WO2014013734A1 - Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell - Google Patents

Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell Download PDF

Info

Publication number
WO2014013734A1
WO2014013734A1 PCT/JP2013/004371 JP2013004371W WO2014013734A1 WO 2014013734 A1 WO2014013734 A1 WO 2014013734A1 JP 2013004371 W JP2013004371 W JP 2013004371W WO 2014013734 A1 WO2014013734 A1 WO 2014013734A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
solar cell
sensitized solar
metal oxide
oxide semiconductor
Prior art date
Application number
PCT/JP2013/004371
Other languages
French (fr)
Japanese (ja)
Inventor
博昭 林
竜一 白土
早瀬 修二
末廣 大久保
Original Assignee
東京エレクトロン株式会社
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 国立大学法人九州工業大学 filed Critical 東京エレクトロン株式会社
Priority to JP2014525724A priority Critical patent/JPWO2014013734A1/en
Publication of WO2014013734A1 publication Critical patent/WO2014013734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a dye-sensitized solar cell and a dye-sensitized solar cell.
  • a dye-sensitized solar cell having a general structure is a metal oxide composed of a transparent conductive thin film on one surface of a transparent substrate and fine particles adsorbed on the surface of the transparent conductive thin film.
  • a working electrode having a porous semiconductor layer, a counter electrode made of a conductive substrate having a catalyst such as platinum or carbon, and an electrolyte between the working electrode and the counter electrode are provided.
  • Patent Document 1 describes a tandem dye-sensitized solar cell in which two cells each composed of a translucent electrode layer, a dye-sensitized semiconductor layer, an electrolyte layer, and a counter electrode layer are stacked.
  • Patent Document 2 describes a dye-sensitized solar cell in which a sensitizing dye for a short wavelength and a sensitizing dye for a long wavelength are adsorbed in the thickness direction of one titania porous film.
  • the dye-sensitized solar cell described in Patent Document 1 has a problem that productivity is low and cost is high because two cells having different dyes adsorbed thereon are stacked.
  • the dye-sensitized solar cell described in Patent Document 2 is obtained by adsorbing at least two kinds of dyes on a dye-sensitized semiconductor layer in one cell. Is carried out using a pressurized fluid containing In order to obtain this pressurized fluid, a pressure of about 10 to 25 MPa is required, so a large pressure vessel is required. For this reason, the dye-sensitized solar cell described in Patent Document 2 also has problems that productivity is low and cost is high.
  • the present invention has been made in response to the above-described conventional circumstances, and can reduce the cost of the production process of the dye-sensitized solar cell and improve the photoelectric conversion efficiency of the produced dye-sensitized solar cell. It is an object of the present invention to provide a method for producing a dye-sensitized solar cell and a dye-sensitized solar cell.
  • One aspect of the method for producing a dye-sensitized solar cell of the present invention includes a first dye-adsorbing step of adsorbing a first photosensitizing dye to a metal oxide semiconductor porous layer, and desorption of the photosensitizing dye.
  • a desorption step of causing the desorption liquid to act on the metal oxide semiconductor porous layer to desorb a part of the first photosensitizing dye adsorbed on the metal oxide semiconductor porous layer;
  • a second photosensitizing dye that is different from the first photosensitizing dye is adsorbed to a portion of the metal oxide semiconductor porous layer from which a part of the first photosensitizing dye has been removed.
  • a dye adsorption step includes a first dye-adsorbing step of adsorbing a first photosensitizing dye to a metal oxide semiconductor porous layer, and desorption of the photosensitizing dye.
  • the manufacturing method of a dye-sensitized solar cell which can aim at the cost reduction of the manufacturing process of a dye-sensitized solar cell, and the improvement of the photoelectric conversion efficiency of the dye-sensitized solar cell manufactured, and dye enhancement A solar cell can be provided.
  • FIG. 1 shows an example of the basic configuration of the dye-sensitized solar cell of the present embodiment.
  • the dye-sensitized solar cell includes a working electrode substrate 10, a counter electrode substrate 20, an electrolytic solution 8, and a spacer 4.
  • the working electrode substrate 10 includes a transparent substrate 1, a transparent conductive film 2, and a metal oxide semiconductor porous layer 3.
  • a transparent conductive film 2 is formed on the transparent substrate 1.
  • a plastic substrate such as PET or a glass substrate can be used.
  • the transparent conductive film 2 for example, a tin oxide film doped with fluorine (FTO film) or an indium oxide film doped with tin (ITO film) can be used.
  • a metal oxide semiconductor porous layer 3 is formed on the surface of the transparent conductive film 2.
  • the metal oxide semiconductor porous layer 3 is a layer that adsorbs a dye that absorbs light.
  • a material constituting the metal oxide semiconductor porous layer 3 for example, fine particles such as titanium oxide, zinc oxide, tin oxide, and tungsten oxide are used.
  • the metal oxide semiconductor porous layer 3 includes a first porous layer 31 on which the dye A is adsorbed and a second porous layer 32 on which a dye B different from the dye A is adsorbed. It is desirable for the dye A and the dye B to have different absorption wavelengths.
  • the dye A on the light receiving surface side has a maximum absorption wavelength on the short wavelength side
  • the dye B on the opposite side has a long wavelength side. It is desirable to have a maximum absorption wavelength.
  • N719 can be used as the dye A
  • a black die can be used as the dye B.
  • a dense metal oxide layer may be provided between the transparent conductive film 2 and the metal oxide semiconductor porous layer 3.
  • This layer is a non-porous metal oxide layer and may be amorphous or crystalline fine particles. By providing such a layer, the backflow of electrons from the transparent conductive film 2 to the electrolytic solution 8 can be suppressed.
  • the counter electrode substrate 20 is composed of the substrate 5, the transparent conductive film 6 and the catalyst layer 7.
  • the substrate 5 a glass substrate or a plastic substrate can be used.
  • a transparent conductive film 6 is formed on the surface of the substrate 5.
  • a catalyst layer 7 is formed on the surface of the transparent conductive film 6. Platinum or carbon can be used as the catalyst layer.
  • a metal electrode plate may be used and a catalyst layer 7 formed on the surface of the metal electrode plate may be used.
  • a spacer 4 is disposed between the working electrode substrate 10 and the counter electrode substrate 20 so as to be interposed between them and to maintain a predetermined distance therebetween.
  • the spacer 4 is preferably iodine-resistant, thermoplastic resin, and inorganic adhesive that can be bonded to glass at a low temperature.
  • the distance between the electrodes at this time is narrower, the series resistance component of the electrolytic solution and the redox reaction may proceed more smoothly.
  • the working electrode and the counter electrode The probability of a short circuit between them increases. Therefore, it is desirable that the distance between the electrodes be 10 ⁇ m to 30 ⁇ m.
  • An electrolyte solution 8 is injected between the transparent substrate 1 and the counter electrode substrate 5.
  • the electrolyte used in the electrolytic solution 8 include iodine and iodide (a metal iodide such as LiI, NaI, KI, CsI, and CaI2, quaternary ammonium iodide, pyridinium iodide, imidazolium iodide, and the like.
  • ammonium compounds iodine salts, etc.
  • bromine and bromides metal bromides such as LiBr, NaBr, KBr, CsBr, CaBr2, quaternary ammonium compounds such as tetraalkylammonium bromide, pyridinium bromide, etc.
  • polysulfides examples thereof include sulfur compounds such as sodium, alkyl thiol, and alkyl disulfide, viologen dyes, hydroquinone, and quinone.
  • the electrolyte may be used as a mixture.
  • a solvent When a solvent is used for the electrolytic solution, it is preferably a compound that has a low viscosity and exhibits high ion mobility and can exhibit excellent ionic conductivity.
  • solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane, diethyl ether and tetrahydrofuran, ethylene glycol dialkyl ether, propylene glycol Chain ethers such as dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether , Ethylene glycol, propylene glycol, polyethylene glycol Le, polypropylene glycol, polyhydric alcohols such
  • a coating process 101 is performed in which a paste in which metal oxide fine particles having a particle size of about 5 nm to 400 nm are dispersed is applied to the surface of the transparent conductive film 2 of the transparent substrate 1.
  • a firing step 102 is performed for firing the applied paste.
  • the working electrode substrate 10 in which the metal oxide semiconductor porous layer 3 having a desired film thickness is formed can be obtained.
  • a first dye adsorption step 103 for adsorbing the first dye A to the metal oxide semiconductor porous layer 3 is performed.
  • the first dye adsorption step can be performed by immersing the working electrode substrate 10 in a solution containing the dye A.
  • a rinsing process 104 is performed to wash away excess photosensitizing dye that does not contribute to photoelectric conversion.
  • the rinse treatment step 104 can be performed by immersing the working electrode substrate 10 in which the dye A is adsorbed on the metal oxide semiconductor porous layer 3 in a rinse solution.
  • a rinse solution common organic solvents such as water, alcohol, acetonitrile, toluene, dimethylformamide, and tetrahydrofuran can be used.
  • the rinsing treatment step 104 is not necessarily a necessary step, but it is desirable to improve the photoelectric conversion efficiency.
  • a desorption process 105 for desorbing a part of the first dye A adsorbed on the metal oxide semiconductor porous layer 3 is performed.
  • the working electrode substrate 10 in which the dye A is adsorbed on the metal oxide semiconductor porous layer 3 is immersed in the desorption liquid. Thereby, the ester bond between the metal oxide semiconductor porous layer 3 and the dye A is cleaved by hydrolysis, and the dye A is detached from the metal oxide semiconductor porous layer 3. Then, the working electrode substrate 3 is pulled up from the desorbed solution before all of the dye A adsorbed on the metal oxide semiconductor porous layer 3 is desorbed.
  • the elimination liquid may be any as long as hydrolysis occurs to the ester bond, but from the viewpoint of reaction rate, acetic acid, hydrochloric acid, nitric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, amine It is desirable to use an aqueous solution such as
  • a cleaning step 106 for washing off the desorbed liquid is performed.
  • This cleaning step 106 is performed by immersing the working electrode substrate 10 pulled up from the desorption solution or neutralization solution in a neutral liquid such as water or ethanol.
  • the second dye adsorption step 107 for adsorbing the second dye B to the working electrode substrate 10 in which a part of the dye A is desorbed from the metal oxide semiconductor porous film 3 is performed.
  • the second dye adsorption step 107 can be performed by the same method as the first dye adsorption step 103.
  • a rinsing process 108 for washing away excess photosensitizing dye that does not contribute to photoelectric conversion is performed in the same manner as in the rinsing process 104.
  • the working electrode substrate 10 having the structure of the transparent substrate 1 / the transparent conductive film 2 / the first porous layer 31 on which the dye A is adsorbed / the second porous layer 32 on which the dye B is adsorbed can be produced.
  • the dye-sensitized solar cell shown in FIG. 1 can be obtained by bonding the counter electrode substrate 20 to the working electrode substrate 10 thus created using the spacer 4 and injecting the electrolytic solution 8. Thereby, the dye-sensitized solar cell which has higher conversion efficiency than the dye-sensitized solar cell manufactured with the normal single pigment
  • a neutralization step for stopping the desorption reaction may be added between the desorption step 105 and the washing step 106.
  • This neutralization step can be performed by immersing the working electrode substrate 10 pulled up from the desorption solution in the neutralization solution.
  • the neutralizing solution may be added while the working electrode substrate 10 is immersed in the detaching solution.
  • Any neutralization solution may be used as long as it causes a neutralization reaction with the desorption solution.
  • the detachment liquid is an aqueous sodium hydroxide solution
  • acidic nitric acid can be used as the neutralization liquid.
  • FIG. 3 shows a configuration example of a dye adsorption device that adsorbs a dye by generating convection in a solution.
  • This dye adsorbing apparatus includes a cylindrical sealed container 41 for containing a solution 45 containing a dye, a stirrer 44 for creating a flow in the solution 45, and a heater 42 having a drive mechanism for the stirrer 44. .
  • a flow is generated in the solution 45 by the stirrer 44 in the direction along the circumference of the side surface of the cylindrical sealed container 41.
  • the working electrode substrate 10 is disposed in contact with the cylindrical surface of the sealed container 41.
  • the solution 45 forms a flow parallel to the surface of the metal oxide semiconductor porous layer 3.
  • the heater 42 can raise the internal pressure of the sealed container 41 in a relatively mild state, and the internal pressure is preferably about normal pressure to about 1.5 atm.
  • FIG. 4 shows another configuration example of the dye adsorption device that adsorbs the dye by generating convection in the solution.
  • This dye adsorption device includes a cylindrical sealed container 41 for containing a solution 45 containing a dye, a cylindrical rotating body 44 a for creating a flow in the solution 45, and the heater 12.
  • the cylindrical rotating body 44a is placed in a state where the solution 45 is placed in the sealed container 41 (or a cylindrical container having an opening such as a beaker) and the working electrode substrate 10 is immersed in the solution 45.
  • the working electrode substrate 10 is disposed at the tip of the substrate.
  • convection of the solution 45 from the vertical direction occurs with respect to the metal oxide semiconductor porous layer 3 on the working electrode substrate 10. Due to this convection, in the vicinity of the oxide semiconductor porous layer 3, the moving speed of the solution 45 in a direction perpendicular to and parallel to the metal oxide semiconductor porous layer 3 is generated.
  • the internal pressure of the container 41 can be raised in a relatively mild state by the heater 42, and the internal pressure is preferably about normal pressure to about 1.5 atmospheric pressure.
  • the metal oxide semiconductor porous layer 3 may have a higher porosity on the upper layer side (second porous layer 32 side) than a porosity on the lower layer side (first porous layer 31 side). desirable. This is because the desorbed liquid easily enters the upper layer side (second porous layer 32 side), and the desorbed liquid does not easily enter the lower layer side (first porous layer 31 side). Thereby, in the desorption step 105, the first porous layer 31 to which the dye A is adsorbed and the second porous layer 32 from which the dye A is desorbed can be formed favorably.
  • Such a metal oxide semiconductor porous layer 3 is formed by laminating a film formed using a paste having a small particle size of metal oxide fine particles and a film formed using a paste having a large particle size of metal oxide fine particles. Can be obtained. This is because the voids in the film also increase as the particle size of the metal oxide fine particles increases. Further, instead of a paste having a large particle size, a paste mixed with a void forming agent such as polystyrene beads may be used. This is because the polystyrene beads are burned in the firing step and voids are formed.
  • a tandem dye-sensitized solar cell can be easily manufactured.
  • This dye-sensitized solar cell is not a laminate of a plurality of cells, and dye adsorption can be performed by immersion at normal pressure. Therefore, a tandem dye-sensitized solar cell with high photoelectric conversion efficiency can be produced at low cost.
  • the film thickness ratio of the first porous layer to which the dye A is adsorbed and the second porous layer to which the dye B is adsorbed is changed.
  • dyes can also be created by increasing a desorption process and a pigment
  • Example 1 As a glass substrate with a transparent conductive film of 10 mm ⁇ 25 mm ⁇ 3.1 mm, glass with fluorine-doped tin oxide (Japanese plate glass, 10.2 ⁇ / ⁇ ) was used. Next, on the transparent conductive film of the substrate with the transparent conductive film, three titanium oxide porous layers, a titanium oxide porous film (20 ⁇ m) having a particle size of about 10 nm to 20 nm, and a titanium oxide having a particle size of about 200 nm. A porous film (5 ⁇ m), a titanium oxide porous film (5 ⁇ m) having a particle diameter of about 400 nm, and a metal oxide semiconductor porous layer having a thickness of about 30 ⁇ m were formed.
  • Each titanium oxide porous membrane uses a commercially available titanium oxide paste, PST-18NR (JGC Catalysts & Chemicals), PST-200C (JGC Catalysts & Chemicals), PST-400C (JGC Catalysts & Chemicals).
  • PST-18NR JGC Catalysts & Chemicals
  • PST-200C JGC Catalysts & Chemicals
  • PST-400C JGC Catalysts & Chemicals.
  • each titanium oxide porous layer has a thickness of 20 ⁇ m, 5 ⁇ m and 5 ⁇ m. I tried to become.
  • the solution used for the adsorption of the short wavelength sensitizing dye to the titanium oxide porous thin film, which is the working electrode, was prepared by using the dye as a ruthenium (Ru) organic complex N719 cis-bis (isothiocyanato) bis (2,2'-bipyridyl) manufactured by SOLARONIX. -4,4'-dicarboxylato) -ruthenium (II) bis-tetrabutylammonium) adjusted to 0.3 mM with ethanol was used. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
  • the substrate was dried, 10 ml of 0.01M sodium hydroxide aqueous solution was placed in a beaker, and the titanium oxide porous film on which the dye was adsorbed was immersed for 120 seconds. Then, it was immersed in a stirred 0.01 M HNO 3 solution for 10 seconds, and immersed in distilled water and ethanol similarly stirred for 10 seconds, respectively.
  • the solution used is black dye (tris (isothiocyanate-ruthenium (II) -2,2 ′: 6 ′, 2 ′′ -terpyridine-4,4,4 ′′ -tricarboxylic acid, tris-tetrabutylammonium salt) ) was adjusted to 0.3 mM with ethanol. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
  • black dye tris (isothiocyanate-ruthenium (II) -2,2 ′: 6 ′, 2 ′′ -terpyridine-4,4,4 ′′ -tricarboxylic acid, tris-tetrabutylammonium salt)
  • Electrolyte solution contains I 2 (iodine) 0.05M, LiI (lithium iodide) 0.5M, tBP (tertiary butylpyridine) 0.58M, DMPII (ionic liquid) 0.6M, and MeCN (acetonitrile) as solvent. As adjusted.
  • the counter electrode Pt catalyst was deposited on ITO glass to a thickness of about 10 nm by sputtering.
  • the working electrode and the counter electrode were bonded together by placing a thermoplastic sheet-like adhesive made of ionomer resin and thermocompression bonding at 100 ° C.
  • a tandem dye-sensitized solar cell could be obtained by injecting and sealing the above electrolyte into the combined cell.
  • Table 1 shows the results obtained by measuring the characteristics of the tandem dye-sensitized solar cell thus obtained.
  • the characteristics of the dye-sensitized solar cell prepared by adsorbing only N719 or black die are also shown as Comparative Examples 1 and 2. Comparative Examples 1 and 2 were prepared under the same conditions as in Example 1 except that the steps performed to make a tandem type such as a desorption step were not performed.
  • the photoelectric conversion efficiency ⁇ of Example 1 in the tandem type is 10.3%, and a higher photoelectric conversion efficiency than that of Comparative Example 1 and Comparative Example 2 prepared using only a single dye is obtained. I was able to confirm.
  • Example 2 On the transparent conductive film of the substrate with the transparent conductive film, a titanium oxide porous film (20 ⁇ m) having a particle diameter of about 10 nm to 20 nm and a titanium oxide porous film having a particle diameter of about 10 nm to 20 nm to which polystyrene beads are added ( 10 ⁇ m). As described above, a layer having a thickness of about 30 ⁇ m was formed as the metal oxide semiconductor porous layer.
  • each titanium oxide porous layer was made to have a thickness of 20 ⁇ m and 10 ⁇ m.
  • the solution used for the adsorption of the short wavelength sensitizing dye to the titanium oxide porous thin film, which is the working electrode, was prepared by using the dye as a ruthenium (Ru) organic complex N719 cis-bis (isothiocyanato) bis (2,2'-bipyridyl) manufactured by SOLARONIX. -4,4′-dicarboxylato) -ruthenium (II) bis-tetrabutylammonium) with 0.9 mM with ethanol was used. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
  • the substrate was dried, 10 ml of 0.01 M sodium hydroxide aqueous solution was placed in a beaker, and the titanium oxide porous film on which the dye was adsorbed was immersed for 30 to 420 seconds. Then, it was immersed in stirred distilled water and ethanol for 10 seconds and washed.
  • the solution used is black dye (tris (isothiocyanate-ruthenium (II) -2,2 ′: 6 ′, 2 ′′ -terpyridine-4,4,4 ′′ -tricarboxylic acid, tris-tetrabutylammonium salt) ) was adjusted to 0.3 mM with ethanol. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
  • black dye tris (isothiocyanate-ruthenium (II) -2,2 ′: 6 ′, 2 ′′ -terpyridine-4,4,4 ′′ -tricarboxylic acid, tris-tetrabutylammonium salt)
  • Electrolyte solution contains I 2 (iodine) 0.05M, LiI (lithium iodide) 0.5M, tBP (tertiary butylpyridine) 0.58M, DMPII (ionic liquid) 0.6M, and MeCN (acetonitrile) as solvent. As adjusted.
  • the counter electrode Pt catalyst was deposited on ITO glass to a thickness of about 10 nm by sputtering.
  • the working electrode and the counter electrode were bonded together by placing a thermoplastic sheet-like adhesive made of ionomer resin and thermocompression bonding at 100 ° C.
  • a tandem dye-sensitized solar cell could be obtained by injecting and sealing the above electrolyte into the combined cell.
  • the dye-sensitized solar cell in which the thickness of the titanium oxide porous film on which N719 is adsorbed is 0 ⁇ m to about 30 ⁇ m and the thickness of the titanium oxide porous film on which the black die is adsorbed is about 30 ⁇ m to 0 ⁇ m. Created multiple.
  • the sample whose film thickness of the porous titanium oxide film on which N719 is adsorbed is 0 ⁇ m and about 30 ⁇ m is a comparative example in which only N719 or only the black die is adsorbed.
  • Table 2 shows the results of measuring the photoelectric conversion efficiency ⁇ and the short-circuit current density Jsc.
  • the first porous layer on which N719 is adsorbed has a thickness of 1.65 to 3.68 ⁇ m, particularly 3.68 ⁇ m, and the photoelectric conversion rate and the short-circuit current density are remarkably improved. It could be confirmed. Therefore, the film thickness ratio between the first porous layer on which N719 is adsorbed and the second porous layer on which the black die is adsorbed is preferably 1: 7.3 to 17.4. .
  • the cost of the production process of the dye-sensitized solar cell is reduced, and the photoelectric conversion efficiency of the dye-sensitized solar cell manufactured in the system including the dye adsorption process is improved. It is possible to provide a method for producing a dye-sensitized solar cell and a dye-sensitized solar cell.
  • this invention is not limited to said embodiment and Example, Of course, various deformation
  • the present invention can be used in the field of manufacturing dye-sensitized solar cells. Therefore, it has industrial applicability.
  • SYMBOLS 1 Transparent substrate, 2 ... Transparent conductive film, 3 ... Metal oxide semiconductor porous layer, 4 ... Spacer, 5 ... Substrate, 6 ... Transparent conductive film, 7 ... Catalyst layer, 8 ... Electrolyte, 10 ... Working electrode substrate, 20 ... Counter electrode substrate, 31 ... First porous layer, 32 ... Second porous layer, 41 ... Container, 42 ... Heater, 44 ... Stirrer 45 ... solution.

Abstract

This method for manufacturing a dye-sensitized solar cell is characterized by comprising: a first dye adsorption step wherein a porous metal oxide semiconductor layer is caused to adsorb a first photosensitizing dye; a desorption step wherein some of the first photosensitizing dye adsorbed on the porous metal oxide semiconductor layer is desorbed by having a desorption liquid for desorbing photosensitizing dyes act on the porous metal oxide semiconductor layer; and a second dye adsorption step wherein a part of the porous metal oxide semiconductor layer, from which the first photosensitizing dye is desorbed, is caused to adsorb a second photosensitizing dye that is different from the first photosensitizing dye.

Description

色素増感太陽電池の製造方法及び色素増感太陽電池Method for producing dye-sensitized solar cell and dye-sensitized solar cell
 本発明は、色素増感太陽電池の製造方法及び色素増感太陽電池に関する。 The present invention relates to a method for producing a dye-sensitized solar cell and a dye-sensitized solar cell.
 一般的な構造の色素増感太陽電池は、透明基板の片側の表面に透明導電性を持つ薄膜と、その透明導電性を持つ薄膜の表面に、色素が吸着した微粒子から構成される金属酸化物多孔質半導体層を有する作用極、それに対向して触媒、例えば、白金やカーボンを有する導電性基板からなる対極、その作用極と対極の間の電解質から構成される。 A dye-sensitized solar cell having a general structure is a metal oxide composed of a transparent conductive thin film on one surface of a transparent substrate and fine particles adsorbed on the surface of the transparent conductive thin film. A working electrode having a porous semiconductor layer, a counter electrode made of a conductive substrate having a catalyst such as platinum or carbon, and an electrolyte between the working electrode and the counter electrode are provided.
 色素増感太陽電池は、金属酸化物多孔質半導体層に吸着させる色素の種類により、吸収する光の波長帯域が異なることが知られている。このことから、広範囲の波長の光を吸収させて光電変換効率を向上させるため、異なる2種以上の色素を用いた色素増感太陽電池が提案されている(例えば、特許文献1または特許文献2参照)。 It is known that the dye-sensitized solar cell has different wavelength bands of light to be absorbed depending on the kind of dye adsorbed on the metal oxide porous semiconductor layer. For this reason, a dye-sensitized solar cell using two or more different dyes has been proposed in order to absorb light in a wide range of wavelengths and improve the photoelectric conversion efficiency (for example, Patent Document 1 or Patent Document 2). reference).
 特許文献1には、透光性電極層、色素増感半導体層、電解質層および対極層からなるセルを2つ積層させたタンデム型の色素増感太陽電池が記載されている。また、特許文献2には、1つのチタニア多孔質膜の厚さ方向に、短波長用の増感色素と長波長用の増感色素を吸着させた色素増感太陽電池が記載されている。 Patent Document 1 describes a tandem dye-sensitized solar cell in which two cells each composed of a translucent electrode layer, a dye-sensitized semiconductor layer, an electrolyte layer, and a counter electrode layer are stacked. Patent Document 2 describes a dye-sensitized solar cell in which a sensitizing dye for a short wavelength and a sensitizing dye for a long wavelength are adsorbed in the thickness direction of one titania porous film.
特開2008-257895号公報JP 2008-257895 A 特開2008-071535号公報JP 2008-071535 A
 しかしながら、特許文献1に記載の色素増感太陽電池は、異なる色素を吸着させたセルを2つ積層させるものであるため、生産性が低く、コストが高くなるという問題点がある。また、特許文献2に記載の色素増感太陽電池は、1つのセル内の色素増感半導体層に少なくとも2種の色素を吸着させたものであるが、色素の吸着は、超臨界二酸化炭素流体を含む加圧流体を用いて行われる。この加圧流体を得るためには、10~25MPa程度の圧力が必要となるため、大型の耐圧容器が必要となる。このため、特許文献2に記載の色素増感太陽電池においても、生産性が低く、コストが高くなるという問題点がある。 However, the dye-sensitized solar cell described in Patent Document 1 has a problem that productivity is low and cost is high because two cells having different dyes adsorbed thereon are stacked. Further, the dye-sensitized solar cell described in Patent Document 2 is obtained by adsorbing at least two kinds of dyes on a dye-sensitized semiconductor layer in one cell. Is carried out using a pressurized fluid containing In order to obtain this pressurized fluid, a pressure of about 10 to 25 MPa is required, so a large pressure vessel is required. For this reason, the dye-sensitized solar cell described in Patent Document 2 also has problems that productivity is low and cost is high.
 本発明は、上記従来の事情に対処してなされたもので、色素増感太陽電池の生産工程の低コスト化と、製造される色素増感太陽電池の光電変換効率の向上を図ることのできる色素増感太陽電池の製造方法及び色素増感太陽電池を提供しようとするものである。 The present invention has been made in response to the above-described conventional circumstances, and can reduce the cost of the production process of the dye-sensitized solar cell and improve the photoelectric conversion efficiency of the produced dye-sensitized solar cell. It is an object of the present invention to provide a method for producing a dye-sensitized solar cell and a dye-sensitized solar cell.
 本発明の色素増感太陽電池の製造方法の一態様は、金属酸化物半導体多孔質層に、第1の光増感色素を吸着させる第1の色素吸着工程と、光増感色素を脱離させる脱離液を前記金属酸化物半導体多孔質層に作用させて前記金属酸化物半導体多孔質層に吸着させた前記第1の光増感色素の一部を脱離させる脱離工程と、前記金属酸化物半導体多孔質層の前記第1の光増感色素の一部を脱離させた部位に、前記第1の光増感色素とは異なる第2の光増感色素を吸着させる第2の色素吸着工程と、を具備したことを特徴とする。 One aspect of the method for producing a dye-sensitized solar cell of the present invention includes a first dye-adsorbing step of adsorbing a first photosensitizing dye to a metal oxide semiconductor porous layer, and desorption of the photosensitizing dye. A desorption step of causing the desorption liquid to act on the metal oxide semiconductor porous layer to desorb a part of the first photosensitizing dye adsorbed on the metal oxide semiconductor porous layer; A second photosensitizing dye that is different from the first photosensitizing dye is adsorbed to a portion of the metal oxide semiconductor porous layer from which a part of the first photosensitizing dye has been removed. And a dye adsorption step.
 本発明によれば、色素増感太陽電池の生産工程の低コスト化と、製造される色素増感太陽電池の光電変換効率の向上を図ることのできる色素増感太陽電池の製造方法及び色素増感太陽電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a dye-sensitized solar cell which can aim at the cost reduction of the manufacturing process of a dye-sensitized solar cell, and the improvement of the photoelectric conversion efficiency of the dye-sensitized solar cell manufactured, and dye enhancement A solar cell can be provided.
本発明の一実施形態における色素増感太陽電池の構造を模式的に示す図。The figure which shows typically the structure of the dye-sensitized solar cell in one Embodiment of this invention. 本発明の一実施形態の工程を示す図。The figure which shows the process of one Embodiment of this invention. 本発明の一実施形態に用いる色素吸着装置の構成例を示す図。The figure which shows the structural example of the pigment | dye adsorption apparatus used for one Embodiment of this invention. 本発明の一実施形態に用いる色素吸着装置の他の構成例を示す図。The figure which shows the other structural example of the pigment | dye adsorption apparatus used for one Embodiment of this invention.
 以下、本発明の詳細を、図面を参照して実施形態について説明する。なお、以下の説明はもっとも簡潔に実現できる一例に過ぎず、同一の物理的・化学的な条件を満足する種々の形態での実施が本発明の範囲内で可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following description is merely an example that can be realized most simply, and can be implemented in various forms that satisfy the same physical and chemical conditions within the scope of the present invention.
 図1は、本実施形態の色素増感太陽電池の基本構成の一例を示すものである。図1に示すように、色素増感太陽電池は、作用極基板10、対極基板20、電解液8およびスペーサ4から構成されている。 FIG. 1 shows an example of the basic configuration of the dye-sensitized solar cell of the present embodiment. As shown in FIG. 1, the dye-sensitized solar cell includes a working electrode substrate 10, a counter electrode substrate 20, an electrolytic solution 8, and a spacer 4.
 作用極基板10は、透明基板1、透明導電膜2および金属酸化物半導体多孔質層3から構成されている。透明基板1には、透明導電膜2が形成されている。透明基板1としては、PETなどのプラスチック基板や、ガラス基板を用いることができる。透明導電膜2としては、例えば、フッ素をドープした酸化スズ膜(FTO膜)や、スズをドープした酸化インジウム膜(ITO膜)を用いることができる。 The working electrode substrate 10 includes a transparent substrate 1, a transparent conductive film 2, and a metal oxide semiconductor porous layer 3. A transparent conductive film 2 is formed on the transparent substrate 1. As the transparent substrate 1, a plastic substrate such as PET or a glass substrate can be used. As the transparent conductive film 2, for example, a tin oxide film doped with fluorine (FTO film) or an indium oxide film doped with tin (ITO film) can be used.
 透明導電膜2の表面には、金属酸化物半導体多孔質層3が形成されている。金属酸化物半導体多孔質層3は、光を吸収する色素が吸着する層である。金属酸化物半導体多孔質層3を構成する材料としては、例えば、酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンなどの微粒子が用いられる。金属酸化物半導体多孔質層3は、色素Aが吸着した第1の多孔質層31と、色素Aとは異なる色素Bが吸着した第2の多孔質層32を有する。色素Aと色素Bとでは、吸収波長が相互にずれることが望ましく、受光面側(透明基板1側)の色素Aは短波長側に最大吸収波長をもち、逆側の色素Bは長波長側に最大吸収波長をもつことが望ましい。例えば、色素AとしてN719、色素Bとしてブラックダイを用いることができる。 A metal oxide semiconductor porous layer 3 is formed on the surface of the transparent conductive film 2. The metal oxide semiconductor porous layer 3 is a layer that adsorbs a dye that absorbs light. As a material constituting the metal oxide semiconductor porous layer 3, for example, fine particles such as titanium oxide, zinc oxide, tin oxide, and tungsten oxide are used. The metal oxide semiconductor porous layer 3 includes a first porous layer 31 on which the dye A is adsorbed and a second porous layer 32 on which a dye B different from the dye A is adsorbed. It is desirable for the dye A and the dye B to have different absorption wavelengths. The dye A on the light receiving surface side (transparent substrate 1 side) has a maximum absorption wavelength on the short wavelength side, and the dye B on the opposite side has a long wavelength side. It is desirable to have a maximum absorption wavelength. For example, N719 can be used as the dye A, and a black die can be used as the dye B.
 なお、図示はしていないが、透明導電膜2と金属酸化物半導体多孔質層3との間に、緻密な金属酸化物層を設けてもよい。この層は、多孔質ではない金属酸化物の層であり、アモルファスでも結晶性の微粒子でも構わない。このような層を設けることにより、透明導電膜2から電解液8への電子の逆流を抑制することができる。 Although not shown, a dense metal oxide layer may be provided between the transparent conductive film 2 and the metal oxide semiconductor porous layer 3. This layer is a non-porous metal oxide layer and may be amorphous or crystalline fine particles. By providing such a layer, the backflow of electrons from the transparent conductive film 2 to the electrolytic solution 8 can be suppressed.
 対極基板20は、基板5、透明導電膜6および触媒層7により構成される。基板5は、ガラス基板もしくはプラスチック基板を用いることができる。基板5の表面には透明導電膜6が形成されている。透明導電膜6の表面には、触媒層7が形成されている。触媒層としては、プラチナまたはカーボンを用いることができる。基板5および透明導電膜6の代わりに、金属電極板を用い、金属電極板の表面に触媒層7を形成したものを用いてもよい。 The counter electrode substrate 20 is composed of the substrate 5, the transparent conductive film 6 and the catalyst layer 7. As the substrate 5, a glass substrate or a plastic substrate can be used. A transparent conductive film 6 is formed on the surface of the substrate 5. A catalyst layer 7 is formed on the surface of the transparent conductive film 6. Platinum or carbon can be used as the catalyst layer. Instead of the substrate 5 and the transparent conductive film 6, a metal electrode plate may be used and a catalyst layer 7 formed on the surface of the metal electrode plate may be used.
 作用極基板10と対極基板20との間には、これらの間に介在し、これらの間を所定間隔に維持するためのスペーサ4が配設されている。このスペーサ4は、ヨウ素に耐性があり、かつ熱可塑性のある樹脂や低温でガラスとの接合が可能な無機系の接着剤が望ましい。この時の電極間の間隔は、狭いほど、電解液の直列抵抗成分やレドックス反応がよりスムーズに進行するのでよいが、金属酸化物半導体多孔質層3の表面凹凸のために、作用極と対極間の短絡が起こる確率が増す。そのため、この電極間の間隔は、10μmから30μmとすることが望ましい。 A spacer 4 is disposed between the working electrode substrate 10 and the counter electrode substrate 20 so as to be interposed between them and to maintain a predetermined distance therebetween. The spacer 4 is preferably iodine-resistant, thermoplastic resin, and inorganic adhesive that can be bonded to glass at a low temperature. As the distance between the electrodes at this time is narrower, the series resistance component of the electrolytic solution and the redox reaction may proceed more smoothly. However, due to the surface unevenness of the metal oxide semiconductor porous layer 3, the working electrode and the counter electrode The probability of a short circuit between them increases. Therefore, it is desirable that the distance between the electrodes be 10 μm to 30 μm.
 透明基板1と対極の基板5との間には電解液8が注入されている。この電解液8に用いられる電解質としては、ヨウ素とヨウ化物(LiI、NaI、KI、CsI、CaI2等の金属ヨウ化物、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等の第4級アンモニウム化合物ヨウ素塩等)の組み合わせ、臭素と臭化物(LiBr、NaBr、KBr、CsBr、CaBr2 等の金属臭化物、テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等の第4級アンモニウム化合物臭素塩等)の組み合わせ、ポリ硫化ナトリウム、アルキルチオール、アルキルジスルフィド等のイオウ化合物、ビオロゲン色素、ヒドロキノン、キノン等が挙げられる。電解質は混合して用いてもよい。 An electrolyte solution 8 is injected between the transparent substrate 1 and the counter electrode substrate 5. Examples of the electrolyte used in the electrolytic solution 8 include iodine and iodide (a metal iodide such as LiI, NaI, KI, CsI, and CaI2, quaternary ammonium iodide, pyridinium iodide, imidazolium iodide, and the like. Combinations of ammonium compounds (iodine salts, etc.), bromine and bromides (metal bromides such as LiBr, NaBr, KBr, CsBr, CaBr2, quaternary ammonium compounds such as tetraalkylammonium bromide, pyridinium bromide, etc.), polysulfides Examples thereof include sulfur compounds such as sodium, alkyl thiol, and alkyl disulfide, viologen dyes, hydroquinone, and quinone. The electrolyte may be used as a mixture.
 電解液に溶媒を使用する場合は、粘度が低く高イオン移動度を示し、優れたイオン伝導性を発現できる化合物であることが好ましい。このような溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート等のカーボネート化合物、3-メチル-2-オキサゾリジノン等の複素環化合物、ジオキサン、ジエチルエーテル、テトラヒドロフラン等のエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等の鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等のアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等の多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル化合物、ジメチルスルホキシド、スルフォラン等の非プロトン極性物質、水等が挙げられる。上記の溶媒は混合して用いてもよい。 When a solvent is used for the electrolytic solution, it is preferably a compound that has a low viscosity and exhibits high ion mobility and can exhibit excellent ionic conductivity. Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane, diethyl ether and tetrahydrofuran, ethylene glycol dialkyl ether, propylene glycol Chain ethers such as dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether , Ethylene glycol, propylene glycol, polyethylene glycol Le, polypropylene glycol, polyhydric alcohols such as glycerin, acetonitrile, glutarodinitrile, methoxy acetonitrile, propionitrile, nitrile compounds such as benzonitrile, dimethyl sulfoxide, aprotic polar substances such as sulfolane, water and the like. You may mix and use said solvent.
 以下、図2を参照して上述した色素増感太陽電池の製造工程について説明する。先ず、粒径が5nm~400nm程度の金属酸化物微粒子を分散させたペーストを、透明基板1の透明導電膜2の表面に塗布する塗布工程101を行う。次に、塗布したペーストを焼成する焼成工程102を行う。これにより、所望の膜厚の金属酸化物半導体多孔質層3が形成された作用極基板10を得ることができる。 Hereinafter, the manufacturing process of the dye-sensitized solar cell described above will be described with reference to FIG. First, a coating process 101 is performed in which a paste in which metal oxide fine particles having a particle size of about 5 nm to 400 nm are dispersed is applied to the surface of the transparent conductive film 2 of the transparent substrate 1. Next, a firing step 102 is performed for firing the applied paste. Thereby, the working electrode substrate 10 in which the metal oxide semiconductor porous layer 3 having a desired film thickness is formed can be obtained.
 次に、金属酸化物半導体多孔質層3に第1の色素Aを吸着させる第1の色素吸着工程103を行う。第1の色素吸着工程は、色素Aを含む溶液に作用極基板10を浸漬することにより行うことができる。 Next, a first dye adsorption step 103 for adsorbing the first dye A to the metal oxide semiconductor porous layer 3 is performed. The first dye adsorption step can be performed by immersing the working electrode substrate 10 in a solution containing the dye A.
 次に、光電変換に寄与しない余分な光増感色素を洗い落とすリンス処理工程104を行う。このリンス処理工程104は、リンス液に、色素Aを金属酸化物半導体多孔質層3に吸着させた作用極基板10を浸漬させることにより行うことができる。リンス液としては、水、アルコール、アセトニトリル、トルエン、ジメチルホルムアミド、テトラヒドロフランなどの一般的な有機溶媒を用いることができる。色素増感太陽電池を作成するにあたり、リンス処理工程104は必ずしも必要な工程ではないが、光電変換効率を向上させるために行うことが望ましい。 Next, a rinsing process 104 is performed to wash away excess photosensitizing dye that does not contribute to photoelectric conversion. The rinse treatment step 104 can be performed by immersing the working electrode substrate 10 in which the dye A is adsorbed on the metal oxide semiconductor porous layer 3 in a rinse solution. As the rinsing liquid, common organic solvents such as water, alcohol, acetonitrile, toluene, dimethylformamide, and tetrahydrofuran can be used. In preparing the dye-sensitized solar cell, the rinsing treatment step 104 is not necessarily a necessary step, but it is desirable to improve the photoelectric conversion efficiency.
 次に、金属酸化物半導体多孔質層3に吸着させた第1の色素Aの一部を脱離させる脱離工程105を行う。この脱離工程105では、色素Aを金属酸化物半導体多孔質層3に吸着させた作用極基板10を脱離液に浸漬させる。これにより、金属酸化物半導体多孔質層3と色素Aとのエステル結合が加水分解により切断され、色素Aは金属酸化物半導体多孔質層3から脱離する。そして、金属酸化物半導体多孔質層3に吸着された色素Aがすべて脱離しないうちに、脱離液から作用極基板3を引き上げる。これにより、色素Aが吸着した第1の多孔質層31と、色素Aが脱離した第2の多孔質層32が形成される。脱離液としては、エステル結合に対して加水分解が生じるものであればどのようなものでもよいが、反応速度の観点から、酢酸、塩酸、硝酸、硫酸、水酸化ナトリウム、水酸化カリウム、アミン等の水溶液を用いることが望ましい。 Next, a desorption process 105 for desorbing a part of the first dye A adsorbed on the metal oxide semiconductor porous layer 3 is performed. In the desorption step 105, the working electrode substrate 10 in which the dye A is adsorbed on the metal oxide semiconductor porous layer 3 is immersed in the desorption liquid. Thereby, the ester bond between the metal oxide semiconductor porous layer 3 and the dye A is cleaved by hydrolysis, and the dye A is detached from the metal oxide semiconductor porous layer 3. Then, the working electrode substrate 3 is pulled up from the desorbed solution before all of the dye A adsorbed on the metal oxide semiconductor porous layer 3 is desorbed. As a result, a first porous layer 31 to which the dye A is adsorbed and a second porous layer 32 from which the dye A is desorbed are formed. The elimination liquid may be any as long as hydrolysis occurs to the ester bond, but from the viewpoint of reaction rate, acetic acid, hydrochloric acid, nitric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, amine It is desirable to use an aqueous solution such as
 次に、脱離液を洗い落とす洗浄工程106を行う。この洗浄工程106は、脱離液または中和液から引き上げた作用極基板10を、水やエタノールなどの中性の液体に浸漬させることにより行う。 Next, a cleaning step 106 for washing off the desorbed liquid is performed. This cleaning step 106 is performed by immersing the working electrode substrate 10 pulled up from the desorption solution or neutralization solution in a neutral liquid such as water or ethanol.
 このようにして色素Aの一部が、金属酸化物半導体多孔質膜3から脱離した作用極基板10に、第2の色素Bを吸着する第2の色素吸着工程107を行う。第2の色素吸着工程107は、第1の色素吸着工程103と同様の手法で行うことができる。その後、リンス工程104と同様の手法により、光電変換に寄与しない余分な光増感色素を洗い落とすリンス処理工程108を行う。 In this way, the second dye adsorption step 107 for adsorbing the second dye B to the working electrode substrate 10 in which a part of the dye A is desorbed from the metal oxide semiconductor porous film 3 is performed. The second dye adsorption step 107 can be performed by the same method as the first dye adsorption step 103. Thereafter, a rinsing process 108 for washing away excess photosensitizing dye that does not contribute to photoelectric conversion is performed in the same manner as in the rinsing process 104.
 以上により、透明基板1/透明導電膜2/色素Aが吸着した第1の多孔質層31/色素Bが吸着した第2の多孔質層32という構造を有する作用極基板10を作ることができる。このように作成した作用極基板10に、スペーサ4を用いて対極基板20を張り合わせ、電解液8を注入することにより、図1に示した色素増感太陽電池を得ることができる。これにより、通常の単一色素で製作した色素増感太陽電池よりも高い変換効率を有する色素増感太陽電池を簡易に得ることができる。 As described above, the working electrode substrate 10 having the structure of the transparent substrate 1 / the transparent conductive film 2 / the first porous layer 31 on which the dye A is adsorbed / the second porous layer 32 on which the dye B is adsorbed can be produced. . The dye-sensitized solar cell shown in FIG. 1 can be obtained by bonding the counter electrode substrate 20 to the working electrode substrate 10 thus created using the spacer 4 and injecting the electrolytic solution 8. Thereby, the dye-sensitized solar cell which has higher conversion efficiency than the dye-sensitized solar cell manufactured with the normal single pigment | dye can be obtained easily.
 なお、脱離工程105と洗浄工程106との間に、脱離反応を停止させるための中和工程を追加してもよい。この中和工程は、脱離液から引き上げた作用極基板10を、中和液に浸漬させることにより行うことができる。あるいは、脱離液に作用極基板10を浸漬させたまま、中和液を加えてもよい。中和液としては、脱離液と中和反応が生じるものであればどのようなものでもよい。例えば、脱離液がアルカリ性である水酸化ナトリウム水溶液であれば、中和液としては酸性である硝酸を用いることができる。 Note that a neutralization step for stopping the desorption reaction may be added between the desorption step 105 and the washing step 106. This neutralization step can be performed by immersing the working electrode substrate 10 pulled up from the desorption solution in the neutralization solution. Alternatively, the neutralizing solution may be added while the working electrode substrate 10 is immersed in the detaching solution. Any neutralization solution may be used as long as it causes a neutralization reaction with the desorption solution. For example, if the detachment liquid is an aqueous sodium hydroxide solution, acidic nitric acid can be used as the neutralization liquid.
 また、作用極基板10を溶液に浸漬させる各工程においては、溶液に対流を生じさせるようにしてもよい。溶液に流れが形成されることにより、溶液内の分子が、溶液に流れが形成されていない状態において拡散のみで移動する場合に比べ、速い速度で移動することになる。このため、各工程の処理時間を短縮させることができる。 In each step of immersing the working electrode substrate 10 in the solution, convection may be generated in the solution. By forming a flow in the solution, the molecules in the solution move at a higher speed than when the molecules move only by diffusion in a state where no flow is formed in the solution. For this reason, the processing time of each process can be shortened.
 図3は、溶液に対流を生じさせて色素を吸着させる色素吸着装置の構成例を示している。この色素吸着装置は、色素を含む溶液45を収容するための円筒状の密封容器41と、溶液45に流れを作るためのスターラー44及びスターラー44の駆動機構を有するヒーター42とを具備している。 FIG. 3 shows a configuration example of a dye adsorption device that adsorbs a dye by generating convection in a solution. This dye adsorbing apparatus includes a cylindrical sealed container 41 for containing a solution 45 containing a dye, a stirrer 44 for creating a flow in the solution 45, and a heater 42 having a drive mechanism for the stirrer 44. .
 上記構成の色素吸着装置では、円筒状の密封容器41の側面に対して、その円周に沿った方向に、スターラー44により溶液45に流れを作る。作用極基板10 は、密封容器41の円筒面に接して配置される。これにより、溶液45は、金属酸化物半導体多孔質層3の表面に対して平行な流れを形成する。また、ヒーター42により、比較的温和な状態で密閉容器41の内圧を上げることができ、その内圧は、常圧から1.5気圧程度が望ましい。 In the dye adsorption device having the above-described configuration, a flow is generated in the solution 45 by the stirrer 44 in the direction along the circumference of the side surface of the cylindrical sealed container 41. The working electrode substrate 10 is disposed in contact with the cylindrical surface of the sealed container 41. Thereby, the solution 45 forms a flow parallel to the surface of the metal oxide semiconductor porous layer 3. Further, the heater 42 can raise the internal pressure of the sealed container 41 in a relatively mild state, and the internal pressure is preferably about normal pressure to about 1.5 atm.
 図4は、溶液に対流を生じさせて色素を吸着させる色素吸着装置の他の構成例を示している。この色素吸着装置は、色素を含む溶液45を収容するための円筒状の密封容器41と、溶液45に流れをつくるための円筒状の回転体44aと、ヒーター12とを具備している。 FIG. 4 shows another configuration example of the dye adsorption device that adsorbs the dye by generating convection in the solution. This dye adsorption device includes a cylindrical sealed container 41 for containing a solution 45 containing a dye, a cylindrical rotating body 44 a for creating a flow in the solution 45, and the heater 12.
 上記構成の色素吸着装置では、密封容器41(もしくはビーカーのような開口した円筒状の容器)に、溶液45を入れ、溶液45中に作用極基板10を浸漬した状態で円筒状の回転体44aの先端に作用極基板10を配置する。作用極基板10の付いた回転体44aを回すことにより、作用極基板10上の金属酸化物半導体多孔質層3に対して、垂直方向からの溶液45の対流が生じる。この対流により、酸化物半導体多孔質層3の近傍では、金属酸化物半導体多孔質層3に対して、垂直な方向および平行な方向の溶液45の移動速度が生じる。この場合も、回転体44aをシールすることにより、ヒーター42により、比較的温和な状態で容器41の内圧を上げることができ、その内圧は、常圧から1.5気圧程度が望ましい。 In the dye adsorbing device having the above-described configuration, the cylindrical rotating body 44a is placed in a state where the solution 45 is placed in the sealed container 41 (or a cylindrical container having an opening such as a beaker) and the working electrode substrate 10 is immersed in the solution 45. The working electrode substrate 10 is disposed at the tip of the substrate. By rotating the rotating body 44 a with the working electrode substrate 10, convection of the solution 45 from the vertical direction occurs with respect to the metal oxide semiconductor porous layer 3 on the working electrode substrate 10. Due to this convection, in the vicinity of the oxide semiconductor porous layer 3, the moving speed of the solution 45 in a direction perpendicular to and parallel to the metal oxide semiconductor porous layer 3 is generated. Also in this case, by sealing the rotating body 44a, the internal pressure of the container 41 can be raised in a relatively mild state by the heater 42, and the internal pressure is preferably about normal pressure to about 1.5 atmospheric pressure.
 また、金属酸化物半導体多孔質層3は、上層側(第2の多孔質層32側)の空隙率を、下層側(第1の多孔質層31側)の空隙率よりも高くすることが望ましい。上層側(第2の多孔質層32側)では脱離液が浸入しやすくなり、下層側(第1の多孔質層31側)では脱離液が浸入しにくい構造となるためである。これにより、脱離工程105において、色素Aが吸着した第1の多孔質層31と色素Aが脱離した第2の多孔質層32とを良好に形成することができる。このような金属酸化物半導体多孔質層3は、金属酸化物微粒子の粒径が小さなペーストを用いて形成した膜と、金属酸化物微粒子の粒径が大きなペーストを用いて形成した膜を積層させることにより得ることができる。金属酸化物微粒子の粒径が大きくなることにより、膜中の空隙も大きくなるためである。また、粒径が大きなペーストの代わりに、ポリスチレンビーズのような空隙形成剤を混入させたペーストを用いても良い。焼成工程にてポリスチレンビーズが燃焼し、空隙が形成されるためである。 In addition, the metal oxide semiconductor porous layer 3 may have a higher porosity on the upper layer side (second porous layer 32 side) than a porosity on the lower layer side (first porous layer 31 side). desirable. This is because the desorbed liquid easily enters the upper layer side (second porous layer 32 side), and the desorbed liquid does not easily enter the lower layer side (first porous layer 31 side). Thereby, in the desorption step 105, the first porous layer 31 to which the dye A is adsorbed and the second porous layer 32 from which the dye A is desorbed can be formed favorably. Such a metal oxide semiconductor porous layer 3 is formed by laminating a film formed using a paste having a small particle size of metal oxide fine particles and a film formed using a paste having a large particle size of metal oxide fine particles. Can be obtained. This is because the voids in the film also increase as the particle size of the metal oxide fine particles increases. Further, instead of a paste having a large particle size, a paste mixed with a void forming agent such as polystyrene beads may be used. This is because the polystyrene beads are burned in the firing step and voids are formed.
 以上説明した本発明に係る色素増感太陽電池の製造方法は、金属酸化物半導体多孔質層に色素を吸着させた後に、一部を脱離させ、脱離部分に別の色素を吸着させることにより、容易にタンデム型の色素増感太陽電池を製造することができる。この色素増感太陽電池は複数のセルを積層させたものではなく、色素吸着は常圧における浸漬にて行うことができる。このため、光電変換効率が高いタンデム型の色素増感太陽電池を低コストで生産することができる。また、脱離液への浸漬時間および/または脱離液の濃度を変えることにより、色素Aが吸着した第1の多孔質層と色素Bが吸着した第2の多孔質層の膜厚比を、容易に制御することができる。なお、脱離工程と色素吸着工程を増やすことにより、3種以上の色素を用いた色素増感太陽電池を作成することもできる。 In the method for producing a dye-sensitized solar cell according to the present invention described above, after the dye is adsorbed on the porous metal oxide semiconductor layer, a part is desorbed and another dye is adsorbed on the desorbed part. Thus, a tandem dye-sensitized solar cell can be easily manufactured. This dye-sensitized solar cell is not a laminate of a plurality of cells, and dye adsorption can be performed by immersion at normal pressure. Therefore, a tandem dye-sensitized solar cell with high photoelectric conversion efficiency can be produced at low cost. Further, by changing the immersion time in the desorption liquid and / or the concentration of the desorption liquid, the film thickness ratio of the first porous layer to which the dye A is adsorbed and the second porous layer to which the dye B is adsorbed is changed. Can be easily controlled. In addition, the dye-sensitized solar cell using 3 or more types of pigment | dyes can also be created by increasing a desorption process and a pigment | dye adsorption process.
(実施例1)
 10mm×25mm×3.1mmの透明導電膜つきガラス基板として、フッ素ドープ酸化スズ付きガラス(日本板硝子、10.2Ω/□)を使用した。次に、透明導電性膜付き基板の透明導電性膜の上に、3層の酸化チタン多孔質層、粒子径10nm~20nm程度の酸化チタン多孔質膜(20μm)、粒子径200nm程度の酸化チタン多孔質膜(5μm)、粒子径400nm程度の酸化チタン多孔質膜(5μm)、以上金属酸化物半導体多孔質層としては、約30μmの厚さを持つ層を形成した。
(Example 1)
As a glass substrate with a transparent conductive film of 10 mm × 25 mm × 3.1 mm, glass with fluorine-doped tin oxide (Japanese plate glass, 10.2Ω / □) was used. Next, on the transparent conductive film of the substrate with the transparent conductive film, three titanium oxide porous layers, a titanium oxide porous film (20 μm) having a particle size of about 10 nm to 20 nm, and a titanium oxide having a particle size of about 200 nm. A porous film (5 μm), a titanium oxide porous film (5 μm) having a particle diameter of about 400 nm, and a metal oxide semiconductor porous layer having a thickness of about 30 μm were formed.
 各酸化チタン多孔質膜は、市販の酸化チタンペースト、PST-18NR(日揮触媒化成)、PST-200C(日揮触媒化成)、PST-400C(日揮触媒化成)を使用し、これらを、透明導電性膜付き基板の導電性膜上に、スキージ法を用いて5mm×5mmの範囲に塗布して、500℃の電気炉で焼成後、それぞれの酸化チタン多孔質層が20μm、5μm、5μmの厚さになるようにした。 Each titanium oxide porous membrane uses a commercially available titanium oxide paste, PST-18NR (JGC Catalysts & Chemicals), PST-200C (JGC Catalysts & Chemicals), PST-400C (JGC Catalysts & Chemicals). On the conductive film of the film-coated substrate, a squeegee method is applied in a range of 5 mm × 5 mm, and after firing in an electric furnace at 500 ° C., each titanium oxide porous layer has a thickness of 20 μm, 5 μm and 5 μm. I tried to become.
 作用極である酸化チタン多孔質薄膜への短波長増感色素の吸着に用いる溶液は、色素を、SOLARONIX社製 ルテニウム(Ru)有機錯体N719 cis-bis (isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) bis-tetrabutylammonium)をエタノールにより0.3mMとしたものを使用した。色素の吸着後、基板に付着している余分な色素を落とすため、エタノールで30分間リンスした。 The solution used for the adsorption of the short wavelength sensitizing dye to the titanium oxide porous thin film, which is the working electrode, was prepared by using the dye as a ruthenium (Ru) organic complex N719 cis-bis (isothiocyanato) bis (2,2'-bipyridyl) manufactured by SOLARONIX. -4,4'-dicarboxylato) -ruthenium (II) bis-tetrabutylammonium) adjusted to 0.3 mM with ethanol was used. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
 その後基板を乾燥させ、ビーカーに0.01Mの水酸化ナトリウム水溶液を10ml入れ、色素が吸着した酸化チタン多孔質膜を、120秒間浸漬した。その後、撹拌された0.01MのHNO溶液に10秒間浸漬し、同様に撹拌された蒸留水とエタノールにそれぞれ10秒間浸漬した。 Thereafter, the substrate was dried, 10 ml of 0.01M sodium hydroxide aqueous solution was placed in a beaker, and the titanium oxide porous film on which the dye was adsorbed was immersed for 120 seconds. Then, it was immersed in a stirred 0.01 M HNO 3 solution for 10 seconds, and immersed in distilled water and ethanol similarly stirred for 10 seconds, respectively.
 その後、色素が脱離した部分に、長波長増感色素の吸着を行った。それに用いる溶液は、ブラックダイ(トリス(イソチオシアネート-ルテニウム(II)-2,2’:6’,2”-ターピリジン-4,4,4”-トリカルボキシリックアシッド,トリス-テトラブチルアンモニウム塩))をエタノールにより0.3mMとしたものを使用した。色素の吸着後、基板に付着している余分な色素を落とすために、エタノールで30分間リンスした。 Thereafter, the long wavelength sensitizing dye was adsorbed on the portion where the dye was detached. The solution used is black dye (tris (isothiocyanate-ruthenium (II) -2,2 ′: 6 ′, 2 ″ -terpyridine-4,4,4 ″ -tricarboxylic acid, tris-tetrabutylammonium salt) ) Was adjusted to 0.3 mM with ethanol. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
 上記の工程で短波長増感色素と長波長増感色素の2種類の色素を3層の酸化チタン多孔質膜に吸着させた。色素の塗り分け状態は、レーザー顕微鏡にて、その状態を確認した。この結果、短波長増感色素と長波長増感色素の2種類の色素が、厚さ30μmの酸化チタン多孔質膜の表面から略20μmの深さの部分で良好に塗り分けられていることを確認することができた。 In the above process, two types of dyes, a short wavelength sensitizing dye and a long wavelength sensitizing dye, were adsorbed on the three-layer titanium oxide porous film. The state in which the pigment was separately applied was confirmed with a laser microscope. As a result, the two types of dyes, the short wavelength sensitizing dye and the long wavelength sensitizing dye, are satisfactorily coated at a depth of about 20 μm from the surface of the 30 μm thick porous titanium oxide film. I was able to confirm.
 電解液はI(ヨウ素)0.05M、LiI(ヨウ化リチウム)0.5M、tBP(ターシャリーブチルピリジン)0.58M、DMPII(イオン液体) 0.6Mを入れ、MeCN(アセトニトリル)を溶媒として調整した。 Electrolyte solution contains I 2 (iodine) 0.05M, LiI (lithium iodide) 0.5M, tBP (tertiary butylpyridine) 0.58M, DMPII (ionic liquid) 0.6M, and MeCN (acetonitrile) as solvent. As adjusted.
 対極のPt触媒は、スパッタリング法で厚み10nm程度をITOガラス上に成膜した。作用極と対極の張り合わせは、アイオノマー樹脂からなる熱可塑性のシート状の接着剤を置き、100℃で熱圧着させることで組み合わせた。組み合わせたセルに上記電解液を注入し、封止することでタンデム型の色素増感太陽電池を得ることができた。これにより得られたタンデム型の色素増感太陽電池の特性を測定した結果を表1に示す。また、N719またはブラックダイのみを吸着させて作成した色素増感太陽電池の特性も比較例1および2としてあわせて示す。比較例1および2は、脱離工程等のタンデム型にするために行った工程を行っていないことを除いて、実施例1と同条件で作成した。 The counter electrode Pt catalyst was deposited on ITO glass to a thickness of about 10 nm by sputtering. The working electrode and the counter electrode were bonded together by placing a thermoplastic sheet-like adhesive made of ionomer resin and thermocompression bonding at 100 ° C. A tandem dye-sensitized solar cell could be obtained by injecting and sealing the above electrolyte into the combined cell. Table 1 shows the results obtained by measuring the characteristics of the tandem dye-sensitized solar cell thus obtained. The characteristics of the dye-sensitized solar cell prepared by adsorbing only N719 or black die are also shown as Comparative Examples 1 and 2. Comparative Examples 1 and 2 were prepared under the same conditions as in Example 1 except that the steps performed to make a tandem type such as a desorption step were not performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、タンデム型とした実施例1の光電変換効率ηは10.3%となり、単一の色素のみで作成した比較例1および比較例2よりも高い光電変換効率を得ることが確認できた。 As shown in Table 1, the photoelectric conversion efficiency η of Example 1 in the tandem type is 10.3%, and a higher photoelectric conversion efficiency than that of Comparative Example 1 and Comparative Example 2 prepared using only a single dye is obtained. I was able to confirm.
(実施例2)
 透明導電性膜付き基板の透明導電性膜の上に、粒子径10nm~20nm程度の酸化チタン多孔質膜(20μm)と、ポリスチレンビーズを添加した粒子径10nm~20nm程度の酸化チタン多孔質膜(10μm)とを形成した。以上金属酸化物半導体多孔質層としては、約30μmの厚さを持つ層を形成した。
(Example 2)
On the transparent conductive film of the substrate with the transparent conductive film, a titanium oxide porous film (20 μm) having a particle diameter of about 10 nm to 20 nm and a titanium oxide porous film having a particle diameter of about 10 nm to 20 nm to which polystyrene beads are added ( 10 μm). As described above, a layer having a thickness of about 30 μm was formed as the metal oxide semiconductor porous layer.
 酸化チタンペーストは、PST-18NR(日揮触媒化成)を使用した。ポリスチレンビーズは平均粒子径0.5μm(Thermo Fisher社製)を使用した。これらを、透明導電性膜付き基板の導電性膜上に、スキージ法を用いて5mm×5mmの範囲に塗布して、500℃の電気炉で焼成した。これにより、それぞれの酸化チタン多孔質層が20μm、10μmの厚さになるようにした。 As the titanium oxide paste, PST-18NR (JGC Catalysts & Chemicals) was used. The polystyrene beads used had an average particle size of 0.5 μm (manufactured by Thermo Fisher). These were applied on a conductive film of a substrate with a transparent conductive film in a range of 5 mm × 5 mm using a squeegee method, and baked in an electric furnace at 500 ° C. Thereby, each titanium oxide porous layer was made to have a thickness of 20 μm and 10 μm.
 作用極である酸化チタン多孔質薄膜への短波長増感色素の吸着に用いる溶液は、色素を、SOLARONIX社製 ルテニウム(Ru)有機錯体N719 cis-bis (isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II) bis-tetrabutylammonium)をエタノールにより0.9mMとしたものを使用した。色素の吸着後、基板に付着している余分な色素を落とすため、エタノールで30分間リンスした。 The solution used for the adsorption of the short wavelength sensitizing dye to the titanium oxide porous thin film, which is the working electrode, was prepared by using the dye as a ruthenium (Ru) organic complex N719 cis-bis (isothiocyanato) bis (2,2'-bipyridyl) manufactured by SOLARONIX. -4,4′-dicarboxylato) -ruthenium (II) bis-tetrabutylammonium) with 0.9 mM with ethanol was used. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
 その後基板を乾燥させ、ビーカーに0.01Mの水酸化ナトリウム水溶液を10ml入れ、色素が吸着した酸化チタン多孔質膜を30秒から420秒の間で浸漬した。その後、撹拌された蒸留水とエタノールに10秒間浸漬し、洗浄した。 Thereafter, the substrate was dried, 10 ml of 0.01 M sodium hydroxide aqueous solution was placed in a beaker, and the titanium oxide porous film on which the dye was adsorbed was immersed for 30 to 420 seconds. Then, it was immersed in stirred distilled water and ethanol for 10 seconds and washed.
 その後、色素が脱離した部分に、長波長増感色素の吸着を行った。それに用いる溶液は、ブラックダイ(トリス(イソチオシアネート-ルテニウム(II)-2,2’:6’,2”-ターピリジン-4,4,4”-トリカルボキシリックアシッド,トリス-テトラブチルアンモニウム塩))をエタノールにより0.3mMとしたものを使用した。色素の吸着後、基板に付着している余分な色素を落とすために、エタノールで30分間リンスした。 Thereafter, the long wavelength sensitizing dye was adsorbed on the portion where the dye was detached. The solution used is black dye (tris (isothiocyanate-ruthenium (II) -2,2 ′: 6 ′, 2 ″ -terpyridine-4,4,4 ″ -tricarboxylic acid, tris-tetrabutylammonium salt) ) Was adjusted to 0.3 mM with ethanol. After adsorption of the dye, it was rinsed with ethanol for 30 minutes in order to remove excess dye attached to the substrate.
 電解液はI(ヨウ素)0.05M、LiI(ヨウ化リチウム)0.5M、tBP(ターシャリーブチルピリジン)0.58M、DMPII(イオン液体) 0.6Mを入れ、MeCN(アセトニトリル)を溶媒として調整した。 Electrolyte solution contains I 2 (iodine) 0.05M, LiI (lithium iodide) 0.5M, tBP (tertiary butylpyridine) 0.58M, DMPII (ionic liquid) 0.6M, and MeCN (acetonitrile) as solvent. As adjusted.
 対極のPt触媒は、スパッタリング法で厚み10nm程度をITOガラス上に成膜した。作用極と対極の張り合わせは、アイオノマー樹脂からなる熱可塑性のシート状の接着剤を置き、100℃で熱圧着させることで組み合わせた。組み合わせたセルに上記電解液を注入し、封止することでタンデム型の色素増感太陽電池を得ることができた。 The counter electrode Pt catalyst was deposited on ITO glass to a thickness of about 10 nm by sputtering. The working electrode and the counter electrode were bonded together by placing a thermoplastic sheet-like adhesive made of ionomer resin and thermocompression bonding at 100 ° C. A tandem dye-sensitized solar cell could be obtained by injecting and sealing the above electrolyte into the combined cell.
 上記の脱離工程にて、浸漬時間が異なる試料を複数作成した。この結果、N719が吸着している酸化チタン多孔質膜の膜厚が0μm~約30μm、ブラックダイが吸着している酸化チタン多孔質膜の膜厚が約30μm~0μmである色素増感太陽電池を複数作成した。なお、N719が吸着している酸化チタン多孔質膜の膜厚が0μmおよび約30μmの試料は、N719のみもしくはブラックダイのみを吸着させた比較例である。これらの光電変換効率ηおよび短絡電流密度Jscを測定した結果を表2に示す。 In the above desorption process, a plurality of samples having different immersion times were prepared. As a result, the dye-sensitized solar cell in which the thickness of the titanium oxide porous film on which N719 is adsorbed is 0 μm to about 30 μm and the thickness of the titanium oxide porous film on which the black die is adsorbed is about 30 μm to 0 μm. Created multiple. In addition, the sample whose film thickness of the porous titanium oxide film on which N719 is adsorbed is 0 μm and about 30 μm is a comparative example in which only N719 or only the black die is adsorbed. Table 2 shows the results of measuring the photoelectric conversion efficiency η and the short-circuit current density Jsc.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるとおり、N719が吸着している第1の多孔質層の膜厚が1.65~3.68μmの試料、特に3.68μmで光電変換率および短絡電流密度の顕著な向上が確認できた。よって、N719が吸着している第1の多孔質層と、ブラックダイが吸着している第2の多孔質層との膜厚比は、1:7.3~17.4とすることが望ましい。 As shown in Table 2, the first porous layer on which N719 is adsorbed has a thickness of 1.65 to 3.68 μm, particularly 3.68 μm, and the photoelectric conversion rate and the short-circuit current density are remarkably improved. It could be confirmed. Therefore, the film thickness ratio between the first porous layer on which N719 is adsorbed and the second porous layer on which the black die is adsorbed is preferably 1: 7.3 to 17.4. .
 以上説明したとおり、本発明の実施形態によれば、色素増感太陽電池の生産工程の低コスト化と、この色素吸着過程を含むシステムにおいて製造される色素増感太陽電池の光電変換効率の向上を図ることのできる色素増感太陽電池の製造方法及び色素増感太陽電池を提供することができる。なお、本発明は、上記の実施形態及び実施例に限定されるものではなく、各種の変形が可能であることは勿論である。 As described above, according to the embodiment of the present invention, the cost of the production process of the dye-sensitized solar cell is reduced, and the photoelectric conversion efficiency of the dye-sensitized solar cell manufactured in the system including the dye adsorption process is improved. It is possible to provide a method for producing a dye-sensitized solar cell and a dye-sensitized solar cell. In addition, this invention is not limited to said embodiment and Example, Of course, various deformation | transformation are possible.
 本発明は、色素増感太陽電池の製造分野等で利用することができる。したがって、産業上の利用可能性を有する。 The present invention can be used in the field of manufacturing dye-sensitized solar cells. Therefore, it has industrial applicability.
 1……透明基板、2……透明導電膜、3……金属酸化物半導体多孔質層、4……スペーサ、5……基板、6……透明導電膜、7……触媒層、8……電解液、10……作用極基板、20……対極基板、31……第1の多孔質層、32……第2の多孔質層、41……容器、42……ヒーター、44……スターラー、45……溶液。 DESCRIPTION OF SYMBOLS 1 ... Transparent substrate, 2 ... Transparent conductive film, 3 ... Metal oxide semiconductor porous layer, 4 ... Spacer, 5 ... Substrate, 6 ... Transparent conductive film, 7 ... Catalyst layer, 8 ... Electrolyte, 10 ... Working electrode substrate, 20 ... Counter electrode substrate, 31 ... First porous layer, 32 ... Second porous layer, 41 ... Container, 42 ... Heater, 44 ... Stirrer 45 ... solution.

Claims (8)

  1.  金属酸化物半導体多孔質層に、第1の光増感色素を吸着させる第1の色素吸着工程と、
     光増感色素を脱離させる脱離液を前記金属酸化物半導体多孔質層に作用させて前記金属酸化物半導体多孔質層に吸着させた前記第1の光増感色素の一部を脱離させる脱離工程と、
     前記金属酸化物半導体多孔質層の前記第1の光増感色素の一部を脱離させた部位に、前記第1の光増感色素とは異なる第2の光増感色素を吸着させる第2の色素吸着工程と、
    を具備したことを特徴とする色素増感太陽電池の製造方法。
    A first dye adsorption step of adsorbing the first photosensitizing dye on the metal oxide semiconductor porous layer;
    A part of the first photosensitizing dye adsorbed on the metal oxide semiconductor porous layer is released by causing a release liquid for releasing the photosensitizing dye to act on the metal oxide semiconductor porous layer. A desorption step,
    A second photosensitizing dye different from the first photosensitizing dye is adsorbed on a portion of the metal oxide semiconductor porous layer from which a part of the first photosensitizing dye has been removed. 2 dye adsorption steps;
    A method for producing a dye-sensitized solar cell, comprising:
  2.  請求項1記載の色素増感太陽電池の製造方法であって、
     前記第1の光増感色素は、前記第2の光増感色素より短波長側に最大吸収波長を有する
    ことを特徴とする色素増感太陽電池の製造方法。
    A method for producing a dye-sensitized solar cell according to claim 1,
    The method for producing a dye-sensitized solar cell, wherein the first photosensitizing dye has a maximum absorption wavelength on a shorter wavelength side than the second photosensitizing dye.
  3.  請求項1又は2記載の色素増感太陽電池の製造方法であって、
     前記第1の光増感色素はN719であり、前記第2の光増感色素はブラックダイである
    ことを特徴とする色素増感太陽電池の製造方法。
    A method for producing a dye-sensitized solar cell according to claim 1 or 2,
    The method for producing a dye-sensitized solar cell, wherein the first photosensitizing dye is N719, and the second photosensitizing dye is a black die.
  4.  請求項1~3いずれか1項記載の色素増感太陽電池の製造方法であって、
     前記金属酸化物半導体多孔質層が、空隙率が異なる少なくとも2層の金属酸化物半導体多孔質膜から構成されており、上層側の空隙率が下層側の空隙率より高い
    ことを特徴とする色素増感太陽電池の製造方法。
    A method for producing a dye-sensitized solar cell according to any one of claims 1 to 3,
    The pigment characterized in that the metal oxide semiconductor porous layer is composed of at least two layers of metal oxide semiconductor porous films having different porosity, and the porosity on the upper layer side is higher than the porosity on the lower layer side A method for producing a sensitized solar cell.
  5.  請求項4に記載の色素増感太陽電池の製造方法であって、
     上層側の前記金属酸化物半導体多孔質層は、空隙形成剤が添加されたペーストを用いて形成する
    ことを特徴とする色素増感太陽電池の製造方法。
    A method for producing a dye-sensitized solar cell according to claim 4,
    The said metal oxide semiconductor porous layer of the upper layer side is formed using the paste to which the space | gap formation agent was added, The manufacturing method of the dye-sensitized solar cell characterized by the above-mentioned.
  6.  請求項4に記載の色素増感太陽電池の製造方法であって、
     上層側の前記金属酸化物半導体多孔質層は、下層側の前記金属酸化物半導体多孔質層を形成するペーストに含まれる金属酸化物半導体微粒子よりも、粒径が大きな金属酸化物半導体微粒子を含むペーストを用いて形成する
    ことを特徴とする色素増感太陽電池の製造方法。
    A method for producing a dye-sensitized solar cell according to claim 4,
    The metal oxide semiconductor porous layer on the upper layer side includes metal oxide semiconductor fine particles having a larger particle diameter than the metal oxide semiconductor fine particles contained in the paste forming the metal oxide semiconductor porous layer on the lower layer side A method for producing a dye-sensitized solar cell, characterized by forming using a paste.
  7.  請求項1~6のいずれか1項記載の色素増感太陽電池の製造方法であって、
     前記脱離工程において、前記第1の光増感色素を脱離させない部位と脱離させる部位との膜厚比が、1:7.3~17.4である
    ことを特徴とする色素増感太陽電池の製造方法。
    A method for producing a dye-sensitized solar cell according to any one of claims 1 to 6,
    In the detachment step, the dye sensitization is characterized in that a film thickness ratio between a site where the first photosensitizing dye is not detached and a site where the first photosensitizing dye is removed is 1: 7.3 to 17.4. A method for manufacturing a solar cell.
  8.  請求項1~7のいずれか1項記載の色素増感太陽電池の製造方法によって製造されたことを特徴とする色素増感太陽電池。 A dye-sensitized solar cell produced by the method for producing a dye-sensitized solar cell according to any one of claims 1 to 7.
PCT/JP2013/004371 2012-07-18 2013-07-17 Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell WO2014013734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014525724A JPWO2014013734A1 (en) 2012-07-18 2013-07-17 Method for producing dye-sensitized solar cell and dye-sensitized solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-159857 2012-07-18
JP2012159857 2012-07-18

Publications (1)

Publication Number Publication Date
WO2014013734A1 true WO2014013734A1 (en) 2014-01-23

Family

ID=49948573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004371 WO2014013734A1 (en) 2012-07-18 2013-07-17 Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell

Country Status (3)

Country Link
JP (1) JPWO2014013734A1 (en)
TW (1) TW201421714A (en)
WO (1) WO2014013734A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021308A1 (en) * 2014-08-06 2016-02-11 株式会社ダイセル Photoelectric conversion layer and photoelectric conversion element provided with same
CN111161956A (en) * 2020-01-03 2020-05-15 南昌航空大学 Method for preparing co-sensitization film by bidirectional diffusion technology
CN111161958A (en) * 2020-01-03 2020-05-15 南昌航空大学 Method for preparing multilayer co-sensitized film by light control technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184126A (en) * 2006-01-05 2007-07-19 Kyocera Corp Photoelectric conversion device, its manufacturing method and photovoltaic generator
JP2012038437A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Photoelectric conversion element, photoelectrochemical battery using the same, and photoelectric conversion element composition
JP2012074345A (en) * 2010-09-01 2012-04-12 Nippon Steel Chem Co Ltd Dye-sensitized solar cell
JP2012084503A (en) * 2010-09-09 2012-04-26 Fujifilm Corp Photoelectric conversion element, photoelectrochemical cell, and pigment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184126A (en) * 2006-01-05 2007-07-19 Kyocera Corp Photoelectric conversion device, its manufacturing method and photovoltaic generator
JP2012038437A (en) * 2010-08-03 2012-02-23 Fujifilm Corp Photoelectric conversion element, photoelectrochemical battery using the same, and photoelectric conversion element composition
JP2012074345A (en) * 2010-09-01 2012-04-12 Nippon Steel Chem Co Ltd Dye-sensitized solar cell
JP2012084503A (en) * 2010-09-09 2012-04-26 Fujifilm Corp Photoelectric conversion element, photoelectrochemical cell, and pigment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021308A1 (en) * 2014-08-06 2016-02-11 株式会社ダイセル Photoelectric conversion layer and photoelectric conversion element provided with same
CN111161956A (en) * 2020-01-03 2020-05-15 南昌航空大学 Method for preparing co-sensitization film by bidirectional diffusion technology
CN111161958A (en) * 2020-01-03 2020-05-15 南昌航空大学 Method for preparing multilayer co-sensitized film by light control technology
CN111161956B (en) * 2020-01-03 2021-06-22 南昌航空大学 Method for preparing co-sensitization film by bidirectional diffusion technology
CN111161958B (en) * 2020-01-03 2021-06-22 南昌航空大学 Method for preparing multilayer co-sensitized film by light control technology

Also Published As

Publication number Publication date
TW201421714A (en) 2014-06-01
JPWO2014013734A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP5023866B2 (en) Dye-sensitized photoelectric conversion element, method for producing the same, and electronic device
JP5008034B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4591131B2 (en) Dye-sensitized photoelectric conversion element, manufacturing method thereof, electronic device, manufacturing method thereof, and electronic apparatus
US20090272433A1 (en) Functional Device and Method for Making the Same
JP4635473B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing semiconductor electrode
WO2010125929A1 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP5118233B2 (en) Photoelectric conversion element and photoelectric conversion element module
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP4665426B2 (en) Dye-sensitized solar cell and method for producing the same
WO2014013734A1 (en) Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
JP2004319131A (en) Manufacturing method of photoelectric transfer element, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of metal membrane and laminate structure
JP2007242544A (en) Photoelectric converter and its manufacturing method, and surface treatment solution of metal oxide porous layer
JP6057982B2 (en) Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
JP4864716B2 (en) Dye-sensitized solar cell and method for producing the same
JP4931402B2 (en) Photoelectric conversion element
JP2006004736A (en) Photoelectric transducer and colorant for photoelectric transducer
JP5131732B2 (en) Method for producing dye-adsorbing semiconductor electrode for dye-sensitized solar cell
JP2011150881A (en) Photoelectric transfer element, optical sensor, and solar cell
JP2013058424A (en) Photosensitizing dye, dye sensitized photoelectric conversion element, electronic apparatus and building
JP5303207B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
KR101286075B1 (en) Dye-sensitized solar cells and manufacturing methods thereof
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element
WO2014041798A1 (en) Method for manufacturing dye-sensitized solar cell and dye-sensitized solar cell
JP2015191984A (en) Dye-sensitized solar battery and manufacturing method thereof
KR101490806B1 (en) Dye-sensitized solar cells and manufacturing methods thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819847

Country of ref document: EP

Kind code of ref document: A1