WO2014017072A1 - Regenerated thermoplastic resin material - Google Patents

Regenerated thermoplastic resin material Download PDF

Info

Publication number
WO2014017072A1
WO2014017072A1 PCT/JP2013/004457 JP2013004457W WO2014017072A1 WO 2014017072 A1 WO2014017072 A1 WO 2014017072A1 JP 2013004457 W JP2013004457 W JP 2013004457W WO 2014017072 A1 WO2014017072 A1 WO 2014017072A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
thermoplastic
weight
sorting
parts
Prior art date
Application number
PCT/JP2013/004457
Other languages
French (fr)
Japanese (ja)
Inventor
中島 啓造
公美子 大久保
章浩 野末
西田 博史
憲一 徳弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380002930.4A priority Critical patent/CN103797057A/en
Priority to JP2014500585A priority patent/JP6327470B2/en
Publication of WO2014017072A1 publication Critical patent/WO2014017072A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0203Separating plastics from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0279Optical identification, e.g. cameras or spectroscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention is a heat obtained by recycling a specific type of synthetic resin material (target resin material) from waste including a plurality of types of synthetic resins, such as used home appliances (waste home appliances).
  • target resin material a specific type of synthetic resin material
  • the present invention relates to a plastic recycled resin material.
  • the present invention relates to a thermoplastic recycled resin material capable of suppressing or avoiding a decrease in physical properties and realizing a quality superior to the conventional one when selecting and recycling a target resin material from the waste.
  • resin waste material for convenience of explanation
  • resin material after sorting that is, A specific type of resin material
  • recycled resin material for convenience of explanation
  • the following problems are known in the water specific gravity sorting method.
  • a large amount of wastewater is generated because water is used to sort PP from resin waste.
  • polystyrene (PS) and ABS resin acrylonitrile-butadiene-styrene copolymer
  • PS polystyrene
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • Patent Document 1 a sorting method disclosed in Patent Document 1 or Patent Document 2 has been proposed as a technique that takes into account such a problem relating to the water specific gravity sorting method.
  • this sorting method a specific type of resin material (target resin material) is sorted from resin waste using near infrared rays.
  • the resin waste (sorting target) is transported by a transport device.
  • the materials of various resin materials are identified by a near infrared identification device (material identification device).
  • material identification device a near infrared identification device
  • high-pressure air is discharged from below the dropping path toward the detected resin material of the specific material.
  • the resin material of a specific material can be blown away from the natural fall position of other resin materials (mixtures). Therefore, it becomes possible to select a resin material of a specific material from other resin materials.
  • the selected resin material is used as it is as a recycled resin material, that is, when a molded product is produced only from the recycled resin material obtained by sorting, in the obtained molded product, the physical properties or There is a risk of quality degradation.
  • the resin waste material is shredder dust that crushes waste home appliances, even if the above-mentioned thermoplastic resin material such as PP, PS, or ABS resin can be selected with high accuracy, a small amount of foreign matter should be avoided. I can't.
  • a recycled resin material mixed with foreign matter has lower strength and / or impact resistance than a virgin material (unused resin material) or a recycled resin material almost free of foreign matter.
  • urethane foam used as a heat insulating material (urethane resin is generally known as a thermosetting resin material), various sealing materials, elastomer materials (rubber etc.), other resin materials, And various metal materials (iron, copper, aluminum, etc.).
  • urethane resin is generally known as a thermosetting resin material
  • various sealing materials elastomer materials (rubber etc.)
  • other resin materials elastomer materials (rubber etc.), other resin materials
  • various metal materials iron, copper, aluminum, etc.
  • an additive added to the resin material an additive such as a filler or a pigment is also added in addition to the above-described one that improves the durability.
  • the filler or the pigment may contain metal components, and these metal components may affect the thermal deterioration of the recycled resin material.
  • the foreign matter described above may affect the deterioration or durability of the recycled resin material, or may accelerate the deterioration.
  • a technique for suppressing or avoiding a decrease in physical properties or a variation in physical properties of the recycled resin material by blending a recycled resin material with a virgin material is known.
  • the technique disclosed in Patent Document 3 describes that the physical properties of a recycled resin material can be improved by mixing a recycled resin material (recycled plastic material) and a virgin material.
  • Patent Document 4 proposes a laminate having a recycled polypropylene resin as an intermediate layer and a polypropylene virgin resin containing a flame retardant as a surface layer and a back layer. According to this document, it is said that a flame-retardant polypropylene excellent in strength and appearance can be obtained by using the laminate having the above-described configuration.
  • Patent Document 3 there is a case where the physical properties cannot be sufficiently improved even by a method of mixing a virgin material with a recycled resin material.
  • a recycled resin material obtained by mixing a virgin material is referred to as a “mixed recycled resin material” for convenience
  • this mixed recycled resin material is certainly more than the original recycled resin material that is not mixed with a virgin material. Physical properties are improved. However, the physical properties of the mixed recycled resin material do not reach the physical properties of the virgin material after all. Therefore, the use of the mixed recycled resin material is limited to a field where physical properties lower than those of the virgin material are sufficient.
  • the lowered physical properties cannot be recovered sufficiently even when the virgin material is mixed.
  • a crystallized resin such as PP can recover the lowered physical properties to some extent by mixing a virgin material.
  • the styrene resin material is a non-crystallized resin, the physical properties may not be sufficiently recovered even when the virgin material is mixed.
  • the physical properties of the mixed recycled resin material may not be improved sufficiently.
  • Patent Document 4 in the method of laminating the virgin material on the surface instead of mixing the virgin material, a laminating process is essential. Therefore, a separate laminating process is required to obtain a molded product of the recycled resin material, and the total man-hour is increased. As a result, this method not only complicates the manufacturing process but also increases the manufacturing cost. Moreover, since it is necessary to use a virgin material for a surface layer and a back surface layer in patent document 4, the usage-amount of a recycled resin material cannot be increased more.
  • the present invention was made to solve such problems, and from a mixture of a plurality of types of resin materials derived from waste home appliances, a specific type of thermoplastic resin material is selected,
  • An object of the present invention is to provide a technique capable of realizing good physical properties of a thermoplastic recycled resin material without mixing a large amount of virgin material when recycled as a thermoplastic recycled resin material.
  • thermoplastic recycled resin material is obtained from a waste material of a thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances using a material identification device.
  • a phenol-based antioxidant and a sulfur-based antioxidant are blended with a specific type of thermoplastic resin material obtained after being screened and dry-cleaned, or (2) the heat
  • the metal deactivator is blended in the range of 0.01 to 1 part by weight with respect to 100 parts by weight of the plastic resin material, (3) the thermoplastic elastomer is blended, or (4) bromine-based difficulty.
  • a proper amount of a flame retardant and an antimony flame retardant aid are blended.
  • thermoplastic recycled resin material can be effectively reused as a molded product. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time.
  • good physical properties durability, strength, impact resistance, etc.
  • thermoplastic resin material is selected from a mixture of a plurality of types of resin materials derived from waste home appliances, and recycled as a thermoplastic recycled resin material. At this time, there is an effect that it is possible to provide a technique capable of realizing good physical properties of the thermoplastic recycled resin material without mixing a large amount of virgin material.
  • thermoplastic recycled resin material It is an example of the manufacturing process (recycling process of a thermoplastic resin material) of the thermoplastic recycled resin material which concerns on Embodiment 1 of this invention, Comprising: It is process drawing which shows the process until it selects the resin material of a specific material ( In FIG. 1, the order of wind power, magnetic force, and eddy current selection does not matter.
  • FIG. 2 is a continuation of the manufacturing process of the thermoplastic recycled resin material shown in FIG. 1 and is a process diagram showing a process until a specific type of selected resin material is modified and molded. It is a typical perspective view which shows an example of the near-infrared identification system used in order to select the thermoplastic resin material of a specific material in the manufacturing process of the thermoplastic recycled resin material shown in FIG.
  • regeneration resin material which concerns on Embodiment 2 of this invention
  • regeneration resin material which concerns on Embodiment 3 of this invention
  • regeneration resin material which concerns on Embodiment 4 of this invention, Comprising: It is process drawing which shows the process until it modifies and shape
  • a first thermoplastic recycled resin material is a material identification device obtained from a waste thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances. This is a structure in which a phenolic antioxidant and a sulfur-based antioxidant are blended with a specific type of thermoplastic resin material obtained after being screened and dry-cleaned.
  • thermoplastic resin material subjected to the dry cleaning treatment.
  • the acceleration of deterioration can be effectively suppressed. Therefore, the durability of the obtained thermoplastic recycled resin material can be improved satisfactorily.
  • the selected thermoplastic recycled resin material can be reused as a part of home appliances, the recycling rate can be improved.
  • the second thermoplastic recycled resin material according to the present invention is obtained from a thermoplastic resin waste material obtained from a crushed material of waste home appliances and containing a plurality of types of resin materials.
  • the metal deactivator is 0.01 to 1 with respect to a specific type of thermoplastic resin material obtained after being selected using an identification device and dry-cleaned. It is the structure formed by mixing within the range of parts by weight.
  • thermoplastic resin material that has undergone a dry cleaning treatment.
  • the metal deactivator forms a complex with a metal-based foreign matter derived from waste home appliances or a metal component contained in the additive in the thermoplastic resin material.
  • the catalytic action by a metal component can be reduced effectively, and progress of deterioration of a thermoplastic resin material can be controlled effectively. Therefore, the durability of the obtained thermoplastic recycled resin material can be improved satisfactorily.
  • the selected thermoplastic recycled resin material can be reused as a part of home appliances, the recycling rate can be improved.
  • the third thermoplastic recycled resin material according to the present invention is obtained from a thermoplastic resin waste material obtained from a crushed material of waste home appliances and containing a plurality of types of resin materials.
  • This is a configuration in which a thermoplastic elastomer is blended with a specific kind of thermoplastic resin material obtained after being sorted using an identification device and subjected to a dry cleaning process.
  • thermoplastic elastomer is added to a specific type of thermoplastic resin material that has undergone a dry cleaning treatment.
  • thermoplastic recycled resin material according to the present invention is obtained from a waste material of a thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances, using a material identification device, In the range of 18 to 25 parts by weight of a brominated flame retardant and an antimony flame retardant aid with respect to 100 parts by weight of the thermoplastic resin material with respect to a specific type of thermoplastic resin material obtained after the dry cleaning treatment. It is the structure which is mix
  • the fifth thermoplastic recycled resin material according to the present invention is obtained from a crushed material of waste home appliances, from a thermoplastic resin waste material in which a plurality of types of resin materials are mixed, using a material identification device, More than 30 parts by weight of a recycled resin material of the same material with a lower sorting accuracy is blended with respect to 100 parts by weight of the thermoplastic resin material, with respect to 100 parts by weight of the thermoplastic resin material obtained after the dry cleaning treatment,
  • the composition may be such that bromine-based flame retardant and antimony-based flame retardant aid are blended within a range of 13 to 17 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
  • thermoplastic resin material that has undergone a dry cleaning treatment.
  • the total amount of the phenolic antioxidant and the sulfurous antioxidant is 0.01 to 2 with respect to 100 parts by weight of the thermoplastic resin material. It may be within the range of 0.0 part by weight.
  • the blending ratio of the phenolic antioxidant and the sulfurous antioxidant is within a range of 1: 1 to 1: 4 by weight. Also good.
  • thermoplastic recycled resin material having the above-described structure
  • at least a compound selected from the group consisting of an oxalic acid derivative, a salicylic acid derivative, a hydrazide derivative, a triazole derivative, and an imidazole derivative is used as the metal deactivator.
  • blended may be sufficient.
  • the blending amount of the thermoplastic elastomer may be in the range of 3 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin material. .
  • thermoplastic recycled resin materials having the above-described structure, at least tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is used as the brominated flame retardant. Also good.
  • thermoplastic resin material may be a styrene resin material or a polyolefin.
  • the styrenic resin material may be at least one of general-purpose polystyrene and high-impact polystyrene.
  • thermoplastic recycled resin material having the above-described configuration
  • thermoplastic resin material when the thermoplastic resin material is a styrene resin material, the thermoplastic elastomer may be a styrene elastomer.
  • thermoplastic recycled resin material having the above-described configuration may further include a general-purpose polystyrene blended with the styrene-based elastomer.
  • the said general purpose polystyrene is a recycled material obtained from a waste household appliance
  • the compounding quantity of the said general purpose polystyrene is with respect to 100 weight part of the said thermoplastic resin materials. And may be in the range of 10 to 50 parts by weight.
  • the material identifying device may be a near infrared identifying device.
  • the waste home appliance is at least one home appliance selected from the group consisting of a refrigerator, a freezer, an air conditioner, and a washing machine. There may be.
  • the present invention includes a specially-classified thermoplastic resin material that is selected from a waste material of a thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances using a material identification device.
  • a resin modifier a phenolic antioxidant and a sulfur-based antioxidant, a metal deactivator, or a thermoplastic elastomer
  • blends is also included.
  • FIGS. 1 and 2 are process diagrams showing an example of a process for producing a thermoplastic recycled resin material according to the first embodiment (in other words, a resin material regeneration process or a recycling process).
  • thermoplastic resin waste material (shredder dust) is obtained by carrying out five steps on waste home appliances, and a sorting step is performed on this thermoplastic resin waste material. By doing so, the selected specific kind of thermoplastic resin material is obtained. If this thermoplastic resin material is referred to as a “resin material after sorting” for convenience, the thermoplastic recycled resin according to the present invention is obtained by performing four steps on the resin material after sorting as shown in FIG. A material is obtained.
  • This thermoplastic recycled resin material can be molded by, for example, injection molding.
  • FIG. 1 and FIG. 2 what is removed in the said process is connected and shown with the broken line with respect to the frame which shows each process.
  • the waste home appliance examples include, but are not limited to, a used refrigerator, a freezer, an air conditioner, or a washing machine. These waste home appliances include household products and commercial products. Therefore, the waste home appliances in the present invention are not limited to household appliances, and widely include consumer electronics. As shown in FIG. 1, a disassembly and disassembly process is performed on the waste home appliance. At this time, the waste home appliances to be disassembled and disassembled may be only one type or two or more types of the plurality of types of used electrical products. Moreover, even if it is the same kind of waste home appliances, electric products from different manufacturers may be mixed, or different models may be mixed.
  • the used refrigerator is manually disassembled to remove the compressor and remove the refrigerant. Thereafter, the case or shelf is manually removed from the vegetable compartment, freezer compartment, refrigerator compartment, etc. inside the refrigerator.
  • the compressor or the like removed at this time corresponds to the manually recovered metal waste material shown in FIG. 1, and the case or the shelf corresponds to the manually recovered resin waste material.
  • a crushing process is performed on the refrigerator that has undergone the disassembly and disassembly processes.
  • a known crusher is used.
  • a wind force sorting step, a magnetic force sorting step, and an eddy current sorting step are performed.
  • the wind sorting process, the magnetic sorting process, and the eddy current sorting process may be performed in the order shown in FIG. 1, may be performed in a different order, or some sorting processes may be omitted. That is, after the crushing process, at least one sorting process selected from a wind sorting process, a magnetic sorting process, and an eddy current sorting process may be performed, and two sorting processes or three sorting processes are performed. Even in that case, the order is not particularly limited.
  • urethane foam or fine foreign matters contained in the crushed material are sucked and removed by wind force using a known suction device. At this time, the refrigerant contained in the urethane foam is also removed.
  • the urethane waste material is illustrated as what is removed by a wind-power selection process.
  • the magnetic force sorting process is performed after the wind sorting process.
  • the iron waste material is removed by a known electromagnet or the like.
  • An eddy current sorting process is performed after the magnetic sorting process.
  • non-ferrous metal waste materials such as copper and aluminum are removed by a known eddy current sorter or the like.
  • the crushed material is sieved as necessary. Therefore, although not shown in FIG. 1, a sieving step may be performed in the present embodiment. Thereby, the thermoplastic resin waste material (shredder dust) comprised by the crushing piece (resin piece) of the magnitude
  • the size of the crushed pieces is set within a range of 5 to 150 mm, but is not particularly limited.
  • the obtained thermoplastic resin waste material is subjected to a resin material sorting step as shown in FIG.
  • a near-infrared identification system 20 as shown in FIG. 3 is used, and a specific kind of resin material and another resin material are sorted.
  • the near infrared identification system 20 will be described later.
  • the identification method performed in the resin material sorting step is not limited to the method using near infrared rays, and a known method that can identify the material of the resin material can be appropriately employed. For example, an identification method using near infrared rays and a water specific gravity sorting method may be used in combination.
  • thermoplastic resin material (resin material after sorting) is obtained by the resin material sorting process.
  • a dry cleaning process is performed on the sorted resin material.
  • the surface adhering matter (surface dirt) of the resin pieces constituting the resin material after sorting is removed using a known dry cleaning apparatus.
  • the dirt on the surface include, but are not limited to, dust, a sealing material, and powder.
  • a dry cleaning device a type equipped with a hammer blade that rotates at high speed (removes surface deposits by striking the hammer blade), or a type in which resin pieces are rubbed together (removes surface deposits by rubbing) Is not particularly limited.
  • a method for cleaning the resin material after sorting there are various methods such as a wet cleaning process as well as a dry cleaning process.
  • a dry cleaning process is employed. This is because the dry cleaning process does not use water for cleaning, and thus the influence on the environment can be reduced as compared with the wet cleaning process or the like.
  • the dry cleaning treatment tends to increase the residual amount of deposits after cleaning as compared with the wet cleaning treatment. Therefore, in this embodiment, as necessary, as shown in FIG. 2, the above-described wind sorting process, magnetic sorting process, electrostatic sorting process (sorting using an electrostatic separator), or the like is appropriately performed. Also good.
  • This sorting step is referred to as a “post-washing sorting step” for convenience.
  • the post-cleaning sorting step is not an essential step but an optional step in the present embodiment.
  • the post-cleaning sorting process may be performed by at least one of a wind sorting process, a magnetic sorting process, and an electrostatic sorting process, or all of these sorting processes may be performed, or other than these.
  • the sorting step may be performed.
  • a phenol-based antioxidant and a sulfur-based antioxidant are added as a resin modifier to the washed resin material after sorting.
  • This step is referred to as “antioxidant addition step”.
  • the method of adding the antioxidant in the antioxidant addition step is not particularly limited. For example, a predetermined amount of phenolic antioxidant and sulfur antioxidant is added to the resin material after sorting after washing, and a tumbler or The method of mixing homogeneously using well-known mixing apparatuses, such as a Henschel mixer, can be mentioned.
  • the mixing device for mixing the antioxidant is not necessarily limited to a tumbler or a Henschel mixer.
  • the resin material after sorting is sufficiently mixed with these mixing devices, not only the antioxidant can be dispersed in the resin material after sorting, but also the resin material after sorting can be homogenized well, so there is less variation in physical properties. can do. Therefore, it is preferable to set the mixing time by the mixing apparatus to a length that takes into account the homogenization of the resin material after sorting.
  • a predetermined amount of spreading agent may be added. Thereby, antioxidant becomes easy to adhere to the surface of the resin piece which comprises the resin material after a selection.
  • a phosphorus antioxidant may be added in addition to the phenol antioxidant and the sulfur antioxidant.
  • additives other than antioxidants can be added as appropriate.
  • additives other than antioxidants include heat stabilizers, light stabilizers, antistatic agents, lubricants, fillers (fillers), copper damage inhibitors, antibacterial agents, colorants, and other antioxidants. It is done.
  • known additives can be appropriately selected and used according to various conditions such as durability, mechanical properties and appearance required for the thermoplastic recycled resin material.
  • additives other than the phenolic antioxidant and the sulfurous antioxidant may be added to the resin material after selection together with the phenolic antioxidant and the sulfurous antioxidant in the antioxidant addition step, It may be added at any stage of the production process shown in FIGS.
  • a resin material other than the resin material after sorting may be blended. This resin material may be a virgin material blended within a range that does not lower the recycling rate, or may be a waste material other than the resin material after sorting in order to realize desired physical properties.
  • the thermoplastic recycled resin material according to the present invention may be composed of only a specific type of resin material, or may be a polymer blend in which another resin material is blended.
  • a heating kneading and extrusion step is performed as shown in FIG.
  • the resin material after selection (the phenolic antioxidant and the sulfur-based antioxidant have been added) is heat-kneaded under predetermined conditions and extruded from the extruder.
  • the extruder is preferably provided with a mesh filter.
  • the specific configuration of the extruder is not particularly limited, and examples thereof include a single screw extruder, a twin screw extruder, and a multi-screw extruder.
  • a multi-screw extruder having two or more screws is preferably used.
  • the number of axes may be uniaxial depending on various conditions such as screw shape, screw rotation speed, extrusion diameter, and cylinder length.
  • the conditions for heating and kneading the resin material after sorting with an extruder are not particularly limited, and the resin material after sorting melts well, and the phenolic antioxidant and sulfur antioxidant and the resin material after sorting are well Conditions for kneading can be set as appropriate. If the heating temperature (cylinder temperature and die temperature) is too high, the resin component is deteriorated. Therefore, it is preferable to set a suitable temperature range according to the type of the resin material after sorting.
  • the heating temperature is preferably within a range of 170 to 270 ° C.
  • polystyrene (PS) is preferably within a range of 160 to 280 ° C.
  • the temperature is preferably within the range of 160 to 270 ° C.
  • the specific configuration of the mesh filter provided in the extruder is not particularly limited. By making the mesh of the mesh filter finer, the effect of removing foreign substances can be enhanced, and various physical properties such as impact characteristics and elongation characteristics of the obtained thermoplastic recycled resin material can be easily improved.
  • thermoplastic recycled resin material In the heating and kneading and extrusion steps, it is preferable to pelletize the extruded thermoplastic recycled resin material.
  • the method of pelletization is not particularly limited, and a known method is preferably used.
  • a method (strand cut) in which a thermoplastic recycled resin material is extruded from an extruder into a strand shape, cooled in a water tank, and then cut into a pellet of an appropriate size by a pelletizer.
  • judged immediately after extruding a thermoplastic recycled resin material in water may be sufficient.
  • the pelletized thermoplastic recycled resin material may be mixed by stirring with the mixing apparatus (such as the tumbler or Henschel mixer described above) described in the antioxidant addition step.
  • the mixing apparatus such as the tumbler or Henschel mixer described above
  • thermoplastic recycled resin material thus obtained is reused as a home appliance such as an air conditioner or a general molded product by performing an injection molding process. can do.
  • FIG. 3 is a perspective view schematically showing the near-infrared identification system 20 used in the present embodiment.
  • the near-infrared identification system 20 includes a transport device 1, a near-infrared identification device 4, a sorting plate 6, a tubular body 8, an electromagnetic valve 10, a control unit 14, and an air pressure source. 15 etc.
  • the conveying apparatus 1 conveys the thermoplastic resin waste material 11, and a known belt conveyor is used in the present embodiment.
  • the transport direction of the transport apparatus 1 is the ⁇ y direction in FIG. 3, the height direction is the z direction, and the direction orthogonal to the transport direction (transverse direction) is the x direction.
  • the near-infrared identification device 4 is provided on the transport path of the transport device 1 and selects a specific type of thermoplastic resin material from the transported resin waste 11 using near-infrared spectroscopy.
  • various processing apparatuses that perform the above-described wind sorting process, magnetic sorting process, or eddy current sorting process may be provided in the transport path of the transport apparatus 1.
  • the resin material conveyed by the conveying apparatus 1 is not the thermoplastic resin waste material 11 but a crushed material of waste home appliances.
  • the near infrared spectroscopy will be described.
  • Organic compounds have different light absorption wavelength bands depending on the types of atomic groups (organic groups) contained in the molecular structure. Therefore, if an organic compound is irradiated with near infrared rays, a unique near infrared absorption spectrum can be obtained according to the molecular structure of the organic compound. Therefore, the near-infrared absorption spectrum is measured by irradiating an unknown resin material with near-infrared radiation, and the resin material is compared with the spectrum (or registered spectrum) obtained from other resin materials. Can be identified. This is the near infrared spectroscopy.
  • the near-infrared identification device 4 uses this near-infrared spectroscopic analysis method to select a specific type of thermoplastic resin material from the resin waste material 11.
  • the peak position, peak width, absorption intensity (absorbance), etc. change due to hydrogen bonding and / or intermolecular interaction. Therefore, according to the near-infrared spectroscopic analysis method, it is possible to identify a resin material containing halogen such as bromine.
  • the tube 8 is provided in the transverse direction (x direction) at the downstream end in the transport direction of the transport device 1 and has a plurality of discharge ports 5 that discharge high-pressure air toward the downstream side.
  • the sorting plate 6 is provided so as to stand upright in the transverse direction further downstream in the transport direction when viewed from the tube body 8 (and the downstream end of the transport device 1). A predetermined interval is provided between the sorting plate 6 and the downstream end of the transport device 1.
  • the air pressure source 15 is a mechanism that supplies high-pressure air to the tube body 8, and the electromagnetic valve 10 is a valve body that controls the flow of high-pressure air from the air pressure source 15 to the tube body 8.
  • the control unit 14 controls the operations of the near-infrared identification device 4 and the air pressure source 15.
  • the specific configurations of the sorting plate 6, the tube 8, the electromagnetic valve 10, the control unit 14, the pneumatic pressure source 15 and the like are not particularly limited, and a known configuration can be suitably used.
  • the pipe body 8 is exemplified by a metal pipe.
  • the electromagnetic valve 10 a known solenoid valve is exemplified.
  • the control part 14 a well-known computer (processor) or a controller is illustrated.
  • the air pressure source 15 include a compressor that supplies air at a constant pressure.
  • the resin material selection step by the near infrared identification system 20 will be specifically described by giving a case where the resin waste material 11 is derived from a refrigerator.
  • thermoplastic resin material to be reused is polystyrene (PS).
  • PS polystyrene
  • the resin waste material 11 derived from the refrigerator includes general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS) as a plurality of resin materials. Therefore, in the near-infrared identification device 4, GPPS and HIPS are preset as specific types of resin materials to be selected.
  • GPPS general-purpose polystyrene
  • HIPS high-impact polystyrene
  • the resin waste material 11 includes a thermoplastic resin material 2 shown as a shaded resin piece and another resin material 3 shown as a non-shaded resin piece.
  • GPPS or HIPS corresponds to the thermoplastic resin material 2.
  • the resin waste material 11 is dispersed on the transport surface of the transport device 1 so that the resin waste material 11 is dispersed (a plurality of resin pieces constituting the resin waste material 11 do not overlap each other).
  • This spraying may be performed manually or automatically using a known spraying device.
  • the transport apparatus 1 transports the resin waste material 11 at a speed of about 2 m / second, for example. Since the near-infrared identification device 4 is located on the downstream side when viewed from the upstream end of the conveyance device 1, the resin waste material 11 moves toward the near-infrared identification device 4 by the conveyance of the conveyance device 1.
  • the near-infrared identifying device 4 irradiates the resin waste material 11 with near-infrared light and measures a near-infrared absorption spectrum. Then, the material of the resin material is identified based on the difference between the near-infrared absorption spectrum from the thermoplastic resin material 2 and the near-infrared absorption spectrum of the other resin material 3. Further, the near-infrared identification device 4 captures an image of the resin waste material 11 to acquire an image, and based on the analysis result of this image and the identification result by the near-infrared absorption spectrum, the resin piece that is the thermoplastic resin material 2 is obtained. Get location information. The position information of the resin piece may be position information in the x direction of the transport device 1.
  • the control unit 14 controls to open the electromagnetic valve 10 based on the position information obtained from the near infrared identification device 4. Thereby, high-pressure air is discharged (injected) from the discharge port 5 of the tubular body 8 toward the thermoplastic resin material 2 (resin to be selected) falling from the downstream end of the conveying device 1.
  • the discharge pressure at this time is not specifically limited, For example, 5 bar can be mentioned.
  • the thermoplastic resin material 2 is blown obliquely upward on the downstream side ( ⁇ y direction), so that the thermoplastic resin material 2 jumps over the sorting plate 6.
  • the control unit 14 keeps the electromagnetic valve 10 closed. Therefore, when the other resin material 3 passes over the discharge port 5, high-pressure air is not injected from the discharge port 5. Therefore, the other resin material 3 falls without jumping over the sorting plate 6.
  • thermoplastic resin material 2 and the other resin material 3 other than the resin waste material 11 can be selected.
  • the thermoplastic resin material 2 can be recovered efficiently and with high accuracy.
  • thermoplastic resin materials can be selected well, so it is possible to promote the reuse of various materials used in waste home appliances, The recycling rate can be further improved.
  • the near-infrared identification system 20 can improve the purity after selection of a specific thermoplastic resin material, and requires a large amount of water at the time of sorting, such as a water specific gravity sorting method. It is possible to simplify the resin material sorting process. In addition, resin materials that are difficult to be sorted by the water specific gravity sorting method (for example, filler-containing PP, etc.), and resin materials that are close in specific gravity difference such as ABS and PS can be suitably sorted. Therefore, the mixing amount of different types of resin materials can be greatly reduced.
  • the type of the thermoplastic resin material to be selected is not particularly limited, and may be various resin materials widely used for home appliances.
  • Typical thermoplastic resin materials include styrene resin materials and polyolefins.
  • the polyolefin include various polyethylenes and various polypropylenes.
  • Styrene resin materials include general-purpose polystyrene (GPPS), high impact polystyrene (HIPS), styrene-butadiene copolymer, styrene-acrylonitrile copolymer (SAN), and acrylonitrile-butadiene-styrene copolymer (ABS). Etc.
  • GPPS general-purpose polystyrene
  • HIPS high impact polystyrene
  • SAN styrene-acrylonitrile copolymer
  • ABS acrylonitrile-butadiene-styrene copolymer
  • the resin waste material obtained from the waste home appliance includes at least one type of resin material selected from the group consisting of the plurality of thermoplastic resin materials described above, and preferably includes at least two types of resin material. .
  • thermoplastic resin material when these thermoplastic resin materials are selected from the resin waste material and reused, as described above, the phenol-based antioxidant and the sulfur-based antioxidant are blended.
  • the physical properties, particularly durability, of the resulting thermoplastic recycled resin material can be greatly improved.
  • the thermoplastic resin material is a styrene resin material
  • the effect of improving the durability due to the blending of the phenol-based antioxidant and the sulfur-based antioxidant tends to be large.
  • styrene resin materials it has been clarified that the greatest improvement effect can be obtained at the present time for HIPS.
  • the specific types of added phenolic antioxidant and sulfur antioxidant are not particularly limited. If it is a phenolic antioxidant, a phenyl group or a derivative thereof is included in the chemical structure, and any compound having an antioxidant action may be used. If it is a sulfur-based antioxidant, a sulfur atom is included in the chemical structure. Any compound having an antioxidant action may be used.
  • the phenol-based antioxidant or the sulfur-based antioxidant is an “antioxidant” in which various known solvents or additives are mixed in a predetermined range in addition to the above-mentioned compounds. It may be a “composition”.
  • thermoplastic resin material compounds or compositions that are particularly preferred as phenolic antioxidants and sulfur antioxidants can be mentioned depending on the type of thermoplastic resin material.
  • thermoplastic resin material is polystyrene
  • preferred phenolic antioxidants include, for example, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (for example, trade name from BASF) IRGANOX 1076), bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl ) Bis (2,2-dimethyl-2,1-ethanediyl) (for example, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd.), triethylene glycol bis [3- (3-t-butyl-5-methyl-4) -Hydroxyphenyl) propionate] (for example, trade name IRGANOX245 manufactured by BASF), 2,6-di-
  • bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2, 4, 8, 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl), triethylene glycol-bis [3- (3-t-butyl-5- Methyl-4-hydroxyphenyl) propionate] and the like are more preferable.
  • thermoplastic resin material is an ABS resin
  • preferred phenolic antioxidants include, for example, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, triethylene glycol- Bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4 , 8,10-Tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl, 2,6-di-t-butyl-p-cresol, penta Erythritol tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,4,6-tris ( 3 ', 5'-di-tert-
  • bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2, 4, 8, 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl), triethylene glycol-bis [3- (3-t-butyl-5- Methyl-4-hydroxyphenyl) propionate] and the like are more preferable.
  • thermoplastic resin material is polypropylene
  • a preferable phenolic antioxidant is, for example, pentaerythritol tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl).
  • pentaerythritol tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane is preferred because the thermoplastic recycled resin material obtained has excellent heat stability. Etc. are preferred.
  • thermoplastic resin material is polystyrene, ABS resin or polypropylene
  • DLTDP dilauryl-3,3′-thiodipropionate
  • DSTDP distearyl-3,3′-thiodipropionate
  • DMTDP Dimyristyl-3,3′-thiodipropionate
  • thermoplastic recycled resin material since the heat-resistant stability of the obtained thermoplastic recycled resin material is excellent, bis [3- (3-tert-butyl-4--hydroxy-5-methylphenyl) propionic acid] (2,4,8, 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl) and the like are preferable.
  • the combination of the above-described phenolic antioxidant and sulfur antioxidant is not particularly limited.
  • the phenolic antioxidant is bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8,10-tetraoxa Spiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl) and triethylene glycol-bis [3- (3-tert-butyl-5-methyl-) 4-hydroxyphenyl) propionate]
  • the sulfur-based antioxidant is bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8, List the combinations that are 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl) Can. According to this combination, it is possible to further improve the heat resistance stability of
  • the total blending amount of the phenolic antioxidant and the sulfurous antioxidant is not particularly limited, but is preferably in the range of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
  • the content is preferably in the range of 0.1 to 0.5 parts by weight. If the blending amount is less than 0.01 parts by weight, the content in the thermoplastic recycled resin material may become insufficient due to bleeding out or the like. Moreover, when it exceeds 2.0 weight part, the durable improvement effect corresponding to a compounding quantity cannot be expected.
  • the blending ratio (mixing ratio) of the phenolic antioxidant and the sulfur-based antioxidant is not particularly limited, but is preferably in the range of 1: 1 to 1: 4 by weight, and is preferably 1: 2 to 1. : More preferably within the range of 3. If the blending ratio is within this range, the durability can be effectively improved by blending these antioxidants.
  • a phosphorus antioxidant may be used in combination with the phenol antioxidant and the sulfur antioxidant.
  • thermoplastic recycled resin materials when blended with a phenol-based antioxidant and a sulfur-based antioxidant (antioxidant addition step, heat-kneading and extrusion step) and during injection molding (injection molding step). Receive heat history. Therefore, in order to improve the heat resistance stability during blending or injection molding, it is preferable to blend a phosphorus-based antioxidant.
  • the specific phosphorus-based antioxidant is not particularly limited as long as it is a compound that contains a phosphorus atom in the chemical structure and has an antioxidant action.
  • a preferable phosphorus-based antioxidant for example, tris (2,4-di-t-butylphenyl) phosphite (for example, manufactured by BASF) is used regardless of whether the thermoplastic resin material is polystyrene, ABS resin, or polypropylene.
  • thermoplastic regenerated resin material since the heat-resistant stability of the obtained thermoplastic regenerated resin material is excellent, among these, tris (2,4-di-t-butylphenyl) phosphite is more preferable in terms of excellent heat-resistant stability. preferable.
  • the amount of the phosphorus antioxidant is not particularly limited, but is preferably in the range of 0.01 to 0.2 parts by weight with respect to 100 parts by weight of the thermoplastic resin material. If the blending amount is less than 0.01 parts by weight, there is a possibility that a sufficient heat stability improvement effect cannot be obtained even if a phosphorus-based antioxidant is blended. On the other hand, if the blending amount exceeds 0.1 parts by weight, an effect of improving the heat stability corresponding to the blending amount cannot be expected.
  • thermoplastic recycled resin material is selected from the thermoplastic resin waste obtained by pulverizing waste home appliances and containing a plurality of types of resin materials, using a material identification device.
  • the phenol-type antioxidant and the sulfur-type antioxidant are blended with a specific type of thermoplastic resin material obtained after the dry cleaning treatment.
  • thermoplastic resin materials used in waste home appliances may deteriorate over time, or foreign substances may be mixed into the thermoplastic resin material selected for reuse. There is a risk that the physical properties such as the above will decrease, or the deterioration of physical properties may be promoted.
  • deterioration of physical properties is effectively suppressed by blending a phenol-based antioxidant and a sulfur-based antioxidant into the thermoplastic recycled resin material. .
  • the thermoplastic recycled resin material can be reused as a molded article of the recycled resin material through a molding process such as injection molding.
  • the reused molded product can be used stably over a long period of time.
  • good physical properties durability, strength, impact resistance, etc.
  • the near-infrared identification system 20 shown in FIG. 3 is used in the resin material selection step shown in FIG. 1, but the present invention is not limited to this, and other known selection methods are also suitably used. be able to.
  • a specific type of thermoplastic resin material may be selected from the thermoplastic resin waste material by a water specific gravity selection method.
  • polyolefin such as polypropylene (PP) or polyethylene (PE) has a specific gravity lighter than water. If these polyolefins are used as resin materials for waste home appliances, these resin materials can be selected by a water specific gravity sorting method in the resin material sorting step.
  • thermoplastic resin material sorting step a specific type of thermoplastic resin material may be sorted from the thermoplastic resin waste material by using an electrostatic sorting method.
  • an electrostatic sorting method For example, ABS resin and polystyrene (PS) are relatively close in specific gravity and cannot be sufficiently sorted by the water specific gravity sorting method, but these resin materials are different in the order of charge trains (charge permutation difference). Therefore, it is possible to sort these styrenic resins by electrostatic sorting using the difference between the charged columns. Therefore, in the resin material sorting step, the resin material may be sorted using at least one of the water specific gravity sorting method and the electrostatic sorting method, or a combination thereof, without using near infrared rays.
  • a resin material can be sorted using a measuring device that can identify the bromine content, such as an X-ray sorting device. preferable.
  • a water specific gravity selecting method using salt water or the like can be used as a method for selecting the ABS resin and PS.
  • the specific gravity of polystyrene contained in the waste resin material is about 1.03 to 1.04
  • the specific gravity of ABS resin is about 1.05 to 1.07.
  • a water specific gravity sorting method using salt water or the like it is difficult to exclude a resin material containing bromine. Therefore, for example, it is preferable to use an X-ray sorting apparatus or the like together.
  • the dry cleaning process is performed on the resin material after sorting obtained by the resin material sorting process without performing any other process.
  • the present invention is not limited to this, and for example, the resin material after sorting may be further crushed with a crusher in the previous stage of the dry cleaning process.
  • the size of the thermoplastic resin waste material is in the range of, for example, 5 to 150 mm. Thereafter, if the crushing step is performed again after performing the resin material selection step, the size of the resin material (resin piece) after the selection can be in the range of 2 to 50 mm. Thereby, since the variation in the size of the resin material after sorting is reduced, the antioxidant can be mixed more homogeneously in the subsequent antioxidant addition step (or the step of adding other additives or the like). . As a result, it is possible to reduce variations in physical properties of the obtained thermoplastic recycled resin material.
  • the sorting process after washing may be performed as necessary (that is, the sorting process after cleaning may not be performed). Good).
  • sorting steps such as wind sorting, magnetic sorting, electrostatic sorting and the like may be performed at least once. This also applies to the wind sorting process, magnetic sorting process, eddy current sorting process, and the like for producing thermoplastic resin waste.
  • the wind sorting process, the magnetic sorting process, and the vortex At least one of the current selection steps may not be performed.
  • other known sorting processes may be performed.
  • the used refrigerator is exemplified as the waste home appliance, but the waste home appliance to which the present invention is applied is not limited to this.
  • the waste home appliance include a freezer, an air conditioner, or a washing machine in addition to the refrigerator. Therefore, the crushed material before the sorting step may be obtained from waste home appliances other than the refrigerator, or may be obtained from a plurality of types of waste home appliances including the refrigerator.
  • the basic flow of the resin material regeneration process (or recycling process) shown in FIGS. 1 and 2 is the same.
  • the types or models of waste home appliances are different, the types of metal wastes and resin wastes that are collected separately are different. Therefore, some processes can be omitted from the regeneration process of FIGS. 1 and 2 or a new process can be added.
  • the waste home appliance is a washing machine, since a heat insulating material such as urethane foam is unnecessary, there is no need for a wind-power sorting step for sorting urethane waste material.
  • a washing machine does not use a refrigerant, so that it is not necessary to remove the refrigerant in the disassembly and disassembly processes.
  • FIG. 4 is a process diagram showing an example of a thermoplastic recycled resin material manufacturing process (resin material recycling process or recycling process) according to the second embodiment.
  • the process shown in FIG. 4 is the same as the process shown in FIG. 2 described in the first embodiment, and the “selected specific type of thermoplastic resin material” (resin material after selection) in FIG. Obtained by the same process. Moreover, since the dry cleaning process, the post-cleaning selection process, the heat-kneading and extrusion process, and the injection molding process in FIG. 4 are the same as those in the first embodiment, description thereof is omitted.
  • a metal deactivator addition step is performed in which a metal deactivator is added as a resin modifier after the dry cleaning step or the post-cleaning sorting step.
  • the metal deactivator is added within a range of 0.01 to 1 part by weight with respect to 100 parts by weight of the resin material after sorting.
  • the metal deactivator added in the metal deactivator addition step is not particularly limited, but a known compound or composition can be suitably used.
  • Specific examples of the metal deactivator include at least one compound selected from the group consisting of oxalic acid derivatives, salicylic acid derivatives, hydrazide derivatives, triazole derivatives, and imidazole derivatives.
  • oxalic acid derivative for example, as the oxalic acid derivative, oxalo-bis-1,2-hydroxybenzylidene hydrazide (trade name Eastman inhibitor OABH manufactured by Eastman Kodak), 2,2′- Oxamidobis (ethyl 3- (3,5-tert-butyl-4-hydroxyphenyl) propionate) (trade name Naugard® XL-1 manufactured by Shiraishi Calcium Co., Ltd.) and the like can be mentioned, but not particularly limited. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
  • OABH Eastman inhibitor manufactured by Eastman Kodak
  • 2,2′- Oxamidobis ethyl 3- (3,5-tert-butyl-4-hydroxyphenyl) propionate
  • salicylic acid derivative examples include 3- (N-salicyloyl) amino-1,2,4-triazole (trade name Adeka Stab CDA-1 manufactured by ADEKA), decamethylenedicarboxylic acid disalicyloyl hydrazide (ADEKA).
  • ADEKA decamethylenedicarboxylic acid disalicyloyl hydrazide
  • examples thereof include, but are not limited to, the product name ADK STAB CDA-6) and salicylidene salicyloylhydrazine (trade name Chel-180 manufactured by BASF). Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
  • hydrazide derivative examples include N, N′-bis ((3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl)) propionohydrazide (trade name CDA- manufactured by ADEKA). 10), trade name Qunox manufactured by Mitsui Toatsu Fine Co. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
  • triazole derivatives examples include benzotriazole, 3-amino-1,2,4-triazole, 2-mercaptobenzotriazole, 2,5-dimercaptobenzotriazole, 4-alkylbenzotriazole, and 5-alkylbenzotriazole. 4,5,6,7-tetrahydrobenzotriazole, 5,5′-methylenebisbenzotriazole, 1- [di (2-ethylhexyl) aminomethyl] -1,2,4-triazole, 1- (1-butoxy Ethyl) -1,2,4-triazole, acylated 3-amino-1,2,4-triazole, and the like, but are not particularly limited. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
  • imidazole derivatives examples include 4,4′-methylenebis (2-undecyl-5-methylimidazole), bis [(N-methyl) imidazol-2-yl] carbinol octyl ether, and the like. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
  • the type of the thermoplastic resin material (resin material after sorting) to be sorted is not particularly limited, and may be various resin materials widely used in home appliances.
  • a typical thermoplastic resin material as described in the first embodiment, a styrenic resin material or a polyolefin can be used. Since the specific types of polyolefin or styrene resin material are the same as those in the first embodiment, description thereof is omitted.
  • the metal deactivator when such a thermoplastic resin material is selected from the resin waste material and reused, the metal deactivator is blended in the range of 0.01 to 1 part by weight.
  • the metal deactivator in this amount, the physical properties, particularly durability, of the resulting thermoplastic recycled resin material can be greatly improved.
  • the thermoplastic resin material is a styrene resin material, the effect of improving the durability of the metal deactivator tends to be large.
  • the method for blending the metal deactivator in a predetermined blending amount in the metal deactivator adding step is not particularly limited.
  • a metal deactivator is added to the resin material after sorting after washing, and a known mixing device such as a tumbler or a Henschel mixer is used. And a homogeneous mixing method.
  • the metal deactivator is dispersed in the resin material after selection in the heat-kneading and extruding steps as in the first embodiment.
  • the resin material after selection is heat-kneaded under predetermined conditions and extruded from the extruder, or it is preferable that the extruder is provided with a mesh filter. This is the same as the first embodiment.
  • the heating temperature (cylinder temperature, die temperature, etc.) in the extruder is set to a temperature range of 180 to 240 ° C., for example, if the resin material after sorting is a styrene resin material.
  • the mesh filter mesh is preferably a mesh within the range of 40 to 200 mesh in the present embodiment.
  • thermoplastic recycled resin material is selected from the thermoplastic resin waste obtained by pulverizing waste home appliances and containing a plurality of types of resin materials, using a material identification device.
  • the metal deactivator is blended in the range of 0.01 to 1 part by weight with respect to 100 parts by weight of the thermoplastic resin material with respect to a specific type of thermoplastic resin material obtained after the dry cleaning treatment. It is the composition which consists of.
  • the deterioration of the resin material proceeds by auto-oxidation.
  • the metal atom or metal ion acts as, for example, a redox catalyst.
  • production of a radical increases in a resin material
  • the auto-oxidation of a resin material is accelerated
  • the filler or pigment that is an additive in the resin material may contain a metal component. These metal components can also deteriorate the resin material by the catalytic oxidation action.
  • thermoplastic recycled resin material an appropriate amount of a metal deactivator is blended in the thermoplastic recycled resin material.
  • the metal deactivator can form a complex with a metal atom or metal ion and reduce its catalytic action. Therefore, the metal deactivator can suppress various deterioration reactions caused by the foreign matters contained in the resin component, and can also greatly delay the progress of the deterioration reaction. Therefore, a high-quality thermoplastic recycled resin material having good durability and stability can be obtained.
  • thermoplastic recycled resin material can be reused as a molded article of the recycled resin material through a molding process such as injection molding. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time. In addition, when recycling recycled thermoplastic resin materials, good physical properties (durability, strength, impact resistance, etc.) can be realized without adding a large amount of virgin material. Can be improved.
  • an antioxidant may be used in combination as a resin modifier (resin modifying component) in addition to the metal deactivator.
  • examples of the antioxidant that can be used in combination include the phenol-based antioxidant described in the first embodiment, and both a phenol-based antioxidant and a sulfur-based antioxidant may be used in combination. Thereby, it becomes possible to improve the effect by the metal deactivator.
  • FIG. 5 is a process diagram showing an example of a thermoplastic recycled resin material manufacturing process (resin material recycling process or recycling process) according to the third embodiment.
  • the process shown in FIG. 5 is the same as the process shown in FIG. 2 described in the first embodiment or the process shown in FIG. 4 described in the second embodiment.
  • the “thermoplastic resin material” (resin material after sorting) is obtained in the same process as in FIG.
  • an elastomer addition step is performed in which a thermoplastic elastomer is added as a resin modifier after the dry cleaning step or the post-cleaning sorting step.
  • a general-purpose resin material of the same system as the post-selection resin material can be added together with the thermoplastic elastomer.
  • thermoplastic elastomer to be added is not particularly limited, but if the resin material after selection is a styrene resin material, it may be a styrene thermoplastic elastomer.
  • the styrenic thermoplastic elastomer may be a polymer using styrene or a derivative thereof as a monomer and may be a rubber-like elastic body.
  • examples of the thermoplastic elastomer that is specifically affected by the present embodiment include a structure in which the molecular structure includes a polystyrene-based structure as a hard segment and a polydiene structure as a soft segment, or a combination of styrene and a diene monomer. Examples thereof include a hydrogenated product of a polymer.
  • the polystyrene structure may be a polymer using styrene or a derivative thereof as a monomer. Specifically, for example, a homopolymer using only one kind of styrene or a derivative thereof, a copolymer using two or more kinds of styrene or a derivative thereof, or a styrene or a derivative thereof. It may be a copolymer obtained by polymerizing a derivative and another monomer. Moreover, the polydiene structure should just be a polymer containing a diene structure.
  • polybutadiene (1,3-butadiene homopolymer), polyisoprene (2-methyl-1,3-butadiene (isoprene) homopolymer), butadiene and other monomers
  • examples thereof include a copolymer and a copolymer of isopylene and another monomer.
  • the hydrogenated product of a copolymer of styrene and a diene monomer include a hydrogenated product of a styrene-butadiene block copolymer and a hydrogenated product of a styrene-isoprene block copolymer.
  • the addition amount (blending amount) of the thermoplastic elastomer is not particularly limited. Depending on the physical properties of the resin material after sorting (thermoplastic resin material before modification), the specific type of thermoplastic elastomer, the physical properties required for the thermoplastic recycled resin material to be obtained, etc. Different. Therefore, it is preferable to appropriately adjust the addition amount according to the type of the resin material after selection and the type of the thermoplastic elastomer. Generally, the addition amount of the thermoplastic elastomer may be in the range of 3 to 20 parts by weight with respect to 100 parts by weight of the resin material after sorting.
  • thermoplastic recycled resin material can obtain good impact resistance.
  • the added amount exceeds 20 parts by weight, for example, further improvement in impact resistance of the thermoplastic recycled resin material can be expected, but the strength tends to decrease.
  • it is less than 3 weight part the effect corresponding to the addition amount cannot be expected. Note that only one type of thermoplastic elastomer may be added, or two or more types may be added in appropriate combination.
  • GPPS general-purpose polystyrene
  • This GPPS is preferably a recycled material.
  • GPPS derived from a vegetable compartment case, a refrigerator compartment case, a shelf and the like of the refrigerator can be cited. As described above, these can be obtained as a manually recovered resin waste material in the decomposition and dismantling process (see FIG. 1), and the manually recovered resin waste material crushed by a crusher may be used as the recycled GPPS.
  • the addition amount (blending amount) of GPPS is not particularly limited, the physical properties of the resin material after sorting (thermoplastic resin material before modification), the specific type of thermoplastic elastomer used together, and the thermoplastic recycled resin material obtained
  • the amount of GPPS added varies depending on conditions such as physical properties required for the above. However, generally, it may be in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the resin material after sorting.
  • the typical blending amount is preferably in the range of 3 to 20 parts by weight of the thermoplastic elastomer and in the range of 10 to 50 parts by weight of GPPS with respect to 100 parts by weight of the resin material after sorting. This makes it possible to achieve both good impact resistance and good strength in the resulting thermoplastic recycled resin material.
  • the styrene resin material selected by the near infrared identification system 20 shown in FIG. 3 may contain GPPS and high impact polystyrene (HIPS). If the waste home appliance is a used refrigerator and the selected styrenic resin material is composed of GPPS and HIPS, the proportions are, for example, 10 to 30% by weight of GPPS and 70 to 90% by weight of HIPS. As described above, if the GPPS ratio is large, the tensile strength and the bending strength are increased, but the impact resistance is decreased.
  • HIPS high impact polystyrene
  • the physical properties of the resin material after sorting are measured in advance, and the addition amount of the thermoplastic elastomer and the addition amount of GPPS may be adjusted according to the obtained physical property results.
  • the addition amount of a thermoplastic elastomer or GPPS (or both) can be suitably adjusted according to the physical property requested
  • the thermoplastic recycled resin material contains both GPPS and HIPS, it becomes easy to realize good strength and impact resistance.
  • the addition amount can be adjusted by measuring the physical properties in advance. The point is the same as in the present embodiment.
  • GPPS is not limited to a recycled material, and may be a virgin material. However, when a virgin material is used, the amount of GPPS added is preferably as small as possible. When there is too much addition amount of GPPS of a virgin material, the use ratio of a recycled material will fall. On the other hand, if GPPS is a recycled material as described above, the use ratio of the recycled material can be increased by setting the addition amount within the above range.
  • the type of thermoplastic resin material (resin material after sorting) to be selected is not particularly limited to the above-described styrenic resin material, and may be various resin materials widely used for home appliances such as polyolefin. May be. If the resin material after selection is a polyolefin, a polyolefin-based thermoplastic elastomer may be added, and a polyolefin recycled material may be used in the same manner as GPPS. In addition, since the kind of specific polyolefin or styrene resin material is the same as that of the said Embodiment 1, the description is abbreviate
  • the method of blending the thermoplastic elastomer (and general-purpose polystyrene or the like) with a predetermined blending amount in the elastomer adding step is not particularly limited.
  • a thermoplastic elastomer or the like is added to the resin material after sorting after washing, and a known mixing device such as a tumbler or a Henschel mixer is used. The method of mixing uniformly can be mentioned.
  • thermoplastic elastomer or the like is dispersed in the post-selection resin material in a heat-kneading and extrusion step.
  • the resin material after selection is heat-kneaded under predetermined conditions and extruded from the extruder, or it is preferable that the extruder is provided with a mesh filter. This is the same as the first embodiment.
  • the heating temperature (cylinder temperature, die temperature, etc.) in the extruder is set to a temperature range of 200 to 220 ° C., for example, if the resin material after sorting is a styrene resin material. An example can be given.
  • the mesh filter mesh is also preferably within the range of 30 to 100 mesh.
  • thermoplastic recycled resin material is selected from the thermoplastic resin waste obtained by pulverizing waste home appliances and containing a plurality of types of resin materials, using a material identification device.
  • thermoplastic elastomer is blended with a specific type of thermoplastic resin material obtained after the dry cleaning treatment.
  • thermoplastic elastomer is blended with the thermoplastic recycled resin material, and preferably a general-purpose resin material similar to a specific type of thermoplastic resin material is blended.
  • the various deterioration reaction which the foreign material contained in a resin component, especially a metal atom or a metal ion causes can be suppressed.
  • the resin material after sorting is a styrene resin material
  • the impact resistance of the resulting thermoplastic recycled resin material can be improved by adding a styrene thermoplastic elastomer.
  • strength of the thermoplastic reproduction resin material obtained can be raised by adding general purpose polystyrene (GPPS). Therefore, a high-quality thermoplastic recycled resin material having good durability and stability can be obtained.
  • GPPS general purpose polystyrene
  • thermoplastic recycled resin material can be reused as a molded product of the recycled resin material through a molding process such as injection molding. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time. Furthermore, when the thermoplastic recycled resin material is reused, good physical properties (durability, strength, impact resistance, etc.) can be realized without adding a large amount of virgin material. And if the general purpose resin material used together is a recycled resin material, it is not necessary to mix
  • FIG. 6 is a process diagram showing an example of a thermoplastic recycled resin material manufacturing process (resin material recycling process or recycling process) according to the fourth embodiment.
  • the process shown in FIG. 6 is the process shown in FIG. 2 described in the first embodiment, the process shown in FIG. 4 described in the second embodiment, or the process shown in FIG. 5 described in the third embodiment.
  • the “sorted specific kind of thermoplastic resin material” (resin material after sorting) in FIG. 6 is obtained in the same process as in FIG. Further, since the dry cleaning process, the post-cleaning selection process, the heat-kneading and extrusion process, and the injection molding process in FIG. 6 are the same as those in the first embodiment, description thereof is omitted.
  • a flame retardant addition process is performed in which a brominated flame retardant and an antimony flame retardant aid are added as resin modifiers.
  • the total amount of brominated flame retardant and antimony flame retardant aid is added within the range of 18 to 25 parts by weight with respect to 100 parts by weight of the resin material after sorting.
  • the brominated flame retardant added in the flame retardant addition step is not particularly limited, and a known compound can be suitably used as the flame retardant.
  • preferable brominated flame retardants include decabromodiphenyl ether, tetrabromobisphenol A-bis (2,3-dibromopropyl ether), ethylene bis (tetrabromophthalimide), bis (pentabromophenyl) ethane, and the like. it can.
  • One type of these brominated flame retardants may be used, or two or more types may be used in appropriate combination.
  • tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is particularly preferably used.
  • the antimony flame retardant auxiliary added together with the brominated flame retardant in the flame retardant addition step is not particularly limited, and for example, antimony trioxide, antimony pentoxide, and the like are preferably used. Only one kind of these antimony flame retardant aids may be used, or two or more kinds may be used in appropriate combination.
  • a recycled resin material with lower sorting accuracy (referred to as “lower recycled resin material” for convenience) may be mixed with the sorted resin material.
  • lower recycled resin material 30 parts by weight or more of the lower recycled resin material can be mixed with 100 parts by weight of the resin material after sorting.
  • the total amount of brominated flame retardant and antimony flame retardant auxiliary added (blended) in the flame retardant addition step is The amount may be in the range of 13 to 17 parts by weight relative to 100 parts by weight of the resin material after sorting. That is, the preferred range of the addition amount of brominated flame retardant and antimony flame retardant aid is different between the case where only the resin material after sorting is regenerated and the case where the lower recycled resin material is used in combination.
  • thermoplastic resin material resin material after sorting
  • resin material can be either styrene resin material or polyolefin, as in the first to third embodiments.
  • One preferred type of resin is polypropylene, but the present invention is not particularly limited thereto.
  • thermoplastic recycled resin material sorting step various sorts of foreign matter may remain even in the resin material after sorting from which foreign matter (impurities) has been removed by the dry cleaning step.
  • these foreign substances include flammable substances. If the thermoplastic recycled resin material contains a flame retardant, the thermoplastic recycled resin material is difficult to ignite even if it comes into contact with flames, but if flammable foreign matter is mixed in, the foreign matter may ignite. is there. Therefore, the presence of foreign matters not only affects various physical properties and durability of the thermoplastic recycled resin material, but also affects flame retardancy.
  • thermoplastic recycled resin material can be reused as a molded article of the recycled resin material through a molding process such as injection molding. Further, when the recycled thermoplastic resin material is reused, good flame retardancy can be realized without mixing a virgin material.
  • Example 15 and Comparative Examples 17 and 18 a boss strength test, which is an original evaluation method for verifying the strength of the molded product, was performed on each test piece.
  • a boss strength test which is an original evaluation method for verifying the strength of the molded product, was performed on each test piece.
  • a male screw and a female screw portion screwed into the male screw were formed on the test piece. Then, the male screw was screwed and fastening and removal were repeated a predetermined number of times, and the number of times until the male screw could not be fastened (the number of times of fastening) was measured.
  • Example 1 As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, high-impact polystyrene (HIPS) was selected using a near-infrared identification system 20 shown in FIG. 3 (resin material selection step). Then, the dry cleaning process shown in FIG. 2 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed HIPS was used as a raw material.
  • HIPS high-impact polystyrene
  • the physical properties (initial physical properties) of the obtained test pieces were measured. Thereafter, the test piece was left in an oven at 80 ° C. for 2000 hours (endurance test), and the subsequent physical properties (physical properties after the endurance test) were also measured and evaluated. Table 1 shows the rate of change between the initial physical properties and the physical properties after the durability test.
  • Example 2 0.067 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) as a phenolic antioxidant and 100 parts by weight of HIPS after cleaning, Sumizer TP-D (trade name, Sumitomo) as a sulfur-based antioxidant
  • a test piece was produced in the same manner as in Example 1 except that 0.133 part by weight of Chemical) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 3 0.05 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) as a phenol-based antioxidant and 100 parts by weight of HIPS after cleaning, Sumizer TP-D (trade name, Sumitomo) as a sulfur-based antioxidant
  • Sumilizer GA-80 trade name, manufactured by Sumitomo Chemical Co., Ltd.
  • Sumizer TP-D trade name, Sumitomo
  • a test piece was produced in the same manner as in Example 1 except that 0.15 part by weight of Chemical) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 4 0.125 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical) as a phenolic antioxidant and 100 parts by weight of HIPS after cleaning, Sumizer TP-D (trade name, Sumitomo) as a sulfur-based antioxidant
  • Sumilizer GA-80 trade name, manufactured by Sumitomo Chemical
  • Sumizer TP-D trade name, Sumitomo
  • a test piece was produced in the same manner as in Example 1 except that 0.375 part by weight of Chemical) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 5 For 100 parts by weight of HIPS after washing, 0.1 part by weight of IRGANOX245 (trade name, manufactured by BASF) is used as a phenolic antioxidant, and Sumizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant.
  • IRGANOX245 trade name, manufactured by BASF
  • Sumizer TP-D trade name, manufactured by Sumitomo Chemical
  • Example 6 For 100 parts by weight of HIPS after washing, 0.1 part by weight of IRGANOX 1076 (trade name, manufactured by BASF) is used as a phenol-based antioxidant, and Sumizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant.
  • IRGANOX 1076 trade name, manufactured by BASF
  • Sumizer TP-D trade name, manufactured by Sumitomo Chemical
  • a test piece was produced in the same manner as in Example 1 except that 0.1 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 7 For 100 parts by weight of HIPS after washing, 0.05 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) is used as a phenol-based antioxidant, and Sumilizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant.
  • IRGANOX 1076 trade name, manufactured by BASF
  • Sumilizer TP-D trade name, manufactured by Sumitomo Chemical
  • a test piece was produced in the same manner as in Example 1 except that 0.15 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 8 With respect to 100 parts by weight of HIPS after washing, 0.25 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) is used as a phenol-based antioxidant, and Sumilizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant.
  • IRGANOX 1076 trade name, manufactured by BASF
  • Sumilizer TP-D trade name, manufactured by Sumitomo Chemical
  • a test piece was produced in the same manner as in Example 1 except that 0.25 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 1 Comparative Example 1 Rather than using HIPS virgin material (trade name: H9152, manufactured by PS Japan) as a raw material, instead of selecting HIPS from thermoplastic resin waste (shredder dust) derived from waste home appliances and using it as a resin material after sorting Produced a test piece in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 2 Phenol antioxidant and sulfur antioxidant were not added to 100 parts by weight of HIPS after washing (that is, only IRGAFOS168 (trade name, manufactured by BASF), which is a phosphorus antioxidant, as an antioxidant)
  • a test piece was produced in the same manner as in Example 1 except that 0.05 part by weight of (A) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 3 (Comparative Example 3) Example 1 except that 0.2 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) was added as a phenol-based antioxidant without adding a sulfur-based antioxidant to 100 parts by weight of HIPS after washing. A test piece was produced in the same manner. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 4 (Comparative Example 4) Example 1 except that 0.5 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) was added as a phenol-based antioxidant without adding a sulfur-based antioxidant to 100 parts by weight of HIPS after washing. A test piece was produced in the same manner. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 5 (Comparative Example 5) Example 1 with the exception that 1.0 part by weight of IRGANOX 1076 (trade name, manufactured by BASF) was added as a phenol-based antioxidant without adding a sulfur-based antioxidant to 100 parts by weight of HIPS after washing. A test piece was produced in the same manner as described above. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 6 Comparative Example 6 Except for adding 100 parts by weight of HIPS after washing, 0.2 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) was added as a phenolic antioxidant without adding a sulfur-based antioxidant.
  • a test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 7 Except for adding 100 parts by weight of HIPS after washing without adding a sulfur-based antioxidant and adding 0.5 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical) as a phenol-based antioxidant.
  • a test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Example 8 The collected home air conditioner was used as a waste home appliance.
  • a test piece was produced in the same manner as in Example 1 except that HIPS was recovered as a manually recovered resin waste material from this air conditioner and used as a raw material. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Comparative Example 9 Except that the HIPS virgin material (trade name: H9152, manufactured by PS Japan) used in Comparative Example 1 and the thermoplastic recycled resin material obtained in Comparative Example 3 were mixed at 5: 5 to obtain raw materials.
  • a test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • Comparative Example 10 Example except that HIPS virgin material (trade name: H9152, manufactured by PS Japan) used in Comparative Example 1 and the thermoplastic recycled resin material obtained in Comparative Example 3 were mixed at 7: 3 to obtain raw materials.
  • a test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
  • test piece of Comparative Example 8 (using HIPS manually collected from a domestic air conditioner) is not equivalent to the test piece of Comparative Example 1 (virgin material), the test of Comparative Example 2 or Comparative Example 3 It can be seen that the deterioration of the physical properties is small compared to the piece. From the results of these comparative examples, it is determined that hand-collected HIPS is less deteriorated in physical properties than HIPS selected using the near-infrared identification system 20.
  • the blending amount (addition amount) of the antioxidant contained in the test piece of Comparative Example 8 is about 60% of the antioxidant contained in the test piece of Comparative Example 3. From the results of these comparative examples, it is suggested that the HIPS selected using the near-infrared identification system 20 is greatly deteriorated, and therefore, foreign matter or the like may have an influence as a deterioration accelerating factor.
  • Comparative Examples 2 to 5 the amount of phenolic antioxidant added is gradually increased.
  • Comparative Examples 6 and 7 the addition amount of different types of phenolic antioxidants is changed (increased). From the physical properties of the test pieces of these comparative examples, it is judged that the decrease in physical properties tends to be suppressed if the amount of the phenolic antioxidant added is increased. Further, from the results of Comparative Examples 2 to 5 and Comparative Examples 6 and 7, even if the type of phenolic antioxidant is changed, the decrease in physical properties can be suppressed to the same extent, and it was used in Comparative Examples 6 and 7.
  • the phenolic antioxidant (trade name Sumilizer GA-80 manufactured by Sumitomo Chemical) improves the deterioration of physical properties more than the phenolic antioxidant used in Comparative Examples 2 to 6 (trade name IRGANOX1076 manufactured by BASF). It is judged that the effect tends to be high.
  • Example 1 In the test piece of Example 1, a phenol-based antioxidant and a sulfur-based antioxidant are added. Therefore, the test piece of Comparative Example 3 (in which an antioxidant contained in general HIPS is added in a general addition amount) or the test piece of Comparative Example 6 (in which only a phenolic antioxidant is added) ), The deterioration of physical properties is improved satisfactorily. Furthermore, in the test pieces of Example 2 and Example 3, the addition amount (blending amount) of the sulfur-based antioxidant is increased. In the test pieces of these Examples, even when compared with the test piece of Comparative Example 5 (one added with 1 part by weight of a phenolic antioxidant), the decrease in physical properties is improved more favorably.
  • Example 9 As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, an ABS resin was sorted using a near infrared ray identification system 20 shown in FIG. 3 (resin material sorting step). Then, the dry cleaning process shown in FIG. 2 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed ABS resin was used as a raw material.
  • ABS resin after washing 100 parts by weight of the ABS resin after washing is phenolic antioxidant, 0.05 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) and Sumilyzer TP-D (product of sulfur-based antioxidants) Name, manufactured by Sumitomo Chemical Co., Ltd.) and 0.05 parts by weight of IRGAFOS168 (trade name, manufactured by BASF) as a phosphorus-based antioxidant were added and mixed (antioxidant addition step shown in FIG. 2). .
  • Sumilizer GA-80 trade name, manufactured by Sumitomo Chemical Co., Ltd.
  • Sumilyzer TP-D product of sulfur-based antioxidants
  • IRGAFOS168 trade name, manufactured by BASF
  • the physical properties (initial physical properties) of the obtained test pieces were measured. Thereafter, the test piece was left in an oven at 80 ° C. for 3000 hours (endurance test), and the subsequent physical properties (physical properties after the endurance test) were also measured and evaluated. Table 2 shows the rate of change between the initial physical properties and the physical properties after the durability test.
  • Comparative Example 11 Rather than selecting ABS resin from waste thermoplastic resin (shredder dust) derived from waste home appliances and using it as a resin material after sorting, ABS resin virgin material (trade name: 700-X01, manufactured by Toray) is used as a raw material. A test piece was produced in the same manner as in Example 9 except that it was used. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
  • Example 12 Phenol antioxidant and sulfur antioxidant were not added to 100 parts by weight of ABS resin after washing (that is, IRGAFOS168 (trade name, manufactured by BASF, which is a phosphorus antioxidant as an antioxidant).
  • IRGAFOS168 trade name, manufactured by BASF, which is a phosphorus antioxidant as an antioxidant.
  • a test piece was produced in the same manner as in Example 9 except that 0.05 part by weight of only) was added. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
  • Example 13 Without adding a sulfur-based antioxidant to 100 parts by weight of the ABS resin after washing, 0.1 part by weight of IRGANOX 1076 (trade name, manufactured by BASF) as a phenol-based antioxidant, as a phosphorus-based antioxidant A test piece was produced in the same manner as in Example 9 except that 0.05 part by weight of IRGAFOS168 (trade name, manufactured by BASF) was added. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
  • Example 14 For 100 parts by weight of the washed ABS resin, 0.1 part by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) is added as a phenolic antioxidant without adding a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 9, except that 0.05 part by weight of IRGAFOS168 (trade name, manufactured by BASF) was added as an antioxidant. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
  • Example 9 and Comparative Examples 11 to 14 From the results shown in Table 2, Example 9 and Comparative Examples 11 to 14 (and the results of Table 1) are compared. In the test pieces of Comparative Examples 12 to 14 as well, the physical properties are deteriorated as in Comparative Examples 2 to 7 of Table 1, but the test pieces of Comparative Examples 13 and 14 and the test piece of Comparative Example 12 are used. In comparison, it is judged that the decrease in physical properties is improved by adding a phenolic antioxidant.
  • Example 10 As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, HIPS was selected using a near-infrared identification system 20 shown in FIG. 3 (resin material selection step). Then, the dry cleaning process shown in FIG. 4 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed HIPS was used as a raw material.
  • ADK STAB CDA-10 (trade name, manufactured by ADEKA) is added as a metal deactivator to 100 parts by weight of HIPS after washing, and IRGAFOS168 (trade name, BASF) is used as a phosphorus antioxidant. 0.05 part by weight was added and mixed (metal deactivator addition step shown in FIG. 4).
  • thermoplastic recycled resin material was injection molded under molding conditions of a molding temperature of 200 ° C. and a mold temperature of 30 ° C. to produce a test piece as a molded product (injection molding process shown in FIG. 4).
  • the physical properties (initial physical properties) of the obtained test pieces were measured. Thereafter, the test piece was left in a constant temperature oven at 80 ° C. for 1000 hours (durability test), and the subsequent physical properties (physical properties after the durability test) were also measured and evaluated. Table 3 shows the rate of change between the initial physical properties and the physical properties after the durability test.
  • Example 11 A test piece was produced in the same manner as in Example 10, except that 0.1 part by weight of Adeka Stub CDA-1 (trade name, manufactured by ADEKA) was added as a metal deactivator to 100 parts by weight of HIPS after washing. did. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
  • Example 12 0.1 parts by weight of ADEKA STAB CDA-10 (trade name, manufactured by ADEKA) is added as a metal deactivator to 100 parts by weight of HIPS after washing, and IRGANOX 1076 (trade name, BASF) is used as a phenolic antioxidant.
  • a test piece was produced in the same manner as in Example 10 except that 0.1 part by weight of the product was added. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
  • Example 13 0.1 parts by weight of ADK STAB CDA-1 (trade name, manufactured by ADEKA) as a metal deactivator is added to 100 parts by weight of HIPS after washing, and IRGANOX 1076 (trade name, A test piece was produced in the same manner as in Example 10 except that 0.1 part by weight of BASF was added. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
  • Example 15 (Comparative Example 15) Rather than using HIPS virgin material (trade name: H9152, manufactured by PS Japan) as a raw material, instead of selecting HIPS from thermoplastic resin waste (shredder dust) derived from waste home appliances and using it as a resin material after sorting Produced a test piece in the same manner as in Example 10. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
  • Example 16 No metal deactivator was added to 100 parts by weight of HIPS after washing (that is, 0.05 parts by weight of only IRGAFOS168 (trade name, manufactured by BASF) which is a phosphorus-based antioxidant as an antioxidant).
  • IRGAFOS168 trade name, manufactured by BASF
  • a test piece was produced in the same manner as in Example 10 except that (added) was performed. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
  • Example 10 and Example 11 were compared with the test pieces of Comparative Example 16 (those without the addition of a metal deactivator).
  • the drop is improved satisfactorily.
  • the test pieces of Example 12 and Example 13 in which a metal deactivator and a phenolic antioxidant are used in combination, the deterioration of physical properties is further improved. Therefore, from the results of these examples, a more excellent effect can be achieved by using a metal deactivator and a phenolic antioxidant together as the resin modifier. In addition, it is expected that even more excellent effects can be achieved by using a metal deactivator, a phenolic antioxidant, and a sulfurous antioxidant in combination.
  • Example 14 As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, HIPS was selected using a near-infrared identification system 20 shown in FIG. 3 (resin material selection step). Then, the dry cleaning process shown in FIG. 5 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed HIPS was used as a raw material.
  • TR2000 (trade name, manufactured by JSR) as a thermoplastic elastomer was added to and mixed with 100 parts by weight of HIPS after washing (elastomer addition step shown in FIG. 5).
  • thermoplastic recycled resin material was injection molded under molding conditions of a molding temperature of 200 ° C. and a mold temperature of 30 ° C. to produce a test piece as a molded product (injection molding step shown in FIG. 5).
  • test piece was produced in the same manner as in Example 14 except that 30 parts by weight of general-purpose polystyrene (GPPS) manually collected from the refrigerator was added to 100 parts by weight of HIPS after washing. Each physical property of this test piece was measured in the same manner as in Example 14. The results are shown in Table 4.
  • GPPS general-purpose polystyrene
  • Example 15 6 parts by weight of TR2000 (trade name, manufactured by JSR) as a thermoplastic elastomer is added to 100 parts by weight of HIPS after washing, and 30 parts by weight of general-purpose polystyrene (GPPS) manually collected from the refrigerator is added.
  • TR2000 trade name, manufactured by JSR
  • GPPS general-purpose polystyrene
  • Comparative Example 17 Rather than using HIPS virgin material (trade name: H9152, manufactured by PS Japan) as a raw material, instead of selecting HIPS from thermoplastic resin waste (shredder dust) derived from waste home appliances and using it as a resin material after sorting Produced a test piece in the same manner as in Example 14. Each physical property of this test piece was measured in the same manner as in Example 14. The results are shown in Table 4. A boss strength test was also performed on the test piece of Comparative Example 17. The results are shown in Table 5.
  • thermoplastic elastomer was not added to 100 parts by weight of HIPS after washing (that is, only HIPS selected by the near infrared identification system 20 was used as a raw material). Manufactured. About this test piece, it carried out similarly to Example 14, and measured the initial physical property and the physical property after an endurance test. Table 4 shows the rate of change of these physical properties. A boss strength test was also performed on the test piece of Comparative Example 18. The results are shown in Table 5.
  • test piece of Example 15 (added with the thermoplastic elastomer and GPPS) is slightly lower than that of the test piece of Example 14, it is lower than that of the test piece of Comparative Example 1. It is high.
  • the test piece of Example 15 has higher tensile strength and bending strength than the test piece of Example 14.
  • the test piece of Comparative Example 18 is compared with the test piece of Comparative Example 17 (virgin material) and the test piece of Comparative Example 18 (HIPS selected by the near infrared identification system 20).
  • the male screw cannot be fastened with a significantly smaller number of times than the test piece of Comparative Example 17.
  • the test piece of Example 15 fastening is not impossible even if the male screw is repeated 10 times or more. Therefore, the thermoplastic recycled resin material to which the thermoplastic elastomer and GPPS are added can have a boss strength equal to or higher than that of the virgin material.
  • thermoplastic recycled resin material is improved satisfactorily, and by adding an appropriate amount of GPPS, each physical property including impact resistance is balanced overall.
  • GPPS GPPS
  • the boss strength is improved in the thermoplastic recycled resin material modified by adding thermoplastic elastomer and GPPS. Therefore, the thermoplastic recycled resin material can be reused as a component that requires boss strength. For example, in an air conditioner for home use, a good boss strength is required for an air filter frame of an indoor unit. Therefore, the modified thermoplastic recycled resin material can also be used for molded products that could not be conventionally used.
  • Example 16 As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, polypropylene was sorted using the near infrared ray identification system 20 shown in FIG. 3 (resin material sorting step). Thereafter, the polypropylene (resin material after sorting) was subjected to a dry cleaning process shown in FIG. 6 (dry cleaning process). This washed polypropylene was used as a raw material.
  • tetrabromobisphenol A-bis (2,3-dibromopropyl ether) 15 parts by weight of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is added as a brominated flame retardant to 100 parts by weight of the washed polypropylene, and trioxide as an antimony flame retardant aid. 5 parts by weight of antimony was added (total amount of flame retardant and flame retardant aid: 20 parts by weight) and mixed (flame retardant addition step shown in FIG. 6).
  • polypropylene pellets as a thermoplastic recycled resin material were produced (heating kneading and extruding steps shown in FIG. 6).
  • This pellet thermoplastic recycled resin material
  • Manufactured injection molding step shown in FIG. 6). About the obtained test piece, the flame retardance evaluation mentioned above was performed. The results are shown in Table 6.
  • Example 17 40 parts by weight of polypropylene extrusion molding waste (lower recycled resin material) is mixed with 100 parts by weight of the polypropylene resin material after sorting and tetrabromobisphenol A-bis (2,3-dibromopropyl ether).
  • a test piece was produced in the same manner as in Example 16 except that 10 parts by weight and 4 parts by weight of antimony trioxide were added (total amount of flame retardant and flame retardant aid: 14 parts by weight). This test piece was evaluated for flame retardancy in the same manner as in Example 16. The results are shown in Table 6.
  • Example 19 Rather than selecting polypropylene from waste thermoplastic resin waste material (shredder dust) derived from waste home appliances and using it as a resin material after selection, polypropylene virgin material (trade name: J750HP, manufactured by Prime Polymer Co., Ltd.) is used as a raw material. Test piece as in Example 16, except that bromine-based flame retardant and antimony-based flame retardant auxiliary were added in the same amount as in Example 17 (total amount of flame retardant and flame retardant auxiliary: 14 parts by weight) Manufactured. This test piece was evaluated for flame retardancy in the same manner as in Example 16. The results are shown in Table 6.
  • Example 20 Comparative Example 20
  • Example 1 except that 10 parts by weight of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and 4 parts by weight of antimony trioxide were added (total amount of flame retardant and flame retardant aid: 14 parts by weight).
  • a test piece was produced in the same manner as in FIG. This test piece was evaluated for flame retardancy in the same manner as in Example 16. The results are shown in Table 6.
  • Example 19 when the test piece of Example 17 and the test piece of Comparative Example 19 are compared, the amounts of the flame retardant and the flame retardant aid are the same, and 40 parts by weight of the lower recycled resin material is mixed (implementation) Even in Example 18), it can be seen that flame retardancy comparable to that of the virgin material (Comparative Example 19) can be realized.
  • the present invention can be widely and suitably used in the field of recycling specific types of thermoplastic resin materials from waste home appliances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A regenerated thermoplastic resin material according to the present invention can be obtained by: recovering a thermoplastic resin waste, which is a mixture consisting of multiple kinds of resin materials, from ground waste electrical appliances; from this thermoplastic resin waste, selecting a thermoplastic resin material of a specific kind by using a material sorting device, followed by dry washing; and then mixing the thermoplastic resin material of the specific kind with resin modifiers, said resin modifiers including a phenol-based antioxidant, a sulfur-based antioxidant, a metal-inactivating agent, a thermoplastic elastomer or a bromine-based flame retardant and an antimony-based auxiliary flame retardant.

Description

熱可塑性再生樹脂材料Thermoplastic recycled resin material
 本発明は、使用済みの家電製品(廃家電製品)等のように、複数種類の合成樹脂が混在する廃棄物から、特定種類の合成樹脂材料(対象樹脂材料)を再資源化して得られる熱可塑性再生樹脂材料に関する。特に、前記廃棄物から対象樹脂材料を選別して、再資源化するにあたり、物性の低下を抑制または回避し、従来よりも優れた品質を実現することが可能な、熱可塑性再生樹脂材料に関する。 The present invention is a heat obtained by recycling a specific type of synthetic resin material (target resin material) from waste including a plurality of types of synthetic resins, such as used home appliances (waste home appliances). The present invention relates to a plastic recycled resin material. In particular, the present invention relates to a thermoplastic recycled resin material capable of suppressing or avoiding a decrease in physical properties and realizing a quality superior to the conventional one when selecting and recycling a target resin material from the waste.
 近年の大量生産、大量消費、および大量廃棄型の経済活動が、地球温暖化または資源の枯渇等といった、地球規模での環境問題を引き起こしている。このような状況の中、日本国においては、循環型社会の構築に向けて、2001年4月から家電リサイクル法が完全施行されている。家電リサイクル法では、使用済みになったエアコン、テレビ、冷蔵庫、冷凍庫、および洗濯機のリサイクルが義務付けられている。 Recent economic activities of mass production, mass consumption, and mass disposal are causing environmental problems on a global scale such as global warming or resource depletion. Under such circumstances, the Home Appliance Recycling Law has been fully enforced since April 2001 in Japan to build a recycling society. Under the Home Appliance Recycling Law, recycling of used air conditioners, TVs, refrigerators, freezers, and washing machines is obligatory.
 従来、不要になって回収された家電製品(廃家電製品)は、家電リサイクル工場で破砕され、その後に材料の種類別に分別回収され、必要に応じてさらに選別されることによって再資源化されている。分別回収または選別には、一般的に、磁気、風力、および/または振動等が利用されている。種々の材料のうち、特に金属材料(例えば、鉄、銅、またはアルミニウム等)は、比重選別装置および/または磁気選別装置を用いることで、金属の種類別に精度よく選別することができる。そのため、金属材料は、高純度での再資源化が可能であるとともに、高い再資源化率も実現することが可能である。 Conventionally, household electrical appliances (waste household electrical appliances) that have been collected when they are no longer needed are crushed at a household appliance recycling plant, and then separated and collected according to the type of material, and then recycled as necessary. Yes. Generally, magnetic collection, wind power, and / or vibration is used for fractional collection or sorting. Among various materials, in particular, metal materials (for example, iron, copper, or aluminum) can be accurately sorted by metal type by using a specific gravity sorting device and / or a magnetic sorting device. Therefore, the metal material can be recycled with high purity, and a high recycling rate can be realized.
 一方、合成樹脂材料(樹脂材料)の選別においては、一部の種類については比較的高精度の選別が可能となっている。例えば、ポリプロピレン(PP)は、代表的な熱可塑性の樹脂材料であるが、他の樹脂材料に比べて比重が小さい(軽い)ため、水を利用した比重選別法(便宜上、「水比重選別法」と称する)により、比重の大きい(重い)樹脂材料から比較的高精度に選別して回収することができる。 On the other hand, in the selection of synthetic resin materials (resin materials), it is possible to select relatively high precision for some types. For example, polypropylene (PP) is a typical thermoplastic resin material, but its specific gravity is smaller (lighter) than other resin materials. Therefore, a specific gravity sorting method using water (for convenience, the “water specific gravity sorting method”). Therefore, it is possible to sort and recover from a resin material having a large specific gravity (heavy) with relatively high accuracy.
 なお、特定の種類毎に選別する前の樹脂材料(すなわち、複数種類の樹脂材料が混在している混在物)を、説明の便宜上「樹脂廃材」と称し、選別した後の樹脂材料(すなわち、特定の種類の樹脂材料のみ)を、説明の便宜上「再生樹脂材料」と称する。 In addition, the resin material before sorting for each specific type (that is, a mixture of a plurality of types of resin materials) is referred to as “resin waste material” for convenience of explanation, and the resin material after sorting (that is, A specific type of resin material) is referred to as “recycled resin material” for convenience of explanation.
 ここで、水比重選別法には、次に説明するような課題が知られている。例えば、水比重選別法では、樹脂廃材からPPを選別するために水を利用することから、大量の排水が発生する。また、例えば、汎用される熱可塑性樹脂材料のうち、ポリスチレン(PS)およびABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)については、互いに比重が近いため、PPほどに高精度に選別することが困難となっている。 Here, the following problems are known in the water specific gravity sorting method. For example, in the water specific gravity sorting method, a large amount of wastewater is generated because water is used to sort PP from resin waste. In addition, for example, among the thermoplastic resin materials that are widely used, polystyrene (PS) and ABS resin (acrylonitrile-butadiene-styrene copolymer) are close to each other in specific gravity, so that they can be selected with higher accuracy than PP. It has become difficult.
 PSまたはABS樹脂を水比重選別法で選別する場合には、塩水等のように比重を調整した水を用いることで、ある程度の選別が可能である。しかしながら、塩水等を用いた水比重選別法であっても、PPと同程度の精度で選別することはできない。PSまたはABS樹脂をより高精度で選別するには、水比重選別法を行うための設備とは別の設備が必要となる。さらに、近年では、フィラー(充填剤)を含有するPPの需要が拡大しているが、このフィラー含有PPは、従来の水比重選別法では良好に選別することができない。それゆえ、樹脂材料の種類によっては、水比重選別法だけでは高精度の選別が難しいことになる。 When sorting PS or ABS resin by the water specific gravity sorting method, it is possible to sort to some extent by using water with adjusted specific gravity such as salt water. However, even a water specific gravity sorting method using salt water or the like cannot be sorted with the same accuracy as PP. In order to sort PS or ABS resin with higher accuracy, equipment different from the equipment for performing the water specific gravity sorting method is required. Furthermore, in recent years, the demand for PP containing a filler (filler) has increased, but this PP containing filler cannot be well sorted by the conventional water specific gravity sorting method. Therefore, depending on the type of resin material, high-precision sorting is difficult only by the water specific gravity sorting method.
 このような水比重選別法に関する課題を考慮した技術としては、例えば、特許文献1または特許文献2に開示される選別方法が提案されている。この選別方法では、近赤外線を利用して樹脂廃材から特定種類の樹脂材料(対象樹脂材料)を選別している。 For example, a sorting method disclosed in Patent Document 1 or Patent Document 2 has been proposed as a technique that takes into account such a problem relating to the water specific gravity sorting method. In this sorting method, a specific type of resin material (target resin material) is sorted from resin waste using near infrared rays.
 具体的には、例えば特許文献2に開示の技術であれば、まず、樹脂廃材(分別対象)を搬送装置によって搬送する。次に、近赤外線識別装置(材質識別装置)により、種々の樹脂材料の材質を識別する。その後、搬送装置の搬出端より樹脂廃材が落下する際に、検出した特定材質の樹脂材料に向けて、落下経路の下方から高圧空気を吐出する。これにより、特定材質の樹脂材料を他の樹脂材料(混在物)の自然落下位置よりも遠方に吹き飛ばすことができる。そのため、特定材質の樹脂材料を他の樹脂材料から選別することが可能となる。 Specifically, for example, in the case of the technique disclosed in Patent Document 2, first, the resin waste (sorting target) is transported by a transport device. Next, the materials of various resin materials are identified by a near infrared identification device (material identification device). Thereafter, when the resin waste material falls from the carry-out end of the conveying device, high-pressure air is discharged from below the dropping path toward the detected resin material of the specific material. Thereby, the resin material of a specific material can be blown away from the natural fall position of other resin materials (mixtures). Therefore, it becomes possible to select a resin material of a specific material from other resin materials.
 これら特許文献に開示の選別方法であれば、PPだけでなく、比重の近いPSとABS樹脂とを選別することが可能であるとともに、比重の大きいフィラー含有PPを選別することも可能である。また、これら選別方法であれば、特定の樹脂材料を、純度99%以上という高純度の再生樹脂材料として選別することも可能である。 With the screening methods disclosed in these patent documents, it is possible to select not only PP but also PS and ABS resin having similar specific gravity, and it is also possible to select filler-containing PP having a large specific gravity. Further, with these sorting methods, it is possible to sort a specific resin material as a high-purity recycled resin material having a purity of 99% or more.
 ただし、選別された樹脂材料をそのまま再生樹脂材料として用いる場合、すなわち、選別で得られた再生樹脂材料のみで成形品を製造した場合、得られる成形品においては、下記の理由により、その物性または品質が低下するおそれがある。 However, when the selected resin material is used as it is as a recycled resin material, that is, when a molded product is produced only from the recycled resin material obtained by sorting, in the obtained molded product, the physical properties or There is a risk of quality degradation.
 まず、樹脂廃材が、廃家電製品を破砕したシュレッダーダストであれば、前述したPP、PS、またはABS樹脂等の熱可塑性樹脂材料を高精度に選別できたとしても、微量の異物の混入が避けられない。このような異物が混入した再生樹脂材料は、バージン材(未使用の樹脂材料)、もしくは、異物がほぼ混入しない再生樹脂材料に比べて、その強度および/または耐衝撃性が低下する。 First, if the resin waste material is shredder dust that crushes waste home appliances, even if the above-mentioned thermoplastic resin material such as PP, PS, or ABS resin can be selected with high accuracy, a small amount of foreign matter should be avoided. I can't. Such a recycled resin material mixed with foreign matter has lower strength and / or impact resistance than a virgin material (unused resin material) or a recycled resin material almost free of foreign matter.
 微量の異物としては、例えば、断熱材等として用いられるウレタンフォーム(ウレタン樹脂は、一般には熱硬化性樹脂材料として知られる)、各種シール材料、エラストマー材料(ゴム等)、その他の樹脂材料、または、各種金属材料(鉄、銅、アルミニウム等)が挙げられる。これら異物は、選別後の再生樹脂材料に付着または密着していることが多い。異物が樹脂材料に単に付着しているだけであれば、公知の乾式洗浄等によって除去することが可能である。しかしながら、異物がシール材料等を介して再生樹脂材料に強力に密着していれば、洗浄しても異物を完全に除去することはできない。 For example, urethane foam used as a heat insulating material (urethane resin is generally known as a thermosetting resin material), various sealing materials, elastomer materials (rubber etc.), other resin materials, And various metal materials (iron, copper, aluminum, etc.). In many cases, these foreign substances adhere to or adhere to the recycled resin material after sorting. If the foreign matter is simply attached to the resin material, it can be removed by a known dry cleaning or the like. However, if the foreign matter adheres strongly to the recycled resin material via a sealing material or the like, the foreign matter cannot be completely removed even by washing.
 次に、廃家電製品から回収された樹脂廃材は、家電製品の使用環境にも依存するが、多くの場合、経年劣化が生じている。家電製品に用いられる樹脂材料には、通常、耐久性を維持することを目的とした添加剤(例えば、酸化防止剤、光安定剤、耐候剤等)が添加されているが、これら添加剤は、樹脂材料の経年劣化に伴って消費されてしまう。そのため、高純度の再生樹脂材料であっても、当該再生樹脂材料をそのまま用いて製造された成形品は、耐久性が低下することになる。 Next, resin waste recovered from waste home appliances often depends on the usage environment of home appliances, but in many cases, has deteriorated over time. Additives (eg, antioxidants, light stabilizers, weathering agents, etc.) intended to maintain durability are usually added to resin materials used in household appliances. The resin material is consumed with the aging of the resin material. Therefore, even if it is a high-purity recycled resin material, the durability of a molded product manufactured using the recycled resin material as it is decreases.
 さらに、添加剤の種類によっては、再生樹脂材料に何らかの影響を及ぼすおそれもある。樹脂材料に添加される添加剤としては、前記の耐久性を向上するもの以外に、例えば、フィラーまたは顔料等の添加剤も添加される。ここで、フィラーまたは顔料には金属成分が含まれていることがあり、これら金属成分が再生樹脂材料の熱劣化に影響を与えるおそれがある。加えて、前述した異物そのものが再生樹脂材料の劣化または耐久性に影響を与えたり、劣化を促進させたりするおそれもある。 Furthermore, depending on the type of additive, there is a possibility of some influence on the recycled resin material. As an additive added to the resin material, an additive such as a filler or a pigment is also added in addition to the above-described one that improves the durability. Here, the filler or the pigment may contain metal components, and these metal components may affect the thermal deterioration of the recycled resin material. In addition, the foreign matter described above may affect the deterioration or durability of the recycled resin material, or may accelerate the deterioration.
 そこで、例えば、再生樹脂材料にバージン材を配合することで、再生樹脂材料の物性の低下または物性のばらつきを抑制または回避する技術が知られている。例えば、特許文献3に開示の技術では、再生樹脂材料(再生プラスチック素材)とバージン材とを混合することで、再生樹脂材料の物性の向上が可能であることが記載されている。 Therefore, for example, a technique for suppressing or avoiding a decrease in physical properties or a variation in physical properties of the recycled resin material by blending a recycled resin material with a virgin material is known. For example, the technique disclosed in Patent Document 3 describes that the physical properties of a recycled resin material can be improved by mixing a recycled resin material (recycled plastic material) and a virgin material.
 また、特許文献4には、再生ポリプロピレン系樹脂を中間層とし、難燃剤を含有するポリプロピレンのバージン樹脂を表面層および裏面層とする構成の積層体が提案されている。この文献によれば、前記構成の積層体とすることで、強度および外観に優れた難燃性ポリプロピレンを得られる、とされている。 Further, Patent Document 4 proposes a laminate having a recycled polypropylene resin as an intermediate layer and a polypropylene virgin resin containing a flame retardant as a surface layer and a back layer. According to this document, it is said that a flame-retardant polypropylene excellent in strength and appearance can be obtained by using the laminate having the above-described configuration.
特開2002-263587号公報Japanese Patent Laid-Open No. 2002-263587 特開2011-104461号公報JP 2011-104461 A 特開2011-089026号公報JP 2011-089026 A 特開2001-009995号公報JP 2001-009995 A
 しかしながら、特許文献3に開示されるように、再生樹脂材料にバージン材を混合する方法でも、その物性を十分に向上できない場合がある。 However, as disclosed in Patent Document 3, there is a case where the physical properties cannot be sufficiently improved even by a method of mixing a virgin material with a recycled resin material.
 例えば、バージン材を混合して得られる再生樹脂材料を、便宜上「混合再生樹脂材料」とすれば、この混合再生樹脂材料は、バージン材を混合していない元の再生樹脂材料に比べて確かに物性は向上する。しかしながら、混合再生樹脂材料の物性は、結局のところバージン材の物性に及ばない。それゆえ、混合再生樹脂材料の用途は、バージン材の物性よりも低い物性で十分な分野に限定される。 For example, if a recycled resin material obtained by mixing a virgin material is referred to as a “mixed recycled resin material” for convenience, this mixed recycled resin material is certainly more than the original recycled resin material that is not mixed with a virgin material. Physical properties are improved. However, the physical properties of the mixed recycled resin material do not reach the physical properties of the virgin material after all. Therefore, the use of the mixed recycled resin material is limited to a field where physical properties lower than those of the virgin material are sufficient.
 しかも、混合再生樹脂材料の物性をバージン材の物性に近づけるためには、元の再生樹脂材料に対して多量のバージン材を混合する必要がある。対象樹脂材料をリサイクルするために、バージン材を多量に混合するということは、結果的に、リサイクルの向上にはつながらない。それゆえ、高いリサイクル率を実現する社会的要求(資源循環型社会を目指すという要求)に十分に対応しているとは言い難い。 Moreover, in order to bring the physical properties of the mixed recycled resin material close to those of the virgin material, it is necessary to mix a large amount of virgin material with the original recycled resin material. In order to recycle the target resin material, mixing a large amount of virgin material does not lead to an improvement in recycling. Therefore, it is difficult to say that it is sufficiently meeting social demands for achieving a high recycling rate (requests for a recycling-oriented society).
 さらに、樹脂材料の種類によっては、バージン材を混合しても低下した物性を十分に回復できないおそれもある。例えば、PP等の結晶化樹脂は、バージン材を混合することによって、低下した物性をある程度回復させることができる。これに対して、スチレン系樹脂材料は、非結晶化樹脂であるため、バージン材を混合しても物性が十分に回復しない場合がある。 Furthermore, depending on the type of the resin material, there is a possibility that the lowered physical properties cannot be recovered sufficiently even when the virgin material is mixed. For example, a crystallized resin such as PP can recover the lowered physical properties to some extent by mixing a virgin material. On the other hand, since the styrene resin material is a non-crystallized resin, the physical properties may not be sufficiently recovered even when the virgin material is mixed.
 加えて、元の再生樹脂材料に前述した異物が含まれていれば、当該異物の作用によって物性がより低下するおそれがある。それゆえ、バージン材を多量に混合したり、消費された添加剤(酸化防止剤、光安定剤、耐候剤等)と同種のものを多量に添加したりしても、混合再生樹脂材料の物性を十分に向上できない可能性がある。 In addition, if the above-mentioned foreign matter is contained in the original recycled resin material, the physical properties may be further lowered by the action of the foreign matter. Therefore, even if a large amount of virgin material is mixed or a large amount of the same kind of consumed additive (antioxidant, light stabilizer, weathering agent, etc.) is added, the physical properties of the mixed recycled resin material May not be improved sufficiently.
 また、特許文献4に開示されるように、バージン材を混合するのではなく、バージン材を表面に積層する方法では、積層工程が必須となる。それゆえ、再生樹脂材料の成形品を得るために別途積層工程が必要となるとともに、全体の工数も増加する。その結果、この方法では、製造過程が煩雑化するだけでなく、製造コストも上昇してしまう。また、特許文献4には、表面層および裏面層にバージン材を使用する必要があるため、再生樹脂材料の使用量をより増加させることができない。 In addition, as disclosed in Patent Document 4, in the method of laminating the virgin material on the surface instead of mixing the virgin material, a laminating process is essential. Therefore, a separate laminating process is required to obtain a molded product of the recycled resin material, and the total man-hour is increased. As a result, this method not only complicates the manufacturing process but also increases the manufacturing cost. Moreover, since it is necessary to use a virgin material for a surface layer and a back surface layer in patent document 4, the usage-amount of a recycled resin material cannot be increased more.
 本発明はこのような課題を解決するためになされたものであって、廃家電製品由来の複数種類の樹脂材料が混在している混在物から、特定種類の熱可塑性樹脂材料を選別して、熱可塑性再生樹脂材料として再資源化するに際して、バージン材を多量に混合することなく、熱可塑性再生樹脂材料の良好な物性を実現することが可能な技術を提供することを目的とする。 The present invention was made to solve such problems, and from a mixture of a plurality of types of resin materials derived from waste home appliances, a specific type of thermoplastic resin material is selected, An object of the present invention is to provide a technique capable of realizing good physical properties of a thermoplastic recycled resin material without mixing a large amount of virgin material when recycled as a thermoplastic recycled resin material.
 本発明に係る熱可塑性再生樹脂材料は、前記の課題を解決するために、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、(1)フェノール系酸化防止剤およびイオウ系酸化防止剤が配合されるか、または、(2)前記熱可塑性樹脂材料100重量部に対して金属不活性化剤が0.01~1重量部の範囲内で配合されるか、(3)熱可塑性エラストマーが配合されるか、または(4)臭素系難燃剤およびアンチモン系難燃助剤が適量配合される構成である。 In order to solve the above-mentioned problems, the thermoplastic recycled resin material according to the present invention is obtained from a waste material of a thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances using a material identification device. (1) A phenol-based antioxidant and a sulfur-based antioxidant are blended with a specific type of thermoplastic resin material obtained after being screened and dry-cleaned, or (2) the heat The metal deactivator is blended in the range of 0.01 to 1 part by weight with respect to 100 parts by weight of the plastic resin material, (3) the thermoplastic elastomer is blended, or (4) bromine-based difficulty. A proper amount of a flame retardant and an antimony flame retardant aid are blended.
 前記構成によれば、熱可塑性再生樹脂材料の物性の低下または劣化が有効に抑制される。それゆえ、熱可塑性再生樹脂材料を成形品として有効に再利用することができる。また、物性の劣化の促進を有効に抑制できるので、再利用された成形品は、長期間にわたって安定的に使用することができる。さらに、熱可塑性再生樹脂材料を再利用する際には、バージン材を多量に配合しなくても、良好な物性(耐久性、強度、耐衝撃性等)を実現できるので、再生資源の使用率を向上することができる。それゆえ、環境に配慮した家電製品の展開をさらに推し進めることが可能となる。 According to the above configuration, deterioration or deterioration of the physical properties of the thermoplastic recycled resin material is effectively suppressed. Therefore, the thermoplastic recycled resin material can be effectively reused as a molded product. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time. In addition, when recycling recycled thermoplastic resin materials, good physical properties (durability, strength, impact resistance, etc.) can be realized without adding a large amount of virgin material. Can be improved. Therefore, it is possible to further promote the development of home appliances in consideration of the environment.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明では、以上の構成により、廃家電製品由来の複数種類の樹脂材料が混在している混在物から、特定種類の熱可塑性樹脂材料を選別して、熱可塑性再生樹脂材料として再資源化するに際して、バージン材を多量に混合することなく、熱可塑性再生樹脂材料の良好な物性を実現することが可能な技術を提供することができる、という効果を奏する。 In the present invention, with the above configuration, a specific type of thermoplastic resin material is selected from a mixture of a plurality of types of resin materials derived from waste home appliances, and recycled as a thermoplastic recycled resin material. At this time, there is an effect that it is possible to provide a technique capable of realizing good physical properties of the thermoplastic recycled resin material without mixing a large amount of virgin material.
本発明の実施の形態1に係る熱可塑性再生樹脂材料の製造工程(熱可塑性樹脂材料のリサイクル工程)の一例であって、特定材料の樹脂材料を選別するまでの工程を示す工程図である(なお、図1においては、風力、磁力、渦電流選別の順は問わない)。It is an example of the manufacturing process (recycling process of a thermoplastic resin material) of the thermoplastic recycled resin material which concerns on Embodiment 1 of this invention, Comprising: It is process drawing which shows the process until it selects the resin material of a specific material ( In FIG. 1, the order of wind power, magnetic force, and eddy current selection does not matter. 図1に示す熱可塑性再生樹脂材料の製造工程の続きであって、選別された特定種類の樹脂材料を改質して成形するまでの工程を示す工程図である。FIG. 2 is a continuation of the manufacturing process of the thermoplastic recycled resin material shown in FIG. 1 and is a process diagram showing a process until a specific type of selected resin material is modified and molded. 図1に示す熱可塑性再生樹脂材料の製造工程で、特定材料の熱可塑性樹脂材料を選別するために用いられる、近赤外線識別システムの一例を示す模式的斜視図である。It is a typical perspective view which shows an example of the near-infrared identification system used in order to select the thermoplastic resin material of a specific material in the manufacturing process of the thermoplastic recycled resin material shown in FIG. 本発明の実施の形態2に係る熱可塑性再生樹脂材料の製造工程の一例であって、選別された特定種類の樹脂材料を改質して成形するまでの工程を示す工程図である。It is an example of the manufacturing process of the thermoplastic reproduction | regeneration resin material which concerns on Embodiment 2 of this invention, Comprising: It is process drawing which shows the process until it modifies and shape | molds the selected specific kind of resin material. 本発明の実施の形態3に係る熱可塑性再生樹脂材料の製造工程の一例であって、選別された特定種類の樹脂材料を改質して成形するまでの工程を示す工程図である。It is an example of the manufacturing process of the thermoplastic reproduction | regeneration resin material which concerns on Embodiment 3 of this invention, Comprising: It is process drawing which shows the process until it modifies and shape | molds the selected specific kind of resin material. 本発明の実施の形態4に係る熱可塑性再生樹脂材料の製造工程の一例であって、選別された特定種類の樹脂材料を改質して成形するまでの工程を示す工程図である。It is an example of the manufacturing process of the thermoplastic reproduction | regeneration resin material which concerns on Embodiment 4 of this invention, Comprising: It is process drawing which shows the process until it modifies and shape | molds the selected specific kind of resin material.
 本発明に係る第一の熱可塑性再生樹脂材料は、前記の課題を解決するために、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤が配合されてなる構成である。 In order to solve the above-mentioned problem, a first thermoplastic recycled resin material according to the present invention is a material identification device obtained from a waste thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances. This is a structure in which a phenolic antioxidant and a sulfur-based antioxidant are blended with a specific type of thermoplastic resin material obtained after being screened and dry-cleaned.
 前記構成によれば、乾式洗浄処理を行った特定種類の熱可塑性樹脂材料に対して2種類の酸化防止剤を併用して添加する。これにより、熱可塑性樹脂材料が経年劣化したものであったり、異物が混入することで熱可塑性樹脂材料の劣化が進行したりしても、劣化の加速を有効に抑制することができる。それゆえ、得られる熱可塑性再生樹脂材料の耐久性を良好に改善することができる。その結果、選別した熱可塑性再生樹脂材料を家電製品の部品等として再利用することができるので、リサイクル率を向上することができる。 According to the above configuration, two kinds of antioxidants are added in combination to the specific kind of thermoplastic resin material subjected to the dry cleaning treatment. Thereby, even if the thermoplastic resin material has deteriorated over time or the deterioration of the thermoplastic resin material has progressed due to the inclusion of foreign matter, the acceleration of deterioration can be effectively suppressed. Therefore, the durability of the obtained thermoplastic recycled resin material can be improved satisfactorily. As a result, since the selected thermoplastic recycled resin material can be reused as a part of home appliances, the recycling rate can be improved.
 また、本発明に係る第二の熱可塑性再生樹脂材料は、前記の課題を解決するために、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、当該熱可塑性樹脂材料100重量部に対して金属不活性化剤が0.01~1重量部の範囲内で配合されてなる構成である。 Further, in order to solve the above-mentioned problem, the second thermoplastic recycled resin material according to the present invention is obtained from a thermoplastic resin waste material obtained from a crushed material of waste home appliances and containing a plurality of types of resin materials. With respect to 100 parts by weight of the thermoplastic resin material, the metal deactivator is 0.01 to 1 with respect to a specific type of thermoplastic resin material obtained after being selected using an identification device and dry-cleaned. It is the structure formed by mixing within the range of parts by weight.
 前記構成によれば、乾式洗浄処理を行った特定種類の熱可塑性樹脂材料に対して金属不活性化剤を適量添加する。金属不活性化剤は、廃家電製品由来の金属系の異物、あるいは、熱可塑性樹脂材料中の添加剤に含まれる金属成分との間で錯体を形成する。これにより、金属成分による触媒作用を有効に低減し、熱可塑性樹脂材料の劣化の進行を有効に抑制することができる。それゆえ、得られる熱可塑性再生樹脂材料の耐久性を良好に改善することができる。その結果、選別した熱可塑性再生樹脂材料を家電製品の部品等として再利用することができるので、リサイクル率を向上することができる。 According to the above configuration, an appropriate amount of a metal deactivator is added to a specific type of thermoplastic resin material that has undergone a dry cleaning treatment. The metal deactivator forms a complex with a metal-based foreign matter derived from waste home appliances or a metal component contained in the additive in the thermoplastic resin material. Thereby, the catalytic action by a metal component can be reduced effectively, and progress of deterioration of a thermoplastic resin material can be controlled effectively. Therefore, the durability of the obtained thermoplastic recycled resin material can be improved satisfactorily. As a result, since the selected thermoplastic recycled resin material can be reused as a part of home appliances, the recycling rate can be improved.
 また、本発明に係る第三の熱可塑性再生樹脂材料は、前記の課題を解決するために、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、熱可塑性エラストマーが配合されてなる構成である。 Further, in order to solve the above problems, the third thermoplastic recycled resin material according to the present invention is obtained from a thermoplastic resin waste material obtained from a crushed material of waste home appliances and containing a plurality of types of resin materials. This is a configuration in which a thermoplastic elastomer is blended with a specific kind of thermoplastic resin material obtained after being sorted using an identification device and subjected to a dry cleaning process.
 前記構成によれば、乾式洗浄処理を行った特定種類の熱可塑性樹脂材料に、相溶性を持つ熱可塑性エラストマーを添加する。これにより、選別後の熱可塑性樹脂材料において、樹脂分子間の密着性の向上を図ることができる。それゆえ、得られる熱可塑性再生樹脂材料の物性(特に耐衝撃性)を改善することができる。その結果、選別した熱可塑性再生樹脂材料を家電製品の部品等として再利用することができるので、リサイクル率を向上することができる。 According to the above configuration, a compatible thermoplastic elastomer is added to a specific type of thermoplastic resin material that has undergone a dry cleaning treatment. Thereby, in the thermoplastic resin material after selection, it is possible to improve the adhesion between resin molecules. Therefore, the physical properties (especially impact resistance) of the thermoplastic recycled resin material obtained can be improved. As a result, since the selected thermoplastic recycled resin material can be reused as a part of home appliances, the recycling rate can be improved.
 また、本発明に係る第四の熱可塑性再生樹脂材料は、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、当該熱可塑性樹脂材料100重量部に対して、臭素系難燃剤およびアンチモン系難燃助剤が18~25重量部の範囲内で配合されてなる構成である。 In addition, the fourth thermoplastic recycled resin material according to the present invention is obtained from a waste material of a thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances, using a material identification device, In the range of 18 to 25 parts by weight of a brominated flame retardant and an antimony flame retardant aid with respect to 100 parts by weight of the thermoplastic resin material with respect to a specific type of thermoplastic resin material obtained after the dry cleaning treatment. It is the structure which is mix | blended in the inside.
 あるいは、本発明に係る第五の熱可塑性再生樹脂材料は、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、当該熱可塑性樹脂材料100重量部に対して、より選別精度の低い同じ材質の再生樹脂材料が30重量部以上配合され、かつ、前記熱可塑性樹脂材料100重量部に対して、臭素系難燃剤およびアンチモン系難燃助剤が13~17重量部の範囲内で配合されてなる構成であってもよい。 Alternatively, the fifth thermoplastic recycled resin material according to the present invention is obtained from a crushed material of waste home appliances, from a thermoplastic resin waste material in which a plurality of types of resin materials are mixed, using a material identification device, More than 30 parts by weight of a recycled resin material of the same material with a lower sorting accuracy is blended with respect to 100 parts by weight of the thermoplastic resin material, with respect to 100 parts by weight of the thermoplastic resin material obtained after the dry cleaning treatment, In addition, the composition may be such that bromine-based flame retardant and antimony-based flame retardant aid are blended within a range of 13 to 17 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
 前記構成によれば、乾式洗浄処理を行った特定種類の熱可塑性樹脂材料に対して臭素系難燃剤およびアンチモン系難燃助剤を適量添加する。これにより、熱可塑性樹脂材料中に異物が含まれていても、バージン材に難燃剤を添加した場合と同程度の難燃性を実現することができる。それゆえ、得られる熱可塑性再生樹脂材料の難燃性等の物性を良好に改善することができる。その結果、選別した熱可塑性再生樹脂材料を家電製品の部品等として再利用することができるので、リサイクル率を向上することができる。 According to the above configuration, a bromine-based flame retardant and an antimony-based flame retardant aid are added in appropriate amounts to a specific type of thermoplastic resin material that has undergone a dry cleaning treatment. Thereby, even if a foreign material is contained in the thermoplastic resin material, the same degree of flame retardancy as when a flame retardant is added to the virgin material can be realized. Therefore, physical properties such as flame retardancy of the obtained thermoplastic recycled resin material can be improved satisfactorily. As a result, since the selected thermoplastic recycled resin material can be reused as a part of home appliances, the recycling rate can be improved.
 前記構成の第一の熱可塑性再生樹脂材料においては、前記フェノール系酸化防止剤および前記イオウ系酸化防止剤の総配合量が、前記熱可塑性樹脂材料100重量部に対して、0.01~2.0重量部の範囲内であってもよい。 In the first thermoplastic recycled resin material having the above structure, the total amount of the phenolic antioxidant and the sulfurous antioxidant is 0.01 to 2 with respect to 100 parts by weight of the thermoplastic resin material. It may be within the range of 0.0 part by weight.
 また、前記構成の第一の熱可塑性再生樹脂材料においては、前記フェノール系酸化防止剤および前記イオウ系酸化防止剤の配合比が、重量比で1:1~1:4の範囲内であってもよい。 In the first thermoplastic recycled resin material having the above-described structure, the blending ratio of the phenolic antioxidant and the sulfurous antioxidant is within a range of 1: 1 to 1: 4 by weight. Also good.
 また、前記構成の第二の熱可塑性再生樹脂材料においては、前記金属不活性化剤として、シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、トリアゾール誘導体、およびイミダゾール誘導体からなる群より選択される化合物の少なくとも1種が配合される構成であってもよい。 Further, in the second thermoplastic recycled resin material having the above-described structure, at least a compound selected from the group consisting of an oxalic acid derivative, a salicylic acid derivative, a hydrazide derivative, a triazole derivative, and an imidazole derivative is used as the metal deactivator. The structure by which 1 type is mix | blended may be sufficient.
 また、前記構成の第三の熱可塑性再生樹脂材料においては、前記熱可塑性エラストマーの配合量が、前記熱可塑性樹脂材料100重量部に対して、3~20重量部の範囲内であってもよい。 In the third thermoplastic recycled resin material having the above-described configuration, the blending amount of the thermoplastic elastomer may be in the range of 3 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin material. .
 また、前記構成の第四および第五の熱可塑性再生樹脂材料においては、前記臭素系難燃剤として、少なくとも、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)が用いられる構成であってもよい。 In the fourth and fifth thermoplastic recycled resin materials having the above-described structure, at least tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is used as the brominated flame retardant. Also good.
 また、前記構成の第一~第五の熱可塑性再生樹脂材料においては、前記熱可塑性樹脂材料が、スチレン系樹脂材料またはポリオレフィンであってもよい。 In the first to fifth thermoplastic recycled resin materials having the above-described configuration, the thermoplastic resin material may be a styrene resin material or a polyolefin.
 また、前記構成の第一~第五の熱可塑性再生樹脂材料においては、さらに、前記スチレン系樹脂材料が、汎用ポリスチレンおよびハイインパクトポリスチレンの少なくとも一方であってもよい。 Further, in the first to fifth thermoplastic recycled resin materials having the above-described configuration, the styrenic resin material may be at least one of general-purpose polystyrene and high-impact polystyrene.
 また、前記構成の第三の熱可塑性再生樹脂材料においては、前記熱可塑性樹脂材料がスチレン系樹脂材料であるときに、前記熱可塑性エラストマーが、スチレン系エラストマーであってもよい。 Further, in the third thermoplastic recycled resin material having the above-described configuration, when the thermoplastic resin material is a styrene resin material, the thermoplastic elastomer may be a styrene elastomer.
 また、前記構成の第三の熱可塑性再生樹脂材料においては、さらに、前記スチレン系エラストマーとともに、汎用ポリスチレンが配合されてなる構成であってもよい。 Further, the third thermoplastic recycled resin material having the above-described configuration may further include a general-purpose polystyrene blended with the styrene-based elastomer.
 また、前記構成の第三の熱可塑性再生樹脂材料においては、前記汎用ポリスチレンは、廃家電製品から得られる再生材料であり、前記汎用ポリスチレンの配合量が、前記熱可塑性樹脂材料100重量部に対して、10~50重量部の範囲内であってもよい。 Moreover, in the 3rd thermoplastic recycled resin material of the said structure, the said general purpose polystyrene is a recycled material obtained from a waste household appliance, The compounding quantity of the said general purpose polystyrene is with respect to 100 weight part of the said thermoplastic resin materials. And may be in the range of 10 to 50 parts by weight.
 また、前記構成の第一~第五の熱可塑性再生樹脂材料においては、前記材質識別装置が、近赤外線識別装置であってもよい。 Further, in the first to fifth thermoplastic recycled resin materials having the above-described configuration, the material identifying device may be a near infrared identifying device.
 また、前記構成の第一~第五の熱可塑性再生樹脂材料においては、前記廃家電製品が、冷蔵庫、冷凍庫、空気調和機、および洗濯機からなる群より選択される少なくとも1種の家電製品であってもよい。 In the first to fifth thermoplastic recycled resin materials having the above-described configuration, the waste home appliance is at least one home appliance selected from the group consisting of a refrigerator, a freezer, an air conditioner, and a washing machine. There may be.
 また、本発明には、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別し、選別した特提種類の熱可塑性樹脂材料を乾式洗浄処理し、乾式洗浄後の前記熱可塑性樹脂材料に対して、樹脂改質剤として、フェノール系酸化防止剤およびイオウ系酸化防止剤、または、金属不活性化剤、または、熱可塑性エラストマーを配合する、熱可塑性再生樹脂材料の製造方法も含まれる。 In addition, the present invention includes a specially-classified thermoplastic resin material that is selected from a waste material of a thermoplastic resin mixed with a plurality of types of resin materials obtained from crushed waste home appliances using a material identification device. As a resin modifier, a phenolic antioxidant and a sulfur-based antioxidant, a metal deactivator, or a thermoplastic elastomer The manufacturing method of the thermoplastic reproduction | regeneration resin material which mix | blends is also included.
 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout the drawings, and redundant description thereof is omitted.
 (実施の形態1)
 [熱可塑性樹脂材料の再資源化の一例]
 まず、本発明に係る熱可塑性再生樹脂材料の製造工程について図1および図2を参照して具体的に説明する。図1および図2は、本実施の形態1に係る熱可塑性再生樹脂材料の製造工程(言い換えれば、樹脂材料の再生工程または再資源化工程)の一例を示す工程図である。
(Embodiment 1)
[Example of recycling thermoplastic resin materials]
First, the manufacturing process of the thermoplastic recycled resin material according to the present invention will be specifically described with reference to FIGS. 1 and 2 are process diagrams showing an example of a process for producing a thermoplastic recycled resin material according to the first embodiment (in other words, a resin material regeneration process or a recycling process).
 まず、図1に示すように、廃家電製品に対して、5つの工程を実施することによって、熱可塑性樹脂廃材(シュレッダーダスト)が得られ、この熱可塑性樹脂廃材に対して、選別工程を実施することによって、選別された特定種類の熱可塑性樹脂材料が得られる。この熱可塑性樹脂材料を、便宜上「選別後樹脂材料」とすれば、図2に示すように、選別後樹脂材料に対して、4つの工程を実施することにより、本発明に係る熱可塑性再生樹脂材料が得られる。この熱可塑性再生樹脂材料は、例えば、射出成形することによって成形品が得られる。また、図1および図2では、各工程を示す枠に対して、当該工程で除去されるものを破線でつなげて示している。 First, as shown in FIG. 1, a thermoplastic resin waste material (shredder dust) is obtained by carrying out five steps on waste home appliances, and a sorting step is performed on this thermoplastic resin waste material. By doing so, the selected specific kind of thermoplastic resin material is obtained. If this thermoplastic resin material is referred to as a “resin material after sorting” for convenience, the thermoplastic recycled resin according to the present invention is obtained by performing four steps on the resin material after sorting as shown in FIG. A material is obtained. This thermoplastic recycled resin material can be molded by, for example, injection molding. Moreover, in FIG. 1 and FIG. 2, what is removed in the said process is connected and shown with the broken line with respect to the frame which shows each process.
 廃家電製品としては、使用済の冷蔵庫、冷凍庫、空気調和機、または洗濯機等が挙げられるが特に限定されない。これら廃家電製品には、家庭用のものと業務用のものとが含まれる。したがって、本発明における廃家電製品は、家庭用のものに限定されず、民生用の電気製品を広く含むものとする。この廃家電製品に対しては、図1に示すように、分解および解体工程が実施される。このとき分解および解体される廃家電製品は、前述した複数種類の使用済の電気製品のうち、1種類のみであってもよいし、2種類以上であってもよい。また、同じ種類の廃家電製品であっても、製造者が異なる電気製品が混在してもよいし、異なる機種が混在してもよい。 Examples of the waste home appliance include, but are not limited to, a used refrigerator, a freezer, an air conditioner, or a washing machine. These waste home appliances include household products and commercial products. Therefore, the waste home appliances in the present invention are not limited to household appliances, and widely include consumer electronics. As shown in FIG. 1, a disassembly and disassembly process is performed on the waste home appliance. At this time, the waste home appliances to be disassembled and disassembled may be only one type or two or more types of the plurality of types of used electrical products. Moreover, even if it is the same kind of waste home appliances, electric products from different manufacturers may be mixed, or different models may be mixed.
 廃家電製品の一例として冷蔵庫を挙げて説明すると、分解および解体工程では、使用済の冷蔵庫を手作業で解体してコンプレッサーを取り除き、冷媒を除去する。その後、冷蔵庫内部の野菜室、冷凍室、冷蔵室等からケースまたは棚等を手作業で取り除く。このとき取り除かれたコンプレッサー等は、図1に示す手回収金属廃材に相当し、ケースまたは棚等は、手回収樹脂廃材に相当する。 Describing a refrigerator as an example of waste home appliances, in the disassembly and disassembly process, the used refrigerator is manually disassembled to remove the compressor and remove the refrigerant. Thereafter, the case or shelf is manually removed from the vegetable compartment, freezer compartment, refrigerator compartment, etc. inside the refrigerator. The compressor or the like removed at this time corresponds to the manually recovered metal waste material shown in FIG. 1, and the case or the shelf corresponds to the manually recovered resin waste material.
 分解および解体工程を経た冷蔵庫に対しては、図1に示すように、破砕工程が実施される。破砕工程では、公知の破砕機が用いられる。 As shown in FIG. 1, a crushing process is performed on the refrigerator that has undergone the disassembly and disassembly processes. In the crushing process, a known crusher is used.
 破砕工程で得られた破砕物に対しては、図1に示すように、風力選別工程、磁力選別工程、および渦電流選別工程が実施される。風力選別工程、磁力選別工程、渦電流選別工程は、図1に示す順序で実施されてもよいし、異なる順序で実施されてもよいし、一部の選別工程を省略してもよい。すなわち、破砕工程の後には、風力選別工程、磁力選別工程、および渦電流選別工程から選択される少なくとも1つの選別工程が実施されればよく、2つの選別工程または3つの選別工程が実施される場合でもその順序は特に限定されない。 For the crushed material obtained in the crushing step, as shown in FIG. 1, a wind force sorting step, a magnetic force sorting step, and an eddy current sorting step are performed. The wind sorting process, the magnetic sorting process, and the eddy current sorting process may be performed in the order shown in FIG. 1, may be performed in a different order, or some sorting processes may be omitted. That is, after the crushing process, at least one sorting process selected from a wind sorting process, a magnetic sorting process, and an eddy current sorting process may be performed, and two sorting processes or three sorting processes are performed. Even in that case, the order is not particularly limited.
 風力選別工程では、公知の吸引装置等により、破砕物に含まれるウレタンフォームまたは微細な異物等を風力で吸引して除去する。このとき、ウレタンフォーム中に含まれる冷媒等も除去される。図1では、風力選別工程で除去されるものとしてウレタン廃材を例示している。 In the wind sorting process, urethane foam or fine foreign matters contained in the crushed material are sucked and removed by wind force using a known suction device. At this time, the refrigerant contained in the urethane foam is also removed. In FIG. 1, the urethane waste material is illustrated as what is removed by a wind-power selection process.
 本実施の形態では、風力選別工程の後に磁力選別工程が実施される。磁力選別工程では、公知の電磁石等により鉄廃材を除去する。磁力選別工程の後には、渦電流選別工程が実施される。渦電流選別工程では、公知の渦電流選別器等により、銅、アルミニウム等の非鉄金属廃材が除去される。 In this embodiment, the magnetic force sorting process is performed after the wind sorting process. In the magnetic separation process, the iron waste material is removed by a known electromagnet or the like. An eddy current sorting process is performed after the magnetic sorting process. In the eddy current sorting step, non-ferrous metal waste materials such as copper and aluminum are removed by a known eddy current sorter or the like.
 渦電流選別工程の後には、必要に応じて破砕物を篩い分けする。したがって、図1には図示しないが、本実施の形態では、篩い分け工程が実施されてもよい。これにより、所定範囲の大きさの破砕片(樹脂片)で構成される熱可塑性樹脂廃材(シュレッダーダスト)が得られる。篩い分けを実施した場合には、破砕片の大きさは、5~150mmの範囲内に設定しているが、特に限定されない。 After the eddy current selection process, the crushed material is sieved as necessary. Therefore, although not shown in FIG. 1, a sieving step may be performed in the present embodiment. Thereby, the thermoplastic resin waste material (shredder dust) comprised by the crushing piece (resin piece) of the magnitude | size of the predetermined range is obtained. When sieving is performed, the size of the crushed pieces is set within a range of 5 to 150 mm, but is not particularly limited.
 得られた熱可塑性樹脂廃材に対しては、図1に示すように、樹脂材料選別工程が実施される。樹脂材料選別工程では、例えば図3に示すような近赤外線識別システム20が用いられ、特定種類の樹脂材料と他の樹脂材料とが選別される。近赤外線識別システム20については後述する。また、樹脂材料選別工程で実施される識別方法は、近赤外線を用いた方法に限定にされず、樹脂材料の材質を識別することができる公知の手法を適宜採用することができる。例えば、近赤外線による識別方法と水比重選別法とを併用してもよい。 The obtained thermoplastic resin waste material is subjected to a resin material sorting step as shown in FIG. In the resin material sorting step, for example, a near-infrared identification system 20 as shown in FIG. 3 is used, and a specific kind of resin material and another resin material are sorted. The near infrared identification system 20 will be described later. In addition, the identification method performed in the resin material sorting step is not limited to the method using near infrared rays, and a known method that can identify the material of the resin material can be appropriately employed. For example, an identification method using near infrared rays and a water specific gravity sorting method may be used in combination.
 樹脂材料選別工程により、特定種類の熱可塑性樹脂材料(選別後樹脂材料)が得られる。この選別後樹脂材料に対しては、図2に示すように、乾式洗浄工程が実施される。乾式洗浄工程では、公知の乾式洗浄装置を用いて、選別後樹脂材料を構成する樹脂片の表面付着物(表面の汚れ)を除去する。表面の汚れとしては、例えば、塵埃、シール材、粉体等が挙げられるが特に限定されない。また、乾式洗浄装置としては、高速回転するハンマーブレードを備えるタイプ(ハンマーブレードの打撃によって表面付着物を除去する)、もしくは、樹脂片同士を相互に擦り合わせるタイプ(擦り合わせによって表面付着物を除去する)等が挙げられるが、特に限定されない。 A specific kind of thermoplastic resin material (resin material after sorting) is obtained by the resin material sorting process. As shown in FIG. 2, a dry cleaning process is performed on the sorted resin material. In the dry cleaning process, the surface adhering matter (surface dirt) of the resin pieces constituting the resin material after sorting is removed using a known dry cleaning apparatus. Examples of the dirt on the surface include, but are not limited to, dust, a sealing material, and powder. Also, as a dry cleaning device, a type equipped with a hammer blade that rotates at high speed (removes surface deposits by striking the hammer blade), or a type in which resin pieces are rubbed together (removes surface deposits by rubbing) Is not particularly limited.
 選別後樹脂材料の洗浄方法としては、乾式洗浄処理だけでなく、湿式洗浄処理等の種々の方法が存在するが、本発明では、乾式洗浄処理を採用している。これは、乾式洗浄処理であれば、洗浄に水を使用しないことから、湿式洗浄処理等と比較して、環境への影響を軽減することができるためである。 As a method for cleaning the resin material after sorting, there are various methods such as a wet cleaning process as well as a dry cleaning process. In the present invention, a dry cleaning process is employed. This is because the dry cleaning process does not use water for cleaning, and thus the influence on the environment can be reduced as compared with the wet cleaning process or the like.
 ただし、乾式洗浄処理は、湿式洗浄処理に比較して、洗浄後に付着物の残存量が多くなる傾向にある。そこで、本実施の形態では、必要に応じて、図2に示すように、前述した風力選別工程、磁力選別工程、あるいは静電選別工程(静電セパレーターを用いた選別)等を適宜実施してもよい。この選別工程を、便宜上「洗浄後選別工程」とする。 However, the dry cleaning treatment tends to increase the residual amount of deposits after cleaning as compared with the wet cleaning treatment. Therefore, in this embodiment, as necessary, as shown in FIG. 2, the above-described wind sorting process, magnetic sorting process, electrostatic sorting process (sorting using an electrostatic separator), or the like is appropriately performed. Also good. This sorting step is referred to as a “post-washing sorting step” for convenience.
 洗浄後選別工程を実施することにより、乾式洗浄工程で除去しきれなかった鉄、非金属、粉体等の異物(不純物)を可能な限り除去することができる。したがって、洗浄後選別工程は、本実施の形態では、必須工程ではなく任意の工程である。また、洗浄後選別工程は、風力選別工程、磁力選別工程、および静電選別工程の少なくともいずれかが実施されればよいし、これら全ての選別工程が実施されてもよいし、これら以外の他の選別工程が実施されてもよい。 By performing the post-cleaning sorting step, foreign matters (impurities) such as iron, non-metal, and powder that could not be removed by the dry cleaning step can be removed as much as possible. Therefore, the post-cleaning sorting step is not an essential step but an optional step in the present embodiment. In addition, the post-cleaning sorting process may be performed by at least one of a wind sorting process, a magnetic sorting process, and an electrostatic sorting process, or all of these sorting processes may be performed, or other than these. The sorting step may be performed.
 次に、本実施の形態では、図2に示すように、洗浄した選別後樹脂材料に、樹脂改質剤として、フェノール系酸化防止剤およびイオウ系酸化防止剤を添加する。この工程は「酸化防止剤添加工程」とする。酸化防止剤添加工程における酸化防止剤の添加方法は特に限定されないが、例えば、洗浄後の選別後樹脂材料に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤を所定量添加し、タンブラーまたはヘンシェルミキサー等の公知の混合装置を用いて均質に混合する方法を挙げることができる。 Next, in this embodiment, as shown in FIG. 2, a phenol-based antioxidant and a sulfur-based antioxidant are added as a resin modifier to the washed resin material after sorting. This step is referred to as “antioxidant addition step”. The method of adding the antioxidant in the antioxidant addition step is not particularly limited. For example, a predetermined amount of phenolic antioxidant and sulfur antioxidant is added to the resin material after sorting after washing, and a tumbler or The method of mixing homogeneously using well-known mixing apparatuses, such as a Henschel mixer, can be mentioned.
 酸化防止剤を混合する混合装置は、必ずしもタンブラーまたはヘンシェルミキサー等に限定されない。しかしながら、これら混合装置で選別後樹脂材料を十分に混合しておけば、酸化防止剤を選別後樹脂材料に分散できるだけでなく、選別後樹脂材料を良好に均質化できるので、物性のばらつきを少なくすることができる。したがって、混合装置による混合時間は、選別後樹脂材料の均質化も考慮した長さに設定することが好ましい。また、酸化防止剤の混合に際しては、所定量の展着剤を添加してもよい。これにより、酸化防止剤が、選別後樹脂材料を構成する樹脂片の表面に付着しやすくなる。 The mixing device for mixing the antioxidant is not necessarily limited to a tumbler or a Henschel mixer. However, if the resin material after sorting is sufficiently mixed with these mixing devices, not only the antioxidant can be dispersed in the resin material after sorting, but also the resin material after sorting can be homogenized well, so there is less variation in physical properties. can do. Therefore, it is preferable to set the mixing time by the mixing apparatus to a length that takes into account the homogenization of the resin material after sorting. In addition, when mixing the antioxidant, a predetermined amount of spreading agent may be added. Thereby, antioxidant becomes easy to adhere to the surface of the resin piece which comprises the resin material after a selection.
 さらに後述するように、酸化防止剤添加工程では、フェノール系酸化防止剤およびイオウ系酸化防止剤以外に、リン系酸化防止剤を添加してもよい。また、酸化防止剤以外の添加剤も適宜添加することができる。酸化防止剤以外の添加剤としては、例えば、熱安定剤、光安定剤、帯電防止剤、滑剤、フィラー(充填剤)、銅害防止剤、抗菌剤、着色剤、その他の酸化防止剤が挙げられる。これら添加剤は、熱可塑性再生樹脂材料に求められる耐久性、機械物性、外観等の諸条件に応じて、公知のものを適宜選択して用いることができる。 Further, as described later, in the antioxidant addition step, a phosphorus antioxidant may be added in addition to the phenol antioxidant and the sulfur antioxidant. In addition, additives other than antioxidants can be added as appropriate. Examples of additives other than antioxidants include heat stabilizers, light stabilizers, antistatic agents, lubricants, fillers (fillers), copper damage inhibitors, antibacterial agents, colorants, and other antioxidants. It is done. As these additives, known additives can be appropriately selected and used according to various conditions such as durability, mechanical properties and appearance required for the thermoplastic recycled resin material.
 また、フェノール系酸化防止剤およびイオウ系酸化防止剤以外の添加剤は、酸化防止剤添加工程において、フェノール系酸化防止剤およびイオウ系酸化防止剤とともに選別後樹脂材料に添加されてもよいし、図1および図2に示す製造工程の任意の段階で添加されてもよい。さらに、添加剤以外に、選別後樹脂材料以外の樹脂材料を配合してもよい。この樹脂材料は、リサイクル率を低下させない範囲内で配合されるバージン材であってもよいし、所望の物性を実現するために、選別後樹脂材料以外の廃材であってもよい。したがって、本発明に係る熱可塑性再生樹脂材料は、特定種類の樹脂材料のみで構成されてもよいし、他の樹脂材料が配合されたポリマーブレンドであってもよい。 Further, additives other than the phenolic antioxidant and the sulfurous antioxidant may be added to the resin material after selection together with the phenolic antioxidant and the sulfurous antioxidant in the antioxidant addition step, It may be added at any stage of the production process shown in FIGS. Furthermore, in addition to the additive, a resin material other than the resin material after sorting may be blended. This resin material may be a virgin material blended within a range that does not lower the recycling rate, or may be a waste material other than the resin material after sorting in order to realize desired physical properties. Accordingly, the thermoplastic recycled resin material according to the present invention may be composed of only a specific type of resin material, or may be a polymer blend in which another resin material is blended.
 酸化防止剤添加工程の後には、図2に示すように、加熱混練および押出工程が実施される。加熱混練および押出工程では、公知の押出機を用いて、選別後樹脂材料(フェノール系酸化防止剤およびイオウ系酸化防止剤が添加済)を所定条件で加熱混練し、押出機から押し出す。ここで、押出機にはメッシュフィルタが設けられていることが好ましい。 After the antioxidant addition step, a heating kneading and extrusion step is performed as shown in FIG. In the heat-kneading and extruding step, using a known extruder, the resin material after selection (the phenolic antioxidant and the sulfur-based antioxidant have been added) is heat-kneaded under predetermined conditions and extruded from the extruder. Here, the extruder is preferably provided with a mesh filter.
 乾式洗浄工程により異物(不純物)を除去した選別後樹脂材料であっても、ウレタン廃材、その他の樹脂材料(シリコン樹脂、ゴム等も含む)、鉄廃材、金属廃材等の異物が微量に残存しているおそれがある。例えば、廃家電製品が冷蔵庫であれば、冷蔵庫の破砕物には、樹脂材料にウレタンフォーム、シール類、その他の樹脂材料、ゴム類、金属片、被覆銅線等の異物が大量に付着している。 Even if the resin material after sorting has removed foreign matters (impurities) by the dry cleaning process, a small amount of foreign matters such as urethane waste, other resin materials (including silicon resin, rubber, etc.), iron waste, metal waste, etc. remain. There is a risk. For example, if the waste home appliance is a refrigerator, a large amount of foreign materials such as urethane foam, seals, other resin materials, rubbers, metal pieces, coated copper wire, etc., adhere to the crushed material of the refrigerator. Yes.
 これら異物は、選別後樹脂材料の表面に強力に付着していることが多い。そのため、乾式洗浄工程、あるいは、洗浄後選別工程を実施しても、これら異物を完全に除去することができない。これら異物が、最終的に熱可塑性再生樹脂材料に混入すれば、この熱可塑性再生樹脂材料を用いて成形された成形品には、初期物性の低下、物性のばらつき、並びに、耐久性の劣化等が生じるおそれがある。また、初期物性の低下は、家電製品の長期間の使用に伴う経年劣化にも由来する。 These foreign substances often adhere strongly to the surface of the resin material after sorting. Therefore, even if the dry cleaning process or the post-cleaning sorting process is performed, these foreign substances cannot be completely removed. If these foreign substances are finally mixed in the thermoplastic recycled resin material, the molded product molded using this thermoplastic recycled resin material has a decrease in initial physical properties, variation in physical properties, deterioration in durability, etc. May occur. Moreover, the fall of an initial physical property originates also in aged deterioration accompanying long-term use of household appliances.
 そこで、加熱混練した選別後樹脂材料を、メッシュフィルタに介して押し出すことで、乾式洗浄工程(または洗浄後選別工程)で除去しきれなかった異物(不純物)を除去することができる。また、加熱混練した選別後樹脂材料には、フェノール系酸化防止剤およびイオウ系酸化防止剤が添加されているので、メッシュフィルタを通すことで、これら酸化防止剤(並びに他の添加剤)を、樹脂成分中に均質に混練することができる。 Therefore, by extruding the post-sorting resin material that has been heat-kneaded through a mesh filter, foreign substances (impurities) that could not be removed in the dry cleaning process (or post-cleaning screening process) can be removed. Moreover, since the phenol-based antioxidant and the sulfur-based antioxidant are added to the heat-kneaded post-selection resin material, by passing through a mesh filter, these antioxidants (and other additives) It can be kneaded homogeneously in the resin component.
 押出機の具体的な構成は特に限定されず、一軸押出機、二軸押出機、または多軸押出機等を挙げることができる。一般的には、混練条件を良好なものとする観点から、二軸以上の多軸押出機が好ましく用いられる。なお、スクリュー形状、スクリューの回転数、押出径、シリンダの長さ等の諸条件によっては、軸数は一軸であってもよい。 The specific configuration of the extruder is not particularly limited, and examples thereof include a single screw extruder, a twin screw extruder, and a multi-screw extruder. In general, from the viewpoint of improving the kneading conditions, a multi-screw extruder having two or more screws is preferably used. The number of axes may be uniaxial depending on various conditions such as screw shape, screw rotation speed, extrusion diameter, and cylinder length.
 押出機によって選別後樹脂材料を加熱混練する条件も特に限定されず、選別後樹脂材料が良好に溶融し、かつ、フェノール系酸化防止剤およびイオウ系酸化防止剤と選別後樹脂材料とを良好に混練できる条件を適宜設定することができる。なお、加熱温度(シリンダ温度およびダイス温度)が高すぎると樹脂成分の劣化が生じるため、選別後樹脂材料の種類に応じて好適な温度範囲を設定することが好ましい。例えば、選別後樹脂材料がポリプロピレン(PP)であれば、加熱温度は170~270℃の範囲内が好ましく、ポリスチレン(PS)であれば、160~280℃の範囲内が好ましく、ABS樹脂であれば、160~270℃の範囲内であることが好ましい。 The conditions for heating and kneading the resin material after sorting with an extruder are not particularly limited, and the resin material after sorting melts well, and the phenolic antioxidant and sulfur antioxidant and the resin material after sorting are well Conditions for kneading can be set as appropriate. If the heating temperature (cylinder temperature and die temperature) is too high, the resin component is deteriorated. Therefore, it is preferable to set a suitable temperature range according to the type of the resin material after sorting. For example, if the resin material after selection is polypropylene (PP), the heating temperature is preferably within a range of 170 to 270 ° C., and if polystyrene (PS) is preferably within a range of 160 to 280 ° C., it may be an ABS resin. For example, the temperature is preferably within the range of 160 to 270 ° C.
 また、押出機に設けられるメッシュフィルタの具体的な構成も特に限定されない。メッシュフィルタの網目を細かくすることで、異物を除去する効果を高めることができるとともに、得られる熱可塑性再生樹脂材料の衝撃特性および伸び特性等の諸物性を改善しやすくなる。 Also, the specific configuration of the mesh filter provided in the extruder is not particularly limited. By making the mesh of the mesh filter finer, the effect of removing foreign substances can be enhanced, and various physical properties such as impact characteristics and elongation characteristics of the obtained thermoplastic recycled resin material can be easily improved.
 加熱混練および押出工程では、押し出した熱可塑性再生樹脂材料をペレット化することが好ましい。ペレット化の方法は特に限定されず、公知の手法が好適に用いられる。例えば、押出機から熱可塑性再生樹脂材料をストランド状に押し出し、水槽で冷却した後、ペレタイザーにより適度な大きさのペレット状に裁断する方法(ストランドカット)が挙げられる。また、熱可塑性再生樹脂材料を水中に押し出した直後に裁断する方法(ホットカット)であってもよい。 In the heating and kneading and extrusion steps, it is preferable to pelletize the extruded thermoplastic recycled resin material. The method of pelletization is not particularly limited, and a known method is preferably used. For example, there is a method (strand cut) in which a thermoplastic recycled resin material is extruded from an extruder into a strand shape, cooled in a water tank, and then cut into a pellet of an appropriate size by a pelletizer. Moreover, the method (hot cut) cut | judged immediately after extruding a thermoplastic recycled resin material in water may be sufficient.
 さらに、ペレット化した熱可塑性再生樹脂材料を、酸化防止剤添加工程で説明した混合装置(前述したタンブラーまたはヘンシェルミキサー等)で攪拌混合してもよい。これにより、得られる熱可塑性再生樹脂材料のペレットを均質化することができるので、物性のばらつきをより一層少なくすることができる。 Further, the pelletized thermoplastic recycled resin material may be mixed by stirring with the mixing apparatus (such as the tumbler or Henschel mixer described above) described in the antioxidant addition step. Thereby, since the pellets of the thermoplastic recycled resin material obtained can be homogenized, variation in physical properties can be further reduced.
 このようにして得られた熱可塑性再生樹脂材料は、図2に示すように、射出成形工程を実施することで、例えば空気調和機等の家電製品、または、一般的な成形品等として再利用することができる。 As shown in FIG. 2, the thermoplastic recycled resin material thus obtained is reused as a home appliance such as an air conditioner or a general molded product by performing an injection molding process. can do.
 [熱可塑性樹脂材料の選別の一例]
 次に、前述した樹脂材料選別工程で用いられる近赤外線識別システム20の一例について、図3を参照して具体的に説明する。図3は、本実施の形態で用いられる近赤外線識別システム20を模式的に示す斜視図である。図3に示すように、本実施の形態に係る近赤外線識別システム20は、搬送装置1、近赤外線識別装置4、選別板6、管体8、電磁弁10、制御部14、および空圧源15等を備えている。
[Example of selection of thermoplastic resin material]
Next, an example of the near-infrared identification system 20 used in the resin material selection step described above will be specifically described with reference to FIG. FIG. 3 is a perspective view schematically showing the near-infrared identification system 20 used in the present embodiment. As shown in FIG. 3, the near-infrared identification system 20 according to the present embodiment includes a transport device 1, a near-infrared identification device 4, a sorting plate 6, a tubular body 8, an electromagnetic valve 10, a control unit 14, and an air pressure source. 15 etc.
 搬送装置1は、熱可塑性樹脂廃材11を搬送するものであり、本実施の形態では、公知のベルトコンベヤが用いられる。なお、搬送装置1の搬送方向は、図3の-y方向であり、高さ方向がz方向であり、搬送方向に直交する方向(横断方向)がx方向である。 The conveying apparatus 1 conveys the thermoplastic resin waste material 11, and a known belt conveyor is used in the present embodiment. The transport direction of the transport apparatus 1 is the −y direction in FIG. 3, the height direction is the z direction, and the direction orthogonal to the transport direction (transverse direction) is the x direction.
 近赤外線識別装置4は、搬送装置1の搬送経路上に設けられており、近赤外分光分析法を利用して、搬送される樹脂廃材11から特定種類の熱可塑性樹脂材料を選別する。なお、図3には図示しないが、搬送装置1の搬送経路には、前述した風力選別工程、磁力選別工程、または渦電流選別工程を実施する各種処理装置が設けられてもよい。この場合、搬送装置1で搬送される樹脂材料は、熱可塑性樹脂廃材11ではなく廃家電製品の破砕物である。 The near-infrared identification device 4 is provided on the transport path of the transport device 1 and selects a specific type of thermoplastic resin material from the transported resin waste 11 using near-infrared spectroscopy. Although not shown in FIG. 3, various processing apparatuses that perform the above-described wind sorting process, magnetic sorting process, or eddy current sorting process may be provided in the transport path of the transport apparatus 1. In this case, the resin material conveyed by the conveying apparatus 1 is not the thermoplastic resin waste material 11 but a crushed material of waste home appliances.
 近赤外分光分析法について説明する。有機化合物は、分子構造に含まれる原子団(有機基)の種類によって光の吸収波長帯が異なる。そのため、有機化合物に近赤外線を照射すれば、当該有機化合物の分子構造に応じて、固有の近赤外線吸収スペクトルが得られる。したがって、未知の樹脂材料に対して近赤外線を照射して近赤外線吸収スペクトルを計測し、他の樹脂材料から得られたスペクトル(または登録済のスペクトル)と比較することで、当該樹脂材料の材質を識別することができる。これが近赤外分光分析法である。近赤外線識別装置4は、この近赤外分光分析法を利用して、樹脂廃材11から特定種類の熱可塑性樹脂材料を選別する。 The near infrared spectroscopy will be described. Organic compounds have different light absorption wavelength bands depending on the types of atomic groups (organic groups) contained in the molecular structure. Therefore, if an organic compound is irradiated with near infrared rays, a unique near infrared absorption spectrum can be obtained according to the molecular structure of the organic compound. Therefore, the near-infrared absorption spectrum is measured by irradiating an unknown resin material with near-infrared radiation, and the resin material is compared with the spectrum (or registered spectrum) obtained from other resin materials. Can be identified. This is the near infrared spectroscopy. The near-infrared identification device 4 uses this near-infrared spectroscopic analysis method to select a specific type of thermoplastic resin material from the resin waste material 11.
 なお、近赤外線吸収スペクトルにおいては、水素結合および/または分子間相互作用により、ピーク位置、ピーク幅、吸収強度(吸光度)等が変化する。そのため、近赤外分光分析法によれば、臭素等のハロゲンを含有する樹脂材料についても識別することが可能である。 In the near-infrared absorption spectrum, the peak position, peak width, absorption intensity (absorbance), etc. change due to hydrogen bonding and / or intermolecular interaction. Therefore, according to the near-infrared spectroscopic analysis method, it is possible to identify a resin material containing halogen such as bromine.
 管体8は、搬送装置1の搬送方向の下流端に、横断方向(x方向)に設けられ、下流側に向かって高圧空気を吐出する複数の吐出口5を有している。選別板6は、管体8(および搬送装置1の下流端)から見て搬送方向のさらに下流側に、横断方向に直立するように設けられている。選別板6と搬送装置1の下流端との間には、所定間隔が設けられている。空圧源15は、管体8に高圧空気を供給する機構であり、電磁弁10は、空圧源15から管体8への高圧空気の流動を制御する弁体である。制御部14は、近赤外線識別装置4および空圧源15の動作を制御する。 The tube 8 is provided in the transverse direction (x direction) at the downstream end in the transport direction of the transport device 1 and has a plurality of discharge ports 5 that discharge high-pressure air toward the downstream side. The sorting plate 6 is provided so as to stand upright in the transverse direction further downstream in the transport direction when viewed from the tube body 8 (and the downstream end of the transport device 1). A predetermined interval is provided between the sorting plate 6 and the downstream end of the transport device 1. The air pressure source 15 is a mechanism that supplies high-pressure air to the tube body 8, and the electromagnetic valve 10 is a valve body that controls the flow of high-pressure air from the air pressure source 15 to the tube body 8. The control unit 14 controls the operations of the near-infrared identification device 4 and the air pressure source 15.
 なお、選別板6、管体8、電磁弁10、制御部14、空圧源15等の具体的な構成は特に限定されず、公知の構成を好適に用いることができる。例えば、管体8としては金属製のパイプが例示される。また、電磁弁10としては、公知のソレノイドバルブが例示される。また、制御部14としては、公知のコンピュータ(プロセッサ)またはコントローラ等が例示される。空圧源15としては、空気を一定の圧力で供給するコンプレッサーが例示される。 The specific configurations of the sorting plate 6, the tube 8, the electromagnetic valve 10, the control unit 14, the pneumatic pressure source 15 and the like are not particularly limited, and a known configuration can be suitably used. For example, the pipe body 8 is exemplified by a metal pipe. Moreover, as the electromagnetic valve 10, a known solenoid valve is exemplified. Moreover, as the control part 14, a well-known computer (processor) or a controller is illustrated. Examples of the air pressure source 15 include a compressor that supplies air at a constant pressure.
 次に、近赤外線識別システム20による樹脂材料選別工程について、樹脂廃材11が冷蔵庫由来である場合を挙げて、具体的に説明する。 Next, the resin material selection step by the near infrared identification system 20 will be specifically described by giving a case where the resin waste material 11 is derived from a refrigerator.
 まず、再利用する熱可塑性樹脂材料がポリスチレン(PS)であるとする。冷蔵庫由来の樹脂廃材11には、複数の樹脂材料として、汎用ポリスチレン(GPPS)とハイインパクトポリスチレン(HIPS)とが含まれている。そこで、近赤外線識別装置4においては、選別の対象となる特定種類の樹脂材料として、GPPSおよびHIPSが予め設定される。 First, it is assumed that the thermoplastic resin material to be reused is polystyrene (PS). The resin waste material 11 derived from the refrigerator includes general-purpose polystyrene (GPPS) and high-impact polystyrene (HIPS) as a plurality of resin materials. Therefore, in the near-infrared identification device 4, GPPS and HIPS are preset as specific types of resin materials to be selected.
 図3に示す例では、樹脂廃材11は、網掛けの樹脂片として示される熱可塑性樹脂材料2と、網掛けされていない樹脂片として示される他の樹脂材料3とを含んでいる。本実施の形態では、GPPSまたはHIPSが熱可塑性樹脂材料2に相当する。 In the example shown in FIG. 3, the resin waste material 11 includes a thermoplastic resin material 2 shown as a shaded resin piece and another resin material 3 shown as a non-shaded resin piece. In the present embodiment, GPPS or HIPS corresponds to the thermoplastic resin material 2.
 搬送装置1の搬送方向の上流端では、樹脂廃材11が分散されるように(樹脂廃材11を構成する複数の樹脂片同士が重ならないように)、搬送装置1の搬送面上に散布する。この散布は手作業で行われてもよいし、公知の散布装置を用いて自動的に行われてもよい。搬送装置1は、例えば約2m/秒の速度で樹脂廃材11を搬送する。近赤外線識別装置4は、搬送装置1の上流端から見て下流側に位置するので、搬送装置1の搬送によって樹脂廃材11は近赤外線識別装置4に向けて移動することになる。 At the upstream end of the transport device 1 in the transport direction, the resin waste material 11 is dispersed on the transport surface of the transport device 1 so that the resin waste material 11 is dispersed (a plurality of resin pieces constituting the resin waste material 11 do not overlap each other). This spraying may be performed manually or automatically using a known spraying device. The transport apparatus 1 transports the resin waste material 11 at a speed of about 2 m / second, for example. Since the near-infrared identification device 4 is located on the downstream side when viewed from the upstream end of the conveyance device 1, the resin waste material 11 moves toward the near-infrared identification device 4 by the conveyance of the conveyance device 1.
 樹脂廃材11が近赤外線識別装置4の位置まで到達すれば、近赤外線識別装置4は、樹脂廃材11に対して近赤外線を照射し、近赤外線吸収スペクトルを計測する。そして、熱可塑性樹脂材料2からの近赤外線吸収スペクトルと他の樹脂材料3の近赤外線吸収スペクトルとの差等に基づいて、樹脂材料の材質を識別する。また、近赤外線識別装置4は、樹脂廃材11を撮像して画像を取得し、この画像の解析結果と、近赤外線吸収スペクトルによる識別結果とに基づいて、熱可塑性樹脂材料2である樹脂片の位置情報を取得する。この樹脂片の位置情報は、搬送装置1のx方向の位置情報であればよい。 When the resin waste material 11 reaches the position of the near-infrared identifying device 4, the near-infrared identifying device 4 irradiates the resin waste material 11 with near-infrared light and measures a near-infrared absorption spectrum. Then, the material of the resin material is identified based on the difference between the near-infrared absorption spectrum from the thermoplastic resin material 2 and the near-infrared absorption spectrum of the other resin material 3. Further, the near-infrared identification device 4 captures an image of the resin waste material 11 to acquire an image, and based on the analysis result of this image and the identification result by the near-infrared absorption spectrum, the resin piece that is the thermoplastic resin material 2 is obtained. Get location information. The position information of the resin piece may be position information in the x direction of the transport device 1.
 制御部14は、近赤外線識別装置4から得られる位置情報に基づいて電磁弁10を開くように制御する。これにより、搬送装置1の下流端から落下する熱可塑性樹脂材料2(選別対象の樹脂片)に向かって、管体8の吐出口5から高圧空気が吐出(噴射)される。このときの吐出圧力は特に限定されないが、例えば5barを挙げることができる。これにより、熱可塑性樹脂材料2は、下流側(-y方向)の斜め上方に向かって飛ばされるので、熱可塑性樹脂材料2は、選別板6を飛び越えることになる。 The control unit 14 controls to open the electromagnetic valve 10 based on the position information obtained from the near infrared identification device 4. Thereby, high-pressure air is discharged (injected) from the discharge port 5 of the tubular body 8 toward the thermoplastic resin material 2 (resin to be selected) falling from the downstream end of the conveying device 1. Although the discharge pressure at this time is not specifically limited, For example, 5 bar can be mentioned. As a result, the thermoplastic resin material 2 is blown obliquely upward on the downstream side (−y direction), so that the thermoplastic resin material 2 jumps over the sorting plate 6.
 一方、他の樹脂材料3である樹脂片が、搬送装置1の下流端から落下するときには、制御部14は、電磁弁10を閉じたままに維持する。それゆえ、他の樹脂材料3が吐出口5の上を通過するときには、吐出口5から高圧空気が噴射しない。それゆえ、他の樹脂材料3は、選別板6を飛び越えることなく落下する。 On the other hand, when the resin piece which is the other resin material 3 falls from the downstream end of the transport apparatus 1, the control unit 14 keeps the electromagnetic valve 10 closed. Therefore, when the other resin material 3 passes over the discharge port 5, high-pressure air is not injected from the discharge port 5. Therefore, the other resin material 3 falls without jumping over the sorting plate 6.
 これにより、選別板6の上流側に他の樹脂材料3となる樹脂片が蓄積され、選別板6の下流側に、熱可塑性樹脂材料2となる樹脂片が蓄積される。それゆえ、樹脂廃材11から、熱可塑性樹脂材料2とそれ以外の他の樹脂材料3とを選別することができる。その結果、熱可塑性樹脂材料2を効率的かつ高精度に回収することが可能となる。また、金属材料の選別だけでなく、熱可塑性樹脂材料(並びにこれ以外の樹脂材料)についても、良好に選別できるので、廃家電製品に用いられる各種材料の再利用化を促進することができ、リサイクル率をさらに向上することができる。 Thus, resin pieces that become the other resin material 3 are accumulated on the upstream side of the sorting plate 6, and resin pieces that become the thermoplastic resin material 2 are accumulated on the downstream side of the sorting plate 6. Therefore, the thermoplastic resin material 2 and the other resin material 3 other than the resin waste material 11 can be selected. As a result, the thermoplastic resin material 2 can be recovered efficiently and with high accuracy. Moreover, not only the selection of metal materials, but also thermoplastic resin materials (and other resin materials) can be selected well, so it is possible to promote the reuse of various materials used in waste home appliances, The recycling rate can be further improved.
 特に、本実施の形態に係る近赤外線識別システム20では、特定材質の熱可塑性樹脂材料の選別後の純度を向上することができるとともに、水比重選別法等のように選別時に大量の水を必要とせず樹脂材料選別工程を簡素化することができる。加えて、水比重選別法では選別が困難な樹脂材料(例えば、フィラー含有PP等)、ABSおよびPSといった比重差の近い樹脂材料も好適に選別することができる。それゆえ、異なる種類の樹脂材料の混入量を大幅に低減することができる。 In particular, the near-infrared identification system 20 according to the present embodiment can improve the purity after selection of a specific thermoplastic resin material, and requires a large amount of water at the time of sorting, such as a water specific gravity sorting method. It is possible to simplify the resin material sorting process. In addition, resin materials that are difficult to be sorted by the water specific gravity sorting method (for example, filler-containing PP, etc.), and resin materials that are close in specific gravity difference such as ABS and PS can be suitably sorted. Therefore, the mixing amount of different types of resin materials can be greatly reduced.
 [選別後の熱可塑性樹脂材料の改質]
 次に、近赤外線識別システム20により選別された選別後樹脂材料の物性を良好なものとするために、当該選別後樹脂材料を改質する方法、すなわち、前述した酸化防止剤添加工程で添加される2種類の酸化防止剤に関して具体的に説明する。
[Modification of thermoplastic resin material after selection]
Next, in order to improve the physical properties of the resin material after sorting selected by the near-infrared identification system 20, it is added in the method of modifying the resin material after sorting, that is, in the antioxidant addition step described above. Two types of antioxidants will be specifically described.
 本発明において、選別の対象となる熱可塑性樹脂材料の種類は特に限定されず、家電製品に広く用いられる各種樹脂材料であればよい。代表的な熱可塑性樹脂材料としては、スチレン系樹脂材料またはポリオレフィンを挙げることができる。ポリオレフィンとしては、例えば、各種ポリエチレン、各種ポリプロピレン等を挙げることができる。また、スチレン系樹脂材料としては、汎用ポリスチレン(GPPS)、ハイインパクトポリスチレン(HIPS)、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体(SAN)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)等を挙げることができる。 In the present invention, the type of the thermoplastic resin material to be selected is not particularly limited, and may be various resin materials widely used for home appliances. Typical thermoplastic resin materials include styrene resin materials and polyolefins. Examples of the polyolefin include various polyethylenes and various polypropylenes. Styrene resin materials include general-purpose polystyrene (GPPS), high impact polystyrene (HIPS), styrene-butadiene copolymer, styrene-acrylonitrile copolymer (SAN), and acrylonitrile-butadiene-styrene copolymer (ABS). Etc.
 したがって、廃家電製品から得られる樹脂廃材には、前述した複数の熱可塑性樹脂材料からなる群より選択される樹脂材料が1種類以上含まれており、好ましくは2種類以上含まれていればよい。 Therefore, the resin waste material obtained from the waste home appliance includes at least one type of resin material selected from the group consisting of the plurality of thermoplastic resin materials described above, and preferably includes at least two types of resin material. .
 本実施の形態では、これら熱可塑性樹脂材料が樹脂廃材から選別されて再利用される際に、前記の通り、フェノール系酸化防止剤およびイオウ系酸化防止剤が配合される。これら酸化防止剤を併用することにより、得られる熱可塑性再生樹脂材料の物性、特に耐久性を大きく改善することができる。特に、熱可塑性樹脂材料がスチレン系樹脂材料であれば、フェノール系酸化防止剤およびイオウ系酸化防止剤の配合による耐久性の改善効果は大きい傾向にある。さらに、スチレン系樹脂材料の中でも、HIPSに対しては、現時点で、最も大きな改善効果が得られることが明らかとなっている。 In the present embodiment, when these thermoplastic resin materials are selected from the resin waste material and reused, as described above, the phenol-based antioxidant and the sulfur-based antioxidant are blended. By using these antioxidants in combination, the physical properties, particularly durability, of the resulting thermoplastic recycled resin material can be greatly improved. In particular, if the thermoplastic resin material is a styrene resin material, the effect of improving the durability due to the blending of the phenol-based antioxidant and the sulfur-based antioxidant tends to be large. Furthermore, among styrene resin materials, it has been clarified that the greatest improvement effect can be obtained at the present time for HIPS.
 添加されるフェノール系酸化防止剤およびイオウ系酸化防止剤の具体的な種類は特に限定されない。フェノール系酸化防止剤であれば、化学構造中にフェニル基またはその誘導体が含まれ、酸化防止作用を有する化合物であればよく、イオウ系酸化防止剤であれば、化学構造中に硫黄原子が含まれ、酸化防止作用を有する化合物であればよい。また、本発明では、フェノール系酸化防止剤、または、イオウ系酸化防止剤とは、前記の化合物に加えて、公知の種々の溶剤または添加剤等が所定範囲の組成で混合された「酸化防止組成物」であってもよい。 The specific types of added phenolic antioxidant and sulfur antioxidant are not particularly limited. If it is a phenolic antioxidant, a phenyl group or a derivative thereof is included in the chemical structure, and any compound having an antioxidant action may be used. If it is a sulfur-based antioxidant, a sulfur atom is included in the chemical structure. Any compound having an antioxidant action may be used. In the present invention, the phenol-based antioxidant or the sulfur-based antioxidant is an “antioxidant” in which various known solvents or additives are mixed in a predetermined range in addition to the above-mentioned compounds. It may be a “composition”.
 本発明では、熱可塑性樹脂材料の種類に応じて、フェノール系酸化防止剤およびイオウ系酸化防止剤として特に好ましい化合物または組成物を挙げることができる。 In the present invention, compounds or compositions that are particularly preferred as phenolic antioxidants and sulfur antioxidants can be mentioned depending on the type of thermoplastic resin material.
 まず、フェノール系酸化防止剤について好ましい化合物を例示する。熱可塑性樹脂材料がポリスチレンであれば、好ましいフェノール系酸化防止剤としては、例えば、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(例えば、BASF製の商品名IRGANOX1076)、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)(例えば、住友化学製の商品名スミライザーGA-80)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート](例えば、BASF製の商品名IRGANOX245)、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ペンタエリトリトールテトラキス[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン(例えば、ADEKA製の商品名アデカスタブAO-60)、2,4,6-トリス(3',5'-ジ-tert-ブチル-4'-ヒドロキシベンジル)メシチレン(例えば、BASF製の商品名IRGANOX1330)等が挙げられる。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 First, preferred compounds for the phenolic antioxidant will be exemplified. If the thermoplastic resin material is polystyrene, preferred phenolic antioxidants include, for example, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (for example, trade name from BASF) IRGANOX 1076), bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl ) Bis (2,2-dimethyl-2,1-ethanediyl) (for example, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd.), triethylene glycol bis [3- (3-t-butyl-5-methyl-4) -Hydroxyphenyl) propionate] (for example, trade name IRGANOX245 manufactured by BASF), 2,6-di-t-butyl-p-cresol (BHT), pentaerythro Tritoltetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane (for example, trade name ADK STAB AO-60 manufactured by ADEKA), 2,4,6- And tris (3 ′, 5′-di-tert-butyl-4′-hydroxybenzyl) mesitylene (for example, trade name IRGANOX1330 manufactured by BASF). Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 これらの中でも、得られる熱可塑性再生樹脂材料の耐熱安定性が優れることから、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]等がより好ましい。 Among these, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2, 4, 8, 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl), triethylene glycol-bis [3- (3-t-butyl-5- Methyl-4-hydroxyphenyl) propionate] and the like are more preferable.
 また、熱可塑性樹脂材料がABS樹脂であれば、好ましいフェノール系酸化防止剤としては、例えば、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル、2,6-ジ-t-ブチル-p-クレゾール、ペンタエリトリトールテトラキス[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン、2,4,6-トリス(3',5'-ジ-tert-ブチル-4'-ヒドロキシベンジル)メシチレン、4,4'-ブチリデンビス(6-tert-ブチル-3-メチルフェノール)(例えば、住友化学製の商品名スミライザーBBM-S)、ポリ(ジシクロペンタジエン-co-p-クレゾール)(例えば、エリオケム(Eliokem)製の商品名Wingstay L)等が挙げられる。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 If the thermoplastic resin material is an ABS resin, preferred phenolic antioxidants include, for example, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, triethylene glycol- Bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4 , 8,10-Tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl, 2,6-di-t-butyl-p-cresol, penta Erythritol tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,4,6-tris ( 3 ', 5'-di-tert-butyl-4'-hydroxybenzyl) mesitylene, 4,4'-butylidenebis (6-tert-butyl-3-methylphenol) (for example, trade name Sumitizer BBM- manufactured by Sumitomo Chemical) S), poly (dicyclopentadiene-co-p-cresol) (for example, trade name Wingstay L manufactured by Eliokem), etc. These compounds may be used alone or in combination of two or more. May be used in appropriate combination.
 これらの中でも、得られる熱可塑性再生樹脂材料の耐熱安定性が優れることから、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]等がより好ましい。 Among these, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2, 4, 8, 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl), triethylene glycol-bis [3- (3-t-butyl-5- Methyl-4-hydroxyphenyl) propionate] and the like are more preferable.
 また、熱可塑性樹脂材料がポリプロピレンであれば、好ましいフェノール系酸化防止剤としては、例えば、ペンタエリトリトールテトラキス[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,6-ジ-t-ブチル-p-クレゾール、2,4,6-トリス(3',5'-ジ-tert-ブチル-4'-ヒドロキシベンジル)メシチレン等が挙げられる。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 If the thermoplastic resin material is polypropylene, a preferable phenolic antioxidant is, for example, pentaerythritol tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl). Propionate] methane, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] ( 2,4,8,10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl), triethylene glycol-bis [3- (3- t-butyl-5-methyl-4-hydroxyphenyl) propionate], 2,6-di-t-butyl-p-cresol, 2,4,6-to Examples thereof include squirrel (3 ′, 5′-di-tert-butyl-4′-hydroxybenzyl) mesitylene. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 これらの中でも、得られる熱可塑性再生樹脂材料の耐熱安定性が優れることから、ペンタエリトリトールテトラキス[メチレン-3-(3',5'-ジ-t-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタン等が好ましい。 Of these, pentaerythritol tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane is preferred because the thermoplastic recycled resin material obtained has excellent heat stability. Etc. are preferred.
 次に、イオウ系酸化防止剤について好ましい化合物を例示する。熱可塑性樹脂材料がポリスチレン、ABS樹脂、ポリプロピレンのいずれであっても、例えば、ジラウリル-3,3'-チオジプロピオネート(DLTDP)、ジステアリル-3,3'-チオジプロピオネート(DSTDP)、ジミリスチル-3,3'-チオジプロピオネート(DMTDP)、ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3-プロパンジイル、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)(例えば、住友化学製の商品名スミライザーTP-D)等が挙げられる。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Next, preferred compounds for the sulfur-based antioxidant will be exemplified. Whether the thermoplastic resin material is polystyrene, ABS resin or polypropylene, for example, dilauryl-3,3′-thiodipropionate (DLTDP), distearyl-3,3′-thiodipropionate (DSTDP) Dimyristyl-3,3′-thiodipropionate (DMTDP), bis [3- (dodecylthio) propionic acid] 2,2-bis [[3- (dodecylthio) -1-oxopropyloxy] methyl] -1, 3-propanediyl, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8,10-tetraoxaspiro [5,5] undecane-3,9 -Diyl) bis (2,2-dimethyl-2,1-ethanediyl) (for example, trade name Sumitizer TP-D manufactured by Sumitomo Chemical). Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 これらの中でも、得られる熱可塑性再生樹脂材料の耐熱安定性が優れることから、ビス[3-(3-tert-ブチル-4- ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)等が好ましい。 Among these, since the heat-resistant stability of the obtained thermoplastic recycled resin material is excellent, bis [3- (3-tert-butyl-4--hydroxy-5-methylphenyl) propionic acid] (2,4,8, 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl) and the like are preferable.
 さらに、前述したフェノール系酸化防止剤およびイオウ系酸化防止剤の組み合わせについても特に限定されない。しかしながら、好ましい組合せとしては、例えば、フェノール系酸化防止剤が、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)、および、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]の少なくとも一方であり、イオウ系酸化防止剤が、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸](2,4,8,10-テトラオキサスピロ[5,5]ウンデカン-3,9-ジイル)ビス(2,2-ジメチル-2,1-エタンジイル)である組合せを挙げることができる。この組合せによれば、得られる熱可塑性再生樹脂材料の耐熱安定性をより一層向上させることが可能である。 Furthermore, the combination of the above-described phenolic antioxidant and sulfur antioxidant is not particularly limited. However, as a preferred combination, for example, the phenolic antioxidant is bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8,10-tetraoxa Spiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl) and triethylene glycol-bis [3- (3-tert-butyl-5-methyl-) 4-hydroxyphenyl) propionate] and the sulfur-based antioxidant is bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid] (2,4,8, List the combinations that are 10-tetraoxaspiro [5,5] undecane-3,9-diyl) bis (2,2-dimethyl-2,1-ethanediyl) Can. According to this combination, it is possible to further improve the heat resistance stability of the obtained thermoplastic recycled resin material.
 フェノール系酸化防止剤およびイオウ系酸化防止剤の総配合量は、特に限定されないが、熱可塑性樹脂材料100重量部に対して、0.01~2.0重量部の範囲内であることが好ましく、0.1~0.5重量部の範囲内であることが好ましい。配合量が0.01重量部より少ないと、ブリードアウト等によって熱可塑性再生樹脂材料中の含有量が不十分になるおそれがある。また、2.0重量部を超えると、配合量に見合った耐久性の向上効果が期待できない。 The total blending amount of the phenolic antioxidant and the sulfurous antioxidant is not particularly limited, but is preferably in the range of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin material. The content is preferably in the range of 0.1 to 0.5 parts by weight. If the blending amount is less than 0.01 parts by weight, the content in the thermoplastic recycled resin material may become insufficient due to bleeding out or the like. Moreover, when it exceeds 2.0 weight part, the durable improvement effect corresponding to a compounding quantity cannot be expected.
 また、フェノール系酸化防止剤およびイオウ系酸化防止剤の配合比(混合比)も特に限定されないが、重量比で1:1~1:4の範囲内であることが好ましく、1:2~1:3の範囲内であることがより好ましい。配合比がこの範囲内であれば、これら酸化防止剤の配合により、効果的に耐久性を改善することができる。 Further, the blending ratio (mixing ratio) of the phenolic antioxidant and the sulfur-based antioxidant is not particularly limited, but is preferably in the range of 1: 1 to 1: 4 by weight, and is preferably 1: 2 to 1. : More preferably within the range of 3. If the blending ratio is within this range, the durability can be effectively improved by blending these antioxidants.
 さらに、本実施の形態では、フェノール系酸化防止剤およびイオウ系酸化防止剤に加えて、リン系酸化防止剤を併用してもよい。熱可塑性再生樹脂材料は、フェノール系酸化防止剤およびイオウ系酸化防止剤の配合時(酸化防止剤添加工程、並びに、加熱混練および押出工程)と、射出成形時(射出成形工程)とで多くの熱履歴を受ける。それゆえ、配合時または射出成型時の耐熱安定性を向上するために、リン系酸化防止剤を配合することが好ましい。 Furthermore, in this embodiment, a phosphorus antioxidant may be used in combination with the phenol antioxidant and the sulfur antioxidant. There are many thermoplastic recycled resin materials when blended with a phenol-based antioxidant and a sulfur-based antioxidant (antioxidant addition step, heat-kneading and extrusion step) and during injection molding (injection molding step). Receive heat history. Therefore, in order to improve the heat resistance stability during blending or injection molding, it is preferable to blend a phosphorus-based antioxidant.
 具体的なリン系酸化防止剤は特に限定されず、化学構造中にリン原子が含まれ、酸化防止作用を有する化合物であればよい。好ましいリン系酸化防止剤としては、熱可塑性樹脂材料がポリスチレン、ABS樹脂、ポリプロピレンのいずれであっても、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(例えば、BASF製の商品名IRGFOS168)、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4'-ビフェニルホスフォナイト(例えば、BASF製の商品名IRGFOS PEP-Q)、ビス(2,4ジ-tert-ブチル-6-メチルフェニル)=エチル=ホスフィット(例えば、BASF製の商品名IRGFOS 38)、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト(例えば、ADEKA製の商品名アデカスタブPEP-24G)、2,2'-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト(例えば、ADEKA製の商品名アデカスタブHP-10)、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン10-オキシド(例えば、三光製の商品名SANKO-HCA)、トリアリルホスファイト、トリス(ノニル-フェニル)ホスファイト等が挙げられる。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 The specific phosphorus-based antioxidant is not particularly limited as long as it is a compound that contains a phosphorus atom in the chemical structure and has an antioxidant action. As a preferable phosphorus-based antioxidant, for example, tris (2,4-di-t-butylphenyl) phosphite (for example, manufactured by BASF) is used regardless of whether the thermoplastic resin material is polystyrene, ABS resin, or polypropylene. Trade name IRGFOS168), tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylphosphonite (for example, trade name IRGFOS PEP-Q manufactured by BASF), bis (2,4di-tert -Butyl-6-methylphenyl) = ethyl = phosphite (eg, trade name IRGFOS 38 from BASF), bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite (eg, product from ADEKA) Name ADK STAB PEP-24G), 2,2′-methylenebis (4,6-di-t-butylphenyl) octyl phosphite (eg, ADEKA Product name ADK STAB HP-10), 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (for example, trade name SANKO-HCA manufactured by Sanko), triallyl phosphite, tris (nonyl-phenyl) ) Phosphite and the like. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 これらの中でも、得られる熱可塑性再生樹脂材料の耐熱安定性が優れることから、これらの中でも、耐熱安定性が優れる点で、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト等がより好ましい。 Among these, since the heat-resistant stability of the obtained thermoplastic regenerated resin material is excellent, among these, tris (2,4-di-t-butylphenyl) phosphite is more preferable in terms of excellent heat-resistant stability. preferable.
 リン系酸化防止剤の配合量も特に限定されないが、熱可塑性樹脂材料100重量部に対して0.01~0.2重量部の範囲内であることが好ましい。配合量が0.01重量部未満であれば、リン系酸化防止剤を配合しても十分な耐熱安定性の向上効果が得られないおそれがある。一方、配合量が0.1重量部を超えると、配合量に見合った耐熱安定性の向上効果が期待できない。 The amount of the phosphorus antioxidant is not particularly limited, but is preferably in the range of 0.01 to 0.2 parts by weight with respect to 100 parts by weight of the thermoplastic resin material. If the blending amount is less than 0.01 parts by weight, there is a possibility that a sufficient heat stability improvement effect cannot be obtained even if a phosphorus-based antioxidant is blended. On the other hand, if the blending amount exceeds 0.1 parts by weight, an effect of improving the heat stability corresponding to the blending amount cannot be expected.
 このように、本実施の形態に係る熱可塑性再生樹脂材料は、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤が配合されてなる構成である。 As described above, the thermoplastic recycled resin material according to the present embodiment is selected from the thermoplastic resin waste obtained by pulverizing waste home appliances and containing a plurality of types of resin materials, using a material identification device. The phenol-type antioxidant and the sulfur-type antioxidant are blended with a specific type of thermoplastic resin material obtained after the dry cleaning treatment.
 廃家電製品から熱可塑性樹脂材料を再生する場合、廃家電製品に用いられていた熱可塑性樹脂材料が経年劣化したり、再利用のために選別した熱可塑性樹脂材料に異物が混入して耐久性等の物性が低下したり、物性の劣化が促進したりするおそれがある。これに対して、本実施の形態では、熱可塑性再生樹脂材料にフェノール系酸化防止剤およびイオウ系酸化防止剤が配合されることで、物性の低下(または劣化の促進)が有効に抑制される。これにより、熱可塑性再生樹脂材料を射出成形等の成形工程を経て、再生樹脂材料の成形品として再利用することができる。また、物性の劣化の促進を有効に抑制できるので、再利用された成形品は、長期間にわたって安定的に使用することができる。さらに、熱可塑性再生樹脂材料を再利用する際には、バージン材を多量に配合しなくても、良好な物性(耐久性、強度、耐衝撃性等)を実現できるので、再生資源の使用率を向上することができる。 When recycling thermoplastic resin materials from waste home appliances, the thermoplastic resin materials used in waste home appliances may deteriorate over time, or foreign substances may be mixed into the thermoplastic resin material selected for reuse. There is a risk that the physical properties such as the above will decrease, or the deterioration of physical properties may be promoted. On the other hand, in the present embodiment, deterioration of physical properties (or promotion of deterioration) is effectively suppressed by blending a phenol-based antioxidant and a sulfur-based antioxidant into the thermoplastic recycled resin material. . Thereby, the thermoplastic recycled resin material can be reused as a molded article of the recycled resin material through a molding process such as injection molding. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time. In addition, when recycling recycled thermoplastic resin materials, good physical properties (durability, strength, impact resistance, etc.) can be realized without adding a large amount of virgin material. Can be improved.
 [変形例]
 本実施の形態では、図1に示す樹脂材料選別工程において、図3に示す近赤外線識別システム20を用いていたが、本発明はこれに限定されず、公知の他の選別方法も好適に用いることができる。例えば、水比重選別法によって、熱可塑性樹脂廃材から特定種類の熱可塑性樹脂材料を選別してもよい。例えば、ポリプロピレン(PP)またはポリエチレン(PE)等のポリオレフィンは、水よりも比重が軽い。これらポリオレフィンが廃家電製品の樹脂材料として用いられていれば、樹脂材料選別工程で水比重選別法によりこれら樹脂材料を選別することができる。
[Modification]
In the present embodiment, the near-infrared identification system 20 shown in FIG. 3 is used in the resin material selection step shown in FIG. 1, but the present invention is not limited to this, and other known selection methods are also suitably used. be able to. For example, a specific type of thermoplastic resin material may be selected from the thermoplastic resin waste material by a water specific gravity selection method. For example, polyolefin such as polypropylene (PP) or polyethylene (PE) has a specific gravity lighter than water. If these polyolefins are used as resin materials for waste home appliances, these resin materials can be selected by a water specific gravity sorting method in the resin material sorting step.
 また、樹脂材料選別工程では、静電選別法を用いて、熱可塑性樹脂廃材から特定種類の熱可塑性樹脂材料を選別してもよい。例えば、ABS樹脂とポリスチレン(PS)とは比重が比較的近く、水比重選別法では十分に選別できないが、これら樹脂材料は、帯電列の配列順(帯電順列差)が異なる。それゆえ、この帯電列の違いを利用して、静電選別法によりこれらスチレン系樹脂を選別することができる。したがって、樹脂材料選別工程では、近赤外線を利用せずに、水比重選別法および静電選別法の少なくとも一方、またはこれらを併用して樹脂材料を選別してもよい。 Further, in the resin material sorting step, a specific type of thermoplastic resin material may be sorted from the thermoplastic resin waste material by using an electrostatic sorting method. For example, ABS resin and polystyrene (PS) are relatively close in specific gravity and cannot be sufficiently sorted by the water specific gravity sorting method, but these resin materials are different in the order of charge trains (charge permutation difference). Therefore, it is possible to sort these styrenic resins by electrostatic sorting using the difference between the charged columns. Therefore, in the resin material sorting step, the resin material may be sorted using at least one of the water specific gravity sorting method and the electrostatic sorting method, or a combination thereof, without using near infrared rays.
 なお、静電選別法では、臭素を含有する樹脂材料を排除することが難しい。そのため、廃家電製品に臭素を含有する樹脂材料が含まれている場合には、例えば、X線選別装置等、臭素の含有を識別できる計測装置を併用して、樹脂材料の選別を行うことが好ましい。 Note that it is difficult to eliminate the resin material containing bromine by the electrostatic sorting method. Therefore, when resin materials containing bromine are contained in waste home appliances, for example, a resin material can be sorted using a measuring device that can identify the bromine content, such as an X-ray sorting device. preferable.
 また、ABS樹脂とPSとの選別方法としては、塩水等を用いた水比重選別法を用いることも可能である。廃家電製品由来の熱可塑性樹脂廃材では、当該樹脂廃材に含まれるポリスチレンの比重が1.03~1.04程度であり、ABS樹脂の比重が1.05~1.07程度であることが比較的多い。それゆえ、塩水等のように、比重を調整した水を用いることで、ABS樹脂およびPSを比較的高精度で選別することが可能である。ただし、塩水等を用いた水比重選別法であっても、臭素を含有する樹脂材料を排除することが難しい。そのため、例えば、X線選別装置等を併用することが好ましい。 In addition, as a method for selecting the ABS resin and PS, a water specific gravity selecting method using salt water or the like can be used. Compared with the waste plastic materials derived from waste home appliances, the specific gravity of polystyrene contained in the waste resin material is about 1.03 to 1.04, and the specific gravity of ABS resin is about 1.05 to 1.07. Many. Therefore, it is possible to sort ABS resin and PS with relatively high accuracy by using water with adjusted specific gravity such as salt water. However, even with a water specific gravity sorting method using salt water or the like, it is difficult to exclude a resin material containing bromine. Therefore, for example, it is preferable to use an X-ray sorting apparatus or the like together.
 また、本実施の形態では、樹脂材料選別工程によって得られた選別後樹脂材料に対しては、特に他の工程を実施することなく、乾式洗浄工程を実施している。しかしながら、本発明はこれに限定されず、例えば、乾式洗浄工程の前段で、選別後樹脂材料を破砕機でさらに破砕してもよい。 Further, in the present embodiment, the dry cleaning process is performed on the resin material after sorting obtained by the resin material sorting process without performing any other process. However, the present invention is not limited to this, and for example, the resin material after sorting may be further crushed with a crusher in the previous stage of the dry cleaning process.
 前述したように、渦電流選別工程の後に篩い分け工程を実施すれば、熱可塑性樹脂廃材(破砕片)の大きさは、例えば5~150mmの範囲内となっている。その後、樹脂材料選別工程を実施した後に、再び破砕工程を実施すれば、選別後樹脂材料(樹脂片)の大きさは、2~50mmの範囲内にすることができる。これにより、選別後樹脂材料の大きさのばらつきが小さくなるので、後段の酸化防止剤添加工程(あるいは他の添加剤等を添加する工程)で、酸化防止剤をより均質に混合することができる。その結果、得られる熱可塑性再生樹脂材料の物性のばらつきを小さくすることが可能となる。 As described above, if the sieving step is performed after the eddy current selection step, the size of the thermoplastic resin waste material (crushed pieces) is in the range of, for example, 5 to 150 mm. Thereafter, if the crushing step is performed again after performing the resin material selection step, the size of the resin material (resin piece) after the selection can be in the range of 2 to 50 mm. Thereby, since the variation in the size of the resin material after sorting is reduced, the antioxidant can be mixed more homogeneously in the subsequent antioxidant addition step (or the step of adding other additives or the like). . As a result, it is possible to reduce variations in physical properties of the obtained thermoplastic recycled resin material.
 また、本実施の形態では、選別後樹脂材料に対して乾式洗浄工程を実施した後には、必要に応じて洗浄後選別工程を実施してもよい(つまり洗浄後選別工程は実施しなくてもよい)。また、この洗浄後選別工程では、風力選別、磁力選別、静電選別等の選別工程を少なくとも1回実施すればよい。この点は、熱可塑性樹脂廃材を製造するための風力選別工程、磁力選別工程、渦電流選別工程等についても同様である。 In the present embodiment, after the dry cleaning process is performed on the resin material after sorting, the sorting process after washing may be performed as necessary (that is, the sorting process after cleaning may not be performed). Good). In this post-cleaning sorting step, sorting steps such as wind sorting, magnetic sorting, electrostatic sorting and the like may be performed at least once. This also applies to the wind sorting process, magnetic sorting process, eddy current sorting process, and the like for producing thermoplastic resin waste.
 すなわち、廃家電製品の分解および解体工程、その後の破砕工程において、混入する異物が少なかったり、特定種類の異物に偏っていたりすれば、必要に応じて、風力選別工程、磁力選別工程、および渦電流選別工程の少なくともいずれかを実施しなくてもよい。逆に、風力選別工程、磁力選別工程、または渦電流選別工程で除去できないような異物が含まれる場合には、これら以外の公知の選別工程を実施してもよい。 That is, if there is little foreign matter mixed in the disassembly and disassembly process of the household electrical appliance and the subsequent crushing process, or if it is biased toward a specific type of foreign matter, the wind sorting process, the magnetic sorting process, and the vortex At least one of the current selection steps may not be performed. On the contrary, when foreign substances that cannot be removed by the wind sorting process, the magnetic sorting process, or the eddy current sorting process are included, other known sorting processes may be performed.
 また、本実施の形態では、廃家電製品として使用済みの冷蔵庫を例示したが、本発明の適用対象となる廃家電製品はこれに限定されない。前述したように、廃家電製品としては、冷蔵庫以外に、冷凍庫、空気調和機、または洗濯機等が挙げられる。したがって、選別工程前の破砕物は、冷蔵庫以外の廃家電製品から得られたものであってもよいし、冷蔵庫も含めて複数種類の廃家電製品から得られたものであってもよい。 Further, in the present embodiment, the used refrigerator is exemplified as the waste home appliance, but the waste home appliance to which the present invention is applied is not limited to this. As described above, examples of the waste home appliance include a freezer, an air conditioner, or a washing machine in addition to the refrigerator. Therefore, the crushed material before the sorting step may be obtained from waste home appliances other than the refrigerator, or may be obtained from a plurality of types of waste home appliances including the refrigerator.
 また、例えば、廃家電製品の種類または機種が違っていても、図1および図2に示す樹脂材料の再生工程(または再資源化工程)の基本的な流れは同じである。ただし、廃家電製品の種類または機種が異なっていれば、分別回収される金属廃材および樹脂廃材等の種類が異なる。それゆえ、図1および図2の再生工程から一部の工程を省略したり、新たな工程を追加したりすることができる。例えば、廃家電製品が洗濯機であれば、ウレタンフォーム等の断熱材が不要なので、ウレタン廃材を選別する風力選別工程は無くてもよい。また、洗濯機は、冷蔵庫とは異なり冷媒を使用しないので、分解および解体工程では、冷媒を除去する必要がない。 Also, for example, even if the type or model of the waste home appliance is different, the basic flow of the resin material regeneration process (or recycling process) shown in FIGS. 1 and 2 is the same. However, if the types or models of waste home appliances are different, the types of metal wastes and resin wastes that are collected separately are different. Therefore, some processes can be omitted from the regeneration process of FIGS. 1 and 2 or a new process can be added. For example, if the waste home appliance is a washing machine, since a heat insulating material such as urethane foam is unnecessary, there is no need for a wind-power sorting step for sorting urethane waste material. In addition, unlike a refrigerator, a washing machine does not use a refrigerant, so that it is not necessary to remove the refrigerant in the disassembly and disassembly processes.
 (実施の形態2)
 前記実施の形態1では、熱可塑性再生樹脂材料の物性の低下、または、物性の劣化の促進を回避するために、熱可塑性再生樹脂材料にフェノール系酸化防止剤およびイオウ系酸化防止剤を配合していたが、本実施の形態2では、所定量の金属不活性剤を配合している。この点について、図4を参照して具体的に説明する。図4は、本実施の形態2に係る熱可塑性再生樹脂材料の製造工程(樹脂材料の再生工程または再資源化工程)の一例を示す工程図である。
(Embodiment 2)
In the first embodiment, a phenol-based antioxidant and a sulfur-based antioxidant are blended in the thermoplastic recycled resin material in order to avoid deterioration of physical properties of the thermoplastic recycled resin material or promotion of deterioration of physical properties. However, in Embodiment 2, a predetermined amount of metal deactivator is blended. This point will be specifically described with reference to FIG. FIG. 4 is a process diagram showing an example of a thermoplastic recycled resin material manufacturing process (resin material recycling process or recycling process) according to the second embodiment.
 図4に示す工程は、前記実施の形態1で説明した図2に示す工程と同様であり、図4における「選別された特定種類の熱可塑性樹脂材料」(選別後樹脂材料)は、図1と同様の工程で得られる。また、図4における乾式洗浄工程、洗浄後選別工程、加熱混練および押出工程、並びに、射出成形工程は、前記実施の形態1と同様であるため、その説明は省略する。 The process shown in FIG. 4 is the same as the process shown in FIG. 2 described in the first embodiment, and the “selected specific type of thermoplastic resin material” (resin material after selection) in FIG. Obtained by the same process. Moreover, since the dry cleaning process, the post-cleaning selection process, the heat-kneading and extrusion process, and the injection molding process in FIG. 4 are the same as those in the first embodiment, description thereof is omitted.
 本実施の形態では、乾式洗浄工程または洗浄後選別工程の後に、樹脂改質剤として、金属不活性化剤を添加する、金属不活性化剤添加工程が実施される。この金属不活性化剤添加工程では、選別後樹脂材料100重量部に対して金属不活性化剤が0.01~1重量部の範囲内で添加される。 In the present embodiment, a metal deactivator addition step is performed in which a metal deactivator is added as a resin modifier after the dry cleaning step or the post-cleaning sorting step. In this metal deactivator addition step, the metal deactivator is added within a range of 0.01 to 1 part by weight with respect to 100 parts by weight of the resin material after sorting.
 金属不活性化剤添加工程で添加される金属不活性化剤は特に限定されないが、公知の化合物または組成物を好適に用いることができる。具体的な金属不活性化剤としては、例えば、シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、トリアゾール誘導体、およびイミダゾール誘導体からなる群より選択される化合物の少なくとも1種を挙げることができる。 The metal deactivator added in the metal deactivator addition step is not particularly limited, but a known compound or composition can be suitably used. Specific examples of the metal deactivator include at least one compound selected from the group consisting of oxalic acid derivatives, salicylic acid derivatives, hydrazide derivatives, triazole derivatives, and imidazole derivatives.
 これらの化合物のうち、シュウ酸誘導体としては、例えば、シュウ酸誘導体としては、オキザロ-ビス-1,2-ヒドロキシベンジリデンヒドラジド(Eastman Kodak社製の商品名イーストマンインヒビター OABH)、2,2’-オキサミドビス(エチル3-(3,5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)(白石カルシウム社製の商品名Naugard XL-1)等が挙げられるが、特に限定されない。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Among these compounds, as the oxalic acid derivative, for example, as the oxalic acid derivative, oxalo-bis-1,2-hydroxybenzylidene hydrazide (trade name Eastman inhibitor OABH manufactured by Eastman Kodak), 2,2′- Oxamidobis (ethyl 3- (3,5-tert-butyl-4-hydroxyphenyl) propionate) (trade name Naugard® XL-1 manufactured by Shiraishi Calcium Co., Ltd.) and the like can be mentioned, but not particularly limited. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 また、サリチル酸誘導体としては、例えば、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール(ADEKA社製の商品名アデカスタブCDA-1)、デカメチレンジカルボン酸ジサリチロイルヒドラジド(ADEKA社製の商品名アデカスタブCDA-6)、サリチリデンサリチロイルヒドラジン(BASF社製の商品名Chel-180)等が挙げられるが、特に限定されない。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Examples of the salicylic acid derivative include 3- (N-salicyloyl) amino-1,2,4-triazole (trade name Adeka Stab CDA-1 manufactured by ADEKA), decamethylenedicarboxylic acid disalicyloyl hydrazide (ADEKA). Examples thereof include, but are not limited to, the product name ADK STAB CDA-6) and salicylidene salicyloylhydrazine (trade name Chel-180 manufactured by BASF). Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 また、ヒドラジド誘導体としては、例えば、N,N’-ビス((3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル))プロピオノヒドラジド(ADEKA社製の商品名CDA-10)、三井東圧ファイン社製の商品名Qunox等が挙げられるが、特に限定されない。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Examples of the hydrazide derivative include N, N′-bis ((3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl)) propionohydrazide (trade name CDA- manufactured by ADEKA). 10), trade name Qunox manufactured by Mitsui Toatsu Fine Co. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 また、トリアゾール誘導体としては、例えば、ベンゾトリアゾール、3-アミノ-1,2,4-トリアゾール、2-メルカプトベンゾトリアゾール、2,5-ジメルカプトベンゾトリアゾール、4-アルキルベンゾトリアゾール、5-アルキルベンゾトリアゾール、4,5,6,7-テトラヒドロベンゾトリアゾール、5,5’-メチレンビスベンゾトリアゾール、1-[ジ(2-エチルヘキシル)アミノメチル]-1,2,4-トリアゾール、1-(1-ブトキシエチル)-1,2,4-トリアゾール、アシル化3-アミノ-1,2,4-トリアゾール等が挙げられるが、特に限定されない。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Examples of triazole derivatives include benzotriazole, 3-amino-1,2,4-triazole, 2-mercaptobenzotriazole, 2,5-dimercaptobenzotriazole, 4-alkylbenzotriazole, and 5-alkylbenzotriazole. 4,5,6,7-tetrahydrobenzotriazole, 5,5′-methylenebisbenzotriazole, 1- [di (2-ethylhexyl) aminomethyl] -1,2,4-triazole, 1- (1-butoxy Ethyl) -1,2,4-triazole, acylated 3-amino-1,2,4-triazole, and the like, but are not particularly limited. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 また、イミダゾール誘導体としては、例えば、4,4’-メチレンビス(2-ウンデシル-5-メチルイミダゾール、ビス[(N-メチル)イミダゾール-2-イル]カルビノールオクチルエーテル等が挙げられるが、特に限定されない。これら化合物は1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Examples of imidazole derivatives include 4,4′-methylenebis (2-undecyl-5-methylimidazole), bis [(N-methyl) imidazol-2-yl] carbinol octyl ether, and the like. Only one type of these compounds may be used, or two or more types may be used in appropriate combination.
 また、前述したシュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、トリアゾール誘導体、またはイミダゾール誘導体として例示される化合物のうち、異なる種類の誘導体をそれぞれ1種以上ずつ適宜組み合わせて用いることもできる。 In addition, among the compounds exemplified as the oxalic acid derivative, salicylic acid derivative, hydrazide derivative, triazole derivative, or imidazole derivative described above, one or more different types of derivatives can be used in combination as appropriate.
 本実施の形態において、選別の対象となる熱可塑性樹脂材料(選別後樹脂材料)の種類は特に限定されず、家電製品に広く用いられる各種樹脂材料であればよい。代表的な熱可塑性樹脂材料としては、前記実施の形態1で説明したように、スチレン系樹脂材料またはポリオレフィンを挙げることができる。具体的なポリオレフィンまたはスチレン系樹脂材料の種類も前記実施の形態1と同様であるため、その説明は省略する。 In this embodiment, the type of the thermoplastic resin material (resin material after sorting) to be sorted is not particularly limited, and may be various resin materials widely used in home appliances. As a typical thermoplastic resin material, as described in the first embodiment, a styrenic resin material or a polyolefin can be used. Since the specific types of polyolefin or styrene resin material are the same as those in the first embodiment, description thereof is omitted.
 本実施の形態では、このような熱可塑性樹脂材料が樹脂廃材から選別されて再利用される際に、金属不活性化剤が0.01~1重量部の範囲内で配合される。金属不活性化剤をこの量で配合することにより、得られる熱可塑性再生樹脂材料の物性、特に耐久性を大きく改善することができる。特に、熱可塑性樹脂材料がスチレン系樹脂材料であれば、金属不活性化剤の耐久性の改善効果は大きい傾向にある。 In this embodiment, when such a thermoplastic resin material is selected from the resin waste material and reused, the metal deactivator is blended in the range of 0.01 to 1 part by weight. By blending the metal deactivator in this amount, the physical properties, particularly durability, of the resulting thermoplastic recycled resin material can be greatly improved. In particular, if the thermoplastic resin material is a styrene resin material, the effect of improving the durability of the metal deactivator tends to be large.
 金属不活性化剤添加工程で、所定の配合量で金属不活性化剤を配合する方法は特に限定されない。本実施の形態では、前記実施の形態1と同様に、例えば、洗浄後の選別後樹脂材料に対して、金属不活性化剤を添加して、タンブラーまたはヘンシェルミキサー等の公知の混合装置を用いて均質に混合する方法を挙げることができる。 The method for blending the metal deactivator in a predetermined blending amount in the metal deactivator adding step is not particularly limited. In the present embodiment, as in the first embodiment, for example, a metal deactivator is added to the resin material after sorting after washing, and a known mixing device such as a tumbler or a Henschel mixer is used. And a homogeneous mixing method.
 金属不活性化剤添加工程の後には、前記実施の形態1と同様に、加熱混練および押出工程で、選別後樹脂材料に対して金属不活性化剤を分散させる。このとき、公知の押出機を用いて、選別後樹脂材料を所定条件で加熱混練し、押出機から押し出すことも、押出機にはメッシュフィルタが設けられていることが好ましいことも、前記実施の形態1と同様である。 After the metal deactivator addition step, the metal deactivator is dispersed in the resin material after selection in the heat-kneading and extruding steps as in the first embodiment. At this time, using a known extruder, the resin material after selection is heat-kneaded under predetermined conditions and extruded from the extruder, or it is preferable that the extruder is provided with a mesh filter. This is the same as the first embodiment.
 ここで、本実施の形態では、押出機における加熱温度(シリンダ温度およびダイス温度等)については、選別後樹脂材料がスチレン系樹脂材料であれば、例えば、180~240℃の温度範囲に設定する例を挙げることができる。また、メッシュフィルタの網目も、本実施の形態では、40~200メッシュの範囲内の網目であることが好ましい。 Here, in the present embodiment, the heating temperature (cylinder temperature, die temperature, etc.) in the extruder is set to a temperature range of 180 to 240 ° C., for example, if the resin material after sorting is a styrene resin material. An example can be given. Further, the mesh filter mesh is preferably a mesh within the range of 40 to 200 mesh in the present embodiment.
 このように、本実施の形態に係る熱可塑性再生樹脂材料は、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、当該熱可塑性樹脂材料100重量部に対して金属不活性化剤が0.01~1重量部の範囲内で配合されてなる構成である。 As described above, the thermoplastic recycled resin material according to the present embodiment is selected from the thermoplastic resin waste obtained by pulverizing waste home appliances and containing a plurality of types of resin materials, using a material identification device. The metal deactivator is blended in the range of 0.01 to 1 part by weight with respect to 100 parts by weight of the thermoplastic resin material with respect to a specific type of thermoplastic resin material obtained after the dry cleaning treatment. It is the composition which consists of.
 一般に樹脂材料の劣化は自動酸化によって進行することが知られている。ここで、樹脂材料中に金属原子または金属イオンが存在すると、金属原子または金属イオンが例えばレドックス触媒として作用する。これにより、樹脂材料中でラジカルの発生が増大するため、樹脂材料の自動酸化が促進される。それゆえ、選別後樹脂材料の自動酸化を抑制し、耐久性の向上を図る必要がある。また、樹脂材料中の添加剤である充填材または顔料には金属成分が含まれている場合がある。これら金属成分も、接触酸化作用によって樹脂材料を劣化させ得る。 Generally, it is known that the deterioration of the resin material proceeds by auto-oxidation. Here, when a metal atom or metal ion is present in the resin material, the metal atom or metal ion acts as, for example, a redox catalyst. Thereby, since generation | occurrence | production of a radical increases in a resin material, the auto-oxidation of a resin material is accelerated | stimulated. Therefore, it is necessary to suppress the auto-oxidation of the resin material after sorting and to improve the durability. In addition, the filler or pigment that is an additive in the resin material may contain a metal component. These metal components can also deteriorate the resin material by the catalytic oxidation action.
 本実施の形態では、前記の通り、熱可塑性再生樹脂材料に金属不活性化剤が適量配合される。これにより、金属不活性化剤は、金属原子または金属イオンと錯体を形成し、その触媒作用を低減することが可能になる。それゆえ、金属不活性化剤によって、樹脂成分中に含まれる異物が引き起こす種々の劣化反応を抑制することができるとともに、劣化反応の進行も大幅に遅らせることができる。それゆえ、良好な耐久性と安定性を有する高品質の熱可塑性再生樹脂材料を得ることができる。 In this embodiment, as described above, an appropriate amount of a metal deactivator is blended in the thermoplastic recycled resin material. Thereby, the metal deactivator can form a complex with a metal atom or metal ion and reduce its catalytic action. Therefore, the metal deactivator can suppress various deterioration reactions caused by the foreign matters contained in the resin component, and can also greatly delay the progress of the deterioration reaction. Therefore, a high-quality thermoplastic recycled resin material having good durability and stability can be obtained.
 これにより、熱可塑性再生樹脂材料を射出成形等の成形工程を経て、再生樹脂材料の成形品として再利用することができる。また、物性の劣化の促進を有効に抑制できるので、再利用された成形品は、長期間にわたって安定的に使用することができる。さらに、熱可塑性再生樹脂材料を再利用する際には、バージン材を多量に配合しなくても、良好な物性(耐久性、強度、耐衝撃性等)を実現できるので、再生資源の使用率を向上することができる。 Thereby, the thermoplastic recycled resin material can be reused as a molded article of the recycled resin material through a molding process such as injection molding. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time. In addition, when recycling recycled thermoplastic resin materials, good physical properties (durability, strength, impact resistance, etc.) can be realized without adding a large amount of virgin material. Can be improved.
 さらに、本実施の形態では、樹脂改質剤(樹脂改質成分)として金属不活性化剤以外に、酸化防止剤を併用してもよい。併用可能な酸化防止剤としては、前記実施の形態1で説明したフェノール系酸化防止剤が挙げられ、さらには、フェノール系酸化防止剤およびイオウ系酸化防止剤の双方を併用してもよい。これにより、金属不活性化剤による作用効果をより向上させることが可能となる。 Furthermore, in the present embodiment, an antioxidant may be used in combination as a resin modifier (resin modifying component) in addition to the metal deactivator. Examples of the antioxidant that can be used in combination include the phenol-based antioxidant described in the first embodiment, and both a phenol-based antioxidant and a sulfur-based antioxidant may be used in combination. Thereby, it becomes possible to improve the effect by the metal deactivator.
 (実施の形態3)
 前記実施の形態1では、熱可塑性再生樹脂材料に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤を配合していた。また、前記実施の形態2では、熱可塑性再生樹脂材料に対して、適量の金属不活性化剤を配合していた。これに対して、本実施の形態3では、熱可塑性再生樹脂材料に対応する熱可塑性エラストマーを配合している。この点について、図5を参照して具体的に説明する。図5は、本実施の形態3に係る熱可塑性再生樹脂材料の製造工程(樹脂材料の再生工程または再資源化工程)の一例を示す工程図である。
(Embodiment 3)
In the first embodiment, a phenol-based antioxidant and a sulfur-based antioxidant are blended with the thermoplastic recycled resin material. In the second embodiment, an appropriate amount of a metal deactivator is blended with the thermoplastic recycled resin material. On the other hand, in this Embodiment 3, the thermoplastic elastomer corresponding to a thermoplastic reproduction resin material is mix | blended. This point will be specifically described with reference to FIG. FIG. 5 is a process diagram showing an example of a thermoplastic recycled resin material manufacturing process (resin material recycling process or recycling process) according to the third embodiment.
 図5に示す工程は、前記実施の形態1で説明した図2に示す工程、または、前記実施の形態2で説明した図4に示す工程と同様であり、図5における「選別された特定種類の熱可塑性樹脂材料」(選別後樹脂材料)は、図1と同様の工程で得られる。また、図5における乾式洗浄工程、洗浄後選別工程、加熱混練および押出工程、並びに、射出成形工程は、前記実施の形態1と同様であるため、その説明は省略する。 The process shown in FIG. 5 is the same as the process shown in FIG. 2 described in the first embodiment or the process shown in FIG. 4 described in the second embodiment. The “thermoplastic resin material” (resin material after sorting) is obtained in the same process as in FIG. In addition, the dry cleaning process, the post-cleaning selection process, the heat-kneading and extrusion process, and the injection molding process in FIG.
 本実施の形態では、乾式洗浄工程または洗浄後選別工程の後に、樹脂改質剤として、熱可塑性エラストマーが添加される、エラストマー添加工程が実施される。エラストマー添加工程では、後述するように、熱可塑性エラストマーとともに、選別後樹脂材料と同系統の汎用樹脂材料も添加することができる。 In this embodiment, an elastomer addition step is performed in which a thermoplastic elastomer is added as a resin modifier after the dry cleaning step or the post-cleaning sorting step. In the elastomer addition step, as will be described later, a general-purpose resin material of the same system as the post-selection resin material can be added together with the thermoplastic elastomer.
 添加される熱可塑性エラストマーの具体的な種類は特に限定されないが、選別後樹脂材料がスチレン系樹脂材料であれば、スチレン系熱可塑性エラストマーであればよい。スチレン系熱可塑性エラストマーは、モノマーとしてスチレンまたはその誘導体を用いた高分子であり、かつ、ゴム状の弾性体であればよい。本実施の形態で具体的に陥られる熱可塑性エラストマーとしては、例えば、分子構造中に、ハードセグメントとしてポリスチレン系構造を含み、ソフトセグメントとしてポリジエン構造を含む構成、あるいは、スチレンとジエンモノマーとの共重合体の水素添加物等を挙げることができる。 The specific kind of the thermoplastic elastomer to be added is not particularly limited, but if the resin material after selection is a styrene resin material, it may be a styrene thermoplastic elastomer. The styrenic thermoplastic elastomer may be a polymer using styrene or a derivative thereof as a monomer and may be a rubber-like elastic body. Examples of the thermoplastic elastomer that is specifically affected by the present embodiment include a structure in which the molecular structure includes a polystyrene-based structure as a hard segment and a polydiene structure as a soft segment, or a combination of styrene and a diene monomer. Examples thereof include a hydrogenated product of a polymer.
 ここでいうポリスチレン系構造とは、スチレンまたはその誘導体をモノマーとして用いた重合体であればよい。具体的には、例えば、スチレンまたはその誘導体を1種類のみ用いた単独重合体であってもよいし、スチレンまたはその誘導体を2種類以上用いた共重合体であってもよいし、スチレンまたはその誘導体と、その他のモノマーとを重合させた共重合体であってもよい。また、ポリジエン構造とは、ジエン構造を含む重合体であればよい。具体的には、例えば、ポリブタジエン(1,3-ブタジエンの単独重合体)、ポリイソプレン(2-メチル-1,3-ブタジエン(イソプレン)の単独重合体)、ブタジエンと他の単量体との共重合体、イソプイレンと他の単量体との共重合体等を挙げることができる。また、スチレンとジエンモノマーとの共重合体の水素添加物としては、スチレン-ブタジエンブロック共重合体の水素添加物、スチレン-イソプレンブロック共重合体の水素添加物等を挙げることができる。 Here, the polystyrene structure may be a polymer using styrene or a derivative thereof as a monomer. Specifically, for example, a homopolymer using only one kind of styrene or a derivative thereof, a copolymer using two or more kinds of styrene or a derivative thereof, or a styrene or a derivative thereof. It may be a copolymer obtained by polymerizing a derivative and another monomer. Moreover, the polydiene structure should just be a polymer containing a diene structure. Specifically, for example, polybutadiene (1,3-butadiene homopolymer), polyisoprene (2-methyl-1,3-butadiene (isoprene) homopolymer), butadiene and other monomers Examples thereof include a copolymer and a copolymer of isopylene and another monomer. Examples of the hydrogenated product of a copolymer of styrene and a diene monomer include a hydrogenated product of a styrene-butadiene block copolymer and a hydrogenated product of a styrene-isoprene block copolymer.
 また、熱可塑性エラストマーの添加量(配合量)も特に限定されない。選別後樹脂材料(改質前の熱可塑性樹脂材料)の物性、熱可塑性エラストマーの具体的な種類、得られる熱可塑性再生樹脂材料に要求される物性等の条件によって、効果に見合った添加量が異なる。そこで、選別後樹脂材料の種類および熱可塑性エラストマーの種類に応じて、添加量を適宜調節することが好ましい。一般的には、熱可塑性エラストマーの添加量は、選別後樹脂材料100重量部に対して、3~20重量部の範囲内であればよい。 Further, the addition amount (blending amount) of the thermoplastic elastomer is not particularly limited. Depending on the physical properties of the resin material after sorting (thermoplastic resin material before modification), the specific type of thermoplastic elastomer, the physical properties required for the thermoplastic recycled resin material to be obtained, etc. Different. Therefore, it is preferable to appropriately adjust the addition amount according to the type of the resin material after selection and the type of the thermoplastic elastomer. Generally, the addition amount of the thermoplastic elastomer may be in the range of 3 to 20 parts by weight with respect to 100 parts by weight of the resin material after sorting.
 熱可塑性エラストマーの添加量が上記の範囲内であれば、得られる熱可塑性再生樹脂材料は良好な耐衝撃性を得ることができる。一方、熱可塑性エラストマーの種類等にもよるが、添加量が例えば20重量部を超えると、熱可塑性再生樹脂材料の耐衝撃性のさらなる向上が期待できるものの、強度が低下する傾向にある。また、3重量部未満であれば、添加量に見合った効果が期待できない。なお、熱可塑性エラストマーは1種類のみ添加してもよいし、2種類以上を適宜組み合わせて添加してもよい。 If the addition amount of the thermoplastic elastomer is within the above range, the resulting thermoplastic recycled resin material can obtain good impact resistance. On the other hand, although depending on the type of thermoplastic elastomer and the like, if the added amount exceeds 20 parts by weight, for example, further improvement in impact resistance of the thermoplastic recycled resin material can be expected, but the strength tends to decrease. Moreover, if it is less than 3 weight part, the effect corresponding to the addition amount cannot be expected. Note that only one type of thermoplastic elastomer may be added, or two or more types may be added in appropriate combination.
 さらに、本実施の形態では、選別後樹脂材料に対して、熱可塑性エラストマーとともに汎用ポリスチレン(GPPS)を添加してもよい。このGPPSは、再生材料であることが好ましい。具体的には、例えば、廃家電製品が使用済み冷蔵庫であれば、当該冷蔵庫の野菜室ケース、冷蔵室ケース、棚等由来のGPPSを挙げることができる。これらは、前述したように、分解および解体工程(図1参照)で、手回収樹脂廃材として取得できるものであり、この手回収樹脂廃材を破砕機で破砕したものを再生GPPSとして用いればよい。 Furthermore, in the present embodiment, general-purpose polystyrene (GPPS) may be added to the resin material after sorting together with the thermoplastic elastomer. This GPPS is preferably a recycled material. Specifically, for example, if the waste home appliance is a used refrigerator, GPPS derived from a vegetable compartment case, a refrigerator compartment case, a shelf and the like of the refrigerator can be cited. As described above, these can be obtained as a manually recovered resin waste material in the decomposition and dismantling process (see FIG. 1), and the manually recovered resin waste material crushed by a crusher may be used as the recycled GPPS.
 GPPSの添加量(配合量)は特に限定されず、選別後樹脂材料(改質前の熱可塑性樹脂材料)の物性、併用される熱可塑性エラストマーの具体的な種類、得られる熱可塑性再生樹脂材料に要求される物性等の条件によって、GPPSの添加量は異なる。しかしながら、一般的には、選別後樹脂材料100重量部に対して10~50重量部の範囲内であればよい。 The addition amount (blending amount) of GPPS is not particularly limited, the physical properties of the resin material after sorting (thermoplastic resin material before modification), the specific type of thermoplastic elastomer used together, and the thermoplastic recycled resin material obtained The amount of GPPS added varies depending on conditions such as physical properties required for the above. However, generally, it may be in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the resin material after sorting.
 GPPSの添加量が50重量部を超えると、熱可塑性再生樹脂材料の強度のさらなる向上が期待できるものの、耐衝撃性が低下する傾向にある。一方、10重量部未満であれば、添加量に見合った効果が期待できない。それゆえ、代表的な配合量としては、選別後樹脂材料100重量部に対して、熱可塑性エラストマー3~20重量部の範囲内が好ましく、かつ、GPPS10~50重量部の範囲内が好ましい。これにより、得られる熱可塑性再生樹脂材料において、良好な耐衝撃性と良好な強度との双方を実現することが可能になる。 When the amount of GPPS added exceeds 50 parts by weight, the strength of the thermoplastic recycled resin material can be expected to be further improved, but the impact resistance tends to decrease. On the other hand, if the amount is less than 10 parts by weight, an effect commensurate with the amount added cannot be expected. Therefore, the typical blending amount is preferably in the range of 3 to 20 parts by weight of the thermoplastic elastomer and in the range of 10 to 50 parts by weight of GPPS with respect to 100 parts by weight of the resin material after sorting. This makes it possible to achieve both good impact resistance and good strength in the resulting thermoplastic recycled resin material.
 また、図3に示す近赤外線識別システム20により選別されたスチレン系樹脂材料には、GPPSとハイインパクトポリスチレン(HIPS)とが含まれている場合がある。廃家電製品が使用済み冷蔵庫であって、選別されたスチレン系樹脂材料が、GPPSおよびHIPSから構成されていれば、その割合は、例えば、GPPS10~30重量%、HIPS70~90重量%である。前記の通り、GPPSの割合が大きければ、引張強度および曲げ強度は大きくなるものの、耐衝撃性が小さくなる。 In addition, the styrene resin material selected by the near infrared identification system 20 shown in FIG. 3 may contain GPPS and high impact polystyrene (HIPS). If the waste home appliance is a used refrigerator and the selected styrenic resin material is composed of GPPS and HIPS, the proportions are, for example, 10 to 30% by weight of GPPS and 70 to 90% by weight of HIPS. As described above, if the GPPS ratio is large, the tensile strength and the bending strength are increased, but the impact resistance is decreased.
 この場合、選別後樹脂材料について事前に物性の測定を行い、得られた物性の結果に応じて、熱可塑性エラストマーの添加量、並びに、GPPSの添加量を調整すればよい。これにより、熱可塑性再生樹脂材料(またはその成形品)に要求される物性に応じて、熱可塑性エラストマーまたはGPPS(あるいはその両方)の添加量を好適に調整することができる。また、熱可塑性再生樹脂材料が、GPPSおよびHIPSの両方を含んでいれば、良好な強度および耐衝撃性を実現しやすくなる。 In this case, the physical properties of the resin material after sorting are measured in advance, and the addition amount of the thermoplastic elastomer and the addition amount of GPPS may be adjusted according to the obtained physical property results. Thereby, the addition amount of a thermoplastic elastomer or GPPS (or both) can be suitably adjusted according to the physical property requested | required of a thermoplastic reproduction resin material (or its molded article). Moreover, if the thermoplastic recycled resin material contains both GPPS and HIPS, it becomes easy to realize good strength and impact resistance.
 なお、前記実施の形態1におけるフェノール系酸化防止剤およびイオウ系酸化防止剤においても、前記実施の形態2における金属不活性化剤においても、事前に物性を測定して、その添加量を調整できる点は本実施の形態と同様である。 In addition, in the phenol-based antioxidant and the sulfur-based antioxidant in the first embodiment as well as in the metal deactivator in the second embodiment, the addition amount can be adjusted by measuring the physical properties in advance. The point is the same as in the present embodiment.
 なお、GPPSは、再生材料に限定されずバージン材であってもよい。ただし、バージン材を用いる場合には、GPPSの添加量はできるだけ少ない方が好ましい。バージン材のGPPSの添加量が多すぎると、再生材料の使用比率が低下する。一方、GPPSが前記の通り再生材料であれば、添加量を前記の範囲内とすることで、再生材料の使用比率を高めることができる。 Note that GPPS is not limited to a recycled material, and may be a virgin material. However, when a virgin material is used, the amount of GPPS added is preferably as small as possible. When there is too much addition amount of GPPS of a virgin material, the use ratio of a recycled material will fall. On the other hand, if GPPS is a recycled material as described above, the use ratio of the recycled material can be increased by setting the addition amount within the above range.
 本実施の形態において、選別の対象となる熱可塑性樹脂材料(選別後樹脂材料)の種類は、前述したスチレン系樹脂材料特に限定されず、家電製品に広く用いられる各種樹脂材料、例えばポリオレフィンであってもよい。選別後樹脂材料がポリオレフィンであれば、ポリオレフィン系の熱可塑性エラストマーを添加すればよく、また、GPPSの併用と同様に、ポリオレフィンの再生材料を併用してもよい。なお、具体的なポリオレフィンまたはスチレン系樹脂材料の種類は前記実施の形態1と同様であるため、その説明は省略する。 In the present embodiment, the type of thermoplastic resin material (resin material after sorting) to be selected is not particularly limited to the above-described styrenic resin material, and may be various resin materials widely used for home appliances such as polyolefin. May be. If the resin material after selection is a polyolefin, a polyolefin-based thermoplastic elastomer may be added, and a polyolefin recycled material may be used in the same manner as GPPS. In addition, since the kind of specific polyolefin or styrene resin material is the same as that of the said Embodiment 1, the description is abbreviate | omitted.
 本実施の形態では、エラストマー添加工程で、所定の配合量で熱可塑性エラストマー(および汎用ポリスチレン等)を配合する方法は特に限定されない。本実施の形態では、前記実施の形態1と同様に、例えば、洗浄後の選別後樹脂材料に対して、熱可塑性エラストマー等を添加して、タンブラーまたはヘンシェルミキサー等の公知の混合装置を用いて均質に混合する方法を挙げることができる。 In the present embodiment, the method of blending the thermoplastic elastomer (and general-purpose polystyrene or the like) with a predetermined blending amount in the elastomer adding step is not particularly limited. In the present embodiment, as in the first embodiment, for example, a thermoplastic elastomer or the like is added to the resin material after sorting after washing, and a known mixing device such as a tumbler or a Henschel mixer is used. The method of mixing uniformly can be mentioned.
 エラストマー添加工程の後には、前記実施の形態1と同様に、加熱混練および押出工程で、選別後樹脂材料に対して熱可塑性エラストマー等を分散させる。このとき、公知の押出機を用いて、選別後樹脂材料を所定条件で加熱混練し、押出機から押し出すことも、押出機にはメッシュフィルタが設けられていることが好ましいことも、前記実施の形態1と同様である。 After the elastomer addition step, as in the first embodiment, a thermoplastic elastomer or the like is dispersed in the post-selection resin material in a heat-kneading and extrusion step. At this time, using a known extruder, the resin material after selection is heat-kneaded under predetermined conditions and extruded from the extruder, or it is preferable that the extruder is provided with a mesh filter. This is the same as the first embodiment.
 ここで、本実施の形態では、押出機における加熱温度(シリンダ温度およびダイス温度等)については、選別後樹脂材料がスチレン系樹脂材料であれば、例えば、200~220℃の温度範囲に設定する例を挙げることができる。また、メッシュフィルタの網目も、本実施の形態では、30~100メッシュの範囲内の網目であることが好ましい。 Here, in the present embodiment, the heating temperature (cylinder temperature, die temperature, etc.) in the extruder is set to a temperature range of 200 to 220 ° C., for example, if the resin material after sorting is a styrene resin material. An example can be given. In the present embodiment, the mesh filter mesh is also preferably within the range of 30 to 100 mesh.
 このように、本実施の形態に係る熱可塑性再生樹脂材料は、廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、熱可塑性エラストマーが少なくとも配合されてなる構成である。 As described above, the thermoplastic recycled resin material according to the present embodiment is selected from the thermoplastic resin waste obtained by pulverizing waste home appliances and containing a plurality of types of resin materials, using a material identification device. In this configuration, at least a thermoplastic elastomer is blended with a specific type of thermoplastic resin material obtained after the dry cleaning treatment.
 前記構成では、熱可塑性再生樹脂材料に対して、少なくとも熱可塑性エラストマーが配合され、好ましくは、特定種類の熱可塑性樹脂材料と同系の汎用樹脂材料が配合される。これにより、樹脂成分中に含まれる異物、特に金属原子または金属イオンが引き起こす種々の劣化反応を抑制することができる。具体的には、選別後樹脂材料がスチレン系樹脂材料であれば、スチレン系の熱可塑性エラストマーを添加することで、得られる熱可塑性再生樹脂材料の耐衝撃性を向上させることができる。また、汎用ポリスチレン(GPPS)を添加することで、得られる熱可塑性再生樹脂材料の強度を高めることができる。それゆえ、良好な耐久性と安定性を有する高品質の熱可塑性再生樹脂材料を得ることができる。 In the above configuration, at least a thermoplastic elastomer is blended with the thermoplastic recycled resin material, and preferably a general-purpose resin material similar to a specific type of thermoplastic resin material is blended. Thereby, the various deterioration reaction which the foreign material contained in a resin component, especially a metal atom or a metal ion causes can be suppressed. Specifically, if the resin material after sorting is a styrene resin material, the impact resistance of the resulting thermoplastic recycled resin material can be improved by adding a styrene thermoplastic elastomer. Moreover, the intensity | strength of the thermoplastic reproduction resin material obtained can be raised by adding general purpose polystyrene (GPPS). Therefore, a high-quality thermoplastic recycled resin material having good durability and stability can be obtained.
 これにより、熱可塑性再生樹脂材料を、射出成形等の成形工程を経て再生樹脂材料の成形品として再利用することができる。また、物性の劣化の促進を有効に抑制できるので、再利用された成形品は、長期間にわたって安定的に使用することができる。さらに、熱可塑性再生樹脂材料を再利用する際には、バージン材を多量に配合しなくても、良好な物性(耐久性、強度、耐衝撃性等)を実現できる。しかも、併用される汎用樹脂材料が再生樹脂材料であれば、バージン材を配合する必要がない。それゆえ、再生資源の使用率を向上することができる。 Thus, the thermoplastic recycled resin material can be reused as a molded product of the recycled resin material through a molding process such as injection molding. Further, since the promotion of deterioration of physical properties can be effectively suppressed, the reused molded product can be used stably over a long period of time. Furthermore, when the thermoplastic recycled resin material is reused, good physical properties (durability, strength, impact resistance, etc.) can be realized without adding a large amount of virgin material. And if the general purpose resin material used together is a recycled resin material, it is not necessary to mix | blend a virgin material. Therefore, the usage rate of recycled resources can be improved.
 (実施の形態4)
 前記実施の形態1では、熱可塑性再生樹脂材料に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤を配合していた。また、前記実施の形態2では、熱可塑性再生樹脂材料に対して、適量の金属不活性化剤を配合していた。これに対して、本実施の形態4では、諸物性のうち難燃性の維持または向上を図るべく、熱可塑性再生樹脂材料に適量の臭素系難燃剤および何年助剤を配合している。この点について、図6を参照して具体的に説明する。図6は、本実施の形態4に係る熱可塑性再生樹脂材料の製造工程(樹脂材料の再生工程または再資源化工程)の一例を示す工程図である。
(Embodiment 4)
In the first embodiment, a phenol-based antioxidant and a sulfur-based antioxidant are blended with the thermoplastic recycled resin material. In the second embodiment, an appropriate amount of a metal deactivator is blended with the thermoplastic recycled resin material. On the other hand, in this Embodiment 4, in order to maintain or improve the flame retardancy among various physical properties, an appropriate amount of a brominated flame retardant and an auxiliary agent for several years are blended in the thermoplastic recycled resin material. This point will be specifically described with reference to FIG. FIG. 6 is a process diagram showing an example of a thermoplastic recycled resin material manufacturing process (resin material recycling process or recycling process) according to the fourth embodiment.
 図6に示す工程は、前記実施の形態1で説明した図2に示す工程、前記実施の形態2で説明した図4に示す工程、または、前記実施の形態3で説明した図5に示す工程と同様であり、図6における「選別された特定種類の熱可塑性樹脂材料」(選別後樹脂材料)は、図1と同様の工程で得られる。また、図6における乾式洗浄工程、洗浄後選別工程、加熱混練および押出工程、並びに、射出成形工程は、前記実施の形態1と同様であるため、その説明は省略する。 The process shown in FIG. 6 is the process shown in FIG. 2 described in the first embodiment, the process shown in FIG. 4 described in the second embodiment, or the process shown in FIG. 5 described in the third embodiment. The “sorted specific kind of thermoplastic resin material” (resin material after sorting) in FIG. 6 is obtained in the same process as in FIG. Further, since the dry cleaning process, the post-cleaning selection process, the heat-kneading and extrusion process, and the injection molding process in FIG. 6 are the same as those in the first embodiment, description thereof is omitted.
 本実施の形態では、乾式洗浄工程または洗浄後選別工程の後に、樹脂改質剤として、臭素系難燃剤およびアンチモン系難燃助剤を添加する、難燃剤添加工程が実施される。この難燃剤添加工程では、選別後樹脂材料100重量部に対して臭素系難燃剤およびアンチモン系難燃助剤の総量が18~25重量部の範囲内で添加される。 In the present embodiment, after the dry cleaning process or the post-cleaning selection process, a flame retardant addition process is performed in which a brominated flame retardant and an antimony flame retardant aid are added as resin modifiers. In this flame retardant addition step, the total amount of brominated flame retardant and antimony flame retardant aid is added within the range of 18 to 25 parts by weight with respect to 100 parts by weight of the resin material after sorting.
 難燃剤添加工程で添加される臭素系難燃剤は特に限定されず、難燃剤として公知の化合物を好適に用いることができる。中でも、好ましい臭素系難燃剤としては、デカブロモジフェニルエーテル、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、エチレンビス(テトラブロモフタルイミド)、ビス(ペンタブロモフェニル)エタン等を挙げることができる。これら臭素系難燃剤は1種類のみ用いられてもよいし2種類以上が適宜組み合わせられて用いられてもよい。これらの中でも、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)が特に好ましく用いられる。 The brominated flame retardant added in the flame retardant addition step is not particularly limited, and a known compound can be suitably used as the flame retardant. Among these, preferable brominated flame retardants include decabromodiphenyl ether, tetrabromobisphenol A-bis (2,3-dibromopropyl ether), ethylene bis (tetrabromophthalimide), bis (pentabromophenyl) ethane, and the like. it can. One type of these brominated flame retardants may be used, or two or more types may be used in appropriate combination. Among these, tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is particularly preferably used.
 また、難燃剤添加工程で臭素系難燃剤とともに添加されるアンチモン系難燃助剤も特に限定されず、例えば、三酸化アンチモン、五酸化アンチモン等が好適に用いられる。これらアンチモン系難燃助剤は、1種類のみ用いられてもよいし、2種類以上が適宜組み合わせられて用いられてもよい。 Also, the antimony flame retardant auxiliary added together with the brominated flame retardant in the flame retardant addition step is not particularly limited, and for example, antimony trioxide, antimony pentoxide, and the like are preferably used. Only one kind of these antimony flame retardant aids may be used, or two or more kinds may be used in appropriate combination.
 臭素系難燃剤とアンチモン系難燃助剤との配合比率は特に限定されないが、臭素系難燃剤の全重量に対して、アンチモン系難燃助剤の重量は1/5~1/2の範囲内であれば好ましい。言い換えれば、臭素系難燃剤の重量:アンチモン系難燃助剤の重量=4:1~2:1の範囲内であれば好ましい。 The blending ratio of brominated flame retardant and antimony flame retardant aid is not particularly limited, but the weight of antimony flame retardant aid is in the range of 1/5 to 1/2 with respect to the total weight of brominated flame retardant. If it is in, it is preferable. In other words, the weight of brominated flame retardant: weight of antimony flame retardant aid = 4: 1 to 2: 1 is preferable.
 また、本実施の形態では、選別後樹脂材料に対して、より選別精度の低い再生樹脂材料(便宜上「低級再生樹脂材料」と称する)を混合して用いてもよい。このとき、選別後樹脂材料100重量部に対して低級再生樹脂材料は30重量部以上混合することができる。これにより、選別精度の低い低級再生樹脂材料を、選別精度の高い選別後樹脂材料とともに再利用することができるので、熱可塑性再生樹脂材料のリサイクル率を向上することが可能となる。 In the present embodiment, a recycled resin material with lower sorting accuracy (referred to as “lower recycled resin material” for convenience) may be mixed with the sorted resin material. At this time, 30 parts by weight or more of the lower recycled resin material can be mixed with 100 parts by weight of the resin material after sorting. As a result, since the lower recycled resin material with low sorting accuracy can be reused together with the post-sorting resin material with high sorting accuracy, the recycling rate of the thermoplastic recycled resin material can be improved.
 ここで、選別後樹脂材料に対して低級再生樹脂材料を30重量部以上混合する場合には、難燃剤添加工程で添加(配合)される臭素系難燃剤およびアンチモン系難燃助剤の総量は、選別後樹脂材料100重量部に対して13~17重量部の範囲内であればよい。すなわち、選別後樹脂材料のみを再生する場合と、低級再生樹脂材料を併用する場合とでは、臭素系難燃剤およびアンチモン系難燃助剤の添加量の好適な範囲が異なっている。 Here, when 30 parts by weight or more of the lower recycled resin material is mixed with the resin material after sorting, the total amount of brominated flame retardant and antimony flame retardant auxiliary added (blended) in the flame retardant addition step is The amount may be in the range of 13 to 17 parts by weight relative to 100 parts by weight of the resin material after sorting. That is, the preferred range of the addition amount of brominated flame retardant and antimony flame retardant aid is different between the case where only the resin material after sorting is regenerated and the case where the lower recycled resin material is used in combination.
 本実施の形態において、選別の対象となる熱可塑性樹脂材料(選別後樹脂材料)の種類は、前記実施の形態1~3と同様に、スチレン系樹脂材料またはポリオレフィンのいずれかを挙げることができる。一つの好ましい樹脂の種類として、ポリプロプロピレンを挙げることができるが、本発明はこれに特に限定されない。 In the present embodiment, the kind of thermoplastic resin material (resin material after sorting) to be selected can be either styrene resin material or polyolefin, as in the first to third embodiments. . One preferred type of resin is polypropylene, but the present invention is not particularly limited thereto.
 前述した樹脂材料選別工程では、乾式洗浄工程により異物(不純物)を除去した選別後樹脂材料であっても、種々の異物が微量に残存しているおそれがある。しかも、これら異物には、可燃性のものも含まれる。熱可塑性再生樹脂材料が難燃剤を含んでいれば、当該熱可塑性再生樹脂材料が、炎に接触しても着火しにくいが、可燃性の異物が混入していると、異物が着火するおそれがある。それゆえ、異物の存在は、熱可塑性再生樹脂材料の各種物性および耐久性に影響を与えるだけでなく、難燃性にも影響を与えることになる。 In the resin material sorting step described above, various sorts of foreign matter may remain even in the resin material after sorting from which foreign matter (impurities) has been removed by the dry cleaning step. In addition, these foreign substances include flammable substances. If the thermoplastic recycled resin material contains a flame retardant, the thermoplastic recycled resin material is difficult to ignite even if it comes into contact with flames, but if flammable foreign matter is mixed in, the foreign matter may ignite. is there. Therefore, the presence of foreign matters not only affects various physical properties and durability of the thermoplastic recycled resin material, but also affects flame retardancy.
 これに対して、本実施の形態では、難燃剤添加工程で、適量の臭素系難燃剤およびアンチモン系難燃助剤を配合している。これにより、選別後樹脂材料の難燃性を、バージン材の難燃性と同程度に改質することができる。これにより、熱可塑性再生樹脂材料を、射出成形等の成形工程を経て再生樹脂材料の成形品として再利用することができる。また、熱可塑性再生樹脂材料を再利用する際には、バージン材を混合しなくても、良好な難燃性を実現することができる。 In contrast, in the present embodiment, an appropriate amount of bromine-based flame retardant and antimony-based flame retardant aid are blended in the flame retardant addition step. Thereby, the flame retardance of the resin material after sorting can be improved to the same extent as the flame retardancy of the virgin material. Thereby, the thermoplastic recycled resin material can be reused as a molded article of the recycled resin material through a molding process such as injection molding. Further, when the recycled thermoplastic resin material is reused, good flame retardancy can be realized without mixing a virgin material.
 本発明について、実施例、比較例および参考例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。なお、以下の実施例、比較例および参考例における物性等の測定・評価は次に示すようにして行った。 The present invention will be described more specifically based on examples, comparative examples, and reference examples, but the present invention is not limited thereto. Those skilled in the art can make various changes, modifications, and alterations without departing from the scope of the present invention. In addition, measurement / evaluation of physical properties and the like in the following examples, comparative examples, and reference examples were performed as follows.
 (物性の測定方法)
 各実施例、各比較例、または参考例で得られた各試験片の引張強度および引張破断伸びは、JIS K7161およびJIS K7162に準じて測定した。同様に、各試験片のアイゾット衝撃値は、JIS K7110に準じて測定した。同様に、各試験片の曲げ試験および曲げ弾性率は、JIS K7171に準じて測定した。
(Measurement method of physical properties)
The tensile strength and the tensile elongation at break of each test piece obtained in each example, each comparative example, or reference example were measured according to JIS K7161 and JIS K7162. Similarly, the Izod impact value of each test piece was measured according to JIS K7110. Similarly, the bending test and bending elastic modulus of each test piece were measured according to JIS K7171.
 また、実施例15および比較例17、18では、各試験片に対して、成形品の強度を検証する独自の評価方法であるボス強度試験を実施した。このボス強度試験では、雄ネジと当該雄ネジに螺合する雌ネジ部を試験片に形成した。そして、雄ネジを螺合して締結および取外しを所定回数繰り返し、雄ネジが締結できなくなるまでの回数(締結の繰返し回数)を計測した。 In Example 15 and Comparative Examples 17 and 18, a boss strength test, which is an original evaluation method for verifying the strength of the molded product, was performed on each test piece. In this boss strength test, a male screw and a female screw portion screwed into the male screw were formed on the test piece. Then, the male screw was screwed and fastening and removal were repeated a predetermined number of times, and the number of times until the male screw could not be fastened (the number of times of fastening) was measured.
 また、実施例16、17および比較例19および20では、UL94V規格の20mm垂直燃焼試験に準じて、各試験片の難燃性を評価した。 In Examples 16 and 17 and Comparative Examples 19 and 20, the flame retardancy of each test piece was evaluated according to the UL94V standard 20 mm vertical combustion test.
 (実施例1)
 図1に示すように、廃家電製品として、回収された使用済の冷蔵庫を用いた。この冷蔵庫に対して、図1に示す各工程(分解および解体工程、破砕工程、風力選別工程、磁力選別工程、渦電流選別工程等)を実施して、熱可塑性樹脂廃材(シュレッダーダスト)を製造した。この熱可塑性樹脂廃材から、図3に示す近赤外線識別システム20を用いて、ハイインパクトポリスチレン(HIPS)を選別した(樹脂材料選別工程)。その後、このHIPS(選別後樹脂材料)に対して、図2に示す乾式洗浄処理を行った(乾式洗浄工程)。この洗浄後のHIPSを原料とした。
(Example 1)
As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, high-impact polystyrene (HIPS) was selected using a near-infrared identification system 20 shown in FIG. 3 (resin material selection step). Then, the dry cleaning process shown in FIG. 2 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed HIPS was used as a raw material.
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤として、スミライザーGA-80(商品名、住友化学製)を0.1重量部、並びに、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.1重量部、リン系酸化防止剤としてIRGAFOS168(商品名、BASF製)を0.05重量部添加して、混合した(図2に示す酸化防止剤添加工程)。 100 parts by weight of HIPS after washing, 0.1 part by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) as a phenol-based antioxidant, and Sumilizer TP-D (commodity as a sulfur-based antioxidant) Name, manufactured by Sumitomo Chemical Co., Ltd.) and 0.1 part by weight of IRGAFOS168 (trade name, manufactured by BASF) as a phosphorus-based antioxidant were added and mixed (antioxidant addition step shown in FIG. 2). .
 その後、押出機により200℃で加熱しながら、HIPSおよび各酸化防止剤を混練し、メッシュサイズ60のメッシュフィルタを用いて押し出した。これにより、熱可塑性再生樹脂材料としてのHIPSのペレットを製造した(図2に示す加熱混練および押出工程)。このペレット(熱可塑性再生樹脂材料)を、成形温度200℃かつ金型温度30℃の成形条件で射出成型し、成形品としての試験片を製造した(図2に示す射出成形工程)。 Then, while heating at 200 ° C. with an extruder, HIPS and each antioxidant were kneaded and extruded using a mesh filter of mesh size 60. In this way, pellets of HIPS as a thermoplastic recycled resin material were produced (heating kneading and extrusion process shown in FIG. 2). This pellet (thermoplastic recycled resin material) was injection molded under molding conditions of a molding temperature of 200 ° C. and a mold temperature of 30 ° C. to produce a test piece as a molded product (injection molding process shown in FIG. 2).
 得られた試験片について、その物性(初期物性)を測定した。その後、試験片を80℃の恒温炉に2000時間放置し(耐久試験)、その後の物性(耐久試験後物性)も測定して評価した。初期物性と耐久試験後物性との変化率を表1に示す。 The physical properties (initial physical properties) of the obtained test pieces were measured. Thereafter, the test piece was left in an oven at 80 ° C. for 2000 hours (endurance test), and the subsequent physical properties (physical properties after the endurance test) were also measured and evaluated. Table 1 shows the rate of change between the initial physical properties and the physical properties after the durability test.
 (実施例2)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてスミライザーGA-80(商品名、住友化学製)を0.067重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.133重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Example 2)
0.067 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) as a phenolic antioxidant and 100 parts by weight of HIPS after cleaning, Sumizer TP-D (trade name, Sumitomo) as a sulfur-based antioxidant A test piece was produced in the same manner as in Example 1 except that 0.133 part by weight of Chemical) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (実施例3)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてスミライザーGA-80(商品名、住友化学製)を0.05重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.15重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Example 3)
0.05 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) as a phenol-based antioxidant and 100 parts by weight of HIPS after cleaning, Sumizer TP-D (trade name, Sumitomo) as a sulfur-based antioxidant A test piece was produced in the same manner as in Example 1 except that 0.15 part by weight of Chemical) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (実施例4)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてスミライザーGA-80(商品名、住友化学製)を0.125重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.375重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
Example 4
0.125 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical) as a phenolic antioxidant and 100 parts by weight of HIPS after cleaning, Sumizer TP-D (trade name, Sumitomo) as a sulfur-based antioxidant A test piece was produced in the same manner as in Example 1 except that 0.375 part by weight of Chemical) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (実施例5)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてIRGANOX245(商品名、BASF製)を0.1重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.1重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Example 5)
For 100 parts by weight of HIPS after washing, 0.1 part by weight of IRGANOX245 (trade name, manufactured by BASF) is used as a phenolic antioxidant, and Sumizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 1 except that 0.1 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (実施例6)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.1重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.1重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Example 6)
For 100 parts by weight of HIPS after washing, 0.1 part by weight of IRGANOX 1076 (trade name, manufactured by BASF) is used as a phenol-based antioxidant, and Sumizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 1 except that 0.1 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (実施例7)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.05重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.15重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Example 7)
For 100 parts by weight of HIPS after washing, 0.05 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) is used as a phenol-based antioxidant, and Sumilizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 1 except that 0.15 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (実施例8)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.25重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.25重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Example 8)
With respect to 100 parts by weight of HIPS after washing, 0.25 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) is used as a phenol-based antioxidant, and Sumilizer TP-D (trade name, manufactured by Sumitomo Chemical) is used as a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 1 except that 0.25 part by weight was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例1)
 廃家電製品由来の熱可塑性樹脂廃材(シュレッダーダスト)からHIPSを選別して、選別後樹脂材料として用いるのではなく、HIPSのバージン材(商品名:H9152、PSジャパン製)を原料として用いた以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 1)
Rather than using HIPS virgin material (trade name: H9152, manufactured by PS Japan) as a raw material, instead of selecting HIPS from thermoplastic resin waste (shredder dust) derived from waste home appliances and using it as a resin material after sorting Produced a test piece in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例2)
 洗浄後のHIPS100重量部に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤を添加しなかった(すなわち、酸化防止剤として、リン系酸化防止剤であるIRGAFOS168(商品名、BASF製)のみを0.05重量部添加した)以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 2)
Phenol antioxidant and sulfur antioxidant were not added to 100 parts by weight of HIPS after washing (that is, only IRGAFOS168 (trade name, manufactured by BASF), which is a phosphorus antioxidant, as an antioxidant) A test piece was produced in the same manner as in Example 1 except that 0.05 part by weight of (A) was added. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例3)
 洗浄後のHIPS100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.2重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 3)
Example 1 except that 0.2 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) was added as a phenol-based antioxidant without adding a sulfur-based antioxidant to 100 parts by weight of HIPS after washing. A test piece was produced in the same manner. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例4)
 洗浄後のHIPS100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.5重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 4)
Example 1 except that 0.5 parts by weight of IRGANOX 1076 (trade name, manufactured by BASF) was added as a phenol-based antioxidant without adding a sulfur-based antioxidant to 100 parts by weight of HIPS after washing. A test piece was produced in the same manner. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例5)
 洗浄後のHIPS100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤として、IRGANOX1076(商品名、BASF製)を1.0重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 5)
Example 1 with the exception that 1.0 part by weight of IRGANOX 1076 (trade name, manufactured by BASF) was added as a phenol-based antioxidant without adding a sulfur-based antioxidant to 100 parts by weight of HIPS after washing. A test piece was produced in the same manner as described above. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例6)
 洗浄後のHIPS100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤として、スミライザーGA-80(商品名、住友化学製)を0.2重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 6)
Except for adding 100 parts by weight of HIPS after washing, 0.2 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) was added as a phenolic antioxidant without adding a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例7)
 洗浄後のHIPS100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤として、スミライザーGA-80(商品名、住友化学製)を0.5重量部添加した以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 7)
Except for adding 100 parts by weight of HIPS after washing without adding a sulfur-based antioxidant and adding 0.5 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical) as a phenol-based antioxidant. A test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例8)
 廃家電製品として、回収された家庭用の空気調和機を用いた。この空気調和機からHIPSを手回収樹脂廃材として回収して原料とした以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 8)
The collected home air conditioner was used as a waste home appliance. A test piece was produced in the same manner as in Example 1 except that HIPS was recovered as a manually recovered resin waste material from this air conditioner and used as a raw material. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例9)
 比較例1で用いたHIPSのバージン材(商品名:H9152、PSジャパン製)と、比較例3で得られた熱可塑性再生樹脂材料とを5:5で混合し、原料とした以外は、実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 9)
Except that the HIPS virgin material (trade name: H9152, manufactured by PS Japan) used in Comparative Example 1 and the thermoplastic recycled resin material obtained in Comparative Example 3 were mixed at 5: 5 to obtain raw materials. A test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
 (比較例10)
 比較例1で用いたHIPSのバージン材(商品名:H9152、PSジャパン製)と、比較例3で得られた熱可塑性再生樹脂材料とを7:3で混合し、原料とした以外は実施例1と同様にして試験片を製造した。この試験片について、実施例1と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表1に示す。
(Comparative Example 10)
Example except that HIPS virgin material (trade name: H9152, manufactured by PS Japan) used in Comparative Example 1 and the thermoplastic recycled resin material obtained in Comparative Example 3 were mixed at 7: 3 to obtain raw materials. A test piece was produced in the same manner as in Example 1. About this test piece, it carried out similarly to Example 1, and measured the initial physical property and the physical property after an endurance test. Table 1 shows the rate of change of these physical properties.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例1~8および比較例1~10の対比)
 表1に示す結果から、実施例1~8および比較例1~10を対比する。まず、比較例1の試験片(バージン材)では、測定した物性のうち引張破断の伸びおよびアイゾット衝撃値はほとんど低下していない。また、比較例2の試験片(フェノール系酸化防止剤およびイオウ系酸化防止剤を添加しないもの)は、引張破断の伸びおよびアイゾット衝撃値が大幅に低下している。また、比較例3の試験片(一般的なHIPSに含まれる酸化防止剤を、一般的な添加量で添加したもの)でも、引張破断の伸びおよびアイゾット衝撃値が大幅に低下している。これら比較例の結果から、廃家電製品の熱可塑性樹脂廃材から選別したHIPS(熱可塑性再生樹脂材料)は、その物性の劣化が加速されていると判断される。
(Contrast of Examples 1 to 8 and Comparative Examples 1 to 10)
From the results shown in Table 1, Examples 1 to 8 and Comparative Examples 1 to 10 are compared. First, in the test piece (virgin material) of Comparative Example 1, the elongation at break and the Izod impact value of the measured physical properties are hardly lowered. Moreover, the test piece of Comparative Example 2 (without adding a phenolic antioxidant and a sulfurous antioxidant) has a significantly reduced elongation at break and Izod impact value. Further, even in the test piece of Comparative Example 3 (in which an antioxidant contained in general HIPS is added in a general addition amount), the elongation at break and the Izod impact value are significantly reduced. From the results of these comparative examples, it is determined that the deterioration of physical properties of HIPS (thermoplastic recycled resin material) selected from the thermoplastic resin waste material of waste home appliances is accelerated.
 比較例8の試験片(家庭用の空気調和機から手回収したHIPSを用いたもの)では、比較例1の試験片(バージン材)と同等ではないものの、比較例2または比較例3の試験片に比べ、その物性の劣化が小さいことがわかる。これら比較例の結果から、手回収したHIPSは、近赤外線識別システム20を用いて選別したHIPSに比べ、物性の劣化が抑えられていると判断される。 Although the test piece of Comparative Example 8 (using HIPS manually collected from a domestic air conditioner) is not equivalent to the test piece of Comparative Example 1 (virgin material), the test of Comparative Example 2 or Comparative Example 3 It can be seen that the deterioration of the physical properties is small compared to the piece. From the results of these comparative examples, it is determined that hand-collected HIPS is less deteriorated in physical properties than HIPS selected using the near-infrared identification system 20.
 比較例8の試験片に含まれる酸化防止剤の配合量(添加量)は、比較例3の試験片に含まれる酸化防止剤の約60%程度である。これら比較例の結果から、近赤外線識別システム20を用いて選別したHIPSは劣化が大きいこと、それゆえ、異物等が劣化加速因子として影響している可能性があることが示唆される。 The blending amount (addition amount) of the antioxidant contained in the test piece of Comparative Example 8 is about 60% of the antioxidant contained in the test piece of Comparative Example 3. From the results of these comparative examples, it is suggested that the HIPS selected using the near-infrared identification system 20 is greatly deteriorated, and therefore, foreign matter or the like may have an influence as a deterioration accelerating factor.
 また、比較例9の試験片および比較例10の試験片(比較例3の熱可塑性再生樹脂材料にバージン材を50%以上配合したもの)では、初期物性の改善が見られた。しかしながら、耐久試験後物性は、初期物性に比べて大きく低下していた。それゆえ、比較例3、9および10の結果から、近赤外線識別システム20で選別したHIPSは、バージン材を配合しても、耐久性の低下を十分に改善できないと判断される。 In addition, in the test piece of Comparative Example 9 and the test piece of Comparative Example 10 (the thermoplastic recycled resin material of Comparative Example 3 blended with 50% or more virgin material), the initial physical properties were improved. However, the physical properties after the durability test were greatly reduced compared to the initial physical properties. Therefore, from the results of Comparative Examples 3, 9, and 10, it is determined that the HIPS selected by the near infrared identification system 20 cannot sufficiently improve the decrease in durability even when the virgin material is blended.
 比較例2~5では、フェノール系酸化防止剤の添加量を徐々に増加させている。また、比較例6および7では、異なる種類のフェノール系酸化防止剤の添加量を変化(増加)させている。これら比較例の試験片の物性から、フェノール系酸化防止剤の添加量を増加させれば、物性の低下が抑制される傾向にあると判断される。また、比較例2~5と比較例6および7の結果から、フェノール系酸化防止剤の種類を変えても、物性の低下は同程度に抑制可能であること、比較例6および7で用いたフェノール系酸化防止剤(住友化学製の商品名スミライザーGA-80)の方が、比較例2~6で用いたフェノール系酸化防止剤(BASF製の商品名IRGANOX1076)よりも物性の低下を改善する効果が高い傾向にあると判断される。 In Comparative Examples 2 to 5, the amount of phenolic antioxidant added is gradually increased. In Comparative Examples 6 and 7, the addition amount of different types of phenolic antioxidants is changed (increased). From the physical properties of the test pieces of these comparative examples, it is judged that the decrease in physical properties tends to be suppressed if the amount of the phenolic antioxidant added is increased. Further, from the results of Comparative Examples 2 to 5 and Comparative Examples 6 and 7, even if the type of phenolic antioxidant is changed, the decrease in physical properties can be suppressed to the same extent, and it was used in Comparative Examples 6 and 7. The phenolic antioxidant (trade name Sumilizer GA-80 manufactured by Sumitomo Chemical) improves the deterioration of physical properties more than the phenolic antioxidant used in Comparative Examples 2 to 6 (trade name IRGANOX1076 manufactured by BASF). It is judged that the effect tends to be high.
 特に、比較例5の結果から、フェノール系酸化防止剤を1重量部添加することで、比較例1(バージン材)と同等ではないものの、その物性の劣化が有効に抑えられている。それゆえ、フェノール系酸化防止剤を多く添加することで、耐久性の大きな改善が可能である。ただし、HIPSへの酸化防止剤の添加量として、1重量部という添加量は、一般的に見てかなり多量であると判断される。 Particularly, from the results of Comparative Example 5, by adding 1 part by weight of a phenolic antioxidant, deterioration of its physical properties is effectively suppressed although it is not equivalent to Comparative Example 1 (virgin material). Therefore, the durability can be greatly improved by adding a large amount of phenolic antioxidant. However, as an addition amount of the antioxidant to HIPS, the addition amount of 1 part by weight is generally judged to be considerably large.
 実施例1の試験片では、フェノール系酸化防止剤およびイオウ系酸化防止剤を添加している。それゆえ、比較例3の試験片(一般的なHIPSに含まれる酸化防止剤を、一般的な添加量で添加したもの)または比較例6の試験片(フェノール系酸化防止剤のみを添加したもの)に比べて、物性の低下が良好に改善されている。さらに、実施例2および実施例3の試験片では、イオウ系酸化防止剤の添加量(配合量)を増加させている。これら実施例の試験片では、比較例5の試験片(フェノール系酸化防止剤を1重量部添加したもの)に比べても、物性の低下がより良好に改善されている。 In the test piece of Example 1, a phenol-based antioxidant and a sulfur-based antioxidant are added. Therefore, the test piece of Comparative Example 3 (in which an antioxidant contained in general HIPS is added in a general addition amount) or the test piece of Comparative Example 6 (in which only a phenolic antioxidant is added) ), The deterioration of physical properties is improved satisfactorily. Furthermore, in the test pieces of Example 2 and Example 3, the addition amount (blending amount) of the sulfur-based antioxidant is increased. In the test pieces of these Examples, even when compared with the test piece of Comparative Example 5 (one added with 1 part by weight of a phenolic antioxidant), the decrease in physical properties is improved more favorably.
 また、実施例4の試験片では、フェノール系酸化防止剤およびイオウ系酸化防止剤の総添加量を多くしているが、これにより、比較例1の試験片(バージン材)と同程度まで、物性の低下が大幅に改善されている。 Moreover, in the test piece of Example 4, although the total addition amount of a phenolic antioxidant and sulfur type antioxidant is increased, by this, to the same extent as the test piece (virgin material) of the comparative example 1, The decrease in physical properties has been greatly improved.
 さらに、実施例5~8の試験片では、フェノール系酸化防止剤またはイオウ系酸化防止剤の種類を変えたり添加量を代えたりしても、実施例1~4と同様に、物性の低下が良好に改善されている。特に実施例8の試験片では、フェノール系酸化防止剤またはイオウ系酸化防止剤の総添加量が0.5重量部であっても、比較例1の試験片(バージン材)と同程度まで物性の低下が改善されている。また、実施例6および7の試験片の物性から、原料(選別後樹脂材料)が同じであっても、イオウ系酸化防止剤の種類によっては物性の低下を改善する効果に違いが見られる。それゆえ、イオウ系酸化防止剤(またはフェノール系酸化防止剤)においては、諸条件に応じて添加量を増やしてもよい。 Further, in the test pieces of Examples 5 to 8, even when the type of phenolic antioxidant or sulfur antioxidant is changed or the amount of addition is changed, the physical properties are decreased as in Examples 1 to 4. It has been improved well. In particular, in the test piece of Example 8, even if the total amount of phenolic antioxidant or sulfur-based antioxidant was 0.5 parts by weight, the physical properties were the same as those of the test piece (virgin material) of Comparative Example 1. The decline has been improved. Further, from the physical properties of the test pieces of Examples 6 and 7, even if the raw material (resin material after sorting) is the same, there is a difference in the effect of improving the decrease in physical properties depending on the kind of the sulfur-based antioxidant. Therefore, in the sulfur-based antioxidant (or phenol-based antioxidant), the addition amount may be increased according to various conditions.
 (実施例9)
 図1に示すように、廃家電製品として、回収された使用済の冷蔵庫を用いた。この冷蔵庫に対して、図1に示す各工程(分解および解体工程、破砕工程、風力選別工程、磁力選別工程、渦電流選別工程等)を実施して、熱可塑性樹脂廃材(シュレッダーダスト)を製造した。この熱可塑性樹脂廃材から、図3に示す近赤外線識別システム20を用いて、ABS樹脂を選別した(樹脂材料選別工程)。その後、このHIPS(選別後樹脂材料)に対して、図2に示す乾式洗浄処理を行った(乾式洗浄工程)。この洗浄後のABS樹脂を原料とした。
Example 9
As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, an ABS resin was sorted using a near infrared ray identification system 20 shown in FIG. 3 (resin material sorting step). Then, the dry cleaning process shown in FIG. 2 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed ABS resin was used as a raw material.
 洗浄後のABS樹脂100重量部に対して、フェノール系酸化防止剤とし、スミライザーGA-80(商品名、住友化学製)を0.05重量部、イオウ系酸化防止剤としてスミライザーTP-D(商品名、住友化学製)を0.05重量部、リン系酸化防止剤としてIRGAFOS168(商品名、BASF製)を0.05重量部添加して、混合した(図2に示す酸化防止剤添加工程)。 100 parts by weight of the ABS resin after washing is phenolic antioxidant, 0.05 parts by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) and Sumilyzer TP-D (product of sulfur-based antioxidants) Name, manufactured by Sumitomo Chemical Co., Ltd.) and 0.05 parts by weight of IRGAFOS168 (trade name, manufactured by BASF) as a phosphorus-based antioxidant were added and mixed (antioxidant addition step shown in FIG. 2). .
 その後、押出機により220℃で加熱しながら、ABS樹脂および各酸化防止剤を混練し、メッシュサイズ60のメッシュフィルタを用いて押し出した。これにより、熱可塑性再生樹脂材料としてのABS樹脂のペレットを製造した(図2に示す加熱混練および押出工程)。このペレット(熱可塑性再生樹脂材料)を、成形温度230℃かつ金型温度50℃の成形条件で射出成型し、成形品としての試験片を製造した(図2に示す射出成形工程)。 Then, while heating at 220 ° C. with an extruder, the ABS resin and each antioxidant were kneaded and extruded using a mesh filter of mesh size 60. This produced pellets of ABS resin as a thermoplastic recycled resin material (heating kneading and extruding steps shown in FIG. 2). This pellet (thermoplastic recycled resin material) was injection molded under molding conditions of a molding temperature of 230 ° C. and a mold temperature of 50 ° C. to produce a test piece as a molded product (injection molding process shown in FIG. 2).
 得られた試験片について、その物性(初期物性)を測定した。その後、試験片を80℃の恒温炉に3000時間放置し(耐久試験)、その後の物性(耐久試験後物性)も測定して評価した。初期物性と耐久試験後物性との変化率を表2に示す。 The physical properties (initial physical properties) of the obtained test pieces were measured. Thereafter, the test piece was left in an oven at 80 ° C. for 3000 hours (endurance test), and the subsequent physical properties (physical properties after the endurance test) were also measured and evaluated. Table 2 shows the rate of change between the initial physical properties and the physical properties after the durability test.
 (比較例11)
 廃家電製品由来の熱可塑性樹脂廃材(シュレッダーダスト)からABS樹脂を選別して、選別後樹脂材料として用いるのではなく、ABS樹脂のバージン材(商品名:700-X01、東レ製)を原料として用いた以外は、実施例9と同様にして試験片を製造した。この試験片について、実施例9と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表2に示す。
(Comparative Example 11)
Rather than selecting ABS resin from waste thermoplastic resin (shredder dust) derived from waste home appliances and using it as a resin material after sorting, ABS resin virgin material (trade name: 700-X01, manufactured by Toray) is used as a raw material. A test piece was produced in the same manner as in Example 9 except that it was used. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
 (比較例12)
 洗浄後のABS樹脂100重量部に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤を添加しなかった(すなわち、酸化防止剤として、リン系酸化防止剤であるIRGAFOS168(商品名、BASF製)のみを0.05重量部添加した)以外は、実施例9と同様にして試験片を製造した。この試験片について、実施例9と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表2に示す。
(Comparative Example 12)
Phenol antioxidant and sulfur antioxidant were not added to 100 parts by weight of ABS resin after washing (that is, IRGAFOS168 (trade name, manufactured by BASF, which is a phosphorus antioxidant as an antioxidant). A test piece was produced in the same manner as in Example 9 except that 0.05 part by weight of only) was added. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
 (比較例13)
 洗浄後のABS樹脂100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.1重量部、リン系酸化防止剤としてIRGAFOS168(商品名、BASF製)を0.05重量部添加した以外は、実施例9と同様にして試験片を製造した。この試験片について、実施例9と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表2に示す。
(Comparative Example 13)
Without adding a sulfur-based antioxidant to 100 parts by weight of the ABS resin after washing, 0.1 part by weight of IRGANOX 1076 (trade name, manufactured by BASF) as a phenol-based antioxidant, as a phosphorus-based antioxidant A test piece was produced in the same manner as in Example 9 except that 0.05 part by weight of IRGAFOS168 (trade name, manufactured by BASF) was added. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
 (比較例14)
 洗浄後のABS樹脂100重量部に対して、イオウ系酸化防止剤を添加せずに、フェノール系酸化防止剤としてスミライザーGA-80(商品名、住友化学製)を0.1重量部、リン系酸化防止剤としてIRGAFOS168(商品名、BASF製)を0.05重量部添加した以外は、実施例9と同様にして試験片を製造した。この試験片について、実施例9と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表2に示す。
(Comparative Example 14)
For 100 parts by weight of the washed ABS resin, 0.1 part by weight of Sumilizer GA-80 (trade name, manufactured by Sumitomo Chemical Co., Ltd.) is added as a phenolic antioxidant without adding a sulfur-based antioxidant. A test piece was produced in the same manner as in Example 9, except that 0.05 part by weight of IRGAFOS168 (trade name, manufactured by BASF) was added as an antioxidant. About this test piece, it carried out similarly to Example 9, and measured the initial physical property and the physical property after an endurance test. Table 2 shows the rate of change of these physical properties.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例9および比較例11~14の対比)
 表2に示す結果から、実施例9および比較例11~14(並びに表1の結果)を対比する。比較例12~14の試験片においても、表1の比較例2~7と同様に、物性の低下が見られるが、比較例13および比較例14の試験片と比較例12の試験片とを比較すると、フェノール系酸化防止剤を添加することにより、物性の低下が改善されていると判断される。
(Contrast of Example 9 and Comparative Examples 11 to 14)
From the results shown in Table 2, Example 9 and Comparative Examples 11 to 14 (and the results of Table 1) are compared. In the test pieces of Comparative Examples 12 to 14 as well, the physical properties are deteriorated as in Comparative Examples 2 to 7 of Table 1, but the test pieces of Comparative Examples 13 and 14 and the test piece of Comparative Example 12 are used. In comparison, it is judged that the decrease in physical properties is improved by adding a phenolic antioxidant.
 さらに、実施例9の試験片では、フェノール系酸化防止剤およびイオウ系酸化防止剤を添加しているので、比較例13および比較例14の試験片よりも物性の低下が改善されている。また、実施例9の試験片では、比較例11の試験片(バージン材)と同程度に、物性が改善されている。 Furthermore, in the test piece of Example 9, since the phenolic antioxidant and the sulfur-based antioxidant are added, the deterioration of physical properties is improved as compared with the test pieces of Comparative Example 13 and Comparative Example 14. Moreover, in the test piece of Example 9, the physical properties are improved to the same extent as the test piece (virgin material) of Comparative Example 11.
 (実施例10)
 図1に示すように、廃家電製品として、回収された使用済の冷蔵庫を用いた。この冷蔵庫に対して、図1に示す各工程(分解および解体工程、破砕工程、風力選別工程、磁力選別工程、渦電流選別工程等)を実施して、熱可塑性樹脂廃材(シュレッダーダスト)を製造した。この熱可塑性樹脂廃材から、図3に示す近赤外線識別システム20を用いてHIPSを選別した(樹脂材料選別工程)。その後、このHIPS(選別後樹脂材料)に対して、図4に示す乾式洗浄処理を行った(乾式洗浄工程)。この洗浄後のHIPSを原料とした。
(Example 10)
As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, HIPS was selected using a near-infrared identification system 20 shown in FIG. 3 (resin material selection step). Then, the dry cleaning process shown in FIG. 4 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed HIPS was used as a raw material.
 洗浄後のHIPS100重量部に対して、金属不活性化剤として、アデカスタブCDA-10(商品名、ADEKA製)を0.1重量部添加するとともに、リン系酸化防止剤としてIRGAFOS168(商品名、BASF製)を0.05重量部添加して、混合した(図4に示す金属不活性化剤添加工程)。 0.1 parts by weight of ADK STAB CDA-10 (trade name, manufactured by ADEKA) is added as a metal deactivator to 100 parts by weight of HIPS after washing, and IRGAFOS168 (trade name, BASF) is used as a phosphorus antioxidant. 0.05 part by weight was added and mixed (metal deactivator addition step shown in FIG. 4).
 その後、押出機により200℃で加熱しながら、HIPSおよび各添加剤を混練し、メッシュサイズ60のメッシュフィルタを用いて押し出した。これにより、熱可塑性再生樹脂材料としてのHIPSのペレットを製造した(図4に示す加熱混練および押出工程)。このペレット(熱可塑性再生樹脂材料)を、成形温度200℃かつ金型温度30℃の成形条件で射出成型し、成形品としての試験片を製造した(図4に示す射出成形工程)。 Then, while heating at 200 ° C. with an extruder, HIPS and each additive were kneaded and extruded using a mesh filter of mesh size 60. In this way, pellets of HIPS as a thermoplastic recycled resin material were produced (heat kneading and extrusion process shown in FIG. 4). This pellet (thermoplastic recycled resin material) was injection molded under molding conditions of a molding temperature of 200 ° C. and a mold temperature of 30 ° C. to produce a test piece as a molded product (injection molding process shown in FIG. 4).
 得られた試験片について、その物性(初期物性)を測定した。その後、試験片を80℃の恒温炉に1000時間放置し(耐久試験)、その後の物性(耐久試験後物性)も測定して評価した。初期物性と耐久試験後物性との変化率を表3に示す。 The physical properties (initial physical properties) of the obtained test pieces were measured. Thereafter, the test piece was left in a constant temperature oven at 80 ° C. for 1000 hours (durability test), and the subsequent physical properties (physical properties after the durability test) were also measured and evaluated. Table 3 shows the rate of change between the initial physical properties and the physical properties after the durability test.
 (実施例11)
 洗浄後のHIPS100重量部に対して、金属不活性化剤として、アデカスタブCDA-1(商品名、ADEKA製)を0.1重量部添加した以外は、実施例10と同様にして試験片を製造した。この試験片について、実施例10と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表3に示す。
(Example 11)
A test piece was produced in the same manner as in Example 10, except that 0.1 part by weight of Adeka Stub CDA-1 (trade name, manufactured by ADEKA) was added as a metal deactivator to 100 parts by weight of HIPS after washing. did. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
 (実施例12)
 洗浄後のHIPS100重量部に対して、金属不活性化剤として、アデカスタブCDA-10(商品名、ADEKA製)を0.1重量部添加するとともに、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.1重量部添加した以外は、実施例10と同様にして試験片を製造した。この試験片について、実施例10と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表3に示す。
Example 12
0.1 parts by weight of ADEKA STAB CDA-10 (trade name, manufactured by ADEKA) is added as a metal deactivator to 100 parts by weight of HIPS after washing, and IRGANOX 1076 (trade name, BASF) is used as a phenolic antioxidant. A test piece was produced in the same manner as in Example 10 except that 0.1 part by weight of the product was added. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
 (実施例13)
 洗浄後のHIPS100重量部に対して、金属不活性化剤として、アデカスタブCDA-1(商品名、ADEKA社製)を0.1重量部添加するとともに、フェノール系酸化防止剤としてIRGANOX1076(商品名、BASF製)を0.1重量部添加した以外は、実施例10と同様にして試験片を製造した。この試験片について、実施例10と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表3に示す。
(Example 13)
0.1 parts by weight of ADK STAB CDA-1 (trade name, manufactured by ADEKA) as a metal deactivator is added to 100 parts by weight of HIPS after washing, and IRGANOX 1076 (trade name, A test piece was produced in the same manner as in Example 10 except that 0.1 part by weight of BASF was added. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
 (比較例15)
 廃家電製品由来の熱可塑性樹脂廃材(シュレッダーダスト)からHIPSを選別して、選別後樹脂材料として用いるのではなく、HIPSのバージン材(商品名:H9152、PSジャパン製)を原料として用いた以外は、実施例10と同様にして試験片を製造した。この試験片について、実施例10と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表3に示す。
(Comparative Example 15)
Rather than using HIPS virgin material (trade name: H9152, manufactured by PS Japan) as a raw material, instead of selecting HIPS from thermoplastic resin waste (shredder dust) derived from waste home appliances and using it as a resin material after sorting Produced a test piece in the same manner as in Example 10. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
 (比較例16)
 洗浄後のHIPS100重量部に対して、金属不活性化剤を添加しなかった(すなわち、酸化防止剤として、リン系酸化防止剤であるIRGAFOS168(商品名、BASF製)のみを0.05重量部添加した)以外は、実施例10と同様にして試験片を製造した。この試験片について、実施例10と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表3に示す。
(Comparative Example 16)
No metal deactivator was added to 100 parts by weight of HIPS after washing (that is, 0.05 parts by weight of only IRGAFOS168 (trade name, manufactured by BASF) which is a phosphorus-based antioxidant as an antioxidant). A test piece was produced in the same manner as in Example 10 except that (added) was performed. About this test piece, it carried out similarly to Example 10, and measured the initial physical property and the physical property after an endurance test. Table 3 shows the rate of change of these physical properties.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例10~13および比較例15、16の対比)
 表3に示す結果から、実施例10~13および比較例15、16を対比する。まず、比較例15の試験片(バージン材)では、測定した物性のうち引張破断の伸びおよびアイゾット衝撃値はほとんど低下していない。また、比較例16の試験片(金属不活性化剤を添加しないもの)は、引張破断の伸びおよびアイゾット衝撃値が大幅に低下している。これら比較例の結果から、前述した比較例1~3の結果と同様に、廃家電製品の熱可塑性樹脂廃材から選別したHIPS(熱可塑性再生樹脂材料)は、その物性が大幅に低下(劣化)していると判断される。
(Contrast of Examples 10 to 13 and Comparative Examples 15 and 16)
From the results shown in Table 3, Examples 10 to 13 and Comparative Examples 15 and 16 are compared. First, in the test piece (virgin material) of Comparative Example 15, the elongation at break and the Izod impact value of the measured physical properties are hardly lowered. In addition, the tensile strength at break and the Izod impact value of the test piece of Comparative Example 16 (without the addition of a metal deactivator) are greatly reduced. From the results of these comparative examples, similar to the results of Comparative Examples 1 to 3 described above, HIPS (thermoplastic recycled resin material) selected from the waste thermoplastic resin materials of waste home appliances has greatly reduced (deteriorated) physical properties. It is judged that
 一方、実施例10および実施例11の試験片(金属不活性化剤を0.1重量部添加したもの)では、比較例16の試験片(金属不活性剤を添加しないもの)に比べ、物性の低下が良好に改善されている。また、実施例12および実施例13の試験片(金属不活性化剤とフェノール系酸化防止剤とを併用したもの)では、物性の低下がより一層改善されている。したがって、これら実施例の結果から、樹脂改質剤としては、金属不活性化剤とフェノール系酸化防止剤とを併用することにより、より一層優れた効果を奏することができる。また、金属不活性化剤、フェノール系酸化防止剤、およびイオウ系酸化防止剤を併用することにより、さらに一層優れた効果を奏することが期待される。 On the other hand, the test pieces of Example 10 and Example 11 (those with 0.1 parts by weight of a metal deactivator) were compared with the test pieces of Comparative Example 16 (those without the addition of a metal deactivator). The drop is improved satisfactorily. In addition, in the test pieces of Example 12 and Example 13 (in which a metal deactivator and a phenolic antioxidant are used in combination), the deterioration of physical properties is further improved. Therefore, from the results of these examples, a more excellent effect can be achieved by using a metal deactivator and a phenolic antioxidant together as the resin modifier. In addition, it is expected that even more excellent effects can be achieved by using a metal deactivator, a phenolic antioxidant, and a sulfurous antioxidant in combination.
 (実施例14)
 図1に示すように、廃家電製品として、回収された使用済の冷蔵庫を用いた。この冷蔵庫に対して、図1に示す各工程(分解および解体工程、破砕工程、風力選別工程、磁力選別工程、渦電流選別工程等)を実施して、熱可塑性樹脂廃材(シュレッダーダスト)を製造した。この熱可塑性樹脂廃材から、図3に示す近赤外線識別システム20を用いてHIPSを選別した(樹脂材料選別工程)。その後、このHIPS(選別後樹脂材料)に対して、図5に示す乾式洗浄処理を行った(乾式洗浄工程)。この洗浄後のHIPSを原料とした。
(Example 14)
As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, HIPS was selected using a near-infrared identification system 20 shown in FIG. 3 (resin material selection step). Then, the dry cleaning process shown in FIG. 5 was performed on this HIPS (resin material after sorting) (dry cleaning process). The washed HIPS was used as a raw material.
 洗浄後のHIPS100重量部に対して、熱可塑性エラストマーとしてTR2000(商品名、JSR製)を6重量部添加、混合した(図5に示すエラストマー添加工程)。 6 parts by weight of TR2000 (trade name, manufactured by JSR) as a thermoplastic elastomer was added to and mixed with 100 parts by weight of HIPS after washing (elastomer addition step shown in FIG. 5).
 その後、押出機により200℃で加熱しながら、HIPSおよび熱可塑性エラストマーを混練し、メッシュサイズ60のメッシュフィルタを用いて押し出した。これにより、熱可塑性再生樹脂材料としてのHIPSのペレットを製造した(図5に示す加熱混練および押出工程)。このペレット(熱可塑性再生樹脂材料)を、成形温度200℃かつ金型温度30℃の成形条件で射出成型し、成形品としての試験片を製造した(図5に示す射出成形工程)。 Then, while heating at 200 ° C. with an extruder, HIPS and thermoplastic elastomer were kneaded and extruded using a mesh filter of mesh size 60. In this way, pellets of HIPS as a thermoplastic recycled resin material were produced (heating kneading and extrusion process shown in FIG. 5). This pellet (thermoplastic recycled resin material) was injection molded under molding conditions of a molding temperature of 200 ° C. and a mold temperature of 30 ° C. to produce a test piece as a molded product (injection molding step shown in FIG. 5).
 得られた試験片について、引張強度、引張破断伸び、アイゾット衝撃値、曲げ強度、および曲げ弾性率の各物性(初期物性)を測定した。その結果を表4に示す。 The physical properties (initial physical properties) of tensile strength, tensile breaking elongation, Izod impact value, bending strength, and bending elastic modulus were measured for the obtained test pieces. The results are shown in Table 4.
 (参考例)
 洗浄後のHIPS100重量部に対して、冷蔵庫から手回収でされた汎用ポリスチレン(GPPS)を30重量部添加した以外は、実施例14と同様にして試験片を製造した。この試験片について、実施例14と同様にして各物性を測定した。その結果を表4に示す。
(Reference example)
A test piece was produced in the same manner as in Example 14 except that 30 parts by weight of general-purpose polystyrene (GPPS) manually collected from the refrigerator was added to 100 parts by weight of HIPS after washing. Each physical property of this test piece was measured in the same manner as in Example 14. The results are shown in Table 4.
 (実施例15)
 洗浄後のHIPS100重量部に対して、熱可塑性エラストマーであるTR2000(商品名、JSR製)を6重量部添加するとともに、冷蔵庫から手回収でされた汎用ポリスチレン(GPPS)を30重量部添加した以外は、実施例14と同様にして試験片を製造した。この試験片について、実施例14と同様にして各物性を測定した。その結果を表4に示す。また、本実施例15の試験片に対しては、ボス強度試験も実施した。その結果を表5に示す。
(Example 15)
6 parts by weight of TR2000 (trade name, manufactured by JSR) as a thermoplastic elastomer is added to 100 parts by weight of HIPS after washing, and 30 parts by weight of general-purpose polystyrene (GPPS) manually collected from the refrigerator is added. Produced a test piece in the same manner as in Example 14. Each physical property of this test piece was measured in the same manner as in Example 14. The results are shown in Table 4. A boss strength test was also performed on the test piece of Example 15. The results are shown in Table 5.
 (比較例17)
 廃家電製品由来の熱可塑性樹脂廃材(シュレッダーダスト)からHIPSを選別して、選別後樹脂材料として用いるのではなく、HIPSのバージン材(商品名:H9152、PSジャパン製)を原料として用いた以外は、実施例14と同様にして試験片を製造した。この試験片について、実施例14と同様にして各物性を測定した。その結果を表4に示す。また、本比較例17の試験片に対しては、ボス強度試験も実施した。その結果を表5に示す。
(Comparative Example 17)
Rather than using HIPS virgin material (trade name: H9152, manufactured by PS Japan) as a raw material, instead of selecting HIPS from thermoplastic resin waste (shredder dust) derived from waste home appliances and using it as a resin material after sorting Produced a test piece in the same manner as in Example 14. Each physical property of this test piece was measured in the same manner as in Example 14. The results are shown in Table 4. A boss strength test was also performed on the test piece of Comparative Example 17. The results are shown in Table 5.
 (比較例18)
 洗浄後のHIPS100重量部に対して、熱可塑性エラストマーを添加しなかった(すなわち、近赤外線識別システム20で選別されたHIPSのみを原料として用いた)以外は、実施例14と同様にして試験片を製造した。この試験片について、実施例14と同様にして初期物性および耐久試験後物性を測定した。これら物性の変化率を表4に示す。また、本比較例18の試験片に対しては、ボス強度試験も実施した。その結果を表5に示す。
(Comparative Example 18)
Test piece in the same manner as in Example 14 except that the thermoplastic elastomer was not added to 100 parts by weight of HIPS after washing (that is, only HIPS selected by the near infrared identification system 20 was used as a raw material). Manufactured. About this test piece, it carried out similarly to Example 14, and measured the initial physical property and the physical property after an endurance test. Table 4 shows the rate of change of these physical properties. A boss strength test was also performed on the test piece of Comparative Example 18. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (実施例14、15、参考例および比較例17、18の対比)
 表4および表5に示す結果から、実施例14、15、参考例および比較例17、18を対比する。比較例18の試験片(近赤外線識別システム20で選別されたHIPS)では、比較例17の試験片(バージン材)に比べて、アイゾット衝撃値が低い。また、実施例14の試験片(熱可塑性エラストマーを添加したもの)では、比較例1の試験片に比べて、引張強度、曲げ強度等は低いものの、アイゾット衝撃値は高くなっている。また、参考例の試験片(手回収されたGPPSを添加したもの)では、比較例1の試験片に比べて、引張強度および曲げ強度は高くなっている。
(Comparison of Examples 14 and 15, Reference Examples and Comparative Examples 17 and 18)
From the results shown in Tables 4 and 5, Examples 14, 15 and Reference Examples and Comparative Examples 17, 18 are compared. The test piece of Comparative Example 18 (HIPS selected by the near-infrared identification system 20) has a lower Izod impact value than the test piece of Comparative Example 17 (virgin material). In addition, the test piece of Example 14 (added with a thermoplastic elastomer) has a lower Izod impact value than the test piece of Comparative Example 1, although the tensile strength and bending strength are low. In addition, the test piece of the reference example (with the manually collected GPPS added) has higher tensile strength and bending strength than the test piece of Comparative Example 1.
 さらに、実施例15の試験片(熱可塑性エラストマーおよびGPPSを添加したもの)では、実施例14の試験片に比べて耐衝撃性がやや低くなっているものの、比較例1の試験片に比べて高くなっている。また、実施例15の試験片では、実施例14の試験片に比べて、引張強度、曲げ強度も高くなっている。 Furthermore, although the impact resistance of the test piece of Example 15 (added with the thermoplastic elastomer and GPPS) is slightly lower than that of the test piece of Example 14, it is lower than that of the test piece of Comparative Example 1. It is high. In addition, the test piece of Example 15 has higher tensile strength and bending strength than the test piece of Example 14.
 また、ボス強度試験の結果を見れば、比較例17の試験片(バージン材)と比較例18の試験片(近赤外線識別システム20で選別されたHIPS)と比較すると、比較例18の試験片は、比較例17の試験片よりも大幅に少ない回数で雄ネジが締結不可能になっている。これに対して、実施例15の試験片では、雄ネジを10回以上繰り返しても締結不可能にならない。それゆえ、熱可塑性エラストマーおよびGPPSを添加した熱可塑性再生樹脂材料は、バージン材と同等かそれ以上のボス強度が得られる。 In addition, when the result of the boss strength test is seen, the test piece of Comparative Example 18 is compared with the test piece of Comparative Example 17 (virgin material) and the test piece of Comparative Example 18 (HIPS selected by the near infrared identification system 20). The male screw cannot be fastened with a significantly smaller number of times than the test piece of Comparative Example 17. On the other hand, in the test piece of Example 15, fastening is not impossible even if the male screw is repeated 10 times or more. Therefore, the thermoplastic recycled resin material to which the thermoplastic elastomer and GPPS are added can have a boss strength equal to or higher than that of the virgin material.
 このように、熱可塑性エラストマーを少量添加することで、熱可塑性再生樹脂材料の耐衝撃性が良好に改善され、GPPSを適量添加することで、耐衝撃性も含めた各物性が全体的にバランスよく改善される。それゆえ、少なくとも耐衝撃性が改善されることにより(好ましくは各物性がバランスよく改善されることにより)、熱可塑性再生樹脂材料をバージン材と同程度の樹脂材料として再利用することが可能となる。 Thus, by adding a small amount of thermoplastic elastomer, the impact resistance of the thermoplastic recycled resin material is improved satisfactorily, and by adding an appropriate amount of GPPS, each physical property including impact resistance is balanced overall. Well improved. Therefore, at least by improving the impact resistance (preferably by improving each physical property in a well-balanced manner), it is possible to reuse the thermoplastic recycled resin material as a resin material of the same level as the virgin material. Become.
 また、熱可塑性エラストマーおよびGPPSを添加して改質された熱可塑性再生樹脂材料では、ボス強度が改善される。それゆえ、当該熱可塑性再生樹脂材料は、ボス強度が要求される部品として再利用することが可能となる。例えば、家庭用の空気調和機では、室内機のエアフィルター枠等には良好なボス強度が要求される。それゆえ、改質された熱可塑性再生樹脂材料は、従来では再生材料を使用できなかった成形品にも使用可能となる。 Also, the boss strength is improved in the thermoplastic recycled resin material modified by adding thermoplastic elastomer and GPPS. Therefore, the thermoplastic recycled resin material can be reused as a component that requires boss strength. For example, in an air conditioner for home use, a good boss strength is required for an air filter frame of an indoor unit. Therefore, the modified thermoplastic recycled resin material can also be used for molded products that could not be conventionally used.
 (実施例16)
 図1に示すように、廃家電製品として、回収された使用済の冷蔵庫を用いた。この冷蔵庫に対して、図1に示す各工程(分解および解体工程、破砕工程、風力選別工程、磁力選別工程、渦電流選別工程等)を実施して、熱可塑性樹脂廃材(シュレッダーダスト)を製造した。この熱可塑性樹脂廃材から、図3に示す近赤外線識別システム20を用いてポリプロピレンを選別した(樹脂材料選別工程)。その後、このポリプロピレン(選別後樹脂材料)に対して、図6に示す乾式洗浄処理を行った(乾式洗浄工程)。この洗浄後のポリプロピレンを原料とした。
(Example 16)
As shown in FIG. 1, the collected used refrigerator was used as a waste home appliance. Each process shown in FIG. 1 (disassembly and dismantling process, crushing process, wind power sorting process, magnetic force sorting process, eddy current sorting process, etc.) shown in FIG. 1 is performed on this refrigerator to produce thermoplastic resin waste (shredder dust). did. From this thermoplastic resin waste material, polypropylene was sorted using the near infrared ray identification system 20 shown in FIG. 3 (resin material sorting step). Thereafter, the polypropylene (resin material after sorting) was subjected to a dry cleaning process shown in FIG. 6 (dry cleaning process). This washed polypropylene was used as a raw material.
 洗浄後のポリプロピレン100重量部に対して、臭素系難燃剤として、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)を15重量部添加するとともに、アンチモン系難燃助剤として、三酸化アンチモンを5重量部添加して(難燃剤および難燃助剤の総量:20重量部)、混合した(図6に示す難燃剤添加工程)。 15 parts by weight of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is added as a brominated flame retardant to 100 parts by weight of the washed polypropylene, and trioxide as an antimony flame retardant aid. 5 parts by weight of antimony was added (total amount of flame retardant and flame retardant aid: 20 parts by weight) and mixed (flame retardant addition step shown in FIG. 6).
 その後、押出機により200℃で加熱しながら、ポリプロピレンおよび各添加剤を混練し、メッシュサイズ60のメッシュフィルタを用いて押し出した。これにより、熱可塑性再生樹脂材料としてのポリプロピレンのペレットを製造した(図6に示す加熱混練および押出工程)。このペレット(熱可塑性再生樹脂材料)を、成形温度220℃かつ金型温度40℃の成形条件で射出成型し、成形品としての試験片(長さ125mm×幅13mm×厚さ0.8mm)を製造した(図6に示す射出成形工程)。得られた試験片について、前述した難燃性評価を行った。その結果を表6に示す。 Thereafter, the polypropylene and each additive were kneaded while being heated at 200 ° C. by an extruder, and extruded using a mesh filter having a mesh size of 60. Thus, polypropylene pellets as a thermoplastic recycled resin material were produced (heating kneading and extruding steps shown in FIG. 6). This pellet (thermoplastic recycled resin material) was injection molded under molding conditions of a molding temperature of 220 ° C. and a mold temperature of 40 ° C., and a test piece (length 125 mm × width 13 mm × thickness 0.8 mm) as a molded product was obtained. Manufactured (injection molding step shown in FIG. 6). About the obtained test piece, the flame retardance evaluation mentioned above was performed. The results are shown in Table 6.
 (実施例17)
 選別後樹脂材料であるポリプロピレン100重量部に対して、ポリプロピレンの押出成形品の廃材(低級再生樹脂材料)を40重量部混合するとともに、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)を10重量部、三酸化アンチモンを4重量部添加(難燃剤および難燃助剤の総量:14重量部)した以外は、前記実施例16と同様にして、試験片を製造した。この試験片について、実施例16と同様にして難燃性評価を行った。その結果を表6に示す。
(Example 17)
40 parts by weight of polypropylene extrusion molding waste (lower recycled resin material) is mixed with 100 parts by weight of the polypropylene resin material after sorting and tetrabromobisphenol A-bis (2,3-dibromopropyl ether). A test piece was produced in the same manner as in Example 16 except that 10 parts by weight and 4 parts by weight of antimony trioxide were added (total amount of flame retardant and flame retardant aid: 14 parts by weight). This test piece was evaluated for flame retardancy in the same manner as in Example 16. The results are shown in Table 6.
 (比較例19)
 廃家電製品由来の熱可塑性樹脂廃材(シュレッダーダスト)からポリプロピレンを選別して、選別後樹脂材料として用いるのではなく、ポリプロピレンのバージン材(商品名:J750HP、プライムポリマー社製)を原料として用い、実施例17と同一の添加量で臭素系難燃剤およびアンチモン系難燃助剤を添加(難燃剤および難燃助剤の総量:14重量部)した以外は、実施例16と同様にして試験片を製造した。この試験片について、実施例16と同様にして難燃性評価を行った。その結果を表6に示す。
(Comparative Example 19)
Rather than selecting polypropylene from waste thermoplastic resin waste material (shredder dust) derived from waste home appliances and using it as a resin material after selection, polypropylene virgin material (trade name: J750HP, manufactured by Prime Polymer Co., Ltd.) is used as a raw material. Test piece as in Example 16, except that bromine-based flame retardant and antimony-based flame retardant auxiliary were added in the same amount as in Example 17 (total amount of flame retardant and flame retardant auxiliary: 14 parts by weight) Manufactured. This test piece was evaluated for flame retardancy in the same manner as in Example 16. The results are shown in Table 6.
 (比較例20)
 テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)を10重量部、三酸化アンチモンを4重量部添加(難燃剤および難燃助剤の総量:14重量部)した以外は、前記実施例16と同様にして、試験片を製造した。この試験片について、実施例16と同様にして難燃性評価を行った。その結果を表6に示す。
(Comparative Example 20)
Example 1 except that 10 parts by weight of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and 4 parts by weight of antimony trioxide were added (total amount of flame retardant and flame retardant aid: 14 parts by weight). A test piece was produced in the same manner as in FIG. This test piece was evaluated for flame retardancy in the same manner as in Example 16. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例16、17および比較例19、20の対比)
 表6に示す結果から、実施例16、17および比較例19、20を対比する。実施例16および17の試験片では、いずれもUL94V規格の難燃性を実現することが可能である。また、難燃剤および難燃助剤の添加量(配合量)が適量(18~25重量部)に満たない比較例20の試験片では、適量を添加した実施例16の試験片よりも難燃性が劣っている。したがって、バージン材(比較例19)と同比率で難燃剤および難燃助剤を添加したときに、バージン材と同程度の難燃性を実現できない(比較例20)としても、添加量を増加させれば、バージン材と同程度の難燃性を実現することが可能である(実施例16)。
(Contrast of Examples 16 and 17 and Comparative Examples 19 and 20)
From the results shown in Table 6, Examples 16 and 17 and Comparative Examples 19 and 20 are compared. In both the test pieces of Examples 16 and 17, it is possible to achieve the flame resistance of the UL94V standard. In addition, the test piece of Comparative Example 20 in which the addition amount (blending amount) of the flame retardant and the flame retardant aid is less than the appropriate amount (18 to 25 parts by weight) is more flame retardant than the test piece of Example 16 to which the appropriate amount was added. The sex is inferior. Therefore, when the flame retardant and the flame retardant aid are added at the same ratio as the virgin material (Comparative Example 19), the amount of addition is increased even if the same level of flame retardancy as the virgin material cannot be realized (Comparative Example 20). If it is made, it is possible to implement | achieve the flame retardance comparable as a virgin material (Example 16).
 さらに、実施例17の試験片および比較例19の試験片を対比すると、難燃剤および難燃助剤の添加量が同比率であり、かつ、低級再生樹脂材料を40重量部混合した場合(実施例18)であっても、バージン材(比較例19)と同程度の難燃性を実現できることがわかる。 Furthermore, when the test piece of Example 17 and the test piece of Comparative Example 19 are compared, the amounts of the flame retardant and the flame retardant aid are the same, and 40 parts by weight of the lower recycled resin material is mixed (implementation) Even in Example 18), it can be seen that flame retardancy comparable to that of the virgin material (Comparative Example 19) can be realized.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、廃家電製品から特定種類の熱可塑性樹脂材料を再資源化する分野に、広く好適に利用することができる。 The present invention can be widely and suitably used in the field of recycling specific types of thermoplastic resin materials from waste home appliances.
 1  搬送装置
 2  熱可塑性樹脂材料
 3  他の樹脂材料
 4  近赤外線識別装置(材質識別装置)
 5  吐出口
 6  選別板
 8  管体
11  熱可塑性樹脂廃材
14  制御部(制御手段)
15  空圧源
20  近赤外線識別システム
DESCRIPTION OF SYMBOLS 1 Conveying device 2 Thermoplastic resin material 3 Other resin material 4 Near infrared identification device (material identification device)
5 Discharge port 6 Sorting plate 8 Tube 11 Waste thermoplastic resin 14 Control section (control means)
15 Air pressure source 20 Near infrared identification system

Claims (18)

  1.  廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、フェノール系酸化防止剤およびイオウ系酸化防止剤が配合されてなる、
    熱可塑性再生樹脂材料。
    A specific type of thermoplastic resin material obtained from a waste plastic product obtained from crushed waste home appliances, which is mixed with a plurality of types of resin materials, selected using a material identification device and dry-cleaned. On the other hand, a phenolic antioxidant and a sulfur antioxidant are blended,
    Thermoplastic recycled resin material.
  2.  廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、
     当該熱可塑性樹脂材料100重量部に対して金属不活性化剤が0.01~1重量部の範囲内で配合されてなる、
    熱可塑性再生樹脂材料。
    A specific type of thermoplastic resin material obtained from a waste plastic product obtained from crushed waste home appliances, which is mixed with a plurality of types of resin materials, selected using a material identification device and dry-cleaned. for,
    A metal deactivator is blended within a range of 0.01 to 1 part by weight with respect to 100 parts by weight of the thermoplastic resin material.
    Thermoplastic recycled resin material.
  3.  廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、熱可塑性エラストマーが配合されてなる、
    熱可塑性再生樹脂材料。
    A specific type of thermoplastic resin material obtained from a waste plastic product obtained from crushed waste home appliances, which is mixed with a plurality of types of resin materials, selected using a material identification device and dry-cleaned. In contrast, a thermoplastic elastomer is blended.
    Thermoplastic recycled resin material.
  4.  廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、
     当該熱可塑性樹脂材料100重量部に対して、臭素系難燃剤およびアンチモン系難燃助剤が18~25重量部の範囲内で配合されてなる、
    熱可塑性再生樹脂材料。
    A specific type of thermoplastic resin material obtained from a waste plastic product obtained from crushed waste home appliances, which is mixed with a plurality of types of resin materials, selected using a material identification device and dry-cleaned. for,
    A bromine-based flame retardant and an antimony-based flame retardant aid are blended within a range of 18 to 25 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
    Thermoplastic recycled resin material.
  5.  廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別されて、乾式洗浄処理した後に得られる、特定種類の熱可塑性樹脂材料に対して、
     当該熱可塑性樹脂材料100重量部に対して、より選別精度の低い同じ材質の再生樹脂材料が30重量部以上配合され、かつ、前記熱可塑性樹脂材料100重量部に対して、臭素系難燃剤およびアンチモン系難燃助剤が13~17重量部の範囲内で配合されてなる、
    熱可塑性再生樹脂材料。
    A specific type of thermoplastic resin material obtained from a waste plastic product obtained from crushed waste home appliances, which is mixed with a plurality of types of resin materials, selected using a material identification device and dry-cleaned. for,
    30 parts by weight or more of the same recycled resin material with lower sorting accuracy is blended with 100 parts by weight of the thermoplastic resin material, and with respect to 100 parts by weight of the thermoplastic resin material, a brominated flame retardant and Antimony flame retardant aid is blended in the range of 13 to 17 parts by weight,
    Thermoplastic recycled resin material.
  6.  前記フェノール系酸化防止剤および前記イオウ系酸化防止剤の総配合量が、前記熱可塑性樹脂材料100重量部に対して、0.01~2.0重量部の範囲内である、
    請求項1に記載の熱可塑性再生樹脂材料。
    The total amount of the phenolic antioxidant and the sulfur antioxidant is in the range of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
    The thermoplastic recycled resin material according to claim 1.
  7.  前記フェノール系酸化防止剤および前記イオウ系酸化防止剤の配合比が、重量比で1:1~1:4の範囲内である、
    請求項1または6に記載の熱可塑性再生樹脂材料。
    The mixing ratio of the phenolic antioxidant and the sulfurous antioxidant is in the range of 1: 1 to 1: 4 by weight.
    The thermoplastic recycled resin material according to claim 1 or 6.
  8.  前記金属不活性化剤として、シュウ酸誘導体、サリチル酸誘導体、ヒドラジド誘導体、トリアゾール誘導体、およびイミダゾール誘導体からなる群より選択される化合物の少なくとも1種が配合される、
    請求項2に記載の熱可塑性再生樹脂材料。
    As the metal deactivator, at least one compound selected from the group consisting of oxalic acid derivatives, salicylic acid derivatives, hydrazide derivatives, triazole derivatives, and imidazole derivatives is blended,
    The thermoplastic recycled resin material according to claim 2.
  9.  前記熱可塑性エラストマーの配合量が、前記熱可塑性樹脂材料100重量部に対して、3~20重量部の範囲内である、
    請求項3に記載の熱可塑性再生樹脂材料。
    The amount of the thermoplastic elastomer is in the range of 3 to 20 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
    The thermoplastic recycled resin material according to claim 3.
  10.  前記臭素系難燃剤として、少なくとも、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)が用いられる、
    請求項4または5に記載の熱可塑性再生樹脂材料。
    As the brominated flame retardant, at least tetrabromobisphenol A-bis (2,3-dibromopropyl ether) is used.
    The thermoplastic recycled resin material according to claim 4 or 5.
  11.  前記熱可塑性樹脂材料が、スチレン系樹脂材料またはポリオレフィンである、
    請求項1から10のいずれか1項に記載の熱可塑性再生樹脂材料。
    The thermoplastic resin material is a styrenic resin material or a polyolefin,
    The thermoplastic recycled resin material according to any one of claims 1 to 10.
  12.  さらに、前記スチレン系樹脂材料が、汎用ポリスチレンおよびハイインパクトポリスチレンの少なくとも一方である、
    請求項11に記載の熱可塑性再生樹脂材料。
    Furthermore, the styrenic resin material is at least one of general-purpose polystyrene and high-impact polystyrene.
    The thermoplastic recycled resin material according to claim 11.
  13.  前記熱可塑性樹脂材料がスチレン系樹脂材料であるときに、前記熱可塑性エラストマーが、スチレン系エラストマーである、
    請求項11に記載の熱可塑性再生樹脂材料。
    When the thermoplastic resin material is a styrene resin material, the thermoplastic elastomer is a styrene elastomer.
    The thermoplastic recycled resin material according to claim 11.
  14.  さらに、前記スチレン系エラストマーとともに、汎用ポリスチレンが配合されてなる、
    請求項13に記載の熱可塑性再生樹脂材料。
    Furthermore, general-purpose polystyrene is blended with the styrene-based elastomer,
    The thermoplastic recycled resin material according to claim 13.
  15.  前記汎用ポリスチレンは、前記廃家電製品から得られる再生材料であり、
     前記汎用ポリスチレンの配合量が、前記熱可塑性樹脂材料100重量部に対して、10~50重量部の範囲内である、
    請求項14に記載の熱可塑性再生樹脂材料。
    The general-purpose polystyrene is a recycled material obtained from the waste home appliance,
    The blending amount of the general-purpose polystyrene is in the range of 10 to 50 parts by weight with respect to 100 parts by weight of the thermoplastic resin material.
    The thermoplastic recycled resin material according to claim 14.
  16.  前記材質識別装置が、近赤外線識別装置である、
    請求項1から15のいずれか1項に記載の熱可塑性再生樹脂材料。
    The material identification device is a near infrared identification device,
    The thermoplastic recycled resin material according to any one of claims 1 to 15.
  17.  前記廃家電製品が、冷蔵庫、冷凍庫、空気調和機、および洗濯機からなる群より選択される少なくとも1種の家電製品である、
    請求項1から16のいずれか1項に記載の熱可塑性再生樹脂材料。
    The waste home appliance is at least one home appliance selected from the group consisting of a refrigerator, a freezer, an air conditioner, and a washing machine;
    The thermoplastic recycled resin material according to any one of claims 1 to 16.
  18.  廃家電製品の破砕物から得られる、複数種類の樹脂材料が混在する熱可塑性樹脂廃材から、材質識別装置を用いて選別し、
     選別した特提種類の熱可塑性樹脂材料を乾式洗浄処理し、
     乾式洗浄後の前記熱可塑性樹脂材料に対して、樹脂改質剤として、フェノール系酸化防止剤およびイオウ系酸化防止剤、または、金属不活性化剤、または、熱可塑性エラストマーを配合する、
    熱可塑性再生樹脂材料の製造方法。
     
     
    Using a material identification device, select from thermoplastic resin waste material that is obtained from crushed waste home appliances and contains multiple types of resin materials.
    The selected specially-designed thermoplastic resin material is dry-cleaned,
    For the thermoplastic resin material after dry cleaning, a phenol-based antioxidant and a sulfur-based antioxidant, or a metal deactivator, or a thermoplastic elastomer is blended as a resin modifier.
    A method for producing a thermoplastic recycled resin material.

PCT/JP2013/004457 2012-07-24 2013-07-22 Regenerated thermoplastic resin material WO2014017072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002930.4A CN103797057A (en) 2012-07-24 2013-07-22 Regenerated thermoplastic resin material
JP2014500585A JP6327470B2 (en) 2012-07-24 2013-07-22 Thermoplastic recycled resin material

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012163371 2012-07-24
JP2012-163371 2012-07-24
JP2012163372 2012-07-24
JP2012-163372 2012-07-24
JP2012163370 2012-07-24
JP2012-163370 2012-07-24
JP2013054511 2013-03-18
JP2013-054511 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014017072A1 true WO2014017072A1 (en) 2014-01-30

Family

ID=49996899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004457 WO2014017072A1 (en) 2012-07-24 2013-07-22 Regenerated thermoplastic resin material

Country Status (3)

Country Link
JP (1) JP6327470B2 (en)
CN (1) CN103797057A (en)
WO (1) WO2014017072A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000892A (en) * 2013-06-13 2015-01-05 株式会社リコー Regenerated resin composition
WO2017110068A1 (en) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 Reclaimed material comprising thermoplastic resin
JP2017171774A (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Recycled thermoplastic resin composition and method for producing the same
JP2018087261A (en) * 2016-11-28 2018-06-07 シャープ株式会社 Regenerated polystyrene resin composition and method for producing the same
JP2019044129A (en) * 2017-09-06 2019-03-22 出光興産株式会社 Polycarbonate resin composition and molded article of the same
JP2020007424A (en) * 2018-07-05 2020-01-16 三菱電機株式会社 Regenerated styrene resin composition
JP2020536735A (en) * 2017-10-16 2020-12-17 カールッチ,エドアルド Equipment for the treatment and separation of inorganic solid waste
EP3858907A1 (en) * 2020-01-29 2021-08-04 Green Union S.R.L. Process for recycling polystyrene

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107987538A (en) * 2017-12-02 2018-05-04 余姚优信塑业有限公司 A kind of antibacterial TPE and preparation method thereof
CN113172794B (en) * 2021-04-08 2023-04-25 宁波坚锋新材料有限公司 Method for recycling ABS regenerated material and recycled ABS regenerated material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228936A (en) * 1991-12-25 1993-09-07 Mitsubishi Petrochem Co Ltd Treating method and regenerating method for coated plastic molded body
JP2001038727A (en) * 1999-07-29 2001-02-13 Hitachi Ltd Process for recommercializing electrical home appliance and oa equipment
JP2001038729A (en) * 1999-07-29 2001-02-13 Hitachi Ltd System for re-commercializing electrical household appliance and oa equipment product
JP2002072419A (en) * 2000-08-23 2002-03-12 Fuji Photo Film Co Ltd Method for recycling injection-molded article for photographic sensitive material and recycled parts fur photographic sensitive material
JP2003053728A (en) * 2001-08-10 2003-02-26 Lonseal Corp Regenerated thermoplastic resin composition and sheet formed from the composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246621A (en) * 2000-03-06 2001-09-11 Nippon Steel Chem Co Ltd Producing method for regenerated polyolefin resin composition and the same
JP2003011124A (en) * 2001-06-29 2003-01-15 Nippon Steel Chem Co Ltd Material recycling system for plastic member
JP2004122576A (en) * 2002-10-02 2004-04-22 Nippon Steel Chem Co Ltd Regeneration treatment method for waste plastic
JP4614866B2 (en) * 2005-11-10 2011-01-19 シャープ株式会社 Method for recycling plastic waste material and method for producing plastic molded body using the same
JP4793005B2 (en) * 2006-02-09 2011-10-12 三菱電機株式会社 Recycled polyolefin resin composition
JP5093061B2 (en) * 2008-11-10 2012-12-05 三菱電機株式会社 Plastic sorting method and plastic sorting apparatus
JP2010132798A (en) * 2008-12-05 2010-06-17 Mitsubishi Electric Corp Resin composition, apparatus for evaluating deterioration degree of resin composition and method for reusing resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228936A (en) * 1991-12-25 1993-09-07 Mitsubishi Petrochem Co Ltd Treating method and regenerating method for coated plastic molded body
JP2001038727A (en) * 1999-07-29 2001-02-13 Hitachi Ltd Process for recommercializing electrical home appliance and oa equipment
JP2001038729A (en) * 1999-07-29 2001-02-13 Hitachi Ltd System for re-commercializing electrical household appliance and oa equipment product
JP2002072419A (en) * 2000-08-23 2002-03-12 Fuji Photo Film Co Ltd Method for recycling injection-molded article for photographic sensitive material and recycled parts fur photographic sensitive material
JP2003053728A (en) * 2001-08-10 2003-02-26 Lonseal Corp Regenerated thermoplastic resin composition and sheet formed from the composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000892A (en) * 2013-06-13 2015-01-05 株式会社リコー Regenerated resin composition
WO2017110068A1 (en) * 2015-12-25 2017-06-29 パナソニックIpマネジメント株式会社 Reclaimed material comprising thermoplastic resin
JP2017171774A (en) * 2016-03-23 2017-09-28 三菱電機株式会社 Recycled thermoplastic resin composition and method for producing the same
JP2018087261A (en) * 2016-11-28 2018-06-07 シャープ株式会社 Regenerated polystyrene resin composition and method for producing the same
JP2019044129A (en) * 2017-09-06 2019-03-22 出光興産株式会社 Polycarbonate resin composition and molded article of the same
US11203664B2 (en) 2017-09-06 2021-12-21 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article thereof
JP2020536735A (en) * 2017-10-16 2020-12-17 カールッチ,エドアルド Equipment for the treatment and separation of inorganic solid waste
JP7168172B2 (en) 2017-10-16 2022-11-09 カールッチ,エドアルド Apparatus for treatment and separation of inorganic solid waste
JP2020007424A (en) * 2018-07-05 2020-01-16 三菱電機株式会社 Regenerated styrene resin composition
JP7085923B2 (en) 2018-07-05 2022-06-17 三菱電機株式会社 Recycled styrene resin composition
EP3858907A1 (en) * 2020-01-29 2021-08-04 Green Union S.R.L. Process for recycling polystyrene

Also Published As

Publication number Publication date
CN103797057A (en) 2014-05-14
JP6327470B2 (en) 2018-05-23
JPWO2014017072A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6327470B2 (en) Thermoplastic recycled resin material
JP5930661B2 (en) Method for recycling fiber reinforced plastic waste, recycled molded body, and recycling apparatus
JP2009149768A (en) Regenerated polystyrene resin composition
JP7026559B2 (en) Method for manufacturing thermoplastic resin composition
JP7085923B2 (en) Recycled styrene resin composition
JP4803616B2 (en) Method for recycling plastic waste material and method for producing plastic molded body
JP6128926B2 (en) Flame retardant masterbatch, method for producing the same, and method for producing styrene-based flame retardant resin composition using the same
US20150048552A1 (en) Polymer composition and method for manufacturing the same
JP6168830B2 (en) Method for recycling polycarbonate resin waste, method for producing recycled polycarbonate resin molded product, and recycled polycarbonate resin molded product
JP2010132798A (en) Resin composition, apparatus for evaluating deterioration degree of resin composition and method for reusing resin composition
WO2004080680A1 (en) Method for producing recycled resin, and resin material containing recycled resin produced by that method
JP2005162819A (en) Polycarbonate-based resin composition and molded body
JP6837324B2 (en) Recycled polystyrene resin composition and its manufacturing method
JP2015030150A (en) Recycling method of thermoplastic resin waste material
US8735456B2 (en) Process for producing thermoplastic resin composition, and thermoplastic resin composition produced by the same
CN103665718A (en) Method for toughening high impact polystyrene by using waste thermoplastic elastomer
JP2010083977A (en) Method for recycling plastics waste, plastic molding and method for producing the same
JP6951150B2 (en) Method for manufacturing recycled polystyrene resin composition
JP6785054B2 (en) Styrene-based resin composition
WO2014203532A1 (en) Recycled resin and method of manufacturing the same
JP5158790B2 (en) Method for recycling plastic waste, plastic molded body and method for producing the same
JP2011190359A (en) Crushing method of thermoplastic resin molded article, method of manufacturing spall of thermoplastic resin molded article, and method of manufacturing regenerated thermoplastic resin molded article
JP2019198810A (en) Evaluation method of reliability and quality control method of flame retardant polystyrene recycled material
WO2017110068A1 (en) Reclaimed material comprising thermoplastic resin
JP2011126995A (en) Method for producing reclaimed abs resin composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014500585

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13823621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13823621

Country of ref document: EP

Kind code of ref document: A1