JP2015191984A - Dye-sensitized solar battery and manufacturing method thereof - Google Patents

Dye-sensitized solar battery and manufacturing method thereof Download PDF

Info

Publication number
JP2015191984A
JP2015191984A JP2014067314A JP2014067314A JP2015191984A JP 2015191984 A JP2015191984 A JP 2015191984A JP 2014067314 A JP2014067314 A JP 2014067314A JP 2014067314 A JP2014067314 A JP 2014067314A JP 2015191984 A JP2015191984 A JP 2015191984A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
electrolyte
film
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014067314A
Other languages
Japanese (ja)
Inventor
剛 杉生
Takeshi Sugio
剛 杉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2014067314A priority Critical patent/JP2015191984A/en
Publication of JP2015191984A publication Critical patent/JP2015191984A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar battery which enables the enhancement of a battery performance and the prevention of short circuit; and a method for manufacturing such a dye-sensitized solar battery.SOLUTION: A dye-sensitized solar battery comprises: a transparent electrode 1; a counter electrode 2 having a substrate 21; an electrolyte 3 disposed between the electrodes 1 and 2; and a photocatalyst film 4 disposed on the side of the transparent electrode 1 between the electrodes 1 and 2. The electrolyte 3 includes porous films of layers with an electrolytic solution included therein. The layers include a conductive layer 31 having conductivity, and an isolation layer 32 lower than the conductive layer 31 in conductivity. The conductive layer 31 is composed of the porous film including a conductive material. The isolation layer 32 is composed of the porous film including no conductive material.

Description

本発明は、色素増感太陽電池およびその製造方法に関するものである。   The present invention relates to a dye-sensitized solar cell and a method for producing the same.

一般に、色素増感太陽電池は、その素子として、ガラス板などの透明基板上に透明導電膜が形成されてなる透明電極と、対向電極と、これら両電極間に配置される電解質と、上記両電極間で且つ上記透明電極の表面に配置される光触媒膜とから構成されている。また、上記光触媒膜としては、酸化チタン(TiO)などからなる酸化物半導体膜を形成した後、ルテニウムなどの光増感色素を吸着させたものが知られている。 In general, a dye-sensitized solar cell includes, as its elements, a transparent electrode in which a transparent conductive film is formed on a transparent substrate such as a glass plate, a counter electrode, an electrolyte disposed between these electrodes, It is comprised from the photocatalyst film | membrane arrange | positioned on the surface of the said transparent electrode between electrodes. As the photocatalyst film, a film in which an oxide semiconductor film made of titanium oxide (TiO 2 ) or the like is formed and then a photosensitizing dye such as ruthenium is adsorbed is known.

従来の技術として、導電性材料であるカーボンナノチューブまたはカーボンナノホーンを上記電解質に含有させるとともに、電解質の中に多孔性の隔離層を設けた色素増感太陽電池が提案されている(例えば、特許文献1参照)。   As a conventional technique, there has been proposed a dye-sensitized solar cell in which a carbon nanotube or a carbon nanohorn, which is a conductive material, is contained in the electrolyte, and a porous isolation layer is provided in the electrolyte (for example, Patent Documents). 1).

特開2005−93307号公報JP 2005-93307 A

ところで、上記特許文献1には、上記隔離層にカーボンナノチューブを含ませるか否かについての記載がない。このため、上記色素増感太陽電池は、上記隔離層にカーボンナノチューブを含ませるものでない場合、上記隔離層が電気抵抗となるので、電池性能が低下することになる。一方で、上記色素増感太陽電池は、上記隔離層にカーボンナノチューブを含ませるものである場合、カーボンナノチューブにより短絡するおそれがある。特に、フレキシブルな素材で製造されることが多い色素増感太陽電池は、曲げられることも多く、この際に短絡しやすくなる。   By the way, the above Patent Document 1 does not describe whether or not carbon nanotubes are included in the isolation layer. For this reason, when the said dye-sensitized solar cell does not contain a carbon nanotube in the said isolation layer, since the said isolation layer becomes electrical resistance, battery performance will fall. On the other hand, when the said dye-sensitized solar cell contains a carbon nanotube in the said isolation layer, there exists a possibility that it may short-circuit with a carbon nanotube. In particular, a dye-sensitized solar cell that is often manufactured from a flexible material is often bent and easily short-circuited.

このように、上記特許文献1に記載の色素増感太陽電池には、電池性能の低下または短絡という問題があった。
そこで、本発明は、電池性能を向上させ得るとともに、短絡を防止し得る色素増感太陽電池およびその製造方法を提供することを目的とする。
As described above, the dye-sensitized solar cell described in Patent Document 1 has a problem of deterioration in battery performance or short circuit.
Then, an object of this invention is to provide the dye-sensitized solar cell which can improve battery performance, and can prevent a short circuit, and its manufacturing method.

上記課題を解決するため、請求項1に係る本発明の色素増感太陽電池は、透明電極と、基板を有する対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池であって、
上記電解質が、複数層の多孔質膜に電解液を含有させたものであり、
上記複数層が、導電性を有する導電層と、この導電層よりも導電性が低い隔離層とを有するものである。
In order to solve the above problems, a dye-sensitized solar cell of the present invention according to claim 1 is a transparent electrode, a counter electrode having a substrate, an electrolyte disposed between both electrodes, and transparent between both electrodes. A dye-sensitized solar cell comprising a photocatalytic film disposed on the electrode side,
The electrolyte is a multi-layer porous membrane containing an electrolytic solution,
The plurality of layers include a conductive layer having conductivity and an isolation layer having lower conductivity than the conductive layer.

また、請求項2に係る本発明の色素増感太陽電池は、請求項1に記載の色素増感太陽電池において、上記導電層が、多孔質膜に導電性材料を含有させたものであり、
上記隔離層が、多孔質膜に導電性材料を含有させないものである。
The dye-sensitized solar cell of the present invention according to claim 2 is the dye-sensitized solar cell according to claim 1, wherein the conductive layer contains a conductive material in a porous film,
The isolation layer does not contain a conductive material in the porous membrane.

さらに、請求項3に係る本発明の色素増感太陽電池は、請求項1または2に記載の色素増感太陽電池において、導電層の多孔質膜に含有させた電解液と、隔離層の多孔質膜に含有させた電解液とが異なるものである。   Furthermore, the dye-sensitized solar cell of the present invention according to claim 3 is the dye-sensitized solar cell according to claim 1 or 2, wherein the electrolyte solution contained in the porous film of the conductive layer and the porosity of the isolation layer The electrolyte solution contained in the membrane is different.

また、請求項4に係る本発明の色素増感太陽電池の製造方法は、請求項1乃至3のいずれか一項に記載の色素増感太陽電池の製造方法において、透明電極に酸化物半導体膜を配置する工程と、
上記酸化物半導体膜に複数層の多孔質膜を配置する工程と、
上記多孔質膜に電解液および色素を含有させることで、色素が含有された電解質を形成する工程と、
上記透明電極の酸化物半導体膜および電解質側に対向電極を具備させる工程と、
上記電解質が含有する色素を酸化物半導体膜に吸着させることで、光触媒膜を形成する工程と、
を備えるものである。
Moreover, the manufacturing method of the dye-sensitized solar cell of this invention which concerns on Claim 4 is a manufacturing method of the dye-sensitized solar cell as described in any one of Claims 1 thru | or 3. WHEREIN: An oxide semiconductor film is used for a transparent electrode. A step of arranging
A step of disposing a plurality of porous films on the oxide semiconductor film;
A step of forming an electrolyte containing a dye by containing an electrolyte solution and a dye in the porous membrane; and
A step of providing a counter electrode on the oxide semiconductor film and electrolyte side of the transparent electrode;
A step of forming a photocatalytic film by adsorbing the dye contained in the electrolyte to the oxide semiconductor film;
Is provided.

上記色素増感太陽電池およびその製造方法によると、導電層が電気抵抗を低減するので、電池性能を向上させることができ、さらに、隔離層が両電極を電気的に隔離するので、短絡を防止することができる。   According to the dye-sensitized solar cell and the manufacturing method thereof, the conductive layer reduces electric resistance, so that the battery performance can be improved, and further, the isolation layer electrically isolates both electrodes, thereby preventing a short circuit. can do.

本発明の実施の形態に係る色素増感太陽電池(素子)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the dye-sensitized solar cell (element) which concerns on embodiment of this invention. 同色素増感太陽電池(モジュール)の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the same dye-sensitized solar cell (module).

以下、本発明の実施の形態に係る色素増感太陽電池およびその製造方法について図面に基づき説明する。なお、本実施の形態に係る色素増感太陽電池は、図1に示すように、その素子を指す。   Hereinafter, a dye-sensitized solar cell and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings. In addition, the dye-sensitized solar cell which concerns on this Embodiment points out the element, as shown in FIG.

この色素増感太陽電池は、図1に示すように、負極としての透明電極1と、正極としての対向電極2と、これら両電極1,2間に配置される電解質3と、両電極1,2間で且つ透明電極1側に配置される光触媒膜(光触媒層または発電層ともいう)4と、両電極1,2間で上記電解質3の周囲に配置される封止部5とが具備されている。   As shown in FIG. 1, the dye-sensitized solar cell includes a transparent electrode 1 as a negative electrode, a counter electrode 2 as a positive electrode, an electrolyte 3 disposed between both the electrodes 1, 2, 2 and a photocatalytic film (also referred to as a photocatalytic layer or a power generation layer) 4 disposed on the transparent electrode 1 side, and a sealing portion 5 disposed around the electrolyte 3 between the electrodes 1 and 2. ing.

本発明の要旨となる上記電解質3は、複数層の多孔質膜に電解液を含有させたものである。上記電解質3の複数層のうち、いずれかの層は導電性を有する導電層31となり、他のいずれかの層は導電層31よりも導電性が低い隔離層32となる。すなわち、導電層31は、その導電性により電気抵抗を低減するものとなり、一方で、隔離層32は、その導電性が低いことにより両電極1,2を電気的に隔離するものとなる。   The electrolyte 3 which is the gist of the present invention is one in which an electrolyte solution is contained in a porous film having a plurality of layers. Of the plurality of layers of the electrolyte 3, one of the layers serves as a conductive layer 31 having conductivity, and the other of the layers serves as an isolation layer 32 having lower conductivity than the conductive layer 31. That is, the conductive layer 31 reduces electrical resistance due to its conductivity, while the isolation layer 32 electrically isolates both electrodes 1 and 2 due to its low conductivity.

図1に基づき具体的な例を説明すると、上記電解質3は、2層の多孔質膜に電解液を含有させたものである。上記電解質3の2層のうち、光触媒膜4側の層は導電性を有する導電層31となり、対向電極2の層は導電層31よりも導電性が低い隔離層32となる。上記導電層31は、多孔質膜に導電性材料を含有させたものであり、一方で、上記隔離層32は、多孔質膜に導電性材料を含有させないものである。上記多孔質膜としては、ガラスペーパ(一例として膜厚30μm、秤量4.0〜12.0g/m)、紙、不織布など、耐電解液性を有する多孔質の膜が使用される。また、上記導電性材料としては、カーボン材料、金属材料などが使用される。このカーボン材料の例には、カーボンナノチューブ、カーボンナノコイル、カーボンブラックなどが挙げられる。なお、上記導電性材料は、ガラスペーパの厚さ(この場合は30μm)以下であることが好ましい。 A specific example will be described with reference to FIG. 1. The electrolyte 3 is a two-layer porous membrane containing an electrolytic solution. Of the two layers of the electrolyte 3, the layer on the photocatalyst film 4 side becomes the conductive layer 31 having conductivity, and the layer of the counter electrode 2 becomes the isolation layer 32 having lower conductivity than the conductive layer 31. The conductive layer 31 is a porous film containing a conductive material, while the isolation layer 32 is a porous film not containing a conductive material. As the porous film, a porous film having an electrolytic solution resistance such as glass paper (for example, a film thickness of 30 μm, a weight of 4.0 to 12.0 g / m 2 ), paper, and nonwoven fabric is used. In addition, as the conductive material, a carbon material, a metal material, or the like is used. Examples of the carbon material include carbon nanotubes, carbon nanocoils, and carbon black. In addition, it is preferable that the said electroconductive material is below the thickness (in this case 30 micrometers) of glass paper.

上記透明電極1は、透明基板11およびこの透明基板11の表面に形成(配置)された透明導電膜12から構成されている。また対向電極2は、透明基板21およびこの透明基板21の表面に形成(配置)された透明導電膜22から構成されている。なお、この透明導電膜22は、触媒性を有する材料を形成したものである。   The transparent electrode 1 includes a transparent substrate 11 and a transparent conductive film 12 formed (arranged) on the surface of the transparent substrate 11. The counter electrode 2 includes a transparent substrate 21 and a transparent conductive film 22 formed (arranged) on the surface of the transparent substrate 21. In addition, this transparent conductive film 22 forms the material which has catalytic property.

上記各透明基板11,21としては、特に限定されるものではないが、合成樹脂板、ガラス板などが適宜使用されるものの、軽量化、低価格化および安全性(破損しにくい)の点で、熱可塑性樹脂からなるフィルムが好ましい。上記熱可塑性樹脂の例には、ポリエチレン・ナフタレート(PEN)、ポリエチレン・テレフタレート(PET)などのポリエステル樹脂、ポリカーボネート樹脂、およびポリオレフィンなどの樹脂が挙げられる。   The transparent substrates 11 and 21 are not particularly limited, but although a synthetic resin plate, a glass plate, or the like is used as appropriate, it is light in weight, low in price, and safe (not easily damaged). A film made of a thermoplastic resin is preferred. Examples of the thermoplastic resin include polyester resins such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), polycarbonate resins, and resins such as polyolefins.

また、透明導電膜12,22としては、特に限定されるものではないが、スズ添加酸化インジウム(ITO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物を含む薄膜が使用される。なお、通常は、透明基板11,21がガラス板であれば、透明導電膜12,22としてFTOが使用され、透明基板11,21が合成樹脂板であれば、透明導電膜12,22としてITOが使用される。なぜなら、ガラス板およびFTOは高温に強く、合成樹脂板およびITOは高温に弱いからである。 Further, the transparent conductive films 12 and 22 are not particularly limited, but include tin-added indium oxide (ITO), tin oxide (SnO 2 ), indium zinc oxide (IZO), zinc oxide (ZnO), and the like. A thin film containing a conductive metal oxide is used. In general, if the transparent substrates 11 and 21 are glass plates, FTO is used as the transparent conductive films 12 and 22, and if the transparent substrates 11 and 21 are synthetic resin plates, the transparent conductive films 12 and 22 are ITO. Is used. This is because glass plates and FTO are resistant to high temperatures, and synthetic resin plates and ITO are vulnerable to high temperatures.

ところで、上記対向電極2は、上述のように、透明基板21および触媒性を有する材料を形成した透明導電膜22から構成されるものに限定されず、触媒性を有するものであればよい。この対向電極2としては、アルミニウム、銅、スズなどの金属シートやメッシュ状電極上に、触媒性を有する白金やカーボンなどの材料を形成したものであってもよい。この触媒性を有する材料を形成する方法の例には、スパッタリングや、上記対向電極2を白金ナノコロイド溶液に浸漬することなどが挙げられる。また、上記対向電極2は、透明基板21における電解質3側の面に導電性接着剤層を形成し、別途生成された垂直配向型のカーボンナノチューブ群を、上記導電性接着剤層に転写させたものであってもよい。   By the way, the counter electrode 2 is not limited to the transparent substrate 21 and the transparent conductive film 22 formed with a material having catalytic properties, as described above. As the counter electrode 2, a material such as platinum or carbon having catalytic properties may be formed on a metal sheet such as aluminum, copper or tin or a mesh electrode. Examples of the method for forming the material having catalytic properties include sputtering and immersing the counter electrode 2 in a platinum nanocolloid solution. Further, the counter electrode 2 has a conductive adhesive layer formed on the surface of the transparent substrate 21 on the electrolyte 3 side, and a separately generated vertically aligned carbon nanotube group was transferred to the conductive adhesive layer. It may be a thing.

上記電解質3の電解液としては、液体状電解液またはゲル状電解液が使用される。液体状電解液の例には、ヨウ素系電解液が挙げられ、これは、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分を、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解したものである。また、ゲル状電解液の例には、ジメチルプロピルイミダゾリウムヨウ化物(DMPImI)、金属ヨウ化物(ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化セシウム、ヨウ化カルシウム)、テトラアルキルアンモニウムヨーダイドなどの4級アンモニウム化合物のヨウ素塩などのヨウ化物とヨウ素を組み合わせたもの、金属臭化物(臭化リチウム、臭化ナトリウム、臭化カリウム、臭化セシウム、臭化カルシウム)、テトラアルキルアンモニウムブロマイドなどの4級アンモニウム化合物の臭素塩などの臭化物と臭素とを組み合わせたものなどが挙げられる。   As the electrolyte solution of the electrolyte 3, a liquid electrolyte solution or a gel electrolyte solution is used. Examples of liquid electrolytes include iodine-based electrolytes, which are electrolyte components such as iodine, iodide ions, and tertiary butyl pyridine dissolved in organic solvents such as ethylene carbonate and methoxyacetonitrile. is there. Examples of the gel electrolyte include dimethylpropylimidazolium iodide (DMPImI), metal iodide (lithium iodide, sodium iodide, potassium iodide, cesium iodide, calcium iodide), tetraalkylammonium iodide. Combinations of iodide and iodine such as iodine salts of quaternary ammonium compounds such as id, metal bromides (lithium bromide, sodium bromide, potassium bromide, cesium bromide, calcium bromide), tetraalkylammonium bromide, etc. And combinations of bromides such as bromine salts of quaternary ammonium compounds with bromine.

ところで、上記光触媒膜4は、光増感色素が吸着された酸化物半導体膜により形成されており、その製造に際しては、酸化物半導体を含むペーストを透明電極1の表面に塗布して乾燥させた後、光増感色素を酸化物半導体膜に吸着させることにより得られる。この吸着方法の例には、光増感色素を有機溶媒に溶解させてなる色素溶液の中に、上記ペーストが乾燥した透明電極1を所定時間浸漬することが挙げられる。   By the way, the photocatalyst film 4 is formed of an oxide semiconductor film to which a photosensitizing dye is adsorbed, and in the production thereof, a paste containing the oxide semiconductor is applied to the surface of the transparent electrode 1 and dried. Thereafter, it is obtained by adsorbing a photosensitizing dye to the oxide semiconductor film. Examples of this adsorption method include immersing the transparent electrode 1 with the paste dried for a predetermined time in a dye solution obtained by dissolving a photosensitizing dye in an organic solvent.

また、上記酸化物半導体としては、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などの金属酸化物の微粒子(光触媒微粒子)が使用される。これら微粒子の粒径は、特に限定されるものではないが、5〜100nm程度であることが好ましい。また、光増感色素としては、ビピリジン構造若しくはターピリジン構造を含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、またはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などが使用される。特に、汎用性の観点からはルテニウム錯体を使用することが好ましく、有機溶媒に対する溶解性の観点からは有機色素を使用することが好ましい。また、光増感色素を溶解させる有機溶媒としては、エタノールなどのアルコール、アセトニトリルなどが使用される。 Examples of the oxide semiconductor include metal oxides such as titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and niobium oxide (Nb 2 O 5 ). Fine particles (photocatalyst fine particles) are used. The particle size of these fine particles is not particularly limited, but is preferably about 5 to 100 nm. Examples of photosensitizing dyes include ruthenium complexes and iron complexes having ligands containing a bipyridine structure or a terpyridine structure, porphyrin-based or phthalocyanine-based metal complexes, or organic dyes such as eosin, rhodamine, merocyanine, and coumarin. used. In particular, it is preferable to use a ruthenium complex from the viewpoint of versatility, and it is preferable to use an organic dye from the viewpoint of solubility in an organic solvent. As an organic solvent for dissolving the photosensitizing dye, alcohol such as ethanol, acetonitrile, or the like is used.

また、上記封止部5としては、特に限定されるものではないが、アクリル系樹脂封止剤、フッ素系樹脂封止剤、シリコーン系樹脂封止剤、エポキシ系樹脂封止剤、オレフィン系樹脂封止剤、シラン変性樹脂含有封止剤、ホットメルト系封止剤、光硬化性樹脂封止剤などが使用される。   Further, the sealing part 5 is not particularly limited, but an acrylic resin sealant, a fluorine resin sealant, a silicone resin sealant, an epoxy resin sealant, and an olefin resin. Sealants, silane-modified resin-containing sealants, hot-melt sealants, photocurable resin sealants, and the like are used.

次に、上記色素増感太陽電池の製造方法について説明する。
[透明電極1および光触媒膜4]
まず、酸化物半導体である金属酸化物の微粒子を、有機溶媒および水に混合して攪拌し、酸化物溶液を生成する。なお、この有機溶媒には、アルコール、アセトン、ヘキサンなどが使用される。次いで、この酸化物溶液を透明導電膜12に塗布または印刷する。そして、透明導電膜12に塗布または印刷された酸化物溶液を適切な条件で乾燥・焼結することにより、酸化物半導体膜が得られる。
Next, the manufacturing method of the said dye-sensitized solar cell is demonstrated.
[Transparent electrode 1 and photocatalyst film 4]
First, metal oxide fine particles, which are oxide semiconductors, are mixed in an organic solvent and water and stirred to produce an oxide solution. In addition, alcohol, acetone, hexane, etc. are used for this organic solvent. Next, this oxide solution is applied or printed on the transparent conductive film 12. And an oxide semiconductor film is obtained by drying and sintering the oxide solution apply | coated or printed on the transparent conductive film 12 on suitable conditions.

次に、上述した色素溶液の中に透明電極1を浸漬する方法などにより、酸化物半導体膜に光増感色素を吸着させることで、負極である光触媒膜4が得られる。ここで、色素溶液における光増感色素の含有量は、特に限定されるものではないが、0.2×10−3〜1.0×10−3[mol/L]であることが好ましく、0.3×10−3〜0.6×10−3[mol/L]であることが一層好ましい。なぜなら、上記含有量が0.2×10−3[mol/L]未満の場合、酸化物半導体膜に十分な量の光増感色素を吸着させることができず、その結果、製造される色素増感太陽電池の電池性能が低下するからである。また、上記含有量が1.0×10−3[mol/L]を超える場合、色素溶液中に光増感色素が溶解し切れず残ったり、酸化物半導体膜に光増感色素の吸着ムラが生じたりする問題がある。この場合、酸化物半導体膜に吸着された光増感色素が過多となることにより、光増感色素同士が結合するので、光増感色素から酸化物半導体膜への電子の流れが阻害され、その結果、製造される色素増感太陽電池の電池性能が低下するからである。 Next, the photocatalytic film 4 which is a negative electrode is obtained by adsorbing the photosensitizing dye to the oxide semiconductor film by the method of immersing the transparent electrode 1 in the dye solution described above. Here, the content of the photosensitizing dye in the dye solution is not particularly limited, but is preferably 0.2 × 10 −3 to 1.0 × 10 −3 [mol / L], More preferably, it is 0.3 × 10 −3 to 0.6 × 10 −3 [mol / L]. Because, when the content is less than 0.2 × 10 −3 [mol / L], a sufficient amount of the photosensitizing dye cannot be adsorbed to the oxide semiconductor film, and as a result, the produced dye It is because the battery performance of a sensitized solar cell falls. Further, when the content exceeds 1.0 × 10 −3 [mol / L], the photosensitizing dye does not completely dissolve in the dye solution, or the photosensitizing dye is adsorbed unevenly on the oxide semiconductor film. There is a problem that occurs. In this case, the photosensitizing dye adsorbed on the oxide semiconductor film becomes excessive, so that the photosensitizing dyes are bonded to each other, so that the flow of electrons from the photosensitizing dye to the oxide semiconductor film is inhibited, As a result, the battery performance of the dye-sensitized solar cell to be manufactured is deteriorated.

[電解質3]
その後、光増感色素が吸着された酸化物半導体膜、つまり光触媒膜4に、電解質3を形成する。この光触媒膜4に電解質3を形成するための第1〜第3の方法について説明する。
[Electrolyte 3]
Thereafter, the electrolyte 3 is formed on the oxide semiconductor film adsorbed with the photosensitizing dye, that is, the photocatalytic film 4. First to third methods for forming the electrolyte 3 on the photocatalytic film 4 will be described.

「第1の方法」
多孔質膜を、導電性材料を溶媒に混合した溶液に浸漬させてから焼結する。これにより、この多孔質膜は、導電性材料を含有することで導電層用となる。こうして形成された導電層用の多孔質膜と、導電性材料を含有しない隔離層用の多孔質膜とを積層し、複数層の多孔質膜とする。この複数層の多孔質膜を光触媒膜4上に配置し、その後、この複数層の多孔質膜に電解液を注入する。これにより、導電層用の多孔質膜は導電層31となり、隔離層用の多孔質膜は隔離層32となる。
"First method"
The porous film is immersed in a solution in which a conductive material is mixed with a solvent and then sintered. Thereby, this porous film becomes an object for a conductive layer by containing a conductive material. The porous film for the conductive layer thus formed and the porous film for the isolation layer that does not contain the conductive material are stacked to form a porous film having a plurality of layers. The multi-layered porous film is disposed on the photocatalyst film 4, and then an electrolytic solution is injected into the multi-layered porous film. Thereby, the porous film for the conductive layer becomes the conductive layer 31, and the porous film for the separation layer becomes the separation layer 32.

「第2の方法」
導電性材料を電解液に混合し、導電性電解液を生成する。また、多孔質膜を光触媒膜4に配置し、その後、当該多孔質膜に上記導電性電解液を注入する。これにより、光触媒膜4上に配置された多孔質膜は導電層31となる。次に、他の多孔質膜を導電層31上に配置し、その後、当該他の多孔質膜に電解液を注入する。これにより、導電層31上に配置された他の多孔質膜は隔離層32となる。また、導電層31の形成のために多孔質膜に注入される導電性電解液の電解液と、隔離層32の形成のために注入される電解液とを異なるものにしてもよい。勿論、隔離層32は導電性材料を含まない。
"Second method"
A conductive material is mixed with the electrolytic solution to produce a conductive electrolytic solution. Moreover, a porous film is arrange | positioned at the photocatalyst film | membrane 4, and the said electroconductive electrolyte is inject | poured into the said porous film after that. As a result, the porous film disposed on the photocatalyst film 4 becomes the conductive layer 31. Next, another porous film is disposed on the conductive layer 31, and then an electrolytic solution is injected into the other porous film. As a result, the other porous film disposed on the conductive layer 31 becomes the isolation layer 32. Further, the electrolytic solution injected into the porous film for forming the conductive layer 31 and the electrolytic solution injected for forming the isolation layer 32 may be different. Of course, the isolation layer 32 does not include a conductive material.

「第3の方法」
予め、酸化物半導体膜に光増感色素を吸着させず、すなわち、透明電極1に配置された膜を光触媒膜4とせずに酸化物半導体膜のままとする。
"Third method"
In advance, the photosensitizing dye is not adsorbed on the oxide semiconductor film, that is, the film disposed on the transparent electrode 1 is not used as the photocatalyst film 4 but remains as the oxide semiconductor film.

そして、光増感色素を電解液に溶解し、色素電解液を生成する。また、上記第1の方法で説明した導電層用の多孔質膜と、導電性材料を含有しない隔離層用の多孔質膜とを積層し、複数層の多孔質膜とする。この複数層の多孔質膜を光触媒膜4に配置し、その後、当該複数層の多孔質膜に上記色素電解液を注入する。これにより、導電層用の多孔質膜は導電層31となり、隔離層用の多孔質膜は隔離層32となるが、これら導電層31および隔離層32(つまり電解質3)の多孔質膜は光増感色素を一時的に含有することになる。しかし、電解質3の多孔質膜に含有された光増感色素は徐々に酸化物半導体膜に吸着されていくので、いずれ光触媒膜4が形成される。なお、この吸着を促進するには、製造された色素増感太陽電池に対して、光照射、両電極1,2への電圧印加などを行えばよい。このため、第3の方法であれば、酸化物半導体膜に光増感色素を吸着させ終えるまで製造時に待つ必要がない。   And a photosensitizing dye is melt | dissolved in electrolyte solution, and dye electrolyte solution is produced | generated. In addition, the porous film for the conductive layer described in the first method and the porous film for the isolation layer not containing the conductive material are laminated to form a porous film having a plurality of layers. The multi-layered porous film is disposed on the photocatalyst film 4, and then the dye electrolyte solution is injected into the multi-layered porous film. Thereby, the porous film for the conductive layer becomes the conductive layer 31, and the porous film for the separation layer becomes the separation layer 32. However, the porous film of the conductive layer 31 and the separation layer 32 (that is, the electrolyte 3) is light. A sensitizing dye is temporarily contained. However, the photosensitizing dye contained in the porous film of the electrolyte 3 is gradually adsorbed on the oxide semiconductor film, so that the photocatalytic film 4 is formed. In order to promote this adsorption, the produced dye-sensitized solar cell may be irradiated with light, voltage applied to both electrodes 1 and 2, and the like. For this reason, if it is a 3rd method, it is not necessary to wait at the time of manufacture until photosensitizing dye is made to adsorb | suck to an oxide semiconductor film.

なお、上記第1〜第3のいずれの方法でも、光触媒膜4(または酸化物半導体膜)と多孔質膜との簡易な接着のために、電解液に溶解する糊剤を用いてもよい。この糊剤としては、チタン(IV)イソプロポキシド、ポリエチレンオキサイド、ポリプロピレノキサイド、ポリビニルアルコール、カルボキシメチルセルロース、またはポリアクリル酸塩などを有機溶媒に溶かしたものが使用される。より具体的な例を説明すると、上記糊剤は、分子量が1000〜3000のポリエチレンオキサイド20重量部をエタノール80重量部に溶かしたものである。上記糊剤を用いることで、電解質3を形成する際に多孔質膜が移動しないので、製造時の取り扱いが容易になる。   In any of the first to third methods, a paste that dissolves in the electrolytic solution may be used for easy adhesion between the photocatalyst film 4 (or oxide semiconductor film) and the porous film. As the paste, a material in which titanium (IV) isopropoxide, polyethylene oxide, polypropylene, polyvinyl alcohol, carboxymethyl cellulose, or polyacrylate is dissolved in an organic solvent is used. A more specific example will be described. The above paste is obtained by dissolving 20 parts by weight of polyethylene oxide having a molecular weight of 1000 to 3000 in 80 parts by weight of ethanol. By using the paste, the porous membrane does not move when the electrolyte 3 is formed, so that handling during manufacture becomes easy.

[対向電極2および封止部5]
電解質3を配置した後に、封止として、電解質3の外周側に封止部5を配置し、その後、対向電極2を透明電極1に対向させて配置する。なお、上述した封止する方法の例には、加熱接着が挙げられる。この加熱接着は、金型が用いられた接着であってもよく、プラズマ、紫外線、波長が600nm以上の可視光、赤外線、マイクロ波などのエネルギービームを照射する方法によって行われるものであってもよい。ここで、金型が用いられた接着とは、金型を用いて、塗布された封止部用の材料(封止剤)をプレスするとともに加熱して硬化させることで、封止部5とするものである。また、エネルギービームを照射する方法とは、塗布された封止剤にエネルギービームを照射して当該封止剤を硬化させることで、封止部5とするものである。通常は、紫外線を照射する方法によって加熱接着が行われる。
[Counter electrode 2 and sealing part 5]
After the electrolyte 3 is disposed, the sealing portion 5 is disposed on the outer peripheral side of the electrolyte 3 as the sealing, and then the counter electrode 2 is disposed to face the transparent electrode 1. In addition, heat bonding is mentioned as an example of the sealing method mentioned above. This heat bonding may be bonding using a mold, or may be performed by a method of irradiating energy beams such as plasma, ultraviolet rays, visible light having a wavelength of 600 nm or more, infrared rays, microwaves and the like. Good. Here, the adhesion using the mold means that the applied material for the sealing part (sealing agent) is pressed and heated to be cured by using the mold, and the sealing part 5 and To do. Moreover, the method of irradiating the energy beam is to form the sealing portion 5 by irradiating the applied sealant with the energy beam and curing the sealant. Usually, heat bonding is performed by a method of irradiating ultraviolet rays.

このように、上記実施の形態に係る色素増感太陽電池によると、導電層31が電気抵抗を低減するので、電池性能を向上させることができ、さらに、隔離層32が両電極1,2を電気的に隔離するので、短絡を防止することができる。   Thus, according to the dye-sensitized solar cell according to the above-described embodiment, the conductive layer 31 reduces the electrical resistance, so that the battery performance can be improved. Since it is electrically isolated, a short circuit can be prevented.

また、導電層31は多孔質膜に導電性材料を含有させたものとし、隔離層32は他の多孔質膜に導電性材料を含有させないものとすることで、導電層31および隔離層32を容易に形成することができるとともに、隔離層32が導電性を有しないので、より短絡を防止することができる。   In addition, the conductive layer 31 includes a porous film containing a conductive material, and the isolation layer 32 does not include any other porous film including a conductive material, so that the conductive layer 31 and the isolation layer 32 are formed. While being easy to form, since the isolation layer 32 does not have electrical conductivity, a short circuit can be further prevented.

さらに、導電層31の多孔質膜に含有させた電解液と隔離層32の多孔質膜に含有させた電解液とを変更できるので、対向電極2に接している電解質3と光触媒膜4に接している電解質3とを異なるものにすることができる。例えば、電解液としてヨウ素溶液を用いる場合、透明電極1側から対向電極2側に向かう程、I イオン濃度が高くなり、Iイオン濃度が低くなるように、各電解液のI イオン濃度およびIイオン濃度を設定することが好ましい。なぜなら、対向電極2は電解液であるヨウ素溶液中のI イオンにより酸化されるので、対向電極2の周囲の電解液ではI イオン濃度を高くすることにより色素増感太陽電池の特性の向上を図ることができ、また、透明電極1側に配置される光触媒膜4の光増感色素はIイオンにより還元されるので、透明電極1側に積層される電解液ではIイオン濃度を高くすることにより色素増感太陽電池の特性の向上を図ることができるためである。 Furthermore, since the electrolyte solution contained in the porous film of the conductive layer 31 and the electrolyte solution contained in the porous film of the isolation layer 32 can be changed, the electrolyte 3 in contact with the counter electrode 2 and the photocatalyst film 4 are in contact with each other. The electrolyte 3 can be made different. For example, when using iodine solution as an electrolytic solution, as directed to the counter electrode 2 side of the transparent electrode 1 side, I 3 - ion concentration is high, I - as ion concentration decreases, I 3 of each of the electrolyte solution - It is preferable to set the ion concentration and the I ion concentration. This is because the counter electrode 2 is oxidized by I 3 ions in an iodine solution that is an electrolytic solution, and therefore the characteristics of the dye-sensitized solar cell are increased by increasing the I 3 ion concentration in the electrolyte solution around the counter electrode 2. In addition, since the photosensitizing dye of the photocatalyst film 4 disposed on the transparent electrode 1 side is reduced by I ions, in the electrolyte laminated on the transparent electrode 1 side, I ions This is because the characteristics of the dye-sensitized solar cell can be improved by increasing the concentration.

一方で、上記実施の形態に係る色素増感太陽電池の製造方法によると、複数層の多孔質膜により電解質3が形成されるので、透明電極1と対向電極2との間隔を容易に小さい状態で一定にすることができる。特に、電解質3の配置に上記第3の方法を使用することにより、酸化物半導体膜に光増感色素を吸着させ終えるまで製造時に待つ必要がないので、製造時間を短縮することができる。   On the other hand, according to the method for manufacturing a dye-sensitized solar cell according to the above-described embodiment, the electrolyte 3 is formed by a plurality of layers of porous films, so that the distance between the transparent electrode 1 and the counter electrode 2 can be easily reduced. Can be constant. In particular, by using the third method for disposing the electrolyte 3, it is not necessary to wait at the time of manufacturing until the photosensitizing dye is completely adsorbed to the oxide semiconductor film, so that the manufacturing time can be shortened.

以下、上記実施の形態をより具体的に示した実施例に係る色素増感太陽電池と、比較例に係る色素増感太陽電池とについて説明する。なお、以下の実施例および比較例では、いずれも、次の条件を満たすものとした。
(1)透明電極1は、厚さ188μmのPEN−ITOフィルム(ペクセル・テクノロジーズ製)とした。
(2)透明基板に配置する酸化物半導体膜は、上記PEN−ITOフィルムに塗布した粒径50〜60nmの低温酸化チタンペースト(ペクセル・テクノロジーズ製、PECC−C01−06)を、150℃で焼結することにより形成した厚さ6μmの膜とした。
(3)光増感色素は、ルテニウム金属錯体色素であるN719(Dyesol製)とした。これを、アセトニトリルとt−ブチルアルコールとを1:1で混合した溶液に濃度0.3m[mol/L]で溶解し、色素溶液として使用した。
(4)多孔質膜は、厚さ30μm(秤量4〜12g/m)のガラスペーパとした。
(5)導電性材料は、単層のカーボンナノチューブとした。
Hereinafter, a dye-sensitized solar cell according to an example that more specifically shows the above embodiment and a dye-sensitized solar cell according to a comparative example will be described. In the following examples and comparative examples, the following conditions were all satisfied.
(1) The transparent electrode 1 was a PEN-ITO film (manufactured by Pexel Technologies) having a thickness of 188 μm.
(2) The oxide semiconductor film disposed on the transparent substrate is a low-temperature titanium oxide paste (PECC-C01-06, manufactured by Pexel Technologies, Inc.) having a particle diameter of 50 to 60 nm applied to the PEN-ITO film. It was set as the film | membrane with a thickness of 6 micrometers formed by bonding.
(3) The photosensitizing dye was N719 (Dyesol) which is a ruthenium metal complex dye. This was dissolved at a concentration of 0.3 m [mol / L] in a solution in which acetonitrile and t-butyl alcohol were mixed at a ratio of 1: 1 and used as a dye solution.
(4) The porous membrane was glass paper having a thickness of 30 μm (weighing 4 to 12 g / m 2 ).
(5) The conductive material was a single-walled carbon nanotube.

透明基板に配置した酸化物半導体膜を40℃に維持された色素溶液に90分間浸漬し、光触媒膜4を形成した。その後、上記第2の方法で電解質3を形成した。電解質3の形成には、第2の方法を使用した。この際、導電性電解液における導電性材料の割合は、1.0wt%とした。   The photocatalyst film 4 was formed by immersing the oxide semiconductor film disposed on the transparent substrate in a dye solution maintained at 40 ° C. for 90 minutes. Thereafter, the electrolyte 3 was formed by the second method. The second method was used to form the electrolyte 3. At this time, the ratio of the conductive material in the conductive electrolyte was 1.0 wt%.

本実施例1に係る色素増感太陽電池によると、電流密度が1.22mA/cm、開放電圧が4.27V、フィルファクタが0.52、変換効率が2.68%となった。 According to the dye-sensitized solar cell of Example 1, the current density was 1.22 mA / cm 2 , the open-circuit voltage was 4.27 V, the fill factor was 0.52, and the conversion efficiency was 2.68%.

電解質3の形成には、第3の方法を使用した。本実施例2に係る色素増感太陽電池によると、電流密度が1.21mA/cm、開放電圧が4.16V、フィルファクタが0.53、変換効率が2.65%となった。 The third method was used to form the electrolyte 3. According to the dye-sensitized solar cell according to Example 2, the current density was 1.21 mA / cm 2 , the open-circuit voltage was 4.16 V, the fill factor was 0.53, and the conversion efficiency was 2.65%.

電解質3の形成には、第1の方法を使用した。本実施例3に係る色素増感太陽電池によると、電流密度が1.23mA/cm、開放電圧が4.24V、フィルファクタが0.49、変換効率が2.59%となった。 The first method was used to form the electrolyte 3. According to the dye-sensitized solar cell of Example 3, the current density was 1.23 mA / cm 2 , the open circuit voltage was 4.24 V, the fill factor was 0.49, and the conversion efficiency was 2.59%.

[比較例]
電解質の形成には、多孔質膜を使用せずに、電解液のみを使用した。なお、多孔質膜を使用しないことにより、透明電極1と対向電極2との間隔を、小さい状態で一定にすることが困難なので、60μmとした。本比較例に係る色素増感太陽電池によると、電流密度が0.99mA/cm、開放電圧が4.19V、フィルファクタが0.42、変換効率が1.78%となった。
[Comparative example]
For the formation of the electrolyte, only the electrolytic solution was used without using the porous membrane. Since it is difficult to keep the distance between the transparent electrode 1 and the counter electrode 2 small in a small state by not using a porous film, the thickness was set to 60 μm. According to the dye-sensitized solar cell according to this comparative example, the current density was 0.99 mA / cm 2 , the open circuit voltage was 4.19 V, the fill factor was 0.42, and the conversion efficiency was 1.78%.

このように、上記実施例および比較例に係る色素増感太陽電池を対比すると明らかであるが、上記実施例に係る色素増感太陽電池によると、電池性能を向上させることができた。   Thus, it is clear that the dye-sensitized solar cells according to the examples and comparative examples are compared. However, according to the dye-sensitized solar cell according to the examples, the battery performance can be improved.

ところで、上記実施の形態および実施例では、色素増感太陽電池の素子について説明したが、図2に示すような色素増感太陽電池のモジュールであってもよい。この色素増感太陽電池(モジュール)は、図2に示すように、上記実施の形態および実施例1で説明した色素増感太陽電池の素子を直列に接続し、各素子で透明基板11,21を共通させたものである。また、上記色素増感太陽電池は、各素子の間に配置されたインターコネクタ7と、透明基板11の一端側および透明基板21の他端側にそれぞれ配置された集電体8とが具備されている。上記インターコネクタ7は、一方の素子における透明導電膜12と他方の素子における透明導電膜22とを接続して、隣接する素子を直列に接続するものである。   By the way, in the said embodiment and Example, although the element of the dye-sensitized solar cell was demonstrated, the module of a dye-sensitized solar cell as shown in FIG. 2 may be sufficient. As shown in FIG. 2, the dye-sensitized solar cell (module) has the elements of the dye-sensitized solar cell described in the above embodiment and Example 1 connected in series, and transparent elements 11 and 21 are connected to each element. Are common. The dye-sensitized solar cell includes an interconnector 7 disposed between the elements, and a current collector 8 disposed on one end side of the transparent substrate 11 and the other end side of the transparent substrate 21. ing. The interconnector 7 connects the transparent conductive film 12 in one element and the transparent conductive film 22 in the other element, and connects adjacent elements in series.

1 透明電極
2 対向電極
3 電解質
4 光触媒膜
5 封止部
31 導電層
32 隔離層
DESCRIPTION OF SYMBOLS 1 Transparent electrode 2 Counter electrode 3 Electrolyte 4 Photocatalyst film 5 Sealing part 31 Conductive layer 32 Isolation layer

Claims (4)

透明電極と、基板を有する対向電極と、これら両電極間に配置される電解質と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池であって、
上記電解質が、複数層の多孔質膜に電解液を含有させたものであり、
上記複数層が、導電性を有する導電層と、この導電層よりも導電性が低い隔離層とを有することを特徴とする色素増感太陽電池。
A dye-sensitized solar cell comprising a transparent electrode, a counter electrode having a substrate, an electrolyte disposed between both electrodes, and a photocatalytic film disposed between the electrodes and on the transparent electrode side,
The electrolyte is a multi-layer porous membrane containing an electrolytic solution,
The dye-sensitized solar cell, wherein the plurality of layers include a conductive layer having conductivity and an isolation layer having lower conductivity than the conductive layer.
上記導電層が、多孔質膜に導電性材料を含有させたものであり、
上記隔離層が、多孔質膜に導電性材料を含有させないものであることを特徴とする請求項1に記載の色素増感太陽電池。
The conductive layer is a porous film containing a conductive material,
The dye-sensitized solar cell according to claim 1, wherein the isolation layer does not contain a conductive material in the porous film.
導電層の多孔質膜に含有させた電解液と、隔離層の多孔質膜に含有させた電解液とが異なるものであることを特徴とする請求項1または2に記載の色素増感太陽電池。   3. The dye-sensitized solar cell according to claim 1, wherein the electrolyte solution contained in the porous film of the conductive layer is different from the electrolyte solution contained in the porous film of the isolation layer. . 請求項1乃至3のいずれか一項に記載の色素増感太陽電池の製造方法であって、
透明電極に酸化物半導体膜を配置する工程と、
上記酸化物半導体膜に複数層の多孔質膜を配置する工程と、
上記多孔質膜に電解液および色素を含有させることで、色素が含有された電解質を形成する工程と、
上記透明電極の酸化物半導体膜および電解質側に対向電極を具備させる工程と、
上記電解質が含有する色素を酸化物半導体膜に吸着させることで、光触媒膜を形成する工程と、
を備えることを特徴とする色素増感太陽電池の製造方法。
A method for producing a dye-sensitized solar cell according to any one of claims 1 to 3,
A step of disposing an oxide semiconductor film on the transparent electrode;
A step of disposing a plurality of porous films on the oxide semiconductor film;
A step of forming an electrolyte containing a dye by containing an electrolyte solution and a dye in the porous membrane; and
A step of providing a counter electrode on the oxide semiconductor film and electrolyte side of the transparent electrode;
A step of forming a photocatalytic film by adsorbing the dye contained in the electrolyte to the oxide semiconductor film;
A method for producing a dye-sensitized solar cell, comprising:
JP2014067314A 2014-03-28 2014-03-28 Dye-sensitized solar battery and manufacturing method thereof Pending JP2015191984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014067314A JP2015191984A (en) 2014-03-28 2014-03-28 Dye-sensitized solar battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067314A JP2015191984A (en) 2014-03-28 2014-03-28 Dye-sensitized solar battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2015191984A true JP2015191984A (en) 2015-11-02

Family

ID=54426262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067314A Pending JP2015191984A (en) 2014-03-28 2014-03-28 Dye-sensitized solar battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2015191984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847513A (en) * 2016-12-29 2017-06-13 陕西理工学院 The preparation method of the sulfide nano-composite counter electrode based on porous C uS frameworks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847513A (en) * 2016-12-29 2017-06-13 陕西理工学院 The preparation method of the sulfide nano-composite counter electrode based on porous C uS frameworks

Similar Documents

Publication Publication Date Title
JP5140588B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
JP5377327B2 (en) Photosensitized solar cell module and manufacturing method thereof
JP5422645B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP4683396B2 (en) Porous electrode, dye-sensitized solar cell, and dye-sensitized solar cell module
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP2010003556A (en) Dye-sensitized solar cell, its manufacturing method, and dye-sensitized solar cell module
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP5344282B2 (en) Dye-sensitized solar cell
JP2015191984A (en) Dye-sensitized solar battery and manufacturing method thereof
JP2015191986A (en) Dye-sensitized solar cell and method for manufacturing the same
JP5758400B2 (en) Dye-sensitized solar cell module and manufacturing method thereof
WO2014010393A1 (en) Dye-sensitized solar cell
JP2014056719A (en) Process of manufacturing porous metal oxide film
JP5303207B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JPWO2018181393A1 (en) Laminated body and method for producing organic solar cell
WO2013115287A1 (en) Method for aging dye-sensitized solar cells
JP2013235787A (en) Dye-sensitized solar cell and manufacturing method of the same
JP5376837B2 (en) Method for manufacturing photoelectric conversion element
WO2013114983A1 (en) Method of manufacturing dye-sensitized solar cell
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2015191985A (en) Dye-sensitized solar battery and manufacturing method thereof
WO2013046956A1 (en) Wet-type solar cell module
JP6338458B2 (en) Photoelectric conversion element, photoelectric conversion module, and method for manufacturing photoelectric conversion element
JP2014063677A (en) Method of forming photocatalyst film in dye-sensitized solar cell, dye-sensitized solar cell having the photocatalyst film, and continuously manufacturing device for the dye-sensitized solar cell
JP6521644B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell system