WO2014012235A1 - 自适应频域资源配置方法、装置及通信*** - Google Patents

自适应频域资源配置方法、装置及通信*** Download PDF

Info

Publication number
WO2014012235A1
WO2014012235A1 PCT/CN2012/078896 CN2012078896W WO2014012235A1 WO 2014012235 A1 WO2014012235 A1 WO 2014012235A1 CN 2012078896 W CN2012078896 W CN 2012078896W WO 2014012235 A1 WO2014012235 A1 WO 2014012235A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
pilot signal
transmitting device
receiving device
transmitting
Prior art date
Application number
PCT/CN2012/078896
Other languages
English (en)
French (fr)
Inventor
马霓
赵勇
黄敏
杨挺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280031385.7A priority Critical patent/CN103688582B/zh
Priority to JP2015521932A priority patent/JP6150184B2/ja
Priority to EP12881499.3A priority patent/EP2866505B1/en
Priority to PCT/CN2012/078896 priority patent/WO2014012235A1/zh
Publication of WO2014012235A1 publication Critical patent/WO2014012235A1/zh
Priority to US14/599,866 priority patent/US9608792B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an adaptive frequency domain resource configuration method, apparatus, and communication system. Background technique
  • Orthogonal-step multiplexing is a kind of multi-carrier modulation technology. It has long term evolution (LTE) and global interoperabi access for microwave access. Access, WIMAX) and other communication systems use OFDM technology.
  • M serial signals M is a natural number
  • M serial signals are serial-to-parallel converted
  • M parallel signals are output
  • the M parallel signals are modulated by M sub-modulators.
  • the M parallel signals carried by the M subcarriers are output, and the M parallel signals carried by the M subcarriers are respectively configured with the same frequency domain resources, and are transmitted through M channels. As shown in FIG.
  • 1A which is a frequency domain diagram of a subcarrier in the prior art
  • the subcarrier is presented in the frequency domain as a sine spectrum, and the frequency bandwidth of the subcarrier is 2 Af, and the interval is Af.
  • the corresponding time domain resource T l/Af. It can be seen that the subcarriers in the prior art have fixed frequency and time domain resources.
  • the transmitter side allocates frequency domain resources of the same size for each subcarrier according to the pre-configuration of the system, as shown in FIG. 1B, which is a frequency domain diagram of a group of subcarriers in the prior art, which shows Five subcarriers, because the system configures the same frequency domain resource for each subcarrier, there is a fixed frequency bandwidth interval between two adjacent subcarriers. As shown in FIG. 1B, the fixed frequency bandwidth interval is Af.
  • each subcarrier may undergo different frequency shifts during transmission, and the amplitude of each subcarrier may also have different degrees.
  • Attenuation when a fixed-frequency frequency interval is configured between sub-carriers, especially when the fixed-frequency frequency interval is small, the frequency bandwidth interval between two adjacent sub-carriers is also small, so between sub-carriers during transmission It may overlap due to frequency shift, which causes the system to lose orthogonality. It is difficult to maximize the spectrum efficiency of the system and affect the performance of the communication system.
  • Embodiments of the present invention provide an adaptive frequency domain resource configuration method, apparatus, and communication system, to solve a problem in the prior art that a communication system configures a fixed frequency domain resource for each subcarrier, resulting in a system spectrum efficiency that is not high, affecting the communication system. System performance issues.
  • an adaptive frequency domain resource configuration method includes:
  • the transmitting device transmits a pilot signal to the receiving device
  • the transmitting device receives channel information of a channel for transmitting the pilot signal fed back by the receiving device, where the channel information is information obtained by the receiving device after measuring the pilot signal;
  • the transmitting device divides a bandwidth frequency of the transmitting device according to the channel information.
  • the transmitting device transmits a pilot signal to the receiving device, including:
  • the transmitting device transmits a pilot signal to the receiving device on each of the pre-divided frequency regions, and all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the transmitting device receives channel information of a channel for transmitting the pilot signal fed back by the receiving device, and includes:
  • the transmitting device receives a set of channel quality indication CQI values for each frequency region fed back by the receiving device, and a set of CQI values of each frequency region is used by the receiving device to measure the transmitting device in each frequency region a CQI value corresponding to each frequency resource group, where each frequency resource group carries a pilot signal by using a different number of subcarriers;
  • the dividing the bandwidth frequency of the transmitting device according to the channel information includes:
  • Each of the frequency regions is divided according to the number of subcarriers corresponding to the maximum CQI value.
  • the transmitting device transmits a pilot signal to the receiving device, including:
  • the transmitting device transmits a broadband pilot signal to the receiving device on the bandwidth frequency
  • the transmitting device receives the channel state information CSI value of the sub-pilot signal corresponding to each frequency region, and compares the CSI value of the sub-pilot signal corresponding to each frequency region with the domain value range. a comparison result fed back to the transmitting device, the sub-pilot signal corresponding to each frequency region is obtained by the receiving device after the broadband pilot signal is decomposed according to the frequency interval at the bandwidth frequency. a sub-pilot signal corresponding to each frequency region, each sub-pilot signal corresponding to a frequency region on the bandwidth frequency;
  • the dividing the bandwidth frequency of the transmitting device according to the channel information includes:
  • Each frequency region of the bandwidth frequency is divided according to a comparison result fed back by the receiving device.
  • another adaptive frequency domain resource configuration method is provided, where the method includes:
  • the receiving device receives the pilot signal transmitted by the transmitting device, and includes:
  • the receiving device receives a pilot signal transmitted by the transmitting device on each of the pre-divided frequency regions, and all of the frequency regions constitute a bandwidth frequency of the transmitting device;
  • the receiving device Receiving, by the receiving device, the channel information of the channel transmitting the pilot signal to the transmitting device by measuring the pilot signal, so that the transmitting device bandwidths the transmitting device according to the channel information
  • the frequency is divided, including:
  • the receiving device measures corresponding to each frequency resource group of the transmitting device on each frequency region
  • each frequency resource group carries a pilot signal by using a different number of subcarriers
  • the receiving device Receiving, by the receiving device, the CQI value corresponding to each frequency resource group to the transmitting device, so that the transmitting device obtains a maximum CQI value from the CQI values corresponding to the respective frequency resource groups, and according to the The number of subcarriers corresponding to the largest CQI value divides the frequency region.
  • the receiving device receives the pilot signal transmitted by the transmitting device, and includes:
  • the receiving device Receiving, by the receiving device, the channel information of the channel transmitting the pilot signal to the transmitting device by measuring the pilot signal, so that the transmitting device bandwidths the transmitting device according to the channel information
  • the frequency is divided, including:
  • the receiving device decomposes the broadband pilot signal according to a frequency interval on the bandwidth frequency to obtain a set of sub-pilot signals in a frequency domain, where each sub-pilot signal corresponds to one of the bandwidth frequencies.
  • the receiving device measures a channel state information CSI value of a sub-pilot signal corresponding to each frequency region; the receiving device compares a csi value of a sub-pilot signal corresponding to each frequency region with a domain value range, to the The transmitting device feeds back the comparison result, so that the transmitting device performs each frequency region according to the comparison result. Division.
  • a transmitting device comprising:
  • a transmitting unit configured to transmit a pilot signal to the receiving device
  • a channel information receiving unit configured to receive channel information of a channel for transmitting the pilot signal fed back by the receiving device, where the channel information is information obtained by the receiving device after measuring the pilot signal; And dividing the bandwidth frequency of the transmitting device according to the channel information.
  • the transmitting unit includes:
  • a first transmitting subunit configured to transmit a pilot signal to the receiving device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the channel information receiving unit includes:
  • a first channel information receiving subunit configured to receive a set of CQI values of each frequency region fed back by the receiving device, where a set of CQI values of each frequency region is used by the receiving device to measure the first transmitting unit a CQI value corresponding to each frequency resource group on each frequency region, wherein each frequency resource group carries a pilot signal through a different number of subcarriers;
  • the configuration unit includes:
  • a CQI obtaining subunit configured to obtain a maximum CQI value from the CQI values corresponding to the respective frequency resource groups
  • a first frequency dividing subunit configured to divide each frequency region according to the number of subcarriers corresponding to the maximum CQI value obtained by the CQI acquiring subunit.
  • the transmitting unit includes:
  • a second transmitting subunit configured to transmit a broadband pilot signal to the receiving device at a bandwidth frequency of the transmitting device
  • the channel information receiving unit includes:
  • the configuration unit includes:
  • a second frequency dividing subunit configured to divide each frequency region of the bandwidth frequency according to a comparison result fed back by the receiving device received by the second channel information receiving subunit.
  • another receiving device comprising:
  • a pilot signal receiving unit configured to receive a pilot signal transmitted by the transmitting device
  • a feedback unit configured to measure, by using the pilot signal received by the receiving unit, channel information of a channel for transmitting the pilot signal to the transmitting device, so that the transmitting device is configured according to the channel information
  • the bandwidth of the transmitting device is divided.
  • the pilot signal receiving unit includes:
  • a first pilot signal receiving subunit configured to receive a pilot signal transmitted by the transmitting device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the feedback unit includes:
  • a CQI measurement subunit configured to measure a CQI value corresponding to each frequency resource group of each of the frequency regions of the transmitting device, where each frequency resource group carries a pilot signal by using a different number of subcarriers;
  • a CQI feedback subunit configured to feed back, to the transmitting device, a CQI value corresponding to the respective frequency resource group measured by the CQI measurement subunit, so that the transmitting device sends a CQI corresponding to the respective frequency resource group
  • the maximum CQI value is obtained from the value, and the frequency region is divided according to the number of subcarriers corresponding to the maximum CQI value.
  • the pilot signal receiving unit includes:
  • a second pilot signal receiving subunit configured to receive a broadband pilot signal transmitted by the transmitting device on the bandwidth frequency
  • the feedback unit includes:
  • a signal decomposing sub-unit configured to decompose the broadband pilot signal received by the second pilot signal receiving sub-unit according to a frequency interval on the bandwidth frequency to obtain a sub-pilot signal in a frequency domain Wherein each sub-pilot signal corresponds to a frequency region on the bandwidth frequency;
  • a CSI measurement subunit configured to measure a CSI value of a sub-pilot signal corresponding to each frequency region decomposed by the signal decomposing sub-unit;
  • a result feedback unit configured to compare a CSI value of the sub-pilot signal corresponding to each frequency region measured by the csi measurement sub-unit with a range of domain values, and feed back a comparison result to the transmitting device, so that the hair
  • the shooting device divides each frequency region according to the comparison result.
  • a communication system including: a transmitting device and a receiving device,
  • the transmitting device is configured to transmit a pilot signal to the receiving device
  • the receiving device is configured to feed back channel information of a channel for transmitting the pilot signal to the transmitting device by measuring the pilot signal;
  • the transmitting device is further configured to divide a bandwidth frequency of the transmitting device according to the channel information.
  • the channel information In one possible implementation:
  • the transmitting device is specifically configured to transmit a pilot signal to the receiving device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the receiving device is specifically configured to measure a CQI value corresponding to each frequency resource group of each of the frequency regions of the transmitting device, where each frequency resource group carries a pilot signal by using a different number of subcarriers, and the respective frequencies are The CQI value corresponding to the resource group is fed back to the transmitting device, so that the transmitting device obtains a maximum CQI value from the CQI values corresponding to the respective frequency resource groups, and performs subcarriers corresponding to the maximum CQI value. Number dividing the frequency region;
  • the transmitting device is further configured to obtain a maximum value from CQI values corresponding to the respective frequency resource groups.
  • the CQI value is divided into the frequency regions according to the number of subcarriers corresponding to the maximum CQI value.
  • the transmitting device is specifically configured to transmit a broadband pilot signal to the receiving device on the bandwidth frequency, where the receiving device is configured to perform the broadband pilot signal on the bandwidth frequency according to a frequency interval. Decomposing, obtaining a set of sub-pilot signals in a frequency domain, each sub-pilot signal corresponding to a frequency region on the bandwidth frequency, measuring a CSI value of a sub-pilot signal corresponding to each frequency region, and each frequency Comparing the CSI value of the sub-pilot signal corresponding to the region with the domain value range, and feeding back the comparison result to the transmitting device;
  • the transmitting device is further configured to divide each frequency region of the bandwidth frequency according to a comparison result fed back by the receiving device.
  • a transmitting device comprising:
  • a wireless transmitter configured to transmit a pilot signal to a receiving device
  • a processor configured to: after receiving, by the receiving device, channel information of a channel for transmitting the pilot signal, and dividing, according to the channel information, a bandwidth frequency of the transmitting device, where the channel information is Information obtained by the receiving device after measuring the pilot signal.
  • the wireless transmitter is specifically configured to transmit a guide to the receiving device on each of the pre-divided frequency regions Frequency signal, all frequency regions constitute the bandwidth frequency of the transmitting device;
  • the processor is specifically configured to receive a set of CQI values of each frequency region fed back by the receiving device, a CQI value corresponding to each frequency resource group on each frequency region, and the respective frequency resource grouping,
  • the maximum CQI value is obtained from a set of CQI values corresponding to the respective frequency resource groups, and the frequency region is divided according to the number of subcarriers corresponding to the maximum CQI value.
  • the wireless transmitter is specifically configured to transmit a broadband pilot signal to the receiving device on the bandwidth frequency
  • the processor is specifically configured to receive, by the receiving device, a csi value of a sub-pilot signal corresponding to each frequency region, and compare a csi value of the sub-pilot signal corresponding to each frequency region with a domain value range. After the comparison result fed back to the transmitting device, the sub-pilot signal corresponding to each frequency region is obtained by the receiving device after the broadband pilot signal is decomposed according to the frequency interval at the bandwidth frequency. a sub-pilot signal corresponding to each of the following frequency regions, each sub-pilot signal corresponding to a frequency region on the bandwidth frequency, and each frequency region of the bandwidth frequency is divided according to a comparison result fed back by the receiving device .
  • a receiving device comprising:
  • a wireless receiver configured to receive a pilot signal transmitted by a transmitting device
  • a processor configured to feed back, by the transmitting device, channel information of a channel for transmitting the pilot signal by using the pilot signal, so that the transmitting device is configured to the transmitting device according to the channel information Bandwidth frequency is divided.
  • the wireless receiver is specifically configured to receive a pilot signal transmitted by the transmitting device on each of the pre-divided frequency regions, and all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the processor is specifically configured to measure a CQI value corresponding to each frequency resource group of each of the frequency regions of the transmitting device, where each frequency resource group carries a pilot signal by using a different number of subcarriers, and the respective frequencies are The CQI value corresponding to the resource group is fed back to the transmitting device, so that the transmitting device obtains a maximum CQI value from the CQI values corresponding to the respective frequency resource groups, and performs subcarriers corresponding to the maximum CQI value.
  • the number divides the frequency region.
  • the wireless receiver is specifically configured to receive a broadband pilot signal transmitted by the transmitting device on the bandwidth frequency
  • the processor is specifically configured to perform the broadband pilot signal on the bandwidth frequency according to a frequency interval Decomposing, obtaining a set of sub-pilot signals in a frequency domain, wherein each sub-pilot signal corresponds to a frequency region on the bandwidth frequency, and measuring channel state information CSI values of sub-pilot signals corresponding to each frequency region, Comparing the CSI value of the sub-pilot signal corresponding to each frequency region with the domain value range, and feeding back the comparison result to the transmitting device, so that the transmitting device divides each frequency region according to the comparison result.
  • the transmitting device transmits a pilot signal to the receiving device, and the receiving device feeds back the channel information of the channel for transmitting the pilot signal to the transmitting device by measuring the pilot signal, and the transmitting device divides the bandwidth frequency according to the channel information.
  • the receiving device can feed back the channel information to the transmitting device according to the received pilot signal, so that the transmitting device can divide the bandwidth frequency according to the channel quality, and the frequency domain resource of each subcarrier can be received according to the
  • the channel information fed back by the device is adaptively adjusted, thereby improving the frequency efficiency of the system and ensuring the performance of the communication system.
  • 1A is a schematic diagram of a frequency domain of a subcarrier in the prior art
  • 1B is a schematic diagram of a frequency domain of a group of subcarriers in the prior art
  • FIG. 2A is a flowchart of an embodiment of an adaptive frequency domain resource configuration method according to the present invention:
  • FIG. 2B is a schematic diagram of a frequency resource group division according to an embodiment of the present invention:
  • FIG. 3 is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention.
  • FIG. 4 is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention.
  • FIG. 5 is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention.
  • FIG. 6A is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention.
  • FIG. 6B is a schematic diagram of a pilot signal decomposition and corresponding frequency region in which an embodiment of the present invention is applied;
  • FIG. 7 is a block diagram of an embodiment of a communication system according to the present invention.
  • Figure 8 is a block diagram of an embodiment of a transmitting device of the present invention.
  • Figure 9 is a block diagram of another embodiment of a transmitting device of the present invention.
  • Figure 10 is a block diagram of another embodiment of a transmitting device of the present invention.
  • Figure 11 is a block diagram of another embodiment of a transmitting device of the present invention.
  • Figure 12 is a block diagram of an embodiment of a receiving device of the present invention
  • Figure 13 is a block diagram of another embodiment of a receiving device of the present invention
  • Figure 14 is a block diagram of another embodiment of a receiving device of the present invention.
  • Figure 15 is a block diagram of another embodiment of a receiving device of the present invention.
  • 16A is a schematic diagram of a communication system architecture of an embodiment of an adaptive frequency domain resource configuration method to which the present invention is applied;
  • 16B is a schematic diagram of signal flow in the communication system of FIG. 16A;
  • FIG. 16C is a schematic diagram of configuring different frequency domain resources for subcarriers according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION The following embodiments of the present invention provide an adaptive frequency domain resource configuration method, apparatus, and communication system.
  • the receiving device measures the received pilot signal, and feeds the measured channel information to the transmitting device, so that the transmitting device adaptively divides the frequency domain resource according to the channel information, compared with the prior art.
  • a fixed frequency domain resource is no longer allocated for each subcarrier; since the receiving device can adaptively configure the frequency domain resources of the subcarrier according to the channel information fed back by the transmitting device to maximize the spectrum utilization rate on each subcarrier,
  • the existing configuration of each subcarrier is fixed in the frequency domain resource, which can effectively improve the spectrum efficiency of the communication system.
  • the transmitting device may be disposed on the terminal side, and the receiving device may be disposed on the base station side.
  • the transmitting device may be disposed on the base station side, and the receiving device may be disposed in the Terminal side.
  • the communication system in the embodiment of the present invention does not allocate a frequency domain resource for each subcarrier.
  • a frequency domain resource with a different size may be allocated for each subcarrier, that is, the frequency domain resource may be unequally divided.
  • the reciprocal relationship between the domain resource and the time domain resource, and correspondingly, the unequal division can also be performed on the time domain resource.
  • the subcarriers can be applied to the frequency domain resources and the time domain resources with different resolutions, wherein the time-frequency resources allocated to each subcarrier are increased when the resolution of the resource in the frequency domain is increased.
  • the resolution of the resource in the time domain is reduced; conversely, when the resolution of the resource in the frequency domain is reduced, the resolution of the resource in the time domain is correspondingly increased.
  • 2A is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention.
  • the embodiment describes a frequency domain resource configuration process from a transmitting device side in a communication system:
  • Step 201 The transmitting device transmits a pilot signal to the receiving device.
  • the transmitting device can transmit the pilot signal in the following two ways:
  • the transmitting device transmits a pilot signal to the receiving device on each of the pre-divided frequency regions, and all of the frequency regions constitute the bandwidth frequency of the transmitting device.
  • the transmitting device may transmit N sets of pilot signals in N frequency resource packets on each frequency region, N being a natural number.
  • the N frequency resource groupings are packets obtained by the transmitting device according to different number of subcarriers for each frequency region, and the subcarriers in each of the frequency resource groups are used to carry a group of pilot signals, where each The number of subcarriers in each frequency resource group may be the same as the number of pilot signals in each group, and each subcarrier carries one pilot signal.
  • FIG. 2B a schematic diagram of dividing a frequency resource group into the above embodiment is applied:
  • FIG. 2B is described by taking each frequency region into two frequency resource groups as an example.
  • the entire bandwidth is divided into four frequency regions, which are frequency region 1, frequency region 2, frequency region 3, and frequency region 4.
  • the frequency region 2 is divided into two frequency resource groups according to different number of subcarriers, wherein the first frequency resource group is a frequency resource group 21 including the entire frequency region 2, and the frequency resource is The packet 21 corresponds to transmitting one subcarrier, and the second frequency resource packet is to divide the frequency region 2 into frequency resource packets 22 comprising two sub-regions, the frequency resource packet 22 corresponding to transmitting two subcarriers.
  • the frequency region 2 is still taken as an example, and the transmitting device transmits two sets of pilot signals on the frequency region 2, wherein the first group of pilot signals corresponds to the frequency resource group 21, and one sub- The carrier carries one pilot signal, and the second group of pilot signals corresponds to the frequency resource group 22, and two pilot signals are carried by the two subcarriers.
  • the transmitting device transmits, on each frequency region, a set of pilot signals by using subcarriers included in the first frequency resource group, the first frequency resource group being the transmitting
  • the N frequency resource packets obtained by dividing the device according to the number of different subcarriers in each frequency region include one frequency resource group with the largest number of subcarriers.
  • the number of pilot signals may be consistent with the number of subcarriers in the first frequency resource group.
  • the frequency region of the transmitting device when the frequency region of the transmitting device is divided into frequency resource groups according to FIG. 2B, the frequency region 2 is still taken as an example, and the frequency region 2 is divided into two frequency resource groups, wherein the frequency resource grouping is divided into two. 22 corresponds to two subcarriers, and frequency resource packet 21 corresponds to one subcarrier, and thus frequency resource packet 22 is the first frequency resource packet in frequency region 2.
  • the transmitting device transmits a broadband pilot signal to the receiving device on the bandwidth frequency.
  • the entire bandwidth frequency is divided into frequency regions, and each frequency region may be further divided into different frequency resource packets, each frequency resource packet carrying a pilot signal through a different number of subcarriers, and second
  • the broadband pilot signal may be a pilot signal that is transmitted through one subcarrier occupying the entire bandwidth frequency.
  • Step 202 The transmitting device receives channel information of a channel of the transmission pilot signal fed back by the receiving device, where the channel information is information obtained by the receiving device measuring the pilot signal.
  • the transmitting device When the transmitting device transmits the pilot signal in the first manner in step 201, the transmitting device receives a set of channel qualifier indicator (CQI) values for each frequency region fed back by the receiving device, each of the A set of CQI values of the frequency region are used by the receiving device to measure CQI values corresponding to respective frequency resource groups of the transmitting device on each frequency region, and the respective frequency resource packets carry pilot signals by different numbers of subcarriers;
  • CQI channel qualifier indicator
  • the transmitting device When the transmitting device transmits the pilot signal in the second manner in step 201, the transmitting device receives the channel state information (CSI) value of the sub-pilot signal corresponding to the receiving device in measuring each frequency region. And comparing the CSI value of the sub-pilot signal corresponding to each frequency region with the domain value range, and then feeding back a comparison result to the transmitting device, where the sub-pilot signal corresponding to each frequency region is a receiving device After the broadband pilot signal is decomposed according to the frequency interval on the bandwidth frequency, the obtained sub-pilot signal corresponding to each frequency region is obtained.
  • CSI channel state information
  • Step 203 The transmitting device divides the bandwidth frequency of the transmitting device according to the channel information.
  • the maximum CQI value is obtained from a group of CQI values corresponding to the respective frequency resource groups; and the number of subcarriers corresponding to the maximum CQI value is obtained. Each of the frequency regions is divided.
  • each frequency region of the bandwidth frequency is divided according to the comparison result fed back by the receiving device.
  • the receiving device can feed back the channel information to the transmitting device according to the received pilot signal, so that the transmitting device can divide the bandwidth frequency according to the channel quality, and the frequency domain resource of each subcarrier can be received according to the
  • the channel information fed back by the device is adaptively adjusted, thereby improving the frequency efficiency of the system and ensuring the performance of the communication system.
  • FIG. 3 it is a flowchart of an embodiment of an adaptive frequency domain resource configuration method according to the present invention.
  • the embodiment describes a frequency domain resource configuration process from a receiving device side in a communication system: Step 301: The receiving device receives the pilot signal transmitted by the transmitting device.
  • the pilot signal transmitted by the transmitting device is a signal for measuring channel information before transmitting the data signal.
  • the receiving device may receive the pilot signal transmitted by the transmitting device in the following two manners: In the first manner, the receiving transmitting device transmits a pilot signal on each of the pre-divided frequency regions, and all the frequency regions are composed. The bandwidth frequency of the transmitting device.
  • the receiving device receives a wideband pilot signal transmitted by the transmitting device over the bandwidth of the transmitting device.
  • Step 302 Feed the channel information of the channel of the pilot signal to the transmitting device by measuring the pilot signal, so that the transmitting device divides the bandwidth frequency of the transmitting device according to the channel information.
  • the receiving device may measure CQI values corresponding to the respective frequency resource groups on each frequency region, and the respective frequency resource packets carry pilot signals through different numbers of subcarriers. Transmitting, to the transmitting device, a CQI value corresponding to each frequency resource group, to enable the transmitting device to obtain a maximum CQI value from the set of CQI values, and according to the subcarrier corresponding to the maximum CQI value.
  • the quantity divides the frequency area, and each divided sub-area corresponds to one sub-carrier.
  • the broadband pilot signal is decomposed according to the frequency interval on the bandwidth frequency to obtain a set of sub-pilot signals in the frequency domain, each sub-pilot.
  • the signal corresponds to a frequency region on the bandwidth frequency; the CSI value of the sub-pilot signal corresponding to each frequency region is measured; and the CSI value of the sub-pilot signal corresponding to each frequency region is compared with the domain value range,
  • the transmitting device feeds back the comparison result so that the transmitting device divides each frequency region according to the comparison result.
  • the transmitting device may divide the bandwidth frequency according to the channel information, so that the transmitting device may configure different frequency domain resources for the corresponding subcarrier according to channel information of different channels.
  • the bearer is allocated according to the foregoing subcarriers allocated with different frequency domain resources to maximize the spectrum efficiency.
  • the receiving device can feed back the channel information to the transmitting device according to the received pilot signal, so that the transmitting device can divide the bandwidth frequency according to the channel quality, because the size of each frequency domain resource is divided.
  • the frequency domain resources of each subcarrier can be adaptively adjusted according to the channel information fed back by the receiving device, thereby improving the frequency efficiency of the system and ensuring the performance of the communication system.
  • FIG. 4 it is a flowchart of another embodiment of a method for configuring an adaptive frequency domain resource according to the present invention.
  • Step 401 The transmitting device correspondingly transmits N sets of pilot signals to the receiving device according to the N frequency resource groups on each frequency region, where N is a natural number.
  • the N frequency resource groupings are packets obtained by the transmitting device for dividing each frequency region according to different numbers of subcarriers, and the subcarriers in each of the frequency resource groups are used to carry a group of pilot signals, where each The number of subcarriers in each frequency resource group may be the same as the number of pilot signals in each group, in which case each subcarrier carries one pilot signal.
  • FIG. 2B a schematic diagram of dividing a frequency resource group according to the embodiment is applied:
  • FIG. 2B is described by taking each frequency region into two frequency resource groups as an example.
  • the entire bandwidth is divided into four frequency regions, which are frequency region 1, frequency region 2, frequency region 3, and frequency region 4.
  • the frequency region 2 is divided into two frequency resource groups according to a pilot configuration, wherein one frequency resource group is a frequency resource group 21 including the entire frequency region 2, and the frequency resource group 21 corresponds to To transmit one subcarrier, the other frequency resource packet is a frequency resource packet 22 that divides the frequency region 2 into two sub-regions, the frequency resource packet 22 corresponding to transmitting two subcarriers.
  • the frequency region 2 is still taken as an example, and the transmitting device transmits two sets of pilot signals on the frequency region 2, wherein the first group of pilot signals corresponds to the frequency resource group 21, and one sub- The carrier carries one pilot signal, and the second group of pilot signals corresponds to the frequency resource group 22, and two pilot signals are carried by the two subcarriers.
  • Step 402 The receiving device separately measures N sets of pilot signals on each frequency region to obtain N CQI values of each frequency region.
  • the receiving device For each frequency region, the receiving device will receive N sets of pilot signals. The description will be made by taking the frequency region 2 of Fig. 2B as an example.
  • the receiving device will receive two sets of pilot signals, wherein the CQI measurement is performed on the first group of pilot signals to obtain a CQI value when a pilot signal is carried by one subcarrier in the frequency region 2, and the CQI value is called the first CQI value, performing CQI measurement on two pilot signals in the second group of pilot signals respectively, obtaining two CQI values, and further obtaining CQI values when two pilot signals are carried by two subcarriers in frequency region 2
  • the CQI value is referred to as a second CQI value, where the second CQI value may be a sum of two CQI values obtained after performing CQI measurement on the two pilot signals in the second group of pilot signals, respectively.
  • Step 403 The receiving device feeds back N CQI values of each frequency region to the transmitting device.
  • the receiving device feeds back the first CQI value corresponding to the measured frequency resource packet 21 and the second CQI value corresponding to the frequency resource packet 22 as a set of CQI values of the frequency region 2 to Launcher. Further, the receiving device may also press the first CQI value and the second CQI value first. The sorting is performed in descending order, and then the first CQI value and the second CQI value sorted in descending order are fed back to the transmitting device.
  • Step 404 The transmitting device obtains a maximum CQI value from a set of CQI values, and divides each frequency region according to the number of subcarriers corresponding to the maximum CQI value.
  • the transmitting device After receiving a set of CQI values of the frequency region 2, the transmitting device obtains the largest CQI value of the first CQI value and the second CQI value, and divides the second frequency region according to the number of carriers corresponding to the maximum CQI value.
  • the transmitting device divides the frequency region 2 according to the number of subcarriers of the frequency resource group 22 when the digital signal is subsequently transmitted, that is, divides the frequency region 2 into two sub-regions, each The sub-regions correspondingly transmit one sub-carrier, that is, the frequency region 2 is allocated to the two sub-carriers of the frequency resource group 22 according to the division result, and subsequently to the frequency region 2, the transmitted data signal is carried by the two sub-carriers.
  • each frequency resource is divided into two frequency resource groups as an example for description.
  • each frequency region 2 may be divided into two or more frequency resource groups. This embodiment is not limited to this embodiment.
  • the receiving device can feedback the different CQI values of the pilot signals on each frequency region by different number of subcarriers according to the received pilot signals, so that the transmitting device can
  • the maximum CQI value of a group of CQI values corresponding to each frequency region is divided into frequency regions. Since the frequency division manner of each frequency domain region may be different, the number of subcarriers corresponding to each frequency region may also be different, that is, the entire bandwidth.
  • the frequency domain resources of each subcarrier are different in frequency, and the frequency domain resources of each subcarrier can be adaptively adjusted according to the CQI value fed back by the receiving device, thereby improving the frequency efficiency of the system and ensuring the performance of the communication system.
  • FIG. 5 it is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention. This embodiment describes another process for configuring frequency domain resources by measuring CQI values:
  • Step 501 The transmitting device transmits, on each frequency region, a set of pilot signals to the receiving device by using subcarriers included in the first frequency resource group, where the first frequency resource group is different for each frequency region by the transmitting device.
  • the N frequency resource packets obtained by dividing the number of subcarriers include one frequency resource packet with the largest number of subcarriers.
  • the number of pilot signals may be consistent with the number of subcarriers in the first frequency resource group in a group of pilot signals corresponding to the first frequency resource group.
  • the frequency region of the transmitting device is divided into frequency resource groups according to FIG. 2B
  • the frequency region 2 is still taken as an example, and the frequency region 2 is divided into two frequency resource groups, wherein the frequency The resource packet 22 corresponds to two subcarriers, and the frequency resource packet 21 corresponds to one subcarrier, and thus the frequency resource packet 22 is the first frequency resource packet in the frequency region 2.
  • each frequency region in the embodiment only needs to transmit a set of pilot signals according to the first frequency resource group, in combination with the frequency in FIG. 2B.
  • the frequency resource group 22 is used as the first frequency resource group of the frequency area 2.
  • the transmitting device only needs to transmit two pilot signals carried by the two subcarriers, thereby saving the pilot overhead of the system.
  • Step 502 The receiving device measures a CQI value of each pilot signal in a group of pilot signals corresponding to the first frequency resource group, and uses a sum of CQI values of each pilot signal as the group of pilot signals. CQI value.
  • This step is consistent with the description in the foregoing step 302.
  • the CQI value of a group of pilot signals corresponding to the first frequency resource group packet is obtained, the CQI value of each pilot signal in the group of pilot signals may be measured, and then The CQI value obtained by adding the CQI values of all the pilot signals is taken as the CQI value of the set of pilot signals.
  • Step 503 The receiving device combines a set of pilot signals corresponding to the first frequency resource group in a frequency domain, and obtains each of the N frequency resource packets except the first frequency resource group.
  • the pilot signal in the resource group is not limited to the first frequency resource group.
  • the frequency resource packet 22 is the first frequency resource packet in the frequency region 2.
  • the two pilot signals in the set of pilot signals may be combined in the frequency domain to obtain a set of pilot signals corresponding to the frequency resource group 21.
  • the pilot signal includes a pilot signal.
  • each frequency region includes more than two frequency resource packets, assuming that a total of m frequency resource packets are included, the frequency resource packets are represented by Ki, and the value of i is 1 to m, where m is The natural number, assuming that the first frequency resource group is Km, the pilot signals in each of the other frequency resource groups Ki are merged in the frequency domain by the pilot signals in the frequency resource group Ki+1 except for the first frequency resource group. get.
  • Step 504 The receiving device measures a CQI value of each group of pilot signals corresponding to each of the other frequency resource groups. After the other each frequency resource grouping is obtained, the measurement process of the CQI value of each group of pilot signals corresponding to each frequency resource group is the same as the foregoing step 402, and details are not described herein again.
  • Step 505 The receiving device feeds back a set of CQI values of each frequency region to the transmitting device.
  • the receiving device feeds back the first CQI value corresponding to the measured frequency resource group 21 and the second CQI value corresponding to the frequency resource group 22 as a set of CQI values of the frequency region 2 to Launcher. Further, the receiving device may first sort the first CQI value and the second CQI value in descending order, and then feed back the first CQI value and the second CQI value to the transmitting device according to the order.
  • Step 506 The transmitting device obtains a maximum CQI value from a set of CQI values, and divides the frequency region according to the number of subcarriers corresponding to the maximum CQI value.
  • the transmitting device After receiving a set of CQI values of the frequency region 2, the transmitting device obtains the largest CQI value of the first CQI value and the second CQI value, and divides the second frequency region according to the number of carriers corresponding to the maximum CQI value. Assuming that the second CQI value is greater than the first CQI value, the transmitting device will divide the frequency region 2 according to the frequency resource group 22 when the digital signal is subsequently transmitted, that is, the frequency region 2 is allocated to two subcarriers, and subsequently in the frequency region 2 Above, the transmitted data signal is carried by two subcarriers.
  • the receiving device can feedback the different CQI values of the pilot signals on each frequency region by different number of subcarriers according to the received pilot signals, so that the transmitting device can
  • the maximum CQI value of a group of CQI values corresponding to each frequency region is divided into frequency regions. Since the frequency division manner of each frequency domain region may be different, the number of subcarriers corresponding to each frequency region may also be different, that is, the entire bandwidth.
  • the frequency domain resources of each subcarrier are different in frequency, and the frequency domain resources of each subcarrier can be adaptively adjusted according to the CQI value fed back by the receiving device, thereby improving the frequency efficiency of the system and ensuring the performance of the communication system; In the embodiment, only one set of pilot signals is transmitted for each frequency region, so the pilot overhead of the system can be further reduced.
  • FIG. 6A it is a flowchart of another embodiment of an adaptive frequency domain resource configuration method according to the present invention. This embodiment describes a process of configuring frequency domain resources by measuring CSI values:
  • Step 601 The transmitting device transmits a broadband pilot signal to the receiving device at a bandwidth frequency of the transmitting device.
  • the transmitting device transmits a broadband pilot signal over the entire bandwidth frequency, on the transmitting device side, the pilot signals at each frequency point have the same energy, and when the broadband pilot signal is transmitted to the receiving device via the wireless channel Since the pilot signals at different frequency points undergo different multipath fading during transmission, the pilot signals received by the receiving device have different energy fading at different frequency points.
  • FIG. 6B a schematic diagram of a pilot signal decomposition and corresponding frequency region in the present embodiment is applied.
  • the left side is the entire bandwidth frequency on the transmitting device side
  • the right side is the broadband pilot signal transmitted through the wireless channel. The energy curve at frequency.
  • the receiving device can decompose the broadband pilot signal in the frequency domain according to the frequency interval.
  • each A sub-pilot signal has different energies in the frequency domain, and different energies correspond to fading characteristics on the radio channel.
  • the sub-pilot signal 1 corresponds to the frequency region 1 on the bandwidth frequency in the frequency domain
  • the sub-pilot signal 2 corresponds to the frequency region 2 on the bandwidth frequency in the frequency domain
  • the sub-pilot signal 3 corresponds to the bandwidth frequency in the frequency domain.
  • the sub-pilot signal 4 corresponds to the frequency region 4 on the bandwidth frequency in the frequency domain.
  • Step 603 The receiving device measures a CSI value of the sub-pilot signal corresponding to each frequency region.
  • the CSI value of each sub-pilot signal is measured, and the CSI value of each sub-pilot signal is obtained.
  • the CSI value of the sub-pilot signal 1 may be referred to as a first CSI value, respectively.
  • the CSI value of the sub-pilot signal 2 is referred to as a second CSI value
  • the CSI value of the sub-pilot signal 3 is referred to as a third CSI value
  • the CSI value of the sub-pilot signal 4 is referred to as a fourth CSI value.
  • Step 604 The receiving device acquires a range of domain values, and the quantized value of each domain value range corresponds to a manner of dividing the frequency region.
  • the frequency region 1 is pre-set with two domain value ranges, which are the first domain value range [0, 0.5] (including 0.5), and the second domain value range (0). 5, 1] (excluding 0.5), in order to facilitate feedback to the transmitting device, the range of domain values to which the measured CSI value belongs may be quantized to facilitate transmission of the domain value range information, for example, The quantization value of the first threshold range is set to 0, and the quantization value of the second domain value range is 1. It should be noted that the setting of the above field value range is only an exemplary description, and other frequency regions except frequency region 1 are preset. The range of the field value may be the same as that of the frequency region 1 or may be different from the frequency region 1 for the embodiment of the present invention.
  • the first domain value range corresponds to dividing the frequency region 1 into one frequency domain resource, corresponding to one subcarrier
  • the second domain value range is corresponding to dividing the frequency region 1 into two frequency domain resources. , corresponding to two subcarriers.
  • Step 605 The receiving device determines a range of domain values to which the CSI value of the sub-pilot signal corresponding to each frequency region belongs, and feeds back the quantized value of the domain value range to the transmitting device.
  • the frequency region 1 in FIG. 6B is taken as an example, and the first CSI value of the sub-pilot signal 1 corresponding to the frequency region 1 is assumed to be 0. 8.
  • the first CSI value belongs to the second domain value range.
  • the quantized value "1" of the second domain value range is fed back to the transmitting device.
  • Step 606 The transmitting device divides each frequency region according to the manner of dividing the frequency region corresponding to the quantized value.
  • the transmitting device can obtain the corresponding second domain value range according to the received quantized value "1", so that the frequency region 1 can be divided into two frequency domain resources, and then the two subcarriers are carried in the frequency region 1 by two subcarriers.
  • the data signal is transmitted. It can be seen from the above embodiment that the receiving device can feed back the CSI value of the sub-pilot signal corresponding to each frequency region to the transmitting device according to the received one broadband pilot signal, so that the transmitting device can perform the frequency region according to the CSI value.
  • the present invention also provides an embodiment of a transmitting device, a receiving device, and a communication system.
  • An embodiment of the present invention provides a communication system.
  • the communication system may include: a transmitting device.
  • the transmitting device 710 is configured to send a pilot signal to the receiving device.
  • the receiving device 720 is configured to feed back, by using the pilot signal, the channel information of the channel that transmits the pilot signal to the transmitting device 710;
  • the transmitting device 710 is further configured to divide a bandwidth frequency of the transmitting device according to the channel information.
  • the transmitting device 710 is specifically configured to transmit a pilot signal to the receiving device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the receiving device 720 is specifically configured to measure a CQI value corresponding to each frequency resource group of each of the frequency regions of the transmitting device, where each frequency resource group carries a pilot signal by using a different number of subcarriers, and each of the The CQI value corresponding to the frequency resource group is fed back to the transmitting device, so that the transmitting device obtains a maximum CQI value from the CQI values corresponding to the respective frequency resource groups, and according to the child corresponding to the maximum CQI value The number of carriers divides the frequency region;
  • the transmitting device 710 is further configured to obtain a maximum CQI value from the CQI values corresponding to the respective frequency resource groups, and divide the frequency region according to the number of subcarriers corresponding to the maximum CQI value.
  • the transmitting device 710 is specifically configured to transmit a broadband pilot signal to the receiving device on the bandwidth frequency
  • the receiving device 720 is specifically configured to: decompose the broadband pilot signal according to a frequency interval on the bandwidth frequency, to obtain a set of sub-pilot signals in a frequency domain, where each sub-pilot signal corresponds to the bandwidth frequency. Up a frequency region, measuring a CSI value of the sub-pilot signal corresponding to each frequency region, comparing a CSI value of the sub-pilot signal corresponding to each frequency region with a domain value range, and feeding back a comparison result to the transmitting device; The transmitting device 710 is further configured to divide each frequency region of the bandwidth frequency according to a comparison result fed back by the receiving device.
  • the communication system shown in the foregoing embodiment may be a communication system that performs the foregoing method embodiments.
  • the embodiment of the present invention provides a transmitting apparatus.
  • the transmitting apparatus may include: a transmitting unit 810, a channel information receiving unit 820, and a configuration unit 830.
  • the transmitting unit 810 is configured to send a pilot signal to the receiving device.
  • the channel information receiving unit 820 is configured to receive, by the receiving device, channel information of a channel for transmitting the pilot signal, where the channel information is used by the receiving device to measure a pilot signal transmitted by the transmitting unit 810. Information obtained;
  • the configuration unit 830 is configured to divide the bandwidth frequency of the transmitting device according to the channel information.
  • the transmitting apparatus may include: a transmitting unit 810, a channel information receiving unit 820, and a configuration unit 830.
  • the transmitting unit 810 includes:
  • a first transmitting subunit 911 configured to transmit a pilot signal to the receiving device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the channel information receiving unit 820 includes:
  • a first channel information receiving subunit 921 configured to receive a set of CQI values of each frequency region fed back by the receiving device, where a set of CQI values of each frequency region is used by the receiving device to measure the first transmission a CQI value corresponding to each frequency resource group of each unit in each frequency region, wherein each frequency resource group carries a pilot signal by using a different number of subcarriers;
  • Configuration unit 830 includes:
  • the CQI obtaining subunit 931 is configured to obtain a maximum CQI value from the CQI values corresponding to the respective frequency resource groups;
  • the first frequency division sub-unit 932 is configured to divide each frequency region according to the number of subcarriers corresponding to the maximum CQI value acquired by the CQI acquisition subunit.
  • the first transmitting sub-unit 911 may be specifically configured to: correspondingly transmit N sets of pilot signals according to N frequency resource groups on each frequency region, where the N frequency resource groups are the transmitting device pairs a frequency group is divided into groups according to different numbers of subcarriers, where N is a natural number, and each subcarrier in the frequency resource group carries a corresponding set of pilot signals; or, passes through each frequency region.
  • the transmitting apparatus may include: a transmitting unit 810, a channel information receiving unit 820, and a configuration unit 830.
  • the transmitting unit 810 includes:
  • a second transmitting subunit 1011 configured to transmit a broadband pilot signal to the receiving device on a bandwidth frequency of the transmitting device
  • the channel information receiving unit 820 includes:
  • the second channel information receiving subunit 1021 is configured to receive, by the receiving device, a CSI value of a sub-pilot signal corresponding to each frequency region, and a CSI value and a domain value of the sub-pilot signal corresponding to each frequency region. After comparing the ranges, the comparison result fed back to the transmitting device, the sub-pilot signal corresponding to each frequency region is a broadband pilot signal that the receiving device transmits the second transmitting sub-unit at the bandwidth frequency. After being decomposed according to the frequency interval, the obtained sub-pilot signals corresponding to each of the decomposed frequency regions are obtained, and each sub-pilot signal corresponds to a frequency region on the bandwidth frequency;
  • Configuration unit 830 includes:
  • the second frequency dividing subunit 1031 is configured to divide each frequency region of the bandwidth frequency according to a comparison result fed back by the receiving device received by the second channel information receiving subunit.
  • the comparison result fed back by the receiving device received by the second channel information receiving subunit 1021 is specifically a domain value range quantization value, and the domain value range quantization value is a sub-guide that the receiving device determines each frequency region. a quantized value fed back to the transmitting device after the range of domain values to which the CSI value of the frequency signal belongs;
  • the second frequency division sub-unit 1031 is specifically configured to divide the frequency area according to a division manner of a frequency region corresponding to the quantized value of the received domain value range.
  • the transmitting device may include: Transmitter 1110 and processor 1120.
  • a wireless transmitter 1110 configured to transmit a pilot signal to the receiving device
  • the processor 1120 is configured to: after receiving channel information of a channel for transmitting the pilot signal fed back by the receiving device, and dividing, according to the channel information, a bandwidth frequency of the transmitting device, where the channel information is The information obtained by the receiving device after measuring the pilot signal.
  • the wireless transmitter 1110 is specifically configured to transmit a pilot signal to the receiving device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the processor 1120 is specifically configured to receive a set of CQI values of each frequency region fed back by the receiving device, a CQI value corresponding to each frequency resource group on each frequency region, and each frequency resource group, Obtaining a maximum CQI value from a set of CQI values corresponding to the respective frequency resource groups, and dividing the frequency region according to the number of subcarriers corresponding to the maximum CQI value.
  • the wireless transmitter 1110 is specifically configured to transmit a broadband pilot signal to the receiving device on the bandwidth frequency
  • the processor 1120 is specifically configured to receive, by the receiving device, a CSI value of a sub-pilot signal corresponding to each frequency region, and perform a CSI value and a domain value range of the sub-pilot signal corresponding to each frequency region. After comparing, the comparison result fed back to the transmitting device, the sub-pilot signal corresponding to each frequency region is obtained by the receiving device after the broadband pilot signal is decomposed according to the frequency interval on the bandwidth frequency. a sub-pilot signal corresponding to each frequency region after the decomposition, each sub-pilot signal corresponding to a frequency region on the bandwidth frequency, and performing, for each frequency region of the bandwidth frequency, according to a comparison result fed back by the receiving device Division.
  • the embodiment of the present invention provides a receiving apparatus.
  • the receiving apparatus may include: a pilot signal receiving unit 1210 and a feedback unit 1220.
  • the pilot signal receiving unit 1210 is configured to receive a pilot signal transmitted by the transmitting device.
  • the feedback unit 1220 is configured to: by measuring the pilot signal received by the pilot signal receiving unit 1210, feed back channel information of a channel of the pilot signal to the transmitting device, so that the transmitting device Dividing the bandwidth frequency of the transmitting device according to the channel information.
  • An embodiment of the present invention provides another receiving apparatus. Referring to FIG. 13, the receiving apparatus may include: a pilot signal receiving unit 1210 and a feedback unit 1220.
  • the pilot signal receiving unit 1210 includes:
  • a first pilot signal receiving sub-unit 1311 configured to receive a pilot signal transmitted by the transmitting device on each of the pre-divided frequency regions, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the feedback unit 1220 includes:
  • the CQI measurement sub-unit 1321 is configured to measure a CQI value corresponding to each frequency resource group of the transmitting device on each frequency region, where each frequency resource group carries a pilot signal by using a different number of subcarriers;
  • the CQI feedback sub-unit 1322 is configured to feed back, to the transmitting device, a CQI value corresponding to the respective frequency resource groups measured by the CQI measurement sub-unit, so that the transmitting device is corresponding to the respective frequency resource group
  • the CQI value is obtained from the CQI value, and the frequency region is divided according to the number of subcarriers corresponding to the maximum CQI value.
  • the first pilot signal receiving sub-unit 1311 is specifically configured to receive, by the transmitting device, N sets of pilot signals correspondingly transmitted according to the N frequency resource groups on each frequency region, where the N frequency resource groups are the a packet obtained by dividing a frequency domain by a number of subcarriers, wherein the N is a natural number, and each of the frequency resource packets carries a group of pilot signals corresponding to the subcarriers;
  • the CQI measurement sub-unit 1321 is specifically configured to separately measure the N sets of pilot signals on each frequency region received by the first pilot signal receiving sub-unit 1311 to obtain N CQIs for each frequency region.
  • the CQI feedback sub-unit 1322 is specifically configured to sort CQI values in a set of CQI values measured by the CQI measurement sub-unit in descending order, and in descending order. A sorted set of CQI values is fed back to the transmitting device.
  • the first pilot signal receiving sub-unit 1311 is specifically configured to receive, by each of the frequency regions, a set of pilot signals transmitted by using subcarriers included in the first frequency resource group, the first frequency resource. And grouping, by the transmitting device, the N frequency resource groups obtained by dividing each frequency region according to the number of different subcarriers, and including one frequency resource group with the largest number of subcarriers;
  • the CQI measurement sub-unit 1321 is configured to measure a CQI value of each pilot signal in a group of pilot signals corresponding to the first frequency resource group, and a sum of CQI values of each pilot signal. As the group The CQI value of the pilot signal is obtained by combining the pilot signals in the set of pilot signals in the frequency domain to obtain each of the N frequency resource packets except for the first frequency resource group.
  • each set of pilot signals corresponding to the frequency resource group is used as a set of CQI values of each frequency region;
  • the CQI feedback sub-unit 1322 is specifically configured to sort CQI values in a set of CQI values measured by the CQI measurement sub-unit 1321 in descending order, and sort them in descending order. A set of CQI values is fed back to the transmitting device.
  • Another embodiment of the present invention provides a receiving device. Referring to FIG. 14, the receiving device may include: a pilot signal receiving unit 1210 and a feedback unit 1220.
  • the pilot signal receiving unit 1210 includes:
  • a second pilot signal receiving subunit 1411 configured to receive a broadband pilot signal transmitted by the transmitting device on the bandwidth frequency
  • the feedback unit 1220 includes:
  • the signal decomposing sub-unit 1421 is configured to decompose the broadband pilot signal received by the second pilot signal receiving sub-unit 1411 according to a frequency interval on the bandwidth frequency to obtain a set of sub-guides in the frequency domain. a frequency signal, each sub-pilot signal corresponding to a frequency region on the bandwidth frequency;
  • the CSI measurement sub-unit 1422 is configured to measure a csi value of the sub-pilot signal corresponding to each frequency region decomposed by the signal decomposing sub-unit;
  • a result feedback sub-unit 1423 configured to compare a CSI value of a sub-pilot signal corresponding to each frequency region measured by the CSI measurement sub-unit with a domain value range, and feed back a comparison result to the transmitting device, so as to The transmitting device divides each frequency region according to the comparison result.
  • the result feedback sub-unit 1423 is configured to obtain a preset range of domain values, where the quantized value of each of the domain value ranges corresponds to a frequency domain division manner, and the sub-pilot signals corresponding to each frequency region are determined.
  • a range of domain values to which the CSI value belongs, and the quantized value of the range of domain values is fed back to the transmitting device, so that the transmitting device divides the frequency region according to a dividing manner corresponding to the quantized value.
  • the receiving device may include: a wireless receiver 1510 and a processor 1520.
  • the radio receiver 1510 is configured to receive a pilot signal transmitted by the transmitting device, and the processor 1520 is configured to feed back, by using the pilot signal, the channel of the channel that transmits the pilot signal to the transmitting device. Information for causing the transmitting device to divide the bandwidth frequency of the transmitting device according to the channel information.
  • the radio receiver 1510 is specifically configured to transmit, to each of the pre-divided frequency regions, a pilot signal to the receiving device, where all frequency regions constitute a bandwidth frequency of the transmitting device;
  • the processor 1520 is specifically configured to measure a CQI value corresponding to each frequency resource group of the transmitting device on each frequency region, where each frequency resource packet carries a pilot signal by using a different number of subcarriers, and each of the The CQI value corresponding to the frequency resource group is fed back to the transmitting device, so that the transmitting device obtains a maximum CQI value from the CQI values corresponding to the respective frequency resource groups, and according to the child corresponding to the maximum CQI value The number of carriers divides the frequency region.
  • the wireless receiver 1510 is specifically configured to receive a broadband pilot signal that is transmitted by the transmitting device on the bandwidth frequency;
  • the processor 1520 is specifically configured to: decompose the broadband pilot signal according to a frequency interval on the bandwidth frequency, to obtain a set of sub-pilot signals in a frequency domain, where each sub-pilot signal corresponds to the a frequency region on the bandwidth frequency, measuring a channel state information CSI value of the sub-pilot signal corresponding to each frequency region, comparing a CSI value of the sub-pilot signal corresponding to each frequency region with a domain value range, to the The transmitting device feeds back the comparison result so that the transmitting device divides each frequency region according to the comparison result.
  • the receiving device shown in the foregoing embodiment shown in FIG. 12 to FIG. 15 may be the receiving device that performs the foregoing method embodiments, and may also be the receiving device shown in the foregoing communication system embodiment.
  • FIG. 16A a schematic diagram of a communication system architecture for applying the adaptive frequency domain resource configuration method embodiment of the present invention
  • FIG. 16B is a schematic diagram of signal flow in the communication system shown in FIG. 16A:
  • the communication system includes: a transmitting device and a receiving device, and the transmitting device and the receiving device are connected by a wireless channel.
  • the transmitting device in Fig. 16A may be the aforementioned method embodiment, and the transmitting device described in the transmitting device embodiment, and the receiving device in Fig. 16A may be the aforementioned method embodiment, and the receiving device described in the receiving device embodiment.
  • the transmitting device is the transmitting device described in connection with FIG. 11
  • the receiving device is the receiving device described in connection with FIG.
  • the wireless transmitter in the transmitting device may include a serial to parallel conversion module, a modulation mapping module, a synthesis filter module,
  • the upsampler module, the processor in the transmitting device may include a configuration module;
  • the wireless receiver in the receiving device may include a serial to parallel conversion module, a downsampler module, an analysis filter module, a signal demodulation module, and a parallel to serial conversion module,
  • the processor in the receiving device can include a feedback module.
  • the feedback module in the receiving device in order to implement the configuration of the variable frequency domain resource, is connected to the configuration module in the transmitting device, and the configuration module is connected to the synthesis filter module, wherein the feedback module and the configuration module are connected through the air interface. Communication is shown by the dashed arrow between the feedback module and the configuration module in Figure 16A.
  • the signal processing process of the transmitting device and the receiving device is combined with the 16A and FIG. 16B, and the channel information of the receiving device is fed back to the configuration module of the transmitting device through the feedback module, thereby adaptively configuring the frequency domain resources of the transmitting device.
  • the process is described:
  • the synthesis filter module After modulation, input to the synthesis filter module, which contains a set of filters that are consistent with the number of signals.
  • the signal received by the receiving device is the signal transmitted by the transmitting device.
  • the received signal is first input to the serial-to-parallel conversion module.
  • the parallel signal is input to the downsampler module, through a group
  • the parallel signal after sampling is output, after the downsampling
  • the signal of the rationality can be expressed as: -l of i.
  • the block processed signal is input to the analysis filter module. After rebuilding into a set of parallel signals, the parallel signal can be represented as
  • the transmitting device inputs to the serial-to-parallel conversion module as a set of pilot signals, and the pilot signals are processed by each module in the transmitting device, and then transmitted to the receiving device through the wireless channel, and the receiving device passes.
  • Each module processes the pilot signal, wherein the feedback module acquires the pilot signal demodulated by the signal demodulation module, and measures the pilot signal according to the description in the foregoing embodiment of the present invention, and the channel information obtained by t is transmitted through the air.
  • the interface is transmitted to the configuration module of the transmitting device, and the configuration module divides the bandwidth frequency according to the channel information fed back by the feedback module, and inputs the division result to the synthesis filter module, and then the subsequent transmission module synthesizes the filter module when transmitting the normal data signal.
  • a set of filters corresponding to different frequency resources may be selected according to the above division result, wherein each filter corresponds to one subcarrier.
  • the data signal filtered by the synthesis filter module will be modulated onto different subcarriers, and the data signals carried by different subcarriers have different frequency bandwidths.
  • FIG. 16C a schematic diagram of configuring different frequency domain resources for subcarriers in the embodiment of the present invention, where B represents a reference unit frequency bandwidth.
  • the transmitting device transmits a pilot signal to the receiving device, and the receiving device feeds back the channel information of the channel transmitting the pilot signal to the transmitting device by measuring the pilot signal, and the transmitting device divides the bandwidth frequency according to the channel information.
  • the receiving device can feed back the channel information to the transmitting device according to the received pilot signal, so that the transmitting device can divide the bandwidth frequency according to the channel quality, because the size of each frequency domain resource is divided.
  • the frequency domain resources of each subcarrier are configured with different frequency domain resources, and the frequency domain resources of each subcarrier can be adaptively adjusted according to the channel information fed back by the receiving device. Thereby, the frequency efficiency of the system can be improved and the performance of the communication system can be guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了自适应频域资源配置方法、装置及通信***,所述方法包括:接收装置接收发射装置发射的导频信号;通过对所述导频信号进行测量,向所述发射装置反馈传输所述导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装置的带宽频率进行划分。接收装置由于可以根据接收到的导频信号,向发射装置反馈信道信息,从而可以使发射装置根据信道质量对带宽频率进行划分,每个子载波的频域资源由于可以根据接收装置反馈的信道信息进行自适应调整,从而可以提高***的频率效率,保证通信***性能。

Description

自适应频域资源配置方法、 装置及通信***
技术领域 本发明涉及通信技术领域,特别涉及自适应频域资源配置方法、装置及通信***。 背景技术
正交步 ]¾分复用 (orthogonal frequency divi sion multiplexing, OFDM)属于多载 波调制技术的一种, 现有长期演进 (long term evolution, LTE)、 全球微波互联接 入 (worldwide interoperabi l ity for microwave access , WIMAX) 等通信***均米 用 OFDM技术。 在上述通信***的发射机端, 输入 M个串行信号 (M为自然数), M个 串行信号经过串并转换后,输出 M个并行信号, 该 M个并行信号经过 M个子调制器调 制后,输出由 M个子载波承载的 M个并行信号, 上述 M个子载波承载的 M个并行信号 分别配置了相同的频域资源, 并通过 M个信道进行发射。 如图 1A所示, 为现有技术 中一个子载波的频域示意图, 该子载波在频域上呈现为辛格型 (sine)频谱, 该子载波 的频域带宽为 2Af, 间隔为 Af, 对应的时域资源 T=l/Af。 由此可知, 现有技术中的 子载波具有固定的频域和时域资源。
现有通信***中, 发射机端根据***预先配置, 为每个子载波分配大小相同的频 域资源, 如图 1B所示, 为现有技术中一组子载波的频域示意图, 其中示出了五个子 载波, 由于***为每个子载波配置相同的频域资源, 因此两个相邻子载波之间具有固 定的频率带宽间隔, 如图 1B所示, 该固定的频率带宽间隔为 Af。
发明人在对现有技术的研究过程中发现, 由于发射每个子载波的信道响应不同, 每个子载波在发射过程中可能发生不同程度的频移,且每个子载波的幅度也可能有不 同程度的衰减, 当子载波之间配置固定大小的频率间隔时,特别当该固定大小的频率 间隔较小时,相邻两个子载波之间的频率带宽间隔也较小, 因此在传输过程中子载波 之间可能因为发生频移而重叠, 从而使***丧失正交性,难以使***达到最大的频谱 效率, 影响通信***性能。 发明内容 本发明实施例提供自适应频域资源配置方法、装置及通信***, 以解决现有技术 中通信***为每个子载波配置固定的频域资源, 导致***频谱效率不高, 影响通信系 统性能的问题。
为了解决上述技术问题, 本发明实施例公开了如下技术方案:
一方面, 提供一种自适应频域资源配置方法, 所述方法包括:
发射装置向接收装置发射导频信号;
所述发射装置接收所述接收装置反馈的传输所述导频信号的信道的信道信息,所 述信道信息为所述接收装置对所述导频信号进行测量后得到的信息;
所述发射装置根据所述信道信息对所述发射装置的带宽频率进行划分。
在一种可能的实现方式中:
所述发射装置向接收装置发射导频信号, 包括:
所述发射装置在预先划分的每个频率区域上向所述接收装置发射导频信号,所有 频率区域组成所述发射装置的带宽频率;
所述发射装置接收所述接收装置反馈的传输所述导频信号的信道的信道信息,包 括:
所述发射装置接收所述接收装置反馈的每个频率区域的一组信道质量指示 CQI 值,所述每个频率区域的一组 CQI值为所述接收装置测量所述发射装置在每个频率区 域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组通过不同数量子载波 承载导频信号;
所述根据所述信道信息对所述发射装置的带宽频率进行划分, 包括:
从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值;
按照所述最大的 CQI值所对应的子载波数量划分所述每个频率区域。
在另一种可能的实现方式中:
所述发射装置向接收装置发射导频信号, 包括:
所述发射装置在所述带宽频率上向所述接收装置发射宽带导频信号;
所述发射装置接收所述接收装置对所述导频信号进行测量后,反馈的传输所述导 频信号的信道的信道信息, 包括:
所述发射装置接收所述接收装置在测量每个频率区域对应的子导频信号的信道 状态信息 CSI值,并将每个频率区域对应的子导频信号的 CSI值与域值范围进行比较 后, 向所述发射装置反馈的比较结果,所述每个频率区域对应的子导频信号为接收装 置将所述宽带导频信号在所述带宽频率上按照频率间隔进行分解后,获得的分解后的 每个频率区域对应的子导频信号,每个子导频信号对应所述带宽频率上的一个频率区 域; 所述根据所述信道信息对所述发射装置的带宽频率进行划分, 包括:
根据所述接收装置反馈的比较结果对所述带宽频率的每个频率区域进行划分。 一方面, 提供另一种自适应频域资源配置方法, 所述方法包括:
接收装置接收发射装置发射的导频信号;
所述接收装置通过对所述导频信号进行测量,向所述发射装置反馈传输所述导频 信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装置的带宽 频率进行划分。
在一种可能的实现方式中:
所述接收装置接收发射装置发射的导频信号, 包括:
所述接收装置接收发射装置在预先划分的每个频率区域上发射的导频信号,所有 频率区域组成所述发射装置的带宽频率;
所述接收装置通过对所述导频信号进行测量,向所述发射装置反馈传输所述导频 信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装置的带宽 频率进行划分, 包括:
所述接收装置测量所述发射装置在每个频率区域上的各个频率资源分组对应的
CQI值, 所述各个频率资源分组通过不同数量子载波承载导频信号;
所述接收装置将所述各个频率资源分组对应的 CQI值反馈给所述发射装置,以使 所述发射装置从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值,并按照所 述最大的 CQI值所对应的子载波数量划分所述频率区域。
在另一种可能的实现方式中:
所述接收装置接收发射装置发射的导频信号, 包括:
所述接收装置接收发射装置在所述带宽频率上发射的宽带导频信号;
所述接收装置通过对所述导频信号进行测量,向所述发射装置反馈传输所述导频 信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装置的带宽 频率进行划分, 包括:
所述接收装置将所述宽带导频信号在所述带宽频率上按照频率间隔进行分解,获 得一组频域上的子导频信号,其中, 每个子导频信号对应所述带宽频率上的一个频率 区域;
所述接收装置测量每个频率区域对应的子导频信号的信道状态信息 CSI值; 所述接收装置将每个频率区域对应的子导频信号的 csi值与域值范围进行比较, 向所述发射装置反馈比较结果,以使所述发射装置根据比较结果对每个频率区域进行 划分。
另一方面, 提供一种发射装置, 所述装置包括:
发射单元, 用于向接收装置发射导频信号;
信道信息接收单元,用于接收所述接收装置反馈的传输所述导频信号的信道的信 道信息, 所述信道信息为所述接收装置对所述导频信号进行测量后得到的信息; 配置单元, 用于根据所述信道信息对发射装置的带宽频率进行划分。
在一种可能的实现方式中:
所述发射单元包括:
第一发射子单元,用于在预先划分的每个频率区域上向所述接收装置发射导频信 号, 所有频率区域组成所述发射装置的带宽频率;
所述信道信息接收单元包括:
第一信道信息接收子单元, 用于接收所述接收装置反馈的每个频率区域的一组 CQI值, 所述每个频率区域的一组 CQI值为所述接收装置测量所述第一发射单元在每 个频率区域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组通过不同数 量子载波承载导频信号;
所述配置单元包括:
CQI获取子单元, 用于从所述各个频率资源分组对应的 CQI值中获取最大的 CQI 值;
第一频率划分子单元,用于按照所述 CQI获取子单元获取到的最大的 CQI值所对 应的子载波数量划分所述每个频率区域。
在另一种可能的实现方式中:
所述发射单元包括:
第二发射子单元,用于在所述发射装置的带宽频率上向所述接收装置发射宽带导 频信号;
所述信道信息接收单元包括:
第二信道信息接收子单元,用于接收所述接收装置在测量每个频率区域对应的子 导频信号的 CSI值,并将每个频率区域对应的子导频信号的 CSI值与域值范围进行比 较后, 向所述发射装置反馈的比较结果,所述每个频率区域对应的子导频信号为接收 装置将所述第二发射子单元发射的宽带导频信号在所述带宽频率上按照频率间隔进 行分解后, 获得的分解后的每个频率区域对应的子导频信号, 每个子导频信号对应所 述带宽频率上的一个频率区域; 所述配置单元包括:
第二频率划分子单元,用于根据所述第二信道信息接收子单元接收到的所述接收 装置反馈的比较结果对所述带宽频率的每个频率区域进行划分。
另一方面, 提供另一种接收装置, 所述装置包括:
导频信号接收单元, 用于接收发射装置发射的导频信号;
反馈单元,用于通过对所述接收单元接收到的导频信号进行测量, 向所述发射装 置反馈传输所述导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对 所述发射装置的带宽频率进行划分。
在一种可能的实现方式中:
所述导频信号接收单元包括:
第一导频信号接收子单元,用于接收发射装置在预先划分的每个频率区域上发射 的导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述反馈单元包括:
CQI测量子单元, 用于测量所述发射装置在每个频率区域上的各个频率资源分组 对应的 CQI值, 所述各个频率资源分组通过不同数量子载波承载导频信号;
CQI反馈子单元, 用于将所述 CQI测量子单元所测量的所述各个频率资源分组对 应的 CQI值反馈给所述发射装置,以使所述发射装置从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值, 并按照所述最大的 CQI值所对应的子载波数量划分所述 频率区域。
在另一种可能的实现方式中:
所述导频信号接收单元包括:
第二导频信号接收子单元,用于接收发射装置在所述带宽频率上发射的宽带导频 信号;
所述反馈单元包括:
信号分解子单元,用于将所述第二导频信号接收子单元接收到的所述宽带导频信 号在所述带宽频率上按照频率间隔进行分解, 获得一组频域上的子导频信号, 其中, 每个子导频信号对应所述带宽频率上的一个频率区域;
CSI测量子单元, 用于测量所述信号分解子单元所分解的每个频率区域对应的子 导频信号的 CSI值;
结果反馈子单元,用于将所述 csi测量子单元测量得到的每个频率区域对应的子 导频信号的 CSI值与域值范围进行比较, 向所述发射装置反馈比较结果, 以使所述发 射装置根据比较结果对每个频率区域进行划分。
又一方面, 提供一种通信***, 包括: 发射装置和接收装置,
所述发射装置, 用于向接收装置发射导频信号;
所述接收装置,用于通过对所述导频信号进行测量, 向所述发射装置反馈传输所 述导频信号的信道的信道信息;
所述发射装置, 还用于根据所述信道信息对所述发射装置的带宽频率进行划分。 在一种可能的实现方式中:
所述发射装置,具体用于在预先划分的每个频率区域上向所述接收装置发射导频 信号, 所有频率区域组成所述发射装置的带宽频率;
所述接收装置,具体用于测量所述发射装置在每个频率区域上的各个频率资源分 组对应的 CQI值,所述各个频率资源分组通过不同数量子载波承载导频信号,将所述 各个频率资源分组对应的 CQI值反馈给所述发射装置,以使所述发射装置从所述各个 频率资源分组对应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对应的 子载波数量划分所述频率区域;
所述发射装置,具体还用于从所述各个频率资源分组对应的 CQI值中获取最大的
CQI值, 按照所述最大的 CQI值所对应的子载波数量划分所述频率区域。
在另一种可能的实现方式中:
所述发射装置, 具体用于在所述带宽频率上向所述接收装置发射宽带导频信号; 所述接收装置,具体用于将所述宽带导频信号在所述带宽频率上按照频率间隔进 行分解, 获得一组频域上的子导频信号, 每个子导频信号对应所述带宽频率上的一个 频率区域,测量每个频率区域对应的子导频信号的 CSI值, 并将每个频率区域对应的 子导频信号的 CSI值与域值范围进行比较, 向所述发射装置反馈比较结果;
所述发射装置,具体还用于根据所述接收装置反馈的比较结果对所述带宽频率的 每个频率区域进行划分。
再一方面, 提供一种发射装置, 所述发射装置包括:
无线发射机, 用于向接收装置发射导频信号;
处理器, 用于接收到所述接收装置反馈的传输所述导频信号的信道的信道信息 后, 并根据所述信道信息对所述发射装置的带宽频率进行划分,所述信道信息为所述 接收装置对所述导频信号进行测量后得到的信息。
在一种可能的实现方式中:
所述无线发射机,具体用于在预先划分的每个频率区域上向所述接收装置发射导 频信号, 所有频率区域组成所述发射装置的带宽频率;
所述处理器, 具体用于接收所述接收装置反馈的每个频率区域的一组 CQI值,所 述每个频率区域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组, 从所 述各个频率资源分组对应的一组 CQI值中获取最大的 CQI值, 按照所述最大的 CQI 值所对应的子载波数量划分所述频率区域。
在另一种可能的实现方式中:
所述无线发射机, 具体用于在所述带宽频率上向所述接收装置发射宽带导频信 号;
所述处理器,具体用于接收所述接收装置在测量每个频率区域对应的子导频信号 的 csi值, 并将每个频率区域对应的子导频信号的 csi值与域值范围进行比较后, 向 所述发射装置反馈的比较结果,所述每个频率区域对应的子导频信号为接收装置将所 述宽带导频信号在所述带宽频率上按照频率间隔进行分解后,获得的分解后的每个频 率区域对应的子导频信号, 每个子导频信号对应所述带宽频率上的一个频率区域,根 据所述接收装置反馈的比较结果对所述带宽频率的每个频率区域进行划分。
再一方面, 提供一种接收装置, 其特征在于, 所述接收装置包括:
无线接收机, 用于接收发射装置发射的导频信号;
处理器,用于通过对所述导频信号进行测量, 向所述发射装置反馈传输所述导频 信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装置的带宽 频率进行划分。
在一种可能的实现方式中:
所述无线接收机,具体用于接收发射装置在预先划分的每个频率区域上发射的导 频信号, 所有频率区域组成所述发射装置的带宽频率;
所述处理器,具体用于测量所述发射装置在每个频率区域上的各个频率资源分组 对应的 CQI值,所述各个频率资源分组通过不同数量子载波承载导频信号,将所述各 个频率资源分组对应的 CQI值反馈给所述发射装置,以使所述发射装置从所述各个频 率资源分组对应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对应的子 载波数量划分所述频率区域。
在另一种可能的实现方式中:
所述无线接收机, 具体用于接收发射装置在所述带宽频率上发射的宽带导频信 号;
所述处理器,具体用于将所述宽带导频信号在所述带宽频率上按照频率间隔进行 分解, 获得一组频域上的子导频信号, 其中, 每个子导频信号对应所述带宽频率上的 一个频率区域,测量每个频率区域对应的子导频信号的信道状态信息 CSI值,将每个 频率区域对应的子导频信号的 CSI值与域值范围进行比较,向所述发射装置反馈比较 结果, 以使所述发射装置根据比较结果对每个频率区域进行划分。
本发明实施例中, 发射装置向接收装置发射导频信号,接收装置通过对导频信号 进行测量, 向发射装置反馈传输导频信号的信道的信道信息, 发射装置根据信道信息 对带宽频率进行划分。 本发明实施例中, 接收装置由于可以根据接收到的导频信号, 向发射装置反馈信道信息, 从而可以使发射装置根据信道质量对带宽频率进行划分, 每个子载波的频域资源由于可以根据接收装置反馈的信道信息进行自适应调整,从而 可以提高***的频率效率, 保证通信***性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1A为现有技术中一个子载波的频域示意图;
图 1B为现有技术中一组子载波的频域示意图;
图 2A为本发明自适应频域资源配置方法的一个实施例流程图:
图 2B为应用本发明实施例的一个频率资源分组划分示意图:
图 3为本发明自适应频域资源配置方法的另一个实施例流程图;
图 4为本发明自适应频域资源配置方法的另一个实施例流程图;
图 5为本发明自适应频域资源配置方法的另一个实施例流程图;
图 6A为本发明自适应频域资源配置方法的另一个实施例流程图;
图 6B为应用本发明实施例的一个导频信号分解及对应频率区域的示意图; 图 7为本发明通信***的实施例框图;
图 8为本发明发射装置的一个实施例框图;
图 9为本发明发射装置的另一个实施例框图;
图 10为本发明发射装置的另一个实施例框图;
图 11为本发明发射装置的另一个实施例框图;
图 12为本发明接收装置的一个实施例框图; 图 13为本发明接收装置的另一个实施例框图;
图 14为本发明接收装置的另一个实施例框图;
图 15为本发明接收装置的另一个实施例框图;
图 16A 为应用本发明自适应频域资源配置方法实施例的一个通信***架构示意 图;
图 16B为图 16A中通信***内的信号流示意图;
图 16C为本发明实施例中一个为子载波配置了不同频域资源的示意图。 具体实施方式 本发明如下实施例提供了一种自适应频域资源配置方法、 装置及通信***。 本发明实施例中接收装置通过对接收到的导频信号进行测量,将测量得到的信道 信息反馈给发射装置, 以使发射装置根据信道信息自适应划分频域资源, 与现有技术 相比, 不再为每个子载波分配固定的频域资源; 由于接收装置可以根据发射装置反馈 的信道信息自适应配置子载波的频域资源, 以实现每个子载波上的频谱利用率最大 化, 因此相对于现有每个子载波的配置固定频域资源的方式,可以有效提升通信*** 的频谱效率。
进一步的, 本发明实施例中, 对于上行传输来说, 发射装置可以设置在终端侧, 接收装置可以设置在基站侧, 对于下行传输来说, 发射装置可以设置在基站侧, 接收 装置可以设置在终端侧。 另外,本发明实施例中的通信***不再为每个子载波固定分配频域资源,例如可 以为每个子载波分配大小不完全相同的频域资源, 即对频域资源进行不等划分; 根据 频域资源与时域资源之间的倒数关系,相对应的,在时域资源上,也可进行不等划分。 也就是说, 这些子载波可以作用在分辨率不同的频域资源和时域资源上, 其中, 对每 个子载波所划分的时频资源, 当增加了该资源在频域上的分辨率时, 则相应减小了该 资源在时域上的分辨率; 反之, 当减小了该资源在频域上的分辨率时, 则相应增加了 该资源在时域上的分辨率。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实 施例的上述目的、特征和优点能够更加明显易懂, 下面结合附图对本发明实施例中技 术方案作进一步详细的说明。 参见图 2A, 为本发明自适应频域资源配置方法的另一个实施例流程图, 该实施 例从通信***中的发送装置侧描述了频域资源的配置过程:
步骤 201 : 发射装置向接收装置发射导频信号。
其中, 发射装置可以通过如下两种方式发射导频信号:
第一种方式,发射装置在预先划分的每个频率区域上向所述接收装置发射导频信 号, 所有频率区域组成所述发射装置的带宽频率。
在第一种方式的一个可选实施例中,发射装置可以在每个频率区域上按照 N个频 率资源分组发射 N组导频信号, N为自然数。 其中, N个频率资源分组为发射装置对 每个频率区域按照不同数量子载波进行划分所得到的分组,每个所述频率资源分组中 的子载波用于承载一组导频信号,其中, 每个频率资源分组中的子载波的数量可以与 每一组导频信号的数量相同, 此时每个子载波承载一个导频信号。
参见图 2B, 为应用上述实施例的一个频率资源分组划分示意图:
图 2B以每个频率区域划分为两个频率资源分组为例进行描述。 图 2B中, 整个带 宽频率被划分为四个频率区域, 分别为频率区域 1、 频率区域 2、 频率区域 3和频率 区域 4。 其中以频率区域 2为例, 假设按照不同数量子载波将该频率区域 2共分为两 个频率资源分组, 其中第一个频率资源分组为包含整个频率区域 2 的频率资源分组 21, 该频率资源分组 21对应于发射一个子载波, 第二个频率资源分组为将频率区域 2划分为包含两个子区域的频率资源分组 22, 该频率资源分组 22对应于发射两个子 载波。 按照图 2B所示的频率资源分组方式, 仍然以频率区域 2为例, 发射装置在该 频率区域 2上发射两组导频信号, 其中第一组导频信号对应频率资源分组 21, 通过 一个子载波承载一个导频信号, 第二组导频信号对应频率资源分组 22, 通过两个子 载波承载两个导频信号。
在第一种方式的另一个可选实施例中,发射装置在每个频率区域上通过第一频率 资源分组中包含的子载波发射一组导频信号,该第一频率资源分组为所述发射装置对 每个频率区域按照不同子载波数量进行划分所得到的 N个频率资源分组中,包含子载 波数量最多的一个频率资源分组。 其中, 第一频率资源分组对应的一组导频信号中, 导频信号的数量可以与所述第一频率资源分组中的子载波数量一致。
结合前述对图 2B的描述可知,当发射装置的频率区域按照如图 2B划分频率资源 分组时, 仍然以频率区域 2为例, 该频率区域 2共分为两个频率资源分组, 其中频率 资源分组 22对应包含两个子载波, 而频率资源分组 21对应包含一个子载波, 因此频 率资源分组 22为频率区域 2中的第一频率资源分组。 第二种方式, 所述发射装置在所述带宽频率上向所述接收装置发射宽带导频信 号。 前面第一种方式中, 将整个带宽频率划分成了若干频率区域, 每个频率区域可以 进一步划分成不同的频率资源分组,每个频率资源分组通过不同数量子载波承载导频 信号, 而第二种方式中, 该宽带导频信号可以是占用整个带宽频率, 通过一个子载波 发射的一个导频信号。
步骤 202: 发射装置接收接收装置反馈的传输导频信号的信道的信道信息, 该信 道信息为接收装置对导频信号进行测量后得到的信息。
当步骤 201中发射装置采用第一种方式发射导频信号时,发射装置接收所述接收 装置反馈的每个频率区域的一组信道质量指示 (channel qual ity indicator, CQI ) 值,所述每个频率区域的一组 CQI值为所述接收装置测量所述发射装置在每个频率区 域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组通过不同数量子载波 承载导频信号;
当步骤 201中发射装置采用第二种方式发射导频信号时,所述发射装置接收所述 接收装置在测量每个频率区域对应的子导频信号的信道状态信息 (channel statement information, CSI )值, 并将每个频率区域对应的子导频信号的 CSI值与 域值范围进行比较后, 向所述发射装置反馈比较结果, 其中, 所述每个频率区域对应 的子导频信号为接收装置将所述宽带导频信号在所述带宽频率上按照频率间隔进行 分解后, 获得的分解后的每个频率区域对应的子导频信号。
步骤 203: 发射装置根据信道信息对发射装置的带宽频率进行划分。
当步骤 201中发射装置采用第一种方式发射导频信号时,从所述各个频率资源分 组对应的一组 CQI值中获取最大的 CQI值;按照所述最大的 CQI值所对应的子载波数 量划分所述每个频率区域。
当步骤 201中发射装置采用第二种方式发射导频信号时,根据所述接收装置反馈 的比较结果对所述带宽频率的每个频率区域进行划分。
由上述实施例可见,接收装置由于可以根据接收到的导频信号, 向发射装置反馈 信道信息, 从而可以使发射装置根据信道质量对带宽频率进行划分, 每个子载波的频 域资源由于可以根据接收装置反馈的信道信息进行自适应调整,从而可以提高***的 频率效率, 保证通信***性能。 参见图 3, 为本发明自适应频域资源配置方法的一个实施例流程图, 该实施例从 通信***中的接收装置侧描述了频域资源的配置过程: 步骤 301 : 接收装置接收发射装置发射的导频信号。
本发明实施例中, 发射装置所发射的导频信号是在发射数据信号之前,用于测量 信道信息的信号。
本实施例中, 接收装置可以接收发射装置通过如下两种方式发射的导频信号: 第一种方式,接收发射装置在预先划分的每个频率区域上发射的导频信号,所有 频率区域组成所述发射装置的带宽频率。
第二种方式,接收装置接收发射装置在该发射装置的带宽频率上发射的一个宽带 导频信号。
步骤 302: 通过对导频信号进行测量, 向发射装置反馈传输所述导频信号的信道 的信道信息, 以使发射装置根据信道信息对发射装置的带宽频率进行划分。
当步骤 301中采用第一种方式接收导频信号时,接收装置可以测量在每个频率区 域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组通过不同数量子载波 承载导频信号; 将各个频率资源分组对应的 CQI值反馈给所述发射装置, 以使所述发 射装置从所述一组 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对应的子 载波数量划分所述频率区域, 划分后的每个子区域对应一个子载波。
当步骤 301中采用第二种方式接收导频信号时,将所述宽带导频信号在所述带宽 频率上按照频率间隔进行分解, 获得一组频域上的子导频信号, 每个子导频信号对应 所述带宽频率上的一个频率区域; 测量每个频率区域对应的子导频信号的 CSI值; 将 每个频率区域对应的子导频信号的 CSI值与域值范围进行比较,向所述发射装置反馈 比较结果, 以使所述发射装置根据比较结果对每个频率区域进行划分。
当接收装置将测量得到的信道信息反馈给发射装置后,发射装置可以根据信道信 息对带宽频率进行划分,从而使得发射装置可以根据不同信道的信道信息为对应的子 载波配置不同的频域资源, 以便在发射正式数据信号时,根据前述分配了不同频域资 源的子载波进行承载, 以达到频谱效率的最大化。
由上述实施例可见,接收装置由于可以根据接收到的导频信号, 向发射装置反馈 信道信息, 从而可以使发射装置根据信道质量对带宽频率进行划分, 由于所划分的每 个频域资源的大小可以不同,每个子载波的频域资源由于可以根据接收装置反馈的信 道信息进行自适应调整, 从而可以提高***的频率效率, 保证通信***性能。 参见图 4, 为本发明自适应频域资源配置方法的另一个实施例流程图, 该实施例 描述了一种通过测量 CQI值进行频域资源配置的过程: 步骤 401 : 发射装置在每个频率区域上按照 N个频率资源分组向接收装置对应发 射 N组导频信号, N为自然数。
其中, N个频率资源分组为发射装置对每个频率区域按照不同数量子载波进行划 分所得到的分组, 每个所述频率资源分组中的子载波用于承载一组导频信号, 其中, 每个频率资源分组中的子载波的数量可以与每一组导频信号的数量相同,此时每个子 载波承载一个导频信号。
仍然参见图 2B, 为应用本实施例的一个频率资源分组划分示意图:
图 2B以每个频率区域划分为两个频率资源分组为例进行描述。 图 2B中, 整个带 宽频率被划分为四个频率区域, 分别为频率区域 1、 频率区域 2、 频率区域 3和频率 区域 4。 其中以频率区域 2为例, 假设按照导频配置将该频率区域 2共分为两个频率 资源分组, 其中一个频率资源分组为包含整个频率区域 2的频率资源分组 21, 该频 率资源分组 21对应于发射一个子载波, 另一个频率资源分组为将频率区域 2划分为 两个子区域的频率资源分组 22, 该频率资源分组 22对应于发射两个子载波。
按照图 2B所示的频率资源分组方式, 仍然以频率区域 2为例, 发射装置在该频 率区域 2上发射两组导频信号, 其中第一组导频信号对应频率资源分组 21, 通过一 个子载波承载一个导频信号, 第二组导频信号对应频率资源分组 22, 通过两个子载 波承载两个导频信号。
步骤 402: 接收装置分别测量每个频率区域上的 N组导频信号, 获得每个频率区 域的 N个 CQI值。
对应每个频率区域, 接收装置都将接收到 N组导频信号。 仍然结合图 2B的频率 区域 2为例进行描述。接收装置将接收到两组导频信号,其中对第一组导频信号进行 CQI测量,获得在频率区域 2上通过一个子载波承载一个导频信号时的 CQI值,该 CQI 值称为第一 CQI值,对第二组导频信号中的两个导频信号分别进行 CQI测量, 获得两 个 CQI值, 进一步可以获得在频率区域 2上通过两个子载波承载两个导频信号时的 CQI值, 该 CQI值称为第二 CQI值, 其中, 该第二 CQI值可以为对第二组导频信号中 的两个导频信号分别进行 CQI测量后, 所获得的两个 CQI值的和。
步骤 403: 接收装置将每个频率区域的 N个 CQI值反馈给发射装置。
在每个频率区域上,对应频率资源分组的数量,将得到与频率资源分组数量相同 的一组 CQI值。 仍然以图 2B中频率区域 2为例, 接收装置将测量得到的频率资源分 组 21对应的第一 CQI值,和频率资源分组 22对应的第二 CQI值作为频率区域 2的一 组 CQI值反馈给发射装置。进一步,接收装置也可以先对第一 CQI值和第二 CQI值按 照从大到小顺序进行排序, 然后将按照从大到小顺序排序的第一 CQI 值和第二 CQI 值反馈给发射装置。
步骤 404: 发射装置从一组 CQI值中获取最大的 CQI值, 并按照最大的 CQI值所 对应的子载波数量划分每个频率区域。
发射装置接收到频率区域 2的一组 CQI值后,获得第一 CQI值和第二 CQI值中最 大的 CQI值, 按照该最大的 CQI值所对应的载波数量划分第二频率区域。 假设第二 CQI值大于第一 CQI值, 则发射装置在后续发射数字信号时,将按照频率资源分组 22 的子载波的数量对频率区域 2进行划分, 即将频率区域 2划分为两个子区域, 每个子 区域对应发射一个子载波, 即根据划分结果将频率区域 2配置给频率资源分组 22的 两个子载波, 后续在频率区域 2上, 则通过两个子载波承载所发射的数据信号。
需要说明的是,本实施例中为了示例方便, 以每个频率资源划分为两个频率资源 分组为例进行描述, 实际应用中, 每个频率区域 2可以划分为两个以上的频率资源分 组, 对此本实施例不进行限制。
由上述实施例可见,接收装置由于可以根据接收到的导频信号, 向发射装置反馈 每个频率区域上的导频信号通过不同数量子载波进行承载时的不同 CQI值,从而可以 使发射装置根据每个频率区域对应的一组 CQI值中的最大 CQI值对频率区域进行划 分, 由于每个频域区域的划分方式可能不同, 因此每个频率区域对应的子载波数量也 可能不同, 即整个带宽频率上每个子载波配置的频域资源不同, 每个子载波的频域资 源由于可以根据接收装置反馈的 CQI值进行自适应调整,从而可以提高***的频率效 率, 保证通信***性能。 参见图 5, 为本发明自适应频域资源配置方法的另一个实施例流程图, 该实施例 描述了另一种通过测量 CQI值进行频域资源配置的过程:
步骤 501 : 发射装置在每个频率区域上通过第一频率资源分组中包含的子载波向 接收装置发射一组导频信号,该第一频率资源分组为所述发射装置对每个频率区域按 照不同子载波数量进行划分所得到的 N个频率资源分组中,包含子载波数量最多的一 个频率资源分组。
其中,第一频率资源分组对应的一组导频信号中, 导频信号的数量可以与所述第 一频率资源分组中的子载波数量一致。
结合前述对图 2B的描述可知,当发射装置的频率区域按照如图 2B划分频率资源 分组时, 仍然以频率区域 2为例, 该频率区域 2共分为两个频率资源分组, 其中频率 资源分组 22对应包含两个子载波, 而频率资源分组 21对应包含一个子载波, 因此频 率资源分组 22为频率区域 2中的第一频率资源分组。
在本实施例与图 4所示实施例的不同在于,在发射装置侧,本实施例中每个频率 区域仅需要按照第一频率资源分组对应发射一组导频信号, 结合图 2B中的频率区域 2可知, 频率资源分组 22作为该频率区域 2的第一频率资源分组, 发射装置仅需要 发射通过两个子载波承载的两个导频信号即可, 因此节省了***的导频开销。
步骤 502: 接收装置测量所述第一频率资源分组对应的一组导频信号中, 每个导 频信号的 CQI值, 将每个导频信号的 CQI值的和作为所述一组导频信号的 CQI值。
本步骤与前述步骤 302中的描述一致,在获得第一频率资源分组对应的一组导频 信号的 CQI值时,可以测量该一组导频信号中的每个导频信号的 CQI值,然后将所有 导频信号的 CQI值相加后得到的 CQI值作为该一组导频信号的 CQI值。
步骤 503: 接收装置通过对所述第一频率资源分组对应的一组导频信号在频域上 进行合并,获得所述 N个频率资源分组中除所述第一频率资源分组的其它每个频率资 源分组中的导频信号。
仍然以图 2B中频率区域 2为例,频率资源分组 22为频率区域 2中的第一频率资 源分组。 当接收到频率资源分组 22对应的一组导频信号后, 可以对该一组导频信号 中的两个导频信号在频域上进行合并, 得到频率资源分组 21对应的一组导频信号, 该一组导频信号中包含一个导频信号。
前述仅是示例性说明, 当每个频率区域包含两个以上频率资源分组时,假设共包 含 m个频率资源分组, 则这些频率资源分组以 Ki表示, i的取值为 1至 m, m为自然 数, 假设第一频率资源分组为 Km, 则除了第一频率资源分组外, 其它每一个频率资 源分组 Ki中的导频信号都通过频率资源分组 Ki+1中的导频信号在频域上合并得到。
步骤 504:接收装置测量其它每个频率资源分组所对应的每组导频信号的 CQI值。 在获得了其它每个频率资源分组后,对每个频率资源分组对应的每组导频信号的 CQI值的测量过程与前述步骤 402—致, 在此不再赘述。
步骤 505: 接收装置将每个频率区域的一组 CQI值反馈给发射装置。
在每个频率区域上, 对应频率资源分组的数量, 将得到与该数量一致的一组 CQI 值。仍然以图 2B中频率区域 2为例,接收装置将测量得到的频率资源分组 21对应的 第一 CQI值, 和频率资源分组 22对应的第二 CQI值作为频率区域 2的一组 CQI值反 馈给发射装置。进一步,接收装置可以先对第一 CQI值和第二 CQI值按照从大到小顺 序进行排序, 然后按照排序将第一 CQI值和第二 CQI值反馈给发射装置。 步骤 506: 发射装置从一组 CQI值中获取最大的 CQI值, 并按照最大的 CQI值所 对应的子载波数量划分频率区域。
发射装置接收到频率区域 2的一组 CQI值后,获得第一 CQI值和第二 CQI值中最 大的 CQI值, 按照该最大的 CQI值所对应的载波数量划分第二频率区域。 假设第二 CQI值大于第一 CQI值, 则发射装置在后续发射数字信号时,将按照频率资源分组 22 对频率区域 2进行划分, 即将频率区域 2配置给两个子载波, 后续在该频率区域 2 上, 则通过两个子载波承载所发射的数据信号。
由上述实施例可见,接收装置由于可以根据接收到的导频信号, 向发射装置反馈 每个频率区域上的导频信号通过不同数量子载波进行承载时的不同 CQI值,从而可以 使发射装置根据每个频率区域对应的一组 CQI值中的最大 CQI值对频率区域进行划 分, 由于每个频域区域的划分方式可能不同, 因此每个频率区域对应的子载波数量也 可能不同, 即整个带宽频率上每个子载波配置的频域资源不同, 每个子载波的频域资 源由于可以根据接收装置反馈的 CQI值进行自适应调整,从而可以提高***的频率效 率, 保证通信***性能; 并且, 由于该实施例中对于每个频率区域仅发射一组导频信 号, 因此可以进一步减少***的导频开销。 参见图 6A, 为本发明自适应频域资源配置方法的另一个实施例流程图, 该实施 例描述了一种通过测量 CSI值进行频域资源配置的过程:
步骤 601 : 发射装置在该发射装置的带宽频率上向接收装置发射宽带导频信号。 步骤 602: 接收装置将宽带导频信号在该带宽频率上按照频率间隔进行分解, 获 得一组频域上的子导频信号, 每个子导频信号对应该带宽频率上的一个频率区域。
当发射装置在整个带宽频率上发射了一个宽带导频信号时,在发射装置侧, 每个 频率点上的导频信号具有相同的能量,当该宽带导频信号经过无线信道传输到接收装 置后, 由于传输过程中不同频率点上的导频信号经历不同的多径衰落, 因此接收装置 接收到的导频信号在不同频率点上具有不同的能量衰落。
参见图 6B, 为应用本实施例的一个导频信号分解及对应频率区域的示意图: 图 6B中, 左侧为发射装置侧的整个带宽频率, 右侧为经过无线信道传输后的宽 带导频信号在频率上的能量曲线。接收装置接收到宽带导频信号后,可以按照频率间 隔对宽带导频信号在频域上进行分解。
如图 6B中所示, 假设在频域上将接收到的导频信号分解为四个子导频信号, 分 别为子导频信号 1、 子导频信号 2、 子导频信号 3和子导频信号 4, 由图 6B可知, 每 一个子导频信号在频域上对应的能量不同, 不同的能量对应了无线信道上的衰落特 性。 其中, 子导频信号 1在频域上对应带宽频率上的频率区域 1, 子导频信号 2在频 域上对应带宽频率上的频率区域 2, 子导频信号 3在频域上对应带宽频率上的频率区 域 3, 子导频信号 4在频域上对应带宽频率上的频率区域 4。
步骤 603: 接收装置测量每个频率区域对应的子导频信号的 CSI值。
结合图 6B可知, 本实施例中对各个子导频信号的 CSI值测量, 得到各个子导频 信号的 CSI值, 例如, 可以分别将子导频信号 1的 CSI值称为第一 CSI值, 子导频信 号 2的 CSI值称为第二 CSI值, 子导频信号 3的 CSI值称为第三 CSI值, 子导频信号 4的 CSI值称为第四 CSI值。
步骤 604: 接收装置获取域值范围, 每个域值范围的量化值对应一种频率区域的 划分方式。
以频率区域 1为例,假设频率区域 1预先设置了两个域值范围, 分别为第一域值 范围 [0, 0. 5] (其中包括 0. 5), 以及第二域值范围 (0. 5, 1] (其中不包括 0. 5), 为 了方便向发射装置反馈测量的 CSI 值所属的域值范围, 可以将上述域值范围进行量 化, 以方便传输域值范围的信息, 例如, 设置第一阈值范围的量化值为 0, 第二域值 范围的量化值为 1。 需要说明的是, 上述域值范围的设置仅为示例性说明, 除频率区 域 1外的其它频率区域预先设置的域值范围可以与频率区域 1相同,也可以与频率区 域 1不同, 对此本发明实施例不进行限制。
上述设置的两个域值范围中,假设第一域值范围对应将频率区域 1划分为一个频 域资源, 对应一个子载波, 第二域值范围对应将频率区域 1划分为两个频域资源, 对 应两个子载波。
步骤 605: 接收装置判断每个频率区域对应的子导频信号的 CSI值所属的域值范 围, 将域值范围的量化值反馈给发射装置。
仍然以图 6B中的频率区域 1为例, 假设频率区域 1对应的子导频信号 1的第一 CSI值为 0. 8, 则该第一 CSI值属于第二域值范围, 此时接收装置将第二域值范围的 量化值 " 1 "反馈给发射装置。
步骤 606: 发射装置根据该量化值对应的频率区域的划分方式对各个频率区域进 行划分。
发射装置根据接收到的量化值 " 1 " 即可得到对应的第二域值范围, 因此可以执 行将频率区域 1划分为两个频域资源,后续在频率区域 1上通过两个子载波承载两个 数据信号进行发射。 由上述实施例可见,接收装置由于可以根据接收到的一个宽带导频信号, 向发射 装置反馈每个频率区域对应的子导频信号的 CSI 值, 从而可以使发射装置根据 CSI 值对频率区域进行划分, 由于每个频域区域的划分方式不同,相应的每个频率区域上 的子载波数量不同, 即整个带宽频率上每个子载波配置的频域资源不同, 每个子载波 的频域资源由于可以根据 CSI值进行自适应调整, 从而可以提高***的频率效率,保 证通信***性能。 与本发明自适应频域资源配置方法的实施例相对应, 本发明还提供了发射装置、 接收装置及通信***的实施例。
本发明实施例提供了一种通信***, 参见图 7, 该通信***可以包括: 发射装置
710和接收装置 720。
其中, 所述发射装置 710, 用于向接收装置发射导频信号;
所述接收装置 720, 用于通过对所述导频信号进行测量, 向发射装置 710反馈传 输所述导频信号的信道的信道信息;
所述发射装置 710, 进一步用于根据所述信道信息对所述发射装置的带宽频率进 行划分。
在一个具体的实施例中:
所述发射装置 710, 具体用于在预先划分的每个频率区域上向所述接收装置发射 导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述接收装置 720, 具体用于测量所述发射装置在每个频率区域上的各个频率资 源分组对应的 CQI值,所述各个频率资源分组通过不同数量子载波承载导频信号,将 所述各个频率资源分组对应的 CQI值反馈给所述发射装置,以使所述发射装置从所述 各个频率资源分组对应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对 应的子载波数量划分所述频率区域;
所述发射装置 710, 具体还用于从所述各个频率资源分组对应的 CQI值中获取最 大的 CQI值, 按照所述最大的 CQI值所对应的子载波数量划分所述频率区域。
在另一个具体的实施例中:
所述发射装置 710, 具体用于在所述带宽频率上向所述接收装置发射宽带导频信 号;
所述接收装置 720, 具体用于将所述宽带导频信号在所述带宽频率上按照频率间 隔进行分解, 获得一组频域上的子导频信号, 每个子导频信号对应所述带宽频率上的 一个频率区域,测量每个频率区域对应的子导频信号的 CSI值, 并将每个频率区域对 应的子导频信号的 CSI值与域值范围进行比较, 向所述发射装置反馈比较结果; 所述发射装置 710, 具体还用于根据所述接收装置反馈的比较结果对所述带宽频 率的每个频率区域进行划分。
上述实施例中示出的通信***可以为执行前述方法实施例的通信***,该通信系 统中发射装置和接收装置的具体执行过程可参见前述方法实施例的描述,在此不再赘 述。 本发明实施例提供了一种发射装置, 参见图 8, 该发射装置可以包括: 发射单元 810、 信道信息接收单元 820和配置单元 830。
其中, 发射单元 810, 用于向接收装置发射导频信号;
信道信息接收单元 820, 用于接收所述接收装置反馈的传输所述导频信号的信道 的信道信息,所述信道信息为所述接收装置对所述发射单元 810发射的导频信号进行 测量后得到的信息;
配置单元 830, 用于根据所述信道信息对发射装置的带宽频率进行划分。 本发明实施例提供了另一种发射装置, 参见图 9, 该发射装置可以包括: 发射单 元 810、 信道信息接收单元 820和配置单元 830。
其中, 发射单元 810包括:
第一发射子单元 911, 用于在预先划分的每个频率区域上向所述接收装置发射导 频信号, 所有频率区域组成所述发射装置的带宽频率;
信道信息接收单元 820包括:
第一信道信息接收子单元 921, 用于接收所述接收装置反馈的每个频率区域的一 组 CQI值,所述每个频率区域的一组 CQI值为所述接收装置测量所述第一发射单元在 每个频率区域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组通过不同 数量子载波承载导频信号;
配置单元 830包括:
CQI获取子单元 931, 用于从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值;
第一频率划分子单元 932, 用于按照所述 CQI获取子单元获取到的最大的 CQI值 所对应的子载波数量划分所述每个频率区域。 其中, 所述第一发射子单元 911, 可以具体用于在每个频率区域上按照 N个频率 资源分组对应发射 N组导频信号,所述 N个频率资源分组为所述发射装置对每个频率 区域按照不同数量子载波进行划分所得到的分组,所述 N为自然数, 每个所述频率资 源分组中的子载波承载所对应的一组导频信号; 或者,在每个频率区域上通过第一频 率资源分组中包含的子载波所发射的一组导频信号,所述第一频率资源分组为所述发 射装置对每个频率区域按照不同数量子载波进行划分所得到的 N个频率资源分组中, 包含子载波数量最多的一个频率资源分组。 本发明实施例提供了又一种发射装置, 参见图 10, 该发射装置可以包括: 发射 单元 810、 信道信息接收单元 820和配置单元 830。
其中, 发射单元 810包括:
第二发射子单元 1011, 用于在所述发射装置的带宽频率上向所述接收装置发射 宽带导频信号;
信道信息接收单元 820包括:
第二信道信息接收子单元 1021, 用于接收所述接收装置在测量每个频率区域对 应的子导频信号的 CSI值,并将每个频率区域对应的子导频信号的 CSI值与域值范围 进行比较后, 向所述发射装置反馈的比较结果,所述每个频率区域对应的子导频信号 为接收装置将所述第二发射子单元发射的宽带导频信号在所述带宽频率上按照频率 间隔进行分解后, 获得的分解后的每个频率区域对应的子导频信号, 每个子导频信号 对应所述带宽频率上的一个频率区域;
配置单元 830包括:
第二频率划分子单元 1031, 用于根据所述第二信道信息接收子单元接收到的所 述接收装置反馈的比较结果对所述带宽频率的每个频率区域进行划分。
在一个具体的实施例中:
所述第二信道信息接收子单元 1021接收到的所述接收装置反馈的比较结果具体 为域值范围量化值,所述域值范围量化值为所述接收装置判断每个频率区域对应的子 导频信号的 CSI值所属的域值范围后, 向所述发射装置反馈的量化值;
所述第二频率划分子单元 1031, 具体用于按照与接收到的域值范围的量化值对 应的频率区域的划分方式对所述频率区域进行划分。 本发明实施例提供了再一种发射装置, 参见图 11, 该发射装置可以包括: 无线 发射机 1110和处理器 1120。
无线发射机 1110, 用于向接收装置发射导频信号;
处理器 1120, 用于接收到所述接收装置反馈的传输所述导频信号的信道的信道 信息后, 并根据所述信道信息对所述发射装置的带宽频率进行划分,所述信道信息为 所述接收装置对所述导频信号进行测量后得到的信息。
在一个具体的实施例中:
所述无线发射机 1110, 具体用于在预先划分的每个频率区域上向所述接收装置 发射导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述处理器 1120, 具体用于接收所述接收装置反馈的每个频率区域的一组 CQI 值,所述每个频率区域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组, 从所述各个频率资源分组对应的一组 CQI值中获取最大的 CQI值, 按照所述最大的 CQI值所对应的子载波数量划分所述频率区域。
在另一个具体的实施例中:
所述无线发射机 1110, 具体用于在所述带宽频率上向所述接收装置发射宽带导 频信号;
所述处理器 1120, 具体用于接收所述接收装置在测量每个频率区域对应的子导 频信号的 CSI值,并将每个频率区域对应的子导频信号的 CSI值与域值范围进行比较 后, 向所述发射装置反馈的比较结果,所述每个频率区域对应的子导频信号为接收装 置将所述宽带导频信号在所述带宽频率上按照频率间隔进行分解后,获得的分解后的 每个频率区域对应的子导频信号,每个子导频信号对应所述带宽频率上的一个频率区 域, 根据所述接收装置反馈的比较结果对所述带宽频率的每个频率区域进行划分。 上述图 8至图 11所示实施例中示出的发射装置可以为执行前述方法实施例的发 射装置, 也可以是前述通信***实施例中示出的发射装置, 具体描述可参见前述方法 实施例和***实施例, 在此不再赘述。 本发明实施例提供了一种接收装置, 参见图 12, 该接收装置可以包括: 导频信 号接收单元 1210和反馈单元 1220。
其中, 导频信号接收单元 1210, 用于接收发射装置发射的导频信号;
反馈单元 1220, 用于通过对所述导频信号接收单元 1210接收到的导频信号进行 测量, 向所述发射装置反馈传输所述导频信号的信道的信道信息, 以使所述发射装置 根据所述信道信息对所述发射装置的带宽频率进行划分。 本发明实施例提供了另一种接收装置, 参见图 13, 该接收装置可以包括: 导频 信号接收单元 1210和反馈单元 1220。
其中, 导频信号接收单元 1210包括:
第一导频信号接收子单元 1311, 用于接收发射装置在预先划分的每个频率区域 上发射的导频信号, 所有频率区域组成所述发射装置的带宽频率;
反馈单元 1220包括:
CQI测量子单元 1321,用于测量所述发射装置在每个频率区域上的各个频率资源 分组对应的 CQI值, 所述各个频率资源分组通过不同数量子载波承载导频信号;
CQI反馈子单元 1322,用于将所述 CQI测量子单元所测量的所述各个频率资源分 组对应的 CQI值反馈给所述发射装置,以使所述发射装置从所述各个频率资源分组对 应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对应的子载波数量划分 所述频率区域。
在一个具体的实施例中,
所述第一导频信号接收子单元 1311, 具体用于接收发射装置在每个频率区域上 按照 N个频率资源分组对应发射的 N组导频信号,所述 N个频率资源分组为所述发射 装置对每个频率区域按照不同数量子载波进行划分所得到的分组, 所述 N为自然数, 每个所述频率资源分组中的子载波承载所对应的一组导频信号;
所述 CQI测量子单元 1321,具体用于分别测量所述第一导频信号接收子单元 1311 接收到的每个频率区域上的所述 N组导频信号, 获得每个频率区域的 N个 CQI值; 所述 CQI反馈子单元 1322,具体用于对所述 CQI测量子单元测量得到的一组 CQI 值中的 CQI值按照从大到小的顺序进行排序,将按照从大到小的顺序进行排序的一组 CQI值反馈给所述发射装置。
在另一个具体的实施例中:
所述第一导频信号接收子单元 1311, 具体用于接收发射装置在每个频率区域上 通过第一频率资源分组中包含的子载波所发射的一组导频信号,所述第一频率资源分 组为所述发射装置对每个频率区域按照不同子载波数量进行划分所得到的 N个频率 资源分组中, 包含子载波数量最多的一个频率资源分组;
所述 CQI测量子单元 1321, 具体用于测量所述第一频率资源分组对应的一组导 频信号中, 每个导频信号的 CQI值,将所述每个导频信号的 CQI值的和作为所述一组 导频信号的 CQI值,通过对所述一组导频信号中的导频信号在频域上进行合并, 获得 所述 N个频率资源分组中除所述第一频率资源分组的其它每个频率资源分组中的导 频信号,测量所述其它每个频率资源分组所对应的每组导频信号的 CQI值,将第一频 率资源分组对应的一组导频信号的 CQI 值和所述其它每个频率资源分组所对应的每 组导频信号的 CQI值作为每个频率区域的一组 CQI值;
所述 CQI反馈子单元 1322, 具体用于对所述 CQI测量子单元 1321测量得到的一 组 CQI值中的 CQI值按照从大到小的顺序进行排序,将按照从大到小的顺序进行排序 的一组 CQI值反馈给所述发射装置。 本发明实施例提供了又一种接收装置, 参见图 14, 该接收装置可以包括: 导频 信号接收单元 1210和反馈单元 1220。
其中, 导频信号接收单元 1210包括:
第二导频信号接收子单元 1411, 用于接收发射装置在所述带宽频率上发射的一 个宽带导频信号;
所述反馈单元 1220包括:
信号分解子单元 1421, 用于将所述第二导频信号接收子单元 1411接收到的所述 宽带导频信号在所述带宽频率上按照频率间隔进行分解,获得一组频域上的子导频信 号, 每个子导频信号对应所述带宽频率上的一个频率区域;
CSI测量子单元 1422,用于测量所述信号分解子单元所分解的每个频率区域对应 的子导频信号的 csi值;
结果反馈子单元 1423, 用于将所述 CSI测量子单元测量得到的每个频率区域对 应的子导频信号的 CSI值与域值范围进行比较, 向所述发射装置反馈比较结果, 以使 所述发射装置根据比较结果对每个频率区域进行划分。
在一个具体的实施例中:
所述结果反馈子单元 1423, 具体用于获取预先设置的域值范围, 每个所述域值 范围的量化值对应一种频率区域的划分方式,判断每个频率区域对应的子导频信号的 CSI值所属的域值范围, 将所述域值范围的量化值反馈给所述发射装置, 以使所述发 射装置根据所述量化值对应的划分方式对所述频率区域进行划分。 本发明实施例提供了再一种接收装置, 参见图 15, 该接收装置可以包括: 无线 接收机 1510和处理器 1520。 其中, 无线接收机 1510, 用于接收发射装置发射的导频信号; 处理器 1520, 用于通过对所述导频信号进行测量, 向所述发射装置反馈传输所 述导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装置 的带宽频率进行划分。
在一个具体的实施例中:
所述无线接收机 1510, 具体用于在预先划分的每个频率区域上向所述接收装置 发射导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述处理器 1520, 具体用于测量所述发射装置在每个频率区域上的各个频率资 源分组对应的 CQI值,所述各个频率资源分组通过不同数量子载波承载导频信号,将 所述各个频率资源分组对应的 CQI值反馈给所述发射装置,以使所述发射装置从所述 各个频率资源分组对应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对 应的子载波数量划分所述频率区域。
在另一个具体的实施例中:
所述无线接收机 1510, 具体用于接收发射装置在所述带宽频率上发射的宽带导 频信号;
所述处理器 1520, 具体用于将所述宽带导频信号在所述带宽频率上按照频率间 隔进行分解, 获得一组频域上的子导频信号, 其中, 每个子导频信号对应所述带宽频 率上的一个频率区域, 测量每个频率区域对应的子导频信号的信道状态信息 CSI值, 将每个频率区域对应的子导频信号的 CSI值与域值范围进行比较,向所述发射装置反 馈比较结果, 以使所述发射装置根据比较结果对每个频率区域进行划分。 上述图 12至图 15所示实施例中示出的接收装置可以为执行前述方法实施例的接 收装置, 也可以是前述通信***实施例中示出的接收装置, 具体描述可参见前述方法 实施例和***实施例, 在此不再赘述。 参见图 16A, 为应用本发明自适应频域资源配置方法实施例的一个通信***架构 示意图, 同时参见图 16B, 为图 16A中所示通信***内的信号流示意图:
由图 16A中可见, 该通信***包括: 发射装置和接收装置, 发射装置和接收装置 之间通过无线信道连接。 图 16A中的发射装置可以是前述方法实施例, 以及发射装置 实施例中所描述的发射装置, 图 16A中的接收装置可以是前述方法实施例, 以及接收 装置实施例中所描述的接收装置。 当发射装置为结合图 11所描述的发射装置,接收装置为结合前述图 15所描述的 接收装置时, 发射装置中的无线发射机可以包括串并转换模块、调制映射模块、合成 滤波器模块、 升采样器模块, 发射装置中的处理器可以包括配置模块; 接收装置中的 无线接收机可以包括串并转换模块、降采样器模块、分析滤波器模块、信号解调模块、 并串转换模块,接收装置中的处理器可以包括反馈模块。本发明实施例为了实现配置 可变频域资源,通过接收装置中的反馈模块与发射装置中的配置模块相连, 该配置模 块与合成滤波器模块相连,其中反馈模块与配置模块之间通过空中接口进行通信, 如 图 16A中反馈模块与配置模块之间的虚线箭头所示。
下面结合 16A和图 16B对发射装置和接收装置的信号处理过程,以及接收装置对 测量得到的信道信息通过反馈模块反馈给发射装置的配置模块,从而对发射装置的频 域资源进行自适应配置的过程进行描述:
在发射装置侧:
一组 M个串行信号 ( i=0至 M-l, M为自然数), n表示一组离散信号的变量, n的取值为正整数, 该组串行信号也可以表示为 („),..., —1 („), 将该组串行信号输入
、 到串并转换模块后, 输出一组并行信号 该并行信号经过调制映射模块的
调制后,输入到合成滤波器模块中,合成滤波器模块中包含一组与信号数量一致的滤
波器, 如图 16B所示, 其中所述一组并行信号 组滤波器
波后, 输出的并行信号为 :
Figure imgf000027_0001
' (η) =∑ ("- , 其中 m取值为 0至 M-l, k表示一组离散信号的变量, k的 取值为正整数, 上式¾» = ¾^) - w表示对信号 (《)通过/ α")做卷积运算 通
Figure imgf000028_0001
-l -1
行信号合并后表示为: =∑y»∑ 'sj n-Dj), 发射装置将信号 进行发射, 通过无线信道传输到接收装置。
在接收装置侧:
假设信号 《)经过一理想无线信道传输,则接收装置接收到的信号即为发射装置 发射的信号 ")。 在接收装置侧, 接收到的信号 首先输入到串并转换模块进行
串并处理, 得到一组并行信号 , 该并行信号输入到降采样器模块后, 通过一组
Figure imgf000028_0002
D0i ' (") 、
降采样器 的采样处理后, 输出采样后的并行信号 , 经过降采样处
理的信号 可表示为: i的 -l。 上述经过降采样器模
块处理后的信号 输入到分析滤波器模块,
Figure imgf000028_0003
后 , 重建为 一组并行信号 该并行信号可 以表示为
Figure imgf000029_0001
-1
^ (") =∑ S m (Dtn - l) =∑∑∑ sm (k)hm (/ - D )^ (A. " - /) = 0, 1,… , M - 1, 将并行 信号 输入到信号解调模块进行解调后, 再经过并串转换模块处理后, 输出串行 信号。
在应用本发明实施例时, 上述发射装置输入到串并转换模块的为一组导频信号, 上述导频信号经过发射装置中的各个模块处理后,通过无线信道传输到接收装置,接 收装置通过各个模块对导频信号进行处理,其中反馈模块获取信号解调模块解调后的 导频信号, 并按照本发明前述实施例中的描述对导频信号进行测量, 并 t得到的 信道信息通过空中接口传输到发射装置的配置模块,配置模块根据反馈模块反馈的信 道信息对带宽频率进行划分, 并将划分结果输入到合成滤波器模块, 则后续发射模块 在发射正常数据信号时,合成滤波器模块可以根据上述划分结果选择一组对应不同频 率资源的滤波器,其中每个滤波器对应一个子载波。则经过合成滤波器模块滤波后的 数据信号将被调制到不同的子载波上,不同子载波承载的数据信号具有不同的频率带 宽。 如图 16C所示, 为本发明实施例中一个为子载波配置了不同频域资源的示意图, 其中 B表示一个基准单位频率带宽。 由上述实施例可见, 发射装置向接收装置发射导频信号,接收装置通过对导频信 号进行测量, 向发射装置反馈传输导频信号的信道的信道信息, 发射装置根据信道信 息对带宽频率进行划分。本发明实施例中,接收装置由于可以根据接收到的导频信号, 向发射装置反馈信道信息, 从而可以使发射装置根据信道质量对带宽频率进行划分, 由于所划分的每个频域资源的大小可以不同, 而每个频域资源对应一个子载波, 因此 相当于为每个子载波配置了不同的频域资源,每个子载波的频域资源由于可以根据接 收装置反馈的信道信息进行自适应调整, 从而可以提高***的频率效率,保证通信系 统性能。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需 的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上 或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产 品可以存储在存储介质中, 如 R0M/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台 计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例 或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部 分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。尤其, 对于 ***实施例而言, 由于其基本相似于方法实施例, 所以描述的比较简单, 相关之处参 见方法实施例的部分说明即可。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。 任何在本发 明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围 之内。

Claims

权 利 要 求
1、 一种自适应频域资源配置方法, 其特征在于, 所述方法包括: 发射装置向接收装置发射导频信号;
所述发射装置接收所述接收装置反馈的传输所述导频信号的信道的信道信 息, 所述信道信息为所述接收装置对所述导频信号进行测量后得到的信息; 所述发射装置根据所述信道信息对所述发射装置的带宽频率进行划分。
2、 根据权利要求 1所述的方法, 其特征在于,
所述发射装置向接收装置发射导频信号, 包括:
所述发射装置在预先划分的每个频率区域上向所述接收装置发射导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述发射装置接收所述接收装置反馈的传输所述导频信号的信道的信道信 息, 包括:
所述发射装置接收所述接收装置反馈的每个频率区域的一组信道质量指示 CQI值, 所述每个频率区域的一组 CQI值为所述接收装置测量所述发射装置在每 个频率区域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组通过不 同数量子载波承载导频信号;
所述根据所述信道信息对所述发射装置的带宽频率进行划分, 包括: 从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值;
按照所述最大的 CQI值所对应的子载波数量划分所述每个频率区域。
3、 根据权利要求 2所述的方法, 其特征在于, 所述发射装置在预先划分的 每个频率区域上向所述接收装置发射导频信号包括:
所述发射装置在每个频率区域上按照 N个频率资源分组对应发射 N组导频信 号,所述 N个频率资源分组为所述发射装置对每个频率区域按照不同数量子载波 进行划分所得到的分组, 所述 N为自然数, 每个所述频率资源分组中的子载波承 载所对应的一组导频信号; 或者,
所述发射装置在每个频率区域上通过第一频率资源分组中包含的子载波所 发射的一组导频信号,所述第一频率资源分组为所述发射装置对每个频率区域按 照不同数量子载波进行划分所得到的 N个频率资源分组中,包含子载波数量最多 的一个频率资源分组。
4、 根据权利要求 1所述的方法, 其特征在于,
所述发射装置向接收装置发射导频信号, 包括:
所述发射装置在所述带宽频率上向所述接收装置发射宽带导频信号; 所述发射装置接收所述接收装置对所述导频信号进行测量后,反馈的传输所 述导频信号的信道的信道信息, 包括:
所述发射装置接收所述接收装置在测量每个频率区域对应的子导频信号的 信道状态信息 CSI值,并将每个频率区域对应的子导频信号的 CSI值与域值范围 进行比较后, 向所述发射装置反馈的比较结果, 所述每个频率区域对应的子导频 信号为接收装置将所述宽带导频信号在所述带宽频率上按照频率间隔进行分解 后, 获得的分解后的每个频率区域对应的子导频信号, 每个子导频信号对应所述 带宽频率上的一个频率区域;
所述根据所述信道信息对所述发射装置的带宽频率进行划分, 包括: 根据所述接收装置反馈的比较结果对所述带宽频率的每个频率区域进行划 分。
5、 根据权利要求 4所述的方法, 其特征在于,
所述向所述发射装置反馈的比较结果具体为:向所述发射装置反馈的域值范 围量化值,所述域值范围量化值为所述接收装置判断每个频率区域对应的子导频 信号的 CSI值所属的域值范围后, 向所述发射装置反馈的量化值;
所述根据所述接收装置反馈的比较结果对所述带宽频率的每个频率区域进 行划分包括:
按照与接收到的域值范围的量化值对应的频率区域的划分方式对所述频率 区域进行划分。
6、 一种自适应频域资源配置方法, 其特征在于, 所述方法包括: 接收装置接收发射装置发射的导频信号;
所述接收装置通过对所述导频信号进行测量,向所述发射装置反馈传输所述 导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装 置的带宽频率进行划分。
7、 根据权利要求 6所述的方法, 其特征在于,
所述接收装置接收发射装置发射的导频信号, 包括: 所述接收装置接收发射装置在预先划分的每个频率区域上发射的导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述接收装置通过对所述导频信号进行测量,向所述发射装置反馈传输所述 导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装 置的带宽频率进行划分, 包括:
所述接收装置测量所述发射装置在每个频率区域上的各个频率资源分组对 应的 CQI值, 所述各个频率资源分组通过不同数量子载波承载导频信号;
所述接收装置将所述各个频率资源分组对应的 CQI值反馈给所述发射装置, 以使所述发射装置从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值, 并按照所述最大的 CQI值所对应的子载波数量划分所述频率区域。
8、 根据权利要求 7所述的方法, 其特征在于,
所述接收装置接收发射装置在预先划分的每个频率区域上发射的导频信号, 包括:
所述接收装置接收发射装置在每个频率区域上按照 N个频率资源分组对应 发射的 N组导频信号,所述 N个频率资源分组为所述发射装置对每个频率区域按 照不同数量子载波进行划分所得到的分组, 所述 N为自然数, 每个所述频率资源 分组中的子载波承载所对应的一组导频信号;
所述接收装置测量所述发射装置在每个频率区域上的各个频率资源分组对 应的 CQI值, 包括: 分别测量每个频率区域上的所述 N组导频信号, 获得每个频 率区域的 N个 CQI值。
9、 根据权利要求 7所述的方法, 其特征在于,
所述接收装置接收发射装置在预先划分的每个频率区域上发射的导频信号, 包括:
所述接收装置接收发射装置在每个频率区域上通过第一频率资源分组中包 含的子载波所发射的一组导频信号,所述第一频率资源分组为所述发射装置对每 个频率区域按照不同数量子载波进行划分所得到的 N个频率资源分组中,包含子 载波数量最多的一个频率资源分组;
所述接收装置测量所述发射装置在每个频率区域上的各个频率资源分组对 应的 CQI值, 包括:
所述接收装置测量所述第一频率资源分组对应的一组导频信号中,每个导频 信号的 CQI值, 将所述每个导频信号的 CQI值的和作为所述一组导频信号的 CQI 值;
所述接收装置通过对所述第一频率资源分组对应的一组导频信号中的导频 信号在频域上进行合并,获得所述 N个频率资源分组中除所述第一频率资源分组 的其它每个频率资源分组中的导频信号;
所述接收装置测量所述其它每个频率资源分组所对应的每组导频信号的 CQI 值;
将第一频率资源分组对应的一组导频信号的 CQI 值和所述其它每个频率资 源分组所对应的每组导频信号的 CQI值作为每个频率区域的一组 CQI值。
10、 根据权利要求 6所述的方法, 其特征在于,
所述接收装置接收发射装置发射的导频信号, 包括:
所述接收装置接收发射装置在所述带宽频率上发射的宽带导频信号; 所述接收装置通过对所述导频信号进行测量,向所述发射装置反馈传输所述 导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装 置的带宽频率进行划分, 包括:
所述接收装置将所述宽带导频信号在所述带宽频率上按照频率间隔进行分 解, 获得一组频域上的子导频信号, 其中, 每个子导频信号对应所述带宽频率上 的一个频率区域;
所述接收装置测量每个频率区域对应的子导频信号的信道状态信息 csi值; 所述接收装置将每个频率区域对应的子导频信号的 CSI 值与域值范围进行 比较, 向所述发射装置反馈比较结果, 以使所述发射装置根据比较结果对每个频 率区域进行划分。
11、 根据权利要求 10所述的方法, 其特征在于, 所述接收装置将每个频率 区域对应的子导频信号的 CSI值与域值范围进行比较,向所述发射装置反馈比较 结果, 以使所述发射装置根据比较结果对每个频率区域进行划分, 包括:
所述接收装置判断每个频率区域对应的子导频信号的 CSI 值所属的域值范 围, 将所述域值范围的量化值反馈给所述接收装置, 以使所述发射装置根据所述 量化值对应的频率区域的划分方式对所述频率区域进行划分。
12、 一种发射装置, 其特征在于, 所述装置包括: 发射单元, 用于向接收装置发射导频信号;
信道信息接收单元,用于接收所述接收装置反馈的传输所述导频信号的信道 的信道信息,所述信道信息为所述接收装置对所述发射单元发射的导频信号进行 测量后得到的信息;
配置单元, 用于根据所述信道信息对发射装置的带宽频率进行划分。
13、 根据权利要求 12所述的装置, 其特征在于,
所述发射单元包括:
第一发射子单元,用于在预先划分的每个频率区域上向所述接收装置发射导 频信号, 所有频率区域组成所述发射装置的带宽频率;
所述信道信息接收单元包括:
第一信道信息接收子单元,用于接收所述接收装置反馈的每个频率区域的一 组 CQI值,所述每个频率区域的一组 CQI值为所述接收装置测量所述第一发射单 元在每个频率区域上的各个频率资源分组对应的 CQI值,所述各个频率资源分组 通过不同数量子载波承载导频信号;
所述配置单元包括:
CQI获取子单元, 用于从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值;
第一频率划分子单元,用于按照所述 CQI获取子单元获取到的最大的 CQI值 所对应的子载波数量划分所述每个频率区域。
14、 根据权利要求 13所述的装置, 其特征在于,
所述第一发射子单元,具体用于在每个频率区域上按照 N个频率资源分组对 应发射 N组导频信号,所述 N个频率资源分组为所述发射装置对每个频率区域按 照不同数量子载波进行划分所得到的分组, 所述 N为自然数, 每个所述频率资源 分组中的子载波承载所对应的一组导频信号; 或者, 在每个频率区域上通过第一 频率资源分组中包含的子载波所发射的一组导频信号,所述第一频率资源分组为 所述发射装置对每个频率区域按照不同数量子载波进行划分所得到的 N个频率 资源分组中, 包含子载波数量最多的一个频率资源分组。
15、 根据权利要求 12所述的装置, 其特征在于,
所述发射单元包括: 第二发射子单元,用于在所述发射装置的带宽频率上向所述接收装置发射宽 带导频信号;
所述信道信息接收单元包括:
第二信道信息接收子单元,用于接收所述接收装置在测量每个频率区域对应 的子导频信号的 CSI值,并将每个频率区域对应的子导频信号的 CSI值与域值范 围进行比较后, 向所述发射装置反馈的比较结果, 所述每个频率区域对应的子导 频信号为接收装置将所述第二发射子单元发射的宽带导频信号在所述带宽频率 上按照频率间隔进行分解后, 获得的分解后的每个频率区域对应的子导频信号, 每个子导频信号对应所述带宽频率上的一个频率区域;
所述配置单元包括:
第二频率划分子单元,用于根据所述第二信道信息接收子单元接收到的所述 接收装置反馈的比较结果对所述带宽频率的每个频率区域进行划分。
16、 根据权利要求 15所述的装置, 其特征在于,
所述第二信道信息接收子单元接收到的所述接收装置反馈的比较结果具体 为域值范围量化值,所述域值范围量化值为所述接收装置判断每个频率区域对应 的子导频信号的 CSI值所属的域值范围后, 向所述发射装置反馈的量化值; 所述第二频率划分子单元,具体用于按照与接收到的域值范围的量化值对应 的频率区域的划分方式对所述频率区域进行划分。
17、 一种接收装置, 其特征在于, 所述装置包括:
导频信号接收单元, 用于接收发射装置发射的导频信号;
反馈单元, 用于通过对所述导频信号接收单元接收到的导频信号进行测量, 向所述发射装置反馈传输所述导频信号的信道的信道信息,以使所述发射装置根 据所述信道信息对所述发射装置的带宽频率进行划分。
18、 根据权利要求 17所述的装置, 其特征在于,
所述导频信号接收单元包括:
第一导频信号接收子单元,用于接收发射装置在预先划分的每个频率区域上 发射的导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述反馈单元包括:
CQI测量子单元, 用于测量所述发射装置在每个频率区域上的各个频率资源 分组对应的 CQI值, 所述各个频率资源分组通过不同数量子载波承载导频信号; CQI反馈子单元, 用于将所述 CQI测量子单元所测量的所述各个频率资源分 组对应的 CQI值反馈给所述发射装置,以使所述发射装置从所述各个频率资源分 组对应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对应的子载波 数量划分所述频率区域。
19、 根据权利要求 18所述的装置, 其特征在于,
所述第一导频信号接收子单元,具体用于接收发射装置在每个频率区域上按 照 N个频率资源分组对应发射的 N组导频信号,所述 N个频率资源分组为所述发 射装置对每个频率区域按照不同数量子载波进行划分所得到的分组,所述 N为自 然数, 每个所述频率资源分组中的子载波承载所对应的一组导频信号;
所述 CQI测量子单元,具体用于分别测量所述第一导频信号接收子单元接收 到的每个频率区域上的所述 N组导频信号, 获得每个频率区域的 N个 CQI值。
20、 根据权利要求 18所述的装置, 其特征在于,
所述第一导频信号接收子单元,具体用于接收发射装置在每个频率区域上通 过第一频率资源分组中包含的子载波所发射的一组导频信号,所述第一频率资源 分组为所述发射装置对每个频率区域按照不同子载波数量进行划分所得到的 N 个频率资源分组中, 包含子载波数量最多的一个频率资源分组;
所述 CQI测量子单元,具体用于测量所述第一频率资源分组对应的一组导频 信号中, 每个导频信号的 CQI值, 将所述每个导频信号的 CQI值的和作为所述一 组导频信号的 CQI 值, 通过对所述一组导频信号中的导频信号在频域上进行合 并,获得所述 N个频率资源分组中除所述第一频率资源分组的其它每个频率资源 分组中的导频信号, 测量所述其它每个频率资源分组所对应的每组导频信号的 CQI值, 将第一频率资源分组对应的一组导频信号的 CQI值和所述其它每个频率 资源分组所对应的每组导频信号的 CQI值作为每个频率区域的一组 CQI值。
21、 根据权利要求 17所述的装置, 其特征在于,
所述导频信号接收单元包括:
第二导频信号接收子单元,用于接收发射装置在所述带宽频率上发射的宽带 导频信号;
所述反馈单元包括: 信号分解子单元,用于将所述第二导频信号接收子单元接收到的所述宽带导 频信号在所述带宽频率上按照频率间隔进行分解, 获得一组频域上的子导频信 号, 其中, 每个子导频信号对应所述带宽频率上的一个频率区域;
CSI测量子单元, 用于测量所述信号分解子单元所分解的每个频率区域对应 的子导频信号的 CSI值;
结果反馈子单元,用于将所述 CSI测量子单元测量得到的每个频率区域对应 的子导频信号的 CSI值与域值范围进行比较, 向所述发射装置反馈比较结果, 以 使所述发射装置根据比较结果对每个频率区域进行划分。
22、 根据权利要求 21所述的装置, 其特征在于,
所述结果反馈子单元, 具体用于判断每个频率区域对应的子导频信号的 CSI 值所属的域值范围, 将所述域值范围的量化值反馈给所述发射装置, 以使所述发 射装置根据所述量化值对应的频率区域的划分方式对所述频率区域进行划分。
23、 一种通信***, 其特征在于, 包括: 发射装置和接收装置,
所述发射装置, 用于向接收装置发射导频信号;
所述接收装置, 用于通过对所述导频信号进行测量, 向所述发射装置反馈传 输所述导频信号的信道的信道信息;
所述发射装置,还用于根据所述信道信息对所述发射装置的带宽频率进行划 分。
24、 根据权利要求 23所述的通信***, 其特征在于,
所述发射装置,具体用于在预先划分的每个频率区域上向所述接收装置发射 导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述接收装置,具体用于测量所述发射装置在每个频率区域上的各个频率资 源分组对应的 CQI 值, 所述各个频率资源分组通过不同数量子载波承载导频信 号, 将所述各个频率资源分组对应的 CQI值反馈给所述发射装置, 以使所述发射 装置从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值,并按照所述最 大的 CQI值所对应的子载波数量划分所述频率区域;
所述发射装置,具体还用于从所述各个频率资源分组对应的 CQI值中获取最 大的 CQI值, 按照所述最大的 CQI值所对应的子载波数量划分所述频率区域。
25、 根据权利要求 23所述的通信***, 其特征在于,
所述发射装置,具体用于在所述带宽频率上向所述接收装置发射宽带导频信 号;
所述接收装置,具体用于将所述宽带导频信号在所述带宽频率上按照频率间 隔进行分解, 获得一组频域上的子导频信号, 每个子导频信号对应所述带宽频率 上的一个频率区域, 测量每个频率区域对应的子导频信号的 CSI值, 并将每个频 率区域对应的子导频信号的 CSI值与域值范围进行比较,向所述发射装置反馈比 较结果;
所述发射装置,具体还用于根据所述接收装置反馈的比较结果对所述带宽频 率的每个频率区域进行划分。
26、 一种发射装置, 其特征在于, 所述发射装置包括:
无线发射机, 用于向接收装置发射导频信号;
处理器,用于接收到所述接收装置反馈的传输所述导频信号的信道的信道信 息后, 并根据所述信道信息对所述发射装置的带宽频率进行划分, 所述信道信息 为所述接收装置对所述导频信号进行测量后得到的信息。
27、 根据权利要求 26所述的发射装置, 其特征在于,
所述无线发射机,具体用于在预先划分的每个频率区域上向所述接收装置发 射导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述处理器, 具体用于接收所述接收装置反馈的每个频率区域的一组 CQI 值, 所述每个频率区域上的各个频率资源分组对应的 CQI值, 所述各个频率资源 分组, 从所述各个频率资源分组对应的一组 CQI值中获取最大的 CQI值, 按照所 述最大的 CQI值所对应的子载波数量划分所述频率区域。
28、 根据权利要求 26所述的发射装置, 其特征在于,
所述无线发射机,具体用于在所述带宽频率上向所述接收装置发射宽带导频 信号;
所述处理器,具体用于接收所述接收装置在测量每个频率区域对应的子导频 信号的 csi值,并将每个频率区域对应的子导频信号的 csi值与域值范围进行比 较后, 向所述发射装置反馈的比较结果, 所述每个频率区域对应的子导频信号为 接收装置将所述宽带导频信号在所述带宽频率上按照频率间隔进行分解后,获得 的分解后的每个频率区域对应的子导频信号,每个子导频信号对应所述带宽频率 上的一个频率区域,根据所述接收装置反馈的比较结果对所述带宽频率的每个频 率区域进行划分。
29、 一种接收装置, 其特征在于, 所述接收装置包括:
无线接收机, 用于接收发射装置发射的导频信号;
处理器, 用于通过对所述导频信号进行测量, 向所述发射装置反馈传输所述 导频信号的信道的信道信息,以使所述发射装置根据所述信道信息对所述发射装 置的带宽频率进行划分。
30、 根据权利要求 29所述的装置, 其特征在于,
所述无线接收机,具体用于接收发射装置在预先划分的每个频率区域上发射 的导频信号, 所有频率区域组成所述发射装置的带宽频率;
所述处理器,具体用于测量所述发射装置在每个频率区域上的各个频率资源 分组对应的 CQI值, 所述各个频率资源分组通过不同数量子载波承载导频信号, 将所述各个频率资源分组对应的 CQI值反馈给所述发射装置,以使所述发射装置 从所述各个频率资源分组对应的 CQI值中获取最大的 CQI值,并按照所述最大的 CQI值所对应的子载波数量划分所述频率区域。
31、 根据权利要求 29所述的装置, 其特征在于,
所述无线接收机,具体用于接收发射装置在所述带宽频率上发射的宽带导频 信号;
所述处理器,具体用于将所述宽带导频信号在所述带宽频率上按照频率间隔 进行分解, 获得一组频域上的子导频信号, 其中, 每个子导频信号对应所述带宽 频率上的一个频率区域, 测量每个频率区域对应的子导频信号的信道状态信息 CSI值, 将每个频率区域对应的子导频信号的 CSI值与域值范围进行比较, 向所 述发射装置反馈比较结果,以使所述发射装置根据比较结果对每个频率区域进行 划分。
PCT/CN2012/078896 2012-07-19 2012-07-19 自适应频域资源配置方法、装置及通信*** WO2014012235A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280031385.7A CN103688582B (zh) 2012-07-19 2012-07-19 自适应频域资源配置方法、装置及通信***
JP2015521932A JP6150184B2 (ja) 2012-07-19 2012-07-19 適合的周波数領域リソース構成の方法、装置、および通信システム
EP12881499.3A EP2866505B1 (en) 2012-07-19 2012-07-19 Adaptive frequency domain resource configuration method and communication system
PCT/CN2012/078896 WO2014012235A1 (zh) 2012-07-19 2012-07-19 自适应频域资源配置方法、装置及通信***
US14/599,866 US9608792B2 (en) 2012-07-19 2015-01-19 Adaptive frequency domain resource configuration method, apparatus, and communications system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/078896 WO2014012235A1 (zh) 2012-07-19 2012-07-19 自适应频域资源配置方法、装置及通信***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/599,866 Continuation US9608792B2 (en) 2012-07-19 2015-01-19 Adaptive frequency domain resource configuration method, apparatus, and communications system

Publications (1)

Publication Number Publication Date
WO2014012235A1 true WO2014012235A1 (zh) 2014-01-23

Family

ID=49948175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078896 WO2014012235A1 (zh) 2012-07-19 2012-07-19 自适应频域资源配置方法、装置及通信***

Country Status (5)

Country Link
US (1) US9608792B2 (zh)
EP (1) EP2866505B1 (zh)
JP (1) JP6150184B2 (zh)
CN (1) CN103688582B (zh)
WO (1) WO2014012235A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852769A (zh) * 2015-07-08 2018-03-27 华为技术有限公司 一种wlan的链路自适应方法及网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594652B2 (en) 2014-10-16 2020-03-17 Qualcomm Incorporated Wireless communication utilizing a unified air interface
WO2016163819A1 (ko) * 2015-04-08 2016-10-13 엘지전자 주식회사 채널 상태 보고를 위한 방법 및 이를 위한 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079859A (zh) * 2006-05-26 2007-11-28 上海原动力通信科技有限公司 频域调度方法和装置
CN101090384A (zh) * 2006-06-16 2007-12-19 华为技术有限公司 子带调度方法及装置
CN102118867A (zh) * 2009-12-31 2011-07-06 电信科学技术研究院 一种测量导频的传输方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100539925B1 (ko) * 2003-08-22 2005-12-28 삼성전자주식회사 직교주파수분할다중 시스템에서 부반송파 할당 장치 및 방법
US20050207367A1 (en) * 2004-03-22 2005-09-22 Onggosanusi Eko N Method for channel quality indicator computation and feedback in a multi-carrier communications system
JP4640787B2 (ja) * 2004-06-28 2011-03-02 株式会社エヌ・ティ・ティ・ドコモ 送信局及び移動通信システム、並びに無線リソース割当方法
JP4719914B2 (ja) * 2005-04-28 2011-07-06 独立行政法人情報通信研究機構 送信装置、受信装置、送信方法、受信方法、ならびに、プログラム
US8229448B2 (en) * 2005-08-01 2012-07-24 Samsung Electronics Co., Ltd. Apparatus and method for adaptive channel quality feedback in a multicarrier wireless network
WO2007125702A1 (ja) * 2006-04-27 2007-11-08 Mitsubishi Electric Corporation チャネル品質報告方法、スケジューリング方法、通信システム、端末および基地局
KR101370780B1 (ko) * 2007-03-21 2014-03-10 엘지전자 주식회사 채널품질정보 전송방법 및 채널품질정보 생성방법
US7933350B2 (en) * 2007-10-30 2011-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel-dependent frequency-domain scheduling in an orthogonal frequency division multiplexing communications system
US8411766B2 (en) 2008-04-09 2013-04-02 Wi-Lan, Inc. System and method for utilizing spectral resources in wireless communications
KR102043041B1 (ko) * 2012-03-23 2019-11-11 삼성전자 주식회사 무선 통신 시스템에서 간섭 측정 방법 및 장치
US9729273B2 (en) * 2012-03-30 2017-08-08 Sharp Kabushiki Kaisha Collision resolution among transmission schedules of uplink control information (UCI)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079859A (zh) * 2006-05-26 2007-11-28 上海原动力通信科技有限公司 频域调度方法和装置
CN101090384A (zh) * 2006-06-16 2007-12-19 华为技术有限公司 子带调度方法及装置
CN102118867A (zh) * 2009-12-31 2011-07-06 电信科学技术研究院 一种测量导频的传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2866505A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852769A (zh) * 2015-07-08 2018-03-27 华为技术有限公司 一种wlan的链路自适应方法及网络设备
CN107852769B (zh) * 2015-07-08 2020-08-07 华为技术有限公司 一种wlan的链路自适应方法及网络设备

Also Published As

Publication number Publication date
US9608792B2 (en) 2017-03-28
JP2015526980A (ja) 2015-09-10
EP2866505A1 (en) 2015-04-29
EP2866505B1 (en) 2022-09-28
CN103688582A (zh) 2014-03-26
EP2866505A4 (en) 2015-07-22
US20150139016A1 (en) 2015-05-21
CN103688582B (zh) 2017-06-20
JP6150184B2 (ja) 2017-06-21

Similar Documents

Publication Publication Date Title
US11082192B2 (en) Methods and systems for numerology determination of wireless communication systems
US10313976B2 (en) OFDMA sounding for WLAN system
CN107750439B (zh) 用于在无线蜂窝通信***中使用窄带来传输信号的发送和接收方法及装置
EP3484064B1 (en) Base station device, terminal device, and communication method
CN105430754B (zh) 信道状态报告和资源分配方法和装置
KR102040747B1 (ko) 자원 스케줄링 방법, 장치 및 디바이스
US8369301B2 (en) OFDM/OFDMA frame structure for communication systems
JP5663163B2 (ja) 上りリンクの復調パイロットシーケンスを決定する方法、端末および上りリンクシステム
CN110870242A (zh) 用于相位跟踪参考信号设计的方法和装置
EP3382926A1 (en) Apparatus, terminal and signal transmitting and receiving method thereof in a wireless communication system
CN108282324A (zh) 无线通信***中的方法和节点
JP2011530203A (ja) 反復重複のあるシンボルのリソース・ブロック・マッピング
KR100995830B1 (ko) 이동 통신 시스템에서 채널 상태 정보를 이용한 데이터 송수신 방법 및 시스템
KR101981693B1 (ko) 무선랜에서 트레이닝 필드를 전송하는 방법 및 장치
KR20170081918A (ko) 무선 통신 시스템에서 간섭 제어를 위한 방법 및 장치
CN109565878A (zh) 一种在大型mimo***中发送信道状态信息参考信号的方法
WO2019071383A1 (en) METHODS AND APPARATUSES FOR FREQUENCY DOMAIN MISSING OF SUB-BAND CHANNEL STATUS INFORMATION REPORT
US20080259854A1 (en) Communication Terminal Apparatus, Base Station Apparatus, and Resource Assigning Method
JP2023502761A (ja) 無線通信の柔軟なフレーム構成
WO2014012235A1 (zh) 自适应频域资源配置方法、装置及通信***
Shahjehan et al. Universal filtered multicarrier for 5G
CN107210878B (zh) 用于wifi ofdma的导频图案
US20240056344A1 (en) Guard interval in delay-doppler domain
WO2022178743A1 (en) Methods and apparatus for using short reference symbols with a frequency domain offset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12881499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012881499

Country of ref document: EP