WO2014023088A1 - 动态眼压测量装置及控制探头与眼球共轴方法 - Google Patents

动态眼压测量装置及控制探头与眼球共轴方法 Download PDF

Info

Publication number
WO2014023088A1
WO2014023088A1 PCT/CN2013/070153 CN2013070153W WO2014023088A1 WO 2014023088 A1 WO2014023088 A1 WO 2014023088A1 CN 2013070153 W CN2013070153 W CN 2013070153W WO 2014023088 A1 WO2014023088 A1 WO 2014023088A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
measuring device
intraocular pressure
light source
pressure measuring
Prior art date
Application number
PCT/CN2013/070153
Other languages
English (en)
French (fr)
Inventor
马建国
王宜结
刘明
张瑾
Original Assignee
淮南师范学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮南师范学院 filed Critical 淮南师范学院
Priority to US14/232,262 priority Critical patent/US20140155726A1/en
Publication of WO2014023088A1 publication Critical patent/WO2014023088A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/18Arrangement of plural eye-testing or -examining apparatus

Definitions

  • the present invention relates to an intraocular pressure measuring device, and more particularly to a contact dynamic intraocular pressure measuring device and a method for controlling the coaxiality of a probe and an eyeball using the device. Background technique
  • Intraocular pressure is often closely related to a variety of eye diseases.
  • glaucoma is the world's second irreversible blind eye disease. According to statistics, there are more than 67 million patients with primary glaucoma in the world. At present, there are at least 5 million glaucoma patients in China, of which 790,000 are blind. . The prevalence of this eye disease increases with age. Glaucoma is characterized by elevated pathological intraocular pressure, irreversible optic atrophy, and visual field defects, which seriously affect the quality of life of patients. In China, the incidence rate is 0. 21% - 1. 64%, and the blindness rate is 10% - 20%. It is one of the major diseases that endanger the health of middle-aged and elderly people (55-70 years old). The most common and effective way to prevent glaucoma is to measure the patient's intraocular pressure and use drugs to control the increase in intraocular pressure.
  • Intraocular pressure is the amount of pressure per unit volume of the eyeball wall (aqueous humor, lens, vitreous, blood) acting on the eye wall.
  • Long-term increase in intraocular pressure leads to optic nerve ischemia, and the tolerance at the same intraocular pressure level is reduced, causing neurodegeneration.
  • the electrical signals converted by the retina cannot smoothly transmit and stimulate the visual center of the occipital lobe, which ultimately leads to Corresponding irreversible visual field defects.
  • implantable and non-implantable There are two methods for measuring tonometry with tonometers.
  • implantable method can directly measure intraocular pressure, it is clinically difficult to be operable, so the clinical must rely on non-implanted indirect measurement methods.
  • a tonometer in the usual sense can be defined as a non-implanted indirect measurement.
  • An indentation tonometer usually reaches the eyeball by ejecting air from the end of the probe, and obtains intraocular pressure when the eyeball is depressed. This method avoids the cross-infection of some diseases and avoids the anesthesia of the cornea due to the fact that there is no direct contact between the instrument and the eyeball. However, due to its expensive cost, it lacks good precision for the operator.
  • a representative applanation tonometer is a Goldmann tonometer.
  • the Goldmann tonometer is considered the "gold standard.”
  • the existing intraocular pressure detecting instrument generally cannot judge whether the axis of the measuring contact of the detecting instrument coincides with the longitudinal axis of the eyeball, the detected intraocular pressure result has a large error, and the operator has high skill in operation. It needs to be completed by a professional ophthalmologist for the patient, and because the alignment operation of the intraocular pressure detecting instrument is difficult, the alignment is time consuming, and the patient with low tolerance is not easy to measure, and the measurement error is large. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a dynamic intraocular pressure measuring device which is simple in operation and high in measurement accuracy, and can perform measurement quickly, and can also accurately measure a patient with low tolerance.
  • the dynamic intraocular pressure measuring device of the invention comprises a probe, a casing, a sleeve, a light source, an image sensor, a pressure sensor, a microprocessor, a display memory and a power source, and the probe has a truncated cone shape which is small left and right, and is made of a transparent optical material.
  • the shape of the inner hole of the sleeve is the same as the shape of the probe.
  • the sleeve is slidably fitted on the probe.
  • the small end face of the probe is located on the left side of the left end face of the sleeve, and the right end of the sleeve is fixedly connected with the left end of the case.
  • a pressure sensor is mounted on the big end, and the sensing end of the pressure sensor is pressed on the left end surface of the housing.
  • a light source, an image sensor and a convex lens are mounted in the housing. The light emitted by the light source is collimated into a parallel beam by the convex lens, and the vertical incident probe is large. The beam is totally reflected in the probe and enters the image sensor.
  • the microprocessor, the display memory, and the power supply are all mounted in the casing. The microprocessor, the display memory, the pressure sensor, the image sensor, and the light source are all connected to the power source, and the pressure sensor is connected. The image sensor and display memory are all connected to the microprocessor.
  • the dynamic intraocular pressure measuring device of the present invention wherein a central axis of the convex lens coincides with an axis of the probe.
  • the dynamic intraocular pressure measuring device of the present invention wherein the light source and the image sensor are respectively located on both sides of the probe axis, and are symmetrically disposed about the probe axis.
  • the dynamic intraocular pressure measuring device of the present invention wherein an annular metal pressure ring is fixedly mounted on an inner wall of the left end of the casing, and the pressure sensor is a ring-shaped electric force sensor, and an annular concave groove is opened at a position where the right end surface of the probe is combined with the circumferential surface The groove, the pressure sensor is fixedly mounted in the groove, and the sensing end of the pressure sensor is in contact with the annular metal pressure ring.
  • the dynamic intraocular pressure measuring device of the present invention wherein the light source is a light emitting diode.
  • the dynamic intraocular pressure measuring device of the present invention wherein the probe is made of glass or resin.
  • the dynamic intraocular pressure measuring device of the present invention further comprises a horn, the horn is fixedly mounted in the housing, and the horn is connected to the microprocessor.
  • the dynamic intraocular pressure measuring device of the present invention wherein a filter mirror is further disposed on a left side of the light source.
  • the dynamic intraocular pressure measuring device of the present invention further comprises a green filter, the green filter is fixedly disposed on the central axis of the probe, and the green filter is located on the left side of the light source.
  • the dynamic intraocular pressure measuring device of the present invention is different from the prior art in that the present invention emits light through a light source.
  • the parallel light is from the light.
  • the medium probe enters the light to dissipate the medium air, total reflection occurs. After the first total reflection of the parallel light on the side surface of the probe, it is directed to the left end surface of the probe, and a second total reflection occurs on the left end surface of the probe, and then the beam reaches the probe. On the other side of the surface, total reflection occurs again. Finally, the light from the light source is reflected to the image sensor.
  • the image sensor detects a bright spot.
  • the center point of the left end of the probe comes into contact with the apex of the eyeball's quasi-corner cornea.
  • the part in contact with the probe is the eyeball
  • the optical medium changes from air to the eyeball
  • the refractive index changes, and the condition of total reflection does not occur, and the light at the center point of the left end surface of the probe enters the eyeball, and at the same time.
  • the position of the probe that is in contact with the eyeball has no light entering the image sensor, the image sensor A semi-annular or circular dark line appearing on the bright spot is detected.
  • the flattening area When the probe is continuously pressed, the flattening area is gradually increased, and the image sensor detects a semi-annular or annular flattened image with a gradually increasing ring width, while making the semi-circular or The annular flattening image has a uniform width to ensure that the axis of the probe coincides with the longitudinal axis of the eyeball. If the microprocessor calculates the unevenness of the loop width, the display axis does not overlap on the display memory, and the probe position can be quickly adjusted. The axes are coincident. During the process of the probe being pressed, the effective flattening area and the flattening force measured by the image sensor and the pressure sensor are displayed and stored by the display memory after being passed through the microprocessor.
  • the device only needs to observe the content displayed on the display memory during the measurement, and can determine that the axis of the probe coincides with the longitudinal axis of the eyeball, and the operation is simple, the measurement precision is high, and the measurement can be completed quickly, and the patient can be realized for a patient with low tolerance. Accurate measurement.
  • Another technical problem to be solved by the present invention is to provide a method of controlling the coaxiality of the probe axis of the dynamic intraocular pressure measuring device with the longitudinal axis of the eyeball, comprising the following steps:
  • the probe axis can be quickly coaxial with the longitudinal axis of the eyeball, thereby achieving accurate and rapid measurement of the flattening area and the flattening force.
  • Figure 1 is a front elevational view of Embodiment 1 of a dynamic intraocular pressure measuring device of the present invention
  • Figure 2 is an enlarged view of the probe portion of Figure 1;
  • Figure 3a is an actual flattened image when the center point of the left end of the probe is in contact with the apex of the eyeball's quasi-corner cornea
  • Figure 3b is a semi-annular flattened image displayed on the display memory when the probe is pressed against the eyeball in Figure 3a
  • Figure 4a is the actual flattened image when the left end of the probe is further pressed against the cornea of the eyeball (the actual flattened image has a diameter of 2 mm);
  • Figure 4b is a semi-annular flattened image displayed on the display memory when the probe is pressed against the eyeball in Figure 4a;
  • Figure 5a is the actual flattened image when the left end of the probe is further pressed against the cornea of the eyeball (actual flattened image) The diameter is 4 mm);
  • Figure 5b is a semi-annular flattened image displayed on the display memory when the probe is pressed against the eyeball in Figure 5a;
  • Figure 6a is the actual flattened image when the left end of the probe is further pressed against the cornea of the eyeball (actual flattened image) The diameter is 6 mm);
  • Figure 6b is a semi-annular flattened image displayed on the display memory when the probe is pressed on the eyeball in Figure 6a;
  • Figure 7 is a schematic diagram showing the circuit connection relationship of the dynamic intraocular pressure measuring device of the present invention
  • Fig. 8 is a front elevational view showing a second embodiment of the dynamic intraocular pressure measuring device of the present invention. detailed description
  • the dynamic intraocular pressure measuring device of the present invention comprises a probe 1, a housing 2, a sleeve 3, a light source 4, an image sensor 5, a pressure sensor 6, a microprocessor 7, a display memory 8, and a green filter 14. , speaker 13 and power supply 9.
  • the probe 1 is in the shape of a truncated cone with a small left and right, and is made of a transparent optical material.
  • the condition that the light is totally emitted on the side and the bottom surface of the probe 1 is related to the incident angle of the light and the material of the probe.
  • the probe 1 is made of a transparent optical material.
  • the condition of total reflection in the probe 1 is the critical angle and incident angle determined by the material selected by the probe.
  • the critical angle is Differently, as in the embodiment, the probe 1 adopts K9 glass, and the angle between the circular table axis of the probe 1 and the bus bar of the circular table is 29 degrees, so as to meet the requirement of total reflection of the side and the bottom surface of the probe 2. If the probe 1 is made of other materials, the angle between the circular table axis of the probe 2 and the bus bar of the circular table changes according to the refractive index of the material.
  • the left end of the probe 1 has a diameter of 6 mm.
  • the outer circumference of the right end of the probe 1 is partially removed, and the left half is formed into a truncated cone shape, and the right half is in the shape of a cylinder.
  • An annular groove 12 is defined at a position where the right end surface of the probe 1 is combined with the circumferential surface, and a pressure sensor 6 is fixedly mounted in the groove 12, the pressure sensor 6 is an annular voltage force sensor, and the pressure sensor 6 may be another ring shape. Pressure Sensor.
  • the shape of the inner hole of the sleeve 3 is the same as that of the probe 1.
  • the sleeve 3 is fitted on the probe 1, and the probe 1 can slide axially within the sleeve 3.
  • Friction, or friction is small enough to be negligible.
  • the small end face of the probe 1 is located on the left side of the left end face of the sleeve 3, and the right end of the sleeve 3 is fixedly attached to the left end of the cylindrical case 2 by screwing.
  • a ring-shaped ring 16 is disposed at a left end of the inner cavity of the casing 2, and an annular metal ring 11 is fixedly mounted on the left end surface of the ring-shaped base 16, and the annular metal ring 11 and the groove formed on the right end surface of the probe 1 are fixedly mounted. 12, the annular metal ring 11 is in contact with the sensing end of the pressure sensor 6.
  • the Pleon (prion) found in tears is infectious and can be transmitted from one person's eyes to another through tear contact, and it has been proven that infected objects are not easily disinfected. Therefore, the probe 1 is mounted in the sleeve 3, and after each measurement is completed, the sleeve 3 can be easily replaced after the sleeve 3 is unscrewed from the casing 2.
  • the probe 1 is made of optical glass. In order to reduce the cost, the material of the probe 1 can be made by selecting a low-cost resin.
  • the light source 4, the convex lens 10, the image sensor 5, the pressure sensor 6, the microprocessor 7, the display memory 8, the green filter 14, the horn 13, and the power source 9 are all fixedly mounted in the casing 2.
  • the light source 4 is located on the right side of the convex lens 10 in this embodiment. Focus on.
  • the light source 4 is located on the axis of the probe 1
  • the green filter 14 is located on the right axis of the probe, and is located on the left side of the convex lens 10
  • the image sensor 5 is located above the axis of the probe 1.
  • a baffle 17 is fixedly mounted in the casing 2.
  • the baffle 17 is located above the light source 4, so that the light emitted from the light source 4 enters only the lower half of the convex lens 10 to obtain a semi-annular flattened image.
  • the light source 4 may be a light emitting diode that emits visible light, an incandescent lamp or a fluorescent lamp, or a point source, a line or a ring source.
  • the light source 4 in this embodiment is a light-emitting diode because of the stability, high efficiency, and long life of the light-emitting diode.
  • a filter mirror (not shown) is further disposed on the left side of the light source 4, so that the wavelength of the light incident on the probe 1 can conform to the receiving wavelength range required by the image sensor 5.
  • the image sensor 5 may be a black-and-white or color CCD or CMOS device.
  • the image sensor 5 employs a one-dimensional linear device that includes an analysis circuit for acquiring geometric parameters such as a radius or a ring width through a semi-circular flattened image.
  • the light emitted by the light source 4 is collimated into a parallel beam by the convex lens 10, and then vertically incident on the large end of the probe 1, and the beam is totally reflected three times in the probe 1 to enter the image sensor 5. As shown in FIG.
  • the microprocessor 7 is responsible for monitoring and calculating the data provided by all of the image sensor 5 and the pressure sensor 6.
  • the display memory 8 is connected to the microprocessor 7, and the calculated intraocular pressure value is displayed and stored.
  • the visual panel of the display memory 8 is located on the housing 2 for easy viewing by the surveyor.
  • the display memory 8 can be set to display an image or simultaneously display an image and intraocular pressure data according to actual needs.
  • the working principle of the dynamic intraocular pressure measuring device of the invention is:
  • part of the light emitted by the light source 4 (the light of the reverse extension line passing through the focus of the convex lens) is collimated by the convex lens 10 to form a parallel beam 21, and the parallel beam 21 is parallel to the axis of the probe 2, and the parallel beam 21 is injected from the right end of the probe 1, and the parallel beam 21 is totally reflected on the lower surface of the probe 1, and then is incident on the left end surface of the probe 1, and a second total reflection occurs on the left end surface of the probe, and then the beam reaches the probe 1 On the side surface, total reflection occurs again, and the light emitted from the light source 4 is reflected onto the image sensor 5, and the image thereof is displayed as a bright spot.
  • the light source 4 emits the light beams which are not collimated by the convex lens 10 into parallel beams, or the attenuation disappears after being reflected by the probe 1 multiple times, or the condition of total reflection is not satisfied, and is emitted from the probe 1, and only a very small amount of light becomes interference light. Enter the image sensor 5.
  • the eyeball 30 starts to contact the eyeball 30 at the center point 22 of the left end face of the probe 1, as shown in Fig.
  • the flattened image of the contact portion is a contact point 101, and the pressure detected by the image sensor 5 from the right side of the probe 1
  • the flat image as shown in Figure 3b, is shown as a half-ring dark line 102, while the rest of the entire field of view is bright, because the light in the portion other than the contact point 101 is totally reflected. It is a bright spot, only the light of the contact point 101 will enter the eyeball.
  • Fig. 2 since the light in the middle of the parallel beam 21 enters the eyeball, the light on both sides of the parallel beam 21 is totally reflected and enters the image sensor 5,
  • the image detected by the image sensor 5 is a dark half-ring dark line 102. As the pressure increases, as shown in Fig.
  • the contact portion of the probe 1 with the eyeball cornea becomes the contact surface 103 from the contact point 101, and the area (flattened area) of this contact surface is more The larger the light that is originally totally reflected on this corresponding contact surface, now almost all enters the eyeball, and the resulting flattened image is no longer just a half-ring dark line 102, but has a certain width as shown in Figure 4b.
  • the half-ring flattening image 17, which is acquired by the image sensor 5, is transmitted to the microprocessor 7.
  • the loop width of the semi-annular flattened image 17 produced by the flattening force becomes wider as the flattening force increases, as shown in Fig. 5a.
  • the contact surface 103 is enlarged, and the half-ring flattening image 17 is characterized in that it gradually spreads toward both sides with the half-ring dark line 102 at the beginning as a central axis.
  • the contact surface 103 is increased to the situation shown in FIG. 6a, the contact surface of the probe 1 with the cornea is maximized, that is, the flattened area is maximized, and the flattened area does not increase with the increase of the flattening force.
  • the semi-annular flattening image 17 at this time reaches the maximum, that is, the loop width also reaches the corresponding maximum value.
  • the linear relationship between the loop width and the flattened area (contact surface) is utilized, such as the loop width and contact of the semi-annular flattened image 17 in this embodiment.
  • the relationship of the radii of the faces 103 is the same, and the flattened area is obtained.
  • the corresponding flattening force obtained by the pressure sensor 6 is recorded, and the intraocular pressure value is calculated by the microprocessor 7 (the value obtained by dividing the flattening force by the flattened area is the intraocular pressure value), and is displayed by the display memory 8 and storage.
  • the axis of the probe 1 deviates from the longitudinal axis of the eyeball during the measurement, it will have a great influence on the intraocular pressure result, which will cause unnecessary errors, so when measuring, only the axis of the probe 1 is
  • the measured result is closest to the true value of the intraocular pressure, and only in this case can the subsequent measurement process be started, so it is necessary to first determine whether or not the coaxiality is common.
  • the method is:
  • the baffle 17 When the baffle 17 is provided, the light emitted from the light source 4 enters only the lower half of the convex lens, at which time a semi-annular flattening image is formed.
  • the judgment can be made by the built-in program of the microprocessor 7 and given by the speaker 13, or by the display memory 8. If the coaxial condition is met, then the data is collected and recorded. If the requirements are not met, they need to be re-measured. Therefore, unnecessary errors can be avoided, and the multiple measurement values which are commonly caused by the deviation of the common axis in the current portable tonometer cannot be well solved, so that accurate results can be obtained.
  • Step 1 Press the power switch 31 to provide the corresponding voltage to each part, let the subject look at a bunch of green light converted by the green filter 14, and align the probe 1 with the ⁇ -shaped cornea on the pupil of the test subject.
  • the second step the operator slowly and vertically contacts the probe 1 to the cornea, then the image sensor 5 Data that meets the requirements is collected and passed to the microprocessor 7, while the microprocessor 7 issues an instruction and the corresponding pressure data is collected.
  • the unit continuously collects the data that meets the conditions.
  • the intraocular pressure results corresponding to each set of data during this process are displayed on the display memory 8 and temporarily stored by its storage system.
  • the third step the microprocessor 7 calculates the corresponding intraocular pressure value, and simultaneously records and displays the flattened area, the flattening force, and the intraocular pressure in the whole process of performing the measurement.
  • Example 2 For medical clinical use, the required 6 sets of data can be collected, and the voice horn 13 prompts the acquisition to be completed. Six times the results of the required results are collected and averaged, and finally stored and displayed.
  • Example 2
  • this embodiment differs from the first embodiment only in that there is no spacer, the light source 4 is located below the image sensor 5, and the convex lens 10 is disposed on the left side of the light source 4.
  • the light emitted from the light source 4 is punctured into a parallel beam by the convex lens 10, and is totally reflected in the probe 1 and then directly incident on the image sensor 5.
  • a hint is given by the horn 12, or it is judged by the display memory 8 whether the axis of the probe 1 is coaxial with the longitudinal axis of the eyeball.
  • the axis of the probe can be coincident with the longitudinal axis of the eyeball, if the microprocessor calculates If the width of the exit ring is not uniform, the indication of the axis misalignment is displayed on the display memory. At this time, the position of the probe can be quickly adjusted to make the axes coincide.
  • the effective flatness can be measured by the image sensor and the pressure sensor. The area and the flattening force are displayed and stored by the display memory after passing through the microprocessor.
  • the device only needs to observe the prompt displayed on the display memory during the measurement, and can determine that the axis of the probe coincides with the longitudinal axis of the eyeball, the operation is simple, the measurement precision is high, and the measurement can be completed quickly, and the patient can be realized for a patient with low tolerance. Accurate measurement. Therefore, it has great market prospects and strong industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种接触式眼压测量装置及使用该装置控制其探头与眼球共轴的方法。该动态眼压测量装置中探头(1)呈左小右大的圆台形,套筒(3)内孔的形状与探头(1)的形状相同,套筒(3)滑动地套装在探头(1)上,探头(1)的小端端面位于套筒(3)的左端面的左侧,套筒(3)的右端与壳体(2)左端固定连接,在探头(1)的大端上安装有压力传感器(6),在壳体(2)内安装有光源(4)和图像传感器(5),光源(4)发出的光线经凸透镜(10)准直为平行光束后,垂直入射探头(1)大端,光束在探头(1)内全反射后,进入图像传感器(5)内,压力传感器(6)、图像传感器(5)和显示存储器(8)均与微处理器(7)连接。本装置操作简单,测量精度高,能够快速完成测量,对于忍耐程度不高的患者也可实现精确测量。

Description

动态眼压测量装置及控制探头与眼球共轴方法 技术领域
本发明涉及一种眼压测量装置, 特别是涉及一种接触式动态眼压测量装置及使用该装置 控制其探头与眼球共轴的方法。 背景技术
眼压常常与多种眼病密切相关。 目前, 青光眼是位居全球第二号不可逆致盲性眼病, 据统计, 全世界约有原发性青光眼患者 6700多万人, 我国目前至少有 500万名青光眼患 者, 其中 79万人双目失明。 这种眼疾的患病率随年龄增长而增长。 青光眼以病理性眼压 升高, 不可逆性视神经萎缩, 视野缺损为特征, 严重影响着患者的生活质量。 在我国, 发病 率为 0. 21%-1. 64%, 致盲率 10%-20%, 是危害中老年人(55-70岁)健康的主要疾病之一。 预 防青光眼最常用也是最有效的方式, 就是测量患者的眼压, 用药物控制眼压的升高。
眼压是眼球内容物 (房水、 晶状体、 玻璃体、 血液)作用于眼球壁单位体积压强的大小。 长期眼压升高会导致视神经缺血, 在相同眼压水平下的耐受力降低, 引起神经退行性变, 经 视网膜转换的电信号不能顺利的传递并剌激大脑枕叶视觉中枢, 最终导致相应的不可逆性视 野缺损。 传统的用眼压计眼压测量有两种方法, 即植入式与非植入式。 尽管植入式可直接测 量眼内压, 但是由于临床上很难具有可操作性, 因此临床必须依靠的是非植入式的间接测量 方法。 通常意义上的眼压计均可以定义为非植入式间接测量。 当今占主导地位的非植入式间 接测量主要有两种, 一是压陷式眼压计, 另外一种是压平式眼压计。 压陷式眼压计通常通过 探头末端喷出气流到达眼球, 在眼球被压陷得瞬间来获得眼内压。 这种方法由于没有实际意 义上的仪器与眼球直接接触, 从而避免了一些疾病的交叉感染, 同时也避免了对眼角膜的麻 醉, 但是由于其昂贵的造价, 缺乏较好的精度, 对操作者的操作技巧要求较高, 可能会对角 膜产生不必要的伤害以及需要频繁的维护都使其不能被广泛的用于临床; 压平式眼压计通过 探头压眼球的外表 (如角膜) 到一定的面积并且获得对应的压力, 从而得到眼内压。 有代表 性的压平眼压计是由 Goldmann眼压计。 Goldmann眼压计被认为是 "金标准"。
由于现有的眼压检测仪器一般不能够很好地判断检测仪的测量触头的轴线是否与眼球的 纵向轴线重合, 所以检测的眼压结果误差较大, 对操作者操作熟练程度要求较高, 需由专业 的眼科医生为病人完成, 并且由于眼压检测仪器的对准操作难度高, 对准时比较费时, 对于 忍耐程度不高的患者不容易测量, 测量误差大。 发明内容
本发明要解决的技术问题是提供一种操作简单、 测量精度高的动态眼压测量装置, 能够 快速完成测量, 对于忍耐程度不高的患者也可实现精确测量。
本发明动态眼压测量装置, 包括探头、 壳体、 套筒、 光源、 图像传感器、 压力传感器、 微处理器、 显示存储器和电源, 探头呈左小右大的圆台形, 由透明光学材料制作, 套筒内孔 的形状与探头的形状相同, 套筒滑动地套装在探头上, 探头的小端端面位于套筒的左端面的 左侧, 套筒的右端与壳体左端固定连接, 在探头的大端上安装有压力传感器, 压力传感器的 感应端压在壳体左端面上, 在壳体内安装有光源、 图像传感器和凸透镜, 光源发出的光线经 凸透镜准直为平行光束后, 垂直入射探头大端, 光束在探头内全反射后, 进入图像传感器内, 微处理器、 显示存储器、 电源均安装在壳体内, 微处理器、 显示存储器、 压力传感器、 图像 传感器和光源均与电源连接, 压力传感器、 图像传感器和显示存储器均与微处理器连接。
本发明动态眼压测量装置, 其中所述凸透镜的中轴线与探头的轴线重合。
本发明动态眼压测量装置, 其中所述光源和图像传感器分别位于探头轴线的两侧, 并且 关于探头轴线对称设置。
本发明动态眼压测量装置, 其中所述壳体左端的内壁上固定安装有环状金属压圈, 压力 传感器为环状电压力传感器, 在探头的右端面与圆周面结合的位置开设有环形凹槽, 压力传 感器固定安装在凹槽内, 压力传感器的感应端与环状金属压圈接触。
本发明动态眼压测量装置, 其中所述光源为发光二级管。
本发明动态眼压测量装置, 其中所述探头由玻璃或树脂制作。
本发明动态眼压测量装置, 还包括喇叭, 喇叭固定安装在壳体内, 喇叭与微处理器连接。 本发明动态眼压测量装置, 其中所述光源的左侧还设置有滤波镜。
本发明动态眼压测量装置, 还包括绿色滤光片, 绿色滤光片固定设置在探头中轴线上, 且绿色滤光片位于光源的左侧。
本发明动态眼压测量装置与现有技术不同之处在于本发明通过光源发射光线, 当探头接 近眼球且探头左端面的中心点与眼球准穹形角膜的顶点未接触时, 平行光线从光密介质探头 射入光疏介质空气时, 发生全反射, 平行光线在探头侧表面发生第一次全反射后, 射向探头 左端面, 在探头左端面上发生第二次全反射, 然后光束到达探头的另一侧表面, 再次发生全 反射, 最后, 光源发出的光线被反射到图像传感器上, 图像传感器检测到的为亮斑, 当探头 左端面的中心点与眼球准穹形角膜的顶点开始接触时, 此时与探头接触的部位为眼球, 光学 媒介由空气变为眼球, 折射率发生改变, 不具备发生全反射的条件, 探头左端面的中心点处 的光线射入眼球内, 同时, 与眼球接触的探头的位置没有光线进入图像传感器, 图像传感器 检测到在亮斑上出现的半环形或环形暗线, 当继续压下探头, 压平面积逐渐增大, 图像传感 器检测到环宽逐渐增大的半环形或环形压平图像,同时使半环形或环形压平图像的环宽均匀, 以保证探头的轴线与眼球的纵向轴线重合, 如果微处理器计算出环宽不均匀, 则在显示存储 器上显示轴线不重合提示, 此时可以迅速调整探头位置, 使轴线重合, 在探头压下的过程中, 可通过图像传感器和压力传感器测得的有效压平面积和压平力, 经过微处理器后, 由显示存 储器显示并存储起来。 本装置在测量时只需观察显示存储器上显示的内容, 即可判断探头的 轴线与眼球的纵向轴线重合, 操作简单, 测量精度高, 能够快速完成测量, 对于忍耐程度不 高的患者也可实现精确测量。
本发明要解决的另一个技术问题是提供一种控制上述动态眼压测量装置的探头轴线与眼 球纵向轴线共轴的方法, 包括以下步骤:
a、 打开电源, 给测量装置供电;
b、 将探头垂直对准眼角膜顶部, 使探头左端面的中心点对准穹形角膜的顶点;
c、将探头缓缓压下, 随着压平力逐渐增加,在显示存储器内显示半环形或环形压平图像; d、 使半环形或环形压平图像的环宽均匀。
通过使用该控制方法, 能够快速使探头轴线与眼球纵向轴线共轴, 从而实现精确快速的 测量压平面积和压平力。
下面结合附图对本发明作进一步说明。 附图说明
图 1为本发明动态眼压测量装置实施例 1的主视图;
图 2为图 1中探头部分的放大图;
图 3a为探头左端面的中心点与眼球准穹形角膜的顶点接触时的实际压平图像; 图 3b为在图 3a中探头压在眼球上时的显示存储器上显示的半环形压平图像; 图 4a为探头左端面进一步压在眼球准穹形角膜时的实际压平图像(实际压平图像的直径 为 2毫米);
图 4b为在图 4a中探头压在眼球上时的显示存储器上显示的半环形压平图像; 图 5a为探头左端面进一步压在眼球准穹形角膜时的实际压平图像(实际压平图像的直径 为 4毫米);
图 5b为在图 5a中探头压在眼球上时的显示存储器上显示的半环形压平图像; 图 6a为探头左端面进一步压在眼球准穹形角膜时的实际压平图像(实际压平图像的直径 为 6毫米); 图 6b为在图 6a中探头压在眼球上时的显示存储器上显示的半环形压平图像; 图 7为本发明动态眼压测量装置的电路连接关系示意图;
图 8为本发明动态眼压测量装置实施例 2的主视图。 具体实施方式
实施例 1 :
如图 1所示, 本发明动态眼压测量装置包括探头 1、 壳体 2、 套筒 3、 光源 4、 图像传感 器 5、 压力传感器 6、 微处理器 7、 显示存储器 8、 绿色滤光片 14、 喇叭 13和电源 9。
探头 1呈左小右大的圆台形, 由透明光学材料制作, 光线在探头 1的侧面及底面发生全 发射的条件与光线的入射角及探头的材质有关, 当入射角大于或等于临界角时, 光线从探头 ***到探头侧面或下表面时, 就会发生全反射, 因此, 在探头 1 内发生全反射的条件为探头 选用的材质决定的临界角及入射角, 当材质不同时, 临界角也不同, 如本实施例中探头 1采 用 K9玻璃, 将探头 1的圆台轴线与圆台的母线的夹角为 29度, 以满足探头 2侧面和底面的 全反射的要求。 如果探头 1选用其它材质, 根据材质折射率的不同, 探头 2的圆台轴线与圆 台的母线的夹角相应的发生变化。 探头 1的左端面的直径为 6毫米。 本实施例中将探头 1右 端的外周加工去除一部分, 形成左半部分为圆台形状, 右半部分为圆柱形状。 在探头 1的右 端面与圆周面结合的位置开设有环形凹槽 12, 在凹槽 12内固定安装有压力传感器 6, 压力传 感器 6为环状电压力传感器, 压力传感器 6也可以是其它环状压力传感器。
套筒 3内孔的形状与探头 1的形状相同, 套筒 3套装在探头 1上, 探头 1能够在套筒 3 内轴向滑动, 当测量时, 套筒 3与探头 1之间接近不存在摩擦力, 或者摩擦力很小, 达到可 忽略不计的程度。 探头 1的小端端面位于套筒 3的左端面的左侧, 套筒 3的右端通过螺纹固 定连接在圆柱形壳体 2左端。 在壳体 2内腔的左端设置有圆环台 16, 在圆环台 16的左端面 上固定安装有环状金属压圈 11, 环状金属压圈 11与探头 1右端面上开设的凹槽 12相对, 环 状金属压圈 11与压力传感器 6的感应端接触。
为了防止病毒传染, 例如, 人们在泪液中发现的普利昂 (朊病毒) 具有感染性, 会从一 个人的眼睛通过泪液接触传染给另一个人, 并且实践证明受感染的物体不容易被消毒, 因此 将探头 1安装在套筒 3内, 每次测量完成后, 将套筒 3从壳体 2上拧下后, 即可方便的更换 探头 1。 探头 1 由光学玻璃制作, 为了降低成本, 探头 1的材料可以选择低成本的树脂来制 作。
光源 4、 凸透镜 10、 图像传感器 5、 压力传感器 6、 微处理器 7、 显示存储器 8、 绿色滤 光片 14、 喇叭 13和电源 9均固定安装在壳体 2内。 本实施例中光源 4位于凸透镜 10的右侧 焦点上。 光源 4位于探头 1 的轴线上, 绿色滤光片 14位于探头右侧轴线上, 且位于凸透镜 10的左侧, 图像传感器 5位于探头 1的轴线的上方。 本实施例中在壳体 2内还固定安装有一 挡板 17, 挡板 17位于光源 4的上方, 使光源 4射出的光线只进入凸透镜 10的下半部分, 得 到半环形压平图像。 当然也可以不设置挡板 20, 得到环形压平图像。 光源 4可以是发出可见 光的发光二极管, 白炽灯或荧光灯, 也可以是点光源、 线形或环形光源。 由于发光二极管的 稳定、 高效、 长寿命, 本实施例中光源 4采用为发光二级管。 在光源 4的左侧还设置有滤波 镜(图中未示出),可以使射入探头 1的光线的波长符合图像传感器 5所需要的接收波长范围。 图像传感器 5可以是黑白的或彩色的 CCD或 CMOS器件, 图像传感器 5采用一维线性器件, 它 包含有一分析电路, 用来采集通过半环形压平图像的几何参数, 如半径或环的宽度。 光源 4 发出的光线经凸透镜 10准直为平行光束后, 垂直入射探头 1的大端, 光束在探头 1内经过三 次全反射, 进入图像传感器 5内。 结合图 7所示, 微处理器 7、 显示存储器 8、压力传感器 6、 图像传感器 5和光源 4均与电源 9连接, 压力传感器 6、 图像传感器 5和显示存储器 8均与 微处理器 7连接。微处理器 7负责监控并计算所有图像传感器 5和压力传感器 6提供的数据。 显示存储器 8与微处理器 7连接, 将处理计算得到的眼压值显示并存储起来。 显示存储器 8 的可视面板位于壳体 2上, 以方便测量者观察。 根据实际需要, 显示存储器 8可设定为显示 图像或者同时显示图像和眼压数据。
本发明动态眼压测量装置的工作原理为:
结合图 2所示, 光源 4发出的部分光线 (反向延长线穿过凸透镜焦点的光线) 经凸透镜 10准直后, 形成平行光束 21, 此时平行光束 21平行于探头 2的轴线, 平行光束 21从探头 1 右端射入, 平行光束 21在探头 1的下侧表面发生全反射后, 再射向探头 1左端面, 在探头左 端面上发生第二次全反射, 然后光束到达探头 1的上侧表面, 再次发生全反射, 光源 4发出 的光线被反射到图像传感器 5上, 其图像显示为亮斑。光源 4发出没有被凸透镜 10准直为平 行光束的这些光线, 或者在探头 1 内经多次反射后衰减消失, 或者不满足全反射的条件, 从 探头 1中射出, 只有非常少量的光线成为干扰光进入图像传感器 5内。 当探头 1的左端面的 中心点 22处开始接触眼球 30时, 如图 3a所示, 接触部分的压平图像为一接触点 101, 从探 头 1的右侧出来的图像传感器 5检测到的压平图像,如图 3b所示,显示为一个半环暗线 102, 而除此之外整个视野中其它部分则是亮的, 这是由于除了接触点 101 以外的部分的光线会被 全反射, 看到的是亮斑, 只有接触点 101部分的光线会进入眼球, 如图 2所示, 由于平行光 束 21中部的光线进入眼球, 平行光束 21两侧的光线经全反射后进入图像传感器 5, 因此图 像传感器 5检测到的图像为一暗的半环暗线 102。 随着压力的增加, 如图 4a所示, 探头 1与 眼球角膜接触部分由接触点 101变成接触面 103, 并且这个接触面的面积 (压平面积) 会越 来越大, 在这个对应的接触面上本来是全反射的光线现在几乎全部进入眼球, 其产生的压平 图像不再仅仅是半环暗线 102, 而是如图 4b所示, 有一定宽度的半环压平图像 17, 这个半环 压平图像 17由图像传感器 5来获取, 并传输到微处理器 7内。 由于随着压平力的增加, 探头 1与角膜的接触面积会逐渐增加, 因此由之产生的半环形压平图像 17的环宽会随着压平力的 增加越来越宽, 如图 5a、 5b所示, 接触面 103增大, 半环压平图像 17呈现以开始时的半环 暗线 102为中心轴线向两侧逐渐扩散的特点。 当接触面 103增加到如图 6a所示的情况时, 探 头 1与角膜的接触面达到最大, 也就是压平面积达到最大, 随着压平力的增加而压平面积不 会再随之增加, 如图 6b所示, 这时的半环形压平图像 17达到最大, 即环宽也达到对应的最 大值。在测量过程中,通过连续动态检测半环形压平图像 17的宽度,利用环宽与压平面积(接 触面)的线性关系, 如本实施例中的半环形压平图像 17的环宽与接触面 103的半径相同的关 系, 进而得到压平面积。 同时记录通过压力传感器 6得到的对应的压平力, 进而通过微处理 器 7计算出眼压值(压平力除以压平面积所得数值即为眼压值), 并由显示存储器 8显示并存 储。
但是, 在测量过程中如果探头 1的轴线与眼球的纵向轴线产生偏离, 则会对眼压结果带 来很大影响, 会导致不必要的误差, 因此在测量时, 只有在探头 1的轴线与眼球的纵向轴线 共轴的情况下测得的结果才最接近眼内压的真值, 也只有在此情况下才可以开始后面的测量 过程, 因此, 有必要首先确定是否共轴。 其方法为:
a、 打开电源 9, 给测量装置供电;
b、 将探头 1垂直对准眼角膜顶部, 使探头 1左端面的中心点 22对准穹形角膜的顶点; c、 将探头 1缓缓压下, 随着压平力逐渐增加, 在显示存储器 8内显示半环形或环形压平 图像 17;
d、 使半环形或环形压平图像 17的环宽均匀。
当设置挡板 17时, 光源 4射出的光线只进入凸透镜的下半部分, 此时形成半环形压平图 像。
这时可以通过微处理器 7的内置程序做出判断并通过喇叭 13给出提示,或者通过显示存 储器 8观察。 如果符合共轴条件, 这时开始采集并记录数据。 如果不满足要求, 则需重新测 量。 因此, 可以避免不必要的误差出现, 很好的解决了当前便携式眼压计中普遍存的偏离共 轴而导致的多次测量值不能有很好的一致性问题, 从而得到精确的结果。
本发明动态眼压测量装置在使用时, 按照如下步骤进行:
第一步: 按下电源开关 31, 给各部分提供相应的电压, 让被测者注视由绿色滤光片 14 转化成的一束绿色光线, 将探头 1对准被测者瞳孔上穹形角膜的顶部, 根据显示存储器 8中 的图像, 微调探头 1的垂直方向, 使探头 1、 眼球都处于同一直线上, 便于眼压的精确测量; 第二步: 操作者将探头 1缓缓地垂直向角膜接触, 这时图像传感器 5采集符合要求的数 据, 传递给微处理器 7, 同时微处理器 7发出指令, 对应的压力数据被采集。 在向下压的过 程中, 本装置会不断采集符合条件的数据。 在此过程中每组数据对应的眼压结果都会在显示 存储器 8上显示, 并由其存储***暂时存储起来。
第三步:微处理器 7计算出对应的眼压值, 并同时将实施测量的整个过程的压平面积、压 平力、 眼压实时记录并显示。
对于医疗临床使用时, 可以采集需要的 6组数据, 语音喇叭 13提示采集完成。六次符合 要求的结果采集完成后求平均, 最后进行存储和显示。 实施例 2:
如图 8所示, 本实施例与实施例 1的不同之处仅在于没有隔板, 光源 4位于图像传感器 5的下方, 凸透镜 10设置在光源 4的左侧。 光源 4发出的光线经凸透镜 10准时成平行光束 后, 在探头 1内发生全反射后, 直接射入图像传感器 5内。 本实施例中, 通过喇叭 12给出提 示, 或者通过显示存储器 8观察来判断探头 1的轴线与眼球的纵向轴线是否共轴。 以上所述的实施例仅仅是对本发明的优选实施方式进行描述, 并非对本发明的范围进行 限定, 在不脱离本发明设计精神的前提下, 本领域普通技术人员对本发明的技术方案作出的 各种变形和改进, 均应落入本发明权利要求书确定的保护范围内。 工业实用性
本发明在使用时只要控制图像传感器检测到半环形或环形压平图像, 使半环形或环形压 平图像的环宽均匀, 就能够保证探头的轴线与眼球的纵向轴线重合, 如果微处理器计算出环 宽不均匀, 则在显示存储器上显示轴线不重合提示, 此时可以迅速调整探头位置, 使轴线重 合, 在探头压下的过程中, 可通过图像传感器和压力传感器测得的有效压平面积和压平力, 经过微处理器后, 由显示存储器显示并存储起来。 本装置在测量时只需观察显示存储器上显 示的提示, 即可判断探头的轴线与眼球的纵向轴线重合, 操作简单, 测量精度高, 能够快速 完成测量, 对于忍耐程度不高的患者也可实现精确测量。 因此具有很大的市场前景和很强的 工业实用性。

Claims

权 利 要 求
1、一种动态眼压测量装置, 其特征在于: 包括探头(1)、壳体(2)、套筒(3)、光源(4)、 图像传感器 (5)、 压力传感器 (6)、 微处理器 (7)、 显示存储器 (8)和电源 (9), 所述探头
(1) 呈左小右大的圆台形, 由透明光学材料制作, 所述套筒 (3) 内孔的形状与探头 (1) 的 形状相同, 套筒 (3) 滑动地套装在探头 (1) 上, 探头 (1) 的小端端面位于套筒 (3) 的左 端面的左侧, 套筒 (3) 的右端与壳体 (2)左端固定连接, 在探头 (1) 的大端上安装有压力 传感器 (6), 压力传感器 (6) 的感应端压在壳体 (2)左端面上, 在壳体 (2) 内安装有光源
(4)、 图像传感器 (5)和凸透镜 (10), 光源 (4) 发出的光线经凸透镜 (10)准直为平行光 束后, 垂直入射探头 (1) 的大端, 光束在探头 (1) 内全反射后, 进入图像传感器 (5) 内, 所述微处理器 (7)、 显示存储器 (8)、 电源 (9)均安装在壳体 (2) 内, 所述微处理器 (7)、 显示存储器 (8)、 压力传感器 (6)、 图像传感器 (5)和光源 (4)均与电源 (9)连接, 所述 压力传感器 (6)、 图像传感器 (5) 和显示存储器 (8) 均与微处理器 (7) 连接。
2、 根据权利要求 1所述的动态眼压测量装置, 其特征在于: 所述凸透镜 (10) 的中轴线 与探头 (1) 的轴线重合。
3、 根据权利要求 1所述的动态眼压测量装置, 其特征在于: 所述光源 (4) 和图像传感 器 (5) 分别位于探头 (1) 轴线的两侧。
4、 根据权利要求 1或 2或 3所述的动态眼压测量装置, 其特征在于: 所述壳体 (2) 左 端的内壁上固定安装有环状金属压圈 (11), 所述压力传感器 (6) 为环状电压力传感器, 在 探头 (1) 的右端面与圆周面结合的位置开设有环形凹槽(12), 所述压力传感器(6) 固定安 装在凹槽 (12) 内, 压力传感器 (6) 的感应端与环状金属压圈 (11) 接触。
5、 根据权利要求 4所述的动态眼压测量装置, 其特征在于: 所述光源 (4) 为发光二级 管。
6、 根据权利要求 5所述的动态眼压测量装置, 其特征在于: 所述探头 (1) 由玻璃或树 脂制作。
7、 根据权利要求 6所述的动态眼压测量装置, 其特征在于: 还包括喇叭 (13), 所述喇 叭 (13) 固定安装在壳体 (2) 内, 喇叭 (13) 与微处理器 (7) 连接。
8、 根据权利要求 7所述的动态眼压测量装置, 其特征在于: 所述光源 (4) 的左侧还设 置有滤波镜。
9、 根据权利要求 1所述的动态眼压测量装置, 其特征在于: 还包括绿色滤光片 (14), 所述绿色滤光片 (14) 固定设置在探头中轴线上, 所述绿色滤光片 (14)位于光源 (4) 的左
10、 一种控制权利要求要求 1-9任一项所述的动态眼压测量装置的探头轴线与眼球纵向 轴线共轴的方法, 其特征在于包括以下步骤:
a、 打开电源 (9), 给测量装置供电;
b、将探头(1 )垂直对准眼角膜顶部, 使探头(1 )左端面的中心点对准穹形角膜的顶点; c、 将探头 (1 ) 缓缓压下, 随着压平力逐渐增加, 在显示存储器 (8 ) 内显示半环形或环 形压平图像 (17);
d、 使半环形或环形压平图像 (17) 的环宽均匀。
PCT/CN2013/070153 2012-08-06 2013-01-07 动态眼压测量装置及控制探头与眼球共轴方法 WO2014023088A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/232,262 US20140155726A1 (en) 2012-08-06 2013-01-07 Dynamic tonometry device and method for controlling coaxiality of probe with eyeball

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210284491.8A CN102813501B (zh) 2012-08-06 2012-08-06 动态眼压测量装置及控制探头与眼球共轴的方法
CN201210284491.8 2012-08-06

Publications (1)

Publication Number Publication Date
WO2014023088A1 true WO2014023088A1 (zh) 2014-02-13

Family

ID=47298204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070153 WO2014023088A1 (zh) 2012-08-06 2013-01-07 动态眼压测量装置及控制探头与眼球共轴方法

Country Status (3)

Country Link
US (1) US20140155726A1 (zh)
CN (1) CN102813501B (zh)
WO (1) WO2014023088A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102813501B (zh) * 2012-08-06 2014-04-02 淮南师范学院 动态眼压测量装置及控制探头与眼球共轴的方法
CN103054551B (zh) * 2012-12-28 2014-12-24 淮南师范学院 压平眼压计
CN105342551B (zh) * 2015-10-23 2019-03-19 济南三维医疗器械有限公司 一种角膜生物力学检测仪器及其使用方法
CN108780036B (zh) * 2018-04-23 2021-10-22 深圳达闼科技控股有限公司 一种光学检测设备及检测方法
CN109613316B (zh) * 2018-11-29 2020-12-29 江阴市星火电子科技有限公司 一种高精度罗氏线圈
CN113854959A (zh) * 2021-09-26 2021-12-31 温州佳目光学技术有限公司 一种基于线阵相机的非接触式眼压测量方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020173712A1 (en) * 2001-05-16 2002-11-21 Marco Ophthalmic, Inc. Applanation tonometer
US20090103047A1 (en) * 2007-10-23 2009-04-23 Falck Medical, Inc. Tonometer Using Camera and Ambient Light
CN102813501A (zh) * 2012-08-06 2012-12-12 淮南师范学院 动态眼压测量装置及控制探头与眼球共轴的方法
CN202714842U (zh) * 2012-08-06 2013-02-06 淮南师范学院 动态眼压测量装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523597A (en) * 1982-12-29 1985-06-18 Minolta Camera Kabushiki Kaisha Apparatus and method for measuring the intraocular pressure of an eyeball and auxiliary device for using therewith
US5070875A (en) * 1990-11-19 1991-12-10 Falcken, Inc. Applanation tonometer using light reflection to determine applanation area size
US5174292A (en) * 1991-10-11 1992-12-29 Kursar Gerald H Hand held intraocular pressure recording system
DE4444459C1 (de) * 1994-12-14 1996-02-29 Jenoptik Technologie Gmbh Anordnung zur automatischen Bestimmung der Andruckkraft bei Augendruckuntersuchungen
CN1158239A (zh) * 1996-08-01 1997-09-03 合肥恒星工贸公司 智能袖珍压平式眼压计
GB9717894D0 (en) * 1997-08-22 1997-10-29 Clement Clarke Int Applanating tonmeters
JP4937840B2 (ja) * 2007-06-04 2012-05-23 株式会社ニデック 眼科装置
GB0718291D0 (en) * 2007-09-19 2007-10-31 King S College London Imaging apparatus and method
US9232892B2 (en) * 2010-11-03 2016-01-12 Lighttouch, Llc Applanation tonometer and method for measuring the intraocular pressure of the eye
CN202096194U (zh) * 2011-04-12 2012-01-04 东南大学 一种眼压测量仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020173712A1 (en) * 2001-05-16 2002-11-21 Marco Ophthalmic, Inc. Applanation tonometer
US20090103047A1 (en) * 2007-10-23 2009-04-23 Falck Medical, Inc. Tonometer Using Camera and Ambient Light
CN102813501A (zh) * 2012-08-06 2012-12-12 淮南师范学院 动态眼压测量装置及控制探头与眼球共轴的方法
CN202714842U (zh) * 2012-08-06 2013-02-06 淮南师范学院 动态眼压测量装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, DEZHANG ET AL.: "Development of Handy Intellectualized Ocular Tonometer.", JOURNAL OF ANHUI INSTITUTE OF MECHANICAL & ELECTRICAL ENGINEERING., vol. 15, no. 3, September 2000 (2000-09-01), pages 14 - 18 *

Also Published As

Publication number Publication date
US20140155726A1 (en) 2014-06-05
CN102813501B (zh) 2014-04-02
CN102813501A (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2014023088A1 (zh) 动态眼压测量装置及控制探头与眼球共轴方法
CN105662343B (zh) 一种干眼检测手持成像装置及干眼检测设备
JP2005500092A (ja) 圧平眼圧計
JP6006519B2 (ja) 眼科装置
WO1990001891A1 (en) Tonometry device
CN102813502B (zh) 接触式眼压计
JP3970141B2 (ja) 非接触式眼圧計
JP2020510475A (ja) 視力検査の方法及び装置
CN210408379U (zh) 眼前节oct成像装置
EP3260041A2 (en) Applanation head for a goldmann applanation tonometer and related tonometer, method for measuring an intraocular pressure
CA2794611C (en) Device and method for calibrating retinoscopes
CN202714842U (zh) 动态眼压测量装置
CN218220174U (zh) 一种简便测眼压装置
US20070123768A1 (en) Ophthalmic instruments, systems and methods especially adapted for conducting simultaneous tonometry and pachymetry measurements
JP7369001B2 (ja) 眼科装置
KR101583284B1 (ko) 스톱워치 기능을 가지는 세극등 현미경
CN202714840U (zh) 接触式眼压计
US20220218203A1 (en) Non-contact portable tonometry system and tonometry method using difference in infrared intensity
JP4795002B2 (ja) 眼科測定装置
WO2004036268A2 (en) Apparatus and method for self-measurement of intraocular pressure
CN208319190U (zh) 一种眼底血管造影仪
CN202714841U (zh) 便携式眼压计
US8272739B2 (en) Device and method for calibrating retinoscopes
CN203169145U (zh) 压平眼压计
US20140163352A1 (en) Portable Tonometer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14232262

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13828381

Country of ref document: EP

Kind code of ref document: A1