WO2014017580A1 - 蛍光体、その製造方法、発光装置および画像表示装置 - Google Patents

蛍光体、その製造方法、発光装置および画像表示装置 Download PDF

Info

Publication number
WO2014017580A1
WO2014017580A1 PCT/JP2013/070156 JP2013070156W WO2014017580A1 WO 2014017580 A1 WO2014017580 A1 WO 2014017580A1 JP 2013070156 W JP2013070156 W JP 2013070156W WO 2014017580 A1 WO2014017580 A1 WO 2014017580A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
crystal
light
phosphor according
emitting device
Prior art date
Application number
PCT/JP2013/070156
Other languages
English (en)
French (fr)
Inventor
尚登 広崎
武田 隆史
司朗 舟橋
栄一郎 成松
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to US14/416,568 priority Critical patent/US9515230B2/en
Priority to CN201380004664.9A priority patent/CN104039922B/zh
Priority to EP13823530.4A priority patent/EP2878647B1/en
Priority to KR1020157004456A priority patent/KR101704942B1/ko
Priority to JP2014526993A priority patent/JP5885174B2/ja
Publication of WO2014017580A1 publication Critical patent/WO2014017580A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/54Screens on or from which an image or pattern is formed, picked-up, converted, or stored; Luminescent coatings on vessels
    • H01J1/62Luminescent screens; Selection of materials for luminescent coatings on vessels
    • H01J1/63Luminescent screens; Selection of materials for luminescent coatings on vessels characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • a 2 (D, E) 5 X 9 (where A is one or more elements selected from Mg, Ca, Sr, and Ba, and D is Si, Ge, Sn, Ti, One or more elements selected from Zr and Hf, E is one or more elements selected from B, Al, Ga, In, Sc, Y and La, X is O, N, 1 or 2 or more elements selected from F), a crystal represented by Ca 2 Si 5 O 3 N 6 , or a crystal represented by Ca 2 Si 5 O 3 N 6 Inorganic crystals having a crystal structure, or solid solution crystals of these crystals, M element (where M is one or more selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb) Phosphors made of inorganic compounds in which (element) is dissolved, and method for producing the same And its applications.
  • Phosphors are fluorescent display tubes (VFD (Vacuum-Fluorescent Display)), field emission displays (FED (Field Emission Display) or SED (Surface-Conduction Electron Display) (Plasma Display) (PDP). ), Cathode ray tube (CRT (Cathode-Ray Tube)), liquid crystal display backlight (Liquid-Crystal Display Backlight), white light emitting diode (LED (Light-Emitting Diode)) and the like.
  • VFD Voluum-Fluorescent Display
  • FED Field Emission Display
  • SED Surface-Conduction Electron Display
  • Cathode ray tube CRT (Cathode-Ray Tube)
  • liquid crystal display backlight Liquid-Crystal Display Backlight
  • LED Light-Emitting Diode
  • sialon phosphors can be used as phosphors with little reduction in luminance even when excited with high energy.
  • phosphors based on inorganic crystals containing nitrogen in the crystal structure such as oxynitride phosphors and nitride phosphors.
  • sialon phosphor is manufactured by a manufacturing process generally described below. First, silicon nitride (Si 3 N 4 ), aluminum nitride (AlN), and europium oxide (Eu 2 O 3 ) are mixed at a predetermined molar ratio, and the temperature is 1700 ° C. in nitrogen at 1 atm (0.1 MPa). It is manufactured by holding for 1 hour and firing by a hot press method (see, for example, Patent Document 1). It has been reported that ⁇ sialon activated by Eu 2+ ions obtained by this process becomes a phosphor that emits yellow light of 550 to 600 nm when excited by blue light of 450 to 500 nm. Further, it is known that the emission wavelength changes by changing the ratio of Si and Al and the ratio of oxygen and nitrogen while maintaining the crystal structure of ⁇ sialon (see, for example, Patent Document 2 and Patent Document 3). ).
  • a green phosphor obtained by activating Eu 2+ to a ⁇ -type sialon is known (see Patent Document 4).
  • this phosphor it is known that the emission wavelength changes to a short wavelength by changing the oxygen content while maintaining the crystal structure (see, for example, Patent Document 5). Further, it is known that when Ce 3+ is activated, a blue phosphor is obtained (for example, see Patent Document 6).
  • a red phosphor in which Eu 2+ is activated using CaAlSiN 3 as a base crystal is known.
  • this phosphor there is an effect of improving the color rendering properties of the white LED.
  • a phosphor added with Ce as an optically active element has been reported as an orange phosphor.
  • the emission color of the phosphor is determined by the combination of the base crystal and the metal ion (activatable ion) to be dissolved therein. Furthermore, the combination of the base crystal and the activated ion determines the emission characteristics such as emission spectrum and excitation spectrum, chemical stability, and thermal stability, so when the base crystal is different or the activated ion is different, Considered as a different phosphor. In addition, even if the chemical composition is the same, materials having different crystal structures are regarded as different phosphors because their emission characteristics and stability differ due to different host crystals.
  • phosphors it is possible to replace the type of constituent elements while maintaining the crystal structure of the host crystal, thereby changing the emission color.
  • a phosphor obtained by adding Ce to YAG emits green light
  • a phosphor obtained by substituting a part of Y in the YAG crystal with Gd and a part of Al with Ga exhibits yellow light emission.
  • Eu Eu
  • CaAlSiN 3 the composition changes while maintaining a crystal structure by substituting part of Ca with Sr, and the emission wavelength is shortened. In this way, the phosphors that have undergone element substitution while maintaining the crystal structure are regarded as the same group of materials.
  • Japanese Patent No. 3668770 Japanese Patent No. 3837551 Japanese Patent No. 4524368 Japanese Patent No. 3921545 International Publication No. 2007/066673 International Publication No. 2006/101096 International Publication No. 2005/019376 JP 2005-112922 A Japanese Patent No. 3837588
  • the present invention is intended to meet such a demand, and one of the objects is an LED having emission characteristics (emission color, excitation characteristics, emission spectrum) different from those of conventional phosphors and having a wavelength of 470 nm or less. It is an object to provide an inorganic phosphor having high emission intensity even when combined with the above and chemically and thermally stable. Another object of the present invention is to provide a light emitting device with excellent durability and an image display device with excellent durability using such a phosphor.
  • the present inventors have conducted detailed research on a new crystal containing nitrogen and a phosphor based on a crystal obtained by substituting a metal element or N in the crystal structure with another element.
  • inorganic phosphors emit high-intensity fluorescence.
  • a specific composition emits blue to red light.
  • the present inventor has succeeded in providing a phosphor exhibiting a high luminance light emission phenomenon in a specific wavelength region by adopting the configuration described below. Moreover, it succeeded in manufacturing the fluorescent substance with the outstanding luminescent property using the following method. Furthermore, by using this phosphor, it has succeeded in providing a light emitting device, a lighting apparatus, an image display device, a pigment, and an ultraviolet absorber having excellent characteristics by adopting the configuration described below.
  • the configuration is as described below.
  • At least A element, D element, E element, and X element (where A is one or more elements selected from Mg, Ca, Sr, Ba, and D is Si, Ge, Sn, Ti) , Zr, Hf, one or more elements selected from E, E is one, two or more elements selected from B, Al, Ga, In, Sc, Y, La, X is O, N , One or two or more elements selected from F), a crystal represented by A 2 (D, E) 5 X 9 , a crystal represented by Ca 2 Si 5 O 3 N 6 , or , Ca 2 Si 5 O 3 N 6 , an inorganic crystal having the same crystal structure as the crystal represented by Ca 2 Si 5 O 3 N 6 , M is selected from M, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb Made of an inorganic compound in which one or more elements are dissolved .
  • the crystal represented by A 2 (D, E) 5 X 9 contains at least one element selected from the group consisting of Ca, Ba, and Sr as the A element, and contains Si as the D element.
  • the Ca inorganic crystals having 2 Si 5 O same crystal structure and crystal represented by 3 N 6 are, Ca 2 Si 5 O 3 N 6, (Ca, Ba) 2 Si 5 O 3 N 6 or, The phosphor according to (1), which is (Ca, Sr) 2 Si 5 O 3 N 6 .
  • An inorganic crystal having the same crystal structure as the crystal represented by Ca 2 Si 5 O 3 N 6 is (Ca, Ba) 2 Si 5-x Al x O 3 + x N 6-x or (Ca, Sr ) 2 Si 5-x Al x O 3 + x N 6-x ( where represented by a composition formula of 0 ⁇ x ⁇ 4), the phosphor according to (1).
  • the inorganic crystal having the same crystal structure as the crystal represented by A 2 (D, E) 5 X 9 or the crystal represented by Ca 2 Si 5 O 3 N 6 is a monoclinic crystal.
  • the inorganic crystal having the same crystal structure as the crystal represented by A 2 (D, E) 5 X 9 or the crystal represented by Ca 2 Si 5 O 3 N 6 is a monoclinic crystal.
  • the phosphor according to (1) which is represented by a composition in a range that satisfies all of the
  • the phosphor according to (8) which has a value in a range that satisfies all of the above conditions.
  • the parameters f and g are 1/5 ⁇ f / (f + g) ⁇ 5/5
  • the phosphor according to (8) which satisfies the following condition.
  • the X element contains N and O, and the ratio of the number of N and O atoms contained in the inorganic compound is 2/9 ⁇ O / (O + N) ⁇ 7/9
  • the phosphor according to (8) which satisfies the following condition.
  • the phosphor according to (8) above which contains at least Eu as the M element.
  • the A element includes at least one element selected from the group consisting of Ca, Ba, and Sr, the D element includes at least Si, the E element includes at least Al, and the X element includes at least O And the phosphor according to (8), including N.
  • the composition formula of the inorganic compound is Eu y (Ca, Ba) 2 ⁇ y Si 5-x Al x O 3 + x N 6 ⁇ x , using parameters x and y, or Eu y (Ca, Sr) 2-y Si 5-x Al x O 3 + x N 6-x However, 0 ⁇ x ⁇ 4 0.0001 ⁇ y ⁇ 1
  • the phosphor according to (1) which is represented by (15) The phosphor according to (1), wherein the inorganic compound is a single crystal particle or an aggregate of single crystals having an average particle size of 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the phosphor according to (1) wherein the total of Fe, Co, and Ni impurity elements contained in the inorganic compound is 500 ppm or less.
  • the phosphor according to (1) which is composed of a mixture of the phosphor composed of the inorganic compound according to (1) and another crystal phase or an amorphous phase, and the phosphor content is 20% by mass or more. Phosphor.
  • the phosphor according to (17), wherein the other crystal phase or amorphous phase is an inorganic substance having conductivity.
  • the conductive inorganic substance is an oxide, oxynitride, nitride, or a mixture thereof containing one or more elements selected from Zn, Al, Ga, In, and Sn.
  • the color emitted when the excitation source is irradiated is a value of (x, y) on the CIE 1931 chromaticity coordinates, 0 ⁇ x ⁇ 0.8 0 ⁇ y ⁇ 0.9
  • the phosphor according to (1) which satisfies the following condition.
  • the mixture of the metal compounds is a compound containing M, a compound containing A, a compound containing D, a compound containing E, and a compound containing X (where M is Mn , Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb, one or more elements selected from Ab, A is one or more elements selected from Mg, Ca, Sr, Ba, D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf, E is one or two elements selected from B, Al, Ga, In, Sc, Y, and La).
  • M is Mn , Ce, Pr, Nd, Sm, Eu, Tb, Dy
  • Yb one or more elements selected from Ab
  • A is one or more elements selected from Mg, Ca, Sr, Ba
  • D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf
  • E is one or two elements selected from B, Al, Ga, In, Sc, Y, and La
  • the compound containing M is a simple substance or two kinds selected from metals containing M, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides
  • the compound containing A is a simple substance selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides containing A
  • the compound containing D is a simple substance selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides, or
  • the mixture of the metal compounds is at least a nitride or oxide of europium, a nitride or oxide or carbonate of an element selected from the group consisting of calcium, barium and strontium, and silicon oxide or silicon nitride
  • Production method. The method for producing a phosphor as described in (25) above, wherein the container used for firing is made of boron nitride.
  • the average particle size of the phosphor powder synthesized by firing is adjusted to a particle size of 50 nm or more and 20 ⁇ m or less by one or more methods selected from pulverization, classification, and acid treatment (25) A method for producing the phosphor according to 1.
  • the phosphor powder after firing, the phosphor powder after pulverization treatment, or the phosphor powder after particle size adjustment is heat-treated at a temperature of 1000 ° C.
  • (40) The method for producing a phosphor according to (38), wherein the content of the inorganic compound that forms a liquid phase at a temperature equal to or lower than the firing temperature is reduced by washing with a solvent after firing.
  • a light-emitting device comprising at least a light-emitting body and a phosphor, wherein at least the phosphor described in (1) is used.
  • (42) The light emission according to (41), wherein the light emitter is a light emitting diode (LED), a laser diode (LD), a semiconductor laser, or an organic EL light emitter (OLED) that emits light having a wavelength of 330 to 500 nm. apparatus.
  • LED light emitting diode
  • LD laser diode
  • OLED organic EL light emitter
  • the light emitting device wherein the light emitting device is a white light emitting diode, a lighting fixture including a plurality of white light emitting diodes, or a backlight for a liquid crystal panel.
  • the phosphor emits ultraviolet or visible light having a peak wavelength of 300 to 450 nm, and the blue to red light emitted from the phosphor described in (1) is mixed with light having a wavelength of 450 nm or more emitted from another phosphor.
  • the light emitting device which emits white light or light other than white light.
  • the blue phosphor is AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, ⁇ -sialon: Ce, JEM: The light emitting device according to (45), selected from Ce.
  • the green phosphor is selected from ⁇ -sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, (47) The light emitting device according to. (49) The light emitting device according to (41), wherein the phosphor further includes a yellow phosphor that emits light having a peak wavelength of 550 nm to 600 nm by the light emitter. (50) The light-emitting device according to (49), wherein the yellow phosphor is selected from YAG: Ce, ⁇ -sialon: Eu, CaAlSiN 3 : Ce, and La 3 Si 6 N 11 : Ce.
  • the phosphor further includes a red phosphor that emits light having a peak wavelength of 600 nm to 700 nm by the light emitter.
  • the red phosphor is selected from CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca 2 Si 5 N 8 : Eu, Sr 2 Si 5 N 8 : Eu The light-emitting device of description.
  • the light emitter is an LED that emits light having a wavelength of 320 to 450 nm.
  • An image display device comprising an excitation source and a phosphor, wherein at least the phosphor described in (1) is used.
  • the image display device may be any one of a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT), and a liquid crystal display (LCD).
  • VFD fluorescent display tube
  • FED field emission display
  • PDP plasma display panel
  • CRT cathode ray tube
  • LCD liquid crystal display
  • Image display device A pigment comprising the inorganic compound according to (1).
  • An ultraviolet absorber comprising the inorganic compound according to (1).
  • the phosphor of the present invention includes a multi-element nitride containing a divalent element, a trivalent element, and a tetravalent element, or a multi-element oxynitride, in particular, a crystal represented by A 2 (D, E) 5 X 9 , and by containing as a main component Ca 2 Si 5 O 3 N 6 at shown by crystal or Ca 2 Si 5 O 3 N 6 based crystal which is another crystal having the same crystal structure as it, conventional oxide It emits light with higher brightness than phosphors and oxynitride phosphors, and is excellent as a blue to red phosphor in a specific composition.
  • this phosphor does not decrease in luminance, so it is suitably used for light emitting devices such as white light emitting diodes, lighting fixtures, backlight sources for liquid crystals, VFD, FED, PDP, CRT, etc.
  • the present invention provides a useful phosphor.
  • this fluorescent substance absorbs an ultraviolet-ray, it is suitable for a pigment and a ultraviolet absorber.
  • FIG. 11 is a diagram showing the object color of the phosphor synthesized in Example 10.
  • FIG. 10 is a diagram showing the object color of the phosphor synthesized in Example 12.
  • the phosphor of the present invention includes at least an A element, a D element, an E element, and an X element (where A is one or more elements selected from Mg, Ca, Sr, and Ba, and D is One or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf, E is one or more elements selected from B, Al, Ga, In, Sc, Y, and La , X includes one or more elements selected from O, N, and F), a crystal represented by A 2 (D, E) 5 X 9 , or Ca 2 Si 5 O 3 N 6 or an inorganic crystal having the same crystal structure as the crystal represented by Ca 2 Si 5 O 3 N 6 or a solid solution crystal of these crystals, M element (where M is Mn, Ce, One kind selected from Pr, Nd, Sm, Eu, Tb, Dy, Yb A phosphor made of an inorganic compound in which two or more elements) are in solid
  • a crystal represented by Ca 2 Si 5 O 3 N 6 is a crystal that was newly synthesized by the present inventor and confirmed as a new crystal by crystal structure analysis, which has not been reported before the present invention.
  • FIG. 1 is a diagram showing a crystal structure of a Ca 2 Si 5 O 3 N 6 crystal.
  • Ca 1.54 Eu 0.46 Si 5 O 3 N 6 synthesized by the present inventor is one of Ca 2 Si 5 O 3 N 6 crystals, and Ca 1.54 Eu 0.46 Si 5 O 3 N 6 crystals.
  • the single crystal structure analysis performed on the Ca 1.54 Eu 0.46 Si 5 O 3 N 6 crystal belongs to the monoclinic system and belongs to the Cm space group (8th space group of International Tables for Crystallography). It occupies the crystal parameters and atomic coordinate positions shown in Table 1.
  • lattice constants a, b, and c indicate the lengths of the unit cell axes
  • ⁇ , ⁇ , and ⁇ indicate the angles between the unit cell axes.
  • the atomic coordinates indicate the position of each atom in the unit cell as a value between 0 and 1 with the unit cell as a unit.
  • Eu was obtained in two types of seats (Eu (1) to Eu (2)).
  • Ca exists in 8 types of seats (Ca (1) to Ca (2), Ca (3A) and Ca (3B), Ca (4A) and Ca (4B), Ca (5A) and Ca (5B)) Analysis results were obtained.
  • the analysis result which Si exists in 10 types of seats (Si (1) to Si (10)) was obtained.
  • N obtained the analysis result which exists in 14 types of seats (N (1) to N (14)).
  • O obtained the analysis result which exists in six types of seats (O (1) to O (6)).
  • the Ca 1.54 Eu 0.46 Si 5 O 3 N 6 crystal has the structure shown in FIG. 1 and is a tetrahedron composed of a combination of Si and O or N. It has been found that the structure has a structure in which a Ca element is contained in a skeleton in which is connected. In this crystal, the M element that becomes an activating ion such as Eu is incorporated into the crystal in a form that replaces a part of the Ca element.
  • a 2 (D, E) 5 X 9 crystal and A 2 Si 5 O 3 N 6 were obtained. There are crystals and A 2 (Si, Al) 5 (O, N) 9 crystals. Typical elements A are Ca, a mixture of Ca and Ba, or a mixture of Ca and Sr.
  • a 2 (D, E) 5 X 9 crystal in the Ca 2 Si 5 O 3 N 6 crystal, A enters the seat where Ca enters, D and E enter the seat where Si enters, and O and N enter. X can enter the seat.
  • the ratio of the number of atoms of A element to 2, D and E can be 5 in total, and X can be 9 in total.
  • the ratio of the cation of A, D, E and the anion of X satisfies the condition that the electrical neutrality in the crystal is maintained.
  • the ratio of the number of atoms of A element to 2 and Si and Al in total 5 and O and N in total 9 can be made.
  • the Si / Al ratio and the O / N ratio satisfy the condition that the electrical neutrality in the crystal is maintained.
  • the Ca 2 Si 5 O 3 N 6 based crystal of the present invention can be identified by X-ray diffraction or neutron diffraction.
  • a substance exhibiting the same diffraction as the X-ray diffraction result of the Ca 2 Si 5 O 3 N 6 based crystal shown in the present invention there is a crystal represented by A 2 (D, E) 5 X 9 .
  • a crystal in which the lattice constant and the atomic position are changed by replacing constituent elements with other elements in the Ca 2 Si 5 O 3 N 6 crystal.
  • the constituent element is replaced with another element, for example, a part or all of Ca in the Ca 2 Si 5 O 3 N 6 crystal is an A element other than Ca (where A is Mg, Ca , Sr, Ba or one or more elements selected from M) (where M is one or two elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb) There are those substituted with the above elements).
  • part or all of Si in the crystal is replaced with D element other than Si (where D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf). There is something.
  • Al in the crystal is an E element other than Al (where E is one or more elements selected from B, Al, Ga, In, Sc, Y, La).
  • E is one or more elements selected from B, Al, Ga, In, Sc, Y, La.
  • Those whose crystal structure does not change as a result of these element substitutions are Ca 2 Si 5 O 3 N 6 -based crystals. Substitution of elements changes the light emission characteristics, chemical stability, and thermal stability of the phosphor. Therefore, it is preferable that the phosphor is selected in a timely manner according to the application within a range in which the crystal structure is maintained.
  • the lattice constant of the Ca 2 Si 5 O 3 N 6- based crystal is changed by replacing other constituent elements with other elements or by activating elements such as Eu being dissolved, but the crystal structure and the sites occupied by atoms
  • the atomic position given by the coordinates does not change so much that the chemical bond between the skeletal atoms is broken.
  • the length of the chemical bond of Al—N and Si—N (proximity) calculated from the lattice constant and atomic coordinates obtained by Rietveld analysis of the X-ray diffraction and neutron diffraction results in the Cm space group.
  • the interatomic distance is within ⁇ 5% of the chemical bond length calculated from the lattice constant and atomic coordinates of the Ca 2 Si 5 O 3 N 6 crystal shown in Table 1, it is defined as the same crystal structure. Then, it is determined whether it is a Ca 2 Si 5 O 3 N 6 based crystal. This criterion is because, according to experiments, it has been confirmed that when the chemical bond length of the Ca 2 Si 5 O 3 N 6- based crystal changes beyond ⁇ 5%, the chemical bond is broken to form another crystal. is there.
  • Figure 2 is a graph illustrating a powder X-ray diffraction using a Cu K alpha line calculated from the crystal structure of Ca 1.54 Eu 0.46 Si 5 O 3 N 6 crystals. Since a synthetic product in powder form is obtained in the actual synthesis, it is determined whether a synthesized product of Ca 2 Si 5 O 3 N 6 crystals has been obtained by comparing the obtained synthetic product with the spectrum of FIG. be able to.
  • the main peak of the Ca 2 Si 5 O 3 N 6 -based crystal may be determined by about 10 having strong diffraction intensity.
  • Table 1 is important because it serves as a reference in specifying Ca 2 Si 5 O 3 N 6 -based crystals in that sense.
  • the approximate structure of the Ca 2 Si 5 O 3 N 6 based crystal structure can be defined by using another monoclinic crystal system. In this case, different space groups, lattice constants, and planes can be defined. Although it is expressed using an index, the X-ray diffraction result (for example, FIG. 2) and the crystal structure (for example, FIG.
  • At least the A element contains at least one element selected from the group consisting of Ca, Ba and Sr, the D element contains Si, and as necessary A composition containing Al in the E element, N in the X element, and O in the X element as necessary has high emission intensity.
  • the brightness is particularly high when A is a mixture of Ca and Ba, D is Si, E is Al, and X is a combination of N and O.
  • Inorganic crystal having the same crystal structure and crystal represented by Ca 2 Si 5 O 3 N 6 are, Ca 2 Si 5 O 3 N 6, (Ca, Ba) 2 Si 5 O 3 N 6, or, (Ca, The phosphor which is Sr) 2 Si 5 O 3 N 6 has a stable crystal and high emission intensity.
  • An inorganic crystal having the same crystal structure as the crystal represented by Ca 2 Si 5 O 3 N 6 is (Ca, Ba) 2 Si 5-x Al x O 3 + x N 6-x or (Ca, Sr) 2 Si 5
  • a phosphor having a crystal represented by a composition formula of ⁇ xAl x O 3 + x N 6-x (where 0 ⁇ x ⁇ 4) as a host has high emission intensity, and the change in color tone can be controlled by changing the composition. It is a phosphor.
  • the activator element Eu As the activator element Eu, a phosphor with particularly high emission intensity can be obtained.
  • the crystal in which the inorganic crystal is monoclinic is particularly Phosphors that are stable and use these as host crystals have high emission intensity.
  • the parameter d is the addition amount of the activator element. If it is less than 0.00001, the amount of luminescent ions is insufficient and the luminance is lowered. If it exceeds 0.05, the emission intensity may decrease due to concentration quenching due to the interaction between luminescent ions.
  • the parameter e is a parameter representing the composition of an alkaline earth element such as Ca, and if it is less than 0.08 or higher than 0.15, the crystal structure becomes unstable and the emission intensity decreases.
  • the parameter f is a parameter representing the composition of the D element such as Si, and if it is less than 0.2 or higher than 0.4, the crystal structure becomes unstable and the emission intensity decreases.
  • the parameter g is a parameter representing the composition of an E element such as Al, and if it is higher than 0.05, the crystal structure becomes unstable and the emission intensity decreases.
  • the parameter h is a parameter representing the composition of the X element such as O, N, F, etc. If it is less than 0.45 or higher than 0.65, the crystal structure becomes unstable and the light emission intensity decreases.
  • the X element is an anion, and the composition of the O, N, and F ratio is determined so that the cation of the A, M, D, and E elements and the neutral charge are maintained.
  • parameters f and g are 1/5 ⁇ f / (f + g) ⁇ 5/5
  • a composition satisfying the above condition has a stable crystal structure and high emission intensity.
  • the element X contains N and O, and the ratio of the number of N and O atoms contained in the inorganic compound is 2/9 ⁇ O / (O + N) ⁇ 7/9
  • a composition satisfying the above condition has a stable crystal structure and high emission intensity.
  • a phosphor containing at least Eu as an M element as an activator is a phosphor having a high emission intensity in the present invention, and a blue to red phosphor can be obtained with a specific composition.
  • a composition containing at least one element selected from the group consisting of Ca, Ba and Sr as the A element, at least Si as the D element, at least Al as the E element, and at least O and N as the X element is:
  • the crystal structure is stable and the emission intensity is high.
  • the phosphor represented by the above formula is Eu / (Ca + Ba) ratio or Eu / (Ca + Sr) ratio, Si / Al ratio, N / O ratio. Can be changed. Thereby, since the excitation wavelength and the emission wavelength can be continuously changed, the phosphor is easy to design a material.
  • a phosphor that is a single crystal particle or an aggregate of single crystals having an average particle diameter of 0.1 ⁇ m or more and 20 ⁇ m or less has high luminous efficiency and good operability when mounted on an LED. It is better to control.
  • the Fe, Co, and Ni impurity elements contained in the inorganic compound may reduce the emission intensity.
  • the total of these elements in the phosphor is 500 ppm or less, the influence of the decrease in emission intensity is reduced.
  • One embodiment of the present invention consists of Ca 2 Si 5 O 3 N 6 based crystals from a mixture of phosphor and other crystal phase or amorphous phase as a matrix, Ca 2 Si 5 O 3 N 6 system
  • a phosphor having a crystalline phosphor content of 20% by mass or more. This embodiment may be used when a target characteristic cannot be obtained with a Ca 2 Si 5 O 3 N 6 based phosphor alone or when a function such as conductivity is added.
  • the content of the Ca 2 Si 5 O 3 N 6 based crystal phosphor may be adjusted according to the intended characteristics, but if it is 20% by mass or less, the emission intensity may be lowered.
  • the phosphor When the phosphor is required to have conductivity such as for electron beam excitation, it is preferable to add an inorganic substance having conductivity as another crystal phase or amorphous phase.
  • Examples of the inorganic substance having conductivity include an oxide, an oxynitride, a nitride, or a mixture thereof containing one or more elements selected from Zn, Al, Ga, In, and Sn.
  • Examples thereof include zinc oxide, aluminum nitride, indium nitride, and tin oxide.
  • a second other phosphor may be added.
  • Other phosphors include BAM phosphor, ⁇ -sialon phosphor, ⁇ -sialon phosphor, (Sr, Ba) 2 Si 5 N 8 phosphor, CaAlSiN 3 phosphor, (Ca, Sr) AlSiN 3 phosphor Etc.
  • a phosphor having a peak at a wavelength in the range of 450 nm to 650 nm when irradiated with an excitation source there is a phosphor having a peak at a wavelength in the range of 450 nm to 650 nm when irradiated with an excitation source.
  • a phosphor of Ca 2 Si 5 O 3 N 6 based crystal activated with Eu has a light emission peak in this range by adjusting the composition.
  • a phosphor that emits light with vacuum ultraviolet light, ultraviolet light, visible light, electron beam, or X-ray having an excitation source with a wavelength of 100 nm to 450 nm. By using these excitation sources, light can be emitted efficiently.
  • Eu is fixed to an inorganic crystal having the same crystal structure as that of a crystal represented by A 2 (D, E) 5 X 9 or a crystal represented by Ca 2 Si 5 O 3 N 6.
  • a dissolved phosphor By adjusting the composition, irradiation with light from 290 nm to 450 nm emits blue to red fluorescence of 450 nm or more and 650 nm or less. Therefore, it is preferable to use it for blue to red light emission such as a white LED.
  • the color emitted when the excitation source is irradiated is a value of (x, y) on the CIE1931 chromaticity coordinates, 0 ⁇ x ⁇ 0.8 0 ⁇ y ⁇ 0.9
  • phosphors For example, Eu y (Ca, Ba) 2-y Si 5-x Al x O 3 + x N 6-x However, 0 ⁇ x ⁇ 4 0.0001 ⁇ y ⁇ 1
  • a phosphor that develops a color having a chromaticity coordinate in this range can be obtained. It is good to use for blue to red light emission such as white LED.
  • the phosphor of the present invention has a broad excitation range of electron beam, X-ray, and ultraviolet to visible light, and emits light from blue to red, compared with normal oxide phosphors and existing sialon phosphors.
  • a specific composition is characterized in that it exhibits blue to red of 450 nm to 650 nm, and the emission wavelength and emission peak width can be adjusted.
  • the phosphor of the present invention is suitable for lighting fixtures, image display devices, pigments, and ultraviolet absorbers due to such light emission characteristics.
  • the phosphor of the present invention is also excellent in heat resistance because it does not deteriorate even when exposed to high temperatures, and also has the advantage of excellent long-term stability in an oxidizing atmosphere and moisture environment, and is durable. Products with excellent properties can be provided.
  • the method for producing the phosphor of the present invention is not particularly defined.
  • a raw material that is a mixture of metal compounds and can form a phosphor of Ca 2 Si 5 O 3 N 6 crystal by firing.
  • the mixture can be obtained by firing in a temperature range of 1200 ° C. to 2200 ° C. in an inert atmosphere containing nitrogen.
  • the main crystal of the present invention is monoclinic and belongs to the space group Cm, crystals having a different crystal system or space group may be mixed depending on the synthesis conditions such as the firing temperature. Since the change in light emission characteristics is slight, it can be used as a high-luminance phosphor.
  • a mixture of metal compounds is a compound containing M, a compound containing A, a compound containing D, a compound containing E, and a compound containing X
  • M Is one or more elements selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Yb
  • A is one or more elements selected from Mg, Ca, Sr, Ba Element
  • D is one or more elements selected from Si, Ge, Sn, Ti, Zr, and Hf
  • E is one element selected from B, Al, Ga, In, Sc, Y, and La
  • two or more elements and X may be one or more elements selected from O, N, and F).
  • the compound containing M is a simple substance or two kinds selected from metals containing M, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides A mixture of the above, wherein the compound containing A is a simple substance selected from metals containing A, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides, or A mixture of two or more, wherein the compound containing D is a simple substance or two kinds selected from metals, silicides, oxides, carbonates, nitrides, oxynitrides, chlorides, fluorides, or oxyfluorides What is the above mixture is preferable because the raw materials are easily available and excellent in stability.
  • the compound containing X is preferably a simple substance or a mixture of two or more selected from oxides, nitrides, oxynitrides, fluorides
  • a phosphor of Ca 2 Si 5 O 3 N 6 crystal system activated with Eu at least one element selected from the group consisting of a nitride or oxide of europium and calcium, strontium and barium It is preferable to use a starting material containing a nitride, oxide or carbonate, and silicon oxide or silicon nitride because the reaction easily proceeds during firing.
  • the furnace used for firing has a high firing temperature, and the firing atmosphere is an inert atmosphere containing nitrogen. Therefore, carbon is used as a material for the high-temperature part of the furnace in a metal resistance heating method or a graphite resistance heating method.
  • a suitable electric furnace is preferred.
  • the inert atmosphere containing nitrogen is preferably in the pressure range of 0.1 MPa or more and 100 MPa or less because thermal decomposition of nitrides and oxynitrides which are starting materials and products is suppressed.
  • the oxygen partial pressure in the firing atmosphere is preferably 0.0001% or less in order to suppress the oxidation reaction of nitrides and oxynitrides as starting materials and products.
  • the firing time varies depending on the firing temperature, but is usually about 1 to 10 hours.
  • the phosphor in the form of powder or aggregate In order to manufacture the phosphor in the form of powder or aggregate, a method of firing after filling the container with the raw material held at a filling rate of 40% or less in bulk density may be used.
  • the bulk density By setting the bulk density to 40% or less, it is possible to avoid strong adhesion between particles.
  • the relative bulk density is a ratio of a value (bulk density) obtained by dividing the mass of the powder filled in the container by the volume of the container and the true density of the substance of the powder.
  • boron or boron nitride components are mixed from the container into the product, but if the amount is small, the light emission characteristics are not deteriorated, so the influence is small. Furthermore, the addition of a small amount of boron nitride may improve the durability of the product, which is preferable in some cases.
  • the average particle diameter of the raw material powder particles or aggregate is 500 ⁇ m or less because of excellent reactivity and operability.
  • a spray dryer, sieving, or air classification as a method for setting the particle size of the particles or aggregates to 500 ⁇ m or less because the work efficiency and operability are excellent.
  • the firing method is not a hot press, but a sintering method that does not apply mechanical pressure from the outside, such as an atmospheric pressure sintering method or a gas pressure sintering method, is a method for obtaining a powder or aggregate product. preferable.
  • the average particle diameter of the phosphor powder is preferably from 50 nm to 200 ⁇ m in terms of volume-based median diameter (d50) because the emission intensity is high.
  • the volume-based average particle diameter can be measured by, for example, a microtrack or a laser scattering method.
  • the average particle size of the phosphor powder synthesized by firing may be adjusted to 50 nm to 200 ⁇ m.
  • Defects in the powder or damage due to pulverization by heat-treating the phosphor powder after firing, phosphor powder after pulverization treatment, or phosphor powder after particle size adjustment at a temperature of 1000 ° C. or more and below the firing temperature May recover.
  • Defects and damage may cause a decrease in emission intensity. In this case, the emission intensity is recovered by heat treatment.
  • an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature is added and fired, which acts as a flux and promotes reaction and grain growth to obtain stable crystals. This may improve the emission intensity.
  • Fluoride chloride, iodide, bromide of one or more elements selected from Li, Na, K, Mg, Ca, Sr, Ba as an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature Or a mixture of one or more phosphates. Since these inorganic compounds have different melting points, they may be used properly depending on the synthesis temperature.
  • the emission intensity of the phosphor may be increased by washing with a solvent after firing to reduce the content of an inorganic compound that generates a liquid phase at a temperature lower than the firing temperature.
  • the phosphor of the present invention When the phosphor of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium. Moreover, it can also be used as a phosphor mixture containing the phosphor of the present invention.
  • the phosphor of the present invention dispersed in a liquid medium is called a phosphor-containing composition.
  • the liquid medium that can be used in the phosphor-containing composition of the present invention is a liquid medium that exhibits liquid properties under the desired use conditions, suitably disperses the phosphor of the present invention, and does not cause undesirable reactions. If there is, it is possible to select an arbitrary one according to the purpose.
  • the liquid medium include addition-reactive silicone resins, condensation-reactive silicone resins, modified silicone resins, epoxy resins, polyvinyl resins, polyethylene resins, polypropylene resins, and polyester resins before curing. These liquid media may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the amount of the liquid medium used may be appropriately adjusted according to the application, etc., but in general, the weight ratio of the liquid medium to the phosphor of the present invention is usually 3% by weight or more, preferably 5% by weight or more, Moreover, it is 30 weight% or less normally, Preferably it is the range of 15 weight% or less.
  • the phosphor-containing composition of the present invention may contain other optional components in addition to the phosphor of the present invention and the liquid medium, depending on its use and the like.
  • other components include a diffusing agent, a thickener, a bulking agent, and an interference agent.
  • silica-based fine powder such as Aerosil, alumina and the like can be mentioned.
  • the light emitting device of the present invention is configured using at least a light emitting body or a light emitting light source and the phosphor of the present invention.
  • Examples of the light emitter or light source include LED light emitting devices, laser diode light emitting devices, EL light emitting devices, and fluorescent lamps.
  • An LED light emitting device can be manufactured by using the phosphor of the present invention by a known method as described in JP-A-5-152609, JP-A-7-99345, JP-A-2927279, and the like. In this case, it is desirable that the light emitter or the light source emits light having a wavelength of 330 to 500 nm, and among these, an ultraviolet (or purple) LED light emitting element of 330 to 420 nm or a blue LED light emitting element of 420 to 500 nm is preferable.
  • the LED light-emitting elements are made of a nitride semiconductor such as GaN or InGaN.
  • the LED light-emitting element can be a light-emitting light source that emits light of a predetermined wavelength.
  • Examples of the light emitting device of the present invention include a white light emitting diode including the phosphor of the present invention, a lighting fixture including a plurality of white light emitting diodes, and a backlight for a liquid crystal panel.
  • Eu-activated ⁇ sialon phosphor in addition to the phosphor of the present invention, Eu-activated ⁇ sialon phosphor, Eu-activated ⁇ sialon yellow phosphor, Eu-activated Sr 2 Si 5 N 8 orange fluorescence body, Eu was activated (Ca, Sr) AlSiN 3 orange phosphor, and may further contain one or more phosphors selected from the CaAlSiN 3 red phosphor activated by Eu.
  • yellow phosphors other than the above, for example, YAG: Ce, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, or the like may be used.
  • the light emitting body or light emitting light source emits ultraviolet or visible light having a peak wavelength of 300 to 450 nm
  • the phosphor of the present invention emits blue to red light
  • the other phosphor of the present invention includes
  • a light-emitting device that emits white light or light other than white light by mixing light having a wavelength of 450 nm or more.
  • a blue phosphor that emits light having a peak wavelength of 420 nm to 500 nm or less by a light emitter or a light source can be included.
  • Such blue phosphors include AlN: (Eu, Si), BaMgAl 10 O 17 : Eu, SrSi 9 Al 19 ON 31 : Eu, LaSi 9 Al 19 N 32 : Eu, ⁇ -sialon: Ce, JEM : Ce and the like.
  • a green phosphor that emits light having a peak wavelength of 500 nm or more and 550 nm or less by a light emitting body or a light emitting light source can be included.
  • examples of such green phosphors include ⁇ -sialon: Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, and the like. is there.
  • a yellow phosphor that emits light having a peak wavelength of 550 nm or more and 600 nm or less by a light emitter or a light source can be included.
  • Examples of such a yellow phosphor include YAG: Ce, ⁇ -sialon: Eu, CaAlSiN 3 : Ce, La 3 Si 6 N 11 : Ce.
  • a red phosphor that emits light having a peak wavelength of 600 nm or more and 700 nm or less by a light emitter or a light source can be included.
  • red phosphor include CaAlSiN 3 : Eu, (Ca, Sr) AlSiN 3 : Eu, Ca 2 Si 5 N 8 : Eu, and Sr 2 Si 5 N 8 : Eu.
  • the light-emitting device of the present invention when an LED that emits light having a wavelength of 320 to 450 nm is used as a light emitter or a light-emitting light source, the light-emitting efficiency is high, so that a highly efficient light-emitting device can be configured.
  • the image display device of the present invention is composed of at least an excitation source and the phosphor of the present invention, and includes a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), a cathode ray tube (CRT) and the like. is there.
  • the phosphor of the present invention has been confirmed to emit light by excitation of vacuum ultraviolet rays of 100 to 190 nm, ultraviolet rays of 190 to 380 nm, electron beams, etc., and in combination of these excitation sources and the phosphor of the present invention, An image display apparatus as described above can be configured.
  • the phosphor of the present invention comprising an inorganic compound crystal phase having a specific chemical composition can be used as a pigment or a fluorescent pigment because it has a white or yellow object color. That is, when the phosphor of the present invention is irradiated with illumination such as sunlight or a fluorescent lamp, a white or yellow object color is observed, but since the color development is good and it does not deteriorate for a long time, The phosphor is suitable for an inorganic pigment. For this reason, when used for paints, inks, paints, glazes, colorants added to plastic products, etc., good color development can be maintained high over a long period of time.
  • the nitride phosphor of the present invention absorbs ultraviolet rays and is therefore suitable as an ultraviolet absorber. For this reason, when used as a paint, applied to the surface of a plastic product, or kneaded into a plastic product, the effect of blocking ultraviolet rays is high, and the product can be effectively protected from ultraviolet degradation.
  • the raw material powder used in the synthesis was a silicon nitride powder having a specific surface area of 11.2 m 2 / g, an oxygen content of 1.29 wt%, and an ⁇ -type content of 95% (SN-E10 manufactured by Ube Industries, Ltd.).
  • the crucible containing the mixed powder was set in a graphite resistance heating type electric furnace.
  • the firing operation is as follows. First, the firing atmosphere is set to a vacuum of 1 ⁇ 10 ⁇ 1 Pa or less with a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and the purity is 99.999 vol% at 800 ° C. Nitrogen was introduced to bring the pressure in the furnace to 1 MPa, and the temperature was raised to 1700 ° C. at 500 ° C. per hour and held at that temperature for 2 hours.
  • the synthesized product was observed with an optical microscope, and crystal particles having a size of 55 ⁇ m ⁇ 13 ⁇ m ⁇ 8 ⁇ m were collected from the synthesized product.
  • Elements contained in crystal particles using a scanning electron microscope (SEM; SU1510 manufactured by Hitachi High-Technologies Corporation) equipped with an energy dispersive element analyzer (EDS; QUANTAX manufactured by Bruker AXS). was analyzed.
  • SEM scanning electron microscope
  • EDS energy dispersive element analyzer
  • QUANTAX manufactured by Bruker AXS
  • this crystal was fixed to the tip of the glass fiber with an organic adhesive.
  • a single crystal X-ray diffractometer with a rotating counter cathode of MoK ⁇ - ray (SMART APEXII Ultra manufactured by Bruker AXS Co., Ltd.) is used to perform an X-ray diffraction measurement under the condition that the output of the X-ray source is 50 kV 50 mA. It was. As a result, it was confirmed that the crystal particles were a single crystal.
  • the crystal structure was determined from the X-ray diffraction measurement result using single crystal structure analysis software (APEX2 manufactured by Bruker AXS).
  • the obtained crystal structure data is shown in Table 1, and a diagram of the crystal structure is shown in FIG. Table 1 describes the crystal system, space group, lattice constant, atom type and atom position, and this data can be used to determine the shape and size of the unit cell and the arrangement of atoms in it. .
  • Si and Al enter at the same atomic position, and oxygen and nitrogen enter at the same atomic position, and when they are averaged as a whole, the composition ratio of the crystal is obtained.
  • the atomic positions are as shown in Table 1. In general, oxygen and nitrogen can enter the seat where X enters in a sialon-based crystal. However, since Ca is +2 and Si is +4, if the atomic position and the ratio of Ca and Si are known.
  • the ratio of O and N occupying the (O, N) position is determined from the electrical neutrality condition of the crystal.
  • the composition of this crystal determined from the Ca: Eu: Si ratio of the measured value of EDS and the crystal structure data was Ca 1.54 Eu 0.46 Si 5 O 3 N 6 .
  • the starting material composition and the crystal composition are different, this is because a composition other than Ca 1.54 Eu 0.46 Si 5 O 3 N 6 was produced as a small amount of the second phase. Since it is used, the analysis results show a pure Ca 1.54 Eu 0.46 Si 5 O 3 N 6 structure.
  • the Ca 2 Si 5 O 3 N 6 crystal could replace part or all of Ca with Ba or Sr while maintaining the crystal structure. That is, the crystal of A 2 Si 5 O 3 N 6 (A is one or two or a mixture selected from Ca, Ba and Sr) has the same crystal structure as the Ca 2 Si 5 O 3 N 6 crystal. Furthermore, a part of Si can be substituted with Al and a part of N can be substituted with oxygen, and this crystal is one composition of a crystal group having the same crystal structure as Ca 2 Si 5 O 3 N 6 Was confirmed.
  • the powder X-ray diffraction pattern calculated from the crystal structure data is shown in FIG. From now on, powder X-ray diffraction measurement of the synthesized product will be performed, and if the measured powder pattern is the same as in FIG. 2, it can be determined that the Ca 2 Si 5 O 3 N 6 crystal of FIG. 1 is formed. Further, the crystal constants of the Ca 2 Si 5 O 3 N 6 -based crystals with the crystal structure changed are calculated from the values of the lattice constants obtained by powder X-ray diffraction measurement and the crystal structure data of Table 1. Therefore, it can be determined that a Ca 2 Si 5 O 3 N 6 -based crystal is generated by comparing with the calculated pattern.
  • Example 35 When this crystal was irradiated with black light, it was confirmed that light was emitted from yellow to orange. Hereinafter, this crystal is treated as Example 35.
  • the raw materials were weighed so as to have the mixed composition (molar ratio) shown in Table 4.
  • the composition may differ between the design composition in Tables 2 and 3 and the mixed composition in Table 4.
  • the mixed composition was determined so that the amount of metal ions matched.
  • the weighed raw material powders were mixed for 5 minutes using a silicon nitride sintered pestle and mortar. Thereafter, the mixed powder was put into a crucible made of a boron nitride sintered body. The bulk density of the powder was about 20% to 30%.
  • the crucible containing the mixed powder was set in a graphite resistance heating type electric furnace.
  • the firing atmosphere is set to a vacuum of 1 ⁇ 10 ⁇ 1 Pa or less by a diffusion pump, heated from room temperature to 800 ° C. at a rate of 500 ° C. per hour, and nitrogen having a purity of 99.999 vol% at 800 ° C. Was introduced, the pressure in the furnace was set to 1 MPa, the temperature was raised to 500 ° C. per hour to the set temperature shown in Table 5, and the temperature was maintained for 2 hours.
  • the synthesized compound was pulverized using an agate mortar, and powder X-ray diffraction measurement was performed using Cu K ⁇ rays.
  • the main product phase is shown in Table 6.
  • the phase having the same crystal structure as that of the Ca 2 Si 5 O 3 N 6 crystal was the main product phase, and contained in an amount of 20% by mass or more.
  • the composite contains rare earth elements, alkaline earth metals, Si, Al, O, and N. That is, it was confirmed that the synthesized product was a phosphor in which the luminescent ion M of Eu was dissolved in a Ca 2 Si 5 O 3 N 6 based crystal.
  • the fired body thus obtained was coarsely pulverized and then pulverized by hand with a silicon nitride sintered crucible and mortar, and passed through a 30 ⁇ m sieve.
  • the average particle size was 3 to 8 ⁇ m.
  • the part in which the mixed raw material composition differs from the chemical composition of the composite is mixed in a small amount in the composite as the impurity second phase.
  • FIG. 3 is a graph showing the result of powder X-ray diffraction of the phosphor synthesized in Example 15.
  • FIG. 4 is a diagram showing an excitation spectrum and an emission spectrum of the phosphor synthesized in Example 15.
  • the powder X-ray diffraction result (FIG. 3) of the synthesized phosphor is in good agreement with the structural analysis result (FIG. 2).
  • the X-ray diffraction pattern is the same as that of the Ca 2 Si 5 O 3 N 6 crystal. In other words, it was confirmed that a crystal having the same crystal structure as the Ca 2 Si 5 O 3 N 6 crystal was the main component. Furthermore, in Example 15, it was confirmed from the measurement of EDS that the composite contains Eu, Ca, Ba, Al, Si, O, and N. Moreover, it was confirmed that the ratio of Eu: Ca: Ba: Al: Si was 0.02: 12.98: 3: 4: 36.
  • the synthesized product was a phosphor in which Eu was dissolved in a Ca 2 Si 5 O 3 N 6 based crystal.
  • Example 15 it was found that excitation was most efficient at 308 nm, and the emission spectrum when excited at 308 nm showed emission having a peak at 466 nm.
  • the emission color of the phosphor of Example 15 was in the range of 0 ⁇ x ⁇ 0.8 and 0 ⁇ y ⁇ 0.9 in the CIE1931 chromaticity coordinates.
  • Example 35 it was shown that a phosphor in which Eu as a M element was dissolved in the crystal represented by Ca 2 Si 5 O 3 N 6 was obtained.
  • Examples 1 to 34 and 36 as an inorganic crystal having the same crystal structure and crystal represented by Ca 2 Si 5 O 3 N 6 , (Ca, Ba) 2 Si 5 O 3 N 6, and, ( It was shown that a phosphor in which Eu as a M element was dissolved in Ca, Sr) 2 Si 5 O 3 N 6 was obtained.
  • (Ca, Ba) 2 Si 5-x Al x is used as an inorganic crystal having the same crystal structure as that of the crystal represented by Ca 2 Si 5 O 3 N 6. It was shown that a phosphor in which Eu as a M element was dissolved in O 3 + x N 6-x (where 0 ⁇ x ⁇ 4) was obtained. According to Example 36, since at least a part of Ca is substituted with Sr, (Ca, Sr) 2 Si 5-x Al x O 3 + x N 6-x (where 0 ⁇ x ⁇ 4) and M element A phosphor with a solid solution is also suggested.
  • the phosphor of the present invention is Eu y (Ca, Ba) 2-y Si 5-x Al x O 3 + x N 6-x (where 0 ⁇ x ⁇ 4). It was shown to be represented. According to Example 36, since at least a part of Ca is substituted with Sr, Eu y (Ca, Sr) is used as an inorganic crystal having the same crystal structure as the crystal represented by Ca 2 Si 5 O 3 N 6. A phosphor represented by 2-y Si 5-x Al x O 3 + x N 6-x (where 0 ⁇ x ⁇ 4) is also suggested.
  • FIG. 5 is a diagram showing the object color of the phosphor synthesized in Example 10.
  • FIG. 6 is a diagram showing the object color of the phosphor synthesized in Example 12.
  • the phosphor of the present invention had a white or yellow object color. Therefore, the phosphor of the present invention can be used as a pigment or a fluorescent pigment.
  • FIG. 7 is a schematic view showing a lighting fixture (bullet type LED lighting fixture) according to the present invention.
  • a so-called bullet-type white light-emitting diode lamp (1) shown in FIG. 7 was produced.
  • the lower electrode of the ultraviolet light emitting diode element (4) and the bottom surface of the recess are electrically connected by a conductive paste, and the upper electrode and the other lead wire (3) are electrically connected by a gold wire (5). It is connected to the.
  • the phosphor (7) is dispersed in the resin and mounted in the vicinity of the light emitting diode element (4).
  • the first resin (6) in which the phosphor is dispersed is transparent and covers the entire ultraviolet light emitting diode element (4).
  • the tip of the lead wire including the recess, the blue light emitting diode element, and the first resin in which the phosphor is dispersed are sealed with a transparent second resin (8).
  • the transparent second resin (8) has a substantially cylindrical shape as a whole, and has a lens-shaped curved surface at the tip, which is commonly called a shell type.
  • the phosphor powder prepared by mixing the yellow phosphor prepared in Example 23 and the JEM: Ce blue phosphor at a mass ratio of 7: 3 was mixed in an epoxy resin at a concentration of 37% by weight, and this was added to a dispenser.
  • a first resin (6) in which a mixture of the phosphor (7) was dispersed was formed by dropping an appropriate amount.
  • FIG. 8 is a schematic view showing a lighting fixture (substrate mounted LED lighting fixture) according to the present invention.
  • a chip-type white light emitting diode lamp (11) for board mounting shown in FIG. 8 was produced.
  • Two lead wires (12, 13) are fixed to a white alumina ceramic substrate (19) having a high visible light reflectivity, and one end of each of these wires is located at a substantially central portion of the substrate, and the other end is external. It is an electrode that is soldered when mounted on an electric board.
  • One of the lead wires (12) has a blue light emitting diode element (14) having an emission peak wavelength of 450 nm mounted and fixed at one end of the lead wire so as to be in the center of the substrate.
  • the lower electrode of the blue light emitting diode element (14) and the lower lead wire are electrically connected by a conductive paste, and the upper electrode and the other lead wire (13) are electrically connected by a gold thin wire (15). Connected.
  • a mixture of the first resin (16), the phosphor prepared in Example 23, and the phosphor (17) in which the CaAlSiN 3 : Eu red phosphor is mixed at a mass ratio of 9: 1 is in the vicinity of the light emitting diode element.
  • the first resin in which the phosphor is dispersed is transparent and covers the entire blue light emitting diode element (14).
  • a wall surface member (20) having a shape with a hole in the center is fixed on the ceramic substrate.
  • the wall member (20) has a central portion serving as a hole for holding the resin (16) in which the blue light emitting diode element (14) and the phosphor (17) are dispersed, and the portion facing the center is a slope. It has become.
  • This slope is a reflection surface for extracting light forward, and the curved surface shape of the slope is determined in consideration of the light reflection direction. Further, at least the surface constituting the reflecting surface is a surface having a high visible light reflectance having white or metallic luster.
  • the wall member (20) is made of a white silicone resin.
  • the hole at the center of the wall member forms a recess as the final shape of the chip-type light-emitting diode lamp.
  • the first resin in which the blue light-emitting diode element (14) and the phosphor (17) are dispersed A transparent second resin (18) is filled so as to seal all of 16).
  • the same epoxy resin was used for the first resin (16) and the second resin (18).
  • the addition ratio of the phosphor, the achieved chromaticity and the like are substantially the same as in Example 37.
  • FIG. 9 is a schematic view showing an image display device (plasma display panel) according to the present invention.
  • a red phosphor (CaAlSiN 3 : Eu 2+ ) (31), a green phosphor ( ⁇ -sialon: Eu 2+ ) (32), and a blue phosphor (33) of Example 15 of the present invention are formed on a glass substrate (44).
  • the electrode (37, 38, 39) and the dielectric layer (41) are applied to the inner surface of each cell (34, 35, 36).
  • vacuum ultraviolet rays are generated by Xe discharge in the cell, which excites the phosphor and emits red, green, and blue visible light, which is the protective layer.
  • (43) observed from the outside through the dielectric layer (42) and the glass substrate (45), and functions as an image display device.
  • FIG. 10 is a schematic view showing an image display device (field emission display panel) according to the present invention.
  • the blue phosphor (56) of Example 15 of the present invention is applied to the inner surface of the anode (53).
  • a voltage between the cathode (52) and the gate (54) electrons (57) are emitted from the emitter (55).
  • the electrons are accelerated by the voltage of the anode (53) and the cathode, collide with the blue phosphor (56), and the phosphor emits light.
  • the whole is protected by glass (51).
  • the figure shows one light-emitting cell consisting of one emitter and one phosphor, but in reality, a display that can produce a variety of colors is constructed by arranging a number of red and green cells in addition to blue.
  • the phosphor used for the green or red cell is not particularly specified, but a phosphor that emits high luminance with a low-speed electron beam may be used.
  • the nitride phosphor of the present invention has emission characteristics (emission color, excitation characteristics, emission spectrum) different from those of conventional phosphors, and has high emission intensity even when combined with an LED of 470 nm or less. It is a nitride phosphor that is suitably used for VFD, FED, PDP, CRT, white LED, etc. because it is thermally stable and has little decrease in phosphor brightness when exposed to an excitation source. . In the future, it can be expected to contribute greatly to the development of the industry in material design for various display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 従来の蛍光体とは異なる発光特性を有し、470nm以下のLEDと組み合わせた場合でも発光強度が高く、化学的および熱的に安定な蛍光体を提供すること。本発明の蛍光体は、A元素とD元素とE元素とX元素(Aは、Mg、Ca、Sr、Baから選ばれる少なくとも1種、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる少なくとも1種、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる少なくとも1種、Xは、O、N、Fから選ばれる少なくとも1種)を含み、A(D,E)で示される結晶、あるいは、CaSiで示される結晶、あるいは、CaSiで示される結晶と同一の結晶構造を有する無機結晶に、M元素(Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる少なくとも1種)が固溶した無機化合物からなる。

Description

蛍光体、その製造方法、発光装置および画像表示装置
 本発明は、A(D,E)(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示される結晶、あるいは、CaSiで示される結晶、あるいは、CaSiで示される結晶と同一の結晶構造を有する無機結晶、あるいはこれらの結晶の固溶体結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体とその製造方法、およびその用途に関する。
 蛍光体は、蛍光表示管(VFD(Vacuum-Fluorescent Display))、フィールドエミッションディスプレイ(FED(Field Emission Display)またはSED(Surface-Conduction Electron-Emitter Display))、プラズマディスプレイパネル(PDP(Plasma Display Panel))、陰極線管(CRT(Cathode-Ray Tube))、液晶ディスプレイバックライト(Liquid-Crystal Display Backlight)、白色発光ダイオード(LED(Light-Emitting Diode))などに用いられている。これらのいずれの用途においても、蛍光体を発光させるためには、蛍光体を励起するためのエネルギーを蛍光体に供給する必要があり、蛍光体は真空紫外線、紫外線、電子線、青色光などの高いエネルギーを有した励起源により励起されて、青色光、緑色光、黄色光、橙色光、赤色光等の可視光線を発する。しかしながら、蛍光体は前記のような励起源に曝される結果、蛍光体の輝度が低下し易く、輝度低下のない蛍光体が求められている。そのため、従来のケイ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、硫化物蛍光体などの蛍光体に代わり、高エネルギーの励起においても輝度低下の少ない蛍光体として、サイアロン蛍光体、酸窒化物蛍光体、窒化物蛍光体などの、結晶構造に窒素を含有する無機結晶を母体とする蛍光体が提案されている。
 このサイアロン蛍光体の一例は、概略以下に述べるような製造プロセスによって製造される。まず、窒化ケイ素(Si)、窒化アルミニウム(AlN)、酸化ユーロピウム(Eu)を所定のモル比に混合し、1気圧(0.1MPa)の窒素中において1700℃の温度で1時間保持してホットプレス法により焼成して製造される(例えば、特許文献1参照)。このプロセスで得られるEu2+イオンを付活したαサイアロンは、450から500nmの青色光で励起されて550から600nmの黄色の光を発する蛍光体となることが報告されている。また、αサイアロンの結晶構造を保ったまま、SiとAlの割合や酸素と窒素の割合を変えることにより、発光波長が変化することが知られている(例えば、特許文献2および特許文献3参照)。
 サイアロン蛍光体の別の例として、β型サイアロンにEu2+を付活した緑色の蛍光体が知られている(特許文献4参照)。この蛍光体では、結晶構造を保ったまま酸素含有量を変化させることにより発光波長が短波長に変化することが知られている(例えば、特許文献5参照)。また、Ce3+を付活すると青色の蛍光体となることが知られている(例えば、特許文献6参照)。
 酸窒化物蛍光体の一例は、JEM相(LaAl(Si6-zAl)N10-z)を母体結晶としてCeを付活させた青色蛍光体(特許文献7参照)が知られている。この蛍光体では、結晶構造を保ったままLaの一部をCaで置換することにより、励起波長が長波長化するとともに発光波長が長波長化することが知られている。
 酸窒化物蛍光体の別の例として、La-N結晶LaSi11を母体結晶としてCeを付活させた青色蛍光体(特許文献8参照)が知られている。
 窒化物蛍光体の一例は、CaAlSiNを母体結晶としてEu2+を付活させた赤色蛍光体(特許文献9参照)が知られている。この蛍光体を用いることにより、白色LEDの演色性を向上させる効果がある。光学活性元素としてCeを添加した蛍光体は橙色の蛍光体と報告されている。
 このように、蛍光体は、母体となる結晶と、それに固溶させる金属イオン(付活イオン)の組み合わせで、発光色が決まる。さらに、母体結晶と付活イオンの組み合わせは、発光スペクトル、励起スペクトルなどの発光特性や、化学的安定性、熱的安定性を決めるため、母体結晶が異なる場合や付活イオンが異なる場合は、異なる蛍光体と見なされる。また、化学組成が同じであっても結晶構造が異なる材料は、母体結晶が異なることにより発光特性や安定性が異なるため、異なる蛍光体と見なされる。
 さらに、多くの蛍光体においては母体結晶の結晶構造を保ったまま、構成する元素の種類を置換することが可能であり、これにより発光色を変化させることが行われている。例えば、YAGにCeを添加した蛍光体は緑色発光をするが、YAG結晶中のYの一部をGdで、Alの一部をGaで置換した蛍光体は黄色発光を呈する。さらに、CaAlSiNにEuを添加した蛍光体においては、Caの一部をSrで置換することにより結晶構造を保ったまま組成が変化し、発光波長が短波長化することが知られている。このように、結晶構造を保ったまま元素置換を行った蛍光体は、同じグループの材料と見なされる。
 これらのことから、新規蛍光体の開発においては、新規の結晶構造を持つ母体結晶を見つけることが重要であり、このような母体結晶に発光を担う金属イオンを付活して蛍光特性を発現させることにより、新規の蛍光体を提案することができる。
特許第3668770号明細書 特許第3837551号明細書 特許第4524368号明細書 特許第3921545号明細書 国際公開第2007/066733号公報 国際公開第2006/101096号公報 国際公開第2005/019376号公報 特開2005-112922号公報 特許第3837588号明細書
 本発明はこのような要望に応えようとするものであり、目的のひとつは、従来の蛍光体とは異なる発光特性(発光色や励起特性、発光スペクトル)を有し、かつ、470nm以下のLEDと組み合わせた場合でも発光強度が高く、化学的および熱的に安定な無機蛍光体を提供することにある。本発明のもうひとつの目的として、係る蛍光体を用いた耐久性に優れた発光装置および耐久性に優れる画像表示装置を提供することにある。
 本発明者らにおいては、かかる状況の下で、窒素を含む新しい結晶およびこの結晶構造中の金属元素やNを他の元素で置換した結晶を母体とする蛍光体について詳細な研究を行い、A(D,E)で示される結晶、および、CaSiで示される結晶、あるいはCaSiと同一の結晶構造を持つ結晶を母体とする無機蛍光体が、高輝度の蛍光を発することを見いだした。また、特定の組成では、青色から赤色の発光を示すことを見いだした。
 さらに、この蛍光体を用いることにより、高い発光効率を有し温度変動が小さい白色発光ダイオード(発光装置)や、それを用いた照明器具や、鮮やかな発色の画像表示装置が得られることを見いだした。
 本発明者は、上記実情に鑑み鋭意研究を重ねた結果、以下に記載する構成を講ずることによって特定波長領域で高い輝度の発光現象を示す蛍光体を提供することに成功した。また、以下の方法を用いて優れた発光特性を持つ蛍光体を製造することに成功した。さらに、この蛍光体を使用し、以下に記載する構成を講ずることによって優れた特性を有する発光装置、照明器具、画像表示装置、顔料、紫外線吸収材を提供することにも成功したもので、その構成は、以下に記載のとおりである。
 (1)少なくともA元素とD元素とE元素とX元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)の元素を含み、A(D,E)で示される結晶、あるいは、CaSiで示される結晶、あるいは、CaSiで示される結晶と同一の結晶構造を有する無機結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体。ここで、E元素は、下記に示すようにx=0で無機結晶に含まれない任意成分となり得る。すなわち、上述の「E元素」は、「必要に応じてE元素」と書き換えることができる。
 (2)前記A(D,E)で示される結晶は、少なくともA元素に、Ca、BaおよびSrからなる群から少なくとも1つ選択される元素を含み、D元素にSiを含み、必要に応じてE元素にAlを含み、X元素にNを含み、必要に応じてX元素にOを含む、前記(1)に記載の蛍光体。
 (3)前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、CaSi、(Ca,Ba)Si、または、(Ca,Sr)Siである、前記(1)に記載の蛍光体。
 (4)前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、(Ca,Ba)Si5-xAl3+x6-xまたは(Ca,Sr)Si5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)の組成式で示される、前記(1)に記載の蛍光体。
 (5)前記M元素がEuである、前記(1)に記載の蛍光体。
 (6)前記A(D,E)で示される結晶あるいは前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、単斜晶系の結晶である、前記(1)に記載の蛍光体。
 (7)前記A(D,E)で示される結晶あるいは前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、単斜晶系の結晶であり、空間群Cmの対称性を持ち、格子定数a、b、cが、
a = 0.70588±0.05 nm
b = 2.37480±0.05 nm
c = 0.96341±0.05 nm
の範囲の値である、前記(1)に記載の蛍光体。
 (8)前記無機化合物は、組成式M(ただし、式中d+e+f+g+h=1であり、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示され、パラメータd、e、f、g、hが、
0.00001 ≦ d ≦ 0.05
0.08 ≦ e ≦ 0.15
0.2 ≦ f ≦ 0.4
0 ≦ g ≦ 0.05
0.45 ≦ h ≦ 0.65
の条件を全て満たす範囲の組成で表される、前記(1)に記載の蛍光体。
 (9)前記パラメータd、e、f、g、hが、
d+e = (2/16)±0.05
f+g = (5/16)±0.05
h = (9/16)±0.05
の条件を全て満たす範囲の値である、前記(8)に記載の蛍光体。
 (10)前記パラメータf、gが、
1/5 ≦ f/(f+g) ≦ 5/5
の条件を満たす、前記(8)に記載の蛍光体。
 (11)前記X元素がNとOとを含み、前記無機化合物中に含まれるNとOの原子数の比が、
2/9 ≦ O/(O+N) ≦ 7/9
の条件を満たす、前記(8)に記載の蛍光体。
 (12)前記M元素として少なくともEuを含む、前記(8)に記載の蛍光体。
 (13)前記A元素としてCa、BaおよびSrからなる群から少なくとも1つ選択される元素を含み、前記D元素として少なくともSiを含み、前記E元素として少なくともAlを含み、前記X元素として少なくともOとNを含む、前記(8)に記載の蛍光体。
 (14)前記無機化合物の組成式がパラメータxとyを用いて
Eu(Ca,Ba)2ーySi5-xAl3+x6-x、または、
Eu(Ca,Sr)2-ySi5-xAl3+x6-x
ただし、
0 ≦ x ≦ 4
0.0001 ≦ y ≦ 1
で示される、前記(1)に記載の蛍光体。
 (15)前記無機化合物が、平均粒径0.1μm以上20μm以下の単結晶粒子あるいは単結晶の集合体である、前記(1)に記載の蛍光体。
 (16)前記無機化合物に含まれる、Fe、Co、Ni不純物元素の合計が500ppm以下である、前記(1)に記載の蛍光体。
 (17)前記(1)に記載の無機化合物からなる蛍光体と他の結晶相あるいはアモルファス相との混合物から構成され、蛍光体の含有量が20質量%以上である、前記(1)に記載の蛍光体。
 (18)前記他の結晶相あるいはアモルファス相が導電性を持つ無機物質である、前記(17)に記載の蛍光体。
 (19)前記導電性を持つ無機物質がZn、Al、Ga、In、Snから選ばれる1種または2種以上の元素を含む酸化物、酸窒化物、または窒化物、あるいはこれらの混合物である、前記(18)に記載の蛍光体。
 (20)前記他の結晶相あるいはアモルファス相が前記蛍光体とは異なる無機蛍光体である、前記(17)に記載の蛍光体。
 (21)励起源を照射することにより450nmから650nmの範囲の波長にピークを持つ蛍光を発光する、前記(1)に記載の蛍光体。
 (22)前記励起源が100nm以上450nm以下の波長を持つ真空紫外線、紫外線または可視光、電子線またはX線である、前記(21)に記載の蛍光体。
 (23)前記A(D,E)で示される結晶、前記CaSiで示される結晶、あるいは前記CaSiで示される結晶と同一の結晶構造を有する無機結晶にEuが固溶してなり、290nmから450nmの光を照射すると450nm以上650nm以下の青色から赤色の蛍光を発する、前記(1)に記載の蛍光体。
 (24)励起源が照射されたときに発光する色がCIE1931色度座標上の(x,y)の値で、
0 ≦ x ≦ 0.8
0 ≦ y ≦ 0.9
の条件を満たす、前記(1)に記載の蛍光体。
 (25)金属化合物の混合物であって焼成することにより、前記(1)に記載の蛍光体を構成しうる原料混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成する、前記(1)に記載の蛍光体の製造方法。
 (26)前記金属化合物の混合物が、Mを含有する化合物と、Aを含有する化合物と、Dを含有する化合物と、Eを含有する化合物と、Xを含有する化合物(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)とからなる、前記(25)に記載の蛍光体の製造方法。
 (27)前記Mを含有する化合物が、Mを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Aを含有する化合物が、Aを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Dを含有する化合物が、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物である、前記(26)に記載の蛍光体の製造方法。
 (28)前記金属化合物の混合物が、少なくとも、ユーロピウムの窒化物または酸化物と、カルシウム、バリウムおよびストロンチウムからなる群から選択される元素の窒化物または酸化物または炭酸塩と、酸化ケイ素または窒化ケイ素とを含有する、前記(26)に記載の蛍光体の製造方法。
 (29)前記窒素を含有する不活性雰囲気が0.1MPa以上100MPa以下の圧力範囲の窒素ガス雰囲気である、前記(25)に記載の蛍光体の製造方法。
 (30)焼成炉の発熱体、断熱体、または試料容器に黒鉛を使用する、前記(25)に記載の蛍光体の製造方法。
 (31)粉体または凝集体形状の金属化合物を、嵩密度40%以下の充填率に保持した状態で容器に充填した後に焼成することを特徴とする、前記(25)に記載の蛍光体の製造方法。
 (32)焼成に使う容器が窒化ホウ素製であることを特徴とする、前記(25)に記載の蛍光体の製造方法。
 (33)金属化合物の粉体粒子または凝集体の平均粒径が500μm以下である、前記(25)に記載の蛍光体の製造方法。
 (34)スプレイドライヤ、ふるい分け、または風力分級により、金属化合物の凝集体の平均粒径を500μm以下に制御する、前記(25)に記載の蛍光体の製造方法。
 (35)焼結手段がホットプレスによることなく、専ら常圧焼結法もしくはガス圧焼結法による手段である、前記(25)に記載の蛍光体の製造方法。
 (36)粉砕、分級、酸処理から選ばれる1種ないし複数の手法により、焼成により合成した蛍光体粉末の平均粒径を50nm以上20μm以下に粒度調整することを特徴とする、前記(25)に記載の蛍光体の製造方法。
 (37)焼成後の蛍光体粉末、あるいは粉砕処理後の蛍光体粉末、もしくは粒度調整後の蛍光体粉末を、1000℃以上で焼成温度以下の温度で熱処理することを特徴とする、前記(25)に記載の蛍光体の製造方法。
 (38)前記金属化合物の混合物に、焼成温度以下の温度で液相を生成する無機化合物を添加して焼成することを特徴とする、前記(25)に記載の蛍光体の製造方法。
 (39)前記焼成温度以下の温度で液相を生成する無機化合物が、Li、Na、K、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素のフッ化物、塩化物、ヨウ化物、臭化物、あるいはリン酸塩の1種または2種以上の混合物であることを特徴とする、前記(38)に記載の蛍光体の製造方法。
 (40)焼成後に溶剤で洗浄することにより、焼成温度以下の温度で液相を生成する無機化合物の含有量を低減させることを特徴とする、前記(38)に記載の蛍光体の製造方法。
 (41)少なくとも発光体と蛍光体とから構成される発光装置において、少なくとも前記(1)に記載の蛍光体を用いることを特徴とする発光装置。
 (42)前記発光体が330~500nmの波長の光を発する発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、または有機EL発光体(OLED)である、前記(41)に記載の発光装置。
 (43)前記発光装置が、白色発光ダイオード、または白色発光ダイオードを複数含む照明器具、液晶パネル用バックライトである、前記(41)に記載の発光装置。
 (44)前記発光体がピーク波長300~450nmの紫外または可視光を発し、前記(1)に記載の蛍光体が発する青色から赤色光と他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発することを特徴とする、前記(41)に記載の発光装置。
 (45)前記蛍光体は、前記発光体によりピーク波長420nm~500nm以下の光を発する青色蛍光体をさらに含む、前記(41)に記載の発光装置。
 (46)前記青色蛍光体が、AlN:(Eu,Si)、BaMgAl1017:Eu、SrSiAl19ON31:Eu、LaSiAl1932:Eu、α-サイアロン:Ce、JEM:Ceから選ばれる、前記(45)に記載の発光装置。
 (47)前記蛍光体は、前記発光体によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体をさらに含む、前記(41)に記載の発光装置。
 (48)前記緑色蛍光体が、β-サイアロン:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ca,Sr,Ba)Si:Euから選ばれる、前記(47)に記載の発光装置。
 (49)前記蛍光体は、前記発光体によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体をさらに含む、前記(41)に記載の発光装置。
 (50)前記黄色蛍光体が、YAG:Ce、α-sialon:Eu、CaAlSiN:Ce、LaSi11:Ceから選ばれる、前記(49)に記載の発光装置。
 (51)前記蛍光体は、前記発光体によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体をさらに含む、前記(41)に記載の発光装置。
 (52)前記赤色蛍光体が、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、CaSi:Eu、SrSi:Euから選ばれる、前記(51)に記載の発光装置。
 (53)前記発光体が320~450nmの波長の光を発するLEDである、前記(41)に記載の発光装置。
 (54)励起源と蛍光体から構成される画像表示装置において、少なくとも前記(1)に記載の蛍光体を用いることを特徴とする画像表示装置。
 (55)前記画像表示装置が、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)、液晶ディスプレイ(LCD)のいずれかである、前記(54)に記載の画像表示装置。
 (56)前記(1)に記載の無機化合物からなる顔料。
 (57)前記(1)に記載の無機化合物からなる紫外線吸収剤。
 本発明の蛍光体は、2価元素と3価元素と4価元素とを含む多元窒化物、または多元酸窒化物、なかでもA(D,E)で示される結晶、および、CaSiで示される結晶あるいはそれと同一の結晶構造を持つ他の結晶であるCaSi系結晶を主成分として含有していることにより、従来の酸化物蛍光体や酸窒化物蛍光体より高輝度の発光を示し、特定の組成では青色から赤色の蛍光体として優れている。励起源に曝された場合でも、この蛍光体は、輝度が低下しないため、白色発光ダイオード等の発光装置、照明器具、液晶用バックライト光源、VFD、FED、PDP、CRTなどに好適に使用される有用な蛍光体を提供するものである。また、この蛍光体は、紫外線を吸収することから顔料および紫外線吸収剤に好適である。
CaSi結晶の結晶構造を示す図。 CaSi結晶の結晶構造から計算したCuKα線を用いた粉末X線回折を示す図。 実施例15で合成した蛍光体の粉末X線回折結果を示す図。 実施例15で合成した蛍光体の励起スペクトルおよび発光スペクトルを示す図。 実施例10で合成した蛍光体の物体色を示す図。 実施例12で合成した蛍光体の物体色を示す図。 本発明による照明器具(砲弾型LED照明器具)を示す概略図。 本発明による照明器具(基板実装型LED照明器具)を示す概略図。 本発明による画像表示装置(プラズマディスプレイパネル)を示す概略図。 本発明による画像表示装置(フィールドエミッションディスプレイパネル)を示す概略図。
 以下、本発明の蛍光体を、図面を参照して詳しく説明する。
 本発明の蛍光体は、少なくともA元素と、D元素と、E元素と、X元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)の元素を含み、A(D,E)で示される結晶、あるいは、CaSiで示される結晶、あるいは、CaSiで示される結晶と同一の結晶構造を有する無機結晶、あるいはこれらの結晶の固溶体結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体は特に高い輝度を示す。
 CaSiで示される結晶は、本発明者が新たに合成し、結晶構造解析により新規結晶であると確認した、本発明より以前において報告されていない結晶である。
 図1は、CaSi結晶の結晶構造を示す図である。
 本発明者が合成したCa1.54Eu0.46SiはCaSi結晶のひとつであり、Ca1.54Eu0.46Si結晶について行った単結晶構造解析によれば、Ca1.54Eu0.46Si結晶は単斜晶系に属し、Cm空間群(International Tables for Crystallographyの8番の空間群)に属し、表1に示す結晶パラメータおよび原子座標位置を占める。表1において、格子定数a、b、cは単位格子の軸の長さを示し、α、β、γは単位格子の軸間の角度を示す。原子座標は単位格子中の各原子の位置を、単位格子を単位とした0から1の間の値で示す。この結晶中には、Eu、Ca、Si、N、Oの各原子が存在し、Euは2種類の席(Eu(1)からEu(2))に存在する解析結果を得た。Caは8種類の席(Ca(1)からCa(2)、Ca(3A)およびCa(3B)、Ca(4A)およびCa(4B)、Ca(5A)およびCa(5B))に存在する解析結果を得た。また、Siは10種類の席(Si(1)からSi(10))に存在する解析結果を得た。また、Nは14種類の席(N(1)からN(14))に存在する解析結果を得た。さらに、Oは6種類の席(O(1)からO(6))に存在する解析結果を得た。
Figure JPOXMLDOC01-appb-T000001
 表1のデータを使った解析の結果、Ca1.54Eu0.46Si結晶は図1に示す構造であり、Siと、OまたはNとの結合で構成される4面体が連なった骨格中にCa元素が含有された構造を持つことが分かった。この結晶中にはEu等の付活イオンとなるM元素はCa元素の一部を置換する形で結晶中に取り込まれる。
 合成および構造解析したCa1.54Eu0.46Si結晶と同一の結晶構造をとる結晶として、A(D,E)結晶とASi結晶とA(Si,Al)(O,N)結晶がある。代表的なA元素はCa、CaとBaとの混合またはCaとSrとの混合である。A(D,E)結晶においては、CaSi結晶において、Caが入る席にAが、Siが入る席にはDとEが入り、OとNが入る席にはXが入ることができる。これにより、結晶構造を保ったまま、A元素が2に対して、DとEが合計で5、Xが合計で9の原子数の比とすることができる。ただし、A、D、EのカチオンとXのアニオンの比は結晶中の電気的中性が保たれる条件を満たすことが望ましい。A(Si,Al)(O,N)結晶においては、CaSi結晶において、Siが入る席にはSiとAlが入り、Nが入る席にはOとNが入ることができる。これにより、結晶構造を保ったまま、A元素が2に対して、SiとAlが合計で5、OとNが合計で9の原子数の比とすることができる。ただし、Si/Al比とO/N比は結晶中の電気的中性が保たれる条件を満たすことが望ましい。
 本発明のCaSi系結晶は、X線回折や中性子線回折により同定することができる。本発明で示すCaSi系結晶のX線回折結果と同一の回折を示す物質として、A(D,E)で示される結晶がある。さらに、CaSi結晶において構成元素が他の元素と置き換わることにより格子定数や原子位置が変化した結晶がある。ここで、構成元素が他の元素で置き換わるものとは、例えば、CaSi結晶中のCaの一部または全てが、Ca以外のA元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素)あるいはM元素(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)で置換したものがある。さらに、結晶中のSiの一部または全てが、Si以外のD元素(ただし、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素)で置換したものがある。さらに、結晶中のAlの一部または全てが、Al以外のE元素(ただし、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素)で置換したものがある。さらに、結晶中のOとNの一部または全てがOとNまたはフッ素で置換したものがある。これらの置換は結晶中の全体の電荷が中性となるように置換される。これらの元素置換の結果、結晶構造が変わらないものは、CaSi系結晶である。元素の置換により、蛍光体の発光特性、化学的安定性、熱的安定性が変化するので、結晶構造が保たれる範囲に置いて、用途に応じて適時選択すると良い。
 CaSi系結晶は、その構成成分が他の元素で置き換わったり、Euなどの付活元素が固溶することによって格子定数は変化するが、結晶構造と原子が占めるサイトとその座標によって与えられる原子位置は骨格原子間の化学結合が切れるほどには大きく変わることはない。本発明では、X線回折や中性子線回折の結果をCmの空間群でリートベルト解析して求めた格子定数および原子座標から計算されたAl-NおよびSi-Nの化学結合の長さ(近接原子間距離)が、表1に示すCaSi結晶の格子定数と原子座標から計算された化学結合の長さと比べて±5%以内の場合は同一の結晶構造と定義してCaSi系結晶かどうかの判定を行う。この判定基準は、実験によればCaSi系結晶において化学結合の長さが±5%を越えて変化すると化学結合が切れて別の結晶となることが確認されたためである。
 さらに、固溶量が小さい場合は、CaSi系結晶の簡便な判定方法として次の方法がある。新たな物質について測定したX線回折結果から計算した格子定数と表1の結晶構造データを用いて計算した回折のピーク位置(2θ)が主要ピークについて一致したときに当該結晶構造が同じものと特定することができる。
 図2は、Ca1.54Eu0.46Si結晶の結晶構造から計算したCuKα線を用いた粉末X線回折を示す図である。実際の合成では粉末形態の合成品が得られるため、得られた合成品と図2のスペクトルを比較することによりCaSi結晶の合成物が得られたかどうかの判定を行うことができる。
 図2と比較対象となる物質を比べることにより、CaSi系結晶かどうかの簡易的な判定ができる。CaSi系結晶の主要ピークとしては、回折強度の強い10本程度で判定すると良い。表1は、その意味でCaSi系結晶を特定する上において基準となるもので重要である。また、CaSi系結晶の結晶構造を単斜晶の他の晶系を用いても近似的な構造を定義することができ、その場合異なった空間群と格子定数および面指数を用いた表現となるが、X線回折結果(例えば図2)および結晶構造(例えば図1)に変わりはなく、それを用いた同定方法や同定結果も同一の物となる。このため、本発明では、単斜晶系としてX線回折の解析を行うものとする。この表1に基づく物質の同定方法については、後述実施例において具体的に述べることとし、ここでは概略的な説明に留める。
 CaSi系結晶に、M元素として、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Tm、Ybから選ばれる1種または2種以上の元素を付活すると蛍光体が得られる。CaSi系結晶の組成、付活元素の種類および量により、励起波長、発光波長、発光強度等の発光特性が変化するので、用途に応じて選択するとよい。
 A(D,E)で示される結晶において、少なくともA元素にCa、BaおよびSrからなる群から少なくとも1つ選択される元素を含み、D元素にSiを含み、必要に応じてE元素にAlを含み、X元素にNを含み、必要に応じてX元素にOを含む組成は発光強度が高い。なかでも特に輝度が高いのは、AがCaとBaの混合であり、DがSi、EがAl、XがNとOの組み合わせである(Ca,Ba)(Si,Al)(O,N)結晶を母体とする蛍光体である。
 CaSiで示される結晶と同一の結晶構造を有する無機結晶が、CaSi、(Ca,Ba)Si、または、(Ca,Sr)Siである蛍光体は結晶が安定であり、発光強度が高い。
 CaSiで示される結晶と同一の結晶構造を有する無機結晶が、(Ca,Ba)Si5-xAl3+x6-xまたは(Ca,Sr)Si5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)の組成式で示される結晶をホストとする蛍光体は、発光強度が高く、組成を変えることにより色調の変化が制御できる蛍光体である。
 付活元素MとしてEuは特に発光強度が高い蛍光体が得られる。
 A(D,E)で示される結晶あるいはCaSiで示される結晶と同一の結晶構造を有する無機結晶において、無機結晶が単斜晶系である結晶は特に安定であり、これらをホスト結晶とする蛍光体は発光強度が高い。
 さらに、A(D,E)で示される結晶あるいはCaSiで示される結晶と同一の結晶構造を有する無機結晶が、単斜晶系の結晶であり、空間群Cmの対称性を持ち、格子定数a、b、cが、
a = 0.70588±0.05 nm
b = 2.37480±0.05 nm
c = 0.96341±0.05 nm
の範囲のものは結晶が特に安定であり、これらをホスト結晶とする蛍光体は発光強度が高い。この範囲を外れると結晶が不安定となり発光強度が低下することがある。
 組成式M(ただし、式中d+e+f+g+h=1であり、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示され、パラメータd、e、f、g、hが、
0.00001 ≦ d ≦0.05
0.08 ≦ e ≦0.15
0.2 ≦ f ≦ 0.4
0 ≦ g ≦ 0.05
0.45 ≦ h ≦ 0.65
の条件を全て満たす蛍光体は特に発光強度が高い。
 パラメータdは、付活元素の添加量であり、0.00001より少ないと発光イオンの量が不十分で輝度が低下する。0.05より多いと発光イオン間の相互作用による濃度消光のため発光強度が低下する恐れがある。パラメータeは、Ca等のアルカリ土類元素の組成を表すパラメータであり、0.08より少ないか0.15より高いと結晶構造が不安定になり発光強度が低下する。パラメータfは、Si等のD元素の組成を表すパラメータであり、0.2より少ないか0.4より高いと結晶構造が不安定になり発光強度が低下する。パラメータgは、Al等のE元素の組成を表すパラメータであり、0.05より高いと結晶構造が不安定になり発光強度が低下する。パラメータhは、O、N、F等のX元素の組成を表すパラメータであり、0.45より少ないか0.65より高いと結晶構造が不安定になり発光強度が低下する。X元素はアニオンであり、A、M、D、E元素のカチオンと中性の電荷が保たれるようにO、N、F比の組成が決まる。
 さらに、パラメータd、e、f、g、hが、
d+e = (2/16)±0.05
f+g = (5/16)±0.05
h = (9/16)±0.05
の条件を全て満たす範囲の値の結晶は結晶構造が安定であり特に発光強度が高い。なかでも、
d+e = 2/16
f+g = 5/16
h = 9/16
の条件を全て満たす値の結晶、すなわち、(M,A)(D,E)の組成を持つ結晶は、結晶構造が特に安定であり特に発光強度が高い。
 さらに、パラメータf、gが、
1/5 ≦ f/(f+g) ≦ 5/5
の条件を満たす組成は、結晶構造が安定であり発光強度が高い。
 X元素がNとOとを含み、無機化合物中に含まれるNとOの原子数の比が、
2/9 ≦ O/(O+N) ≦ 7/9
の条件を満たす組成は、結晶構造が安定であり発光強度が高い。
 付活元素であるM元素として少なくともEuを含む蛍光体は、本発明の中でも発光強度が高い蛍光体であり、特定の組成では青色から赤色の蛍光体が得られる。
 A元素としてCa、BaおよびSrからなる群から少なくとも1つ選択される元素を含み、D元素として少なくともSiを含み、E元素として少なくともAlを含み、X元素として少なくともOとNを含む組成は、結晶構造が安定であり、発光強度が高い。
 組成式がパラメータxとyを用いて
Eu(Ca,Ba)2-ySi5-xAl3+x6-x、または、
Eu(Ca,Sr)2-ySi5-xAl3+x6-x
ただし、
0 ≦ x ≦ 4
0.0001 ≦ y ≦ 1
で示される蛍光体は、安定な結晶構造を保ったままxとyのパラメータを変えることによる組成範囲でEu/(Ca+Ba)比またはEu/(Ca+Sr)比、Si/Al比、N/O比を変化させることができる。これにより、励起波長や発光波長を連続的に変化させることができるため、材料設計がやりやすい蛍光体である。
 無機化合物が、平均粒径0.1μm以上20μm以下の単結晶粒子あるいは単結晶の集合体である蛍光体は発光効率が高く、LEDに実装する場合の操作性がよいため、この範囲の粒径に制御するのがよい。
 無機化合物に含まれる、Fe、Co、Ni不純物元素は発光強度低下の恐れがある。蛍光体中のこれらの元素の合計が500ppm以下とすることにより、発光強度低下の影響が少なくなる。
 本発明の実施形態の1つとして、CaSi系結晶を母体とする蛍光体と他の結晶相あるいはアモルファス相との混合物から構成され、CaSi系結晶の蛍光体の含有量が20質量%以上である蛍光体がある。CaSi系結晶の蛍光体単体では目的の特性が得られない場合や導電性等の機能を付加する場合に本実施形態を用いると良い。CaSi系結晶蛍光体の含有量は目的とする特性により調整するとよいが、20質量%以下では発光強度が低くなる恐れがある。
 電子線励起の用途など蛍光体に導電性が必要とされる場合は、他の結晶相あるいはアモルファス相として導電性を持つ無機物質を添加すると良い。
 導電性を持つ無機物質としては、Zn、Al、Ga、In、Snから選ばれる1種または2種以上の元素を含む酸化物、酸窒化物、または窒化物、あるいはこれらの混合物を挙げることができる例えば、酸化亜鉛、窒化アルミニウム、窒化インジウム、酸化スズなどを挙げることができる。
 CaSi系結晶の蛍光体単体では目的とする発光スペクトルが得られない場合は、第2の他の蛍光体を添加するとよい。他の蛍光体としては、BAM蛍光体、β-サイアロン蛍光体、α-サイアロン蛍光体、(Sr,Ba)Si蛍光体、CaAlSiN蛍光体、(Ca,Sr)AlSiN蛍光体等を挙げることができる。
 本発明の実施形態の1つとして、励起源を照射することにより450nmから650nmの範囲の波長にピークを持つ蛍光体がある。例えば、Euを付活したCaSi系結晶の蛍光体は組成の調整によりこの範囲に発光ピークを持つ。
 本発明の実施形態の1つとして、励起源が100nm以上450nm以下の波長を持つ真空紫外線、紫外線または可視光、電子線またはX線で発光する蛍光体がある。これらの励起源を用いることにより効率よく発光させることができる。
 本発明の実施形態の1つとして、A(D,E)で示される結晶あるいはCaSiで示される結晶と同一の結晶構造を有する無機結晶にEuが固溶した蛍光体がある。組成を調整することにより、290nmから450nmの光を照射すると450nm以上650nm以下の青色から赤色の蛍光を発するので、白色LED等の青色から赤色発光の用途に用いると良い。
 本発明の実施形態の1つとして、励起源が照射されたときに発光する色がCIE1931色度座標上の(x,y)の値で、
0 ≦ x ≦ 0.8
0 ≦ y ≦ 0.9
範囲の蛍光体がある。例えば、
Eu(Ca,Ba)2-ySi5-xAl3+x6-x
ただし、
0 ≦ x ≦ 4
0.0001 ≦ y ≦ 1
で示される組成に調整することにより、この範囲の色度座標の色を発色する蛍光体が得られる。白色LED等の青色から赤色発光の用途に用いると良い。
 このように本発明の蛍光体は、通常の酸化物蛍光体や既存のサイアロン蛍光体と比べて、電子線やX線、及び紫外線から可視光の幅広い励起範囲を持つこと、青色から赤色の発光をすること、特に特定の組成では450nm~650nmの青色から赤色を呈し、かつ、発光波長や発光ピーク幅が調節可能であることが特徴である。しかして、このような発光特性により、本発明の蛍光体は、照明器具、画像表示装置、顔料、紫外線吸収剤に好適である。本発明の蛍光体はまた、高温にさらしても劣化しないことから耐熱性に優れており、酸化雰囲気及び水分環境下での長期間の安定性にも優れているという利点をも有し、耐久性に優れた製品を提供し得る。
 このような本発明の蛍光体の製造方法は特に規定されないが、例えば、金属化合物の混合物であって、焼成することにより、CaSi系結晶の蛍光体を構成しうる原料混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成することにより得ることができる。本発明の主結晶は単斜晶系で空間群Cmに属するが、焼成温度等の合成条件により、これと異なる結晶系や空間群を持つ結晶が混入する場合がありうるが、この場合においても、発光特性の変化は僅かであるため高輝度蛍光体として使用することができる。
 出発原料としては、例えば、金属化合物の混合物が、Mを含有する化合物と、Aを含有する化合物と、Dを含有する化合物と、Eを含有する化合物と、Xを含有する化合物(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)を用いると良い。
 出発原料として、Mを含有する化合物が、Mを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、Aを含有する化合物が、Aを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、Dを含有する化合物が、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であるものは、原料が入手しやすく安定性に優れるため好ましい。Xを含有する化合物が、酸化物、窒化物、酸窒化物、フッ化物、酸フッ化物から選ばれる単体または2種以上の混合物であるものは、原料が入手しやすく安定性に優れるため好ましい。
 Euを付活したCaSi結晶系の蛍光体を製造する場合は、少なくともユーロピウムの窒化物または酸化物と、カルシウム、ストロンチウムおよびバリウムからなる群から少なくとも1つ選択される元素の窒化物、酸化物または炭酸塩と、酸化ケイ素または窒化ケイ素とを含有する出発原料を用いるのが、焼成時に反応が進行しやすいため好ましい。
 焼成に用いる炉は、焼成温度が高温であり、また焼成雰囲気が窒素を含有する不活性雰囲気であることから、金属抵抗加熱方式又は黒鉛抵抗加熱方式で、炉の高温部の材料として炭素を用いた電気炉が好適である。窒素を含有する不活性雰囲気が0.1MPa以上100MPa以下の圧力範囲では、出発原料や生成物である窒化物や酸窒化物の熱分解が抑えられるため好ましい。焼成雰囲気中の酸素分圧は0.0001%以下が出発原料や生成物である窒化物や酸窒化物の酸化反応を抑制するために好ましい。
 なお、焼成時間は焼成温度によっても異なるが、通常1~10時間程度である。
 蛍光体を粉体または凝集体形状で製造するには、原料を嵩密度40%以下の充填率に保持した状態で容器に充填した後に焼成する方法をとるとよい。嵩密度を40%以下の充填率にすることにより、粒子同士の強固な接着をさけることができる。ここで、相対嵩密度とは、容器に充填された粉体の質量を容器の容積で割った値(嵩密度)と粉体の物質の真密度との比である。
 原料混合物の焼成に当って、原料化合物を保持する容器としては種々の耐熱性材料が使用しうるが、本発明に使用する金属窒化物に対する材質劣化の悪影響が低いことから、学術雑誌Journal of the American Ceramic Society 2002年85巻5号1229ページないし1234ページに記載の、α-サイアロンの合成に使用された窒化ホウ素をコートしたグラファイトるつぼに示されるように窒化ホウ素をコートした容器や、あるいは窒化ホウ素焼結体が適している。このような条件で焼成を行うと、容器から製品にホウ素あるいは窒化ホウ素成分が混入するが、少量であれば発光特性は低下しないので影響は少ない。さらに少量の窒化ホウ素の添加により、製品の耐久性が向上することがあるので、場合によっては好ましい。
 蛍光体を粉体または凝集体形状で製造するには、原料の粉体粒子または凝集体の平均粒径は500μm以下とすると、反応性と操作性に優れるので好ましい。
 粒子または凝集体の粒径を500μm以下にする方法として、スプレイドライヤ、ふるい分け、または風力分級を用いると作業効率と操作性にすぐれるので好ましい。
 焼成の手法は、ホットプレスによることなく、常圧焼結法やガス圧焼結法などの外部から機械的な加圧を施さない焼結手法が、粉体または凝集体の製品を得る手法として好ましい。
 蛍光体粉末の平均粒径は、体積基準のメディアン径(d50)で50nm以上200μm以下のものが、発光強度が高いので好ましい。体積基準の平均粒径の測定は、例えば、マイクロトラックやレーザ散乱法によって測定できる。粉砕、分級、酸処理から選ばれる1種ないし複数の手法を用いることにより、焼成により合成した蛍光体粉末の平均粒径を50nm以上200μm以下に粒度調整するとよい。
 焼成後の蛍光体粉末、あるいは粉砕処理後の蛍光体粉末、もしくは粒度調整後の蛍光体粉末を、1000℃以上で焼成温度以下の温度で熱処理することにより、粉末に含まれる欠陥や粉砕による損傷が回復することがある。欠陥や損傷は発光強度の低下の要因となることがあり、この場合熱処理により発光強度が回復する。
 蛍光体の合成のための焼成時に、焼成温度以下の温度で液相を生成する無機化合物を添加して焼成することによりフラックスとして働き、反応や粒成長が促進されて安定な結晶が得られることがあり、これによって発光強度が向上することがある。
 焼成温度以下の温度で液相を生成する無機化合物として、Li、Na、K、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素のフッ化物、塩化物、ヨウ化物、臭化物、あるいはリン酸塩の1種または2種以上の混合物を挙げることができる。これらの無機化合物はそれぞれ融点が異なるため、合成温度によって使い分けると良い。
 さらに、焼成後に溶剤で洗浄することにより、焼成温度以下の温度で液相を生成する無機化合物の含有量を低減させることにより、蛍光体の発光強度が高くなることがある。
 本発明の蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態で用いることが好ましい。また、本発明の蛍光体を含有する蛍光体混合物として用いることもできる。本発明の蛍光体を液体媒体中に分散させたものを、蛍光体含有組成物と呼ぶものとする。
 本発明の蛍光体含有組成物に使用可能な液体媒体としては、所望の使用条件下において液状の性質を示し、本発明の蛍光体を好適に分散させると共に、好ましくない反応等を生じないものであれば、任意のものを目的等に応じて選択することが可能である。液体媒体の例としては、硬化前の付加反応型シリコーン樹脂、縮合反応型シリコーン樹脂、変性シリコーン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等が挙げられる。これらの液体媒体は一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。
 液状媒体の使用量は、用途等に応じて適宜調整すればよいが、一般的には、本発明の蛍光体に対する液状媒体の重量比で、通常3重量%以上、好ましくは5重量%以上、また、通常30重量%以下、好ましくは15重量%以下の範囲である。
 また、本発明の蛍光体含有組成物は、本発明の蛍光体及び液状媒体に加え、その用途等に応じて、その他の任意の成分を含有していてもよい。その他の成分としては、拡散剤、増粘剤、増量剤、干渉剤等が挙げられる。具体的には、アエロジル等のシリカ系微粉、アルミナ等が挙げられる。
 本発明の発光装置は、少なくとも発光体または発光光源と本発明の蛍光体とを用いて構成される。
 発光体または発光光源としては、LED発光器具、レーザダイオード発光器具、EL発光器具、蛍光ランプなどがある。LED発光装置では、本発明の蛍光体を用いて、特開平5-152609、特開平7-99345、特許公報第2927279号などに記載されているような公知の方法により製造することができる。この場合、発光体または発光光源は330~500nmの波長の光を発するものが望ましく、中でも330~420nmの紫外(または紫)LED発光素子または420~500nmの青色LED発光素子が好ましい。これらのLED発光素子としては、GaNやInGaNなどの窒化物半導体からなるものがあり、組成を調整することにより、所定の波長の光を発する発光光源となり得る。
 本発明の発光装置としては、本発明の蛍光体を含む、白色発光ダイオード、または白色発光ダイオードを複数含む照明器具、液晶パネル用バックライト等がある。
 このような発光装置において、本発明の蛍光体に加えて、Euを付活したβサイアロン蛍光体、Euを付活したαサイアロン黄色蛍光体、Euを付活したSrSi橙色蛍光体、Euを付活した(Ca,Sr)AlSiN橙色蛍光体、および、Euを付活したCaAlSiN赤色蛍光体から選ばれる1種または2種以上の蛍光体をさらに含んでもよい。上記以外の黄色蛍光体としては、例えば、YAG:Ce、(Ca,Sr,Ba)Si:Euなどを用いてもよい。
 本発明の発光装置の一形態として、発光体または発光光源がピーク波長300~450nmの紫外または可視光を発し、本発明の蛍光体が発する青色から赤色光と、本発明の他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発する発光装置がある。
 本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長420nm~500nm以下の光を発する青色蛍光体を含むことができる。このような、青色蛍光体としては、AlN:(Eu,Si)、BaMgAl1017:Eu、SrSiAl19ON31:Eu、LaSiAl1932:Eu、α-サイアロン:Ce、JEM:Ceなどがある。
 本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体を含むことができる。このような、緑色蛍光体としては、例えば、β-サイアロン:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ca,Sr,Ba)Si:Euなどがある。
 本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体を含むことができる。このような黄色蛍光体としては、YAG:Ce、α-sialon:Eu、CaAlSiN:Ce、LaSi11:Ceなどがある。
 本発明の発光装置の一形態として、本発明の蛍光体に加えて、さらに、発光体または発光光源によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体を含むことができる。このような赤色蛍光体としては、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、CaSi:Eu、SrSi:Euなどがある。
 本発明の発光装置の一形態として、発光体または発光光源が320~450nmの波長の光を発するLEDを用いると発光効率が高いため、高効率の発光装置を構成することができる。
 本発明の画像表示装置は少なくも励起源と本発明の蛍光体とから構成され、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)などがある。本発明の蛍光体は、100~190nmの真空紫外線、190~380nmの紫外線、電子線などの励起で発光することが確認されており、これらの励起源と本発明の蛍光体との組み合わせで、上記のような画像表示装置を構成することができる。
 特定の化学組成を有する無機化合物結晶相よりなる本発明の蛍光体は、白色または黄色の物体色を持つことから顔料又は蛍光顔料として使用することができる。すなわち、本発明の蛍光体に太陽光や蛍光灯などの照明を照射すると白色または黄色の物体色が観察されるが、その発色がよいこと、そして長期間に渡り劣化しないことから、本発明の蛍光体は無機顔料に好適である。このため、塗料、インキ、絵の具、釉薬、プラスチック製品に添加する着色剤などに用いると長期間に亘って良好な発色を高く維持することができる。
 本発明の窒化物蛍光体は、紫外線を吸収するため紫外線吸収剤としても好適である。このため、塗料として用いたり、プラスチック製品の表面に塗布したり内部に練り込んだりすると、紫外線の遮断効果が高く、製品を紫外線劣化から効果的に保護することができる。
 本発明を以下に示す実施例によってさらに詳しく説明するが、これはあくまでも本発明を容易に理解するための一助として開示したものであって、本発明は、これらの実施例に限定されるものではない。
[合成に使用した原料]
 合成に使用した原料粉末は、比表面積11.2m/gの粒度の、酸素含有量1.29重量%、α型含有量95%の窒化ケイ素粉末(宇部興産(株)製のSN-E10グレード)と、二酸化ケイ素粉末(SiO;高純度化学研究所製)と、比表面積13.2m/gの粒度の酸化アルミニウム粉末(大明化学工業製タイミクロン)と、酸化カルシウム(高純度化学製)と、酸化ストロンチウム(高純度化学製)と、酸化バリウム(高純度化学製)と、酸化ユーロピウム(Eu;純度99.9%信越化学工業(株)製)であった。
[結晶Ca1.54Eu0.46Siの合成と構造解析]
 窒化ケイ素(Si)、二酸化ケイ素(SiO)、酸化カルシウム(CaO)および酸化ユーロピウム(Eu)をカチオン比がCa:Eu:Si=1.54:0.64:5となるような割合で混合組成を設計した。これらの原料粉末を、上記混合組成となるように秤量し、窒化ケイ素焼結体製乳棒と乳鉢を用いて5分間混合を行なった。次いで、得られた混合粉末を、窒化ホウ素焼結体製のるつぼに投入した。混合粉末(粉体)の嵩密度は約33%であった。
 混合粉末が入ったるつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を1×10-1Pa以下圧力の真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して炉内の圧力を1MPaとし、毎時500℃で1700℃でまで昇温し、その温度で2時間保持した。
 合成物を光学顕微鏡で観察し、合成物中から55μm×13μm×8μmの大きさの結晶粒子を採取した。この粒子をエネルギー分散型元素分析器(EDS;ブルカー・エイエックスエス社製のQUANTAX)を備えた走査型電子顕微鏡(SEM;日立ハイテクノロジーズ社製のSU1510)を用いて、結晶粒子に含まれる元素の分析を行った。その結果、Ca、Eu、Si、O、N元素の存在が確認され、Ca、Eu、Siの含有原子数の比は、1.54:0.64:5であることが測定された。
 次にこの結晶をガラスファイバーの先端に有機系接着剤で固定した。これをMoKα線の回転対陰極付きの単結晶X線回折装置(ブルカー・エイエックスエス社製のSMART APEXII Ultra)を用いて、X線源の出力が50kV50mAの条件でX線回折測定を行った。その結果、この結晶粒子が単結晶であることを確認した。
 次に、X線回折測定結果から単結晶構造解析ソフトウエア(ブルカー・エイエックスエス社製のAPEX2)を用いて結晶構造を求めた。得られた結晶構造データを表1に、結晶構造の図を図1に示す。表1には、結晶系、空間群、格子定数、原子の種類と原子位置が記述してあり、このデータを用いて、単位格子の形および大きさとその中の原子の並びを決めることができる。なお、SiとAlは同じ原子位置にある割合で入り、酸素と窒素は同じ原子位置にある割合で入り、全体として平均化したときにその結晶の組成割合となる。
 この結晶は、単斜晶系(monoclinic)に属し、空間群Cm、(International Tables for Crystallographyの8番の空間群)に属し、格子定数a、b、cが、a=0.70588nm、b=2.37480nm、c=0.96341nmであり、角度α、β、γが、α=90°、β=109.038°、γ=90°であった。また原子位置は表1に示す通りであった。また、一般的にサイアロン系の結晶においてXが入る席には酸素と窒素が入ることができるが、Caは+2価、Siは+4価であるので、原子位置とCaとSiの比がわかれば、(O,N)位置を占めるOとNの比は結晶の電気的中性の条件から求められる。EDSの測定値のCa:Eu:Si比と結晶構造データから求めたこの結晶の組成は、Ca1.54Eu0.46Siであった。なお、出発原料組成と結晶組成が異なる場合は、少量の第二相としてCa1.54Eu0.46Si以外の組成物が生成したことによるが、本測定は単結晶を用いているので解析結果は純粋なCa1.54Eu0.46Si構造を示している。
 類似組成の検討を行ったところ、CaSi結晶は、結晶構造を保ったままCaの一部または全てをBaまたはSrで置換できることがわかった。すなわち、ASi(AはCa、BaおよびSrから選ばれる1種または2種または混合)の結晶はCaSi結晶と同一の結晶構造を持つ。さらにSiの一部をAlで置換、Nの一部を酸素で置換することができ、この結晶はCaSiと同一の結晶構造を持つ結晶グループの1つの組成であることが確認された。また、電気的中性の条件から、(Ca,Ba)Si5-xAl3+x6-xまたは(Ca,Sr)Si5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)で示される組成としても記述できる。
 結晶構造データからこの結晶は今まで報告されていない新規の物質であることが確認された。結晶構造データから計算した粉末X線回折パターンを図2に示す。今後は、合成物の粉末X線回折測定を行い、測定された粉末パターンが図2と同じであれば図1のCaSi結晶が生成していると判定できる。さらに、CaSi系結晶として結晶構造を保ったまま格子定数等が変化したものは、粉末X線回折測定により得られた格子定数の値と表1の結晶構造データから計算により粉末X線パターンを計算できるので、計算パターンと比較することによりCaSi系結晶が生成していると判定できる。
 この結晶にブラックライトを照射したところ、黄色から橙色に発光することを確認した。以降では、この結晶を実施例35として扱う。
[蛍光体実施例および比較例;例1から例36]
 表2および表3に示す設計組成に従って、原料を表4の混合組成(モル比)となるように秤量した。使用する原料の種類によっては表2および表3の設計組成と表4の混合組成で組成が異なる場合が生じるが、この場合は金属イオンの量が合致するように混合組成を決定した。秤量した原料粉末を窒化ケイ素焼結体製乳棒と乳鉢を用いて5分間混合を行なった。その後、混合粉末を窒化ホウ素焼結体製のるつぼに投入した。粉体の嵩密度は約20%から30%であった。
 混合粉末が入ったるつぼを黒鉛抵抗加熱方式の電気炉にセットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を1×10-1Pa以下圧力の真空とし、室温から800℃まで毎時500℃の速度で加熱し、800℃で純度が99.999体積%の窒素を導入して炉内の圧力を1MPaとし、毎時500℃で表5に示す設定温度まで昇温し、その温度で2時間保持した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 次に、合成した化合物をメノウの乳鉢を用いて粉砕し、CuのKα線を用いた粉末X線回折測定を行った。主な生成相を表6に示す。その結果、CaSiの結晶と同じ結晶構造を持つ相が主な生成相であり、20質量%以上含有されることが確認された。また、EDSの測定より、合成物は希土類元素、アルカリ土類金属、Si、Al、O、Nを含むことが確認された。即ち、合成物はCaSi系結晶にEuの発光イオンMが固溶した蛍光体であることが確認された。
Figure JPOXMLDOC01-appb-T000006
 焼成後、この得られた焼成体を粗粉砕の後、窒化ケイ素焼結体製のるつぼと乳鉢を用いて手で粉砕し、30μmの目のふるいを通した。粒度分布を測定したところ、平均粒径は3~8μmであった。
 これらの粉末に、波長365nmの光を発するランプで照射した結果、青色から赤色に発光することを確認した。この粉末の発光スペクトルおよび励起スペクトルを、蛍光分光光度計を用いて測定した。励起スペクトルのピーク波長と発光スペクトルのピーク波長を表7に示す。この蛍光体は、290nm~380nmの紫外線、380nm~450nmの紫色または青色光で励起することが可能であり、青色から赤色発光する蛍光体であることが確認された。
Figure JPOXMLDOC01-appb-T000007
 なお、混合原料組成と合成物の化学組成が異なっている部分は、不純物第二相として合成物中に微量混在していると考えられる。
 図3は、実施例15で合成した蛍光体の粉末X線回折結果を示す図である。
 図4は、実施例15で合成した蛍光体の励起スペクトルおよび発光スペクトルを示す図である。
 合成した蛍光体の粉末X線回折結果(図3)は構造解析の結果(図2)と良い一致を示し、実施例15ではCaSi結晶とX線回折パターンが同じであり、CaSi結晶と同一の結晶構造を持つ結晶が主成分であることが確認された。さらに、実施例15では、EDSの測定より、合成物はEu、Ca、Ba、Al、Si、O、Nを含むことが確認された。また、Eu:Ca:Ba:Al:Siの比は、0.02:12.98:3:4:36であることが確認された。即ち、合成物はCaSi系結晶にEuが固溶した蛍光体であることが確認された。実施例15では、308nmで最も効率よく励起できることがわかり、308nmで励起したときの発光スペクトルは466nmにピークを持つ発光を呈することがわかった。また、実施例15の蛍光体の発光色が、CIE1931色度座標において、0 ≦ x ≦ 0.8および0 ≦ y ≦ 0.9の範囲内であることを確認した。
 以上より、実施例35によれば、CaSiで示される結晶にM元素としてEuが固溶した蛍光体が得られることが示された。実施例1~34および36によれば、CaSiで示される結晶と同一の結晶構造を有する無機結晶として、(Ca,Ba)Si、および、(Ca,Sr)SiにM元素としてEuが固溶した蛍光体が得られることが示された。
 さらに、実施例13~15および27~29によれば、CaSiで示される結晶と同一の結晶構造を有する無機結晶として、(Ca,Ba)Si5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)にM元素としてEuが固溶した蛍光体が得られることが示された。実施例36によれば、Caの少なくとも一部がSrで置換されるので、(Ca,Sr)Si5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)にM元素が固溶した蛍光体も示唆される。
 さらに、実施例1~34によれば、本発明の蛍光体が、Eu(Ca,Ba)2-ySi5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)で表されることが示された。実施例36によれば、Caの少なくとも一部がSrで置換されるので、CaSiで示される結晶と同一の結晶構造を有する無機結晶として、Eu(Ca,Sr)2-ySi5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)で表される蛍光体も示唆される。
 図5は、実施例10で合成した蛍光体の物体色を示す図である。
 図6は、実施例12で合成した蛍光体の物体色を示す図である。
 図5および図6に示すように、本発明の蛍光体が、白色または黄色の物体色を持つことを確認した。このことから本発明の蛍光体は、顔料または蛍光顔料に使用できる。
[発光装置および画像表示装置の実施例;実施例37から40]
 次ぎに、本発明の蛍光体を用いた発光装置について説明する。
[実施例37]
 図7は、本発明による照明器具(砲弾型LED照明器具)を示す概略図である。
 図7に示すいわゆる砲弾型白色発光ダイオードランプ(1)を製作した。2本のリードワイヤ(2、3)があり、そのうち1本(2)には、凹部があり、365nmに発光ピークを持つ紫外発光ダイオード素子(4)が載置されている。紫外発光ダイオード素子(4)の下部電極と凹部の底面とが導電性ペーストによって電気的に接続されており、上部電極ともう1本のリードワイヤ(3)とが金細線(5)によって電気的に接続されている。蛍光体(7)が樹脂に分散され、発光ダイオード素子(4)近傍に実装されている。この蛍光体を分散した第一の樹脂(6)は、透明であり、紫外発光ダイオード素子(4)の全体を被覆している。凹部を含むリードワイヤの先端部、青色発光ダイオード素子、蛍光体を分散した第一の樹脂は、透明な第二の樹脂(8)によって封止されている。透明な第二の樹脂(8)は全体が略円柱形状であり、その先端部がレンズ形状の曲面となっていて、砲弾型と通称されている。
 本実施例では、実施例23で作製した黄色蛍光体とJEM:Ce青色蛍光体を質量比で7:3に混合した蛍光体粉末を37重量%の濃度でエポキシ樹脂に混ぜ、これをディスペンサを用いて適量滴下して、蛍光体(7)を混合したものを分散した第一の樹脂(6)を形成した。得られた発光装置の発色は、x=0.33、y=0.33であり、白色であった。
[実施例38]
 図8は、本発明による照明器具(基板実装型LED照明器具)を示す概略図である。
 図8に示す基板実装用チップ型白色発光ダイオードランプ(11)を製作した。可視光線反射率の高い白色のアルミナセラミックス基板(19)に2本のリードワイヤ(12、13)が固定されており、それらワイヤの片端は基板のほぼ中央部に位置し、他端はそれぞれ外部に出ていて電気基板への実装時ははんだづけされる電極となっている。リードワイヤのうち1本(12)は、その片端に、基板中央部となるように発光ピーク波長450nmの青色発光ダイオード素子(14)が載置され固定されている。青色発光ダイオード素子(14)の下部電極と下方のリードワイヤとは導電性ペーストによって電気的に接続されており、上部電極ともう1本のリードワイヤ(13)とが金細線(15)によって電気的に接続されている。
 第一の樹脂(16)と実施例23で作製した蛍光体とCaAlSiN:Eu赤色蛍光体を質量比で9:1に混合した蛍光体(17)を混合したものが、発光ダイオード素子近傍に実装されている。この蛍光体を分散した第一の樹脂は、透明であり、青色発光ダイオード素子(14)の全体を被覆している。また、セラミック基板上には中央部に穴の開いた形状である壁面部材(20)が固定されている。壁面部材(20)は、その中央部が青色発光ダイオード素子(14)及び蛍光体(17)を分散させた樹脂(16)がおさまるための穴となっていて、中央に面した部分は斜面となっている。この斜面は光を前方に取り出すための反射面であって、その斜面の曲面形は光の反射方向を考慮して決定される。また、少なくとも反射面を構成する面は白色または金属光沢を持った可視光線反射率の高い面となっている。本実施例では、該壁面部材(20)を白色のシリコーン樹脂によって構成した。壁面部材の中央部の穴は、チップ型発光ダイオードランプの最終形状としては凹部を形成するが、ここには青色発光ダイオード素子(14)及び蛍光体(17)を分散させた第一の樹脂(16)のすべてを封止するようにして透明な第二の樹脂(18)を充填している。本実施例では、第一の樹脂(16)と第二の樹脂(18)とには同一のエポキシ樹脂を用いた。蛍光体の添加割合、達成された色度等は、実施例37と略同一である。
 次ぎに、本発明の蛍光体を用いた画像表示装置の設計例について説明する。
[実施例39]
 図9は、本発明による画像表示装置(プラズマディスプレイパネル)を示す概略図である。
 赤色蛍光体(CaAlSiN:Eu2+)(31)と緑色蛍光体(β-サイアロン:Eu2+)(32)および本発明の実施例15の青色蛍光体(33)が、ガラス基板(44)上に電極(37、38、39)および誘電体層(41)を介して配置されたそれぞれのセル(34、35、36)の内面に塗布されている。電極(37、38、39、40)に通電するとセル中でXe放電により真空紫外線が発生し、これにより蛍光体が励起されて、赤、緑、青の可視光を発し、この光が保護層(43)、誘電体層(42)、ガラス基板(45)を介して外側から観察され、画像表示装置として機能する。
[実施例40]
 図10は、本発明による画像表示装置(フィールドエミッションディスプレイパネル)を示す概略図である。
 本発明の実施例15の青色蛍光体(56)が陽極(53)の内面に塗布されている。陰極(52)とゲート(54)の間に電圧をかけることにより、エミッタ(55)から電子(57)が放出される。電子は陽極(53)と陰極の電圧により加速されて、青色蛍光体(56)に衝突して蛍光体が発光する。全体はガラス(51)で保護されている。図は、1つのエミッタと1つの蛍光体からなる1つの発光セルを示したが、実際には青色の他に、赤色、緑色のセルが多数配置されて多彩な色を発色するディスプレイが構成される。緑色や赤色のセルに用いられる蛍光体に関しては特に指定しないが、低速の電子線で高い輝度を発するものを用いると良い。
 本発明の窒化物蛍光体は、従来の蛍光体とは異なる発光特性(発光色や励起特性、発光スペクトル)を有し、かつ、470nm以下のLEDと組み合わせた場合でも発光強度が高く、化学的および熱的に安定であり、さらに励起源に曝された場合の蛍光体の輝度の低下が少ないので、VFD、FED、PDP、CRT、白色LEDなどに好適に使用される窒化物蛍光体である。今後、各種表示装置における材料設計において、大いに活用され、産業の発展に寄与することが期待できる。
1.砲弾型発光ダイオードランプ。
2、3.リードワイヤ。
4.発光ダイオード素子。
5.ボンディングワイヤ。
6、8.樹脂。
7.蛍光体。
11.基板実装用チップ型白色発光ダイオードランプ。
12、13.リードワイヤ。
14.発光ダイオード素子。
15.ボンディングワイヤ。
16、18.樹脂。
17.蛍光体。
19.アルミナセラミックス基板。
20.側面部材。
31.赤色蛍光体。
32.緑色蛍光体。
33.青色蛍光体。
34、35、36.紫外線発光セル。
37、38、39、40.電極。
41、42.誘電体層。
43.保護層。
44、45.ガラス基板。
51.ガラス。
52.陰極。
53.陽極。
54.ゲート。
55.エミッタ。
56.蛍光体。
57.電子。

Claims (57)

  1.  少なくともA元素とD元素とE元素とX元素(ただし、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)の元素を含み、A2(D,E)で示される結晶、あるいは、CaSiで示される結晶、あるいは、CaSiで示される結晶と同一の結晶構造を有する無機結晶に、M元素(ただしMは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素)が固溶した無機化合物からなる蛍光体。
  2.  前記A(D,E)で示される結晶は、少なくともA元素に、Ca、BaおよびSrからなる群から少なくとも1つ選択される元素を含み、D元素にSiを含み、必要に応じてE元素にAlを含み、X元素にNを含み、必要に応じてX元素にOを含む、請求項1に記載の蛍光体。
  3.  前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、CaSi、(Ca,Ba)Si、または、(Ca,Sr)Siである、請求項1に記載の蛍光体。
  4.  前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、(Ca,Ba)Si5-xAl3+x6-xまたは(Ca,Sr)Si5-xAl3+x6-x(ただし、0 ≦ x ≦ 4)の組成式で示される、請求項1に記載の蛍光体。
  5.  前記M元素がEuである、請求項1に記載の蛍光体。
  6.  前記A(D,E)で示される結晶あるいは前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、単斜晶系の結晶である、請求項1に記載の蛍光体。
  7.  前記A(D,E)で示される結晶あるいは前記CaSiで示される結晶と同一の結晶構造を有する無機結晶が、単斜晶系の結晶であり、空間群Cmの対称性を持ち、格子定数a、b、cが、
    a = 0.70588±0.05 nm
    b = 2.37480±0.05 nm
    c = 0.96341±0.05 nm
    の範囲の値である、請求項1に記載の蛍光体。
  8.  前記無機化合物は、組成式M(ただし、式中d+e+f+g+h=1であり、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)で示され、パラメータd、e、f、g、hが、
    0.00001 ≦ d ≦ 0.05
    0.08 ≦ e ≦ 0.15
    0.2 ≦ f ≦ 0.4
    0 ≦ g ≦ 0.05
    0.45 ≦ h ≦ 0.65
    の条件を全て満たす範囲の組成で表される、請求項1に記載の蛍光体。
  9.  前記パラメータd、e、f、g、hが、
    d+e = (2/16)±0.05
    f+g = (5/16)±0.05
    h = (9/16)±0.05
    の条件を全て満たす範囲の値である、請求項8に記載の蛍光体。
  10.  前記パラメータf、gが、
    1/5 ≦ f/(f+g) ≦ 5/5
    の条件を満たす、請求項8に記載の蛍光体。
  11.  前記X元素がNとOとを含み、前記無機化合物中に含まれるNとOの原子数の比が、
    2/9 ≦ O/(O+N) ≦ 7/9
    の条件を満たす、請求項8に記載の蛍光体。
  12.  前記M元素として少なくともEuを含む、請求項8に記載の蛍光体。
  13.  前記A元素としてCa、BaおよびSrからなる群から少なくとも1つ選択される元素を含み、前記D元素として少なくともSiを含み、前記E元素として少なくともAlを含み、前記X元素として少なくともOとNを含む、請求項8に記載の蛍光体。
  14.  前記無機化合物の組成式がパラメータxとyを用いて
    Eu(Ca,Ba)2-ySi5-xAl3+x6-x、または、
    Eu(Ca,Sr)2-ySi5-xAl3+x6-x
    ただし、
    0 ≦ x ≦ 4
    0.0001 ≦ y ≦ 1
    で示される、請求項1に記載の蛍光体。
  15.  前記無機化合物が、平均粒径0.1μm以上20μm以下の単結晶粒子あるいは単結晶の集合体である、請求項1に記載の蛍光体。
  16.  前記無機化合物に含まれる、Fe、Co、Ni不純物元素の合計が500ppm以下である、請求項1に記載の蛍光体。
  17.  請求項1に記載の無機化合物からなる蛍光体と他の結晶相あるいはアモルファス相との混合物から構成され、蛍光体の含有量が20質量%以上である、請求項1に記載の蛍光体。
  18.  前記他の結晶相あるいはアモルファス相が導電性を持つ無機物質である、請求項17に記載の蛍光体。
  19.  前記導電性を持つ無機物質がZn、Al、Ga、In、Snから選ばれる1種または2種以上の元素を含む酸化物、酸窒化物、または窒化物、あるいはこれらの混合物である、請求項18に記載の蛍光体。
  20.  前記他の結晶相あるいはアモルファス相が前記蛍光体とは異なる無機蛍光体である、請求項17に記載の蛍光体。
  21.  励起源を照射することにより450nmから650nmの範囲の波長にピークを持つ蛍光を発光する、請求項1に記載の蛍光体。
  22.  前記励起源が100nm以上450nm以下の波長を持つ真空紫外線、紫外線または可視光、電子線またはX線である、請求項21に記載の蛍光体。
  23.  前記A(D,E)で示される結晶、前記CaSiで示される結晶、あるいは前記CaSiで示される結晶と同一の結晶構造を有する無機結晶にEuが固溶してなり、290nmから450nmの光を照射すると450nm以上650nm以下の青色から赤色の蛍光を発する、請求項1に記載の蛍光体。
  24.  励起源が照射されたときに発光する色がCIE1931色度座標上の(x,y)の値で、
    0 ≦ x ≦ 0.8
    0 ≦ y ≦ 0.9
    の条件を満たす、請求項1に記載の蛍光体。
  25.  金属化合物の混合物であって焼成することにより、請求項1に記載の蛍光体を構成しうる原料混合物を、窒素を含有する不活性雰囲気中において1200℃以上2200℃以下の温度範囲で焼成する、請求項1に記載の蛍光体の製造方法。
  26.  前記金属化合物の混合物が、Mを含有する化合物と、Aを含有する化合物と、Dを含有する化合物と、Eを含有する化合物と、Xを含有する化合物(ただし、Mは、Mn、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ybから選ばれる1種または2種以上の元素、Aは、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素、Dは、Si、Ge、Sn、Ti、Zr、Hfから選ばれる1種または2種以上の元素、Eは、B、Al、Ga、In、Sc、Y、Laから選ばれる1種または2種以上の元素、Xは、O、N、Fから選ばれる1種または2種以上の元素)とからなる、請求項25に記載の蛍光体の製造方法。
  27.  前記Mを含有する化合物が、Mを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Aを含有する化合物が、Aを含有する金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物であり、前記Dを含有する化合物が、金属、ケイ化物、酸化物、炭酸塩、窒化物、酸窒化物、塩化物、フッ化物、または酸フッ化物から選ばれる単体または2種以上の混合物である、請求項26に記載の蛍光体の製造方法。
  28.  前記金属化合物の混合物が、少なくとも、ユーロピウムの窒化物または酸化物と、カルシウム、バリウムおよびストロンチウムからなる群から少なくとも1つ選択される元素の窒化物または酸化物または炭酸塩と、酸化ケイ素または窒化ケイ素とを含有する、請求項26に記載の蛍光体の製造方法。
  29.  前記窒素を含有する不活性雰囲気が0.1MPa以上100MPa以下の圧力範囲の窒素ガス雰囲気である、請求項25に記載の蛍光体の製造方法。
  30.  焼成炉の発熱体、断熱体、または試料容器に黒鉛を使用する請求項25に記載の蛍光体の製造方法。
  31.  粉体または凝集体形状の金属化合物を、嵩密度40%以下の充填率に保持した状態で容器に充填した後に焼成することを特徴とする、請求項25に記載の蛍光体の製造方法。
  32.  焼成に使う容器が窒化ホウ素製であることを特徴とする、請求項25に記載の蛍光体の製造方法。
  33.  金属化合物の粉体粒子または凝集体の平均粒径が500μm以下である、請求項25に記載の蛍光体の製造方法。
  34.  スプレイドライヤ、ふるい分け、または風力分級により、金属化合物の凝集体の平均粒径を500μm以下に制御する、請求項25に記載の蛍光体の製造方法。
  35.  焼結手段がホットプレスによることなく、専ら常圧焼結法もしくはガス圧焼結法による手段である、請求項25に記載の蛍光体の製造方法。
  36.  粉砕、分級、酸処理から選ばれる1種ないし複数の手法により、焼成により合成した蛍光体粉末の平均粒径を50nm以上20μm以下に粒度調整することを特徴とする、請求項25に記載の蛍光体の製造方法。
  37.  焼成後の蛍光体粉末、あるいは粉砕処理後の蛍光体粉末、もしくは粒度調整後の蛍光体粉末を、1000℃以上で焼成温度以下の温度で熱処理することを特徴とする、請求項25に記載の蛍光体の製造方法。
  38.  前記金属化合物の混合物に、焼成温度以下の温度で液相を生成する無機化合物を添加して焼成することを特徴とする、請求項25に記載の蛍光体の製造方法。
  39.  前記焼成温度以下の温度で液相を生成する無機化合物が、Li、Na、K、Mg、Ca、Sr、Baから選ばれる1種または2種以上の元素のフッ化物、塩化物、ヨウ化物、臭化物、あるいはリン酸塩の1種または2種以上の混合物であることを特徴とする、請求項38に記載の蛍光体の製造方法。
  40.  焼成後に溶剤で洗浄することにより、焼成温度以下の温度で液相を生成する無機化合物の含有量を低減させることを特徴とする、請求項38に記載の蛍光体の製造方法。
  41.  少なくとも発光体と蛍光体とから構成される発光装置において、少なくとも請求項1に記載の蛍光体を用いることを特徴とする発光装置。
  42.  前記発光体が330~500nmの波長の光を発する発光ダイオード(LED)、レーザダイオード(LD)、半導体レーザ、または有機EL発光体(OLED)である、請求項41に記載の発光装置。
  43.  前記発光装置が、白色発光ダイオード、または白色発光ダイオードを複数含む照明器具、液晶パネル用バックライトである、請求項41に記載の発光装置。
  44.  前記発光体がピーク波長300~450nmの紫外または可視光を発し、請求項1に記載の蛍光体が発する青色から赤色光と他の蛍光体が発する450nm以上の波長の光を混合することにより白色光または白色光以外の光を発することを特徴とする、請求項41に記載の発光装置。
  45.  前記蛍光体は、前記発光体によりピーク波長420nm~500nm以下の光を発する青色蛍光体をさらに含む、請求項41に記載の発光装置。
  46.  前記青色蛍光体が、AlN:(Eu,Si)、BaMgAl1017:Eu、SrSiAl19ON31:Eu、LaSiAl1932:Eu、α-サイアロン:Ce、JEM:Ceから選ばれる、請求項45に記載の発光装置。
  47.  前記蛍光体は、前記発光体によりピーク波長500nm以上550nm以下の光を発する緑色蛍光体をさらに含む、請求項41に記載の発光装置。
  48.  前記緑色蛍光体が、β-サイアロン:Eu、(Ba,Sr,Ca,Mg)SiO:Eu、(Ca,Sr,Ba)Si:Euから選ばれる、請求項47に記載の発光装置。
  49.  前記蛍光体は、前記発光体によりピーク波長550nm以上600nm以下の光を発する黄色蛍光体をさらに含む、請求項41に記載の発光装置。
  50.  前記黄色蛍光体が、YAG:Ce、α-sialon:Eu、CaAlSiN:Ce、LaSi11:Ceから選ばれる、請求項49に記載の発光装置。
  51.  前記蛍光体は、前記発光体によりピーク波長600nm以上700nm以下の光を発する赤色蛍光体をさらに含む、請求項41に記載の発光装置。
  52.  前記赤色蛍光体が、CaAlSiN:Eu、(Ca,Sr)AlSiN:Eu、CaSi:Eu、SrSi:Euから選ばれる、請求項51に記載の発光装置。
  53.  前記発光体が320~450nmの波長の光を発するLEDである、請求項41に記載の発光装置。
  54.  励起源と蛍光体から構成される画像表示装置において、少なくとも請求項1に記載の蛍光体を用いることを特徴とする画像表示装置。
  55.  前記画像表示装置が、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)、液晶ディスプレイ(LCD)のいずれかである、請求項54に記載の画像表示装置。
  56.  請求項1に記載の無機化合物からなる顔料。
  57.  請求項1に記載の無機化合物からなる紫外線吸収剤。
PCT/JP2013/070156 2012-07-25 2013-07-25 蛍光体、その製造方法、発光装置および画像表示装置 WO2014017580A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/416,568 US9515230B2 (en) 2012-07-25 2013-07-25 Fluorophore, method for producing same, light-emitting device, and image display device
CN201380004664.9A CN104039922B (zh) 2012-07-25 2013-07-25 荧光体及其制备方法、发光装置及图像显示装置
EP13823530.4A EP2878647B1 (en) 2012-07-25 2013-07-25 Fluorophore, method for producing same, light-emitting device, and image display device
KR1020157004456A KR101704942B1 (ko) 2012-07-25 2013-07-25 형광체, 그 제조 방법, 발광 장치 및 화상 표시 장치
JP2014526993A JP5885174B2 (ja) 2012-07-25 2013-07-25 蛍光体、その製造方法、発光装置および画像表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-164558 2012-07-25
JP2012164558 2012-07-25

Publications (1)

Publication Number Publication Date
WO2014017580A1 true WO2014017580A1 (ja) 2014-01-30

Family

ID=49997389

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/070243 WO2014017613A1 (ja) 2012-07-25 2013-07-25 蛍光体およびその製造方法、蛍光体を用いた発光装置、画像表示装置、顔料および紫外線吸収剤
PCT/JP2013/070156 WO2014017580A1 (ja) 2012-07-25 2013-07-25 蛍光体、その製造方法、発光装置および画像表示装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070243 WO2014017613A1 (ja) 2012-07-25 2013-07-25 蛍光体およびその製造方法、蛍光体を用いた発光装置、画像表示装置、顔料および紫外線吸収剤

Country Status (7)

Country Link
US (2) US9666767B2 (ja)
EP (2) EP2878647B1 (ja)
JP (2) JP5885175B2 (ja)
KR (2) KR101688337B1 (ja)
CN (2) CN104024376B (ja)
TW (2) TWI582214B (ja)
WO (2) WO2014017613A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086360A (ja) * 2013-09-25 2015-05-07 独立行政法人物質・材料研究機構 蛍光体及びその製造方法並びにこれを用いた発光装置
TWI739763B (zh) * 2015-10-02 2021-09-21 日商三井金屬鑛業股份有限公司 黏結接合構造

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
US10184079B2 (en) * 2013-07-29 2019-01-22 The Board Of Regents, The University Of Texas System Lanthanum-yttrium oxide scintillators and use thereof
KR102214065B1 (ko) * 2014-02-20 2021-02-09 엘지전자 주식회사 산 질화물 형광체, 그 제조 방법 및 이를 이용한 발광 소자 패키지
TWI512772B (zh) * 2014-03-19 2015-12-11 Darfon Electronics Corp 彈性體層及其檢驗方法
CN106574181B (zh) * 2014-08-07 2020-10-16 三菱化学株式会社 荧光体、发光装置、图像显示装置及照明装置
JP6715774B2 (ja) * 2014-12-16 2020-07-01 デンカ株式会社 蛍光体及びその用途
KR102524805B1 (ko) * 2016-02-12 2023-04-25 삼성전자주식회사 광원 모듈, 디스플레이 패널 및 이를 구비한 디스플레이 장치
US10923635B2 (en) * 2016-12-30 2021-02-16 Lumileds Llc Phosphor deposition system for LEDs
CN111051932B (zh) * 2018-01-30 2022-03-22 松下知识产权经营株式会社 荧光体及其制造方法
CN109880621B (zh) * 2019-04-01 2021-07-30 旭宇光电(深圳)股份有限公司 荧光材料及其制备方法、发光膜、发光片、发光装置、图像显示装置
CN114806575A (zh) * 2022-05-23 2022-07-29 龙岩学院 一种高效铋离子激活的黄色荧光材料及其制备方法
CN116716105A (zh) * 2023-06-12 2023-09-08 兰州大学 一种发光材料及其制备方法和应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152609A (ja) 1991-11-25 1993-06-18 Nichia Chem Ind Ltd 発光ダイオード
JPH0799345A (ja) 1993-09-28 1995-04-11 Nichia Chem Ind Ltd 発光ダイオード
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
WO2005019376A1 (ja) 2003-08-22 2005-03-03 National Institute For Materials Science 酸窒化物蛍光体と発光器具
JP2005112922A (ja) 2003-10-03 2005-04-28 National Institute For Materials Science 酸窒化物蛍光体
JP3668770B2 (ja) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
JP2006016413A (ja) * 2004-06-30 2006-01-19 National Institute For Materials Science 蛍光体と発光器具
JP2006089547A (ja) * 2004-09-22 2006-04-06 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2006169526A (ja) * 2004-12-10 2006-06-29 Lumileds Lighting Us Llc 燐光変換発光装置
WO2006101096A1 (ja) 2005-03-22 2006-09-28 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP3837588B2 (ja) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP3837551B2 (ja) 2003-06-20 2006-10-25 独立行政法人物質・材料研究機構 酸窒化物蛍光体
JP3921545B2 (ja) 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 蛍光体とその製造方法
WO2007066733A1 (ja) 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2009167328A (ja) * 2008-01-18 2009-07-30 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP4524368B2 (ja) 2004-04-22 2010-08-18 独立行政法人物質・材料研究機構 サイアロン蛍光体とその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY149573A (en) 2002-10-16 2013-09-13 Nichia Corp Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
JP4418758B2 (ja) * 2002-12-13 2010-02-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射源と発光体を有する照射システム
JP4457354B2 (ja) * 2003-03-10 2010-04-28 日立金属株式会社 導電性ボールの搭載装置及び導電性ボールの搭載装置に組み込まれる整列部材
EP2360225B1 (en) * 2004-09-22 2013-06-26 National Institute for Materials Science Phosphor, production method thereof and light emitting instrument
US7445730B2 (en) * 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
TW200801158A (en) * 2006-02-02 2008-01-01 Mitsubishi Chem Corp Complex oxynitride phosphor, light-emitting device using the same, image display, illuminating device, phosphor-containing composition and complex oxynitride
BRPI0807118A2 (pt) * 2007-02-06 2014-04-08 Koninkl Philips Electronics Nv Material, uso de um material, dispositivo de emissão de luz, e, sistema.
JP5463495B2 (ja) * 2007-05-18 2014-04-09 三星電子株式会社 蛍光体の製造方法及び発光装置
US8329060B2 (en) * 2008-10-22 2012-12-11 General Electric Company Blue-green and green phosphors for lighting applications
JP4869317B2 (ja) * 2008-10-29 2012-02-08 株式会社東芝 赤色蛍光体およびそれを用いた発光装置
TWI361216B (en) * 2009-09-01 2012-04-01 Ind Tech Res Inst Phosphors, fabricating method thereof, and light emitting device employing the same
JP5782049B2 (ja) * 2010-01-29 2015-09-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 蛍光体
TW201310710A (zh) * 2011-08-18 2013-03-01 Alder Optomechanical Corp 發光裝置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152609A (ja) 1991-11-25 1993-06-18 Nichia Chem Ind Ltd 発光ダイオード
JPH0799345A (ja) 1993-09-28 1995-04-11 Nichia Chem Ind Ltd 発光ダイオード
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
JP3668770B2 (ja) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
JP3837551B2 (ja) 2003-06-20 2006-10-25 独立行政法人物質・材料研究機構 酸窒化物蛍光体
WO2005019376A1 (ja) 2003-08-22 2005-03-03 National Institute For Materials Science 酸窒化物蛍光体と発光器具
JP2005112922A (ja) 2003-10-03 2005-04-28 National Institute For Materials Science 酸窒化物蛍光体
JP3837588B2 (ja) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP3921545B2 (ja) 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 蛍光体とその製造方法
JP4524368B2 (ja) 2004-04-22 2010-08-18 独立行政法人物質・材料研究機構 サイアロン蛍光体とその製造方法
JP2006016413A (ja) * 2004-06-30 2006-01-19 National Institute For Materials Science 蛍光体と発光器具
JP2006089547A (ja) * 2004-09-22 2006-04-06 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2006169526A (ja) * 2004-12-10 2006-06-29 Lumileds Lighting Us Llc 燐光変換発光装置
WO2006101096A1 (ja) 2005-03-22 2006-09-28 National Institute For Materials Science 蛍光体とその製造方法および発光器具
WO2007066733A1 (ja) 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2009167328A (ja) * 2008-01-18 2009-07-30 National Institute For Materials Science 蛍光体とその製造方法および発光器具

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 85, no. 5, 2002, pages 1229 - 1234
See also references of EP2878647A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086360A (ja) * 2013-09-25 2015-05-07 独立行政法人物質・材料研究機構 蛍光体及びその製造方法並びにこれを用いた発光装置
TWI739763B (zh) * 2015-10-02 2021-09-21 日商三井金屬鑛業股份有限公司 黏結接合構造

Also Published As

Publication number Publication date
KR20150038244A (ko) 2015-04-08
CN104039922B (zh) 2017-05-24
KR101704942B1 (ko) 2017-02-08
EP2878648A4 (en) 2015-07-08
TWI476269B (zh) 2015-03-11
US20150179899A1 (en) 2015-06-25
EP2878647A4 (en) 2015-07-08
TW201410847A (zh) 2014-03-16
US9515230B2 (en) 2016-12-06
CN104024376A (zh) 2014-09-03
EP2878647A1 (en) 2015-06-03
JPWO2014017613A1 (ja) 2016-07-11
EP2878647B1 (en) 2016-10-05
CN104024376B (zh) 2017-09-01
KR20150038200A (ko) 2015-04-08
EP2878648A1 (en) 2015-06-03
US20150175881A1 (en) 2015-06-25
TWI582214B (zh) 2017-05-11
WO2014017613A1 (ja) 2014-01-30
KR101688337B1 (ko) 2016-12-20
JPWO2014017580A1 (ja) 2016-07-11
CN104039922A (zh) 2014-09-10
EP2878648B1 (en) 2016-11-23
JP5885175B2 (ja) 2016-03-15
TW201410846A (zh) 2014-03-16
JP5885174B2 (ja) 2016-03-15
US9666767B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
JP5717076B2 (ja) 蛍光体および製造方法、蛍光体を用いる発光装置および画像表示装置
JP5713305B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP5885174B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP6083881B2 (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤
JP5881092B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP6040500B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP6057213B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP6061331B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP6684412B1 (ja) 蛍光体、その製造方法および発光装置
JP2017210529A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
JP6176664B2 (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
JP5920773B2 (ja) 蛍光体、その製造方法、発光装置および画像表示装置
JP2017179017A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤
JP2017179018A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤
JP6074807B2 (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
JP2017179020A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤
JP2017179019A (ja) 蛍光体、その製造方法、発光装置、画像表示装置、顔料および紫外線吸収剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526993

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14416568

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004456

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013823530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013823530

Country of ref document: EP