WO2014007355A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2014007355A1
WO2014007355A1 PCT/JP2013/068448 JP2013068448W WO2014007355A1 WO 2014007355 A1 WO2014007355 A1 WO 2014007355A1 JP 2013068448 W JP2013068448 W JP 2013068448W WO 2014007355 A1 WO2014007355 A1 WO 2014007355A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
common
pixel
comb
pixel comb
Prior art date
Application number
PCT/JP2013/068448
Other languages
English (en)
French (fr)
Inventor
隆之 今野
Original Assignee
Nltテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nltテクノロジー株式会社 filed Critical Nltテクノロジー株式会社
Priority to JP2014523797A priority Critical patent/JP6187941B2/ja
Priority to CN201380035422.6A priority patent/CN104471472B/zh
Priority to US14/412,492 priority patent/US9383613B2/en
Publication of WO2014007355A1 publication Critical patent/WO2014007355A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a lateral electric field type active matrix liquid crystal display device having excellent afterimage characteristics.
  • the IPS (In-Plane Switching) method which has been widely used for large monitors, displays liquid crystal molecules by rotating the molecular axes in a plane parallel to the substrate by a horizontal electric field. Since the viewing angle dependency on the rising angle of TN is eliminated, the viewing angle characteristic is significantly more advantageous than the TN method.
  • the IPS method since the pixel electrode and the common electrode are arranged in a comb-like shape and a horizontal electric field is applied, the ratio of the area of the electrode to the display region is increased, and the aperture ratio has been disadvantageous compared to the TN method. In recent years, however, it has been improved to the same level as the TN system.
  • FIG. 7A shows a plan view of one pixel
  • FIG. 7B shows a cross-sectional view of the display region.
  • a scanning signal wiring 701 made of a first metal layer and two common signal wirings 702 in parallel are formed.
  • a gate insulating film 703 is formed on the scanning signal wiring 701 and the common signal wiring 702, and a video signal wiring 704 made of a second metal layer, a thin film semiconductor layer 705, and a source electrode 706 are formed on the first insulating film. Is done.
  • a passivation film 707 made of an inorganic film is formed on the video signal wiring 704, the thin film semiconductor layer 705, and the source electrode 706, and a planarization film 708 made of an organic film is further formed on the passivation film.
  • a pixel comb electrode 709 and a common comb electrode 710 made of a transparent conductive film are formed on the planarizing film 708. When the planarizing film 708 is not used, the pixel comb electrode 709 and the common comb electrode 710 are formed on the passivation film 707.
  • the video signal wiring 704 is completely covered in the wiring width direction by the common shield electrode 710B through the passivation film 707 and the planarization film 708.
  • the pixel comb electrode 709 and the common comb electrode 710 are electrically connected to the source electrode 706 and the common signal wiring 702 through contact holes 711 and 712, respectively.
  • a region where the common signal wiring 702 and the source electrode 706 overlap is a storage capacitor.
  • the pixel comb electrode 709 and the common comb electrode 710 are both formed of a transparent conductive film, the region on the electrode also contributes to the transmittance. Since the video signal wiring 704 is completely covered with the common shield electrode 710 ⁇ / b> B in the wiring width direction, the opening can be expanded to the vicinity of the video signal wiring 704.
  • Patent Document 1 discloses a structure in which pixel comb electrodes having different line widths are provided.
  • the width of the pixel comb electrodes having a wide line width is the same as that of the common shield electrode. It is not specified to be approximately the same as the width.
  • the position of the pixel comb electrode for increasing the line width is not defined.
  • the invention disclosed in Patent Document 1 aims to increase the aperture ratio by forming a pixel comb-teeth electrode with a thick line width as a laminate of a transparent conductive layer and a metal layer, and forming a storage capacitor at this location.
  • the present invention aims at symmetrization of the structure of the pixel electrode and the common electrode, and the object is different from that of Patent Document 1.
  • Patent Document 2 discloses a structure in which the width of the central pixel comb electrode is large.
  • the width of the thick pixel comb electrode is substantially the same as the width of the common shield electrode. It is not the same.
  • Patent Document 2 is not intended to reduce asymmetry as in the present invention.
  • the video signal wiring is completely covered with the common shield electrode in the wiring width direction, so that the total width of the common comb electrode plus the common shield electrode is wider than the total width of the pixel comb electrode and more common than the pixel potential.
  • the potential becomes dominant, and the electric field is strong near the pixel comb electrode, and the electric field is weak near the common comb electrode. For this reason, there is a difference between the way of light in the vicinity of the pixel comb electrode in the negative frame and the way of light in the vicinity of the common comb electrode in the positive frame, and the way of light between the frames is further asymmetric.
  • JP 2003-140188 A (page 5, FIG. 1) Japanese Patent No. 4047586 (page 7, FIGS. 1 and 3) Japanese Patent No. 4603560 (page 8, FIG. 1)
  • the object of the present invention is to solve the above-mentioned problem, and by making the IPS pixel comb electrode and the common comb electrode structurally symmetrical, the way of shining between frames is also symmetric, Provided is a liquid crystal display device in which a signal applied between a pixel comb electrode and a common comb electrode is also symmetric after a flicker adjustment is performed by changing a common potential so that the luminance between frames is equal. It is in.
  • the liquid crystal display device of the first invention of the present application is a state in which the liquid crystal display device is sandwiched between a first substrate, a second substrate facing each other, and the first substrate and the second substrate.
  • a first liquid crystal display device comprising: a thin film transistor having a gate electrode, a drain electrode, and a source electrode; and a transparent conductive film corresponding to a pixel to be displayed.
  • the thin film transistor is formed in the vicinity of the intersection of the scanning signal wiring and the video signal wiring, and the gate electrode is connected to the scanning signal wiring and the drain current wiring.
  • the source electrode is electrically connected to the pixel comb electrode
  • the common comb electrode and the common shield electrode are electrically connected to the common signal wiring
  • the video signal wiring is insulated.
  • a horizontal electric field type active matrix liquid crystal display device that performs display by rotating a molecular axis of a liquid crystal layer in a plane parallel to the first substrate, at least one of the plurality of pixel comb-teeth electrodes is used.
  • the width of the pixel comb electrode is wider than the width of the other pixel comb electrode and the common comb electrode, and the width of the other pixel comb electrode and the common comb electrode excluding the wide pixel comb electrode Mutually Are the same, the width of the HabaFutoshi pixel comb-tooth electrodes provides a liquid crystal display device is substantially the same as the width of the common shield electrode.
  • the common signal wiring is integrally formed in a lower layer of the wide pixel comb electrode in parallel with a longitudinal direction thereof.
  • the source electrode is extended and formed parallel to the longitudinal direction.
  • the wide pixel comb electrode is formed at the center of the unit pixel or at a position closest to the center.
  • the number of the common comb electrode and the number of the pixel comb electrodes is the same on both sides of the wide pixel comb electrode.
  • the common comb-tooth electrode and the number of the pixel comb-tooth electrodes are the same on one side of the wide pixel comb-tooth electrode.
  • the flickering between frames is also symmetric, and after adjusting the flicker by adjusting the common potential so that the luminance between frames is equal.
  • the signal applied between the pixel comb electrode and the common comb electrode is also symmetric. For this reason, the afterimage is improved.
  • FIG. 1 is a schematic view of a cross section of a display region and a potential distribution of a liquid crystal display device according to a first embodiment of the present invention. It is sectional drawing of the liquid crystal display device which concerns on 1st Example of this invention. It is a top view of the liquid crystal display device which concerns on 2nd Example of this invention. 4 is a schematic view of a cross section of a display region and a potential distribution of a liquid crystal display device according to a second embodiment of the present invention. It is a top view of the liquid crystal display device which concerns on 3rd Example of this invention.
  • FIG. 1 shows an example in which the number of columns is an odd multiple of 2, and there are an odd number of pixel comb electrodes.
  • the difference from the conventional example 1 described in FIG. 7 is that one of the plurality of pixel comb electrodes 109B is wider than the other pixel comb electrodes 109 and the common comb electrodes 110, and the video signal This is the same as the width of the common shield electrode 110 ⁇ / b> B that covers the wiring 104 through the passivation film 107.
  • the display area is divided into two sub areas by the thick pixel comb electrode 109B. In each sub-region, the number of the pixel comb electrodes 109 and the common comb electrodes 110 is the same. Further, since the common shield electrode 110B and the thick pixel comb electrode 109B have the same width, the electric field concentration in the vicinity of the pixel comb electrode as in the conventional example is reduced.
  • FIG. 1A is a plan view of a liquid crystal display device according to a first embodiment of the present invention
  • FIG. 1B is a schematic view of a cross section of a display region and a potential distribution
  • FIG. 1C is a cross-sectional view in which the first substrate and the second substrate are opposed to each other and the liquid crystal layer is sandwiched.
  • the lateral electric field type active matrix liquid crystal display device includes a first glass substrate 118 as a first substrate, a second glass substrate 119 as a second substrate facing each other, The liquid crystal layer 122 is held while being sandwiched between the first glass substrate 118 and the second glass substrate 119.
  • Embodiment 1 configured as described above is an example in which the number of columns is an odd multiple of two, and there are an odd number of pixel comb electrodes.
  • the scanning signal wiring 101 and the common signal wiring 102 made of the first metal layer are laminated on the first glass substrate 118 with an alloy mainly composed of molybdenum and an alloy mainly composed of aluminum. Let it form.
  • a thin film semiconductor layer 105 is formed.
  • the video signal wiring 104 and the source electrode 106 of the thin film transistor are formed using a metal layer in which an alloy containing molybdenum as a main component and an alloy containing aluminum as a main component are stacked.
  • n-type semiconductor layer is formed over the thin-film semiconductor layer 105, and the n-type semiconductor layer other than the source / drain electrodes is removed by dry etching after forming an electrode made of the second metal layer.
  • a passivation film 107 made of silicon nitride is formed thereon.
  • a photosensitive acrylic resin is applied thereon as the flattening film 108, and a predetermined pattern is formed by performing exposure, development, and baking.
  • the pixel comb electrode 109 and the common comb electrode 110 are formed using a transparent conductive film such as ITO.
  • the common shield electrode 110 ⁇ / b> B is formed so as to cover the video signal wiring 104, and shields the electric field from the video signal wiring 104. As a result, the display area can be widened, and the aperture ratio can be increased.
  • the pixel comb electrode 109 is electrically connected to the source electrode 106 through a contact hole 111 between the source electrode and the pixel comb electrode.
  • the common comb electrode 110 is electrically connected to the common signal wiring 102 via the contact hole 112 between the common signal wiring and the common comb electrode.
  • the contact hole 112 is not necessarily required for all pixels, and may be thinned out or not provided at all.
  • the center one 109B has the same width as the common shield electrode 110B.
  • the number of the common comb electrode 110 and the number of the pixel comb electrodes 109 are the same.
  • a light shielding layer 117, color layers 116r, 116g, and 116b, and an overcoat layer 115 are sequentially formed on a second glass substrate 119.
  • a color layer is unnecessary.
  • Alignment layers 813 and 814 are applied and fired on the first substrate and the second substrate, respectively, and after rubbing in a predetermined direction, the first substrate and the second substrate are overlapped, and a spacer material is used with a predetermined gap.
  • the liquid crystal layer 122 is held.
  • Polarizing plates 120 and 121 are attached to the outer sides of the first substrate and the second substrate, respectively.
  • the molecular axis of the liquid crystal layer 122 is changed to the first by an electric field which is applied between the pixel comb electrode 109 and the common comb electrode 110 and is substantially parallel to the surface of the first glass substrate 118. Display is performed by rotating in a plane parallel to the glass substrate 118.
  • the display area is divided into two sub-areas by the thick pixel comb electrode 109B.
  • the number of the pixel comb electrodes 109 and the common comb electrodes 110 is the same.
  • the width of the common shield electrode 110B and the width of the thick pixel comb electrode 109B are the same at both ends of each sub-region, and the electric field concentrates in the vicinity of the pixel comb electrode as in the conventional example. Absent. Since the structure is symmetrical as described above, the potential distribution is symmetric as shown in FIG. 1B, and the light asymmetry between frames is eliminated.
  • the flickering between frames is also symmetric, and after adjusting the flicker by adjusting the common potential so that the luminance between frames is equal.
  • the signal applied between the pixel comb electrode and the common comb electrode is also symmetric. For this reason, the afterimage is improved.
  • the width of the thick pixel comb electrode 109B is ideally the same as that of the common shield electrode 110B, but it may be difficult depending on the pixel pitch. Depending on the design, it is desirable to make the width of the thick pixel comb electrode 109B as close as possible to the width of the common shield electrode 110B.
  • FIG. 2A is a plan view of a liquid crystal display device according to a second embodiment of the present invention
  • FIG. 2B is a schematic view of the cross section of the display region and the potential distribution. The sectional view is the same as that of the first embodiment.
  • a common signal wiring is formed under and in parallel with the pixel comb electrode 209B.
  • the common signal wiring is integrally formed with two common signal wirings 202 parallel to the scanning signal wiring 201.
  • the display area is divided into two sub areas by the thickest pixel comb electrode 209B at the center.
  • the number of the pixel comb electrodes 209 and the common comb electrodes 210 is the same.
  • the width of the common shield electrode 210B and the width of the thick pixel comb electrode 209B are the same at both ends of each sub-region, so that the electric field is not concentrated near the pixel electrode unlike the conventional example. Since the structure is symmetrical as described above, the potential distribution is symmetric as shown in FIG. 2B, and the thicker pixel comb electrode 209B is shielded from light. Better than Example 1.
  • the flickering between frames is also symmetric, and after adjusting the flicker by adjusting the common potential so that the luminance between frames is equal.
  • the signal applied between the pixel comb electrode and the common comb electrode is also symmetric. For this reason, the afterimage is improved.
  • the storage capacity can be secured in the region where the thick pixel comb electrode 209B and the common signal wiring 202 overlap.
  • the lateral aperture ratio is disadvantageous, but by securing a storage capacitor in a region where the thick pixel comb electrode 209B and the common signal wiring 202 overlap each other.
  • the aperture ratio in the vertical direction can be increased. Total aperture ratio can be maintained as compared with the conventional IPS system.
  • the width of the thick pixel comb electrode 209B is ideally the same as that of the common shield electrode 210B, but the width of the thick pixel comb electrode 209B is as common as possible depending on the design. It is desirable to approach the width of the shield electrode 210B.
  • FIG. 3A is a plan view of a liquid crystal display device according to a third embodiment of the present invention
  • FIG. 3B is a schematic view of the cross section of the display region and the potential distribution. The sectional view is the same as that of the first embodiment.
  • the difference from the second embodiment is that the common signal wiring is formed under and in parallel with the thick pixel comb electrode 309B, and the second metal layer is further under and in parallel with the thick pixel comb electrode 309B.
  • the source electrode 306 made of is stretched.
  • the display area is divided into two sub areas by the thick pixel comb electrode 309B.
  • the number of pixel comb electrodes 309 and common comb electrodes 310 is the same.
  • the width of the common shield electrode 110B and the width of the thick pixel comb electrode 109B are the same at both ends of each sub-region, and the electric field concentrates in the vicinity of the pixel electrode as in the conventional example. Absent. Since the structure is symmetrical as described above, the potential distribution is symmetric as shown in FIG. 3B, and the thicker pixel comb electrode 309B is shielded from light. Better than Example 1.
  • the IPS pixel electrode and the common electrode are symmetrical in structure, the light emission between frames is also symmetric, and the pixel comb after flicker adjustment is performed by changing the common potential so that the luminance between frames is equal.
  • the signal applied between the tooth electrode and the common comb electrode is also symmetric. For this reason, the afterimage is improved.
  • the storage capacity can be secured in the region where the thick pixel comb electrode 309B and the common signal wiring 302 overlap.
  • the lateral aperture ratio is disadvantageous, but in the region where the common signal wiring 302 and the source electrode 306 overlap under the thick pixel comb electrode 309B.
  • the aperture ratio in the vertical direction can be increased. Since more storage capacity can be secured than in the second embodiment, the effect of widening the aperture ratio in the vertical direction is greater than that in the second embodiment.
  • the width of the thick pixel comb electrode 309B is ideally the same as that of the common shield electrode 310B. However, depending on the design, the width of the thick pixel comb electrode 309B is increased. It is desirable to make it as close to the width of the common shield electrode 310B as possible.
  • FIG. 4 is a plan view of a liquid crystal display device according to a fourth embodiment of the present invention.
  • the potential distribution and the sectional view are the same as those in the first embodiment.
  • the pixel comb electrode 409, the thick pixel comb electrode 409B, the common comb electrode 410, the common shield electrode 410B, and the video signal wiring 404 are bent and are multi-domained. Is a point.
  • the common signal wiring may be formed under and in parallel with the thick pixel comb electrode 409B as in the second embodiment, or the second signal may be formed under and in parallel with the thick pixel comb electrode 409B as in the third embodiment.
  • a source electrode 306 made of a metal layer may be stretched.
  • the width of the thick pixel comb electrode 409B is ideally the same as that of the common shield electrode 410B. However, depending on the design, the width of the thick pixel comb electrode 409B is increased. It is desirable to make it as close to the width of the common shield electrode 410B as possible.
  • FIG. 5A is a plan view of a liquid crystal display device according to a fifth embodiment of the present invention
  • FIG. 5B is a schematic view of the cross section of the display region and the potential distribution.
  • the sectional view is the same as that of the first embodiment.
  • the fifth embodiment is an example when the number of columns is a multiple of four, and there are an even number of pixel comb electrodes.
  • the width of one of the even number of pixel comb electrodes 509 closest to the center 509B is set to be equal to the width of the common shield electrode 510B.
  • the thick pixel comb electrode 509B is not located at the center of the pixel and does not divide the pixel symmetrically, but the common comb electrode on both sides of the thick pixel comb electrode 509B. 510 and the number of pixel comb electrodes 509 are the same, and the width of the common shield electrode 510B and the width of the thick pixel comb electrodes 509B are the same at both ends of each region, so that symmetry is maintained.
  • the effect of improving the afterimage by making the way of illuminating between the frames symmetrical is the same as in Examples 1 to 4, and is not affected by whether the number of columns is an odd multiple of 2 or a multiple of 4.
  • the width of the thick pixel comb electrode 509B is ideally the same as that of the common shield electrode 510B. However, depending on the design, the width of the thick pixel comb electrode 509B is increased. It is desirable to make it as close to the width of the common shield electrode 510B as possible.
  • FIG. 6A is a plan view of a liquid crystal display device according to a sixth embodiment of the present invention
  • FIG. 6B is a schematic diagram of a cross section of the display region and a potential distribution.
  • the sectional view is the same as that of the first embodiment.
  • Example 6 is an example in which the number of columns is 4, which is the minimum multiple of 4, and there are two pixel comb electrodes.
  • the common comb electrode is located at the center of the pixel as in the fifth embodiment, and the width of one of the two pixel comb electrodes 609 is equal to the width of the common shield electrode 610B. I have to.
  • the number of the common comb electrode 510 and the pixel comb electrode 509 is the same as one, whereas the number on the left side is zero. The symmetry is maintained.
  • the effect of improving the afterimage by making the illuminating method between frames symmetrical is the same as in Examples 1 to 5, and is not affected by whether the number of columns is an odd multiple of 2 or a multiple of 4.
  • the width of the thick pixel comb electrode 609B is ideally the same as the width of the common shield electrode 610B, but the width of the thick pixel comb electrode 509B is set according to the design. It is desirable to make it as close to the width of the common shield electrode 610B as possible.
  • the present invention can be applied to a horizontal electric field type active matrix liquid crystal display device and any device that uses the liquid crystal display device as a display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

 残像を改善できる横電界方式のアクティブマトリクス型液晶表示装置を提供する。 複数本ある画素櫛歯電極109のうちの1本109Bが、他の画素櫛歯電極109、共通櫛歯電極110よりも幅が太く、映像信号配線104上を第2の絶縁膜を介して覆う共通シールド電極110Bの幅と同等である。太い画素櫛歯電極109Bにより、表示領域は2つのサブ領域に分割される。それぞれのサブ領域で、画素櫛歯電極109と共通櫛歯電極110の本数は同じになる。また、前記共通シールド電極110Bと、前記太い画素櫛歯電極109Bの幅が同等になり、画素櫛歯電極近傍での電界集中が緩和される。構造的に対称になることから、電位分布が対称になり、フレーム間の光り方の非対称性が緩和される。これにより、フリッカ調整後の映像信号のDCオフセット成分が小さくなり、残像が改善される。

Description

液晶表示装置
 本願発明は、液晶表示装置に関し、特に、残像特性に優れた、横電界方式のアクティブマトリクス型液晶表示装置に関する。
 近年、大型モニター向けに採用が広がっているIPS(In-Plane Switching)方式は、液晶の分子軸を横電界によって基板に対して平行な面内で回転させて表示を行うものであり、分子軸の立ち上がり角に対する視角依存性がなくなるため、TN方式よりも視角特性が大幅に有利となる。一方、IPS方式は画素電極と共通電極を櫛歯状に配置して横電界を印加するため、電極の面積の表示領域に占める割合が高くなり、開口率はTN方式よりも不利とされてきたが、近年はTN方式と同等まで改善されている。
(従来例1)
 IPS方式の例を示す。図7(a)に1画素の平面図を、図7(b)に表示領域の断面図を示す。第1の基板上に、第1の金属層からなる走査信号配線701と、並行する2本の共通信号配線702が形成されている。前記走査信号配線701と共通信号配線702上にゲート絶縁膜703が形成され、前記第1の絶縁膜上に第2の金属層からなる映像信号配線704、薄膜半導体層705、ソース電極706が形成される。前記映像信号配線704、薄膜半導体層705、ソース電極706上には無機膜からなるパッシベーション膜707が形成され、さらに前記パッシベーション膜上に有機膜からなる平坦化膜708が形成される。前記平坦化膜708上に、透明性の導電膜からなる画素櫛歯電極709、共通櫛歯電極710が形成される。なお、前記平坦化膜708を用いない場合は、前記パッシベーション膜707上に前記画素櫛歯電極709、共通櫛歯電極710が形成される。
 前記映像信号配線704は、前記パッシベーション膜707、前記平坦化膜708を介して共通シールド電極710Bによって配線幅方向に完全に覆われている。前記画素櫛歯電極709、前記共通櫛歯電極710はコンタクトホール711、712を介してそれぞれ前記ソース電極706、前記共通信号配線702と電気的に接続されている。前記共通信号配線702と前記ソース電極706がオーバーラップした領域は蓄積容量となる。
 また、前記画素櫛歯電極709、前記共通櫛歯電極710はともに透明性の導電膜で形成されているため、電極上の領域も透過率に寄与する。前記映像信号配線704上を前記共通シールド電極710Bによって配線幅方向に完全に覆う構造のため、前記映像信号配線704付近まで開口部を広げることができる。
 ところで、出願人の知見によれば、特許文献1において、線幅が異なる画素櫛歯電極を設ける構造が開示されているが、線幅を太くした画素櫛歯電極の幅が、共通シールド電極の幅と略同じであると規定されていない。また、線幅を太くする画素櫛歯電極の位置も規定されていない。特許文献1で開示された発明は、線幅を太くした画素櫛歯電極を透明導電層と金属層との積層とし、この箇所で蓄積容量を形成することにより、高開口率化することを目的としているが、本願発明は画素電極と共通電極の構造の対称化を目的としており、特許文献1の発明と目的が異なる。
 また、出願人の別の知見によれば、特許文献2において、中央の画素櫛歯電極の幅が太い構造が開示されているが、太い画素櫛歯電極の幅は共通シールド電極の幅と略同じにはなっていない。特許文献2は、本願発明のように、非対称性の緩和を目的としたものではない。
 特許文献3に挙げたIPS方式では、表示領域内に画素櫛歯電極が3本、共通櫛歯電極が2本あり、画素櫛歯電極の方が1本多い。一般に、負フレーム時(画素櫛歯電極の電位が共通櫛歯電極の電位より低い)は共通櫛歯電極近傍に電子が集まり、この結果画素櫛歯電極近傍が明るく光る。逆に正フレーム時(画素櫛歯電極の電位が共通櫛歯電極の電位より高い)は画素櫛歯電極近傍に電子が集まり、この結果共通櫛歯電極近傍が明るく光る。このため、負フレームと正フレームで明るく光る櫛歯電極の本数が異なり、正負フレーム間で光り方が非対称になる。
 さらに、映像信号配線上を共通シールド電極によって配線幅方向に完全に覆う構造により、共通櫛歯電極に共通シールド電極を加えた総幅が、画素櫛歯電極の総幅より広く、画素電位より共通電位が優勢となり、画素櫛歯電極近傍では電界が強く、共通櫛歯電極近傍では電界が弱くなる。このため、負フレームにおける画素櫛歯電極近傍の光り方と、正フレームにおける共通櫛歯電極近傍の光り方に差があり、フレーム間の光り方がさらに非対称になる。このような状態で、フレーム間の輝度が同等になるよう共通電位を振りフリッカ調整を行うと、画素櫛歯電極と共通櫛歯電極の間に印加される信号にはDCオフセットが乗り、フレーム間で信号が非対称になる。このため、残像が悪化すると考えられる。
先行技術文献
特許文献
特開2003-140188号公報(第5頁、第1図) 特許4047586号公報(第7頁、第1図および第3図) 特許4603560号公報(第8頁、第1図)
 以上より、本発明の目的は前記課題を解決するものであって、IPS方式の画素櫛歯電極と共通櫛歯電極を構造的に対称にすることにより、フレーム間の光り方も対称になり、フレーム間の輝度が同等になるよう共通電位を振ってフリッカ調整した後の、画素櫛歯電極と共通櫛歯電極の間に印加される信号も対称になるようにする液晶表示装置を提供することにある。
 上記課題を解決するために、本願第1の発明の液晶表示装置は、第一の基板と、対向する第二の基板と、前記第一基板と前記第二基板との間に挟まれた状態で保持されている液晶層とからなる液晶表示装置であって、前記第一基板は、ゲート電極、ドレイン電極、ソース電極を有する薄膜トランジスタと、表示すべき画素に対応して透明性の導電膜からなる画素櫛歯電極と、基準電位が与えられる共通櫛歯電極および共通シールド電極と、走査信号配線と、前記走査信号配線と平行するように配置される共通信号配線と、前記共通信号配線と直交するように配置される映像信号配線を備え、前記薄膜トランジスタは前記走査信号配線と前記映像信号配線の交点付近に形成されており、前記ゲート電極は前記走査信号配線に、前記ドレイン電極は前記映像信号配線に、前記ソース電極は前記画素櫛歯電極に、前記共通櫛歯電極及び前記共通シールド電極は前記共通信号配線に、それぞれ電気的に接続されており、前記映像信号配線は絶縁膜を介して配線幅方向に前記共通シールド電極で覆われており、前記画素櫛歯電極と前記共通櫛歯電極の間に印加される、前記第一基板の表面に略平行な電界により、前記液晶層の分子軸を前記第一基板に平行な面内において回転させることにより表示を行う横電界方式のアクティブマトリクス型液晶表示装置において、複数本の前記画素櫛歯電極のうち少なくとも1本の前記画素櫛歯電極の幅は、他の前記画素櫛歯電極及び前記共通櫛歯電極の幅より太く、その幅太画素櫛歯電極を除く他の前記画素櫛歯電極及び前記共通櫛歯電極の幅は互いに略同じであり、前記幅太画素櫛歯電極の幅は、前記共通シールド電極の幅と略同じである液晶表示装置を提供する。
 また、前記幅太画素櫛歯電極の下層であって、その長手方向に平行に前記共通信号配線が一体的に形成されていることを特徴とする。
 さらに、前記幅太画素櫛歯電極の下層であって、その長手方向に平行に前記ソース電極が延伸形成されていることを特徴とする。
 その上、前記幅太画素櫛歯電極は、単位画素の中央または最も中央に近い位置に形成されることを特徴とする。
 続いて、前記幅太画素櫛歯電極の両側で、前記共通櫛歯電極と前記画素櫛歯電極の本数が同じであることを特徴とする。
 さらに、前記幅太画素櫛歯電極の片側で、前記共通櫛歯電極と前記画素櫛歯電極の本数が同じであることを特徴とする。
 IPS方式の画素櫛歯電極と共通櫛歯電極を構造的に対称にすることにより、フレーム間の光り方も対称になり、フレーム間の輝度が同等になるよう共通電位を振ってフリッカ調整した後の、画素櫛歯電極と共通櫛歯電極の間に印加される信号も対称になる。このため、残像が改善される。
本願発明の第1の実施例に係る液晶表示装置の平面図である。 本願発明の第1の実施例に係る液晶表示装置の表示領域の断面と電位分布の略図である。 本願発明の第1の実施例に係る液晶表示装置の断面図である。 本願発明の第2の実施例に係る液晶表示装置の平面図である。 本願発明の第2の実施例に係る液晶表示装置の表示領域の断面と電位分布の略図である。 本願発明の第3の実施例に係る液晶表示装置の平面図である。 本願発明の第3の実施例に係る液晶表示装置の表示領域の断面図である。 本願発明の第4の実施例に係る液晶表示装置の平面図である。 本願発明の第5の実施例に係る液晶表示装置の平面図である。 本願発明の第5の実施例に係る液晶表示装置の表示領域の断面と電位分布の略図である。 本願発明の第6の実施例に係る液晶表示装置の平面図である。 本願発明の第6の実施例に係る液晶表示装置の表示領域の断面と電位分布の略図である。 従来例1の液晶表示装置の平面図である。 従来例1の液晶表示装置の表示領域の断面と電位分布の略図である。
 図1(a)および図1(b)に本願発明の構造を示す。図1はコラム数が2の奇数倍であるときの例であり、画素櫛歯電極は奇数本ある。図7で説明した従来例1との違いは、複数本ある画素櫛歯電極109のうちの1本109Bが、他の画素櫛歯電極109、共通櫛歯電極110よりも幅が太く、映像信号配線104上をパッシベーション膜107を介して覆う共通シールド電極110Bの幅と同等である点である。前記太い画素櫛歯電極109Bにより、表示領域は2つのサブ領域に分割される。それぞれのサブ領域で、前記画素櫛歯電極109と前記共通櫛歯電極110の本数は同じになる。また、前記共通シールド電極110Bと、前記太い画素櫛歯電極109Bの幅が同等であることから、従来例のような画素櫛歯電極近傍での電界集中が緩和される。
 このように構造的に対称になることから、図1(b)のように電位分布が対称になり、フレーム間の光り方の非対称性が緩和される。これにより、フレーム間の輝度が同等になるよう共通電位を振ってフリッカ調整を行うと、画素櫛歯電極と共通櫛歯電極の間に印加される信号のDCオフセット成分が小さくなり、フレーム間で信号が対称に近くなる。このため、残像が改善される。
 本願発明の第1の実施例について、図1(a)、(b)および(c)を用いて説明する。図1(a)は本願発明の第1の実施例に係る液晶表示装置の平面図であり、図1(b)は表示領域の断面と電位分布の略図である。図1(c)は断面図であり、第1の基板と第2の基板を対向させ、液晶層を狭持させている。
 より詳細には、本発明に係る横電界方式のアクティブマトリクス型液晶表示装置は、第一の基板である第1のガラス基板118と、対向する第二の基板たる第2のガラス基板119と、前記第1のガラス基板118と前記第2のガラス基板119との間に挟まれた状態で保持されている液晶層122とから構成される。
 以上のように構成される実施例1は、コラム数が2の奇数倍であるときの例であり、画素櫛歯電極は奇数本ある。
 続いて、図1からなる画素の形成方法について以下に説明する。
 第1の基板は、まず、第1のガラス基板118上に第1の金属層からなる走査信号配線101および共通信号配線102を、モリブデンが主成分の合金と、アルミニウムが主成分の合金を積層させて形成する。
 次にゲート絶縁膜として、窒化シリコン膜を形成した後、薄膜半導体層105を形成する。
 さらに、第2の金属層として、モリブデンを主成分とする合金とアルミニウムを主成分とする合金を積層させた金属層により、映像信号配線104および薄膜トランジスタのソース電極106を形成する。
 薄膜半導体層105の上層にはn型半導体層が形成されており、ソース・ドレイン電極以外の場所のn型半導体層は、第2の金属層からなる電極を形成した後、ドライエッチングにより除去される。
 さらに、この上に窒化シリコンからなるパッシベーション膜107を形成する。
 さらに、この上には、平坦化膜108として、感光性アクリル樹脂を塗布し、露光・現像・焼成を行うことにより、所定のパタンを形成する。
 次に、ITO等の透明導電膜を用いて、画素櫛歯電極109および共通櫛歯電極110を形成する。共通シールド電極110Bは、映像信号配線104を覆うように形成されており、映像信号配線104からの電界をシールドする。これにより表示領域を広くとることができ、高開口率化が可能となっている。
 画素櫛歯電極109は、ソース電極-画素櫛歯電極間のコンタクトホール111を介して、ソース電極106に電気的に接続されている。
 共通櫛歯電極110は、前記共通信号配線-共通櫛歯電極間のコンタクトホール112を介して、共通信号配線102に電気的に接続されている。コンタクトホール112は必ずしもすべての画素に必要ではなく、間引いたり、まったく設けない場合もある。
 ここで、奇数本の画素櫛歯電極109のうち、中央の1本109Bは、前記共通シールド電極110Bと同等の幅を持つ。前記太い画素櫛歯電極109Bの両側では、前記共通櫛歯電極110と前記画素櫛歯電極109の本数が同じとなる。
 第2の基板は、第2のガラス基板119上に、遮光層117、色層116r、116g、116b、オーバーコート層115を順に形成する。モノクロの場合、色層は不要である。第1の基板、第2の基板それぞれに配向層813、814を塗布・焼成し、所定の方向にラビング処理後、第1の基板と第2の基板を重ね合わせ、スペーサ材によって所定のギャップで液晶層122を狭持する。第1の基板、第2の基板それぞれの外側に偏光板120、121を貼り付ける。
 ここで、前記画素櫛歯電極109と前記共通櫛歯電極110の間に印加される、前記第1のガラス基板118の表面に略平行な電界により、前記液晶層122の分子軸を前記第1のガラス基板118に平行な面内において回転させることにより表示を行う。
 前記太い画素櫛歯電極109Bにより、表示領域は2つのサブ領域に分割される。それぞれのサブ領域で、前記画素櫛歯電極109と前記共通櫛歯電極110の本数は同じになる。また、それぞれのサブ領域の両端で、前記共通シールド電極110Bの幅と、前記太い画素櫛歯電極109Bの幅が同じになり、従来例のように画素櫛歯電極近傍で電界が集中することはない。このように構造的に対称なことから、図1(b)のように電位分布が対称になり、フレーム間の光り方の非対称性が解消される。
 IPS方式の画素櫛歯電極と共通櫛歯電極を構造的に対称にすることにより、フレーム間の光り方も対称になり、フレーム間の輝度が同等になるよう共通電位を振ってフリッカ調整した後の、画素櫛歯電極と共通櫛歯電極の間に印加される信号も対称になる。このため、残像が改善される。なお、太い画素櫛歯電極109Bの幅は、共通シールド電極110Bと同等であることが理想的だが、画素のピッチによっては難しい場合も考えられる。設計に応じ、太い画素櫛歯電極109Bの幅をできるだけ共通シールド電極110Bの幅に近づけることが望ましい。
 本願発明の第2の実施例について、図2(a)および(b)を用いて説明する。図2(a)は本願発明の第2の実施例に係る液晶表示装置の平面図であり、図2(b)は表示領域の断面と電位分布の略図である。断面図は第1の実施例と同様である。
 第1の実施例との違いは、画素櫛歯電極209Bの下かつ平行に共通信号配線が形成されている点である。この共通信号配線は、走査信号配線201と平行な2本の共通信号配線202と一体形成される。
 太い画素櫛歯電極209Bと共通信号配線202がオーバーラップしていることにより、この領域で蓄積容量を形成することができる。
 中央の最も太い画素櫛歯電極209Bにより、表示領域は2つのサブ領域に分割される。それぞれのサブ領域で、前記画素櫛歯電極209と前記共通櫛歯電極210の本数は同じになる。また、それぞれのサブ領域の両端で、前記共通シールド電極210Bの幅と、前記太い画素櫛歯電極209Bの幅が同じになり、従来例のように画素電極近傍で電界が集中することはない。このように構造的に対称なことから、図2(b)のように電位分布が対称になり、さらに太い画素櫛歯電極209Bが遮光されることから、フレーム間の光り方の対称性が実施例1よりも良い。
 IPS方式の画素櫛歯電極と共通櫛歯電極を構造的に対称にすることにより、フレーム間の光り方も対称になり、フレーム間の輝度が同等になるよう共通電位を振ってフリッカ調整した後の、画素櫛歯電極と共通櫛歯電極の間に印加される信号も対称になる。このため、残像が改善される。
 また、太い画素櫛歯電極209Bと共通信号配線202がオーバーラップした領域で蓄積容量を確保できる。
 本願発明では、中央に太い画素櫛歯電極を設けるため、横方向の開口率は不利になるが、太い画素櫛歯電極209Bと共通信号配線202がオーバーラップした領域で蓄積容量を確保することにより、縦方向の開口率を広げることができる。トータルで従来のIPS方式と比較して同等の開口率を維持できる。
 なお、実施例1と同様に、太い画素櫛歯電極209Bの幅は、共通シールド電極210Bと同等の幅を持つことが理想的だが、設計に応じ、太い画素櫛歯電極209Bの幅をできるだけ共通シールド電極210Bの幅に近づけることが望ましい。
 本願発明の第3の実施例について、図3(a)および(b)を用いて説明する。図3(a)は本願発明の第3の実施例に係る液晶表示装置の平面図であり、図3(b)は表示領域の断面と電位分布の略図である。断面図は第1の実施例と同様である。
 第2の実施例との違いは、太い画素櫛歯電極309Bの下かつ平行に共通信号配線が形成されていることに加え、さらに太い画素櫛歯電極309Bの下かつ平行に第2の金属層からなるソース電極306が延伸形成されている点である。
 太い画素櫛歯電極309Bの下で、共通信号配線302とソース電極306がオーバーラップしていることにより、この領域で蓄積容量を形成することができる。
 太い画素櫛歯電極309Bにより、表示領域は2つのサブ領域に分割される。それぞれのサブ領域で、画素櫛歯電極309と共通櫛歯電極310の本数は同じになる。また、また、それぞれのサブ領域の両端で、前記共通シールド電極110Bの幅と、前記太い画素櫛歯電極109Bの幅が同じになり、従来例のように画素電極近傍で電界が集中することはない。このように構造的に対称なことから、図3(b)のように電位分布が対称になり、さらに太い画素櫛歯電極309Bが遮光されることから、フレーム間の光り方の対称性が実施例1よりも良い。
 IPS方式の画素電極と共通電極を構造的に対称にすることにより、フレーム間の光り方も対称になり、フレーム間の輝度が同等になるよう共通電位を振ってフリッカ調整した後の、画素櫛歯電極と共通櫛歯電極の間に印加される信号も対称になる。このため、残像が改善される。
 また、太い画素櫛歯電極309Bと共通信号配線302がオーバーラップした領域で蓄積容量を確保できる。
 本願発明では、中央に太い画素櫛歯電極を設けるため、横方向の開口率は不利になるが、太い画素櫛歯電極309Bの下で、共通信号配線302とソース電極306がオーバーラップした領域で蓄積容量を確保することにより、縦方向の開口率は広げることができる。実施例2よりも多くの蓄積容量が確保できるため、実施例2よりも縦方向の開口率を広げる効果が大きい。
 なお、実施例1~2と同様に、太い画素櫛歯電極309Bの幅は、共通シールド電極310Bと同等の幅を持つことが理想的だが、設計に応じ、太い画素櫛歯電極309Bの幅をできるだけ共通シールド電極310Bの幅に近づけることが望ましい。
 本願発明の第4の実施例について、図4を用いて説明する。図4は本願発明の第4の実施例に係る液晶表示装置の平面図である。電位分布や断面図は第1の実施例と同様である。
 第1の実施例との違いは、画素櫛歯電極409、太い画素櫛歯電極409B、共通櫛歯電極410、共通シールド電極410B、および映像信号配線404が屈曲しており、マルチドメイン化している点である。さらに、実施例2のように太い画素櫛歯電極409Bの下かつ平行に共通信号配線を形成してもよいし、実施例3のように太い画素櫛歯電極409Bの下かつ平行に第2の金属層からなるソース電極306を延伸形成してもよい。
 フレーム間の光り方は実施例1~3と同等である。加えて、マルチドメイン化していることから屈曲部を境に液晶分子の回転方向が異なる。
 フレーム間の光り方を対称にし、残像を改善する効果は実施例1~3と同等である。加えて、マルチドメイン化していることから、実施例1~3より視野角特性が良好である。
 なお、実施例1~3と同様に、太い画素櫛歯電極409Bの幅は、共通シールド電極410Bと同等の幅を持つことが理想的だが、設計に応じ、太い画素櫛歯電極409Bの幅をできるだけ共通シールド電極410Bの幅に近づけることが望ましい。
 本願発明の第5の実施例について、図5(a)および(b)を用いて説明する。図5(a)は本願発明の第5の実施例に係る液晶表示装置の平面図であり、図5(b)は表示領域の断面と電位分布の略図である。断面図は第1の実施例と同様である。実施例5はコラム数が4の倍数であるときの例であり、画素櫛歯電極は偶数本ある。
 この場合、画素の中央に来るのは共通櫛歯電極であるので、偶数本の画素櫛歯電極509のうち最も中央に近い1本509Bの幅を、共通シールド電極510Bと同等の幅にしている。実施例1~4と違い、太い画素櫛歯電極509Bは画素の中央に位置しておらず、画素を左右対称に分割していないが、太い画素櫛歯電極509Bの両側で、共通櫛歯電極510と画素櫛歯電極509の本数は同じであり、それぞれの領域の両端で共通シールド電極510Bの幅と、太い画素櫛歯電極509Bの幅が同じになり、対称性が保たれる。
 フレーム間の光り方を対称にし、残像を改善する効果は実施例1~4と同等であり、コラム数が2の奇数倍であるか、4の倍数であるかに影響されない。
 なお、実施例1~4と同様に、太い画素櫛歯電極509Bの幅は、共通シールド電極510Bと同等の幅を持つことが理想的だが、設計に応じ、太い画素櫛歯電極509Bの幅をできるだけ共通シールド電極510Bの幅に近づけることが望ましい。
 本願発明の第6の実施例について、図6(a)および(b)を用いて説明する。図6(a)は本願発明の第6の実施例に係る液晶表示装置の平面図であり、図6(b)は表示領域の断面と電位分布の略図である。断面図は第1の実施例と同様である。実施例6は、コラム数が4の倍数として最小である4のときの例であり、画素櫛歯電極は2本である。
 この場合も、実施例5と同様に画素の中央に来るのは共通櫛歯電極であり、2本の画素櫛歯電極609のうちの1本609Bの幅を、共通シールド電極610Bと同等の幅にしている。太い画素櫛歯電極509Bの右側では、共通櫛歯電極510と画素櫛歯電極509の本数は1本で同じになるのに対し、左側は0本となるが、このような場合でもそれぞれの領域で対称性が保たれる。
 フレーム間の光り方を対称にし、残像を改善する効果は実施例1~5と同等であり、コラム数が2の奇数倍であるか、4の倍数であるかに影響されない。
 なお、実施例1~5と同様に、太い画素櫛歯電極609Bの幅は、共通シールド電極610Bと同等の幅を持つことが理想的だが、設計に応じ、太い画素櫛歯電極509Bの幅をできるだけ共通シールド電極610Bの幅に近づけることが望ましい。
 本願発明は、横電界方式のアクティブマトリクス型液晶表示装置及び該液晶表示装置を表示装置として利用する任意の機器に利用可能である。
101、201、301、401、501、601、701 走査信号配線
102、202、302、402、502、602、702 共通信号配線
103、203、303、503、603、703 ゲート絶縁膜
104、204、304、404、504、604、704 映像信号配線
105、205、305、405、505、605、705 薄膜半導体層
106、206、306、406、506、606、706 ソース電極
107、207、307、507、607、707 パッシベーション膜
108、208、308、508、608、708 平坦化膜
109、209、309、409、509、609、709 画素櫛歯電極
109B、209B、309B、409B、509B、609B 太い画素櫛歯電極
110、210、310、410、510、610、710 共通櫛歯電極
110B、210B、310B、410B、510B、610B、710B 共通シールド電極
111、211、311、411、511、611、711 ソース電極-画素櫛歯電極間コンタクトホール
112、212、312、412、512、612、712 共通信号配線-共通櫛歯電極間コンタクトホール
113 第1の基板の配向層
114 第2の基板の配向層
115 オーバーコート層
116r、116g、116b 色層
117 遮光層
118 第1のガラス基板
119 第2のガラス基板
120 第1の基板側の偏光板
121 第2の基板側の偏光板
122 液晶層

Claims (6)

  1.  第一の基板と、対向する第二の基板と、前記第一基板と前記第二基板との間に挟まれた状態で保持されている液晶層とからなる液晶表示装置であって、
     前記第一基板は、ゲート電極、ドレイン電極、ソース電極を有する薄膜トランジスタと、表示すべき画素に対応して透明性の導電膜からなる画素櫛歯電極と、基準電位が与えられる共通櫛歯電極および共通シールド電極と、走査信号配線と、前記走査信号配線と平行するように配置される共通信号配線と、前記共通信号配線と直交するように配置される映像信号配線を備え、
     前記薄膜トランジスタは前記走査信号配線と前記映像信号配線の交点付近に形成されており、
     前記ゲート電極は前記走査信号配線に、前記ドレイン電極は前記映像信号配線に、前記ソース電極は前記画素櫛歯電極に、前記共通櫛歯電極及び前記共通シールド電極は前記共通信号配線に、それぞれ電気的に接続されており、
     前記映像信号配線は絶縁膜を介して配線幅方向に前記共通シールド電極で覆われており、
     前記画素櫛歯電極と前記共通櫛歯電極の間に印加される、前記第一基板の表面に略平行な電界により、前記液晶層の分子軸を前記第一基板に平行な面内において回転させることにより表示を行う横電界方式のアクティブマトリクス型液晶表示装置において、
     複数本の前記画素櫛歯電極のうち少なくとも1本の前記画素櫛歯電極の幅は、他の前記画素櫛歯電極及び前記共通櫛歯電極の幅より太く、その幅太画素櫛歯電極を除く他の前記画素櫛歯電極及び前記共通櫛歯電極の幅は互いに略同じであり、
     前記幅太画素櫛歯電極の幅は、前記共通シールド電極の幅と略同じである液晶表示装置。
  2.  前記幅太画素櫛歯電極の下層であって、その長手方向に平行に前記共通信号配線が一体的に形成されていることを特徴とする請求項1に記載の液晶表示装置。
  3.  前記幅太画素櫛歯電極の下層であって、その長手方向に平行に前記ソース電極が延伸形成されていることを特徴とする請求項2に記載の液晶表示装置。
  4.  前記幅太画素櫛歯電極は、単位画素の中央または最も中央に近い位置に形成されることを特徴とする請求項1乃至3に記載の液晶表示装置。
  5.  前記幅太画素櫛歯電極の両側で、前記共通櫛歯電極と前記画素櫛歯電極の本数が同じであることを特徴とする、請求項1乃至4に記載の液晶表示装置。
  6.  前記幅太画素櫛歯電極の片側で、前記共通櫛歯電極と前記画素櫛歯電極の本数が同じであることを特徴とする、請求項1乃至4に記載の液晶表示装置。
PCT/JP2013/068448 2012-07-04 2013-07-04 液晶表示装置 WO2014007355A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014523797A JP6187941B2 (ja) 2012-07-04 2013-07-04 液晶表示装置
CN201380035422.6A CN104471472B (zh) 2012-07-04 2013-07-04 液晶显示装置
US14/412,492 US9383613B2 (en) 2012-07-04 2013-07-04 Liquid-crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012150957 2012-07-04
JP2012-150957 2012-07-04

Publications (1)

Publication Number Publication Date
WO2014007355A1 true WO2014007355A1 (ja) 2014-01-09

Family

ID=49882106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068448 WO2014007355A1 (ja) 2012-07-04 2013-07-04 液晶表示装置

Country Status (4)

Country Link
US (1) US9383613B2 (ja)
JP (1) JP6187941B2 (ja)
CN (1) CN104471472B (ja)
WO (1) WO2014007355A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048013A (ko) 2014-10-23 2016-05-03 도쿄엘렉트론가부시키가이샤 화소 전극의 패턴 형성 방법 및 형성 시스템

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101997745B1 (ko) * 2013-01-25 2019-07-09 삼성디스플레이 주식회사 액정 표시 장치
CN204314581U (zh) * 2015-01-08 2015-05-06 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
CN105789264A (zh) * 2016-05-06 2016-07-20 京东方科技集团股份有限公司 一种曲面显示面板及其制备方法、显示装置
CN109581769A (zh) * 2018-12-11 2019-04-05 合肥鑫晟光电科技有限公司 像素结构、阵列基板及显示面板

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337339A (ja) * 1999-10-21 2001-12-07 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4047586B2 (ja) * 2002-01-10 2008-02-13 Nec液晶テクノロジー株式会社 横電界方式のアクティブマトリクス型液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433596B1 (ko) 1999-10-21 2004-05-31 마쯔시다덴기산교 가부시키가이샤 액정표시장치
JP2002323706A (ja) 2001-02-23 2002-11-08 Nec Corp 横電界方式のアクティブマトリクス型液晶表示装置及びその製造方法
JP4603560B2 (ja) 2001-02-23 2010-12-22 Nec液晶テクノロジー株式会社 横電界方式のアクティブマトリクス型液晶表示装置及び電子機器
JP2003140188A (ja) 2001-11-07 2003-05-14 Hitachi Ltd 液晶表示装置
CN1207617C (zh) * 2001-11-15 2005-06-22 Nec液晶技术株式会社 平面开关模式有源矩阵型液晶显示器件及其制造方法
JP4248848B2 (ja) * 2002-11-12 2009-04-02 奇美電子股▲ふん▼有限公司 液晶表示セルおよび液晶ディスプレイ
KR100849599B1 (ko) * 2007-02-05 2008-07-31 비오이 하이디스 테크놀로지 주식회사 에프에프에스 모드 액정표시장치
JP5266574B2 (ja) * 2008-03-19 2013-08-21 Nltテクノロジー株式会社 液晶表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337339A (ja) * 1999-10-21 2001-12-07 Matsushita Electric Ind Co Ltd 液晶表示装置
JP4047586B2 (ja) * 2002-01-10 2008-02-13 Nec液晶テクノロジー株式会社 横電界方式のアクティブマトリクス型液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048013A (ko) 2014-10-23 2016-05-03 도쿄엘렉트론가부시키가이샤 화소 전극의 패턴 형성 방법 및 형성 시스템

Also Published As

Publication number Publication date
CN104471472B (zh) 2017-03-15
US9383613B2 (en) 2016-07-05
JPWO2014007355A1 (ja) 2016-06-02
US20150185564A1 (en) 2015-07-02
JP6187941B2 (ja) 2017-08-30
CN104471472A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5156506B2 (ja) 液晶表示装置
US9557620B2 (en) TFT array substrate and display device with tilt angle between strip-like pixel electrodes and direction of initial alignment of liquid crystals
US20140267962A1 (en) Liquid crystal display
US9097951B2 (en) Thin film transistor array substrate and method for manufacturing the same, and liquid crystal display device
JP5127485B2 (ja) 液晶表示装置
JP2009103797A (ja) 液晶表示装置
JP6187941B2 (ja) 液晶表示装置
US8570465B2 (en) Liquid crystal display
US10620487B2 (en) Pixel structure, array substrate, display device and method for manufacturing the same
JP2010169814A (ja) 液晶表示装置
JP2009186869A (ja) 液晶表示装置
US20200050064A1 (en) Pixel structure
KR20060131014A (ko) 고투과율을 위한 프린지 필드 스위칭 모드 액정표시장치
TWI553877B (zh) 薄膜電晶體基板、顯示面板及顯示裝置
WO2013007187A1 (zh) 阵列基板、液晶面板及显示设备
JP2015118193A (ja) 液晶表示装置
JP2019128429A (ja) 液晶表示装置
TW200305759A (en) IPS-LCD device with a color filter formed on an array substrate
JP2016014779A (ja) 液晶表示装置
TWI509332B (zh) 顯示面板
CN108490705B (zh) 阵列基板、液晶显示面板与显示装置
KR102422555B1 (ko) 표시장치
JP2015135411A (ja) 液晶表示装置
KR102606508B1 (ko) 액정표시장치
JP2009069332A (ja) 液晶表示パネル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813127

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014523797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412492

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813127

Country of ref document: EP

Kind code of ref document: A1