WO2014017575A1 - Photocatalyst coating liquid, method for producing same, and photocatalyst - Google Patents

Photocatalyst coating liquid, method for producing same, and photocatalyst Download PDF

Info

Publication number
WO2014017575A1
WO2014017575A1 PCT/JP2013/070146 JP2013070146W WO2014017575A1 WO 2014017575 A1 WO2014017575 A1 WO 2014017575A1 JP 2013070146 W JP2013070146 W JP 2013070146W WO 2014017575 A1 WO2014017575 A1 WO 2014017575A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
dispersant
coating solution
coating liquid
binder
Prior art date
Application number
PCT/JP2013/070146
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 淳
井上 浩
Original Assignee
株式会社サクラクレパス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サクラクレパス filed Critical 株式会社サクラクレパス
Priority to JP2014526990A priority Critical patent/JPWO2014017575A1/en
Publication of WO2014017575A1 publication Critical patent/WO2014017575A1/en

Links

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the present invention relates to a photocatalyst coating liquid for forming a photocatalyst coating film, a method for producing the same, and a photocatalyst body.
  • a semiconductor When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and the molecular species in contact with the semiconductor are decomposed by the redox action. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, organic compounds and NOx in atmospheric substances can be decomposed.
  • a photocatalytic semiconductor is called a photocatalyst, and it has been proposed to use the photocatalyst in various forms for the purpose of deodorization, gas treatment, water treatment, antibacterial action and antifouling, utilizing the characteristics of the photocatalyst. ing.
  • the photocatalyst has a property of becoming hydrophilic upon irradiation with light, for example, has a property of repelling oily dirt.
  • a solution containing a photocatalyst is used as a coating solution to be applied on a substrate or a coating film formed on the substrate, and is drip-proof, antifouling / antifogging, self-cleaning And imparting easy cleaning properties to the surface of a substrate or coating film.
  • the coating film of the photocatalyst is formed by applying a coating liquid containing photocatalyst particles to the surface of the substrate and drying or baking at a low temperature as necessary.
  • a binder is used to adhere and support the photocatalyst particles on the surface of the substrate.
  • an organic polymer is used as the binder, there is a problem that the photocatalytic particles are oxidized by the photocatalytic action and the adhesion to the substrate surface is reduced.
  • Patent Document 1 a method using a fluorine-based resin that is not easily oxidized
  • Patent Document 2 a method using titanium peroxide for a binder
  • the present invention can form a photocatalyst coating film having excellent photocatalytic properties without lowering the dispersibility of photocatalyst particles even when a fluorine resin or titanium peroxide is used as a binder.
  • An object of the present invention is to provide a photocatalyst coating liquid and a method for producing the same.
  • the photocatalyst coating liquid of the present invention contains at least one binder selected from photocatalyst particles, titanium peroxide and / or fluorine-based resin, a dispersant, and an aqueous medium. And at least a neutralized copolymer and / or polyphosphate comprising a hydrophobic monomer and an anionic group-containing monomer.
  • the method for producing a photocatalyst coating liquid of the present invention is characterized in that photocatalyst particles and / or a binder are added to and mixed with a dispersant solution in which a dispersant is dissolved in an aqueous medium.
  • the photocatalyst of the present invention is characterized in that it has a coating film formed on the surface using the photocatalyst coating liquid of the present invention.
  • the dispersibility of the photocatalyst particles does not decrease, so that a photocatalytic coating film having excellent photocatalytic performance is formed. Is possible.
  • the photocatalyst coating liquid of the present invention contains at least one binder selected from photocatalyst particles, titanium peroxide and a fluorine resin, a dispersant and an aqueous medium.
  • a dispersant at least a hydrophobic monomer and an anionic property It contains a neutralized product of a copolymer comprising a group-containing monomer and / or a polyphosphate.
  • the photocatalyst particles used in the present invention are particles of a compound that exhibits a photocatalytic action by ultraviolet rays or visible rays.
  • a photocatalyst Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag .
  • metal elements such as Au, Zn, Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, Ce, nitride, sulfide, oxynitride, Examples thereof include oxysulfides, nitrofluorides, oxyfluorides, oxynitrofluorides, and the like.
  • titanium oxide is particularly preferable.
  • the titanium oxide here includes a small amount (for example, 1 mol% or less of Ti) doped with metal ions such as platinum, copper, iron or nitrogen or a small amount (for example, 1 mol% of Ti).
  • metal ions such as platinum, copper, iron or nitrogen or a small amount (for example, 1 mol% of Ti).
  • metal ions such as platinum, copper, iron or nitrogen
  • a small amount for example, 1 mol% of Ti.
  • metal ions such as platinum, copper, iron or nitrogen
  • a small amount for example, 1 mol% of Ti
  • those carrying other metal oxides are included.
  • examples of titanium oxide include anatase type, rutile type, brookite type, and the like, and any of them can be used as photocatalyst particles.
  • the titanium oxide particle shape can be used without any particular limitation, such as amorphous, spherical, cubic, plate-like, needle-like, rod-like, or spindle-
  • the photocatalyst particles used in the present invention preferably have a primary particle diameter of 5 nm to 500 nm.
  • photocatalyst particles having such a primary particle size for example, in the case of titanium oxide, trade names ST-01, ST-21, ST-31, ST-41, MPT-623, Sakai Chemical Industry Co., Ltd. manufactured by Ishihara Sangyo Co., Ltd.
  • rod-shaped rutile titanium oxide nanoparticles having crystal faces (001) (110) (111) produced by subjecting a tetravalent titanium compound to hydrothermal treatment for 2 hours or more can also be used.
  • the photocatalyst particles are 1 to 50% by weight, preferably 2 to 40% by weight of the entire photocatalyst coating liquid. If it is less than 1% by weight, it is difficult to obtain a photocatalytic action. On the other hand, if it exceeds 50% by weight, the viscosity of the coating solution becomes high and handling becomes difficult, and the stability over time decreases, and the photocatalyst particles easily aggregate.
  • the dispersant used in the present invention contains at least a neutralized copolymer and / or polyphosphate composed of a hydrophobic monomer and an anionic group-containing monomer.
  • the hydrophobic monomer in the neutralized product of the copolymer has a polymerizable double bond and has a lipophilic hydrocarbon group, aromatic ring group, or alicyclic group.
  • Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-amyl (meth) acrylate, and isoamyl (meth) acrylate.
  • anionic group-containing monomer examples include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid, vinyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, etc. And sulfonic acid group-containing monomers and phosphoric acid group-containing monomers.
  • carboxyl group-containing monomers are more preferred are acrylic acid, methacrylic acid, itaconic acid and maleic acid, and even more preferred is acrylic acid.
  • a preferred copolymer is a copolymer containing styrene as a hydrophobic monomer and acrylic acid as an anionic group-containing monomer (hereinafter referred to as a styrene-acrylic acid copolymer). 1 or more types may be included.
  • the styrene-acrylic acid copolymer has a weight average molecular weight (hereinafter abbreviated as MW) of 1,000 to 100,000, preferably 4,000 to 30,000.
  • the acid value is 50 to 500, preferably 150 to 300.
  • Jonkrill series As specific examples of this styrene-acrylic acid copolymer, the following Jonkrill series manufactured by BASF, high loss series manufactured by Seiko PMC, and ARUFON series manufactured by Toagosei Co., Ltd. can be used.
  • Jonkrill series Jonkrill 67 (MW 12500, acid value 213) Jonkrill 678 (MW8500, acid value 215) Jonkrill 586 (MW4600, acid value 108) Jonkrill 611 (MW8100, acid value 53) Jonkrill 680 (MW4900, acid value 215) Jonkrill 682 (MW 1700, acid value 238) Jonkrill 683 (MW 8000, acid value 160) Jonkrill 690 (MW 16500, acid value 240) Jonkrill 52J (60% aqueous solution, MW 1700, acid value 238) Jonkrill 57J (37% aqueous solution, MW4900, acid value 215) Jonkrill 60J (34% aqueous solution, MW8500, acid value 215) Jon
  • the concentration of the copolymer neutralized product used in the dispersant is 0.1 to 25% by weight, preferably 0.3 to 20% by weight, based on the total photocatalyst coating liquid. If the concentration of the dispersing agent is less than 0.1% by weight, the dispersibility of the photocatalyst particles tends to be reduced and aggregation tends to occur. If the concentration exceeds 25% by weight, the viscosity of the coating solution becomes high, handling becomes difficult, and the photocatalytic performance is also improved. It is because it does not improve.
  • the copolymer neutralized product used in the dispersant may be a commercially available neutralized product, or a neutralized product obtained by neutralizing a carboxylic acid type dispersant with a basic substance.
  • Basic substances used for neutralization include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, alkali metal hydroxides such as cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, Alkali metal carbonates such as cesium carbonate; lithium metal carbonates such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, cesium hydrogen carbonate; lithium phosphate, sodium phosphate, potassium phosphate, Alkali metal phosphates such as rubidium phosphate and cesium phosphate; Borates of alkali metals such as lithium borate, sodium borate, potassium borate, rubidium borate, cesium borate; lithium silicate, silicic acid Sodium, potassium silicate, rub
  • Potassium metal silicates alkaline metal acetates such as lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate; lithium citrate, sodium citrate, potassium citrate, rubidium citrate, cesium citrate, etc.
  • Alkali metal citrate Alkali metal citrate; ammonia; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, butylamine, monoethanolamine, diethanolamine, triethanolamine, methylethanolamine, dimethylethanolamine, methyldiethanolamine, amino Examples include amines such as methylpropanol, and one or more of these can be used.
  • alkali metal hydroxides carbonates or bicarbonates
  • potassium hydroxide sodium hydroxide and cesium hydroxide
  • More preferred are potassium hydroxide and cesium hydroxide in that they are excellent in reducing the particle size of the photocatalyst particles.
  • the basic substance used for neutralization is added in an amount equal to or greater than the equivalent amount of the anionic group determined from the acid value of the dispersant.
  • the dispersant solution is added so that the pH is in the range of 7 to 10, preferably 7 to 9.
  • the solid content of the basic substance is 0.01 to 10% by weight, preferably 0.03 to 5% by weight of the total photocatalyst coating liquid.
  • the polyphosphate used for the dispersant in the present invention is an alkali metal salt of polyphosphoric acid such as pyrophosphoric acid, tripolyphosphoric acid, metaphosphoric acid, tetraphosphoric acid, hexaphosphoric acid, and for example, potassium polyphosphate or sodium polyphosphate is used. be able to.
  • the concentration of the polyphosphate is 0.1 to 25% by weight, preferably 0.3 to 20% by weight, based on the total photocatalyst coating liquid. If the concentration of the dispersing agent is less than 0.1% by weight, the dispersibility of the photocatalyst particles tends to be reduced and aggregation tends to occur. If the concentration exceeds 25% by weight, the viscosity of the coating solution becomes high, handling becomes difficult, and the photocatalytic performance is also improved. It is because it does not improve.
  • the mixing ratio of copolymer neutralized product and polyphosphate (copolymer neutralized product / polyphosphate) (Weight ratio of solid content) is 1/100 to 100/1, preferably 1/10 to 10/1. This is because if the ratio is smaller than 1/100, the effect of the combined use cannot be seen, and if it is larger than 100/1, the combined effect cannot be seen similarly.
  • titanium peroxide and / or fluorine resin As the binder, titanium peroxide and / or fluorine resin is used. Titanium peroxide (peroxotitanic acid) is produced by treating titanium hydroxide produced by adding ammonia or alkali hydroxide to a titanium salt solution such as titanium tetrachloride with hydrogen peroxide. Obtained as a liquid in which ultrafine particles are dispersed.
  • titanium peroxide for example, those described in Japanese Patent No. 2938376 of Saga Prefecture and Japanese Patent No. 3690864 of Tio Techno Co., Ltd. can be used.
  • titanium peroxide and fluorine resin When titanium peroxide and fluorine resin are used in combination, the adhesion and acid resistance of the coating film are excellent.
  • Fluorocarbon resins include polyvinylidene fluoride, polychloroethylene trifluoride, polytetrafluoroethylene, polytetrafluoroethylene-hexafluoropropylene copolymer, ethylene-polytetrafluoroethylene copolymer, ethylene-trichlorochloride.
  • Crystalline fluorine resin such as fluorinated ethylene copolymer, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, amorphous fluororesin such as perfluorocyclopolymer, vinyl ether-fluoroolefin copolymer, vinyl ester-fluoroolefin copolymer, sulfonic acid group
  • ethylene copolymer ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer
  • amorphous fluororesin such as perfluorocyclopolymer
  • vinyl ether-fluoroolefin copolymer vinyl ester-fluoroolefin copolymer
  • sulfonic acid group can be used, such as polytetrafluoroethylene (trade name: Nafion manufactured by DuPont).
  • the concentration of the binder is such that the solid content is 0.05 to 50% by weight, preferably 0.2 to 20% by weight of the entire photocatalyst coating liquid. This is because if the concentration is less than 0.05% by weight, the adhesion to the substrate is lowered, and if it exceeds 50% by weight, the photocatalytic performance is lowered.
  • the aqueous medium is water or a solvent containing water as a main component and a water-soluble organic solvent.
  • water ion exchange water, RO water, distilled water, and purified water are generally used.
  • water-soluble organic solvents include methyl alcohol, ethyl alcohol, isopropanol, butanol, ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, methyl carbitol, propylene glycol monomethyl
  • the water-soluble organic solvent is preferably used in a ratio of 0 to 100 parts by weight with respect to 100 parts by weight of water.
  • the proportion of the aqueous medium is 20 to 98% by weight, preferably 50 to 97% by weight, when the weight of the whole coating solution is 100% by weight.
  • the proportion of the aqueous medium is less than 20% by weight, the viscosity of the coating liquid becomes high and handling becomes difficult.
  • the proportion of the aqueous medium exceeds 98% by weight, the concentration of the photocatalyst particles decreases and the photocatalytic performance decreases. Because.
  • the median diameter (d50% particle diameter) of the photocatalyst particles contained in the photocatalyst coating liquid of the present invention measured by the dynamic light scattering method is 5 nm to 2 ⁇ m, preferably 10 nm to 1 ⁇ m, more preferably 20 nm to 300 nm. .
  • the median diameter is larger than 2 ⁇ m, the photocatalytic performance is lowered, which is not preferable.
  • the pH of the photocatalyst coating solution of the present invention is 7 to 10, preferably 7 to 8. If the pH is less than 7, the above-mentioned copolymer dispersant is not dissolved and precipitates, and the dispersibility of the photocatalyst particles is lowered. If the pH is more than 10, the handling property of the coating solution such as the safety of the worker is inferior. Because.
  • the photocatalyst coating liquid of the present invention may further contain other components than the above as necessary.
  • the other component is, for example, one or more additives selected from a pH adjuster, antiseptic / antifungal agent, surfactant, chelating agent, leveling agent, antifoaming agent and thickener.
  • the other components are added in an amount capable of imparting desired properties to the coating solution.
  • the proportion of other components in the coating solution is not particularly limited and can be appropriately selected depending on the application of the coating solution.
  • the photocatalyst coating liquid of the present invention is produced by adding and mixing photocatalyst particles and / or a binder to a dispersant solution obtained by dissolving a dispersant in an aqueous medium.
  • a photocatalyst particle and a binder may be added to and mixed with the dispersant solution to prepare a photocatalyst dispersion
  • a binder may be added to and mixed with the photocatalyst dispersion to produce a photocatalyst coating solution.
  • a binder may be added to and mixed with the dispersant solution, and photocatalyst particles may be further added and mixed to produce a photocatalyst coating solution.
  • a known dispersing device specifically, a device such as a medium stirring type dispersing machine, a rolling ball mill, a vibrating ball mill, or a jet mill can be used.
  • a medium agitation type disperser such as a bead mill
  • beads having a diameter of 2.0 mm or less are generally used as the medium (media)
  • the material is zirconia, alumina, or glass.
  • Mixing is carried out until the average particle diameter of the photocatalyst particles falls within the above-mentioned range.
  • the photocatalyst body is formed by applying the photocatalyst coating liquid of the present invention to a surface of a substrate such as glass, plastic, metal, ceramics, and concrete, and a coating film formed on the surface of the substrate. Can be manufactured.
  • the coating film can be formed by a known method such as spin coating, air knife coating, reverse roll coating, die coating, spray coating, or brush coating.
  • the photocatalyst coating liquid of the present invention is applied to the surface of the paint film, in order to improve the adhesion between the photocatalyst coating liquid and the paint film, the undercoat agent is applied and then the photocatalyst coating liquid is applied. May be.
  • the photocatalyst coating liquid of the present invention When the photocatalyst coating liquid of the present invention is applied to the surface of a substrate or the surface of a coating film formed on the surface of a substrate to form a coating film, the substrate surface becomes hydrophilic by light irradiation. It becomes easy to repel dirt. Therefore, the photocatalyst coating liquid of the present invention can impart good drip-proof properties, antifouling / antifogging properties, self-cleaning properties, and easy cleaning properties to the substrate surface. Moreover, the effects of deodorization, gas treatment, water treatment, antibacterial, etc. can be exhibited by the photocatalytic action.
  • the photocatalyst coating solution of the present invention can be used for a dye-sensitized solar cell.
  • the photocatalyst coating solution of the present invention may be used for coating on a transparent electrode (negative electrode) of a dye-sensitized solar cell.
  • the photocatalyst coating liquid of the present invention is preferably used with its viscosity increased. The viscosity may be increased by adding a thickener. Moreover, you may mix a pigment
  • photocatalyst The results of using an anatase-type titanium oxide photocatalyst (manufactured by Ishihara Sangyo Co., Ltd., trade name ST-21) as the photocatalyst are shown in Examples 1 to 5 and Comparative Examples 1 to 3, and a visible light responsive titanium oxide photocatalyst (manufactured by Daicel, product) Examples 6 and 7 show the results using "Name Cell Muse".
  • Dispersant As the dispersant, a styrene-acrylic acid copolymer (Jonkrill 678: MW8500, acid value 215 manufactured by BASF) was used.
  • styrene-acrylic acid copolymer Jonkrill 678: MW8500, acid value 215 manufactured by BASF
  • lithium hydroxide, potassium hydroxide, sodium hydroxide, cesium hydroxide or 28% ammonia water all of which are Wako Pure Chemical Industries special grades
  • binder As the binder, a 1% titanium peroxide solution (Tiosky Coat C manufactured by Tio-Techno Co., Ltd.) and a 20% fluorine-based resin solution (trade name Nafion, manufactured by Wako Pure Chemical Industries, Ltd.) were used.
  • a dispersing agent solution was prepared by dissolving a dispersing agent in a base solution in which a predetermined amount of a basic substance was dissolved.
  • Photocatalyst particles were added to the dispersant solution to prepare a photocatalyst dispersion.
  • mixing was performed using a dyno mill KDL special type bead mill manufactured by Shinmaru Enterprises Co., Ltd. using beads made of zirconia having a diameter of 0.3 mm as a medium to obtain a photocatalyst coating liquid.
  • Tables 1 and 2 show the compositions of the photocatalyst coating solution in each example and each comparative example.
  • the pH of the obtained coating solution, the particle diameter of the photocatalyst particles in the coating solution, the stability of the coating solution over time, the coloration resistance of the coating film, the acid resistance and the photocatalytic performance were evaluated by the following methods.
  • the pH of the coating solution was measured at room temperature (20 to 25 ° C.) using a pH meter manufactured by Horiba.
  • the particle diameter of the photocatalyst particles in the photocatalyst coating liquid was measured by a dynamic light scattering method. For the measurement, LB550 manufactured by Horiba Ltd. was used.
  • the coating solution was placed in a glass bottle and allowed to stand at room temperature for 3 months, and then the state was visually observed and evaluated based on the following criteria. ⁇ : There is no precipitation. Alternatively, the photocatalyst particles are precipitated but easily redispersed when shaken. X: The photocatalyst particle
  • the coating solution was applied to a glass plate with a bar coater, dried, the coating film was heated to 200 ° C., and the colorability of the coating film was evaluated based on the following criteria. ⁇ : No color change occurs in the coating film. X: A color change arises in a coating film and coloring generate
  • the coating solution was applied to a glass plate with a bar coater, and after drying, the coating film was immersed in a 10% strength aqueous hydrochloric acid solution for 24 hours and evaluated based on the following criteria. ⁇ : No peeling of the coating film is observed. X: Peeling of part or all of a coating film is seen.
  • Methylene blue decomposition rate (Methylene blue concentration before light irradiation ⁇ Methylene blue concentration after light irradiation) / Methylene blue concentration before light irradiation ⁇ : Methylene blue decomposition rate 51 to 100% ⁇ : Methylene blue decomposition rate of 21-50% ⁇ : Decomposition rate of methylene blue is 0 to 20%
  • Comparative Example 1 is a case where a dispersant and titanium peroxide were not added.
  • Comparative Example 2 titanium peroxide was added, but no dispersant was added.
  • Comparative Example 3 titanium peroxide was added, but no dispersant was added, and potassium hydroxide was added.
  • the particle diameter of the photocatalyst particles became very small as compared with Comparative Examples 1 to 3 in which no dispersant was added, and both temporal stability and photocatalytic performance were improved.
  • the coating film did not adhere to the substrate, and the photocatalytic performance could not be evaluated.
  • Example 6 The results of Examples 6 and 7 are shown in Table 2.
  • Examples 6 and 7 are the results of using a visible light responsive titanium oxide photocatalyst
  • Example 6 is the result of using only titanium peroxide as a binder
  • Example 7 is the result of using titanium peroxide and a fluororesin in combination as a binder. is there.
  • the acid resistance of the coating film can be improved by using titanium peroxide and a fluorine-based resin in combination with the binder.
  • the copolymer neutralized material used for a dispersing agent is the neutralized material of potassium salt, it is excellent in coloring resistance.

Abstract

The photocatalyst coating liquid of the present invention comprises at least photocatalyst particles, one or more binders selected from the group consisting of titanium peroxide and/or fluorine-based resins, a dispersant, and an aqueous medium, wherein the dispersant is a polyphosphate and/or a neutral product of a copolymer formed from at least a hydrophobic monomer and anionic group-containing monomer. There is no reduction in dispersibility of the photocatalyst particles and a photocatalyst coating having excellent photocatalyst properties can be obtained. By means of the present invention, there is no reduction in dispersibility of the photocatalyst particles, even when a fluorine-based resin or titanium peroxide is added as the binder, and therefore, it is possible to form a photocatalyst film having excellent photocatalyst properties.

Description

光触媒塗布液およびその製造方法並びに光触媒体Photocatalyst coating liquid, method for producing the same, and photocatalyst
 本発明は光触媒塗膜を形成するための光触媒塗布液およびその製造方法並びに光触媒体に関する。 The present invention relates to a photocatalyst coating liquid for forming a photocatalyst coating film, a method for producing the same, and a photocatalyst body.
 半導体に紫外線を照射すると強い還元作用を有する電子と強い酸化作用を有する正孔が生成し、半導体に接触した分子種を酸化還元作用により分解する。このような作用を光触媒作用と呼び、この光触媒作用を利用することによって、大気物中の有機化合物およびNOxを分解することができる。このような光触媒作用を奏する半導体は光触媒と呼ばれ、光触媒の特性を利用して、脱臭、ガス処理、水処理、抗菌および防汚を目的として、光触媒を種々の形態で使用することが提案されている。また、光触媒は、光の照射によって、親水化する特性を有し、例えば、油性の汚れをはじく性質を有する。この性質を利用して、光触媒を含む溶液を、基材または基材の上に形成された塗料の膜の上に塗布する塗布液として用い、防滴性、防汚・防曇性、自己洗浄性、および易洗浄性を、基材または塗膜の表面に付与することが行われている。 When a semiconductor is irradiated with ultraviolet rays, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and the molecular species in contact with the semiconductor are decomposed by the redox action. Such an action is called a photocatalytic action, and by utilizing this photocatalytic action, organic compounds and NOx in atmospheric substances can be decomposed. Such a photocatalytic semiconductor is called a photocatalyst, and it has been proposed to use the photocatalyst in various forms for the purpose of deodorization, gas treatment, water treatment, antibacterial action and antifouling, utilizing the characteristics of the photocatalyst. ing. Further, the photocatalyst has a property of becoming hydrophilic upon irradiation with light, for example, has a property of repelling oily dirt. Utilizing this property, a solution containing a photocatalyst is used as a coating solution to be applied on a substrate or a coating film formed on the substrate, and is drip-proof, antifouling / antifogging, self-cleaning And imparting easy cleaning properties to the surface of a substrate or coating film.
 光触媒の塗膜は、光触媒粒子を含有する塗液を、基材表面に塗布し、乾燥あるいは必要に応じて低温で焼成することにより形成されている。光触媒粒子を基材表面に付着担持させためにバインダーが用いられるが、そのバインダーに有機高分子を用いると、光触媒粒子の光触媒作用により酸化され、基材表面に対する付着力が低下するという問題がある。これに対して、酸化されにくいフッ素系樹脂をバインダーに用いる方法(例えば、特許文献1)や、過酸化チタンをバインダーに用いる方法(特許文献2)が提案されている。 The coating film of the photocatalyst is formed by applying a coating liquid containing photocatalyst particles to the surface of the substrate and drying or baking at a low temperature as necessary. A binder is used to adhere and support the photocatalyst particles on the surface of the substrate. However, when an organic polymer is used as the binder, there is a problem that the photocatalytic particles are oxidized by the photocatalytic action and the adhesion to the substrate surface is reduced. . On the other hand, a method using a fluorine-based resin that is not easily oxidized (for example, Patent Document 1) and a method using titanium peroxide for a binder (Patent Document 2) have been proposed.
特開平7-171408号公報JP-A-7-171408 特許第3690864号公報Japanese Patent No. 3690864
 上記のフッ素系樹脂や過酸化チタンをバインダーとして用いると、より安定な塗膜を得ることができる一方、本発明者らの知見によれば、塗液中の光触媒粒子の分散性が低下して光触媒粒子が凝集し易くなり、得られた塗膜の光触媒の活性が低下するという問題があった。 When the above fluororesin or titanium peroxide is used as a binder, a more stable coating film can be obtained. On the other hand, according to the knowledge of the present inventors, the dispersibility of the photocatalyst particles in the coating liquid is reduced. There was a problem that the photocatalyst particles easily aggregate and the photocatalytic activity of the obtained coating film was lowered.
 そこで、本発明は、フッ素系樹脂や過酸化チタンをバインダーとして用いた場合であっても、光触媒粒子の分散性が低下することなく、優れた光触媒特性を有する光触媒塗膜を形成することのできる光触媒塗布液およびその製造方法を提供することを目的とした。 Therefore, the present invention can form a photocatalyst coating film having excellent photocatalytic properties without lowering the dispersibility of photocatalyst particles even when a fluorine resin or titanium peroxide is used as a binder. An object of the present invention is to provide a photocatalyst coating liquid and a method for producing the same.
 上記課題を解決するため、本発明の光触媒塗布液は、少なくとも、光触媒粒子、過酸化チタンおよび/またはフッ素系樹脂から選択される少なくとも1種のバインダー、分散剤および水性媒体を含み、該分散剤として、少なくとも疎水性モノマーとアニオン性基含有モノマーからなる共重合体の中和物および/またはポリリン酸塩を含むことを特徴とする。 In order to solve the above-mentioned problems, the photocatalyst coating liquid of the present invention contains at least one binder selected from photocatalyst particles, titanium peroxide and / or fluorine-based resin, a dispersant, and an aqueous medium. And at least a neutralized copolymer and / or polyphosphate comprising a hydrophobic monomer and an anionic group-containing monomer.
 また、本発明の光触媒塗布液の製造方法は、水性媒体に分散剤を溶解させた分散剤溶液に、光触媒粒子および/またはバインダーを添加して混合することを特徴とする。 The method for producing a photocatalyst coating liquid of the present invention is characterized in that photocatalyst particles and / or a binder are added to and mixed with a dispersant solution in which a dispersant is dissolved in an aqueous medium.
 また、本発明の光触媒体は、本発明の光触媒塗布液を用いて形成された塗膜を表面に有することを特徴とする。 The photocatalyst of the present invention is characterized in that it has a coating film formed on the surface using the photocatalyst coating liquid of the present invention.
 本発明によれば、フッ素系樹脂や過酸化チタンをバインダーとして用いた場合であっても、光触媒粒子の分散性が低下することがないので、優れた光触媒性能を有する光触媒塗膜を形成することが可能となる。 According to the present invention, even when a fluorine-based resin or titanium peroxide is used as a binder, the dispersibility of the photocatalyst particles does not decrease, so that a photocatalytic coating film having excellent photocatalytic performance is formed. Is possible.
 本発明の光触媒塗布液は、少なくとも、光触媒粒子、過酸化チタンおよびフッ素系樹脂から選択される少なくとも1種のバインダー、分散剤および水性媒体を含み、該分散剤として、少なくとも疎水性モノマーとアニオン性基含有モノマーからなる共重合体の中和物および/またはポリリン酸塩を含むものである。 The photocatalyst coating liquid of the present invention contains at least one binder selected from photocatalyst particles, titanium peroxide and a fluorine resin, a dispersant and an aqueous medium. As the dispersant, at least a hydrophobic monomer and an anionic property It contains a neutralized product of a copolymer comprising a group-containing monomer and / or a polyphosphate.
(光触媒粒子)
 本発明に用いる光触媒粒子は、紫外線ないし可視光線により光触媒作用を奏する化合物の粒子である。例えば、光触媒として、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh,Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ceのような金属元素の1種又は2種以上の酸化物、窒化物、硫化物、酸窒化物、酸硫化物、窒弗化物、酸弗化物、酸窒弗化物などが例示される。この中でも、特に、酸化チタンが好ましい。ここでいう酸化チタンには、少量(例えば、Tiに対し、1モル%以下)の白金、銅、鉄等の金属イオンまたは窒素をドープしたもの、および少量(例えば、Tiに対し、1モル%以下)の他の金属酸化物を担持するものが含まれる。酸化チタンとしては、アナターゼ型、ルチル型、ブルカイト型等をあげることができ、いずれも光触媒粒子として使用することができる。また酸化チタン粒子形状については、無定形、球状、立方状、板状、針状、棒状、紡錘状等特に限定することなく使用することができる。
(Photocatalyst particles)
The photocatalyst particles used in the present invention are particles of a compound that exhibits a photocatalytic action by ultraviolet rays or visible rays. For example, as a photocatalyst, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag , One or more of metal elements such as Au, Zn, Cd, Ga, In, Tl, Ge, Sn, Pb, Bi, La, Ce, nitride, sulfide, oxynitride, Examples thereof include oxysulfides, nitrofluorides, oxyfluorides, oxynitrofluorides, and the like. Among these, titanium oxide is particularly preferable. The titanium oxide here includes a small amount (for example, 1 mol% or less of Ti) doped with metal ions such as platinum, copper, iron or nitrogen or a small amount (for example, 1 mol% of Ti). In the following, those carrying other metal oxides are included. Examples of titanium oxide include anatase type, rutile type, brookite type, and the like, and any of them can be used as photocatalyst particles. The titanium oxide particle shape can be used without any particular limitation, such as amorphous, spherical, cubic, plate-like, needle-like, rod-like, or spindle-like.
 本発明に用いる光触媒粒子は、一次粒子径が5nm以上500nm以下であることが好ましい。このような一次粒子径を有する光触媒粒子としては、例えば酸化チタンの場合、石原産業社製の商品名ST-01、ST-21、ST-31、ST-41、MPT-623、堺化学工業社製の商品名SSP-25、SSP-20、SSP-M、STA-100A、STR-100N、STR-100A、STR-100W、テイカ社製の商品名AMT-100、AMT-600、TKP-101、TKP-102、TKS-203、住友化学社製の商品名PC-101、TP-S201、昭和電工社製の商品名NTB-1、NTB-100、FP-6チタン、ダイセル社製の商品名セルミューズを用いることができる。
また、特開2011-32146号公報に記載された露出結晶面(001)を有するルチル型酸化チタンナノ粒子、特開2011-225422号公報に記載された、露出結晶面を有する酸化チタンナノ粒子に遷移金属イオンが面選択的に担持されている酸化チタンナノ粒子、および特開2011-219346号公報に記載された、反応温度110℃~220℃、その反応温度における飽和蒸気圧以上の圧力下、水性媒体中で4価のチタン化合物に2時間以上水熱処理を施すことにより製造された、結晶面(001)(110)(111)を有するロッド状ルチル型酸化チタンナノ粒子も用いることができる。
The photocatalyst particles used in the present invention preferably have a primary particle diameter of 5 nm to 500 nm. As photocatalyst particles having such a primary particle size, for example, in the case of titanium oxide, trade names ST-01, ST-21, ST-31, ST-41, MPT-623, Sakai Chemical Industry Co., Ltd. manufactured by Ishihara Sangyo Co., Ltd. Trade names SSP-25, SSP-20, SSP-M, STA-100A, STR-100N, STR-100A, STR-100W, trade names AMT-100, AMT-600, TKP-101, manufactured by Teica, TKP-102, TKS-203, trade name PC-101, TP-S201 manufactured by Sumitomo Chemical Co., Ltd., trade name NTB-1, NTB-100, FP-6 titanium manufactured by Showa Denko KK, trade name cell manufactured by Daicel A muse can be used.
Further, a rutile-type titanium oxide nanoparticle having an exposed crystal plane (001) described in JP2011-32146A, a transition metal to a titanium oxide nanoparticle having an exposed crystal plane described in JP2011-225422A. Titanium oxide nanoparticles in which ions are selectively supported, and a reaction temperature of 110 ° C. to 220 ° C. described in Japanese Patent Application Laid-Open No. 2011-219346, in an aqueous medium under a pressure equal to or higher than a saturated vapor pressure at the reaction temperature In addition, rod-shaped rutile titanium oxide nanoparticles having crystal faces (001) (110) (111) produced by subjecting a tetravalent titanium compound to hydrothermal treatment for 2 hours or more can also be used.
 光触媒粒子は、光触媒塗布液全体の1~50重量%、好ましくは2~40重量%である。1重量%より少ないと光触媒作用が得られにくい。また、50重量%を越えると塗布液の粘度が高くなって、取扱いが難しくなり、さらに経時安定性が低下し、光触媒粒子が凝集し易くなるからである。 The photocatalyst particles are 1 to 50% by weight, preferably 2 to 40% by weight of the entire photocatalyst coating liquid. If it is less than 1% by weight, it is difficult to obtain a photocatalytic action. On the other hand, if it exceeds 50% by weight, the viscosity of the coating solution becomes high and handling becomes difficult, and the stability over time decreases, and the photocatalyst particles easily aggregate.
(分散剤)
 本発明に用いる分散剤は、少なくとも疎水性モノマーとアニオン性基含有モノマーからなる共重合体の中和物および/またはポリリン酸塩を含むものである。
(Dispersant)
The dispersant used in the present invention contains at least a neutralized copolymer and / or polyphosphate composed of a hydrophobic monomer and an anionic group-containing monomer.
 共重合体の中和物における疎水性モノマーは、重合性二重結合を有し、かつ親油性の炭化水素基、芳香環基、または脂環基を有するものである。具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどのビニルエステル類;スチレン、α―メチルスチレン、t-ブチルスチレン、p-メチルスチレンo-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-t-ブトキシスチレン、m-t-ブトキシスチレン、p-t-ブトキシスチレン、o-クロロメチルスチレン、m-クロロメチルスチレン、p-クロロメチルスチレン、ビニルトルエン、エチルビニルベンゼン、4-ビニルビフェニル、1,1-ジフェニルエチレンなどのスチレン系モノマー、ビニルアニソール、ビニルナフタレン、ジビニルベンゼン等の芳香族ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;エチレン、プロピレン、イソプロピレン、ブタジエン、塩化ビニル、ビニルエーテル、ビニルケトン、クロロプレン、アクリロニトリル、メタクリロニトリル等を挙げることができる。これらの疎水性モノマーを1種以上用いることができる。好ましくは、ビニルエステル類および芳香族ビニル類、より好ましくは芳香族ビニル類、さらに好ましくはスチレン系モノマー、さらに好ましくはスチレンである。 The hydrophobic monomer in the neutralized product of the copolymer has a polymerizable double bond and has a lipophilic hydrocarbon group, aromatic ring group, or alicyclic group. Specific examples include methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n-amyl (meth) acrylate, and isoamyl (meth) acrylate. , N-hexyl (meth) acrylate, 2 ethylhexyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) Vinyl esters such as acrylate and benzyl (meth) acrylate; styrene, α-methylstyrene, t-butylstyrene, p-methylstyrene o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, ot Butoxystyrene, mt-butoxystyrene, pt-butoxystyrene, o-chloromethylstyrene, m-chloromethylstyrene, p-chloromethylstyrene, vinyltoluene, ethylvinylbenzene, 4-vinylbiphenyl, 1,1 -Styrene monomers such as diphenylethylene, aromatic vinyls such as vinylanisole, vinylnaphthalene and divinylbenzene; vinylidene halides such as vinylidene chloride and vinylidene fluoride; ethylene, propylene, isopropylene, butadiene, vinyl chloride, vinyl ether , Vinyl ketone, chloroprene, acrylonitrile, methacrylonitrile and the like. One or more of these hydrophobic monomers can be used. Preferred are vinyl esters and aromatic vinyls, more preferred are aromatic vinyls, more preferred are styrenic monomers, and even more preferred is styrene.
 また、アニオン性基含有モノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸およびフマル酸等のカルボキシル基含有モノマー、ビニルスルホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基含有モノマー、リン酸基含有モノマー等を挙げることができる。好ましくは、カルボキシル基含有モノマー、より好ましくは、アクリル酸、メタクリル酸、イタコン酸およびマレイン酸、さらに好ましくはアクリル酸である。 Examples of the anionic group-containing monomer include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, itaconic acid, maleic acid and fumaric acid, vinyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, etc. And sulfonic acid group-containing monomers and phosphoric acid group-containing monomers. Preferred are carboxyl group-containing monomers, more preferred are acrylic acid, methacrylic acid, itaconic acid and maleic acid, and even more preferred is acrylic acid.
 好ましい共重合体としては、疎水性モノマーとしてスチレン、アニオン性基含有モノマーとしてアクリル酸を含む共重合体(以下、スチレン-アクリル酸共重合体という)であり、必要に応じて上記のビニルエステル類を1種以上含んでもよい。このスチレン-アクリル酸共重合体としては、重量平均分子量(以下、MWと略す)が1000~100000、好ましくは4000~30000である。また酸価は、50~500、好ましくは150~300である。
 このスチレン-アクリル酸共重合体の具体例としては、以下のBASF社製のジョンクリルシリーズ、星光PMC社製のハイロスシリーズや、東亞合成社製のARUFONシリーズを用いることができる。
ジョンクリルシリーズ:
ジョンクリル67(MW12500、酸価213)
ジョンクリル678(MW8500、酸価215)
ジョンクリル586(MW4600、酸価108)
ジョンクリル611(MW8100、酸価53)
ジョンクリル680(MW4900、酸価215)
ジョンクリル682(MW1700、酸価238)
ジョンクリル683(MW8000、酸価160)
ジョンクリル690(MW16500、酸価240)
ジョンクリル52J(60%水溶液、MW1700、酸価238)
ジョンクリル57J(37%水溶液、MW4900、酸価215)
ジョンクリル60J(34%水溶液、MW8500、酸価215)
ジョンクリル61J(30.5%水溶液、MW12000、酸価195)
ジョンクリル62J(34%水溶液、MW8500、酸価200)
ジョンクリル63J(30%水溶液、MW12500、酸価213)
ジョンクリル70J(30%水溶液、MW16500、酸価240)
ジョンクリルHPD-962J(34%水溶液、MW16500、酸価240)
ジョンクリル501J(29.5%水溶液、MW12000、酸価205)
ジョンクリル354J(33.5%水溶液、MW8500、酸価200)
ジョンクリル6610(33.5%水溶液、MW8500、酸価215)
ジョンクリルPDX-6102B(25%水溶液、MW60000、酸価65)
ハイロスシリーズ:
RS-1191(MW6500、酸価280)
US-1071(MW10000、酸価75)
VS-1047(MW10000、酸価240)
YS-1274(MW19000、酸価200)
ARUFONシリーズ:
UC-3080(MW14000、酸価230)
UC-3910(MW8500、酸価200)
UC-3920(MW15500、酸価240)
UF-5022(MW14000、酸価235)
A preferred copolymer is a copolymer containing styrene as a hydrophobic monomer and acrylic acid as an anionic group-containing monomer (hereinafter referred to as a styrene-acrylic acid copolymer). 1 or more types may be included. The styrene-acrylic acid copolymer has a weight average molecular weight (hereinafter abbreviated as MW) of 1,000 to 100,000, preferably 4,000 to 30,000. The acid value is 50 to 500, preferably 150 to 300.
As specific examples of this styrene-acrylic acid copolymer, the following Jonkrill series manufactured by BASF, high loss series manufactured by Seiko PMC, and ARUFON series manufactured by Toagosei Co., Ltd. can be used.
Jonkrill series:
Jonkrill 67 (MW 12500, acid value 213)
Jonkrill 678 (MW8500, acid value 215)
Jonkrill 586 (MW4600, acid value 108)
Jonkrill 611 (MW8100, acid value 53)
Jonkrill 680 (MW4900, acid value 215)
Jonkrill 682 (MW 1700, acid value 238)
Jonkrill 683 (MW 8000, acid value 160)
Jonkrill 690 (MW 16500, acid value 240)
Jonkrill 52J (60% aqueous solution, MW 1700, acid value 238)
Jonkrill 57J (37% aqueous solution, MW4900, acid value 215)
Jonkrill 60J (34% aqueous solution, MW8500, acid value 215)
Jonkrill 61J (30.5% aqueous solution, MW 12000, acid value 195)
Jonkrill 62J (34% aqueous solution, MW8500, acid value 200)
Jonkrill 63J (30% aqueous solution, MW12500, acid value 213)
Jonkrill 70J (30% aqueous solution, MW16500, acid value 240)
Jonkrill HPD-962J (34% aqueous solution, MW16500, acid value 240)
Jonkrill 501J (29.5% aqueous solution, MW 12000, acid value 205)
Jonkrill 354J (33.5% aqueous solution, MW8500, acid value 200)
Joncryl 6610 (33.5% aqueous solution, MW8500, acid value 215)
Jonkrill PDX-6102B (25% aqueous solution, MW 60000, acid value 65)
High loss series:
RS-1191 (MW6500, acid value 280)
US-1071 (MW10000, acid value 75)
VS-1047 (MW10000, acid value 240)
YS-1274 (MW 19000, acid value 200)
ARUFON series:
UC-3080 (MW 14000, acid value 230)
UC-3910 (MW8500, acid value 200)
UC-3920 (MW15500, acid value 240)
UF-5022 (MW 14000, acid value 235)
 分散剤に用いる共重合体中和物の濃度は、その固形分が、光触媒塗布液全体の0.1~25重量%、好ましくは0.3~20重量%である。分散剤の濃度が、0.1重量%より少ないと光触媒粒子の分散性が低下して凝集し易くなり、25重量%を越えると塗布液の粘度が高くなり、取扱が困難となり、光触媒性能も向上しないからである。 The concentration of the copolymer neutralized product used in the dispersant is 0.1 to 25% by weight, preferably 0.3 to 20% by weight, based on the total photocatalyst coating liquid. If the concentration of the dispersing agent is less than 0.1% by weight, the dispersibility of the photocatalyst particles tends to be reduced and aggregation tends to occur. If the concentration exceeds 25% by weight, the viscosity of the coating solution becomes high, handling becomes difficult, and the photocatalytic performance is also improved. It is because it does not improve.
 本発明では、分散剤に用いる共重合体中和物は、商業的に入手できる中和物を用いてもよく、あるいはカルボン酸型の分散剤を塩基性物質で中和した中和物を用いてもよい。中和に用いる塩基性物質には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属の水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;リン酸リチウム、リン酸ナトリウム、リン酸カリウム、リン酸ルビジウム、リン酸セシウム等のアルカリ金属のリン酸塩;ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸ルビジウム、ホウ酸セシウム等のアルカリ金属のホウ酸塩;ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸ルビジウム、ケイ酸セシウム等のアルカリ金属のケイ酸塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム等のアルカリ金属の酢酸塩;クエン酸リチウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸ルビジウム、クエン酸セシウム等のアルカリ金属のクエン酸塩;アンモニア;メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルエタノールアミン、ジメチルエタノールアミン、メチルジエタノールアミン、アミノメチルプロパノール等のアミン類を挙げることができ、これらの1種または2種以上を用いることができる。好ましくは、アルカリ金属の水酸化物、炭酸塩または炭酸水素塩であり、より好ましくは水酸化カリウム、水酸化ナトリウムおよび水酸化セシウムである。さらに好ましくは、光触媒粒子の小粒子径化に優れるという点において水酸化カリウムおよび水酸化セシウムである。 In the present invention, the copolymer neutralized product used in the dispersant may be a commercially available neutralized product, or a neutralized product obtained by neutralizing a carboxylic acid type dispersant with a basic substance. May be. Basic substances used for neutralization include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, alkali metal hydroxides such as cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, Alkali metal carbonates such as cesium carbonate; lithium metal carbonates such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, cesium hydrogen carbonate; lithium phosphate, sodium phosphate, potassium phosphate, Alkali metal phosphates such as rubidium phosphate and cesium phosphate; Borates of alkali metals such as lithium borate, sodium borate, potassium borate, rubidium borate, cesium borate; lithium silicate, silicic acid Sodium, potassium silicate, rubidium silicate, cesium silicate, etc. Potassium metal silicates; alkaline metal acetates such as lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate; lithium citrate, sodium citrate, potassium citrate, rubidium citrate, cesium citrate, etc. Alkali metal citrate; ammonia; methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, butylamine, monoethanolamine, diethanolamine, triethanolamine, methylethanolamine, dimethylethanolamine, methyldiethanolamine, amino Examples include amines such as methylpropanol, and one or more of these can be used. Preferred are alkali metal hydroxides, carbonates or bicarbonates, and more preferred are potassium hydroxide, sodium hydroxide and cesium hydroxide. More preferred are potassium hydroxide and cesium hydroxide in that they are excellent in reducing the particle size of the photocatalyst particles.
 中和に用いる塩基性物質は、分散剤の酸価から求められるアニオン性基の当量に相当する量以上の量を添加する。この場合、分散剤溶液のpHが7~10、好ましくはpH7~9の範囲になるように添加する。具体的には、塩基性物質の固形分が、光触媒塗布液全体の0.01~10重量%、好ましくは0.03~5重量%である。 The basic substance used for neutralization is added in an amount equal to or greater than the equivalent amount of the anionic group determined from the acid value of the dispersant. In this case, the dispersant solution is added so that the pH is in the range of 7 to 10, preferably 7 to 9. Specifically, the solid content of the basic substance is 0.01 to 10% by weight, preferably 0.03 to 5% by weight of the total photocatalyst coating liquid.
 また、本発明で分散剤に用いるポリリン酸塩は、ピロリン酸、トリポリリン酸、メタリン酸、テトラリン酸、ヘキサリン酸等のポリリン酸のアルカリ金属塩であり、例えば、ポリリン酸カリウムやポリリン酸ナトリウムを用いることができる。ポリリン酸塩の濃度は、その固形分が、光触媒塗布液全体の0.1~25重量%、好ましくは0.3~20重量%である。分散剤の濃度が、0.1重量%より少ないと光触媒粒子の分散性が低下して凝集し易くなり、25重量%を越えると塗布液の粘度が高くなり、取扱が困難となり、光触媒性能も向上しないからである。 The polyphosphate used for the dispersant in the present invention is an alkali metal salt of polyphosphoric acid such as pyrophosphoric acid, tripolyphosphoric acid, metaphosphoric acid, tetraphosphoric acid, hexaphosphoric acid, and for example, potassium polyphosphate or sodium polyphosphate is used. be able to. The concentration of the polyphosphate is 0.1 to 25% by weight, preferably 0.3 to 20% by weight, based on the total photocatalyst coating liquid. If the concentration of the dispersing agent is less than 0.1% by weight, the dispersibility of the photocatalyst particles tends to be reduced and aggregation tends to occur. If the concentration exceeds 25% by weight, the viscosity of the coating solution becomes high, handling becomes difficult, and the photocatalytic performance is also improved. It is because it does not improve.
 なお、分散剤として、上記の共重合体中和物とポリリン酸塩を併用する場合には、共重合体中和物とポリリン酸塩の混合比(共重合体中和物/ポリリン酸塩)(固形分の重量比)は、1/100~100/1、好ましくは1/10~10/1である。1/100より小さいと併用の効果が見られなくなるからであり、100/1より大きいと同様に併用の効果が見られなくなるからである。 When the above copolymer neutralized product and polyphosphate are used in combination as a dispersant, the mixing ratio of copolymer neutralized product and polyphosphate (copolymer neutralized product / polyphosphate) (Weight ratio of solid content) is 1/100 to 100/1, preferably 1/10 to 10/1. This is because if the ratio is smaller than 1/100, the effect of the combined use cannot be seen, and if it is larger than 100/1, the combined effect cannot be seen similarly.
(バインダー)
 バインダーには、過酸化チタンおよび/またはフッ素系樹脂を用いる。過酸化チタン(ペルオキソチタン酸)は、四塩化チタン等のチタン塩溶液にアンモニアまたは水酸化アルカリを添加して生成させた水酸化チタンを過酸化水素で処理することにより生成し、過酸化チタンの超微粒子が分散した液体として得られる。この過酸化チタンとしては、例えば、佐賀県の特許第2938376号、ティオテクノ社の特許第3690864号記載のものを用いることができる。過酸化チタンおよびフッ素系樹脂を併用して用いると、塗膜の密着性および耐酸性が優れる。
(binder)
As the binder, titanium peroxide and / or fluorine resin is used. Titanium peroxide (peroxotitanic acid) is produced by treating titanium hydroxide produced by adding ammonia or alkali hydroxide to a titanium salt solution such as titanium tetrachloride with hydrogen peroxide. Obtained as a liquid in which ultrafine particles are dispersed. As this titanium peroxide, for example, those described in Japanese Patent No. 2938376 of Saga Prefecture and Japanese Patent No. 3690864 of Tio Techno Co., Ltd. can be used. When titanium peroxide and fluorine resin are used in combination, the adhesion and acid resistance of the coating film are excellent.
 また、フッ素系樹脂には、ポリフッ化ビニリデン、ポリ塩化三フッ化エチレン、ポリ四フッ化エチレン、ポリ四フッ化エチレン-六フッ化プロピレンコポリマー、エチレン-ポリ四フッ化エチレンコポリマー、エチレン-塩化三フッ化エチレンコポリマー、四フッ化エチレン-パーフルオロアルキルビニルエーテルコポリマー等の結晶性フッ素樹脂、パーフルオロシクロポリマー、ビニルエーテル-フルオロオレフィンコポリマー、ビニルエステル-フルオロオレフィンコポリマー等の非晶質フッ素樹脂、スルホン酸基がグラフト重合されたポリ四フッ化エチレン(商品名:デュポン社製ナフィオン)等を用いることができる。 Fluorocarbon resins include polyvinylidene fluoride, polychloroethylene trifluoride, polytetrafluoroethylene, polytetrafluoroethylene-hexafluoropropylene copolymer, ethylene-polytetrafluoroethylene copolymer, ethylene-trichlorochloride. Crystalline fluorine resin such as fluorinated ethylene copolymer, ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer, amorphous fluororesin such as perfluorocyclopolymer, vinyl ether-fluoroolefin copolymer, vinyl ester-fluoroolefin copolymer, sulfonic acid group Can be used, such as polytetrafluoroethylene (trade name: Nafion manufactured by DuPont).
 バインダーの濃度は、その固形分が、光触媒塗布液全体の0.05~50重量%、好ましくは0.2~20重量%である。濃度が0.05重量%より少ないと基材への付着性が低下し、50重量%を越えると光触媒性能が低下するからである。 The concentration of the binder is such that the solid content is 0.05 to 50% by weight, preferably 0.2 to 20% by weight of the entire photocatalyst coating liquid. This is because if the concentration is less than 0.05% by weight, the adhesion to the substrate is lowered, and if it exceeds 50% by weight, the photocatalytic performance is lowered.
(水性媒体)
 水性媒体は、水、又は水を主成分として含み、水溶性有機溶媒を含む溶媒である。水として、一般に、イオン交換水、RO水、蒸留水、精製水が用いられる。水溶性有機溶媒として、例えば、メチルアルコール、エチルアルコール、イソプロパノール、ブタノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン、メチルセロソルブ、エチルセロセルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、メチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、アセトン、および2-ブタノンが挙げられる。水性媒体が、水溶性有機溶媒を有する場合、水溶性有機溶媒は、水100重量部に対して、0~100重量部の割合で使用することが好ましい。
(Aqueous medium)
The aqueous medium is water or a solvent containing water as a main component and a water-soluble organic solvent. As water, ion exchange water, RO water, distilled water, and purified water are generally used. Examples of water-soluble organic solvents include methyl alcohol, ethyl alcohol, isopropanol, butanol, ethylene glycol, diethylene glycol, propylene glycol, glycerin, methyl cellosolve, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, methyl carbitol, propylene glycol monomethyl Examples include ether, propylene glycol monoethyl ether, acetone, and 2-butanone. When the aqueous medium has a water-soluble organic solvent, the water-soluble organic solvent is preferably used in a ratio of 0 to 100 parts by weight with respect to 100 parts by weight of water.
 水性媒体の割合は、塗布液全体の重量を100重量%としたとき、20~98重量%、好ましくは50~97重量%である。水性媒体の割合が20重量%より少ないと、塗布液の粘度が高くなって、取扱いが難しくなり、水性媒体の割合が98重量%を越えると、光触媒粒子濃度が低くなり、光触媒性能が低下するからである。 The proportion of the aqueous medium is 20 to 98% by weight, preferably 50 to 97% by weight, when the weight of the whole coating solution is 100% by weight. When the proportion of the aqueous medium is less than 20% by weight, the viscosity of the coating liquid becomes high and handling becomes difficult. When the proportion of the aqueous medium exceeds 98% by weight, the concentration of the photocatalyst particles decreases and the photocatalytic performance decreases. Because.
 本発明の光触媒塗布液に含まれる光触媒粒子の動的光散乱法で測定されたメジアン径(d50%の粒子径)は、5nm~2μm、好ましくは10nm~1μm、より好ましくは20nm~300nmである。メジアン径が2μmより大きいと、光触媒性能が低下するので好ましくない。 The median diameter (d50% particle diameter) of the photocatalyst particles contained in the photocatalyst coating liquid of the present invention measured by the dynamic light scattering method is 5 nm to 2 μm, preferably 10 nm to 1 μm, more preferably 20 nm to 300 nm. . When the median diameter is larger than 2 μm, the photocatalytic performance is lowered, which is not preferable.
 また、本発明の光触媒塗布液のpHは7~10、好ましくは7~8である。pHが7より小さいと上記の共重合体分散剤が溶解せず析出し光触媒粒子の分散性が低下するからであり、pHが10より大きいと作業者の安全面等塗布液の取扱い性が劣るからである。 The pH of the photocatalyst coating solution of the present invention is 7 to 10, preferably 7 to 8. If the pH is less than 7, the above-mentioned copolymer dispersant is not dissolved and precipitates, and the dispersibility of the photocatalyst particles is lowered. If the pH is more than 10, the handling property of the coating solution such as the safety of the worker is inferior. Because.
(他の成分)
 本発明の光触媒塗布液は、必要に応じて、上記以外の他の成分をさらに含んでよい。他の成分は、例えば、pH調整剤、防腐防カビ剤、界面活性剤、キレート剤、レベリング剤、消泡剤および増粘剤から選択される1または複数の添加剤である。他の成分は、所望の性質を塗布液に付与できる量を添加する。他の成分が塗布液に占める割合は特に制限されず、塗布液の用途に応じて適宜選択できる。
(Other ingredients)
The photocatalyst coating liquid of the present invention may further contain other components than the above as necessary. The other component is, for example, one or more additives selected from a pH adjuster, antiseptic / antifungal agent, surfactant, chelating agent, leveling agent, antifoaming agent and thickener. The other components are added in an amount capable of imparting desired properties to the coating solution. The proportion of other components in the coating solution is not particularly limited and can be appropriately selected depending on the application of the coating solution.
(製造方法)
 本発明の光触媒塗布液は、水性媒体に分散剤を溶解させた分散剤溶液に、光触媒粒子および/またはバインダーを添加して混合して製造する。例えば、分散剤溶液に、光触媒粒子とバインダーを一度に添加してもよい。また、分散剤溶液に光触媒粒子を添加し混合して、光触媒分散液を調製し、その光触媒分散液にバインダーを添加し、混合して光触媒塗布液を製造してもよい。また、分散剤溶液にバインダーを添加し混合し、さらに光触媒粒子を添加し、混合して光触媒塗布液を製造してもよい。
(Production method)
The photocatalyst coating liquid of the present invention is produced by adding and mixing photocatalyst particles and / or a binder to a dispersant solution obtained by dissolving a dispersant in an aqueous medium. For example, you may add a photocatalyst particle and a binder to a dispersing agent solution at once. Alternatively, a photocatalyst particle may be added to and mixed with the dispersant solution to prepare a photocatalyst dispersion, and a binder may be added to and mixed with the photocatalyst dispersion to produce a photocatalyst coating solution. Alternatively, a binder may be added to and mixed with the dispersant solution, and photocatalyst particles may be further added and mixed to produce a photocatalyst coating solution.
 混合方法としては、公知の分散装置、具体的には、媒体撹拌式分散機、転動ボールミル、振動ボールミル、またはジェットミルのような装置を用いることができる。分散機として、ビーズミル等の媒体撹拌式分散機を用いる場合には、媒体(メディア)として、一般的には材質がジルコニア、アルミナ又はガラスであり、直径が2.0mm以下のビーズが用いられる。混合は、光触媒粒子の平均粒子径が前述の範囲となるまで、実施する。 As the mixing method, a known dispersing device, specifically, a device such as a medium stirring type dispersing machine, a rolling ball mill, a vibrating ball mill, or a jet mill can be used. When a medium agitation type disperser such as a bead mill is used as the disperser, beads having a diameter of 2.0 mm or less are generally used as the medium (media), and the material is zirconia, alumina, or glass. Mixing is carried out until the average particle diameter of the photocatalyst particles falls within the above-mentioned range.
(光触媒体)
 本発明の光触媒塗布液を、ガラス、プラスチック、金属、陶磁器およびコンクリートのような基材、ならびに当該基材の表面に形成された塗料の膜の表面に塗布して塗膜を形成して光触媒体を製造することができる。その塗膜は、スピンコーティング、エアナイフコーティング、リバースロールコーティング、ダイコーティング、スプレーコーティング、またははけ塗り等の公知の方法で形成することができる。本発明の光触媒塗布液を、塗料の膜の表面に塗布する場合、光触媒塗布液と塗料の膜との接着性を向上させるために、アンダーコート剤を塗布してから、光触媒塗布液を塗布してもよい。
(Photocatalyst)
The photocatalyst body is formed by applying the photocatalyst coating liquid of the present invention to a surface of a substrate such as glass, plastic, metal, ceramics, and concrete, and a coating film formed on the surface of the substrate. Can be manufactured. The coating film can be formed by a known method such as spin coating, air knife coating, reverse roll coating, die coating, spray coating, or brush coating. When the photocatalyst coating liquid of the present invention is applied to the surface of the paint film, in order to improve the adhesion between the photocatalyst coating liquid and the paint film, the undercoat agent is applied and then the photocatalyst coating liquid is applied. May be.
 本発明の光触媒塗布液を、基材表面、または基材表面に形成された塗料の膜の表面に塗布して塗膜を形成すると、基材表面が光の照射により親水性となるため、油性の汚れをはじきやすくなる。したがって、本発明の光触媒塗布液は、基材表面に、良好な防滴性、防汚・防曇性、自己洗浄性、および易洗浄性を付与することができる。また光触媒作用により、脱臭、ガス処理、水処理、抗菌等の効果を発揮することができる。 When the photocatalyst coating liquid of the present invention is applied to the surface of a substrate or the surface of a coating film formed on the surface of a substrate to form a coating film, the substrate surface becomes hydrophilic by light irradiation. It becomes easy to repel dirt. Therefore, the photocatalyst coating liquid of the present invention can impart good drip-proof properties, antifouling / antifogging properties, self-cleaning properties, and easy cleaning properties to the substrate surface. Moreover, the effects of deodorization, gas treatment, water treatment, antibacterial, etc. can be exhibited by the photocatalytic action.
 あるいは、本発明の光触媒塗布液は、色素増感太陽電池に使用することができる。具体的には、本発明の光触媒塗布液は、色素増感太陽電池の透明電極(負極)に塗布するために用いてよい。この場合、本発明の光触媒塗布液は、その粘度を高くして用いることが好ましい。粘度は増粘剤を添加することによって高くしてよい。また、光触媒塗布液には、色素を予め混合してよい。 Alternatively, the photocatalyst coating solution of the present invention can be used for a dye-sensitized solar cell. Specifically, the photocatalyst coating solution of the present invention may be used for coating on a transparent electrode (negative electrode) of a dye-sensitized solar cell. In this case, the photocatalyst coating liquid of the present invention is preferably used with its viscosity increased. The viscosity may be increased by adding a thickener. Moreover, you may mix a pigment | dye previously with a photocatalyst coating liquid.
 以下、実施例を用いて本発明をさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
(光触媒)
 光触媒として、アナターゼ型酸化チタン光触媒(石原産業製、商品名ST-21)を用いた結果を実施例1~5および比較例1~3に、可視光応答型酸化チタン系光触媒(ダイセル製、商品名セルミューズ)を用いた結果を実施例6、7に示す。
(photocatalyst)
The results of using an anatase-type titanium oxide photocatalyst (manufactured by Ishihara Sangyo Co., Ltd., trade name ST-21) as the photocatalyst are shown in Examples 1 to 5 and Comparative Examples 1 to 3, and a visible light responsive titanium oxide photocatalyst (manufactured by Daicel, product) Examples 6 and 7 show the results using "Name Cell Muse".
(分散剤)
 分散剤には、スチレン-アクリル酸共重合体(BASF社製ジョンクリル678:MW8500、酸価215)を用いた。また、中和には、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化セシウムまたは28%アンモニア水(いずれも和光純薬工業製特級)を用いた。
(Dispersant)
As the dispersant, a styrene-acrylic acid copolymer (Jonkrill 678: MW8500, acid value 215 manufactured by BASF) was used. For neutralization, lithium hydroxide, potassium hydroxide, sodium hydroxide, cesium hydroxide or 28% ammonia water (all of which are Wako Pure Chemical Industries special grades) were used.
(バインダー)
 バインダーには、過酸化チタン1%溶液(ティオテクノ社製のティオスカイコートC)およびフッ素系樹脂20%溶液(和光純薬工業製、商品名ナフィオン)を用いた。
(binder)
As the binder, a 1% titanium peroxide solution (Tiosky Coat C manufactured by Tio-Techno Co., Ltd.) and a 20% fluorine-based resin solution (trade name Nafion, manufactured by Wako Pure Chemical Industries, Ltd.) were used.
(塗布液調製)
 所定量の塩基性物質を溶解させた塩基溶液に分散剤を溶解させて分散剤溶液を調製した。その分散剤溶液に、光触媒粒子を添加して光触媒分散液を調製した。その光触媒分散液にバインダーを添加した後、直径0.3mmのジルコニアからなるビーズを媒体として、シンマルエンタープライゼス社製のダイノーミルKDLスペシャル型ビーズミルを用いて混合し、光触媒塗布液を得た。各実施例および各比較例における光触媒塗布液の組成を表1および表2に示す。
(Coating solution preparation)
A dispersing agent solution was prepared by dissolving a dispersing agent in a base solution in which a predetermined amount of a basic substance was dissolved. Photocatalyst particles were added to the dispersant solution to prepare a photocatalyst dispersion. After adding a binder to the photocatalyst dispersion liquid, mixing was performed using a dyno mill KDL special type bead mill manufactured by Shinmaru Enterprises Co., Ltd. using beads made of zirconia having a diameter of 0.3 mm as a medium to obtain a photocatalyst coating liquid. Tables 1 and 2 show the compositions of the photocatalyst coating solution in each example and each comparative example.
 次に、得られた塗布液のpH、塗布液における光触媒粒子の粒子径、塗布液の経時安定性、塗膜の耐着色性、耐酸性および光触媒性能を以下の方法で評価した。 Next, the pH of the obtained coating solution, the particle diameter of the photocatalyst particles in the coating solution, the stability of the coating solution over time, the coloration resistance of the coating film, the acid resistance and the photocatalytic performance were evaluated by the following methods.
(pH)
 塗布液のpHを堀場製作所製pHメータを用いて室温(20~25℃)で測定した。
(PH)
The pH of the coating solution was measured at room temperature (20 to 25 ° C.) using a pH meter manufactured by Horiba.
(光触媒粒子の粒子径)
 光触媒塗布液中の光触媒粒子の粒子径は、動的光散乱法により測定した。測定には、株式会社堀場製作所製のLB550を用いた。
(Photocatalyst particle diameter)
The particle diameter of the photocatalyst particles in the photocatalyst coating liquid was measured by a dynamic light scattering method. For the measurement, LB550 manufactured by Horiba Ltd. was used.
(経時安定性)
 塗布液をガラス瓶にいれ、常温で3ヶ月静置した後、状態を目視観察し、以下の基準に基づき評価した。
○:沈澱がない。または、光触媒粒子が沈澱しているが、振とうすると簡単に再分散する。
×:光触媒粒子が沈澱しており、振とうしても再分散しない。
(Stability over time)
The coating solution was placed in a glass bottle and allowed to stand at room temperature for 3 months, and then the state was visually observed and evaluated based on the following criteria.
○: There is no precipitation. Alternatively, the photocatalyst particles are precipitated but easily redispersed when shaken.
X: The photocatalyst particle | grains have settled and it does not re-disperse even if it shakes.
(耐着色性)
 塗布液をガラス板にバーコーターで塗布し、乾燥後、塗膜を200℃に加熱し、塗膜の着色性を以下の基準に基づき評価した。
○:塗膜に色変化が生じない。
×:塗膜に色変化が生じ、着色が発生する。
(Color resistance)
The coating solution was applied to a glass plate with a bar coater, dried, the coating film was heated to 200 ° C., and the colorability of the coating film was evaluated based on the following criteria.
○: No color change occurs in the coating film.
X: A color change arises in a coating film and coloring generate | occur | produces.
(耐酸性)
 塗布液をガラス板にバーコーターで塗布し、乾燥後、塗膜を10%濃度の塩酸水溶液に24時間浸漬し、以下の基準に基づき評価した。
○:塗膜の剥離が見られない。
×:塗膜の一部又は全部の剥離が見られる。
(Acid resistance)
The coating solution was applied to a glass plate with a bar coater, and after drying, the coating film was immersed in a 10% strength aqueous hydrochloric acid solution for 24 hours and evaluated based on the following criteria.
○: No peeling of the coating film is observed.
X: Peeling of part or all of a coating film is seen.
(光触媒性能評価)
 JIS R1703-2(2007)「ファインセラミックス 光触媒材料のセルフクリーニング性能試験方法 第2部:湿式分解性能」に準じて行った。
 具体的には、塗布液をガラス板にバーコーターで塗布し、乾燥後、塗膜の上にアクリル樹脂製の筒を置き、筒内に1.0×10-5mol/Lのメチレンブルー水溶液を添加した。筒にカバーガラスを載せ、紫外光を60分間照射して、経時のメチレンブルー濃度を波長664nmにおける吸光度測定により定量し、光照射前後のメチレンブルー濃度より光触媒によるメチレンブルー分解率を求めた。以下の基準に基づき評価した。
メチレンブルー分解率=(光照射前のメチレンブルー濃度-光照射後のメチレンブルー濃度)/光照射前のメチレンブルー濃度
○:メチレンブルー分解率が51~100%
△:メチレンブルー分解率が21~50%
×:メチレンブルー分解率が0~20%
(Photocatalytic performance evaluation)
JIS R 1703-2 (2007) “Test method for self-cleaning performance of fine ceramics photocatalyst material Part 2: Wet decomposition performance”
Specifically, the coating solution was applied to a glass plate with a bar coater, dried, an acrylic resin tube was placed on the coating film, and a 1.0 × 10 −5 mol / L methylene blue aqueous solution was placed in the tube. Added. A cover glass was placed on the tube, irradiated with ultraviolet light for 60 minutes, the methylene blue concentration over time was quantified by measuring the absorbance at a wavelength of 664 nm, and the methylene blue decomposition rate by the photocatalyst was determined from the methylene blue concentration before and after the light irradiation. Evaluation was based on the following criteria.
Methylene blue decomposition rate = (Methylene blue concentration before light irradiation−Methylene blue concentration after light irradiation) / Methylene blue concentration before light irradiation ○: Methylene blue decomposition rate 51 to 100%
Δ: Methylene blue decomposition rate of 21-50%
×: Decomposition rate of methylene blue is 0 to 20%
(結果)
 実施例1~5および比較例1~3の結果を表1に示す。比較例1は、分散剤および過酸化チタンを添加しなかった場合である。また、比較例2は、過酸化チタンを添加したが、分散剤を添加しなかった場合である。また、比較例3は、過酸化チタンを添加したが、分散剤を添加せず、水酸化カリウムを添加した場合である。実施例1から5は、分散剤を添加しなかった比較例1~3に比べ光触媒粒子の粒子径が非常に小さくなり、経時安定性も光触媒性能も向上した。なお、比較例1では、塗膜が基材に付着せず、光触媒性能の評価はできなかった。
(result)
The results of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 1. Comparative Example 1 is a case where a dispersant and titanium peroxide were not added. In Comparative Example 2, titanium peroxide was added, but no dispersant was added. In Comparative Example 3, titanium peroxide was added, but no dispersant was added, and potassium hydroxide was added. In Examples 1 to 5, the particle diameter of the photocatalyst particles became very small as compared with Comparative Examples 1 to 3 in which no dispersant was added, and both temporal stability and photocatalytic performance were improved. In Comparative Example 1, the coating film did not adhere to the substrate, and the photocatalytic performance could not be evaluated.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例6、7の結果を表2に示す。実施例6、7は可視光応答型酸化チタン系光触媒を用いた結果であり、実施例6はバインダーとして過酸化チタンのみ、実施例7はバインダーとして過酸化チタンおよびフッ素系樹脂を併用した結果である。実施例7より、バインダーに過酸化チタンとフッ素系樹脂を併用すると、塗膜の耐酸性を改善することができる。
また、分散剤に用いる共重合体中和物がカリウム塩の中和物である場合は耐着色性に優れる。
The results of Examples 6 and 7 are shown in Table 2. Examples 6 and 7 are the results of using a visible light responsive titanium oxide photocatalyst, Example 6 is the result of using only titanium peroxide as a binder, and Example 7 is the result of using titanium peroxide and a fluororesin in combination as a binder. is there. From Example 7, the acid resistance of the coating film can be improved by using titanium peroxide and a fluorine-based resin in combination with the binder.
Moreover, when the copolymer neutralized material used for a dispersing agent is the neutralized material of potassium salt, it is excellent in coloring resistance.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 

Claims (11)

  1.  少なくとも、光触媒粒子、過酸化チタンおよび/またはフッ素系樹脂から選択される少なくとも1種のバインダー、分散剤および水性媒体を含み、該分散剤として、少なくとも疎水性モノマーとアニオン性基含有モノマーからなる共重合体の中和物および/またはポリリン酸塩を含む、光触媒塗布液。 At least one binder selected from photocatalyst particles, titanium peroxide and / or fluororesin, a dispersing agent and an aqueous medium are included, and the dispersing agent includes at least a hydrophobic monomer and an anionic group-containing monomer. A photocatalyst coating solution containing a neutralized polymer and / or a polyphosphate.
  2.  上記光触媒粒子が酸化チタンである請求項1記載の光触媒塗布液。 The photocatalyst coating liquid according to claim 1, wherein the photocatalyst particles are titanium oxide.
  3.  上記塗布液のpHが7~10の範囲にある請求項1または2に記載の光触媒塗布液。 The photocatalyst coating solution according to claim 1 or 2, wherein the coating solution has a pH in the range of 7 to 10.
  4.  上記分散剤が、疎水性モノマーとアニオン性基含有モノマーからなる共重合体の中和物である請求項1から3のいずれか一つに記載の光触媒塗布液。 The photocatalyst coating solution according to any one of claims 1 to 3, wherein the dispersant is a neutralized product of a copolymer composed of a hydrophobic monomer and an anionic group-containing monomer.
  5.  上記分散剤が、疎水性モノマーとアニオン性基含有モノマーからなる共重合体のカリウム塩またはセシウム塩の中和物である請求項1から4のいずれか一つに記載の光触媒塗布液。 The photocatalyst coating solution according to any one of claims 1 to 4, wherein the dispersant is a neutralized product of a potassium salt or a cesium salt of a copolymer comprising a hydrophobic monomer and an anionic group-containing monomer.
  6.  上記分散剤が、疎水性モノマーとアニオン性基含有モノマーからなる共重合体のカリウム塩の中和物である請求項1から5のいずれか一つに記載の光触媒塗布液。 The photocatalyst coating solution according to any one of claims 1 to 5, wherein the dispersant is a neutralized product of a potassium salt of a copolymer composed of a hydrophobic monomer and an anionic group-containing monomer.
  7.  上記光触媒粒子がロッド状酸化チタンであって、
    可視光線による光触媒作用を有する請求項1から6のいずれか一つに記載の光触媒塗布液。
    The photocatalyst particles are rod-shaped titanium oxide,
    The photocatalyst coating liquid according to claim 1, which has a photocatalytic action by visible light.
  8.  上記バインダーが、過酸化チタンである請求項1から7のいずれか一つに記載の光触媒塗布液。 The photocatalyst coating solution according to any one of claims 1 to 7, wherein the binder is titanium peroxide.
  9.  請求項1記載の光触媒塗布液の製造方法であって、水性媒体に分散剤を溶解させた分散剤溶液に、光触媒粒子および/またはバインダーを添加して混合する光触媒塗布液の製造方法。 The method for producing a photocatalyst coating liquid according to claim 1, wherein the photocatalyst particles and / or the binder are added to and mixed with a dispersant solution obtained by dissolving a dispersant in an aqueous medium.
  10.  上記分散剤溶液に光触媒粒子を添加し混合して光触媒分散液を調製し、該光触媒分散液にバインダーを添加する請求項9記載の製造方法。 The method according to claim 9, wherein photocatalyst particles are added to and mixed with the dispersant solution to prepare a photocatalyst dispersion, and a binder is added to the photocatalyst dispersion.
  11.  請求項1記載の光触媒塗布液を用いて形成された塗膜を表面に有する光触媒体。 A photocatalyst having a coating film formed on the surface using the photocatalyst coating solution according to claim 1.
PCT/JP2013/070146 2012-07-26 2013-07-25 Photocatalyst coating liquid, method for producing same, and photocatalyst WO2014017575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014526990A JPWO2014017575A1 (en) 2012-07-26 2013-07-25 Photocatalyst coating liquid, method for producing the same, and photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012165980 2012-07-26
JP2012-165980 2012-07-26

Publications (1)

Publication Number Publication Date
WO2014017575A1 true WO2014017575A1 (en) 2014-01-30

Family

ID=49997384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070146 WO2014017575A1 (en) 2012-07-26 2013-07-25 Photocatalyst coating liquid, method for producing same, and photocatalyst

Country Status (2)

Country Link
JP (1) JPWO2014017575A1 (en)
WO (1) WO2014017575A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107050A (en) * 2014-10-28 2017-08-29 Toto株式会社 Photocatalyst compound particle and its manufacture method
CN116237029A (en) * 2023-02-28 2023-06-09 福建省杭氟电子材料有限公司 Photocatalyst for methane fluorination

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097404A (en) * 2000-09-20 2002-04-02 Nippon Zeon Co Ltd Photocatalyst coating material and environment cleaning material using the same
JP2005139403A (en) * 2003-11-10 2005-06-02 Daikin Ind Ltd Coating material having photocatalytic action and additive for coating material
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2006159028A (en) * 2004-12-03 2006-06-22 The Inctec Inc Dispersion and coating liquid
JP2006297209A (en) * 2005-04-18 2006-11-02 Asahi Kasei Chemicals Corp Photocatalyst
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040245A (en) * 1999-07-30 2001-02-13 Toto Ltd Photocatalytic hydrophilic coating composition and photocatalytic hydrophilic coating film
JP2004209345A (en) * 2002-12-27 2004-07-29 Asahi Kasei Chemicals Corp Photocatalyst composition and photocatalyst body formed from the same
JP4817596B2 (en) * 2003-05-20 2011-11-16 旭化成ケミカルズ株式会社 Photocatalyst composition and photocatalyst formed therefrom
JP2005060532A (en) * 2003-08-12 2005-03-10 Taiyo Kogyo Corp Photocatalyst dispersion and preparation method therefor
JP5065696B2 (en) * 2007-02-05 2012-11-07 積水樹脂株式会社 Method for producing photocatalytic coating composition and photocatalytic coating composition
JP2009056348A (en) * 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd Photocatalyst dispersion
JP2011020033A (en) * 2009-07-14 2011-02-03 Ishihara Sangyo Kaisha Ltd Visible light-responsive photocatalyst, method for producing the same and photocatalyst coating agent and photocatalyst dispersion obtained by using the same
JPWO2011059101A1 (en) * 2009-11-16 2013-04-04 タムネットワーク株式会社 Photocatalytic coating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097404A (en) * 2000-09-20 2002-04-02 Nippon Zeon Co Ltd Photocatalyst coating material and environment cleaning material using the same
JP2006515388A (en) * 2003-01-03 2006-05-25 セミカ エス アー Viscosity-adjustable photosensitive dispersion for metal deposition on insulating substrates and use thereof
JP2005139403A (en) * 2003-11-10 2005-06-02 Daikin Ind Ltd Coating material having photocatalytic action and additive for coating material
JP2006159028A (en) * 2004-12-03 2006-06-22 The Inctec Inc Dispersion and coating liquid
JP2006297209A (en) * 2005-04-18 2006-11-02 Asahi Kasei Chemicals Corp Photocatalyst
JP2011131211A (en) * 2009-11-25 2011-07-07 Asahi Kasei Chemicals Corp Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107107050A (en) * 2014-10-28 2017-08-29 Toto株式会社 Photocatalyst compound particle and its manufacture method
EP3213818A4 (en) * 2014-10-28 2018-07-11 Toto Ltd. Photocatalyst composite particles and method for producing same
US10173199B2 (en) 2014-10-28 2019-01-08 Toto Ltd. Photocatalyst composite particles and method for producing same
CN107107050B (en) * 2014-10-28 2020-11-06 Toto株式会社 Photocatalyst composite particle and method for producing same
CN116237029A (en) * 2023-02-28 2023-06-09 福建省杭氟电子材料有限公司 Photocatalyst for methane fluorination
CN116237029B (en) * 2023-02-28 2023-09-05 福建省杭氟电子材料有限公司 Photocatalyst for methane fluorination

Also Published As

Publication number Publication date
JPWO2014017575A1 (en) 2016-07-11

Similar Documents

Publication Publication Date Title
EP2962994B1 (en) Cuprous oxide particle dispersion, coating agent composition, and antibacterial/antiviral member
JP5209861B2 (en) Titanium dioxide white pigment and method for producing the same
WO1999037582A1 (en) Titanium oxide colloidal sol and process for the preparation thereof
CN107964294B (en) PFA coating containing micro-nano composite filler and preparation method thereof
Sun et al. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania
US20100096601A1 (en) Molecules with complexing groups for aqueous nanoparticle dispersions and uses thereof
TWI710526B (en) Titanium dioxide
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
CN112210281A (en) Superhydrophilic coating composition
JPH10130527A (en) Titanium dioxide pigment and its production
JP2004051644A (en) Photocatalytic coating agent, photocatalytic composite material and method for producing the same
JP2007009156A (en) Method for producing titanium dioxide pigment
WO2014017575A1 (en) Photocatalyst coating liquid, method for producing same, and photocatalyst
JP7185143B2 (en) Titanium dioxide aqueous dispersion and method for producing the same
Kamaruddin et al. Quartz–titania composites for the photocatalytical modification of construction materials
EP2900843B1 (en) Coatable composition, photocatalytic articles, and methods of making the same
US10995012B2 (en) Concentrated photoactive, neutral titanium dioxide sol
JP2009161678A (en) Surface treated titanic acid pigment and method of producing the same
JP7040736B2 (en) Method for manufacturing white fine particle aqueous dispersion
JP2012233051A (en) Coating composition
JP2013193054A (en) Photocatalyst dispersion and coating liquid
JP3385243B2 (en) Method for producing titanium oxide sol
JP6076019B2 (en) Alkaline rutile type titanium oxide sol
WO2017156372A1 (en) Photocatalytic coating compositions
JP2022134668A (en) Photocatalyst coating agent and method for producing photocatalyst coating agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13822185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014526990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13822185

Country of ref document: EP

Kind code of ref document: A1