction F3.
  • This one cross section is a plate-like member in which the plate spring 51, the fixing portion 91, the second weight portion 62, and the second spring 7 are integrally formed, and the sixth recess 24c and the fifth recess 20c.
  • a boundary B3 between the plate spring 51 and the first movable portion 6 is a plate-like member in which the plate spring 51, the fixed portion 91, the second weight portion 62, and the second spring 7 are integrally formed. Mean the boundary between the vertical projection area of the first weight portion 61 and the area adjacent to the vertical projection area.
  • the plate spring 51 has a rectangular plate shape, and is disposed so that the longitudinal direction coincides with the first direction F1 and the short direction coincides with the third direction F3.
  • the fixing portion 91 is formed in a rectangular plate shape. The fixing portion 91 is arranged such that the longitudinal direction coincides with the first direction F1 and the short direction coincides with the third direction F3.
  • the energy conversion device 1 c is provided with only one protrusion 64 that protrudes in the first direction F ⁇ b> 1 from the outer side surface of the first movable portion 6.
  • the protrusion part 64 is integrally formed in the 1st weight part 61, it does not restrict to this.
  • an opening 11 (see FIG. 14) for exposing the protrusion 64 is formed on one side wall intersecting in the first direction.
  • the opening 11 is formed to allow displacement of the protrusion 64 in the direction along the second direction. Therefore, the energy conversion device 1c can store energy in the first spring 5 by displacing the first movable portion 6 along the second direction by applying an external force to the projecting portion 64. .
  • the energy conversion device 1 c stops applying the external force after displacing the first movable portion 6 and the second movable portion 8 along the second direction, the first movable portion 6 and the second movable portion 8 are not The second movable portion 8 damps and vibrates. Therefore, the energy conversion device 1c can generate an AC voltage according to the damped vibration. In short, in the energy conversion device 1c, an alternating current induced electromotive force is generated by the electromagnetic induction generated along with the vibration of the second movable portion 8 in the second direction.
  • the open circuit voltage of the energy conversion device 1 c is an AC voltage corresponding to the vibration of the second movable portion 8.
  • the energy conversion device 1c applies an external force to the projecting portion 64 in the initial position against the spring force of the first spring 5, whereby the first movable portion 6 and the projecting portion 64 move in the second direction F2. Along the direction of movement toward the base 20. Then, when the external force applied to the protrusion 64 disappears, the energy conversion device 1 c displaces the first movable portion 6 and the protrusion 64 in the direction of returning to the initial position by the spring force of the first spring 5. It is supposed to be.
  • the energy conversion device 1c may be used, for example, for charging secondary batteries used in portable electronic devices such as portable terminals.
  • the energy conversion device 1 c includes the first movable portion 6 and the second movable portion 8 as movable portions.
  • the second movable portion 8 may be replaced by the first movable portion 6 by at least the second spring 7. It should just be connected.
  • the energy conversion device 1 c may include one or more sets of the third spring and the third movable portion between the first movable portion 6 and the second spring 7.
  • the second movable portion 8 may be connected to the first movable portion 6 via the second spring 7, the third movable portion, and the third spring.
  • FIGS. 17A-17D illustrate a chair 200 equipped with an energy conversion device 1c, which is an application of the energy conversion device 1c.
  • the chair 200 includes a seat portion 201 having a cushioning property.
  • the chair 200 is suitably equipped with the backrest 202.
  • the chair 200 preferably includes a leg (not shown) that supports the seat portion 201.
  • the chair 200 is preferably one in which the inclination angle of the backrest 202 with respect to the seat portion 201 can be adjusted.
  • the chair 200 is, for example, a chair used as a seat of a user such as a vehicle or a ship.
  • the chair 200 includes a rectifying and smoothing circuit connected between output ends of the energy conversion device 1c, a DC-DC converter for converting a voltage between the output ends of the rectifying and smoothing circuit into a predetermined DC voltage and outputting the DC voltage. And-a radio circuit connected between output terminals of the DC converter.
  • the wireless circuit is a wireless communication standard, for example, EnOcean (registered trademark), Zigbee (registered trademark), Bluetooth (registered trademark), specified low power wireless, weak wireless, Wi-Fi (registered trademark), UWB (Ultra Wide Band) Etc. can be adopted, but it is not particularly limited.
  • the chair 200 also includes a control circuit that detects a change in the state of the switch 210 and transmits the detection result from the wireless circuit to an external monitoring device or the like.
  • the control circuit can be configured, for example, by a microcomputer or the like equipped with an appropriate program.
  • a micro switch can be employed as the switch 210.
  • the switch 210 is turned on when the operation unit 211 provided on the upper surface side of the switch body is pressed, and is turned off when the pressing operation of the operation unit 211 is released.
  • a first drive pin 221 is provided inside the seat portion 201.
  • the operation portion 211 of the switch 210 is pressed, and when the person leaves the seat portion 201, the pressing operation state of the operation portion 211 is released.
  • a first drive pin 221 is provided in the seat portion 201.
  • the projection 64 of the energy conversion device 1c is operated downward, and when a person leaves the seat 201, the energy conversion device 1c is
  • a second drive pin 231 is provided to operate the protrusion 64 upward.
  • the distal end portion of the second drive pin 231 is provided with a claw portion 232 which can push the protrusion 64 when moving up and down.
  • the second drive pin 231 can be bent in the first direction F1.
  • the chair 200 determines whether a person is seated on the seat portion 201 by the energy conversion device 1c, the rectifying and smoothing circuit, the DC-DC converter, the wireless circuit, the first drive pin 221, the second drive pin 231, and the like. It constitutes a seating sensor to detect.
  • the operation portion 211 of the switch 210 and the first drive pin 221 are separated, and the second drive pin 231 is an energy conversion device It is above the projection 64 of 1c. For this reason, in the seating sensor, the energy conversion device 1c is not in operation, and the radio circuit is not in operation.
  • the operation portion 211 of the switch 210 is pressed by the first drive pin 221 and the second drive pin 231 is used.
  • the protrusion 64 of the energy conversion device 1 c is pushed downward, and the claws 232 of the second drive pin 231 are displaced lower than the protrusion 64.
  • the seating sensor uses the energy conversion device 1c as a power source to transmit that the state of the switch 210 is on from the wireless circuit as information indicating that a person is seated on the seat portion 201.
  • the first drive pin 221 is separated from the operation portion 211 of the switch 210, and energy is set by the second drive pin 231.
  • the protruding portion 64 of the conversion device 1 c is pushed upward, and the claw portion 232 of the second drive pin 231 is displaced higher than the protruding portion 64.
  • the seating sensor uses the energy conversion device 1c as a power source and causes the wireless circuit to transmit that the state of the switch 210 is off as information indicating that a person has left the seat portion 201.
  • FIG. 18 is a schematic exploded perspective view of an energy conversion device 1 ca of a first modification of the energy conversion device 1 c.
  • the energy conversion device 1 ca differs from the energy conversion device 1 c in the shape of the first spring 5 (see FIGS. 18, 19, 20 A, 20 B, and 20 C).
  • symbol is attached
  • the first spring 5 in the energy conversion device 1ca of the first modification has a shape in which the section coefficient becomes maximum at the boundary B1 between the support portion 9 and the first spring 5 when deformed in the second direction F2.
  • the energy conversion device 1 ca it is possible to suppress the maximum load stress at the boundary between the support portion 9 and the first spring 5, and it is possible to improve the durability.
  • the width gradually wides as it goes away from the central portion in the length direction (left and right direction in FIG. 20A), and the boundary with the fixing portion 91
  • the shape is such that the width is constant near B1.
  • the energy conversion device 1 ca suppresses the dispersion of the spring constant of the first spring 5 due to the relative positional deviation between the base 20 and the first spring 5 in the third direction F3. It becomes possible to reduce the variation of the power generation characteristic.
  • a vibrating portion configured of the first movable portion 6 and the first spring 5 such that the first movable portion 6 and the second movable portion 8 resonate.
  • the energy conversion device 1 ca of the first modification can suppress the variation of the frequency of the first movable portion 6 and the second movable portion 8 by suppressing the variation of the spring constant of the first spring 5. It becomes possible to suppress the variation of the power generation characteristic and the energy conversion efficiency.
  • both side surfaces are preferably formed in a concave curved shape.
  • FIGS. 21A, 21B, 21C and 22 As a second modification of the energy conversion device 1c, there is a configuration in which the shape of the second spring 7 in the energy conversion device 1c is as shown in FIGS. 21A, 21B, 21C and 22.
  • the second spring 7 having the shape shown in FIGS. 21A, 21B, 21C and 22 has the largest section coefficient at the boundary B2 between the first movable portion 6 and the second spring 7 when deformed in the second direction F2. It is as a shape.
  • the energy conversion device 1aa it is possible to suppress the load stress from becoming maximum at the boundary B2 between the first movable portion 6 and the second spring 7, and it is possible to improve the durability. Become.
  • the second spring 7 having the shape shown in FIGS. 21A, 21B, 21C and 22 is formed in a shape in which the width gradually widens toward the second weight portion 62 at one end side in the longitudinal direction.
  • the spring constant of the second spring 7 varies due to the relative displacement between the second weight 62 and the first weight 61 in the third direction F3.
  • the energy conversion device 1c improves the generated voltage and the energy conversion efficiency by designing the natural frequency of the second spring 7 so that the first movable portion 6 and the second movable portion 8 resonate. It is possible to improve.
  • FIGS. 23A, 23B, 23C and 24 there is a configuration in which the shapes of the first spring 5 and the fixing portion 91 in the energy conversion device 1c are as shown in FIGS. 23A, 23B, 23C and 24.
  • the first spring 5 having the shape shown in FIGS. 23A, 23B, 23C and 24 is shaped such that the section coefficient becomes maximum at the boundary B1 between the support portion 9 and the first spring 5 when deformed in the second direction F2. .
  • the energy conversion device 1 ca it is possible to suppress the maximum load stress at the boundary between the support portion 9 and the first spring 5, and it is possible to improve the durability.
  • the first spring 5 is formed in such a shape that the thickness gradually increases as it is separated from the first movable portion 6 in the third direction F3, and the thickness of the fixed portion 91 and the first spring The maximum thickness of the spring 5 is set to be the same.
  • the fixing portion 91 may be thicker than the thickness of the first spring 5 when the thickness of the first spring 5 is constant.
  • the natural frequency of the vibrating portion configured by the first movable portion 6 and the first spring 5 such that the first movable portion 6 and the second movable portion 8 resonate.
  • the third modification by suppressing the variation in the spring constant of the first spring 5, it is possible to suppress the variation in the frequency of the first movable portion 6 and the second movable portion 8. And, it becomes possible to suppress the variation of the energy conversion efficiency.
  • FIG. 25 is a schematic exploded perspective view of an energy conversion device 1cb of a fourth modification of the energy conversion device 1c.
  • the energy conversion device 1cb differs from the energy conversion device 1c in the shape of the fifth recess 20c (see FIG. 26) and the shape of the fixing portion 91 (see FIGS. 26, 27A, 27B, 27C and 28).
  • symbol is attached
  • the width (the dimension in the vertical direction in FIG. 27A) of the fixing portion 91 is set to be the same as the width of the case 10. Further, in the energy conversion device 1cb, the boundary line BL between the fifth concave portion 20c and the sixth concave portion 24c is closer to the fixing portion 91 than the boundary B1 between the fixing portion 91 and the first spring 5 in the third direction F3. It is in. In other words, in the energy conversion device 1cb, the boundary line BL between the fifth recess 20c and the sixth recess 24c is within the vertical projection area of the fixed portion 91. Thereby, in the fourth modification, the variation in the spring constant of the first spring 5 due to the relative positional deviation between the base 20 and the first spring 5 in the third direction F3 is suppressed. It becomes possible to reduce the variation of the power generation characteristic.
  • the configuration of the present invention has been described above based on the first to third embodiments.
  • the present invention is not limited to the configuration of the first to third embodiments, and for example, a partial configuration of the first to third embodiments. May be combined appropriately.
  • the materials, numerical values and the like described in the first to third embodiments are merely preferred examples, and the present invention is not limited thereto.
  • modifications can be made to the configuration as appropriate without departing from the scope of the technical idea thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

An energy conversion apparatus (1a) is provided with a magnet (2), a coil (4), and a supporting section (9), said magnet and coil being disposed to face each other in the first direction (F1). The energy conversion apparatus is also provided with a first movable section (6), which is connected to the supporting section by means of a first spring (5) that can be deformed in the second direction (F2) orthogonal to the first direction, and a second movable section (8), which is connected to the first movable section by means of a second spring (7), and which is provided with the magnet, and the energy conversion apparatus has a function of converting kinetic energy into electric energy by means of electromagnetic induction generated due to relative displacement of the magnet and the coil in the second direction.

Description

エネルギ変換装置Energy conversion device
 本発明は、エネルギ変換装置に関し、より詳細には、電磁誘導方式のエネルギ変換装置に関する。 The present invention relates to an energy conversion device, and more particularly, to an electromagnetic induction energy conversion device.
 エネルギ変換装置としては、例えば、電磁誘導作用により運動エネルギを電気エネルギに変換する機能を有するエネルギ変換装置が提案されている(例えば、日本国特許出願公開番号2013-39021(以下、「文献1」という))。 As the energy conversion device, for example, an energy conversion device having a function of converting kinetic energy into electric energy by an electromagnetic induction action has been proposed (for example, Japanese Patent Application Publication No. 2013-39021 (hereinafter referred to as "Document 1") )).
 文献1には、エネルギ変換装置の一例として、図29に示す構成を有する発電装置100が記載されている。 Document 1 describes a power generation apparatus 100 having a configuration shown in FIG. 29 as an example of an energy conversion apparatus.
 発電装置100は、下ケース121と、複数のばね122と、可動ユニット123と、固定ユニット124と、上ケース125と、を備えている。 The power generation device 100 includes a lower case 121, a plurality of springs 122, a movable unit 123, a fixed unit 124, and an upper case 125.
 ばね122は、左右方向に伸縮するねじりばねである。 The spring 122 is a torsion spring that expands and contracts in the left and right direction.
 可動ユニット123は、下ヨーク131と、上ヨーク132と、磁石133A、133Bと、接続板134と、を備えている。 The movable unit 123 includes a lower yoke 131, an upper yoke 132, magnets 133A and 133B, and a connection plate 134.
 また、磁石133A、133Bは、長方形の板状に形成されている。磁石133Aは、上面がS極、下面がN極となるように着磁されている。磁石133Bは上面がN極、下面がS極となるように着磁されている。 The magnets 133A and 133B are formed in a rectangular plate shape. The magnet 133A is magnetized such that the upper surface is an S pole and the lower surface is an N pole. The magnet 133B is magnetized such that the upper surface is an N pole and the lower surface is an S pole.
 接続板134は、真鍮等の非磁性体を材料とする金属板である。接続板134は、長方形の板状に形成されている。可動ユニット123は、磁石133A、133Bに接続板134が接続されている。接続板134は、可動ユニット123が左右に振動する際に、錘として機能する。可動ユニット123は、接続板134の重量を変化させることで振動の共振周波数を調整できる。 The connection plate 134 is a metal plate made of a nonmagnetic material such as brass. The connection plate 134 is formed in a rectangular plate shape. In the movable unit 123, the connection plate 134 is connected to the magnets 133A and 133B. The connection plate 134 functions as a weight when the movable unit 123 vibrates to the left and right. The movable unit 123 can adjust the resonant frequency of the vibration by changing the weight of the connection plate 134.
 可動ユニット123は、左右からばね122により付勢され、下ケース121の略中央に位置するものとなっている。 The movable unit 123 is biased by the spring 122 from the left and right, and is positioned approximately at the center of the lower case 121.
 固定ユニット124は、コイル141と、ヨークガイド142と、を備えて構成されている。 The fixing unit 124 is configured to include a coil 141 and a yoke guide 142.
 発電装置100は、組み合わされた下ケース121及び上ケース125内で、可動ユニット123がコイル141に対し左右に可動するように構成されている。そして、発電装置100は、可動ユニット123が左右に動くと、固定ユニット124のコイル141に対し、可動ユニット123の磁石133A、133Bが左右に動き、コイル141に電磁誘導により電流が流れる。なお、可動ユニット123の共振周波数は、ばね122のばね定数と可動ユニット123の質量から概ね定まる。 The power generation device 100 is configured such that the movable unit 123 can move laterally with respect to the coil 141 in the combined lower case 121 and upper case 125. When the movable unit 123 moves to the left and right, the magnets 133A and 133B of the movable unit 123 move to the left and right with respect to the coil 141 of the fixed unit 124, and a current flows in the coil 141 by electromagnetic induction. The resonant frequency of the movable unit 123 is substantially determined by the spring constant of the spring 122 and the mass of the movable unit 123.
 発電装置100のようなエネルギ変換装置では、発電電圧の向上及びエネルギ変換効率の向上が望まれている。 In the energy conversion device such as the power generation device 100, improvement of the generated voltage and improvement of the energy conversion efficiency are desired.
 本発明の目的は、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能なエネルギ変換装置を提供することにある。 An object of the present invention is to provide an energy conversion device capable of improving the generated voltage and the energy conversion efficiency.
 本発明のエネルギ変換装置は、磁石と、コイルと、支持部と、を備え、前記磁石と前記コイルとが第1方向で対向配置され、前記磁石と前記コイルとが前記第1方向に直交する第2方向において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換するエネルギ変換装置であって、前記第2方向に変形可能な第1のばねと、前記第1のばねによって前記支持部に接続された第1の可動部と、前記第2方向に変形可能な第2のばねと、前記第2のばねによって前記第1の可動部に接続され前記磁石と前記コイルとの一方を備えた第2の可動部と、を備えることを特徴とする。 The energy conversion device according to the present invention includes a magnet, a coil, and a support portion, the magnet and the coil are disposed to face each other in a first direction, and the magnet and the coil are orthogonal to the first direction. An energy conversion device for converting kinetic energy into electrical energy by electromagnetic induction generated by relative displacement in a second direction, comprising: a first spring deformable in the second direction; and the first spring A first movable portion connected to the support portion, a second spring deformable in the second direction, and the second movable portion connected to the first movable portion by the second spring; And a second movable part having one side.
 このエネルギ変換装置において、前記第1の可動部の質量をM1、前記第2の可動部の質量をM2、前記第1のばねの前記第2方向のばね定数をk1、前記第2のばねの前記第2方向のばね定数をk2、前記第1の可動部の前記第2方向における初期変位に応じて前記第1のばねに蓄積されるエネルギで規定される速度をvとし、前記第2の可動部の最高速度をv2とするとき、v2>vとなるように、M1、M2、k1及びk2を設定してあることが好ましい。 In this energy conversion device, the mass of the first movable portion is M1, the mass of the second movable portion is M2, the spring constant of the first spring in the second direction is k1, and the second spring The spring constant of the second direction is k2, the velocity defined by the energy stored in the first spring according to the initial displacement of the first movable portion in the second direction is v, and the second Preferably, M1, M2, k1 and k2 are set such that v2> v when the maximum velocity of the movable part is v2.
 このエネルギ変換装置において、前記第1のばね及び前記第2のばねは、それぞれ、シリコン、ステンレス鋼、鋼、銅、銅合金、チタン合金、アルミニウム合金、炭素及びガラスの群から選択される1種の材料により形成されていることが好ましい。 In this energy conversion device, the first spring and the second spring are each selected from the group consisting of silicon, stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon and glass. It is preferable to be formed of the following materials.
 このエネルギ変換装置において、前記第1のばねと前記第2のばねとの関係をk1<k2とすることで、v2>vとなるように構成されていることが好ましい。 In this energy conversion device, it is preferable that v2> v is obtained by setting the relationship between the first spring and the second spring to k1 <k2.
 このエネルギ変換装置において、前記第1の可動部の質量と前記第2の可動部の質量との関係をM1>M2とすることで、v2>vとなるように構成されていることが好ましい。 In this energy conversion device, it is preferable that v2> v is obtained by setting the relationship between the mass of the first movable portion and the mass of the second movable portion to M1> M2.
 このエネルギ変換装置において、前記第1のばねは、圧縮コイルばねであることが好ましい。 In this energy conversion device, the first spring is preferably a compression coil spring.
 このエネルギ変換装置において、前記第1のばねは、板ばねであることが好ましい。 In this energy conversion device, the first spring is preferably a leaf spring.
 このエネルギ変換装置において、前記支持部は、前記板ばねにおける前記第1の可動部側とは反対側で前記板ばねに一体に形成された固定部を備え、前記第1のばねは、前記第1方向と前記第2方向とに直交する第3方向において前記第1の可動部から離れるにつれて厚さが徐々に厚くなる形状に形成されており、前記固定部の厚さと前記第1のばねの最大厚さとを同じに設定してある。 In this energy conversion device, the support portion includes a fixed portion integrally formed on the plate spring on the side opposite to the first movable portion side of the plate spring, and the first spring is a portion of the first spring It is formed in the shape which thickness becomes thick gradually gradually as it leaves from the 1st movable part in the 3rd direction orthogonal to 1 direction and the 2nd direction, and the thickness of the fixed part and the 1st spring The maximum thickness is set to be the same.
 このエネルギ変換装置において、前記第1のばねは、前記第2方向に変形するとき前記支持部と前記第1のばねとの境界において断面係数が最大となる形状としてあるのが好ましい。 In this energy conversion device, it is preferable that the first spring has a shape in which the section coefficient is maximized at the boundary between the support portion and the first spring when deformed in the second direction.
 このエネルギ変換装置において、前記第2のばねは、前記第2方向に変形するとき前記第1の可動部と前記第2のばねとの境界において断面係数が最大となる形状としてあるのが好ましい。 In this energy conversion device, it is preferable that the second spring has a shape in which the section coefficient is maximized at the boundary between the first movable portion and the second spring when it is deformed in the second direction.
 本発明のエネルギ変換装置においては、前記第2方向に変形可能な第1のばねと、前記第1のばねによって前記支持部に接続された第1の可動部と、前記第2方向に変形可能な第2のばねと、前記第2のばねによって前記第1の可動部に接続され前記磁石と前記コイルとの一方を備えた第2の可動部と、を備えるので、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。 In the energy conversion device according to the present invention, the first spring deformable in the second direction, the first movable part connected to the support portion by the first spring, and the second direction deformable Since the second spring and the second movable part connected to the first movable part by the second spring and having one of the magnet and the coil are provided, the generation voltage can be improved and energy can be increased. It is possible to improve the conversion efficiency.
図1は、実施形態1のエネルギ変換装置の概略分解斜視図である。FIG. 1 is a schematic exploded perspective view of the energy conversion device of the first embodiment. 図2は、実施形態1のエネルギ変換装置の概略斜視図である。FIG. 2 is a schematic perspective view of the energy conversion device of the first embodiment. 図3は、実施形態1のエネルギ変換装置の概略断面図である。FIG. 3 is a schematic cross-sectional view of the energy conversion device of the first embodiment. 図4は、実施形態1のエネルギ変換装置の要部概略平面図である。FIG. 4 is a schematic plan view of relevant parts of the energy conversion device of the first embodiment. 図5は、実施形態1のエネルギ変換装置の模式的な説明図である。FIG. 5 is a schematic explanatory view of the energy conversion device of the first embodiment. 図6は、実施形態1のエネルギ変換装置の比較例の要部概略平面図である。FIG. 6 is a schematic plan view of relevant parts of the energy conversion device of the first embodiment. 図7は、実施形態1のエネルギ変換装置の比較例の模式的な説明図である。FIG. 7 is a schematic explanatory view of a comparative example of the energy conversion device of the first embodiment. 図8は、実施形態1のエネルギ変換装置の第1変形例の要部概略平面図である。FIG. 8 is a schematic plan view of relevant parts of a first modification of the energy conversion device of the first embodiment. 図9は、実施形態1のエネルギ変換装置の第2変形例の概略分解斜視図である。FIG. 9 is a schematic exploded perspective view of a second modification of the energy conversion device of the first embodiment. 図10Aは、実施形態1のエネルギ変換装置の第2変形例の要部概略平面図である。図10Bは、実施形態1のエネルギ変換装置の第2変形例の要部概略正面図である。図10Cは、実施形態1のエネルギ変換装置の第2変形例の要部概略側面図である。FIG. 10A is a schematic plan view of relevant parts of a second modification of the energy conversion device of the first embodiment. FIG. 10B is a schematic front view of main parts of a second modification of the energy conversion device of the first embodiment. FIG. 10C is a schematic side view of a main part of a second modification of the energy conversion device of the first embodiment. 図11は、実施形態2のエネルギ変換装置の概略分解斜視図である。FIG. 11 is a schematic exploded perspective view of the energy conversion device of the second embodiment. 図12は、実施形態3のエネルギ変換装置の概略分解斜視図である。FIG. 12 is a schematic exploded perspective view of the energy conversion device of the third embodiment. 図13は、実施形態3のエネルギ変換装置の概略斜視図である。FIG. 13 is a schematic perspective view of the energy conversion device of the third embodiment. 図14は、実施形態3のエネルギ変換装置の概略断面図である。FIG. 14 is a schematic cross-sectional view of the energy conversion device of the third embodiment. 図15は、実施形態3のエネルギ変換装置のカバーを取り外した状態における概略分解斜視図である。FIG. 15 is a schematic exploded perspective view of the energy conversion device of the third embodiment with the cover removed. 図16Aは、実施形態3のエネルギ変換装置の要部概略平面図である。図16Bは、実施形態3のエネルギ変換装置の要部概略正面図である。図16Cは、実施形態3のエネルギ変換装置の要部概略下面図である。図16Dは、実施形態3のエネルギ変換装置の要部概略側面図である。FIG. 16A is a schematic plan view of relevant parts of the energy conversion device of the third embodiment. FIG. 16B is a schematic front view of main parts of the energy conversion device of the third embodiment. FIG. 16C is a schematic bottom view of the essential parts of the energy conversion device of the third embodiment. FIG. 16D is a schematic side view of main parts of the energy conversion device of the third embodiment. 図17A~17Dは、実施形態3のエネルギ変換装置を備えた椅子の説明図である。17A to 17D are explanatory views of a chair provided with the energy conversion device of the third embodiment. 図18は、実施形態3のエネルギ変換装置の第1変形例の概略分解斜視図である。FIG. 18 is a schematic exploded perspective view of a first modification of the energy conversion device of the third embodiment. 図19は、実施形態3のエネルギ変換装置の第1変形例を示し、カバーを取り外した状態の概略分解斜視図である。FIG. 19 shows a first modification of the energy conversion device of the third embodiment, and is a schematic exploded perspective view with the cover removed. 図20Aは、実施形態3のエネルギ変換装置の第1変形例の要部概略平面図である。図20Bは、実施形態3のエネルギ変換装置の第1変形例の要部概略正面図である。図20Cは、実施形態3のエネルギ変換装置の第1変形例の要部概略側面図である。FIG. 20A is a schematic plan view of relevant parts of a first modification of the energy conversion device of the third embodiment. FIG. 20B is a schematic front view of main parts of a first modification of the energy conversion device of the third embodiment. FIG. 20C is a schematic side view of a main part of a first modification of the energy conversion device of the third embodiment. 図21Aは、実施形態3のエネルギ変換装置の第2変形例の要部概略平面図である。図21Bは、実施形態3のエネルギ変換装置の第2変形例の要部概略正面図である。図21Cは、実施形態3のエネルギ変換装置の第2変形例の要部概略側面図である。FIG. 21A is a schematic plan view of relevant parts of a second modification of the energy conversion device of the third embodiment. FIG. 21B is a schematic front view of main parts of a second modification of the energy conversion device of the third embodiment. 21: C is a principal part schematic side view of the 2nd modification of the energy conversion apparatus of Embodiment 3. FIG. 図22は、実施形態3のエネルギ変換装置の第2変形例の要部概略斜視図である。FIG. 22 is a schematic perspective view of the main part of a second modification of the energy conversion device of the third embodiment. 図23Aは、実施形態3のエネルギ変換装置の第3変形例の要部概略平面図である。図23Bは、実施形態3のエネルギ変換装置の第3変形例の要部概略正面図である。図23Cは、実施形態3のエネルギ変換装置の第3変形例の要部概略側面図である。FIG. 23A is a schematic plan view of relevant parts of a third modification of the energy conversion device of the third embodiment. FIG. 23B is a schematic front view of main parts of a third modification of the energy conversion device of the third embodiment. FIG. 23C is a schematic side view of main parts of a third modification of the energy conversion device of the third embodiment. 図24は、実施形態3のエネルギ変換装置の第3変形例の要部概略斜視図である。FIG. 24 is a schematic perspective view of essential parts of a third modification of the energy conversion device of the third embodiment. 図25は、実施形態3のエネルギ変換装置の第4変形例の概略分解斜視図である。FIG. 25 is a schematic exploded perspective view of a fourth modification of the energy conversion device of the third embodiment. 図26は、実施形態3のエネルギ変換装置の第4変形例を示し、カバーを取り外した状態の概略分解斜視図である。FIG. 26 shows a fourth modification of the energy conversion device of the third embodiment, and is a schematic exploded perspective view with the cover removed. 図27Aは、実施形態3のエネルギ変換装置の第4変形例の要部概略平面図である。図27Bは、実施形態3のエネルギ変換装置の第4変形例の要部概略正面図である。図27Cは、実施形態3のエネルギ変換装置の第4変形例の要部概略側面図である。FIG. 27A is a schematic plan view of relevant parts of a fourth modification of the energy conversion device of the third embodiment. FIG. 27B is a schematic front view of the essential part of the fourth modification of the energy conversion device of the third embodiment. FIG. 27C is a schematic side view of main parts of a fourth modification of the energy conversion device of the third embodiment. 図28は、実施形態3のエネルギ変換装置の第4変形例の要部概略斜視図である。FIG. 28 is a schematic perspective view of the main parts of a fourth modification of the energy conversion device of the third embodiment. 図29は、従来例の発電装置の断面図である。FIG. 29 is a cross-sectional view of a conventional power generation device.
 (実施形態1)
 以下では、本実施形態のエネルギ変換装置1aについて図1~4に基づいて説明する。
(Embodiment 1)
Hereinafter, the energy conversion device 1a of the present embodiment will be described based on FIGS.
 エネルギ変換装置1aは、磁石2と、コイル4と、支持部9と、を備えている。エネルギ変換装置1aは、磁石2とコイル4とが第1方向F1(図1、3参照)で対向配置されている。エネルギ変換装置1aは、磁石2とコイル4とが第1方向F1に直交する第2方向F2(図1、3参照)において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換する機能を有する。 The energy conversion device 1 a includes a magnet 2, a coil 4, and a support 9. In the energy conversion device 1a, the magnet 2 and the coil 4 are disposed to face each other in the first direction F1 (see FIGS. 1 and 3). The energy conversion device 1a converts kinetic energy into electrical energy by electromagnetic induction caused by relative displacement of the magnet 2 and the coil 4 in the second direction F2 (see FIGS. 1 and 3) orthogonal to the first direction F1. Have a function to
 エネルギ変換装置1aは、第2方向F2に変形可能な第1のばね5と、第1のばね5によって支持部9に接続された第1の可動部6と、第2方向F2に変形可能な第2のばね7と、第2のばね7によって第1の可動部6に接続され磁石2を備えた第2の可動部8と、を備える。これにより、エネルギ変換装置1aは、第2の可動部8が第2方向F2に沿って振動するときの速度の高速化を図れ、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。本明細書では、第1方向F1と第2方向F2とに直交する方向を第3方向F3(図1参照)とする。要するに、第1方向F1と第2方向F2と第3方向F3とは、互いに直交する方向である。 The energy conversion device 1a includes a first spring 5 that can be deformed in the second direction F2, a first movable portion 6 connected to the support 9 by the first spring 5, and a shape that can be deformed in the second direction F2. A second spring 7 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a magnet 2 are provided. Thus, the energy conversion device 1a can increase the speed of the second movable part 8 vibrating in the second direction F2, and can improve the generated voltage and the energy conversion efficiency. Become. In the present specification, a direction orthogonal to the first direction F1 and the second direction F2 is referred to as a third direction F3 (see FIG. 1). In short, the first direction F1, the second direction F2, and the third direction F3 are directions orthogonal to each other.
 エネルギ変換装置1aの各構成要素については、以下に詳細に説明する。 Each component of the energy conversion device 1a will be described in detail below.
 支持部9は、磁石2、コイル4、第1の可動部6、第1のばね5及び第2のばね7等を収納するケース10により構成されている。ケース10には、磁石2を備えた第2の可動部8も収納される。要するに、エネルギ変換装置1aは、ケース10内において磁石2とコイル4とが第1方向F1で対向配置されている。 The support part 9 is comprised by case 10 which accommodates the magnet 2, the coil 4, the 1st movable part 6, the 1st spring 5, 2nd spring 7 grade | etc.,. The case 10 also accommodates a second movable portion 8 provided with the magnet 2. In short, in the energy conversion device 1a, the magnet 2 and the coil 4 are disposed to face each other in the first direction F1 in the case 10.
 ケース10は、ベース20と、カバー30と、を結合して構成されている。 The case 10 is configured by combining a base 20 and a cover 30.
 ベース20は、板状に形成されている。カバー30は、ベース20側が開放された箱状に形成されている。より具体的には、ケース10は、ベース20が、矩形板状に形成され、カバー30が、矩形箱状に形成されている。ベース20及びカバー30の材料としては、非磁性体材料が好ましい。非磁性体材料としては、例えば、エンジニヤリングプラスチック等の樹脂、セラミック、シリコン、金属等を採用することができる。エンジニヤリングプラスチックとしては、例えば、ポリカーボネート樹脂等を採用することができる。金属としては、例えば、鉄、銅、亜鉛等を採用することができるが、非磁性のステンレス鋼が好ましい。 The base 20 is formed in a plate shape. The cover 30 is formed in a box-like shape in which the base 20 side is opened. More specifically, in the case 10, the base 20 is formed in a rectangular plate shape, and the cover 30 is formed in a rectangular box shape. As a material of the base 20 and the cover 30, a nonmagnetic material is preferable. As the nonmagnetic material, for example, resin such as engineering plastic, ceramic, silicon, metal or the like can be adopted. As engineering plastic, polycarbonate resin etc. are employable, for example. As a metal, although iron, copper, zinc etc. are employable, for example, nonmagnetic stainless steel is preferred.
 エネルギ変換装置1aは、ベース20とカバー30とを、複数個(例えば、4個)のねじ(図示せず)により結合するようにしてもよいし、接着剤により結合するようにしてもよい。また、エネルギ変換装置1aは、ベース20とカバー30とを結合するための固定部材として、ねじと接着剤とを併用してもよい。 In the energy conversion device 1a, the base 20 and the cover 30 may be coupled by a plurality of (for example, four) screws (not shown) or may be coupled by an adhesive. In addition, the energy conversion device 1 a may use a screw and an adhesive together as a fixing member for connecting the base 20 and the cover 30.
 また、エネルギ変換装置1aは、ベース20とカバー30とに、相互に嵌合可能な構造を設けて嵌合させることで結合するようにしてもよい。 Further, the energy conversion device 1a may be coupled to the base 20 and the cover 30 by providing a structure that can be fitted to each other.
 エネルギ変換装置1aは、ベース20、カバー30それぞれの四隅に、固定用のねじを挿通可能な貫通孔20a、30aをそれぞれ形成してある。各貫通孔20a、30aの平面視での開口形状は、円形状としてある。 In the energy conversion device 1a, through holes 20a, 30a through which fixing screws can be inserted are formed at the four corners of the base 20 and the cover 30, respectively. The opening shape of each of the through holes 20a and 30a in a plan view is circular.
 磁石2は、永久磁石により構成することが好ましい。永久磁石の材料としては、例えば、ネオジム、サマリウムコバルト、アルニコ(alnico)、フェライト等を採用することができる。 The magnet 2 is preferably made of a permanent magnet. As a material of a permanent magnet, neodymium, samarium cobalt, alnico (alnico), a ferrite etc. are employable, for example.
 磁石2は、矩形板状に形成されている。また、磁石2は、厚み方向の一面側がN極、他面側がS極となるように着磁されている。磁石2を構成する永久磁石は、例えば、磁石材料を切削、研磨等で整形加工した後、パルス着磁法等によって着磁することにより、形成することができる。 The magnet 2 is formed in a rectangular plate shape. The magnet 2 is magnetized so that one surface side in the thickness direction is an N pole and the other surface side is an S pole. The permanent magnet constituting the magnet 2 can be formed, for example, by shaping a magnet material by cutting, polishing or the like and then magnetizing the material by a pulse magnetizing method or the like.
 ベース20は、第1面21の中央部に、コイル4を位置決めする第1の凹部24が形成されている。また、ベース20は、第1面21とは反対の第2面22(図3参照)側に、コイル4の両端それぞれに電気的に接続された一対の外部電極(図示せず)が配置されている。ベース20の第2面22側には、外部電極に接続されるコイル4のコイル線材を這わせる溝(図示せず)が形成されているのが好ましい。 The base 20 is formed with a first recess 24 for positioning the coil 4 at the center of the first surface 21. In the base 20, on the second surface 22 (see FIG. 3) opposite to the first surface 21, a pair of external electrodes (not shown) electrically connected to both ends of the coil 4 are arranged. ing. It is preferable that a groove (not shown) for winding the coil wire material of the coil 4 connected to the external electrode is formed on the second surface 22 side of the base 20.
 また、カバー30は、内底面30aa(図3参照)の中央部に、コイル4を位置決めする第2の凹部34が形成されている。カバー30の内底面30aaは、ベース20の第1面21に対向している。 Further, the cover 30 is formed with a second recess 34 for positioning the coil 4 at the center of the inner bottom surface 30aa (see FIG. 3). The inner bottom surface 30 aa of the cover 30 is opposed to the first surface 21 of the base 20.
 コイル4は、ケース10内において、ケース10内の定位置に固定されている。コイル4は、中心線(中心軸)が第1方向F1と平行になるように配置されているのが好ましい。 The coil 4 is fixed in a fixed position in the case 10 in the case 10. The coil 4 is preferably arranged such that the center line (center axis) is parallel to the first direction F1.
 コイル4は、コイル線材が巻回され構成されている。コイル線材としては、例えば、絶縁被覆付きの銅線を採用することができる。銅線を被覆する絶縁膜の材料としては、例えば、ウレタン、ホルマール、ポリエステル、ポリエステルイミド、ポリアミドイミド等を採用することができる。 The coil 4 is configured by winding a coil wire. As a coil wire material, the copper wire with an insulation coating is employable, for example. As a material of the insulating film which covers a copper wire, urethane, formal, polyester, polyester imide, polyamidoimide, etc. are employable, for example.
 コイル4は、空芯コイルであるが、これに限らず、例えば、ボビンに巻回されたコイル線材により構成してもよい。ボビンの材料としては、例えば、電気絶縁性材料を採用することが好ましい。この電気絶縁性材料としては、エンジニヤリングプラスチック等の樹脂や、セラミック等を採用することができる。エンジニヤリングプラスチックとしては、例えば、ポリカーボネート樹脂等を採用することができる。 The coil 4 is an air core coil, but is not limited to this. For example, the coil 4 may be constituted by a coil wire wound around a bobbin. As a material of the bobbin, for example, it is preferable to adopt an electrically insulating material. As the electrically insulating material, resin such as engineering plastic or ceramic can be adopted. As engineering plastic, polycarbonate resin etc. are employable, for example.
 コイル4は、外周形状が長円状の形状に形成されており、短手方向が第2方向F2に一致し且つ長手方向が第3方向F3に一致するように、配置されている。コイル4は、短手方向の一端部を、ベース20の第1の凹部24に挿入し固定し、短手方向の他端部を、カバー30の第2の凹部34に挿入し固定してある。コイル4とベース20及びカバー30とは、例えば、接着剤等で接着することで固定すればよい。 The outer peripheral shape of the coil 4 is formed in an oval shape, and the coil 4 is disposed so that the short direction coincides with the second direction F2 and the longitudinal direction coincides with the third direction F3. The coil 4 has one end in the lateral direction inserted and fixed in the first recess 24 of the base 20 and the other end in the lateral direction inserted and fixed in the second recess 34 of the cover 30. . The coil 4, the base 20 and the cover 30 may be fixed, for example, by bonding with an adhesive or the like.
 コイル4の両端の線端部は、それぞれ、ベース20の厚み方向に貫通した孔(図示せず)を通してベース20の第2面22側に引き出され、上記溝に這わせて、外部電極に電気的に接続されている。コイル4の線端部と外部電極とは、例えば、導電性接合材で接合され電気的に接続されている。導電性接合材の材料としては、例えば、半田や銀ペースト等を採用することができる。導電性接合材としては、金属製のねじ等を用いてもよい。 The wire ends at both ends of the coil 4 are drawn to the side of the second surface 22 of the base 20 through holes (not shown) penetrating in the thickness direction of the base 20, respectively, and are led to the grooves to electrically connect to the external electrodes. Connected. The wire end of the coil 4 and the external electrode are, for example, joined and electrically connected by a conductive bonding material. As a material of the conductive bonding material, for example, solder, silver paste or the like can be adopted. As the conductive bonding material, a metal screw or the like may be used.
 コイル4は、コイル線材を巻回したものに限らず、例えば、平面コイルにより構成してもよい。平面コイルの材料としては、例えば、銅、金、銀等を採用することができる。また、平面コイルの材料としては、パーマロイ、コバルト基アモルファス合金、フェライト等を採用してもよい。平面コイルは、例えば、薄膜形成技術、フォトリソグラフィ技術及びエッチング技術等を利用して形成することができる。薄膜形成技術としては、例えば、蒸着法、スパッタ法等が挙げられる。 The coil 4 is not limited to one wound with a coil wire, and may be constituted by, for example, a planar coil. As a material of a planar coil, copper, gold, silver etc. are employable, for example. Also, permalloy, a cobalt-based amorphous alloy, ferrite or the like may be employed as the material of the planar coil. The planar coil can be formed, for example, using thin film formation technology, photolithography technology, etching technology, and the like. As a thin film formation technique, a vapor deposition method, a sputtering method, etc. are mentioned, for example.
 第1のばね5は、例えば、圧縮コイルばねにより構成してある。これにより、エネルギ変換装置1aは、第1のばね5の1個当たりの蓄積エネルギを大きくすることが可能となり、エネルギ変換装置1aの小型化を図ることが可能となる。第1のばね5の1個当たりの蓄積エネルギは、ばね定数と、圧縮時のたわみと、の積に比例する。圧縮コイルばねからなる第1のばね5のばね定数は、例えば、線径、外径、内径、自由長、材料等により、調整することができる。第1のばね5は、第1のばね5の軸方向が第2方向F2に沿うように配置されている。第1のばね5の軸方向は、第1のばね5が圧縮コイルばねの場合、自由長方向に沿った方向である。 The first spring 5 is, for example, a compression coil spring. Thereby, the energy conversion device 1a can increase the stored energy per one of the first springs 5, and the energy conversion device 1a can be miniaturized. The energy stored per one first spring 5 is proportional to the product of the spring constant and the deflection at the time of compression. The spring constant of the first spring 5 formed of a compression coil spring can be adjusted, for example, by the wire diameter, the outer diameter, the inner diameter, the free length, the material, and the like. The first spring 5 is disposed such that the axial direction of the first spring 5 is along the second direction F2. When the first spring 5 is a compression coil spring, the axial direction of the first spring 5 is a direction along the free length direction.
 第1の可動部6は、枠状に形成されている。より具体的には、第1の可動部6は、矩形枠状に形成されている。第1の可動部6は、それぞれが矩形枠状に形成された第1の錘部61と第2の錘部62とを重ねて一体化することで構成してある。 The first movable portion 6 is formed in a frame shape. More specifically, the first movable portion 6 is formed in a rectangular frame shape. The first movable portion 6 is configured by overlapping and integrating a first weight portion 61 and a second weight portion 62 each formed in a rectangular frame shape.
 第1の可動部6は、第1の錘部61から第2の錘部62側に突設された円柱状の突起61aが設けられ、第2の錘部62に、突起61aが挿通される円形状の孔62aが形成されている。そして、第1の可動部6は、第1の錘部61の突起61aを第2の錘部62の孔62aに挿通して接着剤等により接着してある。これにより、第1の可動部6は、第1の錘部61と第2の錘部62とが一体化されている。 The first movable portion 6 is provided with a cylindrical protrusion 61 a protruding from the first weight portion 61 toward the second weight portion 62, and the protrusion 61 a is inserted into the second weight portion 62. A circular hole 62a is formed. The first movable portion 6 has the protrusion 61 a of the first weight portion 61 inserted through the hole 62 a of the second weight portion 62 and is bonded with an adhesive or the like. Thereby, in the first movable portion 6, the first weight portion 61 and the second weight portion 62 are integrated.
 第1の錘部61の材料は、第2の錘部62と同じ材料に限らず、例えば、エンジニヤリングプラスチック(例えば、ポリカーボネート等)等の樹脂、セラミック、シリコン等を採用してもよい。 The material of the first weight portion 61 is not limited to the same material as the second weight portion 62. For example, a resin such as engineering plastic (for example, polycarbonate etc.), ceramic, silicon or the like may be adopted.
 エネルギ変換装置1aは、第2方向F2における第1の可動部6の両側それぞれに、第1のばね5が2個ずつ設けられている。エネルギ変換装置1aは、第2方向F2における第1の可動部6の両側それぞれに、第1のばね5が複数個ずつ設けられているのが好ましい。エネルギ変換装置1aは、第1の可動部6の両側それぞれにおいて、複数個の第1のばね5が第1の可動部6の周方向に等間隔で配置されているのが好ましい。これにより、エネルギ変換装置1aは、第2方向F2における第1の可動部6の両側に、第1のばね5が1個ずつ設けられている場合に比べて、第1の可動部6の振動方向の更なる単方向化(unilateralization)が可能となり、エネルギ変換効率の更なる向上を図ることが可能となる。更に、エネルギ変換装置1aは、個々の第1のばね5にかかる応力を低減することが可能となり、耐久性の向上を図ることが可能となる。第2方向F2における第1の可動部6の両側それぞれの第1のばね5の個数は、特に限定するものではない。エネルギ変換装置1aは、第1の可動部6の両側で第1のばね5の個数を同じ個数としてあるが、これに限らず、第1の可動部6の両側で第1のばね5の個数が異なっていてもよい。 In the energy conversion device 1a, two first springs 5 are provided on both sides of the first movable portion 6 in the second direction F2. In the energy conversion device 1a, preferably, a plurality of first springs 5 are provided on both sides of the first movable portion 6 in the second direction F2. In the energy conversion device 1 a, it is preferable that a plurality of first springs 5 be arranged at equal intervals in the circumferential direction of the first movable portion 6 on each side of the first movable portion 6. Thus, the energy conversion device 1a vibrates the first movable portion 6 in comparison with the case where one first spring 5 is provided on both sides of the first movable portion 6 in the second direction F2. Further unilateralization of the direction is possible, and it is possible to achieve a further improvement of the energy conversion efficiency. Furthermore, in the energy conversion device 1a, it is possible to reduce the stress applied to the individual first springs 5, and to improve the durability. The number of first springs 5 on each side of the first movable portion 6 in the second direction F2 is not particularly limited. The energy conversion device 1a has the same number of first springs 5 on both sides of the first movable portion 6. However, the present invention is not limited thereto. The number of first springs 5 on both sides of the first movable portion 6 May be different.
 ベース20の第1面21には、圧縮コイルばねにより構成された第1のばね5の一端部側を収納する穴25が形成されている。穴25の内底面には、第1のばね5の一端部が嵌め込まれる突起25a(図3参照)が一体に突設されている。また、第1の可動部6は、ベース20の第1面21に対向する面に、第1のばね5の他端部が嵌め込まれる突起6a(図3参照)が突設されている。よって、エネルギ変換装置1aは、ベース20と第1の可動部6との間に第1のばね5を保持することができ、ベース20と第1の可動部6とを第1のばね5により接続することができる。第1のばね5とベース20及び第1の可動部6とは、接着剤等によって固定してもよい。 The first surface 21 of the base 20 is formed with a hole 25 for receiving one end side of the first spring 5 constituted by a compression coil spring. On the inner bottom surface of the hole 25, a protrusion 25a (see FIG. 3) into which one end of the first spring 5 is fitted is integrally protruded. Further, the first movable portion 6 is provided with a protrusion 6 a (see FIG. 3) in which the other end of the first spring 5 is fitted on the surface facing the first surface 21 of the base 20. Therefore, the energy conversion device 1 a can hold the first spring 5 between the base 20 and the first movable portion 6, and the base 20 and the first movable portion 6 can be held by the first spring 5. It can be connected. The first spring 5 and the base 20 and the first movable portion 6 may be fixed by an adhesive or the like.
 カバー30の内底面30aaには、第1の可動部6における内底面30aa側に配置された第1のばね5の一端部側を収納する穴35が形成されている。穴35の内底面には、第1のばね5の一端部が嵌め込まれる突起35a(図3参照)が一体に突設されている。また、第1の可動部6は、カバー30の内底面30aaに対向する面に、第1のばね5の他端部が嵌め込まれる突起6b(図3参照)が突設されている。よって、エネルギ変換装置1aは、カバー30と第1の可動部6との間に第1のばね5を保持することができ、カバー30と第1の可動部6とを第1のばね5により接続することができる。第1のばね5とカバー30及び第1の可動部6とは、接着剤等によって固定してもよい。 The inner bottom surface 30aa of the cover 30 is formed with a hole 35 for receiving one end side of the first spring 5 disposed on the inner bottom surface 30aa side of the first movable portion 6. On the inner bottom surface of the hole 35, a protrusion 35a (see FIG. 3) into which one end of the first spring 5 is fitted is integrally protruded. Further, on the surface of the first movable portion 6 facing the inner bottom surface 30aa of the cover 30, a protrusion 6b (see FIG. 3) in which the other end of the first spring 5 is fitted is provided in a protruding manner. Therefore, the energy conversion device 1 a can hold the first spring 5 between the cover 30 and the first movable portion 6, and the cover 30 and the first movable portion 6 can be held by the first spring 5. It can be connected. The first spring 5 and the cover 30 and the first movable portion 6 may be fixed by an adhesive or the like.
 エネルギ変換装置1aは、第1の可動部6が振動していない状態では、第2方向F2において第1の可動部6のベース20側に配置された第1のばね5が、第1の可動部6をベース20から離れる向きへ付勢し、第1の可動部6のカバー30側に配置された第1のばね5が、第1の可動部6をカバー30から離れる向きへ付勢している。したがって、第1の可動部6は、厚み方向の両側から付勢され、ケース10の厚み方向の略中央に位置するものとなっている。第1の可動部6をベース20から離れる向きへ付勢とは、第1の可動部6にベース20から離れる向きの力を加えることを意味する。第1の可動部6をカバー30から離れる向きへ付勢とは、第1の可動部6にカバー30から離れる向きの力を加えることを意味する。ケース10の厚み方向は、第2方向F2に沿った方向であり、図3の上下方向である。 In the energy conversion device 1a, in a state where the first movable portion 6 is not vibrating, the first spring 5 disposed on the base 20 side of the first movable portion 6 in the second direction F2 is the first movable The portion 6 is biased away from the base 20, and the first spring 5 disposed on the cover 30 side of the first movable portion 6 biases the first movable portion 6 away from the cover 30. ing. Therefore, the first movable portion 6 is biased from both sides in the thickness direction, and is positioned approximately at the center of the case 10 in the thickness direction. Energizing the first movable portion 6 away from the base 20 means applying a force to the first movable portion 6 in a direction away from the base 20. Energizing the first movable part 6 away from the cover 30 means applying a force to the first movable part 6 in a direction away from the cover 30. The thickness direction of the case 10 is a direction along the second direction F2, which is the vertical direction in FIG.
 第1のばね5は、第2方向F2におけるばね定数が第1方向F1及び第3方向F3それぞれのばね定数よりも小さいのが好ましい。要するに、第1のばね5は、第2方向F2における剛性が第2方向F2に直交する方向の剛性に比べて小さいのが好ましい。これにより、エネルギ変換装置1aは、第1の可動部6の振動方向の第2方向F2への単方向化を実現することが可能となる。よって、エネルギ変換装置1aは、エネルギ変換効率の向上を図ることが可能となる。 The first spring 5 preferably has a spring constant in the second direction F2 smaller than a spring constant in each of the first direction F1 and the third direction F3. In short, it is preferable that the rigidity of the first spring 5 in the second direction F2 is smaller than the rigidity in the direction orthogonal to the second direction F2. Thus, the energy conversion device 1a can realize unidirectionalization of the vibration direction of the first movable portion 6 in the second direction F2. Therefore, the energy conversion device 1a can improve the energy conversion efficiency.
 ベース20及びカバー30は、第1のばね5を保持している部分の第2方向F2における剛性が、第1のばね5の第2方向F2における剛性よりも大きいのが好ましい。言い換えれば、エネルギ変換装置1aは、ケース10において第1のばね5を保持している部分の第2方向F2のばね定数が、第1のばね5の第2方向F2のばね定数よりも大きいのが好ましい。これにより、エネルギ変換装置1aは、第1のばね5にエネルギを蓄積するときにケース10が撓むのを抑制することが可能となり、エネルギ変換効率の向上を図ることが可能となる。ケース10において第1のばね5を保持している部分の第2方向F2のばね定数は、例えば、第1のばね5の第2方向F2のばね定数の10倍以上であるのが、より好ましい。 It is preferable that the rigidity of the base 20 and the cover 30 in the second direction F2 of the portion holding the first spring 5 be greater than the rigidity of the first spring 5 in the second direction F2. In other words, in the energy conversion device 1a, the spring constant of the portion holding the first spring 5 in the case 10 in the second direction F2 is larger than the spring constant of the first spring 5 in the second direction F2. Is preferred. Thus, the energy conversion device 1a can suppress the bending of the case 10 when storing energy in the first spring 5, and can improve the energy conversion efficiency. It is more preferable that the spring constant of the part holding the first spring 5 in the case 10 in the second direction F2 be, for example, 10 times or more of the spring constant of the first spring 5 in the second direction F2. .
 第1の可動部6は、第2の錘部62に、第2のばね7が一体に形成されている。 In the first movable portion 6, the second spring 7 is integrally formed on the second weight portion 62.
 第2のばね7の材料は、対数減衰率の低い材料が好ましく、例えば、対数減衰率が0.08以下の材料が好ましい。これにより、エネルギ変換装置1aは、第2のばね7において振動エネルギのうち熱エネルギに変換される量を低減することが可能となり、エネルギ変換効率を向上させることが可能となる。第2のばね7の材料は、対数減衰率が0.08以下の場合、例えば、ステンレス鋼、鋼、銅、銅合金、チタン合金、アルミニウム合金、炭素、ガラスの群から選択される1種の材料により形成されているのが好ましい。第2のばね7の材料は、対数減衰率が0.04以下の材料がより好ましい。 The material of the second spring 7 is preferably a material having a low logarithmic attenuation, for example, a material having a logarithmic attenuation of 0.08 or less. As a result, the energy conversion device 1a can reduce the amount of vibration energy that is converted to heat energy in the second spring 7, and can improve the energy conversion efficiency. The material of the second spring 7 is, for example, one selected from the group of stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon, and glass when the logarithmic attenuation factor is 0.08 or less. Preferably, it is formed of a material. The material of the second spring 7 is more preferably a material having a logarithmic attenuation factor of 0.04 or less.
 下記の表1には、各種材料の対数減衰率の値を例示してある。表1中の数値は、参考文献1(“材料の振動減衰能 データブック”、2007年、日本学術振興会「材料の微細組織と機能性」委員会編)に基づいた値である。ただし、SUS304の対数減衰率に関しては、組成が近いFe-22.5%Crの値を引用してある。また、ベリリウム銅の対数減衰率に関しては、銅及びベリリウムそれぞれの値を引用してある。炭素、ガラスの対数減衰率の値は、それぞれ、0.08、0.0006である。これらの数値は、参考文献1に基づいた数値である。 Table 1 below exemplifies the values of the logarithmic attenuation factor of various materials. The numerical values in Table 1 are values based on Reference 1 ("Material Vibrational Damping Ability Data Book", edited by the Japan Society for the Promotion of Science, 2007 "Fine structure and functionality of materials" Committee). However, with regard to the logarithmic decay rate of SUS 304, the value of Fe-22.5% Cr, which has a similar composition, is cited. Further, with regard to the logarithmic decay rate of beryllium copper, the values of copper and beryllium are cited respectively. The values of logarithmic decay rate of carbon and glass are 0.08 and 0.0006, respectively. These figures are based on Reference 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上述の対数減衰率が0.04以下の材料とは、表1から分かるように、銅の対数減衰率以下の対数減衰率となる材料を意味している。なお、対数減衰率をδ、振動の1周期当たりの振動エネルギ損失率をΔW/Wとすれば、対数減衰率δは、下記の(1)式で表わすことができる。 The above-mentioned material having a logarithmic attenuation factor of 0.04 or less means a material having a logarithmic attenuation factor equal to or less than that of copper, as can be seen from Table 1. Assuming that the logarithmic attenuation factor is δ and the vibration energy loss rate per cycle of oscillation is ΔW / W, the logarithmic attenuation factor δ can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第2の錘部62に第2のばね7を一体に形成する場合、第2の錘部62の材料は、例えば、シリコン、ステンレス鋼(例えば、SUS304等)、鋼、銅、銅合金(真鍮、ベリリウム銅)、チタン合金、アルミニウム合金、炭素、ガラス等を採用することが好ましい。これにより、エネルギ変換装置1aは、第2のばね7において振動エネルギのうち熱エネルギに変換される量を低減することが可能となり、エネルギ変換効率を向上させることが可能となる。 When the second spring 7 is integrally formed with the second weight portion 62, the material of the second weight portion 62 is, for example, silicon, stainless steel (for example, SUS 304 or the like), steel, copper, copper alloy (brass (Beryllium copper), titanium alloy, aluminum alloy, carbon, glass, etc. are preferably employed. As a result, the energy conversion device 1a can reduce the amount of vibration energy that is converted to heat energy in the second spring 7, and can improve the energy conversion efficiency.
 第2の錘部62及び第2のばね7の材料がシリコンの場合、第2の錘部62及び第2のばね7は、例えば、高抵抗率のシリコン基板から形成することができる。高抵抗率のシリコン基板は、例えば、抵抗率が100Ωcm以上であることが好ましく、1000Ωcm以上であることがより好ましい。第2の錘部62及び第2のばね7は、例えば、MEMS(micro electro mechanical systems)の製造技術を利用して一体に形成することができる。要するに、エネルギ変換装置1aは、第2の錘部62と第2のばね7とが、1枚のシリコン基板から一体に形成された構成とすることができる。 When the material of the second weight 62 and the second spring 7 is silicon, the second weight 62 and the second spring 7 can be formed of, for example, a high resistivity silicon substrate. For example, the resistivity of the high resistivity silicon substrate is preferably 100 Ωcm or more, and more preferably 1000 Ωcm or more. The second weight portion 62 and the second spring 7 can be integrally formed using, for example, a manufacturing technique of micro electro mechanical systems (MEMS). In short, the energy conversion device 1a can be configured such that the second weight portion 62 and the second spring 7 are integrally formed from a single silicon substrate.
 第2のばね7と第2の錘部62とが接着用の樹脂からなる接続部で接続されている場合には、第2の可動部8の振動エネルギが接続部において熱エネルギとなって損なわれる。これに対して、第2のばね7と第2の錘部62とが1枚のシリコン基板から一体に形成された構成では、第2のばね7と第2の錘部62とが低減衰材料であるシリコンにより一体に形成されているので、振動時のエネルギ損失を低減することが可能となり、エネルギ変換効率を向上することが可能となる。 When the second spring 7 and the second weight portion 62 are connected by the connecting portion made of adhesive resin, the vibrational energy of the second movable portion 8 becomes thermal energy at the connecting portion and damages it. Be On the other hand, in the configuration in which the second spring 7 and the second weight portion 62 are integrally formed from a single silicon substrate, the second spring 7 and the second weight portion 62 have a low damping material. Since it is integrally formed of silicon, it is possible to reduce the energy loss at the time of vibration, and it is possible to improve the energy conversion efficiency.
 第1の可動部6は、第1の錘部61と第2の錘部62との2部材で構成されるものに限らず、例えば、1部材で構成され、第2のばね7が一体に形成されたものでもよい。この場合、第1の可動部6の材料としては、対数減衰率の低い材料が好ましく、例えば、対数減衰率が0.08以下の材料が好ましい。これにより、エネルギ変換装置1aは、第2のばね7において振動エネルギのうち熱エネルギに変換される量を低減することが可能となり、エネルギ変換効率を向上させることが可能となる。第1の可動部6の材料は、対数減衰率が0.04以下の材料であるのが好ましい。 The first movable portion 6 is not limited to the two members including the first weight portion 61 and the second weight portion 62, and may be, for example, one member, and the second spring 7 may be integrated. It may be formed. In this case, as a material of the first movable portion 6, a material having a low logarithmic attenuation rate is preferable, and for example, a material having a logarithmic attenuation rate of 0.08 or less is preferable. As a result, the energy conversion device 1a can reduce the amount of vibration energy that is converted to heat energy in the second spring 7, and can improve the energy conversion efficiency. The material of the first movable portion 6 is preferably a material having a logarithmic attenuation factor of 0.04 or less.
 また、上述の第1のばね5の材料としては、ステンレス鋼(例えば、SUS304等)を採用することができるが、これに限らない。第1のばね5の材料は、例えば、ステンレス鋼、鋼、銅、銅合金、チタン合金、アルミニウム合金、炭素、ガラスの群から選択される1種の材料により形成されているのが好ましい。要するに、第1のばね5の材料は、第2のばね7の材料と同様、対数減衰率が0.08以下の材料が好ましい。これにより、エネルギ変換装置1aは、第1のばね5において振動エネルギのうち熱エネルギに変換される量を低減することが可能となり、エネルギ変換効率を向上させることが可能となる。第1のばね5の材料は、対数減衰率が0.04以下の材料がより好ましい。銅合金としては、例えば、真鍮、ベリリウム銅を挙げることができる。 Moreover, although stainless steel (for example, SUS304 etc.) is employable as a material of the above-mentioned 1st spring 5, it does not restrict to this. The material of the first spring 5 is preferably made of, for example, one material selected from the group of stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon and glass. In short, like the material of the second spring 7, the material of the first spring 5 preferably has a logarithmic damping ratio of 0.08 or less. As a result, the energy conversion device 1a can reduce the amount of vibration energy to be converted into heat energy in the first spring 5, and can improve the energy conversion efficiency. The material of the first spring 5 is more preferably a material having a logarithmic attenuation factor of 0.04 or less. As a copper alloy, brass and beryllium copper can be mentioned, for example.
 エネルギ変換装置1aは、第1の可動部6の内側に、第2の可動部8が配置されている。第2の可動部8は、第1の可動部6の内側面から離れて配置されている。第2の可動部8は、磁石2と、磁性体板3と、を備えている。 In the energy conversion device 1 a, the second movable portion 8 is disposed inside the first movable portion 6. The second movable portion 8 is disposed apart from the inner side surface of the first movable portion 6. The second movable portion 8 includes the magnet 2 and the magnetic plate 3.
 第2の可動部8は、4個の磁石2を備えており、第1方向F1におけるコイル4の両側で、2個の磁石2が第2方向F2に並ぶように配置されている。各磁石2は、厚み方向が第1方向F1に一致するように配置されている。第2方向F2において隣り合う2個の磁石2は、離れて配置されている。第1方向F1において互いに対向する2個の磁石2は、磁化の向きを逆としてある。要するに、第1方向F1において互いに対向する2個の磁石2は、一方の磁石2のN極と他方の磁石2のS極とが対向している。また、第2方向F2において隣り合う2個の磁石2は、磁化の向きを逆向きとしてある。要するに、第2方向F2において隣り合う2個の磁石2は、一方の磁石2のN極がコイル4に対向し、他方の磁石2のS極がコイル4に対向している。 The second movable portion 8 includes four magnets 2 and is arranged such that the two magnets 2 are aligned in the second direction F2 on both sides of the coil 4 in the first direction F1. Each magnet 2 is disposed such that the thickness direction coincides with the first direction F1. The two magnets 2 adjacent to each other in the second direction F2 are spaced apart. The two magnets 2 facing each other in the first direction F1 have opposite magnetization directions. In short, in the two magnets 2 facing each other in the first direction F1, the N pole of one magnet 2 and the S pole of the other magnet 2 face each other. In addition, the two magnets 2 adjacent in the second direction F2 have the magnetizations in the opposite directions. In short, in the two magnets 2 adjacent in the second direction F2, the N pole of one of the magnets 2 faces the coil 4 and the S pole of the other magnet 2 faces the coil 4.
 磁性体板3の材料としては、例えば、鉄-コバルト合金、電磁軟鉄、電磁ステンレス、パーマロイ(Permalloy)等を採用することができる。 As a material of the magnetic plate 3, for example, iron-cobalt alloy, electromagnetic soft iron, electromagnetic stainless steel, Permalloy or the like can be adopted.
 磁性体板3は、第1方向F1において磁石2よりもコイル4から遠い側に位置している。また、磁性体板3は、第2方向F2において隣接する2個の磁石2に跨るように配置されている。磁性体板3と2個の磁石2とは、密接していてもよいし、接着剤等によって接着されていてもよい。第2の可動部8は、4個の磁石2と2個の磁性体板3とで閉磁路が構成されるように、各磁石2及び各磁性体板3が配置されている。 The magnetic plate 3 is located farther from the coil 4 than the magnet 2 in the first direction F1. Moreover, the magnetic material board 3 is arrange | positioned so that the two adjacent magnets 2 may be straddled in 2nd direction F2. The magnetic plate 3 and the two magnets 2 may be in close contact or may be bonded by an adhesive or the like. The magnets 2 and the magnetic plates 3 are arranged in the second movable portion 8 so that a closed magnetic path is formed by the four magnets 2 and the two magnetic plates 3.
 磁性体板3は、第3方向F3に沿った方向の寸法を、磁石2と同じ寸法に設定してあるのが好ましい。また、磁性体板3は、第2方向F2に沿った方向の寸法を、第2方向F2において隣接する2個の磁石2の合計寸法と、当該2個の磁石2間の寸法と、を合わせた寸法と同じに設定してあるのが好ましい。 The magnetic plate 3 is preferably set to have the same dimension as the magnet 2 in the direction along the third direction F3. Moreover, the magnetic material board 3 matches the dimension of the direction along the 2nd direction F2 with the sum total dimension of the two adjacent magnets 2 in the 2nd direction F2, and the dimension between the said two magnets 2 It is preferable to set it to the same size.
 エネルギ変換装置1aは、第2のばね7が4つ設けられている。エネルギ変換装置1aは、第3方向F3に並んで配置された2つの第2のばね7の間に、2個の磁石2と1個の磁性体板3とが配置されている。第2のばね7は、板ばねであり、第2の錘部62に一体に形成されている。第2のばね7は、短冊状に形成されており、長さ方向の一端が第1の可動部6に固定され、他端が第2の可動部8に固定されている。第2のばね7のばね定数は、第2のばね7の長さや、幅、厚さ、材料等を適宜設定することにより、調整することができる。 The energy conversion device 1 a is provided with four second springs 7. In the energy conversion device 1a, two magnets 2 and one magnetic plate 3 are arranged between two second springs 7 arranged in the third direction F3. The second spring 7 is a plate spring, and is integrally formed with the second weight portion 62. The second spring 7 is formed in a strip shape, and one end in the longitudinal direction is fixed to the first movable portion 6 and the other end is fixed to the second movable portion 8. The spring constant of the second spring 7 can be adjusted by appropriately setting the length, width, thickness, material and the like of the second spring 7.
 エネルギ変換装置1aは、第2の可動部8が、第3方向F3において隣り合う2つの第2のばね7同士を連結する連結片81を備えた構成とすることができる。これにより、エネルギ変換装置1aは、連結片81に対して、磁石2及び磁性体板3を、接着剤により固定することで、第2の可動部8を第2のばね7に接続した構成とすることができる。また、エネルギ変換装置1aは、第2の可動部8が連結片81を備えない構成としてもよい。この場合、エネルギ変換装置1aは、第3方向F3において隣り合う2つの第2のばね7に対して、磁石2及び磁性体板3を、接着剤により固定することで、第2の可動部8を第2のばね7に接続した構成とすることができる。 The energy conversion device 1a can have a configuration in which the second movable portion 8 includes a connection piece 81 that connects two adjacent second springs 7 in the third direction F3. Thus, the energy conversion device 1 a has a configuration in which the second movable portion 8 is connected to the second spring 7 by fixing the magnet 2 and the magnetic plate 3 to the connection piece 81 with an adhesive. can do. Further, the energy conversion device 1 a may be configured such that the second movable portion 8 does not include the connection piece 81. In this case, the energy conversion device 1a fixes the magnet 2 and the magnetic plate 3 to the two second springs 7 adjacent to each other in the third direction F3 with an adhesive so as to form the second movable portion 8 Can be connected to the second spring 7.
 また、エネルギ変換装置1aは、ベース20の第1面21に、第2の可動部8の変位空間を確保するための第3の凹部28が形成され、カバー30の内底面30aaに、第2の可動部8の変位空間を確保するための第4の凹部38(図3参照)が形成されている。要するに、エネルギ変換装置1aは、第2の可動部8が、ケース10内において、第2方向F2に沿った方向に変位できるようになっている。言い換えれば、エネルギ変換装置1aは、ケース10内において第2の可動部8が第2方向F2に沿った方向に振動可能となっている。 Further, in the energy conversion device 1a, the third concave portion 28 for securing the displacement space of the second movable portion 8 is formed on the first surface 21 of the base 20, and the second bottom surface 30aa of the cover 30 A fourth recess 38 (see FIG. 3) for securing a displacement space of the movable portion 8 is formed. In short, the energy conversion device 1a is configured such that the second movable portion 8 can be displaced in the case 10 along the second direction F2. In other words, in the case 10, the energy conversion device 1a is capable of vibrating the second movable portion 8 in the direction along the second direction F2.
 更に説明すれば、第2の可動部8は、第2のばね7と第1の可動部6と第1のばね5とを介してケース10に支持されており、ケース10内において、第2方向F2に変位できるようになっている。要するに、エネルギ変換装置1aは、磁石2を備えた第2の可動部8が、ケース10内で第2方向F2に振動できるようになっている。 More specifically, the second movable portion 8 is supported by the case 10 via the second spring 7, the first movable portion 6, and the first spring 5. It can be displaced in the direction F2. In short, in the energy conversion device 1a, the second movable portion 8 provided with the magnet 2 can vibrate in the second direction F2 in the case 10.
 エネルギ変換装置1aは、第2のばね7に関して、第2方向F2におけるばね定数が第1方向F1及び第3方向F3それぞれのばね定数よりも小さくなるように形成してある。これにより、エネルギ変換装置1aは、第2の可動部8の振動方向を第2方向F2に単方向化することが可能となり、エネルギ変換効率の向上を図ることが可能となる。よって、エネルギ変換装置1aは、コイル4と第2の可動部8との間のギャップの狭ギャップ化を図りながらも、コイル4と第2の可動部8との接触を防止することが可能となる。エネルギ変換装置1aは、コイル4と第2の可動部8との間のギャップの狭ギャップ化により、磁束の利用効率の向上を図ることが可能となって、エネルギ変換効率の向上を図ることが可能となる。なお、ばね定数の測定に関しては、例えば、微小引張試験機、あるいはフォースゲージ(force gauge)とマイクロメータ(micrometer)とを組み合わせた測定システムを用いることができる。ばね定数の測定に関しては、第2の可動部8に対して第1方向F1、第2方向F2及び第3方向F3それぞれの力を加えたときの変位を測定することで、ばね定数を算出することができる。 The energy conversion device 1a is formed with respect to the second spring 7 so that the spring constant in the second direction F2 is smaller than the spring constant of each of the first direction F1 and the third direction F3. As a result, the energy conversion device 1a can make the vibration direction of the second movable portion 8 unidirectional in the second direction F2, and can improve the energy conversion efficiency. Therefore, the energy conversion device 1a can prevent the contact between the coil 4 and the second movable portion 8 while narrowing the gap between the coil 4 and the second movable portion 8 Become. In the energy conversion device 1a, the narrowing of the gap between the coil 4 and the second movable portion 8 makes it possible to improve the utilization efficiency of the magnetic flux, thereby improving the energy conversion efficiency. It becomes possible. In addition, regarding the measurement of a spring constant, the measurement system which combined the micro tension tester or the force gauge (force gauge) and a micrometer (micrometer) can be used, for example. With regard to the measurement of the spring constant, the spring constant is calculated by measuring the displacement when the force of each of the first direction F1, the second direction F2 and the third direction F3 is applied to the second movable portion 8 be able to.
 エネルギ変換装置1aは、第1の可動部6の外側面から第1方向F1に突出する2つの突出部64を備えている。2つの突出部64は、第1方向F1に沿って互いに反対向きに突出している。突出部64は、第1の錘部61に一体に形成されているが、これに限らない。ケース10は、第1方向F1に交差する2つの側壁それぞれに、突出部64を露出させる開口部11(図3参照)が形成されている。開口部11は、第2方向F2に沿った方向における突出部64の変位を可能とするように形成されている。したがって、エネルギ変換装置1aは、突出部64に外力を与えることで第1の可動部6を第2方向F2に沿って変位させることにより、第1のばね5にエネルギを蓄積させることが可能となる。これにより、エネルギ変換装置1aは、第1の可動部6及び第2の可動部8を第2方向F2に沿って変位させた後で、外力を与えるのをやめれば、第1の可動部6及び第2の可動部8が減衰振動する。よって、エネルギ変換装置1aは、減衰振動に応じた交流電圧を発生することが可能となる。要するに、エネルギ変換装置1aは、第2の可動部8の第2方向F2への振動に伴って発生する電磁誘導によって、交流の誘導起電力が発生する。エネルギ変換装置1aの開放電圧は、第2の可動部8の振動に応じた交流電圧となる。 The energy conversion device 1 a includes two protrusions 64 that protrude from the outer side surface of the first movable portion 6 in the first direction F1. The two protrusions 64 protrude in opposite directions from each other along the first direction F1. Although the protrusion part 64 is integrally formed in the 1st weight part 61, it does not restrict to this. In the case 10, an opening 11 (see FIG. 3) for exposing the protrusion 64 is formed on each of two side walls intersecting in the first direction F1. The opening 11 is formed to allow displacement of the protrusion 64 in the direction along the second direction F2. Therefore, the energy conversion device 1a can store energy in the first spring 5 by displacing the first movable portion 6 along the second direction F2 by applying an external force to the projecting portion 64. Become. As a result, if the energy conversion device 1a stops applying the external force after displacing the first movable portion 6 and the second movable portion 8 along the second direction F2, the first movable portion 6 The second movable portion 8 damps and vibrates. Therefore, the energy conversion device 1a can generate an AC voltage according to the damped vibration. In short, in the energy conversion device 1a, an AC induced electromotive force is generated by the electromagnetic induction generated along with the vibration of the second movable portion 8 in the second direction F2. The open circuit voltage of the energy conversion device 1 a is an AC voltage corresponding to the vibration of the second movable portion 8.
 突出部64は、例えば、エネルギ変換装置1aの使用者等が指等で操作可能な大きさに形成されているのが好ましい。突出部64の先端部は、第1方向F1において第1の可動部6の外側面から離れるにつれて第2方向F2における厚さが小さくなるように形成されている。エネルギ変換装置1aの突出部64は、別途に設けたカム等により操作することもできる。 The protrusion 64 is preferably formed in a size that allows the user of the energy conversion device 1a to operate with a finger or the like, for example. The tip end portion of the protrusion 64 is formed such that the thickness in the second direction F2 decreases with distance from the outer side surface of the first movable portion 6 in the first direction F1. The projection 64 of the energy conversion device 1a can also be operated by a cam or the like provided separately.
 エネルギ変換装置1aは、初期位置にある各突出部64に対して例えばベース20側の第1のばね5のばね力に抗して外力を与えることにより、第1の可動部6及び各突出部64が、第2方向F2に沿ってベース20に近づく向きへ変位する。そして、エネルギ変換装置1aは、突出部64へ与えられていた外力がなくなると、第1のばね5のばね力によって、第1の可動部6及び各突出部64が初期位置に戻る向きへ変位するようになっている。 The energy conversion device 1a applies an external force to each of the protrusions 64 in the initial position, for example, against the spring force of the first spring 5 on the base 20 side, thereby the first movable portion 6 and each of the protrusions 64 is displaced toward the base 20 along the second direction F2. Then, when the external force applied to the protrusion 64 disappears, the energy conversion device 1a is displaced by the spring force of the first spring 5 so that the first movable portion 6 and each protrusion 64 return to the initial position. It is supposed to
 また、エネルギ変換装置1aは、初期位置にある各突出部64に対して例えばカバー30側の第1のばね5のばね力に抗して外力を与えることにより、第1の可動部6及び各突出部64が、第2方向F2に沿ってカバー30に近づく向きへ変位する。そして、エネルギ変換装置1aは、突出部64へ与えられていた外力がなくなると、第1のばね5のばね力によって、第1の可動部6及び各突出部64が初期位置に戻る向きへ変位するようになっている。 In addition, the energy conversion device 1a applies an external force to each of the protrusions 64 in the initial position, for example, against the spring force of the first spring 5 on the cover 30 side, whereby the first movable portion 6 and each of The protrusion 64 is displaced in the direction approaching the cover 30 along the second direction F2. Then, when the external force applied to the protrusion 64 disappears, the energy conversion device 1a is displaced by the spring force of the first spring 5 so that the first movable portion 6 and each protrusion 64 return to the initial position. It is supposed to
 エネルギ変換装置1aは、第2方向F2への第1の可動部6の変位量を、開口部11により規定することもできる。これにより、エネルギ変換装置1aでは、突出部64に外力を与えて第1の可動部6を第2方向F2へ変位させる際に、第1の可動部6の変位量を規定値に制限することが可能となるから、第1のばね5の蓄積エネルギを略一定値とすることが可能となる。よって、エネルギ変換装置1aでは、外力を与える度に発電出力がばらつくのを抑制することが可能となる。 The energy conversion device 1a can also define the amount of displacement of the first movable portion 6 in the second direction F2 by the opening 11. Thus, in the energy conversion device 1a, when the first movable portion 6 is displaced in the second direction F2 by applying an external force to the projecting portion 64, the displacement amount of the first movable portion 6 is limited to a prescribed value. As a result, the energy stored in the first spring 5 can be made substantially constant. Therefore, in the energy conversion device 1a, it is possible to suppress the variation of the power generation output each time an external force is applied.
 上述の説明から分かるように、エネルギ変換装置1aは、第1の可動部6を変位させて作動させることが可能である。なお、エネルギ変換装置1aは、例えば、エネルギ変換装置1aの共振周波数と一致する環境振動(外部振動)を利用して発電させることもでき、共振周波数と一致しない環境振動を利用する場合に比べて、効率良く発電させることが可能となる。環境振動としては、例えば、稼動中のFA(factory automation)機器で発生する振動、車両の走行によって発生する振動、人の歩行によって発生する振動、エネルギ変換装置1aを搭載する電子機器の動作によって発生する振動等、種々の環境振動がある。エネルギ変換装置1aで発生する交流電圧の周波数は、環境振動の周波数がエネルギ変換装置1aの共振周波数と一致する場合、エネルギ変換装置1aの共振周波数と同じになる。 As can be understood from the above description, the energy conversion device 1a can displace and operate the first movable portion 6. The energy conversion device 1a can also generate power using, for example, environmental vibration (external vibration) coinciding with the resonance frequency of the energy conversion device 1a, compared to the case where environmental vibration not coincident with the resonance frequency is used. Power can be generated efficiently. As the environmental vibration, for example, a vibration generated by FA (factory automation) equipment in operation, a vibration generated by traveling of a vehicle, a vibration generated by walking of a person, or a vibration generated by an operation of an electronic device equipped with the energy conversion device 1a There are various environmental vibrations such as vibration. The frequency of the AC voltage generated by the energy conversion device 1a is the same as the resonance frequency of the energy conversion device 1a when the frequency of the environmental vibration coincides with the resonance frequency of the energy conversion device 1a.
 以上説明したように、エネルギ変換装置1aは、第2方向F2に変形可能な第1のばね5と、第1のばね5によって支持部9に接続された第1の可動部6と、第2方向F2に変形可能な第2のばね7と、第2のばね7によって第1の可動部6に接続され磁石2を備えた第2の可動部8と、を備える。これにより、エネルギ変換装置1aは、第2の可動部8が第2方向F2に沿って振動するときの速度の高速化を図れ、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。 As described above, the energy conversion device 1a includes the first spring 5 that can be deformed in the second direction F2, the first movable portion 6 connected to the support portion 9 by the first spring 5, and the second movable portion 6 It comprises a second spring 7 deformable in the direction F 2 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a magnet 2. Thus, the energy conversion device 1a can increase the speed of the second movable part 8 vibrating in the second direction F2, and can improve the generated voltage and the energy conversion efficiency. Become.
 エネルギ変換装置1aは、ばね-質点系のモデルとして、図5に示すような模式図で表すことができる。図5は、第1の可動部6及び第2の可動部8が第1のばね5、第2のばね7によって接続されている接続関係のみを模式的に示している。これに対し、図6に示すように第1の可動部6と第2の可動部8とが直接的に接続された比較例のエネルギ変換装置は、ばね-質点系のモデルとして、図7に示すような模式図で表すことができる。「第1の可動部6と第2の可動部8とが直接的に接続された」とは、エネルギ変換装置1aの第1の可動部6とエネルギ変換装置1aの第2の可動部8とがエネルギ変換装置1aの第2のばね7を介することなく一体化されていることを意味する。なお、図5の模式図で表した、ばね-質点系のモデルでは、第1のばね5及び第2のばね7の質量を0と仮定してある。また、図7の模式図で表した、ばね-質点系のモデルでは、第1のばね5の質量を0と仮定してある。 The energy conversion device 1a can be represented by a schematic diagram as shown in FIG. 5 as a model of a spring-mass point system. FIG. 5 schematically shows only the connection relationship in which the first movable portion 6 and the second movable portion 8 are connected by the first spring 5 and the second spring 7. On the other hand, as shown in FIG. 6, the energy conversion device of the comparative example in which the first movable portion 6 and the second movable portion 8 are directly connected is shown in FIG. 7 as a model of a spring-mass point system. It can be represented by a schematic diagram as shown. "The first movable portion 6 and the second movable portion 8 are directly connected" means the first movable portion 6 of the energy conversion device 1a and the second movable portion 8 of the energy conversion device 1a. Are integrated without the intervention of the second spring 7 of the energy conversion device 1a. In the spring-mass point system model shown in the schematic view of FIG. 5, the mass of the first spring 5 and the second spring 7 is assumed to be zero. Further, in the spring-mass point system model shown in the schematic view of FIG. 7, the mass of the first spring 5 is assumed to be zero.
 エネルギ変換装置1aでは、第1のばね5の第2方向F2のばね定数をk1、第1の可動部6の第2方向F2における初期変位xに応じて第1のばね5に蓄積されるエネルギをEとすると、エネルギEが、下記(2)式で規定される。下記(2)式については、比較例のエネルギ変換装置も同じである。 In the energy conversion device 1a, the energy stored in the first spring 5 according to the initial displacement x in the second direction F2 of the first movable portion 6 in the second direction F2 of the first spring 5 is k1. Assuming that E is energy E is defined by the following equation (2). About the following (2) Formula, the energy conversion apparatus of a comparative example is also the same.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、エネルギ変換装置1aでは、第1の可動部6の質量をM1、第2の可動部8の質量をM2とすると、第1のばね5に蓄積されるエネルギEで規定される速度vが、下記(3)式で表される。下記(3)式については、比較例のエネルギ変換装置も同じである。 In the energy conversion device 1a, assuming that the mass of the first movable portion 6 is M1 and the mass of the second movable portion 8 is M2, the velocity v defined by the energy E stored in the first spring 5 is And is expressed by the following equation (3). About the following (3) Formula, the energy conversion apparatus of a comparative example is also the same.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 エネルギ変換装置1aは、第2のばね7の第2方向F2のばね定数をk2、第2の可動部8の最高速度をv2とするとき、v2>vとなるように、M1、M2、k1及びk2を設定してある。これにより、エネルギ変換装置1aは、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。 The energy conversion device 1a sets M1, M2, and k1 so that v2> v when the spring constant of the second spring 7 in the second direction F2 is k2 and the maximum velocity of the second movable portion 8 is v2. And k2 are set. Thus, the energy conversion device 1a can improve the generated voltage and the energy conversion efficiency.
 エネルギ変換装置1aは、例えば、M1=1.5〔g〕、M2=0.8〔g〕、k1=10000〔N/m〕、k2=17500〔N/m〕とすることで、E=5〔mJ〕の場合のv2を3〔m/s〕程度にすることが可能となり、vの1.5倍程度の値とすることができる。これにより、エネルギ変換装置1aは、比較例のエネルギ変換装置に比べて、発電電圧を1.5倍程度に向上させることができ、エネルギ変換効率を向上させることが可能となる。 The energy conversion device 1a has, for example, M = 1.5 [g], M2 = 0.8 [g], k1 = 10000 [N / m], and k2 = 17500 [N / m], so that E = In the case of 5 [mJ], v2 can be set to about 3 [m / s], and can be set to a value of about 1.5 times v. Thus, the energy conversion device 1a can improve the generated voltage by about 1.5 times as compared with the energy conversion device of the comparative example, and can improve the energy conversion efficiency.
 ところで、図29の従来の発電装置100は、ばね-質点系のモデルとして考えた場合、比較例のエネルギ変換装置と同様のモデルである。よって、本実施形態のエネルギ変換装置1aは、従来の発電装置100に比べて、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。発電装置100では、磁石133A、133Bの質量を小さくすることで可動ユニット123の速度を速めることも考えられるが、この場合、磁石133A、133Bの磁束密度が小さくなって、電磁誘導による起電圧が小さくなってしまう。 The conventional power generation device 100 of FIG. 29 is a model similar to the energy conversion device of the comparative example when considered as a spring-mass point system model. Therefore, the energy conversion device 1a according to the present embodiment can improve the generated voltage and the energy conversion efficiency as compared to the conventional power generation device 100. In the power generation apparatus 100, it is conceivable to increase the speed of the movable unit 123 by reducing the mass of the magnets 133A and 133B, but in this case, the magnetic flux density of the magnets 133A and 133B decreases and the electromotive voltage by electromagnetic induction It becomes smaller.
 これに対して、エネルギ変換装置1aは、磁石2以外の構成要素の質量やばね定数等を適宜設定することで、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。 On the other hand, the energy conversion device 1a can improve the generated voltage and the energy conversion efficiency by appropriately setting the mass, the spring constant, and the like of the components other than the magnet 2.
 エネルギ変換装置1aは、例えば、第1のばね5と第2のばね7との関係をk1<k2とすることで、v2>vとなるように構成されているのが好ましい。これにより、エネルギ変換装置1aは、第2のばね7に蓄積されるエネルギ量を低減することが可能となり、第2のばね7を小型化することが可能となる。よって、エネルギ変換装置1aは、小型化を図ることが可能となる。第2のばね7のばね定数k2は、例えば、第2のばね7の幅を広げたり、第2のばね7の厚みを増やしたりすることで、大きくすることができる。 The energy conversion device 1a is preferably configured to have v2> v, for example, by setting the relationship between the first spring 5 and the second spring 7 to k1 <k2. Thus, the energy conversion device 1a can reduce the amount of energy stored in the second spring 7, and can miniaturize the second spring 7. Therefore, the energy conversion device 1a can be miniaturized. The spring constant k2 of the second spring 7 can be increased, for example, by widening the width of the second spring 7 or increasing the thickness of the second spring 7.
 また、エネルギ変換装置1aの第1変形例では、第2のばね7の形状を、例えば、図8に示すように、つづら折れ状の形状とすることができる。図8では、第2の可動部8が矩形枠状に形成されている。第2のばね7は、一端が、第2の可動部8の角部に接続され、他端が、第1の可動部6の第3方向F3に沿った内側面に接続されている。 Further, in the first modification of the energy conversion device 1a, the shape of the second spring 7 can be, for example, a serpentine shape as shown in FIG. In FIG. 8, the second movable portion 8 is formed in a rectangular frame shape. One end of the second spring 7 is connected to the corner of the second movable portion 8 and the other end is connected to the inner side surface of the first movable portion 6 along the third direction F3.
 第2のばね7は、つづら折れ状の形状とする場合、平面視形状における折り返し部分のコーナ部が丸みを有して角のない形状のほうが、角のある形状よりも好ましい。エネルギ変換装置1aは、第2のばね7の折り返し部分に角のない形状を採用することにより、第2のばね7の折り返し部分での応力集中に起因した破損やクラックの発生等を抑制することが可能となる。 When the second spring 7 has a serpentine shape, it is preferable that the corner portion of the folded portion in the plan view shape has a round shape and has no corners, rather than a corner shape. In the energy conversion device 1a, by adopting a shape without corners at the folded back portion of the second spring 7, it is possible to suppress the occurrence of breakage or crack due to stress concentration at the folded back portion of the second spring 7. Is possible.
 第2のばね7は、平面視において蛇行した形状であれば、つづら折れ状の形状に限らず、例えば、波形状(例えば、平面視で正弦波状)の形状でもよい。 The second spring 7 is not limited to the serpentine shape as long as it has a meandering shape in plan view, and may be, for example, a wave shape (for example, a sinusoidal shape in plan view).
 また、エネルギ変換装置1aは、例えば、第1の可動部6の質量と第2の可動部8の質量との関係をM1>M2とすることで、v2>vとなるように構成されているのが好ましい。これにより、エネルギ変換装置1aは、第2の可動部8の振動する速度を向上させることが可能となり、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。 Further, the energy conversion device 1a is configured to satisfy v2> v, for example, by setting the relationship between the mass of the first movable portion 6 and the mass of the second movable portion 8 to M1> M2. Is preferred. As a result, the energy conversion device 1a can improve the vibrating speed of the second movable portion 8, and can improve the generated voltage and the energy conversion efficiency.
 エネルギ変換装置1aは、例えば、携帯端末等の携帯可能な電子機器に使用する二次電池の充電等の用途に利用してもよい。 The energy conversion device 1a may be used, for example, for charging secondary batteries used in portable electronic devices such as portable terminals.
 エネルギ変換装置1aは、可動部として第1の可動部6と第2の可動部8とを備えているが、少なくとも第2のばね7によって第2の可動部8が第1の可動部6に接続されていればよい。要するに、エネルギ変換装置1aは、第1の可動部6と第2のばね7との間に、第3のばねと第3の可動部との組を1組以上、備えていてもよい。例えば、エネルギ変換装置1aは、第2の可動部8が第2のばね7と第3の可動部と第3のばねとを介して第1の可動部6と接続されていてもよい。 The energy conversion device 1 a includes the first movable portion 6 and the second movable portion 8 as movable portions. However, the second movable portion 8 can be used as the first movable portion 6 by at least the second spring 7. It should just be connected. In short, the energy conversion device 1a may include one or more sets of the third spring and the third movable portion between the first movable portion 6 and the second spring 7. For example, in the energy conversion device 1a, the second movable portion 8 may be connected to the first movable portion 6 via the second spring 7, the third movable portion, and the third spring.
 図9は、エネルギ変換装置1aの第2変形例のエネルギ変換装置1aaの概略分解斜視図である。エネルギ変換装置1aaは、第2のばね7(図10A参照)の形状が、エネルギ変換装置1aと相違する。なお、エネルギ変換装置1aaについては、エネルギ変換装置1aと同様の構成要素に同一の符号を付して説明を適宜省略する。 FIG. 9 is a schematic exploded perspective view of an energy conversion device 1aa of a second modification of the energy conversion device 1a. The energy conversion device 1aa differs from the energy conversion device 1a in the shape of the second spring 7 (see FIG. 10A). About energy conversion device 1aa, the same numerals are given to the same component as energy conversion device 1a, and explanation is omitted suitably.
 第2変形例のエネルギ変換装置1aaにおける第2のばね7は、第2方向F2に変形するとき第1の可動部6と第2のばね7との境界B2において断面係数が最大となる形状としてある。これにより、エネルギ変換装置1aaでは、第1の可動部6と第2のばね7との境界B2において負荷応力が最大となるのを抑制することが可能となり、耐久性を向上させることが可能となる。 The second spring 7 in the energy conversion device 1aa of the second modification has a shape in which the section coefficient becomes maximum at the boundary B2 between the first movable portion 6 and the second spring 7 when deformed in the second direction F2. is there. Thereby, in the energy conversion device 1aa, it is possible to suppress the load stress from becoming maximum at the boundary B2 between the first movable portion 6 and the second spring 7, and it is possible to improve the durability. Become.
 エネルギ変換装置1aaでは、第2のばね7の形状に関して、長手方向の一端側において第2の錘部62(図9、10A、10B及び10C参照)に近づくにつれて幅が徐々に広くなり境界B2付近で幅が一定となる形状としてある。これにより、エネルギ変換装置1aaは、第2の錘部62と第1の錘部61との、第3方向F3への相対的な位置ずれに起因して第2のばね7のばね定数がばらつくのを抑制することが可能となり、発電特性のばらつきを抑制することが可能となる。実施形態1のエネルギ変換装置1aは、第1の可動部6と第2の可動部8とが共振し合うように第2のばね7の固有振動数を設計することにより、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。第2変形例のエネルギ変換装置1aaは、第2のばね7のばね定数のばらつきを抑制することで、第1の可動部6及び第2の可動部8の振動数のばらつきを抑制することが可能となり、発電特性及びエネルギ変換効率のばらつきを抑制することが可能となる。 In the energy conversion device 1aa, regarding the shape of the second spring 7, the width gradually widens toward the second weight portion 62 (see FIGS. 9, 10A, 10B and 10C) at one end side in the longitudinal direction and near the boundary B2. The width is constant. Thereby, in the energy conversion device 1aa, the spring constant of the second spring 7 varies due to the relative displacement between the second weight portion 62 and the first weight portion 61 in the third direction F3. Can be suppressed, and variations in power generation characteristics can be suppressed. The energy conversion device 1a according to the first embodiment improves the generated voltage by designing the natural frequency of the second spring 7 so that the first movable portion 6 and the second movable portion 8 resonate. It is possible to improve energy conversion efficiency. The energy conversion device 1aa according to the second modification suppresses variation in the spring constant of the second spring 7 to suppress variation in the frequency of the first movable portion 6 and the second movable portion 8. It becomes possible to suppress the variation of the power generation characteristic and the energy conversion efficiency.
 なお、第2のばね7は、長手方向の一端側において第2の錘部62に近づくにつれて幅が徐々に広くなる部位の形状に関して、その両側面が凹曲面状に形成されている。 In addition, as for the shape of the site | part in which the width | variety becomes gradually wide as the 2nd spring 7 approaches the 2nd weight part 62 in the one end side of a longitudinal direction, the both sides are formed in concave curve shape.
 (実施形態2)
 以下では、本実施形態のエネルギ変換装置1bについて図11に基づいて説明する。
Second Embodiment
Below, the energy conversion apparatus 1b of this embodiment is demonstrated based on FIG.
 実施形態1のエネルギ変換装置1aは、第2の可動部8が磁石2を備え、支持部9にコイル4が固定されている。これに対し、本実施形態のエネルギ変換装置1bは、第2の可動部8がコイル4を備え、支持部9に磁石2が固定されている。なお、実施形態1と同様の構成要素については、実施形態1と同じ符号を付して説明を適宜省略する。 In the energy conversion device 1 a according to the first embodiment, the second movable portion 8 includes the magnet 2, and the coil 4 is fixed to the support portion 9. On the other hand, in the energy conversion device 1 b of the present embodiment, the second movable portion 8 includes the coil 4, and the magnet 2 is fixed to the support portion 9. In addition, about the component similar to Embodiment 1, the code | symbol same as Embodiment 1 is attached | subjected, and description is abbreviate | omitted suitably.
 エネルギ変換装置1bは、第2の可動部8の連結片81が4つの第2のばね7に接続さており、連結片81に対してコイル4を固定してある。また、エネルギ変換装置1bは、2個の磁石2と1個の磁性体板3とで構成される磁石ブロックを2つ備えており、2つの磁石ブロックそれぞれをベース20に固定してある。エネルギ変換装置1bは、2つの磁石ブロックが、第1方向F1において対向配置されており、これら2つの磁石ブロックの間に、コイル4が位置し、コイル4が第2方向F2に変位できるようになっている。 In the energy conversion device 1 b, the connection piece 81 of the second movable portion 8 is connected to the four second springs 7, and the coil 4 is fixed to the connection piece 81. In addition, the energy conversion device 1 b includes two magnet blocks configured by two magnets 2 and one magnetic plate 3, and the two magnet blocks are fixed to the base 20. In the energy conversion device 1b, two magnet blocks are disposed to face each other in the first direction F1, and between the two magnet blocks, the coil 4 is positioned so that the coil 4 can be displaced in the second direction F2. It has become.
 本実施形態のエネルギ変換装置1bは、磁石2と、コイル4と、支持部9と、を備えている。エネルギ変換装置1bは、磁石2とコイル4とが第1方向F1で対向配置されている。エネルギ変換装置1bは、磁石2とコイル4とが第1方向F1に直交する第2方向F2において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換する機能を有する。 The energy conversion device 1 b of the present embodiment includes the magnet 2, the coil 4, and the support portion 9. In the energy conversion device 1b, the magnet 2 and the coil 4 are disposed to face each other in the first direction F1. The energy conversion device 1b has a function of converting kinetic energy into electrical energy by electromagnetic induction generated by relative displacement of the magnet 2 and the coil 4 in the second direction F2 orthogonal to the first direction F1.
 エネルギ変換装置1bは、第2方向F2に変形可能な第1のばね5と、第1のばね5によって支持部9に接続された第1の可動部6と、第2方向F2に変形可能な第2のばね7と、第2のばね7によって第1の可動部6に接続されコイル4を備えた第2の可動部8と、を備える。これにより、エネルギ変換装置1aは、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。コイル4の両端の線端部は、それぞれ、リード線と接続されている。各リード線は、ベース20の厚み方向に貫通した孔(図示せず)を通してベース20の第2面22側に引き出され、上記溝に這わせて、各外部電極にそれぞれ電気的に接続されている。各リード線は、コイル4の振動による断線が生じないように長さを設定してある。エネルギ変換装置1bは、各リード線の代わりに、コイル4と一体のコイル線材を用いてもよい。 The energy conversion device 1 b is deformable in the second direction F 2 by the first spring 5 deformable in the second direction F 2, the first movable portion 6 connected to the support portion 9 by the first spring 5, and A second spring 7 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a coil 4 are provided. Thus, the energy conversion device 1a can improve the generated voltage and the energy conversion efficiency. The wire ends of both ends of the coil 4 are respectively connected to the lead wires. Each lead wire is drawn to the side of the second surface 22 of the base 20 through a hole (not shown) penetrating in the thickness direction of the base 20, extends around the groove, and is electrically connected to each external electrode. There is. Each lead wire is set in length so that disconnection due to vibration of the coil 4 does not occur. The energy conversion device 1b may use a coil wire integral with the coil 4 instead of each lead wire.
 エネルギ変換装置1bは、例えば、携帯端末等の携帯可能な電子機器に使用する二次電池の充電等の用途に利用してもよい。 The energy conversion device 1b may be used, for example, for charging secondary batteries used in portable electronic devices such as portable terminals.
 エネルギ変換装置1bは、可動部として第1の可動部6と第2の可動部8とを備えているが、少なくとも第2のばね7によって第2の可動部8が第1の可動部6に接続されていればよい。要するに、エネルギ変換装置1bは、第1の可動部6と第2のばね7との間に、第3のばねと第3の可動部との組を1組以上、備えていてもよい。例えば、エネルギ変換装置1cは、第2の可動部8が第2のばね7と第3の可動部と第3のばねとを介して第1の可動部6と接続されていてもよい。 The energy conversion device 1 b includes the first movable portion 6 and the second movable portion 8 as movable portions. However, the second movable portion 8 may be replaced by the first movable portion 6 by at least the second spring 7. It should just be connected. In short, the energy conversion device 1 b may include one or more sets of the third spring and the third movable portion between the first movable portion 6 and the second spring 7. For example, in the energy conversion device 1c, the second movable portion 8 may be connected to the first movable portion 6 via the second spring 7, the third movable portion, and the third spring.
 (実施形態3)
 以下では、本実施形態のエネルギ変換装置1cについて図12~15、16A、16B、16C及び16Dに基づいて説明する。なお、実施形態1と同様の構成要素については、実施形態1と同じ符号を付して説明を適宜省略する。
(Embodiment 3)
Hereinafter, the energy conversion device 1c of this embodiment will be described based on FIGS. 12 to 15, 16A, 16B, 16C and 16D. In addition, about the component similar to Embodiment 1, the code | symbol same as Embodiment 1 is attached | subjected and description is abbreviate | omitted suitably.
 エネルギ変換装置1cは、磁石2と、コイル4と、支持部9と、を備えている。エネルギ変換装置1cは、磁石2とコイル4とが第1方向F1(図16A参照)で対向配置されている。エネルギ変換装置1cは、磁石2とコイル4とが第1方向F1に直交する第2方向F2(図16B参照)において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換する機能を有する。 The energy conversion device 1 c includes a magnet 2, a coil 4, and a support 9. In the energy conversion device 1c, the magnet 2 and the coil 4 are disposed to face each other in the first direction F1 (see FIG. 16A). The energy conversion device 1c has a function of converting kinetic energy into electrical energy by electromagnetic induction caused by relative displacement of the magnet 2 and the coil 4 in the second direction F2 (see FIG. 16B) orthogonal to the first direction F1. Have.
 エネルギ変換装置1cは、第2方向F2に変形可能な第1のばね5と、第1のばね5によって支持部9に接続された第1の可動部6と、第2方向F2に変形可能な第2のばね7と、第2のばね7によって第1の可動部6に接続され磁石2を備えた第2の可動部8と、を備える。これにより、エネルギ変換装置1cは、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。 The energy conversion device 1c can be deformed in the second direction F2 and the first movable portion 6 connected to the support portion 9 by the first spring 5 and the first spring 5 that can be deformed in the second direction F2. A second spring 7 and a second movable part 8 connected to the first movable part 6 by the second spring 7 and provided with a magnet 2 are provided. Accordingly, the energy conversion device 1c can improve the generated voltage and the energy conversion efficiency.
 エネルギ変換装置1cは、第1のばね5が板ばね51により構成されている。これにより、エネルギ変換装置1cは、第1のばね5に関して、第2方向F2以外の方向のばね定数を第2方向F2のばね定数に比べてより大きくすることが可能となる。よって、エネルギ変換装置1cは、第2方向F2以外の不要な振動成分の発生を抑制することが可能となり、エネルギ変換効率の向上を図ることが可能となる。 In the energy conversion device 1 c, the first spring 5 is constituted by a plate spring 51. Thereby, the energy conversion device 1c can make the spring constant of directions other than the second direction F2 larger than the spring constant of the second direction F2 regarding the first spring 5. Therefore, the energy conversion device 1c can suppress the generation of unnecessary vibration components other than in the second direction F2, and can improve the energy conversion efficiency.
 板ばね51は、板状に形成されている。板ばね51は、厚さ方向が第2方向F2に一致し、且つ、長さ方向が第1方向F1と第2方向F2とに直交する第3方向F3(図16A参照)に一致するように配置されている。 The plate spring 51 is formed in a plate shape. In the leaf spring 51, the thickness direction coincides with the second direction F2, and the length direction coincides with the third direction F3 (see FIG. 16A) orthogonal to the first direction F1 and the second direction F2. It is arranged.
 エネルギ変換装置1cは、支持部9が、第1のばね5を構成する板ばね51における第1の可動部6側とは反対側で板ばね51に一体に形成された固定部91を備えている。エネルギ変換装置1cは、支持部9が、ベース20と、カバー30と、固定部91と、で構成されている。固定部91は、板ばね51と同じ厚さに形成されている。 In the energy conversion device 1c, the supporting portion 9 includes a fixing portion 91 integrally formed with the plate spring 51 on the side opposite to the first movable portion 6 side of the plate spring 51 constituting the first spring 5 There is. In the energy conversion device 1c, a support portion 9 includes a base 20, a cover 30, and a fixing portion 91. The fixing portion 91 is formed to have the same thickness as the plate spring 51.
 ケース10は、ベース20の第1面21のうちカバー30の第1面31に対向する部位に、固定部91が載せ置かれる第5の凹部20c(図14、15参照)が形成されている。第5の凹部20cの深さは、固定部91の厚さと同じに設定してある。よって、エネルギ変換装置1cは、第5の凹部20cの内底面とカバー30の第1面31(図14参照)との間に固定部91を挟んだ状態とすることにより、第3方向F3における固定部91の位置決めを行うことができる。また、固定部91には、組立用のねじ(図示せず)を挿通可能な孔91bが形成されている。ベース20は、固定部91の孔91bに重なる領域に孔20bが形成されている。また、カバー30は、固定部91の孔91bに重なる領域に孔30bが形成されている。よって、エネルギ変換装置1cは、ケース10の厚み方向において重なる孔30b、91b、20bにねじを挿通して当該ねじのねじ部を図示しないナットにはめ合わせることにより、ケース10に固定部91が固定される。ベース20は、第3方向F3における固定部91の位置を決める突起20dが、第5の凹部20cの内底面から突出して形成されている。突起20dは、ベース20に一体に形成されている。 In the case 10, a fifth recess 20c (see FIGS. 14 and 15) on which the fixing portion 91 is placed is provided at a portion of the first surface 21 of the base 20 facing the first surface 31 of the cover 30. . The depth of the fifth recess 20 c is set to be the same as the thickness of the fixing portion 91. Therefore, the energy conversion device 1c holds the fixing portion 91 between the inner bottom surface of the fifth recess 20c and the first surface 31 of the cover 30 (see FIG. 14), whereby the energy conversion device 1c is in the third direction F3. Positioning of the fixing portion 91 can be performed. Further, in the fixing portion 91, a hole 91b through which a screw for assembly (not shown) can be inserted is formed. In the base 20, a hole 20 b is formed in a region overlapping with the hole 91 b of the fixing portion 91. Further, in the cover 30, a hole 30 b is formed in a region overlapping the hole 91 b of the fixing portion 91. Therefore, the energy conversion device 1c fixes the fixing portion 91 to the case 10 by inserting a screw into the holes 30b, 91b, 20b overlapping in the thickness direction of the case 10 and fitting the screw portion of the screw to a nut not shown. Be done. In the base 20, a protrusion 20d for determining the position of the fixing portion 91 in the third direction F3 is formed to project from the inner bottom surface of the fifth recess 20c. The protrusion 20 d is integrally formed on the base 20.
 ケース10は、ベース20の第1面21に、コイル4の略半分(図14中のコイル4の下側の部分)を収納し、且つ、ベース20側での第1の可動部6及び第2の可動部8の振動空間を確保する第6の凹部24c(図14参照)が形成されている。また、ケース10は、カバー30の第1面31に、コイル4の略半分(図14中のコイル4の上側の部分)を収納し、且つ、カバー30側での第1の可動部6及び第2の可動部8の振動空間を確保する第7の凹部34c(図14参照)が形成されている。 The case 10 accommodates approximately half of the coil 4 (the lower portion of the coil 4 in FIG. 14) on the first surface 21 of the base 20, and the first movable portion 6 and the first movable portion 6 on the base 20 side. A sixth recess 24c (see FIG. 14) for securing a vibration space of the second movable portion 8 is formed. In addition, the case 10 accommodates approximately half of the coil 4 (the upper portion of the coil 4 in FIG. 14) on the first surface 31 of the cover 30, and the first movable portion 6 on the cover 30 side A seventh recess 34c (see FIG. 14) for securing a vibration space of the second movable portion 8 is formed.
 エネルギ変換装置1cでは、図16A、16Bに示すように、板ばね51の第1面51aが、固定部91の第1面91aと面一に形成され、図16B、16Cに示すように、板ばね51の第1面51aとは反対側の第2面51cが、固定部91の第2面91cと面一に形成されている。板ばね51と固定部91との境界B1は、第3方向F3に直交する1つの断面に相当する。この1つの断面は、板ばね51と固定部91と第2の錘部62と第2のばね7とが一体に形成された板状の部材において、第6の凹部24cと第5の凹部20cとの境界線BL(図14、15参照)の直上の領域に相当する断面である。また、板ばね51と第1の可動部6との境界B3は、板ばね51と固定部91と第2の錘部62と第2のばね7とが一体に形成された板状の部材において、第1の錘部61の垂直投影領域と、その垂直投影領域に隣り合う領域と、の境界を意味する。 In the energy conversion device 1c, as shown in FIGS. 16A and 16B, the first surface 51a of the plate spring 51 is formed flush with the first surface 91a of the fixed portion 91, as shown in FIGS. 16B and 16C. A second surface 51 c opposite to the first surface 51 a of the spring 51 is flush with the second surface 91 c of the fixing portion 91. The boundary B1 between the leaf spring 51 and the fixing portion 91 corresponds to one cross section orthogonal to the third direction F3. This one cross section is a plate-like member in which the plate spring 51, the fixing portion 91, the second weight portion 62, and the second spring 7 are integrally formed, and the sixth recess 24c and the fifth recess 20c. And a section directly above the boundary line BL (see FIGS. 14 and 15). A boundary B3 between the plate spring 51 and the first movable portion 6 is a plate-like member in which the plate spring 51, the fixed portion 91, the second weight portion 62, and the second spring 7 are integrally formed. Mean the boundary between the vertical projection area of the first weight portion 61 and the area adjacent to the vertical projection area.
 板ばね51は、矩形板状であり、長手方向が第1方向F1に一致し且つ短手方向が第3方向F3に一致するように配置されている。固定部91は、矩形板状に形成されている。固定部91は、長手方向が第1方向F1に一致し且つ短手方向が第3方向F3に一致するように配置されている。 The plate spring 51 has a rectangular plate shape, and is disposed so that the longitudinal direction coincides with the first direction F1 and the short direction coincides with the third direction F3. The fixing portion 91 is formed in a rectangular plate shape. The fixing portion 91 is arranged such that the longitudinal direction coincides with the first direction F1 and the short direction coincides with the third direction F3.
 エネルギ変換装置1cは、第1の可動部6の外側面から第1方向F1に突出する突出部64が、1つだけ設けられている。突出部64は、第1の錘部61に一体に形成されているが、これに限らない。ケース10は、第1方向に交差する1つの側壁に、突出部64を露出させる開口部11(図14参照)が形成されている。開口部11は、第2方向に沿った方向における突出部64の変位を可能とするように形成されている。したがって、エネルギ変換装置1cは、突出部64に外力を与えることで第1の可動部6を第2方向に沿って変位させることにより、第1のばね5にエネルギを蓄積させることが可能となる。これにより、エネルギ変換装置1cは、第1の可動部6及び第2の可動部8を第2方向に沿って変位させた後で、外力を与えるのをやめれば、第1の可動部6及び第2の可動部8が減衰振動する。よって、エネルギ変換装置1cは、減衰振動に応じた交流電圧を発生することが可能となる。要するに、エネルギ変換装置1cは、第2の可動部8の第2方向への振動に伴って発生する電磁誘導によって、交流の誘導起電力が発生する。エネルギ変換装置1cの開放電圧は、第2の可動部8の振動に応じた交流電圧となる。 The energy conversion device 1 c is provided with only one protrusion 64 that protrudes in the first direction F <b> 1 from the outer side surface of the first movable portion 6. Although the protrusion part 64 is integrally formed in the 1st weight part 61, it does not restrict to this. In the case 10, an opening 11 (see FIG. 14) for exposing the protrusion 64 is formed on one side wall intersecting in the first direction. The opening 11 is formed to allow displacement of the protrusion 64 in the direction along the second direction. Therefore, the energy conversion device 1c can store energy in the first spring 5 by displacing the first movable portion 6 along the second direction by applying an external force to the projecting portion 64. . As a result, if the energy conversion device 1 c stops applying the external force after displacing the first movable portion 6 and the second movable portion 8 along the second direction, the first movable portion 6 and the second movable portion 8 are not The second movable portion 8 damps and vibrates. Therefore, the energy conversion device 1c can generate an AC voltage according to the damped vibration. In short, in the energy conversion device 1c, an alternating current induced electromotive force is generated by the electromagnetic induction generated along with the vibration of the second movable portion 8 in the second direction. The open circuit voltage of the energy conversion device 1 c is an AC voltage corresponding to the vibration of the second movable portion 8.
 エネルギ変換装置1cは、初期位置にある突出部64に対して第1のばね5のばね力に抗して外力を与えることにより、第1の可動部6及び突出部64が、第2方向F2に沿ってベース20に近づく向きへ変位する。そして、エネルギ変換装置1cは、突出部64へ与えられていた外力がなくなると、第1のばね5のばね力によって、第1の可動部6及び突出部64が初期位置に戻る向きへ変位するようになっている。 The energy conversion device 1c applies an external force to the projecting portion 64 in the initial position against the spring force of the first spring 5, whereby the first movable portion 6 and the projecting portion 64 move in the second direction F2. Along the direction of movement toward the base 20. Then, when the external force applied to the protrusion 64 disappears, the energy conversion device 1 c displaces the first movable portion 6 and the protrusion 64 in the direction of returning to the initial position by the spring force of the first spring 5. It is supposed to be.
 エネルギ変換装置1cは、例えば、携帯端末等の携帯可能な電子機器に使用する二次電池の充電等の用途に利用してもよい。 The energy conversion device 1c may be used, for example, for charging secondary batteries used in portable electronic devices such as portable terminals.
 エネルギ変換装置1cは、可動部として第1の可動部6と第2の可動部8とを備えているが、少なくとも第2のばね7によって第2の可動部8が第1の可動部6に接続されていればよい。要するに、エネルギ変換装置1cは、第1の可動部6と第2のばね7との間に、第3のばねと第3の可動部との組を1組以上、備えていてもよい。例えば、エネルギ変換装置1cは、第2の可動部8が第2のばね7と第3の可動部と第3のばねとを介して第1の可動部6と接続されていてもよい。 The energy conversion device 1 c includes the first movable portion 6 and the second movable portion 8 as movable portions. However, the second movable portion 8 may be replaced by the first movable portion 6 by at least the second spring 7. It should just be connected. In short, the energy conversion device 1 c may include one or more sets of the third spring and the third movable portion between the first movable portion 6 and the second spring 7. For example, in the energy conversion device 1c, the second movable portion 8 may be connected to the first movable portion 6 via the second spring 7, the third movable portion, and the third spring.
 図17A~17Dには、エネルギ変換装置1cの一応用例であって、エネルギ変換装置1cを備えた椅子200を示してある。椅子200は、クッション性を有する座部201を備えている。また、椅子200は、背もたれ202を好適に備えている。また、椅子200は、座部201を支持する脚(図示せず)を好適に備えている。椅子200は、座部201に対する背もたれ202の傾斜角度が調節可能なものが好ましい。椅子200は、例えば、車両、船舶等の利用客の座席として利用する椅子である。 FIGS. 17A-17D illustrate a chair 200 equipped with an energy conversion device 1c, which is an application of the energy conversion device 1c. The chair 200 includes a seat portion 201 having a cushioning property. Moreover, the chair 200 is suitably equipped with the backrest 202. Further, the chair 200 preferably includes a leg (not shown) that supports the seat portion 201. The chair 200 is preferably one in which the inclination angle of the backrest 202 with respect to the seat portion 201 can be adjusted. The chair 200 is, for example, a chair used as a seat of a user such as a vehicle or a ship.
 椅子200は、エネルギ変換装置1cの出力端間に接続された整流平滑回路と、この整流平滑回路の出力端間の電圧を所定の直流電圧に変換して出力するDC-DCコンバータと、このDC-DCコンバータの出力端間に接続された無線回路と、を備えている。無線回路は、無線通信規格として、例えば、EnOcean(登録商標)、Zigbee(登録商標)、Bluetooth(登録商標)、特定小電力無線、微弱無線、Wi-Fi(登録商標)、UWB(Ultra Wide Band)等を採用することができるが、特に限定するものではない。 The chair 200 includes a rectifying and smoothing circuit connected between output ends of the energy conversion device 1c, a DC-DC converter for converting a voltage between the output ends of the rectifying and smoothing circuit into a predetermined DC voltage and outputting the DC voltage. And-a radio circuit connected between output terminals of the DC converter. The wireless circuit is a wireless communication standard, for example, EnOcean (registered trademark), Zigbee (registered trademark), Bluetooth (registered trademark), specified low power wireless, weak wireless, Wi-Fi (registered trademark), UWB (Ultra Wide Band) Etc. can be adopted, but it is not particularly limited.
 また、椅子200は、スイッチ210の状態の変化を検知して、その検知結果を無線回路から外部の監視装置等へ送信させる制御回路を備えている。制御回路は、例えば、適宜のプログラムを搭載したマイクロコンピュータ等により構成することができる。スイッチ210としては、例えば、マイクロスイッチを採用することができる。 The chair 200 also includes a control circuit that detects a change in the state of the switch 210 and transmits the detection result from the wireless circuit to an external monitoring device or the like. The control circuit can be configured, for example, by a microcomputer or the like equipped with an appropriate program. For example, a micro switch can be employed as the switch 210.
 スイッチ210は、スイッチ本体の上面側に設けられた操作部211が押操作されたときにオンとなり、操作部211の押操作状態が解除されたときにオフとなるものである。 The switch 210 is turned on when the operation unit 211 provided on the upper surface side of the switch body is pressed, and is turned off when the pressing operation of the operation unit 211 is released.
 座部201の内部には、座部201に人が着座したときにスイッチ210の操作部211を押操作し、座部201から人が離席したときに操作部211の押操作状態を解除する第1の駆動ピン221が設けられている。また、座部201の内部には、座部201に人が着座したときにエネルギ変換装置1cの突出部64を下方へ操作し、座部201から人が離席したときにエネルギ変換装置1cの突出部64を上方へ操作する第2の駆動ピン231が設けられている。第2の駆動ピン231の先端部には、上下それぞれに移動したときに突出部64を押すことが可能な爪部232が設けられている。なお、第2の駆動ピン231は、第1方向F1に撓み可能となっている。 Inside the seat portion 201, when a person is seated on the seat portion 201, the operation portion 211 of the switch 210 is pressed, and when the person leaves the seat portion 201, the pressing operation state of the operation portion 211 is released. A first drive pin 221 is provided. In the seat portion 201, when a person is seated on the seat portion 201, the projection 64 of the energy conversion device 1c is operated downward, and when a person leaves the seat 201, the energy conversion device 1c is A second drive pin 231 is provided to operate the protrusion 64 upward. The distal end portion of the second drive pin 231 is provided with a claw portion 232 which can push the protrusion 64 when moving up and down. The second drive pin 231 can be bent in the first direction F1.
 椅子200は、エネルギ変換装置1c、整流平滑回路、DC-DCコンバータ、無線回路、第1の駆動ピン221及び第2の駆動ピン231等により、座部201に人が着座しているか否かを検知する着座センサを構成している。 The chair 200 determines whether a person is seated on the seat portion 201 by the energy conversion device 1c, the rectifying and smoothing circuit, the DC-DC converter, the wireless circuit, the first drive pin 221, the second drive pin 231, and the like. It constitutes a seating sensor to detect.
 着座センサは、座部201に人が着座していない場合、図17Bに示すように、スイッチ210の操作部211と第1の駆動ピン221とが離れ、第2の駆動ピン231がエネルギ変換装置1cの突出部64の上方にある。このため、着座センサは、エネルギ変換装置1cが動作しておらず、無線回路も動作していない。 In the seating sensor, when a person is not seated on the seat portion 201, as shown in FIG. 17B, the operation portion 211 of the switch 210 and the first drive pin 221 are separated, and the second drive pin 231 is an energy conversion device It is above the projection 64 of 1c. For this reason, in the seating sensor, the energy conversion device 1c is not in operation, and the radio circuit is not in operation.
 また、着座センサは、座部201に人が着座したとき、図17Cに示すように、スイッチ210の操作部211が第1の駆動ピン221により押操作され、且つ、第2の駆動ピン231によってエネルギ変換装置1cの突出部64が下方へ押操作され、第2の駆動ピン231の爪部232が突出部64よりも下方へ変位する。この場合、着座センサは、エネルギ変換装置1cを電源として、スイッチ210の状態がオンになったことを人が座部201に着座したことを示す情報として無線回路から送信させる。 Further, when a person is seated on the seat portion 201, as shown in FIG. 17C, the operation portion 211 of the switch 210 is pressed by the first drive pin 221 and the second drive pin 231 is used. The protrusion 64 of the energy conversion device 1 c is pushed downward, and the claws 232 of the second drive pin 231 are displaced lower than the protrusion 64. In this case, the seating sensor uses the energy conversion device 1c as a power source to transmit that the state of the switch 210 is on from the wireless circuit as information indicating that a person is seated on the seat portion 201.
 また、着座センサは、座部201から人が離席したとき、図17Dに示すように、スイッチ210の操作部211から第1の駆動ピン221が離れ、且つ、第2の駆動ピン231によってエネルギ変換装置1cの突出部64が上方へ押操作され、第2の駆動ピン231の爪部232が突出部64よりも上方へ変位する。この場合、着座センサは、エネルギ変換装置1cを電源として、スイッチ210の状態がオフになったことを人が座部201から離席したことを示す情報として無線回路から送信させる。 In addition, when a person leaves the seat from the seat portion 201, as shown in FIG. 17D, the first drive pin 221 is separated from the operation portion 211 of the switch 210, and energy is set by the second drive pin 231. The protruding portion 64 of the conversion device 1 c is pushed upward, and the claw portion 232 of the second drive pin 231 is displaced higher than the protruding portion 64. In this case, the seating sensor uses the energy conversion device 1c as a power source and causes the wireless circuit to transmit that the state of the switch 210 is off as information indicating that a person has left the seat portion 201.
 図18は、エネルギ変換装置1cの第1変形例のエネルギ変換装置1caの概略分解斜視図である。エネルギ変換装置1caは、第1のばね5(図18、19、20A、20B、20C参照)の形状が、エネルギ変換装置1cと相違する。なお、エネルギ変換装置1caについては、エネルギ変換装置1cと同様の構成要素に同一の符号を付して説明を適宜省略する。 FIG. 18 is a schematic exploded perspective view of an energy conversion device 1 ca of a first modification of the energy conversion device 1 c. The energy conversion device 1 ca differs from the energy conversion device 1 c in the shape of the first spring 5 (see FIGS. 18, 19, 20 A, 20 B, and 20 C). In addition, about the energy conversion device 1 ca, the same code | symbol is attached | subjected to the component similar to the energy conversion device 1 c, and description is abbreviate | omitted suitably.
 第1変形例のエネルギ変換装置1caにおける第1のばね5は、第2方向F2に変形するとき支持部9と第1のばね5との境界B1において断面係数が最大となる形状としてある。これにより、エネルギ変換装置1caでは、支持部9と第1のばね5との境界において負荷応力が最大となるのを抑制することが可能となり、耐久性を向上させることが可能となる。 The first spring 5 in the energy conversion device 1ca of the first modification has a shape in which the section coefficient becomes maximum at the boundary B1 between the support portion 9 and the first spring 5 when deformed in the second direction F2. As a result, in the energy conversion device 1 ca, it is possible to suppress the maximum load stress at the boundary between the support portion 9 and the first spring 5, and it is possible to improve the durability.
 エネルギ変換装置1caでは、第1のばね5を構成する板ばね51の形状に関して、長さ方向(図20Aの左右方向)における中央部から離れるにつれて幅が徐々に広くなり、固定部91との境界B1付近で幅が一定となる形状としてある。これにより、エネルギ変換装置1caは、ベース20と第1のばね5との、第3方向F3への相対的な位置ずれに起因して第1のばね5のばね定数がばらつくのを抑制することが可能となり、発電特性のばらつきを抑制することが可能となる。実施形態3のエネルギ変換装置1cは、第1の可動部6と第2の可動部8とが共振し合うように、第1の可動部6と第1のばね5とで構成される振動部の固有振動数を設計することにより、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。第1変形例のエネルギ変換装置1caは、第1のばね5のばね定数のばらつきを抑制することで、第1の可動部6及び第2の可動部8の振動数のばらつきを抑制することが可能となり、発電特性及びエネルギ変換効率のばらつきを抑制することが可能となる。 In the energy conversion device 1 ca, with respect to the shape of the plate spring 51 constituting the first spring 5, the width gradually wides as it goes away from the central portion in the length direction (left and right direction in FIG. 20A), and the boundary with the fixing portion 91 The shape is such that the width is constant near B1. Thereby, the energy conversion device 1 ca suppresses the dispersion of the spring constant of the first spring 5 due to the relative positional deviation between the base 20 and the first spring 5 in the third direction F3. It becomes possible to reduce the variation of the power generation characteristic. In the energy conversion device 1c according to the third embodiment, a vibrating portion configured of the first movable portion 6 and the first spring 5 such that the first movable portion 6 and the second movable portion 8 resonate. By designing the natural frequency of the above, it is possible to improve the generated voltage and the energy conversion efficiency. The energy conversion device 1 ca of the first modification can suppress the variation of the frequency of the first movable portion 6 and the second movable portion 8 by suppressing the variation of the spring constant of the first spring 5. It becomes possible to suppress the variation of the power generation characteristic and the energy conversion efficiency.
 板ばね51は、長さ方向における中央部から離れるにつれて幅が徐々に広くなる部位の形状に関して、その両側面が凹曲面状に形成されているのが好ましい。 With respect to the shape of the portion of the leaf spring 51 whose width gradually wides with distance from the central portion in the length direction, both side surfaces are preferably formed in a concave curved shape.
 エネルギ変換装置1cの第2変形例としては、エネルギ変換装置1cにおける第2のばね7の形状を、図21A、21B、21C及び22に示すような形状とした構成がある。図21A、21B、21C及び22に示す形状の第2のばね7は、第2方向F2に変形するとき第1の可動部6と第2のばね7との境界B2において断面係数が最大となる形状としてある。これにより、エネルギ変換装置1aaでは、第1の可動部6と第2のばね7との境界B2において負荷応力が最大となるのを抑制することが可能となり、耐久性を向上させることが可能となる。 As a second modification of the energy conversion device 1c, there is a configuration in which the shape of the second spring 7 in the energy conversion device 1c is as shown in FIGS. 21A, 21B, 21C and 22. The second spring 7 having the shape shown in FIGS. 21A, 21B, 21C and 22 has the largest section coefficient at the boundary B2 between the first movable portion 6 and the second spring 7 when deformed in the second direction F2. It is as a shape. Thereby, in the energy conversion device 1aa, it is possible to suppress the load stress from becoming maximum at the boundary B2 between the first movable portion 6 and the second spring 7, and it is possible to improve the durability. Become.
 図21A、21B、21C及び22に示す形状の第2のばね7は、長手方向の一端側において第2の錘部62に近づくにつれて幅が徐々に広くなる形状に形成されている。これにより、第2変形例では、第2の錘部62と第1の錘部61との、第3方向F3への相対的な位置ずれに起因して第2のばね7のばね定数がばらつくのを抑制することが可能となり、発電特性のばらつきを抑制することが可能となる。エネルギ変換装置1cは、第1の可動部6と第2の可動部8とが共振し合うように第2のばね7の固有振動数を設計することにより、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。第2変形例では、第2のばね7のばね定数のばらつきを抑制することで、第1の可動部6及び第2の可動部8の振動数のばらつきを抑制することが可能となり、発電特性及びエネルギ変換効率のばらつきを抑制することが可能となる。 The second spring 7 having the shape shown in FIGS. 21A, 21B, 21C and 22 is formed in a shape in which the width gradually widens toward the second weight portion 62 at one end side in the longitudinal direction. Thereby, in the second modification, the spring constant of the second spring 7 varies due to the relative displacement between the second weight 62 and the first weight 61 in the third direction F3. Can be suppressed, and variations in power generation characteristics can be suppressed. The energy conversion device 1c improves the generated voltage and the energy conversion efficiency by designing the natural frequency of the second spring 7 so that the first movable portion 6 and the second movable portion 8 resonate. It is possible to improve. In the second modification, by suppressing the variation in the spring constant of the second spring 7, it is possible to suppress the variation in the frequency of the first movable portion 6 and the second movable portion 8, and the power generation characteristic And, it becomes possible to suppress the variation of the energy conversion efficiency.
 エネルギ変換装置1cの第3変形例としては、エネルギ変換装置1cにおける第1のばね5及び固定部91の形状を、図23A、23B、23C及び24に示すような形状とした構成がある。図23A、23B、23C及び24に示す形状の第1のばね5は、第2方向F2に変形するとき支持部9と第1のばね5との境界B1において断面係数が最大となる形状としてある。これにより、エネルギ変換装置1caでは、支持部9と第1のばね5との境界において負荷応力が最大となるのを抑制することが可能となり、耐久性を向上させることが可能となる。 As a third modification of the energy conversion device 1c, there is a configuration in which the shapes of the first spring 5 and the fixing portion 91 in the energy conversion device 1c are as shown in FIGS. 23A, 23B, 23C and 24. The first spring 5 having the shape shown in FIGS. 23A, 23B, 23C and 24 is shaped such that the section coefficient becomes maximum at the boundary B1 between the support portion 9 and the first spring 5 when deformed in the second direction F2. . As a result, in the energy conversion device 1 ca, it is possible to suppress the maximum load stress at the boundary between the support portion 9 and the first spring 5, and it is possible to improve the durability.
 第3変形例では、第1のばね5が、第3方向F3において第1の可動部6から離れるにつれて厚さが徐々に厚くなる形状に形成されており、固定部91の厚さと第1のばね5の最大厚さとを同じに設定してある。これにより、第3変形例では、ベース20と第1のばね5との、第3方向F3への相対的な位置ずれに起因して第1のばね5のばね定数がばらつくのを抑制することが可能となり、発電特性のばらつきを抑制することが可能となる。固定部91は、第1のばね5の厚さが一定の場合、第1のばね5の厚さよりも厚くしてもよい。エネルギ変換装置1cは、第1の可動部6と第2の可動部8とが共振し合うように、第1の可動部6と第1のばね5とで構成される振動部の固有振動数を設計することにより、発電電圧の向上及びエネルギ変換効率の向上を図ることが可能となる。第3変形例では、第1のばね5のばね定数のばらつきを抑制することで、第1の可動部6及び第2の可動部8の振動数のばらつきを抑制することが可能となり、発電特性及びエネルギ変換効率のばらつきを抑制することが可能となる。 In the third modification, the first spring 5 is formed in such a shape that the thickness gradually increases as it is separated from the first movable portion 6 in the third direction F3, and the thickness of the fixed portion 91 and the first spring The maximum thickness of the spring 5 is set to be the same. Thereby, in the third modification, the variation in the spring constant of the first spring 5 due to the relative positional deviation between the base 20 and the first spring 5 in the third direction F3 is suppressed. It becomes possible to reduce the variation of the power generation characteristic. The fixing portion 91 may be thicker than the thickness of the first spring 5 when the thickness of the first spring 5 is constant. In the energy conversion device 1c, the natural frequency of the vibrating portion configured by the first movable portion 6 and the first spring 5 such that the first movable portion 6 and the second movable portion 8 resonate. By designing the above, it is possible to improve the generated voltage and the energy conversion efficiency. In the third modification, by suppressing the variation in the spring constant of the first spring 5, it is possible to suppress the variation in the frequency of the first movable portion 6 and the second movable portion 8. And, it becomes possible to suppress the variation of the energy conversion efficiency.
 図25は、エネルギ変換装置1cの第4変形例のエネルギ変換装置1cbの概略分解斜視図である。エネルギ変換装置1cbは、第5の凹部20cの形状(図26参照)及び固定部91の形状(図26、27A、27B、27C及び28参照)等が、エネルギ変換装置1cと相違する。なお、エネルギ変換装置1cbについては、エネルギ変換装置1cと同様の構成要素に同一の符号を付して説明を適宜省略する。 FIG. 25 is a schematic exploded perspective view of an energy conversion device 1cb of a fourth modification of the energy conversion device 1c. The energy conversion device 1cb differs from the energy conversion device 1c in the shape of the fifth recess 20c (see FIG. 26) and the shape of the fixing portion 91 (see FIGS. 26, 27A, 27B, 27C and 28). In addition, about the energy conversion apparatus 1cb, the same code | symbol is attached | subjected to the component similar to the energy conversion apparatus 1c, and description is abbreviate | omitted suitably.
 第4変形例のエネルギ変換装置1cbは、固定部91の幅(図27Aの上下方向の寸法)をケース10の幅と同じに設定してある。また、エネルギ変換装置1cbは、第5の凹部20cと第6の凹部24cとの境界線BLが、第3方向F3における固定部91と第1のばね5との境界B1よりも固定部91側にある。言い換えれば、エネルギ変換装置1cbは、固定部91の垂直投影領域内に、第5の凹部20cと第6の凹部24cとの境界線BLがある。これにより、第4変形例では、ベース20と第1のばね5との、第3方向F3への相対的な位置ずれに起因して第1のばね5のばね定数がばらつくのを抑制することが可能となり、発電特性のばらつきを抑制することが可能となる。 In the energy conversion device 1cb of the fourth modification, the width (the dimension in the vertical direction in FIG. 27A) of the fixing portion 91 is set to be the same as the width of the case 10. Further, in the energy conversion device 1cb, the boundary line BL between the fifth concave portion 20c and the sixth concave portion 24c is closer to the fixing portion 91 than the boundary B1 between the fixing portion 91 and the first spring 5 in the third direction F3. It is in. In other words, in the energy conversion device 1cb, the boundary line BL between the fifth recess 20c and the sixth recess 24c is within the vertical projection area of the fixed portion 91. Thereby, in the fourth modification, the variation in the spring constant of the first spring 5 due to the relative positional deviation between the base 20 and the first spring 5 in the third direction F3 is suppressed. It becomes possible to reduce the variation of the power generation characteristic.
 以上、本願発明の構成を、実施形態1~3等に基いて説明したが、本願発明は、実施形態1~3等の構成に限らず、例えば、実施形態1~3等の部分的な構成を、適宜組み合わせてある構成であってもよい。また、実施形態1~3に記載した材料、数値等は、好ましい例を挙げているだけであり、それに限定するものではない。更に、本願発明は、その技術的思想の範囲を逸脱しない範囲で、構成に適宜変更を加えることが可能である。 The configuration of the present invention has been described above based on the first to third embodiments. However, the present invention is not limited to the configuration of the first to third embodiments, and for example, a partial configuration of the first to third embodiments. May be combined appropriately. Further, the materials, numerical values and the like described in the first to third embodiments are merely preferred examples, and the present invention is not limited thereto. Furthermore, in the present invention, modifications can be made to the configuration as appropriate without departing from the scope of the technical idea thereof.

Claims (10)

  1.  磁石と、コイルと、支持部と、を備え、前記磁石と前記コイルとが第1方向で対向配置され、前記磁石と前記コイルとが前記第1方向に直交する第2方向において相対的に変位することで生じる電磁誘導により運動エネルギを電気エネルギに変換するエネルギ変換装置であって、前記第2方向に変形可能な第1のばねと、前記第1のばねによって前記支持部に接続された第1の可動部と、前記第2方向に変形可能な第2のばねと、前記第2のばねによって前記第1の可動部に接続され前記磁石と前記コイルとの一方を備えた第2の可動部と、を備えることを特徴とするエネルギ変換装置。 A magnet, a coil, and a support portion, wherein the magnet and the coil are disposed to face each other in a first direction, and the magnet and the coil are relatively displaced in a second direction orthogonal to the first direction. An energy conversion device for converting kinetic energy into electrical energy by electromagnetic induction generated by the first and second springs, the first spring being deformable in the second direction, and the first spring connected to the support by the first spring A second movable member connected to the first movable portion by the second movable member, the second spring deformable in the second direction, and the second spring, the second movable member including one of the magnet and the coil An energy conversion device comprising:
  2.  前記第1の可動部の質量をM1、前記第2の可動部の質量をM2、前記第1のばねの前記第2方向のばね定数をk1、前記第2のばねの前記第2方向のばね定数をk2、前記第1の可動部の前記第2方向における初期変位に応じて前記第1のばねに蓄積されるエネルギで規定される速度をvとし、前記第2の可動部の最高速度をv2とするとき、v2>vとなるように、M1、M2、k1及びk2を設定してあることを特徴とする請求項1記載のエネルギ変換装置。 The mass of the first movable part is M1, the mass of the second movable part is M2, the spring constant of the first spring in the second direction is k1, and the spring of the second spring in the second direction Let k2 be a constant, let v be a velocity defined by the energy stored in the first spring according to the initial displacement of the first movable portion in the second direction, and let v be the maximum velocity of the second movable portion 2. The energy conversion device according to claim 1, wherein M1, M2, k1 and k2 are set such that v2> v when v2.
  3.  前記第1のばね及び前記第2のばねは、それぞれ、シリコン、ステンレス鋼、鋼、銅、銅合金、チタン合金、アルミニウム合金、炭素及びガラスの群から選択される1種の材料により形成されていることを特徴とする請求項1又は2記載のエネルギ変換装置。 The first spring and the second spring are respectively formed of one material selected from the group of silicon, stainless steel, steel, copper, copper alloy, titanium alloy, aluminum alloy, carbon and glass The energy conversion device according to claim 1 or 2, characterized in that:
  4.  前記第1のばねと前記第2のばねとの関係をk1<k2とすることで、v2>vとなるように構成されていることを特徴とする請求項2記載のエネルギ変換装置。 The energy conversion device according to claim 2, wherein v2> v is obtained by setting the relationship between the first spring and the second spring to k1 <k2.
  5.  前記第1の可動部の質量と前記第2の可動部の質量との関係をM1>M2とすることで、v2>vとなるように構成されていることを特徴とする請求項2記載のエネルギ変換装置。 The relationship between the mass of the first movable portion and the mass of the second movable portion is set to M2> M2 to satisfy v2> v. Energy conversion device.
  6.  前記第1のばねは、圧縮コイルばねであることを特徴とする請求項1乃至5のいずれか1項に記載のエネルギ変換装置。 The energy conversion device according to any one of claims 1 to 5, wherein the first spring is a compression coil spring.
  7.  前記第1のばねは、板ばねであることを特徴とする請求項1乃至5のいずれか1項に記載のエネルギ変換装置。 The energy conversion device according to any one of claims 1 to 5, wherein the first spring is a leaf spring.
  8.  前記支持部は、前記板ばねにおける前記第1の可動部側とは反対側で前記板ばねに一体に形成された固定部を備え、前記第1のばねは、前記第1方向と前記第2方向とに直交する第3方向において前記第1の可動部から離れるにつれて厚さが徐々に厚くなる形状に形成されており、前記固定部の厚さと前記第1のばねの最大厚さとを同じに設定してあることを特徴とする請求項7記載のエネルギ変換装置。 The support portion includes a fixing portion integrally formed on the plate spring on the side opposite to the first movable portion side of the plate spring, and the first spring is configured to have the first direction and the second direction. The thickness is gradually increased in the third direction orthogonal to the first direction as it is separated from the first movable portion, and the thickness of the fixed portion and the maximum thickness of the first spring are the same. The energy conversion device according to claim 7, characterized in that it is set.
  9.  前記第1のばねは、前記第2方向に変形するとき前記支持部と前記第1のばねとの境界において断面係数が最大となる形状としてあることを特徴とする請求項7又は8記載のエネルギ変換装置。 The energy according to claim 7 or 8, wherein the first spring has a shape in which the section coefficient is maximized at the boundary between the support portion and the first spring when deformed in the second direction. Converter.
  10.  前記第2のばねは、前記第2方向に変形するとき前記第1の可動部と前記第2のばねとの境界において断面係数が最大となる形状としてあることを特徴とする請求項1乃至9のいずれか1項に記載のエネルギ変換装置。 The second spring is characterized in that the section coefficient is maximized at the boundary between the first movable portion and the second spring when deformed in the second direction. The energy conversion device according to any one of the above.
PCT/JP2014/002150 2013-06-25 2014-04-16 Energy conversion apparatus WO2014207974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015523826A JPWO2014207974A1 (en) 2013-06-25 2014-04-16 Energy conversion device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013132992 2013-06-25
JP2013-132992 2013-06-25
JP2013-211180 2013-10-08
JP2013211180 2013-10-08

Publications (1)

Publication Number Publication Date
WO2014207974A1 true WO2014207974A1 (en) 2014-12-31

Family

ID=52141354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002150 WO2014207974A1 (en) 2013-06-25 2014-04-16 Energy conversion apparatus

Country Status (2)

Country Link
JP (1) JPWO2014207974A1 (en)
WO (1) WO2014207974A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099269A (en) * 2015-09-02 2015-11-25 北京印刷学院 Symmetric bilateral resonant electromagnetic transformation mass energy conversion device for remote monitoring of railway
CN105186825A (en) * 2015-09-02 2015-12-23 北京印刷学院 Axisymmetric aerodynamic damping resonance and electromagnetic transformation shock-absorbing and power-generating device for urban subway train
CN113852296A (en) * 2021-09-07 2021-12-28 华中科技大学 Double-stage bistable structure with elastic collision effect
US20220008955A1 (en) * 2020-07-10 2022-01-13 Nidec Corporation Vibration motor and tactile device
US20220014081A1 (en) * 2020-07-10 2022-01-13 Nidec Corporation Vibration motor and tactile device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120360A (en) * 2009-12-02 2011-06-16 Takenaka Komuten Co Ltd Generation set
JP2011172351A (en) * 2010-02-17 2011-09-01 Takenaka Komuten Co Ltd Oscillating power generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120360A (en) * 2009-12-02 2011-06-16 Takenaka Komuten Co Ltd Generation set
JP2011172351A (en) * 2010-02-17 2011-09-01 Takenaka Komuten Co Ltd Oscillating power generator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105099269A (en) * 2015-09-02 2015-11-25 北京印刷学院 Symmetric bilateral resonant electromagnetic transformation mass energy conversion device for remote monitoring of railway
CN105186825A (en) * 2015-09-02 2015-12-23 北京印刷学院 Axisymmetric aerodynamic damping resonance and electromagnetic transformation shock-absorbing and power-generating device for urban subway train
US20220008955A1 (en) * 2020-07-10 2022-01-13 Nidec Corporation Vibration motor and tactile device
US20220014081A1 (en) * 2020-07-10 2022-01-13 Nidec Corporation Vibration motor and tactile device
US11673164B2 (en) * 2020-07-10 2023-06-13 Nidec Corporation Vibration motor with movable portion having bearing with flange around a magnet and tactile device
US11699943B2 (en) * 2020-07-10 2023-07-11 Nidec Corporation Vibration motor with elastic member and tactile device
CN113852296A (en) * 2021-09-07 2021-12-28 华中科技大学 Double-stage bistable structure with elastic collision effect
CN113852296B (en) * 2021-09-07 2024-03-29 华中科技大学 Double-stage bistable structure with elastic collision function

Also Published As

Publication number Publication date
JPWO2014207974A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
Kang et al. High power magnetic field energy harvesting through amplified magneto‐mechanical vibration
US10541558B2 (en) Wireless power transfer via electrodynamic coupling
WO2014207974A1 (en) Energy conversion apparatus
US10291107B2 (en) Power generator, power generator set and power generation system
JP5867700B2 (en) Power generator
WO2010148312A2 (en) Increased frequency power generation using low-frequency ambient vibrations
Challa et al. Wireless power transmission to an electromechanical receiver using low-frequency magnetic fields
JP2012249442A (en) Oscillating generator
US11368049B2 (en) Electrodynamic wireless power receiver
JP2015126559A (en) Energy conversion apparatus
JP5370285B2 (en) Vibration generator
JP2012151985A (en) Vibration power generator
JP2012151982A (en) Vibration power generator
JP2016201899A (en) Vibration structure and vibration power generator using the same
WO2014024487A1 (en) Energy conversion device
JP2013039021A (en) Power generation apparatus
JP2014204482A (en) Energy conversion device
KR20120101797A (en) Linear vibrator and manufacturing of thereof
JP2014204483A (en) Energy converting apparatus
JP5742860B2 (en) Vibration generator
JP2012205451A (en) Vibration power generator
WO2013136669A1 (en) Energy conversion device
JP2014187798A (en) Energy conversion device
JP6581816B2 (en) Vibration power generation apparatus, electronic device, and vibration power generation method
JP2014204481A (en) Energy converting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818598

Country of ref document: EP

Kind code of ref document: A1