WO2014013571A1 - 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法 - Google Patents

半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法 Download PDF

Info

Publication number
WO2014013571A1
WO2014013571A1 PCT/JP2012/068230 JP2012068230W WO2014013571A1 WO 2014013571 A1 WO2014013571 A1 WO 2014013571A1 JP 2012068230 W JP2012068230 W JP 2012068230W WO 2014013571 A1 WO2014013571 A1 WO 2014013571A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
terminal
inspection
selector
semiconductor device
Prior art date
Application number
PCT/JP2012/068230
Other languages
English (en)
French (fr)
Inventor
洋介 長内
牛島 隆志
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014525604A priority Critical patent/JP5812200B2/ja
Priority to PCT/JP2012/068230 priority patent/WO2014013571A1/ja
Priority to KR1020157001274A priority patent/KR101652648B1/ko
Priority to US14/402,951 priority patent/US9379029B2/en
Priority to CN201280003753.7A priority patent/CN103688180B/zh
Priority to TW102117213A priority patent/TWI471576B/zh
Publication of WO2014013571A1 publication Critical patent/WO2014013571A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors

Definitions

  • the technology disclosed in this specification relates to a semiconductor device.
  • Patent Document 1 discloses a burn-in inspection method for semiconductor devices.
  • a plurality of semiconductor devices are connected to a common ammeter.
  • this inspection method by controlling a signal input to each semiconductor device, only one selected semiconductor device is turned on, and the other semiconductor devices are not turned on. As a result, the energization current of the selected semiconductor device is detected by the ammeter, and it is tested whether or not the selected semiconductor device operates properly.
  • another semiconductor device is selected and the semiconductor device is inspected. In this way, all semiconductor devices are inspected.
  • a semiconductor device with poor conduction is a semiconductor device that is turned on (that is, conducted) even though a signal that is not turned on is input. That is, when a semiconductor device with poor conduction is included, even the semiconductor device with poor conduction that is not selected is turned on during the inspection of the selected semiconductor device. Then, in addition to the energizing current of the selected semiconductor device, the energizing current of the semiconductor device with poor conduction flows through the ammeter. For this reason, the energization current of the selected semiconductor device cannot be detected, and an accurate inspection cannot be performed.
  • the inspection apparatus disclosed in this specification inspects an output signal of a semiconductor device.
  • This inspection apparatus has a monitor line, a monitor apparatus for detecting a signal on the monitor line, and a plurality of inspection circuits connected to the monitor line.
  • Each inspection circuit can be provided with a semiconductor device, a semiconductor device support having a signal terminal to which a signal is input from the installed semiconductor device, and a first resistor connected between the signal terminal and the monitor line And a first diode connected between the signal terminal and the selector terminal so that the selector terminal side becomes a cathode.
  • FIG. 1 shows an embodiment of the inspection apparatus described above as an example.
  • reference numeral 100 is a monitor device
  • reference numeral 102 is a monitor line
  • reference numeral 104 is an inspection circuit.
  • two inspection circuits 104a and 104b are shown, but two or more inspection circuits may be connected to the monitor line.
  • Reference numeral 110 is a semiconductor device support
  • reference numeral 112 is a semiconductor device
  • reference numeral 114 is a first resistor
  • reference numeral 116 is a first diode
  • reference numeral 118 is a selector terminal.
  • reference numeral 120 is a signal terminal.
  • one semiconductor device is selected from the semiconductor devices installed in the inspection apparatus, and a first potential is applied to the selector terminal of the inspection circuit having the selected semiconductor device. To do. A second potential lower than the first potential is applied to selector terminals of other inspection circuits.
  • the semiconductor device 112a is selected in FIG. 1
  • the first potential V1 is applied to the selector terminal 118a
  • the second potential V2 is applied to the selector terminal 118b.
  • the first potential V1 is applied to the selector terminal 118a
  • the first diode 116a is not turned on. Therefore, a signal output from the semiconductor device 112 a to the signal terminal 120 a is output on the monitor line 102.
  • the monitor device 100 can accurately detect the output signal of the selected semiconductor device 112a.
  • each semiconductor device can be correctly inspected.
  • the present specification provides an inspection method for inspecting an output signal of a semiconductor device using an inspection apparatus.
  • the inspection apparatus has a monitor line and a plurality of inspection circuits connected to the monitor line.
  • Each inspection circuit can install a semiconductor device, a semiconductor device support having a signal terminal to which a signal is input from the installed semiconductor device, and a first resistor connected between the signal terminal and the monitor line And a first diode connected between the signal terminal and the selector terminal so that the selector terminal side becomes a cathode.
  • the inspection method includes the steps of installing a semiconductor device on each semiconductor device support, applying a first potential to a first selector terminal of a plurality of selector terminals, and applying a first potential lower than the first potential to the other selector terminals.
  • the present specification also provides a method for producing an inspected semiconductor device.
  • This production method includes a step of forming a structure of a semiconductor device and a step of inspecting the formed semiconductor device.
  • the inspection apparatus used in the inspection step has a monitor line and a plurality of inspection circuits connected to the monitor line.
  • Each inspection circuit can install a semiconductor device, a semiconductor device support having a signal terminal to which a signal is input from the installed semiconductor device, and a first resistor connected between the signal terminal and the monitor line And a first diode connected between the signal terminal and the selector terminal so that the selector terminal side becomes a cathode.
  • the step of inspecting includes the step of installing a semiconductor device on each semiconductor device support, applying a first potential to a first selector terminal of a plurality of selector terminals, and applying the first potential to other selector terminals than the first potential.
  • the circuit diagram of the inspection system of other examples. The circuit diagram of the inspection system of other examples.
  • the forward voltage of the diode means a voltage generated between the anode and cathode of the diode when a rated current is passed.
  • the upper potential of the signal means the potential in the highest potential state among a plurality of potential states that the signal can take.
  • the lower potential of a signal means a potential in the lowest potential state among a plurality of potential states that the signal can take.
  • the high potential is the upper potential and the low potential is the lower potential.
  • the open potential electrode Since the open potential electrode is in a floating state, the potential is determined by the surrounding environment. In general, the open potential is lower than the high potential and higher than the low potential. Also in this case, the high potential is the upper potential and the low potential is the lower potential. In a signal that transitions between a high potential and an open potential, the high potential is an upper potential and the open potential is a lower potential. In a signal that transitions between an open potential and a low potential, the open potential is an upper potential and the low potential is a lower potential.
  • the condition for not turning on the first diode 116a is V1> Vout1-VF11 (Vout1 is the potential of the signal terminal 120a).
  • Vout1 is the potential of the signal terminal 120a.
  • the potential Vout1 does not become higher than the upper potential VH1. Therefore, as long as V1> VH1-VF11 is satisfied, the first diode 116a can be always turned off during the inspection of the selected semiconductor device 112a.
  • the condition for turning on the second diode 116b is V2 ⁇ Vout2-VF12 (Vout2 is the potential of the signal terminal 120b).
  • Each inspection circuit has a second diode connected in parallel to the first resistor so that the monitor line side becomes a cathode.
  • FIG. 2 shows an embodiment of the feature 3 configuration. 2 is obtained by adding the second diode 122 to FIG. According to such a configuration, when the output signal from the selected semiconductor device 112a is the upper potential, the diode 122a is turned on. Thereby, a signal is transmitted from the semiconductor device 112a to the monitor line. According to such a configuration, since the signal is transmitted to the monitor line 102 via the first resistor 114a and the diode 122a as compared with the case where the signal is transmitted to the monitor line 102 only through the first resistor 114a, the semiconductor device 112a. Thus, the potential of the monitor line 102 when the output signal from is at the upper potential can be increased. Therefore, the SN ratio of the signal on the monitor line 102 can be increased.
  • the selected semiconductor device 112a when the selected semiconductor device 112a outputs the lower potential VL1, the potential of the monitor line 102 becomes substantially equal to the lower potential VL1.
  • the first diode 116b is turned on before the second diode 122b. Therefore, according to this feature, even if the semiconductor device 112b outputs a high potential, the potential can be prevented from being output to the monitor line 102 via the second diode 122b.
  • Each test circuit has a second resistor connected between a connection portion connecting the anode of the first diode and the first resistor and the signal terminal.
  • Each semiconductor device support has a high potential terminal for supplying a high potential to the installed semiconductor device and a low potential terminal for supplying a low potential to the installed semiconductor device.
  • Each of the plurality of inspection circuits has a third resistor connected between the high potential terminal and the signal terminal.
  • a semiconductor device that outputs an open potential and a low potential can be inspected more accurately.
  • Each semiconductor device support has a high potential terminal for supplying a high potential to the installed semiconductor device and a low potential terminal for supplying a low potential to the installed semiconductor device.
  • Each inspection circuit has a fourth resistor connected between the low potential terminal and the signal terminal.
  • a semiconductor device that outputs an open potential and a high potential can be inspected more accurately.
  • the burn-in inspection system 10 shown in FIG. 3 operates the IC in a high temperature environment and inspects the output signal of the IC.
  • the burn-in inspection system 10 includes a control unit 20 and a burn-in board 30.
  • monitor line 42 On the substrate of the burn-in board 30, a monitor line 42 extending in the horizontal direction in FIG. 3 is formed.
  • the n monitor lines 42 are arranged in the vertical direction of FIG.
  • the monitor line 42 existing in the j-th row is represented as a monitor line 42-j (j is an arbitrary integer, 1 ⁇ j ⁇ n).
  • selector line 44 On the substrate of the burn-in board 30, a selector line 44 extending in the vertical direction of FIG. 3 is formed. M selector lines 44 are arranged in the horizontal direction of FIG.
  • the selector lines 44 existing in the k columns are represented as selector lines 44-k (k is an arbitrary integer, 1 ⁇ k ⁇ m).
  • a selector terminal 46 is formed at the end of the selector line 44. That is, there are m selector terminals 46.
  • the selector terminal 46 connected to the selector line 44-k is referred to as a selector terminal 46-k.
  • a large number of inspection circuits 40 are formed on the substrate of the burn-in board 30.
  • M inspection circuits 40 are arranged in the horizontal direction in FIG. 3, and n inspection circuits 40 are arranged in the vertical direction in FIG. That is, m ⁇ n inspection circuits 40 are formed on the substrate of the burn-in board 30.
  • the inspection circuit 40 existing in the j row and the k column may be expressed as an inspection circuit 40-jk.
  • each component in the inspection circuit 40 may be represented by the same notation.
  • the inspection circuit 40-jk is connected to the monitor line 42-j and the selector line 44-k.
  • Each inspection circuit 40 includes an IC socket 32, a resistor 34, and a diode 36.
  • reference numerals such as an IC socket, a resistor, and a diode are attached only to the inspection circuit 40-11 and the inspection circuit 40-12 in consideration of easy viewing. ing. Since the configuration of each test circuit 40 is the same, the configuration of one test circuit 40 will be described below.
  • An IC is attached to the IC socket 32 of the inspection circuit 40.
  • the IC socket 32 includes a large number of terminals.
  • the IC socket 32 has a terminal 32 a connected to the power supply wiring 50 and a terminal 32 b connected to the ground wiring 52.
  • the IC socket 32 has a signal terminal 32 c connected to the output wiring 54.
  • a signal is input from the IC installed in the IC socket 32 to the signal terminal 32c.
  • the signal transitions between the power supply potential Vcc and the ground potential V0.
  • the IC installed in the IC socket 32 is controlled by a control signal input from a terminal (not shown).
  • a resistor 34 is connected between the output wiring 54 and the monitor line 42.
  • a diode 36 is connected between the output wiring 54 and the selector line 44. The diode 36 is connected so that the selector line 44 side becomes a cathode.
  • the control unit 20 has n monitor devices 22. Each monitor device 22 is connected to a corresponding monitor line 42. Hereinafter, the monitor device 22 connected to the monitor line 42-j is referred to as a monitor device 22-j.
  • the monitor device 22-j detects a signal (potential) on the monitor line 42-j.
  • the control unit 20 has a selector device 24.
  • the selector device 24 controls the potentials of the m selector terminals 46-1 to 46-m.
  • the burn-in inspection system 10 is used in IC production lines.
  • the IC production method will be described below.
  • the IC production method includes a step of forming an IC structure and a step of inspecting the IC.
  • a semiconductor circuit is formed in the semiconductor wafer by ion implantation or the like.
  • the semiconductor wafer is divided into semiconductor chips by dicing.
  • the semiconductor chip is fixed to the lead frame, and the semiconductor chip and the lead frame are connected by wire bonding or the like. Thereafter, the semiconductor chip is resin-molded together with the lead frame. Thereby, the IC before the inspection is completed.
  • the above-described inspection system 10 is used to inspect the IC.
  • an IC is installed in each IC socket 32 of the inspection system 10.
  • m ⁇ n ICs are installed in the inspection system 10.
  • the IC installed in the socket 32-jk is referred to as IC-jk.
  • the burn-in board 30 is heated to a predetermined temperature. Each IC is inspected while the burn-in board 30 is heated.
  • step S2 all the ICs are operated. As a result, a signal is output to the signal terminal 32 c of each IC socket 32. The subsequent steps are performed while each IC is operating.
  • step S4 the selector device 24 selects a column to be inspected.
  • the first column ie, IC-11 to IC-n1 is selected.
  • step S6 the selector device 24 first applies the low potential Vlo to the selector terminal 46 corresponding to the unselected column.
  • the selector device 24 applies the high potential Vhi to the selector terminal 46 corresponding to the selected column.
  • Each monitor device 22 detects a signal on the corresponding monitor line 42. Since the first column is selected in the first step S4, in the first step S6, the high potential Vhi is applied to the selector terminal 46-1 and the low potential Vlo is applied to the selector terminals 46-2 to 46-m.
  • the operation of each of the inspection circuits 40-11 to 40-1m connected to the monitor line 42-1 in this case will be described.
  • the low potential Vlo is applied to the selector line 44-2.
  • the low potential Vlo is substantially equal to the ground potential V0.
  • the low potential Vlo, the upper potential Vcc of the signal output from the IC-12 (that is, the power supply potential Vcc), and the forward voltage VF36 of the diode 36-12 satisfy the relationship of Vlo ⁇ Vcc-VF36.
  • the diode 36-12 is turned on. Therefore, in the inspection circuit 40-12, the potential of the signal terminal 32c is substantially fixed at the potential V0.
  • the inspection circuits 40-13 to 40-1m operate in the same manner as the inspection circuit 40-12 (in this embodiment, the upper potentials Vcc of the output signals of all the ICs are substantially equal to each other, and all the diodes 36 are Forward voltages VF36 are substantially equal to each other). Therefore, no signal is transmitted on the monitor line 42-1 from the inspection circuits 40-13 to 40-1m.
  • the high potential Vhi is applied to the selector line 44-1.
  • the high potential Vhi is substantially equal to the power supply potential Vcc. Therefore, the high potential Vhi, the upper potential Vcc of the signal output from the IC-11, and the forward voltage VF36 of the diode 36-11 satisfy the relationship of Vhi> Vcc ⁇ VF36. Therefore, the diode 36-11 is not turned on, and the signal output from the IC-11 is output onto the monitor line 42-1 via the resistor 34-11. Therefore, the monitor device 22-1 detects the signal of the IC-11.
  • FIG. 5 shows an equivalent circuit of each of the inspection circuits 40-11 to 40-1m connected to the monitor line 42-1. Since the diodes 36-12 to 36-1m are on, when the IC-11 outputs the potential Vcc to the signal terminal 32c, the signal terminal 32c of the IC-11 and other IC-12 to IC-1m The potential difference ⁇ V (see FIG. 5) between the signal terminals 32c is Vcc ⁇ (VF36 + Vlo). Therefore, the voltage applied to each of the resistors 34-12 to 34-1m is divided into the potential difference ⁇ V by the combined resistance value RN of the resistors 34-12 to 34-1m and the resistance value R11 of the resistor 34-11.
  • Equation 1 the potential VM1 of the monitor line 42-1 when the IC-11 outputs the potential Vcc to the signal terminal 32c is: (Equation 1) It becomes. However, It is. As described above, since the potential Vlo is substantially equal to the ground potential V0 (that is, 0 V), the above equation 1 can also be expressed as follows. (Equation 2)
  • the potential VM2 of the monitor line 42-1 when the IC-11 outputs the potential V0 to the signal terminal 32c is substantially equal to the potential V0.
  • the monitor device 22-1 detects a signal that transitions between the VM1 and the VM2.
  • the monitor device 22-1 determines whether the IC-11 is normal by comparing the detected signal with an expected value.
  • each inspection circuit 40 connected to the other monitor lines 42-2 to 42-n operates in the same manner as each inspection circuit 40 connected to the monitor line 42-1. Accordingly, the signals of IC-21 to IC-n1 are detected by the monitor devices 22-2 to 22-n, and the quality of these signals is determined.
  • step S6 it is determined whether or not the inspection has been completed for all ICs (step S8). If not completed, the processing from step S4 is repeated again. In the next step S4, the next column after the previously selected column is selected. Therefore, by repeating steps S4 to S8, the test is performed up to the IC in the last column m. When the inspection for all the ICs is completed, the inspection system 10 ends the process.
  • this inspection system 10 it is possible to prevent a signal from being output to the monitor line 42 from an IC in a non-selected column. Therefore, the selected IC can be accurately inspected. Further, since no signal is output from the IC in the non-selected column to the monitor line 42, the IC in the selected column can be inspected while continuing the operation of the IC in the non-selected column. Further, even if there is a failure or the like in the IC in the non-selected column, the inspection result of the IC in the selected column is not affected. For example, even if an unselected IC tries to output an abnormal potential to the signal terminal 32c due to a failure or the like, the potential of the signal terminal 32c does not rise. Therefore, an accurate inspection of the selected IC is possible.
  • each inspection circuit 40 belonging to the selected column is connected to a different monitor line 42. Therefore, it is possible to inspect a plurality of ICs at a time.
  • Some ICs output an open potential.
  • the open potential is an unstable potential that varies depending on the surrounding environment, the inspection accuracy decreases. Therefore, another embodiment capable of suitably inspecting an IC that outputs an open potential will be described below.
  • FIG. 6 shows an embodiment suitable for an IC that outputs an open potential and a power supply potential Vcc.
  • a resistor 38 for connecting the signal terminal 32 c and the ground wiring 52 is added to each inspection circuit 40 as compared with FIG. 3.
  • the selected IC inputs the power supply potential Vcc to the signal terminal 32c
  • the potential is output to the monitor line 42 as in the above-described embodiment.
  • the selected IC outputs an open potential to the signal terminal 32c
  • the signal terminal 32c since the signal terminal 32c is connected to the ground wiring 52 by the resistor 38, the signal terminal 32c becomes the ground potential V0.
  • the potential of the monitor line 42 becomes the ground potential V0 in the same manner as in the above-described embodiment.
  • the potential of the signal terminal 32c is fixed to the ground potential V0, so that a clearer signal can be detected by the monitor device 22. Therefore, the inspection can be performed more accurately.
  • FIG. 7 shows an embodiment suitable for an IC that outputs an open potential and a ground potential V0.
  • a resistor 39 for connecting the signal terminal 32 c and the power supply wiring 50 is added to each inspection circuit 40 as compared with FIG. 3.
  • the selected IC inputs an open potential to the signal terminal 32c
  • the signal terminal 32c becomes the power supply potential Vcc. Therefore, a potential is output to the monitor line 42 as in the above-described embodiment.
  • the selected IC outputs the ground potential V0 to the signal terminal 32c
  • the potential of the monitor line 42 becomes the ground potential V0 as in the above-described embodiment.
  • an IC that outputs the open potential and the ground potential V0 can be appropriately inspected.
  • FIG. 8 shows an embodiment in which unselected ICs and diodes 36 can be protected from overcurrent.
  • the power supply terminal 32 a and the signal terminal 32 c are short-circuited due to an IC failure, current flows from the power supply wiring 50 to the selector line 44 via the IC and the diode 36. Since there is no load in this path, an overcurrent flows and the IC or the diode 36 may be damaged.
  • a resistor 37 is added between the signal terminal 32 c and the diode 36. For this reason, even if an IC short circuit occurs, an extremely large current is prevented from flowing. If an overcurrent protection circuit or the like is formed in the IC, the resistor 37 shown in FIG. 8 is not necessarily required.
  • FIG. 9 shows an embodiment in which a diode 35 connected in parallel to the resistor 34 of each inspection circuit 40 is added.
  • the diode 35 is connected so that the monitor line 42 side becomes a cathode.
  • the diode 35 may be turned on.
  • the non-selected inspection circuit 40 needs to be set so that the diode 36 is turned on before the diode 35.
  • the diode 35 of the non-selected inspection circuit 40 is turned on when the potential of the signal terminal 32c exceeds V0 + VF35 (note that the voltage VF35 is a forward voltage of the diode 35).
  • the diode 36 is turned on when the potential of the signal terminal 32c exceeds Vlo + VF36. Therefore, if V0 + VF35> Vlo + VF36 is satisfied, the diode 36 is turned on before the diode 35 when the potential of the signal terminal 32c of the non-selected inspection circuit 40 rises.
  • the low potential Vlo is lower than the ground potential V0.
  • the forward voltage VF35 of the diode 35 is substantially equal to the forward voltage VF36 of the diode 36. Therefore, the above relationship is satisfied, and a signal is prevented from being transmitted to the monitor line 42 from the non-selected inspection circuit 40.
  • FIG. 10 shows an equivalent circuit of each inspection circuit 40 connected to the monitor line 42-1 of FIG.
  • Vcc the power supply potential
  • the potential VM2 of the monitor line 42-1 is substantially equal to the potential V0 as in the other embodiments described above.
  • Equation 3 Compare Equation 3 with Equation 1 (or Equation 2).
  • Equation 1 described above ie, the embodiment of FIG. 3
  • the combined resistance RN decreases as the number of test circuits 40 connected to the monitor line 42-1 increases.
  • the selected IC outputs the power supply potential Vcc
  • the potential obtained on the monitor line 42-1 is lowered.
  • the signal-to-noise ratio of the signal appearing on the monitor line 42-1 is lowered, and the inspection accuracy is lowered.
  • the voltage VM1 is not affected by the combined resistance RN.
  • FIG. 11 shows an embodiment in which the embodiment of FIG. 8 and the embodiment of FIG. 9 are combined. According to such a combination, the technical effects of both FIG. 8 and FIG. 9 can be obtained.
  • FIG. 12 shows an embodiment in which the embodiment of FIG. 6, the embodiment of FIG. 8, and the embodiment of FIG. 9 are combined. Even in this combination, the effects of FIGS. 6, 8, and 9 can be obtained.
  • the embodiments can be combined in other modes.
  • FIG. 13 shows a configuration in which the selector line 44 extends in the horizontal direction and the monitor line 42 extends in the vertical direction.
  • the physical arrangement of each component may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 半導体装置の出力信号を検査する検査装置であって、モニタライン上の信号を検出するモニタ装置と、モニタラインに接続されている複数の検査回路を有している。各検査回路が、半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、信号端子とモニタラインの間に接続されている第1抵抗器と、セレクタ端子と、信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオードを有している。

Description

半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法
 本明細書に開示の技術は、半導体装置に関する。
 日本国特許公開公報2004-257921号(以下、特許文献1という)には、半導体装置のバーンイン検査方法が開示されている。この検査方法で用いられる検査装置では、共通の電流計に複数の半導体装置が接続される。この検査方法では、各半導体装置に入力される信号を制御することによって、選択された1つの半導体装置だけをオンさせ、他の半導体装置をオンさせない。これによって、選択された半導体装置の通電電流が電流計で検出され、選択された半導体装置が適切に動作するか否かが試験される。1つの半導体装置に対する検査が終了したら、別の半導体装置が選択され、その半導体装置が検査される。このようにして、全ての半導体装置に対する検査が行われる。
 特許文献1の検査方法では、検査対象の複数の半導体装置の中に導通不良の半導体装置が含まれている場合に、適切な検査を行うことができない。なお、導通不良の半導体装置とは、オンさせない信号を入力しているにも係わらずオン(すなわち、導通)してしまう半導体装置である。すなわち、導通不良の半導体装置が含まれている場合には、選択された半導体装置の検査中に、選択されていない導通不良の半導体装置までもがオンしてしまう。すると、電流計に、選択された半導体装置の通電電流に加えて、導通不良の半導体装置の通電電流が流れる。このため、選択された半導体装置の通電電流を検出することができず、正確な検査を行うことができない。
 本明細書が開示する検査装置は、半導体装置の出力信号を検査する。この検査装置は、モニタラインと、モニタライン上の信号を検出するモニタ装置と、モニタラインに接続されている複数の検査回路を有している。各検査回路は、半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、信号端子とモニタラインの間に接続されている第1抵抗器と、セレクタ端子と、信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオードを有している。
 図1は、例として、上記の検査装置の一実施形態を示している。図1中において、参照番号100はモニタ装置であり、参照番号102はモニタラインであり、参照番号104は検査回路である。なお、図1では2つの検査回路104a、104bが示されているが、2つ以上の検査回路がモニタラインに接続されていてもよい。また、参照番号110は半導体装置支持具であり、参照番号112は半導体装置であり、参照番号114は第1抵抗器であり、参照番号116は第1ダイオードであり、参照番号118はセレクタ端子であり、参照番号120は信号端子である。
 この検査装置を用いて検査を行う場合には、検査装置に設置された半導体装置の中から1の半導体装置を選択し、選択された半導体装置を有する検査回路のセレクタ端子に第1電位を印加する。その他の検査回路のセレクタ端子には、第1電位よりも低い第2電位を印加する。例えば、図1において半導体装置112aが選択されている場合には、セレクタ端子118aに第1電位V1を印加し、セレクタ端子118bに第2電位V2を印加する。セレクタ端子118aに第1電位V1を印加すると、第1ダイオード116aがオンしない。このため、半導体装置112aから信号端子120aに出力される信号は、モニタライン102上に出力される。他方、セレクタ端子118bに第2電位V2が印加されている状態においては、信号端子120bの電位が上昇すると、第1ダイオード116bがオンする。これによって、信号端子120bの電位の上昇が防止される。このため、選択されていない半導体装置112bからの信号がモニタライン102上に出力されることが防止される。したがって、モニタ装置100で、選択された半導体装置112aの出力信号を正確に検出することができる。このように、この検査装置によれば、各半導体装置を正確に検査することができる。
 また、本明細書は、検査装置を用いて半導体装置の出力信号を検査する検査方法を提供する。検査装置は、モニタラインと、モニタラインに接続されている複数の検査回路を有している。各検査回路が、半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、信号端子とモニタラインの間に接続されている第1抵抗器と、セレクタ端子と、信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオードを有している。検査方法は、各半導体装置支持具に半導体装置を設置するステップと、複数のセレクタ端子のうちの第1のセレクタ端子に第1電位を印加し、他のセレクタ端子に第1電位よりも低い第2電位を印加した状態で、モニタライン上の信号を検出するステップと、複数のセレクタ端子のうちの第2のセレクタ端子に第1電位を印加し、他のセレクタ端子に第2電位を印加した状態で、モニタライン上の信号を検出するステップを有している。
 また、本明細書は、検査済半導体装置を生産する方法を提供する。この生産方法は、半導体装置の構造を形成する工程と、形成された半導体装置を検査する工程を有している。前記検査する工程で用いる検査装置は、モニタラインと、モニタラインに接続されている複数の検査回路を有している。各検査回路が、半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、信号端子とモニタラインの間に接続されている第1抵抗器と、セレクタ端子と、信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオードを有している。前記検査する工程が、各半導体装置支持具に半導体装置を設置するステップと、複数のセレクタ端子のうちの第1のセレクタ端子に第1電位を印加し、他のセレクタ端子に第1電位よりも低い第2電位を印加した状態で、モニタライン上の信号を検出するステップと、複数のセレクタ端子のうちの第2のセレクタ端子に第1電位を印加し、他のセレクタ端子に第2電位を印加した状態で、モニタライン上の信号を検出するステップを有している。
実施形態の検査システムの回路図の一例。 他の実施形態の検査システムの回路図の一例。 実施例の検査システム10の回路図。 実施例の検査システム10が実行する処理を示すフローチャート。 実施例の検査システム10の第1行の部分の等価回路図。 他の実施例の検査システムの回路図。 他の実施例の検査システムの回路図。 他の実施例の検査システムの回路図。 他の実施例の検査システムの回路図。 図9の実施例の検査システムの第1行の部分の等価回路図。 他の実施例の検査システムの回路図。 他の実施例の検査システムの回路図。 他の実施例の検査システムの回路図。
 最初に、以下に説明する実施例の特徴を列記する。なお、ここに列記する特徴は、何れも独立して有効なものである。
(特徴1) 複数のセレクタ端子のうちの第1のセレクタ端子に第1電位を印加し、他のセレクタ端子に第1電位よりも低い第2電位を印加する動作と、複数のセレクタ端子のうちの第2のセレクタ端子に第1電位を印加し、他のセレクタ端子に第2電位を印加する動作とを実行可能なセレクタ装置をさらに備える。
(特徴2) 第1電位V1と、第1電位の印加対象のセレクタ端子に対応する信号端子に入力される信号の上位電位VH1と、第1電位の印加対象のセレクタ端子に対応する第1ダイオードの順電圧VF11が、V1>VH1-VF11の関係を満たす。第2電位V2と、第2電位の印加対象のセレクタ端子に対応する信号端子に入力され得る信号の上位電位VH2と、第2電位の印加対象のセレクタ端子に対応する第2ダイオードの順電圧VF12が、V2<VH2-VF12の関係を満たす。
 なお、ダイオードの順電圧は、定格電流を流したときにダイオードのアノード-カソード間に生じる電圧を意味する。また、信号の上位電位とは、信号が取り得る複数の電位状態のうちの最も高い電位状態の電位を意味する。また、以下において、信号の下位電位とは、信号が取り得る複数の電位状態のうちの最も低い電位状態の電位を意味する。したがって、例えば、高電位と低電位の間で遷移する信号においては、高電位が上位電位であり、低電位が下位電位である。また、高電位と、低電位と、オープン電位(半導体装置内では他の端子から切り離されている状態の電位)の間で遷移する信号を出力する半導体装置も存在する。オープン電位の電極はフローティング状態にあるため、周囲の環境によって電位が定まる。一般に、オープン電位は、高電位より低く、低電位よりも高い。この場合も、高電位が上位電位であり、低電位が下位電位である。また、高電位とオープン電位の間で遷移する信号では、高電位が上位電位であり、オープン電位が下位電位である。また、オープン電位と低電位の間で遷移する信号では、オープン電位が上位電位であり、低電位が下位電位である。
 図1の場合(半導体装置112aが選択されている場合)において、第1ダイオード116aをオンさせないための条件は、V1>Vout1-VF11である(Vout1は、信号端子120aの電位)。電位Vout1は、原則的に、上位電位VH1よりも高くならない。したがって、V1>VH1-VF11が満たされていれば、選択された半導体装置112aの検査中に、第1ダイオード116aを常時オフさせておくことができる。他方、図1の場合において、第2ダイオード116bをオンさせるための条件は、V2<Vout2-VF12である(Vout2は、信号端子120bの電位)。したがって、V2<VH2-VF12が満たされていれば、選択されていない半導体装置112bが上位電位VH2を出力したとしても、その出力時にダイオード116bがオンする。このため、上位電位VH2がモニタライン上に出力されることが防止される。
(特徴3) 各検査回路が、第1抵抗器に対して並列に、モニタライン側がカソードとなるように接続されている第2ダイオードを有している。
 図2は、特徴3の構成の一実施形態を示している。なお、図2は、図1に第2ダイオード122を付加したものである。このような構成によれば、選択された半導体装置112aからの出力信号が上位電位であるときには、ダイオード122aがオンする。これにより、半導体装置112aからモニタラインに信号が伝わる。このような構成によれば、信号が第1抵抗114aのみを介してモニタライン102に伝わる場合に比べて、信号が第1抵抗114a及びダイオード122aを介してモニタライン102に伝わるため、半導体装置112aからの出力信号が上位電位であるときのモニタライン102の電位を高めることができる。したがって、モニタライン102上の信号のSN比を高めることができる。
(特徴4) 第1電位の印加対象のセレクタ端子に対応する信号端子に入力される信号の下位電位VL1と、第2電位V2と、第2電位の印加対象のセレクタ端子に対応する第1ダイオードの順電圧VF12と、第2電位の印加対象のセレクタ端子に対応する第2ダイオードの順電圧VF22が、V2+VF12<VL1+VF22の関係を満たす。
 図2に示すように、選択された半導体装置112aが下位電位VL1を出力すると、モニタライン102の電位は下位電位VL1と略等しくなる。上記の関係が満たされていると、選択されていない半導体装置112bが信号端子120bに電位VL2を出力したとしても、第1ダイオード116bが第2ダイオード122bよりも先にオンする。このため、この特徴によれば、半導体装置112bが高い電位を出力したとしても、その電位が第2ダイオード122bを介してモニタライン102に出力されることを防止することができる。
(特徴5)各検査回路が、第1ダイオードのアノードと第1抵抗器とを接続している接続部と信号端子との間に接続されている第2抵抗器を有している。
 このような構成によれば、選択されていない半導体装置及び第1ダイオードに過電流が流れることを抑制することができる。
(特徴6)各半導体装置支持具が、設置された半導体装置に高電位を供給する高電位端子と、設置された半導体装置に低電位を供給する低電位端子を有している。複数の検査回路の各々が、高電位端子と信号端子の間に接続されている第3抵抗器を有している。
 このような構成によれば、オープン電位と低電位を出力する半導体装置をより正確に検査することができる。
(特徴7)各半導体装置支持具が、設置された半導体装置に高電位を供給する高電位端子と、設置された半導体装置に低電位を供給する低電位端子を有している。各検査回路が、低電位端子と信号端子の間に接続されている第4抵抗器を有している。
 このような構成によれば、オープン電位と高電位を出力する半導体装置をより正確に検査することができる。
(特徴8)上述したいずれかの検査装置を複数個有している検査システムであり、各検査装置のモニタライン及びモニタ装置が独立しており、各検査装置が有するセレクタ端子が、他の検査装置のセレクタ端子と共通化されている。
 この検査システムによれば、多数の半導体装置を短時間で検査することができる。
 図3に示すバーンイン検査システム10は、ICを高温環境下で動作させて、ICの出力信号を検査する。バーンイン検査システム10は、制御ユニット20と、バーンインボード30を有している。
 バーンインボード30の基板上には、図3の横方向に伸びるモニタライン42が形成されている。モニタライン42は、図3の縦方向にn個配列されている。以下では、j行に存在するモニタライン42をモニタライン42-jと表す(jは任意の整数。1≦j≦n)。
 バーンインボード30の基板上には、図3の縦方向に伸びるセレクタライン44が形成されている。セレクタライン44は、図3の横方向にm個配列されている。以下では、k列に存在するセレクタライン44を、セレクタライン44-kと表す(kは任意の整数。1≦k≦m)。セレクタライン44の端部には、セレクタ端子46が形成されている。すなわち、セレクタ端子46は、m個存在する。以下では、セレクタライン44-kと接続されているセレクタ端子46を、セレクタ端子46-kと表す。
 バーンインボード30の基板上には、検査回路40が多数形成されている。検査回路40は、図3の横方向にm個配列されており、図3の縦方向にn個配列されている。すなわち、バーンインボード30の基板上には、m×n個の検査回路40が形成されている。以下では、j行k列に存在する検査回路40を、検査回路40-jkと表す場合がある。また、検査回路40内の各構成要素についても、同様の標記によって表す場合がある。検査回路40-jkは、モニタライン42-j及びセレクタライン44-kに接続されている。
 各検査回路40は、ICソケット32、抵抗器34、ダイオード36を有する。なお、実施例を説明する各図においては、図の見易さを考慮して、ICソケット、抵抗器、ダイオード等の参照番号は、検査回路40-11と検査回路40-12のみに付されている。各検査回路40の構成は等しいので、以下では1つの検査回路40の構成について説明する。検査回路40のICソケット32には、ICが取り付けられる。ICソケット32は、多数の端子を備えている。例えば、ICソケット32は、電源配線50に接続されている端子32a、及び、グランド配線52に接続されている端子32bを有している。これらの端子によって、ICソケット32に設置されたICには、電源電位Vccとグランド電位V0が供給される。また、ICソケット32は、出力配線54に接続されている信号端子32cを有している。信号端子32cには、ICソケット32に設置されたICから信号が入力される。当該信号は、電源電位Vccとグランド電位V0の間で遷移する。また、ICソケット32に設置されたICは、図示しない端子から入力される制御信号によって制御される。出力配線54とモニタライン42の間には、抵抗器34が接続されている。出力配線54とセレクタライン44の間には、ダイオード36が接続されている。ダイオード36は、セレクタライン44側がカソードとなるように接続されている。
 制御ユニット20は、n個のモニタ装置22を有している。各モニタ装置22は、対応するモニタライン42に接続されている。以下では、モニタライン42-jに接続されているモニタ装置22を、モニタ装置22-jと表す。モニタ装置22-jは、モニタライン42-j上の信号(電位)を検出する。
 制御ユニット20は、セレクタ装置24を有している。セレクタ装置24は、m個のセレクタ端子46-1~46-mの電位を制御する。
 バーンイン検査システム10は、ICの生産ラインにおいて使用される。以下に、ICの生産方法について説明する。ICの生産方法は、ICの構造を形成する工程と、ICを検査する工程を有する。ICの構造を形成する工程では、まず、半導体ウエハ内にイオン注入等によって半導体回路を形成する。次に、ダイシングによって半導体ウエハを半導体チップに分割する。次に、半導体チップをリードフレームに固定し、半導体チップとリードフレームをワイヤーボンディング等で接続する。その後、半導体チップをリードフレームと共に樹脂成形する。これによって、検査前のICが完成する。
 次に、ICの検査工程について説明する。ICの検査工程では、上記の検査システム10を用いてICを検査する。最初に、検査システム10の各ICソケット32に、ICを設置する。ここでは、m×n個のICが検査システム10に設置される。以下では、ソケット32-jkに設置されたICを、IC-jkという。次に、バーンインボード30を所定温度まで加熱する。各ICの検査は、バーンインボード30を加熱した状態で行われる。
 次に、制御ユニット20によって、図4の処理が実行される。ステップS2では、全てのICが動作させられる。これによって、各ICソケット32の信号端子32cに信号が出力される。以降の各ステップは、各ICが動作している状態で行われる。
 ステップS4では、セレクタ装置24が、検査を行う列を選択する。最初のステップS2では、第1列(すなわち、IC-11~IC-n1)が選択される。
 ステップS6では、セレクタ装置24が、まず、選択されていない列に対応するセレクタ端子46に低電位Vloを印加する。また、セレクタ装置24は、選択された列に対応するセレクタ端子46に高電位Vhiを印加する。そして、各モニタ装置22が、対応するモニタライン42の信号を検出する。最初のステップS4で第1列が選択されているので、最初のステップS6では、セレクタ端子46-1に高電位Vhiが印加され、セレクタ端子46-2~46-mに低電位Vloが印加される。この場合におけるモニタライン42-1に接続されている各検査回路40-11~40-1mの動作について説明する。
 検査回路40-12では、セレクタライン44-2に低電位Vloが印加されている。本実施例では、低電位Vloは、グランド電位V0と略等しい。このため、低電位Vloと、IC-12が出力する信号の上位電位Vcc(すなわち、電源電位Vcc)と、ダイオード36-12の順電圧VF36は、Vlo<Vcc-VF36の関係を満たす。このため、IC-12の出力電位(すなわち、信号端子32cの電位)が上昇しようとすると、ダイオード36-12がオンする。このため、検査回路40-12では、信号端子32cの電位が電位V0にほぼ固定される。このため、IC-12からモニタライン42-1上には、信号が伝わらない。また、検査回路40-13~40-1mも、検査回路40-12と同様に動作する(なお、本実施例では、全てのICの出力信号の上位電位Vccは互いに略等しく、全てのダイオード36の順電圧VF36は互いに略等しい。)。したがって、検査回路40-13~40-1mからも、モニタライン42-1上に信号が伝わらない。
 他方、検査回路40-11では、セレクタライン44-1に高電位Vhiが印加されている。本実施例では、高電位Vhiは、電源電位Vccと略等しい。このため、高電位Vhiと、IC-11が出力する信号の上位電位Vccと、ダイオード36-11の順電圧VF36は、Vhi>Vcc-VF36の関係を満たす。したがって、ダイオード36-11はオンにならず、IC-11が出力する信号は、抵抗器34-11を介してモニタライン42-1上に出力される。したがって、モニタ装置22-1では、IC-11の信号が検出される。
 なお、図5は、モニタライン42-1に接続されている各検査回路40-11~40-1mの等価回路を示している。ダイオード36-12~36-1mはオンしているので、IC-11が信号端子32cに電位Vccを出力しているときには、IC-11の信号端子32cと他のIC-12~IC-1mの信号端子32cの間の電位差ΔV(図5参照)は、Vcc-(VF36+Vlo)となる。このため、各抵抗器34-12~34-1mに印加される電圧は、抵抗器34-12~34-1mの合成抵抗値RNと、抵抗器34-11の抵抗値R11によって電位差ΔVを分圧した値、すなわち、ΔV・RN/(RN+R11)となる。したがって、IC-11が信号端子32cに電位Vccを出力しているときのモニタライン42-1の電位VM1は、
(数1)
Figure JPOXMLDOC01-appb-I000001
 となる。但し、
 
Figure JPOXMLDOC01-appb-I000002
 である。なお、上記の通り、電位Vloはグランド電位V0(すなわち、0V)と略等しいので、上記数1は、以下のように表すこともできる。
(数2)
Figure JPOXMLDOC01-appb-I000003
 他方、IC-11が信号端子32cに電位V0を出力しているときのモニタライン42-1の電位VM2は電位V0と略等しくなる。
 したがって、モニタ装置22-1では、上記のVM1とVM2の間で遷移する信号が検出される。モニタ装置22-1では、検出される信号を期待値と比較することで、IC-11が正常か否かを判定する。
 また、他のモニタライン42-2~42-nに接続されている各検査回路40も、モニタライン42-1に接続されている各検査回路40と同様に動作する。したがって、各モニタ装置22-2~22-nで、IC-21~IC-n1の信号が検出され、これらの良否の判定が行われる。
 ステップS6が終了すると、全てのICに対して検査が終了したか否かが判定される(ステップS8)。終了していない場合には、再度、ステップS4からの処理が繰り返される。次のステップS4では、前回に選択した列の次の列が選択される。したがって、ステップS4~S8が繰り返されることで、最後の列mのICまで検査が行われる。全てのICに対する検査が終了すると、検査システム10は処理を終了する。
 以上に説明した検査工程が終了することで、各ICの生産が完了し、出荷可能となる。
 以上に説明したように、この検査システム10では、選択されていない列のICからモニタライン42に信号が出力されることが防止される。したがって、選択されたICを正確に検査することができる。また、選択されていない列のICからモニタライン42に信号が出力されないので、選択されていない列のICの動作を継続しながら、選択された列のICの検査を行うことができる。また、選択されていない列のICに故障等があったとしても、選択された列のICの検査結果に影響しない。例えば、選択されていないICが故障等によって信号端子32cに異常な電位を出力しようとしても、信号端子32cの電位が上昇しない。したがって、選択されたICの正確な検査が可能である。
 また、上記の検査システム10では、選択された列に属する各検査回路40が、異なるモニタライン42に接続されている。したがって、一度に複数のICを検査することが可能である。
 次に、他の実施例の検査システムについて説明する。ICには、オープン電位を出力するものが存在する。上述した実施例でも、オープン電位を出力するICの検査は可能である。しかしながら、オープン電位は、周囲の環境によって変化する不安定な電位であるため、検査精度が低下する。したがって、以下に、オープン電位を出力するICを好適に検査可能な他の実施例について説明する。
 図6は、オープン電位と電源電位Vccを出力するICに適した実施例である。図6の実施例では、図3と比べて、各検査回路40に、信号端子32cとグランド配線52を接続する抵抗器38が追加されている。この実施例では、選択されたICが信号端子32cに電源電位Vccを入力すると、上述した実施例と同様にモニタライン42に電位が出力される。選択されたICが信号端子32cにオープン電位を出力すると、抵抗器38によって信号端子32cがグランド配線52に接続されているので、信号端子32cがグランド電位V0となる。したがって、この場合も、上述した実施例と同様にして、モニタライン42の電位がグランド電位V0となる。このように、ICがオープン電位を出力した場合でも信号端子32cの電位がグランド電位V0に固定されるので、モニタ装置22でより明確な信号を検出することができる。したがって、より正確に検査を行うことができる。
 図7は、オープン電位とグランド電位V0を出力するICに適した実施例である。図7の実施例では、図3と比べて、各検査回路40に、信号端子32cと電源配線50を接続する抵抗器39が追加されている。この実施例では、選択されたICが信号端子32cにオープン電位を入力すると、抵抗器39によって信号端子32cが電源配線50に接続されているので、信号端子32cが電源電位Vccとなる。したがって、上述した実施例と同様にモニタライン42に電位が出力される。また、選択されたICが信号端子32cにグランド電位V0を出力すると、上述した実施例と同様にモニタライン42の電位がグランド電位V0となる。このように、この構成によれば、オープン電位とグランド電位V0を出力するICを適切に検査することができる。
 また、図8は、選択されていないICとダイオード36を過電流から保護することが可能な実施例である。図3の実施例では、ICの故障により電源側の端子32aと信号端子32cとが短絡すると、電流が、電源配線50から、ICとダイオード36を介してセレクタライン44に流れる。この経路に負荷が存在しないことから、過電流が流れ、ICまたはダイオード36が破損するおそれがある。これに対し、図8の構成では、信号端子32cとダイオード36の間に抵抗器37が追加されている。このため、ICの短絡が生じたとしても、極端に大きい電流が流れることが防止される。なお、ICの内部に過電流保護回路等が形成されていれば、図8で示される抵抗器37は必ずしも必要ではない。
 また、図9は、各検査回路40の抵抗器34に対して並列に接続されたダイオード35を追加した実施例である。ダイオード35は、モニタライン42側がカソードとなるように接続されている。この実施例では、選択されていない検査回路40において、ダイオード35のカソード(すなわち、モニタライン42)の電位が低くなると、ダイオード35がオンするおそれがある。選択されていない検査回路40においてダイオード35がオンすると、選択されていない検査回路40からモニタライン42に信号が伝わるため問題となる。この問題を解決するために、選択されていない検査回路40において、ダイオード35よりも先にダイオード36がオンするように設定されている必要がある。上記の通り、モニタライン42の電位は、低い時にはグランド電位V0となる。したがって、選択されていない検査回路40のダイオード35は、信号端子32cの電位がV0+VF35を超えたときにオンする(なお、電圧VF35は、ダイオード35の順電圧である)。他方、ダイオード36は、信号端子32cの電位がVlo+VF36を超えたときにオンする。したがって、V0+VF35>Vlo+VF36が満たされていれば、選択されていない検査回路40の信号端子32cの電位が上昇したときに、ダイオード36がダイオード35より先にオンする。本実施例では、低電位Vloはグランド電位V0よりも低い。また、本実施例では、ダイオード35の順電圧VF35は、ダイオード36の順電圧VF36と略等しい。したがって、上記の関係が満たされており、選択されていない検査回路40からモニタライン42に信号が伝わることが防止される。
 また、図10は、図9のモニタライン42-1に接続されている各検査回路40の等価回路を示している。選択された検査回路40の信号端子32cに電源電位Vccが印加された場合には、その信号端子32cからダイオード35-11を通ってモニタライン42-1に電流が流れる。このため、モニタライン42-1の電位VM1は、
(数3)VM1=Vcc-VF35
 となる。
 他方、選択された検査回路40の信号端子32cにグランド電位V0が印加された場合には、上記の他の実施例と同様に、モニタライン42-1の電位VM2は電位V0と略等しくなる。
 上述した数1(または、数2)と、数3を比較する。上述した数1(すなわち、図3の実施例)では、モニタライン42-1に接続される検査回路40の数が多くなると、合成抵抗RNが小さくなる。その結果、選択されたICが電源電位Vccを出力しているときに、モニタライン42-1上で得られる電位が低くなる。このため、モニタライン42-1上に現れる信号のSN比が低くなり、検査の精度が低くなる。他方、上記数3に示すように、図9、10の実施例では、電圧VM1が合成抵抗RNの影響を受けない。このため、モニタライン42-1に接続される検査回路40の数が多くなっても、選択されたICが電源電位Vccを出力しているときにモニタライン42-1で比較的高い電位が得られる。このため、この実施例は、検査の精度が高い。また、図9、10の実施例は、より大規模な検査システムに特に適している。
 また、図11は、図8の実施例と図9の実施例を組み合わせた実施例である。このような組み合わせによれば、図8と図9の両方の技術的効果が得られる。また、図12は、図6の実施例と、図8の実施例と、図9の実施例を組み合わせた実施例である。この組合せでも、図6、8、9の各効果を得ることができる。また、その他の態様で各実施例を組み合わせることもできる。
 また、図13は、セレクタライン44が横方向に伸びており、モニタライン42が縦方向に伸びている構成を示している。このように、各構成要素の物理的な配置が変更されてもよい。
 以上、実施形態について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
 

Claims (11)

  1.  半導体装置の出力信号を検査する検査装置であって、
     モニタラインと、
     モニタライン上の信号を検出するモニタ装置と、
     モニタラインに接続されている複数の検査回路、
     を有しており、
     各検査回路が、
     半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、
     信号端子とモニタラインの間に接続されている第1抵抗器と、
     セレクタ端子と、
     信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオード、
     を有している検査装置。
  2.  複数のセレクタ端子のうちの第1のセレクタ端子に第1電位を印加し、他のセレクタ端子に第1電位よりも低い第2電位を印加する動作と、複数のセレクタ端子のうちの第2のセレクタ端子に第1電位を印加し、他のセレクタ端子に第2電位を印加する動作とを実行可能なセレクタ装置をさらに備える請求項1の検査装置。
  3.  第1電位V1と、
     第1電位の印加対象のセレクタ端子に対応する信号端子に入力される信号の高電位VH1と、
     第1電位の印加対象のセレクタ端子に対応する第1ダイオードの順電圧VF11が、
     V1>VH1-VF11
     の関係を満たし、
     第2電位V2と、
     第2電位の印加対象のセレクタ端子に対応する信号端子に入力され得る信号の高電位VH2と、
     第2電位の印加対象のセレクタ端子に対応する第1ダイオードの順電圧VF12が、
     V2<VH2-VF12
     の関係を満たす、
     請求項2の検査装置。
  4.  各検査回路が、第1抵抗器に対して並列に、モニタライン側がカソードとなるように接続されている第2ダイオードを有している請求項1~3のいずれか一項の検査装置。
  5.  第1電位の印加対象のセレクタ端子に対応する信号端子に入力される信号の低電位VL1と、
     第2電位V2と、
     第2電位の印加対象のセレクタ端子に対応する第1ダイオードの順電圧VF12と、
     第2電位の印加対象のセレクタ端子に対応する第2ダイオードの順電圧VF22が、
     V2+VF12<VL1+VF22
     の関係を満たす請求項4の検査装置。
  6.  各検査回路が、第1ダイオードのアノードと第1抵抗器とを接続している接続部と信号端子との間に接続されている第2抵抗器を有している請求項1~5のいずれか一項の検査装置。
  7.  各半導体装置支持具が、設置された半導体装置に高電位を供給する高電位端子と、設置された半導体装置に低電位を供給する低電位端子を有しており、
     複数の検査回路の各々が、高電位端子と信号端子の間に接続されている第3抵抗器を有している請求項1~6のいずれか一項の検査装置。
  8.  各半導体装置支持具が、設置された半導体装置に高電位を供給する高電位端子と、設置された半導体装置に低電位を供給する低電位端子を有しており、
     複数の検査回路の各々が、低電位端子と信号端子の間に接続されている第4抵抗器を有している請求項1~6のいずれか一項の検査装置。
  9.  請求項1の検査装置を複数個有しており、
     各検査装置のモニタライン及びモニタ装置が独立しており、
     各検査装置が有するセレクタ端子が、他の検査装置のセレクタ端子と共通化されている、
     検査システム。
  10.  検査装置を用いて半導体装置の出力信号を検査する検査方法であって、
     検査装置は、
     モニタラインと、
     モニタラインに接続されている複数の検査回路、
     を有しており、
     各検査回路が、
     半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、
     信号端子とモニタラインの間に接続されている第1抵抗器と、
     セレクタ端子と、
     信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオード、
     を有しており、
     各半導体装置支持具に半導体装置を設置するステップと、
     複数のセレクタ端子のうちの第1のセレクタ端子に第1電位を印加し、他のセレクタ端子に第1電位よりも低い第2電位を印加した状態で、モニタライン上の信号を検出するステップと、
     複数のセレクタ端子のうちの第2のセレクタ端子に第1電位を印加し、他のセレクタ端子に第2電位を印加した状態で、モニタライン上の信号を検出するステップ、
     を有する検査方法。
  11.  検査済半導体装置を生産する方法であって、
     半導体装置の構造を形成する工程と、
     形成された半導体装置を検査する工程、
     を有しており、
     前記検査する工程で用いる検査装置は、
     モニタラインと、
     モニタラインに接続されている複数の検査回路、
     を有しており、
     各検査回路が、
     半導体装置を設置可能であり、設置された半導体装置から信号が入力される信号端子を有する半導体装置支持具と、
     信号端子とモニタラインの間に接続されている第1抵抗器と、
     セレクタ端子と、
     信号端子とセレクタ端子の間にセレクタ端子側がカソードとなるように接続されている第1ダイオード、
     を有しており、
     前記検査する工程が、
     各半導体装置支持具に半導体装置を設置するステップと、
     複数のセレクタ端子のうちの第1のセレクタ端子に第1電位を印加し、他のセレクタ端子に第1電位よりも低い第2電位を印加した状態で、モニタライン上の信号を検出するステップと、
     複数のセレクタ端子のうちの第2のセレクタ端子に第1電位を印加し、他のセレクタ端子に第2電位を印加した状態で、モニタライン上の信号を検出するステップ、
     を有する製造方法。
PCT/JP2012/068230 2012-07-18 2012-07-18 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法 WO2014013571A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014525604A JP5812200B2 (ja) 2012-07-18 2012-07-18 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法
PCT/JP2012/068230 WO2014013571A1 (ja) 2012-07-18 2012-07-18 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法
KR1020157001274A KR101652648B1 (ko) 2012-07-18 2012-07-18 반도체 장치의 검사 장치, 검사 시스템, 검사 방법, 및 검사가 완료된 반도체 장치의 생산 방법
US14/402,951 US9379029B2 (en) 2012-07-18 2012-07-18 Inspection apparatus, inspection system, inspection method of semiconductor devices, and manufacturing method of inspected semiconductor devices
CN201280003753.7A CN103688180B (zh) 2012-07-18 2012-07-18 半导体装置的检验装置、检验***、检验方法、以及检验完成的半导体装置的生产方法
TW102117213A TWI471576B (zh) 2012-07-18 2013-05-15 The inspection apparatus, the inspection system, the inspection method, and the inspection method of the semiconductor device of the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/068230 WO2014013571A1 (ja) 2012-07-18 2012-07-18 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法

Publications (1)

Publication Number Publication Date
WO2014013571A1 true WO2014013571A1 (ja) 2014-01-23

Family

ID=49948426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068230 WO2014013571A1 (ja) 2012-07-18 2012-07-18 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法

Country Status (6)

Country Link
US (1) US9379029B2 (ja)
JP (1) JP5812200B2 (ja)
KR (1) KR101652648B1 (ja)
CN (1) CN103688180B (ja)
TW (1) TWI471576B (ja)
WO (1) WO2014013571A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102670373B1 (ko) * 2016-10-12 2024-05-28 삼성전자주식회사 반도체 소자 검사 장치 및 이를 포함하는 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634719A (ja) * 1992-07-13 1994-02-10 Fujitsu Ltd 半導体集積回路の試験装置
JP2006105738A (ja) * 2004-10-04 2006-04-20 Canon Inc 半導体集積回路検査装置、半導体集積回路検査方法、及びプログラム
WO2008044391A1 (fr) * 2006-10-05 2008-04-17 Advantest Corporation Dispositif de contrôle, procédé de contrôle et procédé de fabrication

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02118470A (ja) 1988-10-28 1990-05-02 Nec Corp バーンイン装置
JP2001296335A (ja) 2000-04-14 2001-10-26 Nec Corp 半導体装置の検査方法及び検査装置
TW573128B (en) * 2001-05-15 2004-01-21 Semiconductor Energy Lab Voltage measuring method, electrical test method and apparatus, semiconductor device manufacturing method and device substrate manufacturing method
JP2003121500A (ja) 2001-10-10 2003-04-23 Mitsubishi Electric Corp 半導体装置の試験装置及び試験方法
JP2004226115A (ja) * 2003-01-20 2004-08-12 Elpida Memory Inc 半導体装置及びその試験方法
JP2004257921A (ja) 2003-02-27 2004-09-16 Sharp Corp 半導体装置の検査装置および半導体装置の検査方法
JP2005122574A (ja) * 2003-10-17 2005-05-12 Renesas Technology Corp 半導体集積回路
US7317324B2 (en) 2003-11-04 2008-01-08 Canon Kabushiki Kaisha Semiconductor integrated circuit testing device and method
JP2006189340A (ja) 2005-01-06 2006-07-20 Nec Electronics Corp 半導体デバイスの検査システムおよび検査方法
JP4794896B2 (ja) 2005-04-22 2011-10-19 シャープ株式会社 半導体回路、半導体デバイス、および、該半導体回路の検査方法
JP2007171114A (ja) 2005-12-26 2007-07-05 Yamaha Corp 半導体試験基板および接触不良判定方法
JP4623659B2 (ja) 2006-02-23 2011-02-02 パナソニック株式会社 半導体装置
JP2007315789A (ja) 2006-05-23 2007-12-06 Fujifilm Corp 半導体集積回路およびその実装検査方法
CN201017308Y (zh) * 2007-03-07 2008-02-06 青岛海信电器股份有限公司 一种i2c总线信号的通讯调试装置
CN201035124Y (zh) * 2007-04-19 2008-03-12 清华大学 集成电路测试仪
CN102165579B (zh) * 2008-09-29 2014-03-12 株式会社半导体能源研究所 半导体器件
US8400176B2 (en) * 2009-08-18 2013-03-19 Formfactor, Inc. Wafer level contactor
JP2012226794A (ja) * 2011-04-18 2012-11-15 Elpida Memory Inc 半導体装置、及び半導体装置の制御方法。

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634719A (ja) * 1992-07-13 1994-02-10 Fujitsu Ltd 半導体集積回路の試験装置
JP2006105738A (ja) * 2004-10-04 2006-04-20 Canon Inc 半導体集積回路検査装置、半導体集積回路検査方法、及びプログラム
WO2008044391A1 (fr) * 2006-10-05 2008-04-17 Advantest Corporation Dispositif de contrôle, procédé de contrôle et procédé de fabrication

Also Published As

Publication number Publication date
US9379029B2 (en) 2016-06-28
JPWO2014013571A1 (ja) 2016-06-30
KR101652648B1 (ko) 2016-08-30
TWI471576B (zh) 2015-02-01
TW201411151A (zh) 2014-03-16
CN103688180B (zh) 2016-07-06
KR20150020705A (ko) 2015-02-26
CN103688180A (zh) 2014-03-26
JP5812200B2 (ja) 2015-11-11
US20150123694A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US20100013512A1 (en) Apparatus and methods for through substrate via test
US7960983B2 (en) Circuit for detecting bonding defect in multi-bonding wire
KR20120062798A (ko) 웨이퍼 레벨 컨택터
JP2006292637A (ja) 半導体集積回路、システムインパッケージ型半導体装置及び半導体集積回路間の接続状態の検査方法
US10859601B2 (en) Device inspection circuit, device inspection device, and probe card
US20180259580A1 (en) Circuit test methods
US11448692B2 (en) Method and device for wafer-level testing
JP2013160572A (ja) パワー半導体用試験装置
JP2015049100A (ja) 測定装置および測定方法
US20200174073A1 (en) Device inspection method
US8004297B2 (en) Isolation circuit
JP5812200B2 (ja) 半導体装置の検査装置、検査システム、検査方法、及び、検査済半導体装置の生産方法
US12025655B2 (en) Method and system for wafer-level testing
US8294470B2 (en) One sheet test device and method of testing using the same
US8805637B2 (en) Test element group and semiconductor device
KR20030074452A (ko) 반도체 디바이스 테스트 장치 및 방법
JP4744884B2 (ja) ウエハ検査装置及びウエハ検査方法
JPWO2008069025A1 (ja) 半導体装置
JP2008016812A (ja) 半導体検査装置および半導体集積回路の検査方法
JP2002334966A (ja) マルチチップモジュールおよびその検査方法
JP6197573B2 (ja) スイッチング素子検査方法及び電子回路ユニット
JP2010281602A (ja) 半導体装置及び半導体装置のテスト方法
JP2008112766A (ja) 半導体装置、半導体ウェハ、および半導体ウェハの検査方法
JP2009080126A (ja) 半導体装置
JP2007286967A (ja) 電圧レギュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014525604

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14402951

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157001274

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12881220

Country of ref document: EP

Kind code of ref document: A1