WO2014007033A1 - 塩排水の処理方法及びその処理装置 - Google Patents

塩排水の処理方法及びその処理装置 Download PDF

Info

Publication number
WO2014007033A1
WO2014007033A1 PCT/JP2013/066138 JP2013066138W WO2014007033A1 WO 2014007033 A1 WO2014007033 A1 WO 2014007033A1 JP 2013066138 W JP2013066138 W JP 2013066138W WO 2014007033 A1 WO2014007033 A1 WO 2014007033A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
sodium
formula
temperature
electrode chamber
Prior art date
Application number
PCT/JP2013/066138
Other languages
English (en)
French (fr)
Inventor
沖代 賢次
佐々木 洋
山本 浩貴
亜由美 幡野
松尾 俊明
重雄 幡宮
みさき 隅倉
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Publication of WO2014007033A1 publication Critical patent/WO2014007033A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/07Preparation from the hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46155Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature

Definitions

  • the present invention relates to a salt effluent treatment method and a treatment apparatus thereof, and more particularly to a salt effluent treatment method and treatment apparatus suitable for volume reduction treatment of waste water containing sodium chloride.
  • accompanying water containing salt is generated along with oil and natural gas.
  • the accompanying water is usually returned to the wells of oil and gas fields in order to suppress land subsidence.
  • the amount of generated accompanying water is not limited by treatment of the accompanying water from the viewpoint of environmental protection. There may be a need to approach zero.
  • seawater desalination there is a case where the concentrated salt water is returned to the sea, which may cause a change in the environment, and it is desirable to reduce waste water containing salt as much as possible.
  • Patent Document 1 adopts a method in which electricity, steam, and the like necessary for concentration of wastewater are covered by supply of power by an internal combustion engine such as a gas turbine and a generator, and supply of steam by a steam generator by heat of combustion exhaust gas. ing. This method has problems associated with improvement in energy use efficiency and reduction in the generation amount of exhaust gas such as carbon dioxide. Further, Patent Document 1 describes a method of further reducing the volume to a salt solid centered on NaCl by evaporating and drying the salt drainage.
  • An example of conventional methods for converting water containing sodium chloride into other valuable materials is the production of caustic soda and liquefied chlorine by electrolysis.
  • chlorine ions are oxidized at the positive electrode and volatilized as chlorine gas, and the remaining sodium ions move to the negative electrode side.
  • hydrogen ions are reduced and the generated hydrogen gas is volatilized, and the remaining hydroxide ions generate sodium hydroxide (caustic soda) together with sodium ions.
  • chlorine gas For chlorine gas, it is usually due to condensation of impurities centered on moisture by cooling to 0 to 15 ° C (rough purification), drying by aeration to concentrated sulfuric acid, compression and cooling to below the boiling point of chlorine (-34 ° C). Through the liquefaction process, it is converted to liquefied chlorine. Liquefied chlorine is used as a raw material for synthesizing hydrochloric acid, vinyl chloride, hypochlorite and the like.
  • chlorine gas is corrosive and harmful, it is necessary to select equipment for handling the gas before drying, selection of piping materials (glass lining material, Teflon (registered trademark) seal, etc.), detection of gas leaks, and the like.
  • piping materials glass lining material, Teflon (registered trademark) seal, etc.
  • detection of gas leaks and the like.
  • hydrogen gas is a flammable gas, it is necessary to ensure sufficient exhaust and safety so that it does not remain in the electrolytic cell.
  • the present invention has been made in view of the above points, and the object of the present invention is not only low cost, but also high yield and high efficiency in a substance that can effectively use sodium chloride with low environmental load.
  • An object of the present invention is to provide a salt effluent treatment method and a treatment apparatus that can be converted.
  • the salt drainage treatment method of the present invention is necessary for concentrating salt drainage containing sodium chloride to produce high-concentration salt drainage, and for concentrating the salt drainage.
  • a high-concentration salt drainage is injected into an electrolytic cell composed of a positive electrode chamber, a negative electrode chamber and an ion exchange membrane separating the high-concentration salt drainage, and electrolysis is performed using the electrode to form water.
  • the seventh step of supplying, and the temperature of the aeration tank for performing the fourth step is T1 (° C.)
  • the temperature of the precipitation tank for performing the fifth step is T2 (° C.)
  • the seventh step The following (Formula 1), (Formula 2), and (Formula 3) are satisfied simultaneously when the temperature of the heat exchanger that performs the process is T3 (° C.).
  • the salt wastewater treatment apparatus of the present invention is formed of a concentrating device for concentrating salt wastewater containing sodium chloride, a positive electrode chamber, a negative electrode chamber, and an ion exchange membrane separating the positive electrode chamber, An electrolyzer that electrolyzes salt wastewater concentrated by a concentrator, and a generator that generates electrical energy necessary for concentrating salt wastewater in the concentrator and electrolyzing salt wastewater in the decomposition layer An aeration tank for producing sodium carbonate and / or sodium hydrogen carbonate by contacting sodium hydroxide and carbon dioxide produced in the negative electrode inserted in the negative electrode chamber of the electrolytic cell, and produced in the aeration tank A precipitation tank for crystallizing the sodium carbonate and / or sodium bicarbonate and separating and recovering the sodium carbonate and / or sodium bi
  • FIG. 4 is a plan view of FIG. 3. It is a perspective view which shows the other example of the electrolytic vessel employ
  • FIG. 1 It is a perspective view which shows the further another example of the electrolytic cell employ
  • salt drainage containing sodium chloride discharged from the concentrator is electrolyzed in an electrolytic cell to obtain sodium hydroxide, which is then burned.
  • carbon dioxide contained in the combustion gas is absorbed and reacted with sodium hydroxide to produce sodium bicarbonate (sodium bicarbonate, NaHCO 3 ) and / or sodium carbonate (Na 2 CO 3 ).
  • the present invention has led to the invention of a salt effluent treatment method and a treatment device for fixing carbon dioxide and recovering these products efficiently.
  • the point is to efficiently recover sodium bicarbonate and sodium carbonate by controlling the temperature of the aeration tank (electrolysis tank depending on the configuration), precipitation tank, and heat exchanger.
  • FIG. 11 shows an example in which the salt drainage treatment apparatus is applied to an actual coal gas field.
  • the salt effluent treatment system shown in the figure includes an RO membrane system that treats salt effluent accompanying a coal gas field, a system that obtains clean water by a MED (Multi-Effect Distillation) system, and a power / heat supply system that drives the system. And an electrolysis / volume-reduction system that treats high-concentration salt wastewater generated in the MED system to obtain valuable salts such as sodium carbonate and sodium hydrogencarbonate, and a chlorine purification / liquefaction system that treats chlorine gas generated by electrolysis Is done.
  • RO membrane system that treats salt effluent accompanying a coal gas field
  • MED Multi-Effect Distillation
  • a power / heat supply system that drives the system.
  • an electrolysis / volume-reduction system that treats high-concentration salt wastewater generated in the MED system to obtain valuable salts such as sodium carbonate and sodium hydrogencarbonate
  • 101 is a gas field
  • 102 is a gas treatment device
  • 103 is a water absorption pump
  • 104 is a strainer
  • 105 is a pretreatment device such as an MF membrane or UF membrane
  • 106 is a pressurized air tank
  • 107 is an alkali supply tank
  • 108 is an acid supply tank
  • 109 is a neutralization tank
  • 110 is a high-pressure water pump
  • 111 is a RO membrane desalination device
  • 112 is a chemical cleaning / drainage treatment device
  • 113 is a pressure energy recovery device
  • 114 is a backwashing device (blower).
  • 115 is a product gas supply blower
  • 116 is an MED device
  • 117 is a heat exchanger
  • 118 is a heat dissipation unit
  • 119 and 120 are ejectors
  • 121 is a gas turbine
  • 122 and 148 are generators
  • 123 is an exhaust heat recovery boiler
  • 124 , 125 and 126 are liquid feed pumps
  • 127 is a transformer
  • 128 is an electrolytic cell
  • 129 is a scrubber
  • 130 and 134 are powder separators
  • 133 CO 2 absorber 135 sodium carbonate bath
  • 136 heat exchanger cooler 137 gas-liquid separator
  • 138 is a dryer
  • 139 is concentrated sulfuric acid bath
  • 140, 141, 142 145, 152 are liquid feed pumps
  • 143 is a sulfuric acid concentration tank
  • 144 is a chlorine gas liquefying device
  • 146 is a liquefied chlorine tank
  • 147 is
  • the aeration method there are a method in which aeration is directly performed on the electrolytic cell, a method in which the alkaline solution discharged from the electrolytic cell is aerated, and the like.
  • the aeration cell is the same as the negative electrode chamber of the electrolytic cell.
  • the final product can be recovered as a solid using the heat of the exhaust gas.
  • the free water not only the free water but also the crystallization water of NaHCO 3 and Na 2 CO 3 can be devolatilized.
  • sodium hydroxide is produced by electrolysis of salt effluent, and this sodium chloride and carbon dioxide are reacted to increase the efficiency of producing sodium bicarbonate and / or sodium carbonate. The details will be described below.
  • Embodiment 1 of the salt drainage treatment apparatus of the present invention will be described.
  • FIG. 1 shows a first embodiment of the salt drainage treatment apparatus of the present invention.
  • the salt effluent treatment apparatus of the present embodiment includes an electrolysis mechanism such as an electrolyzer 14, a MED (evaporation concentration apparatus) 2, a power generation mechanism including a generator 24, and a control mechanism including an arithmetic unit 1. ing.
  • the high concentration salt water 29 from the salt drain 41 and the electrolytic cell 14 is supplied to the MED 2 by the pump 7 or the like, where it is concentrated and purified into the clean water 30 and the high concentration salt drain 28. To be separated.
  • the separated clean water 30 can also be supplied to the negative electrode side.
  • the separated high-concentration salt drainage 28 is supplied to the electrolytic cell 14.
  • the electric power for operating the MED 2 is electric energy 23 supplied from the generator 24 driven by the gas turbine 12.
  • the number of the gas turbines 12 and the generators 24 may be increased to two or more as necessary when the power is insufficient. Moreover, by providing a plurality of gas turbines in this way, it can be used as a backup in case of failure.
  • the high-concentration salt drain 28 supplied from the MED 2 to the electrolytic cell 14 is in the positive electrode chamber of the electrolytic cell 14, and the sodium carbonate aqueous solution 34 heated by the heat exchanger 13 is in the negative electrode chamber of the electrolytic cell 14. Supplied respectively.
  • the high-concentration salt drainage 28 in the positive electrode chamber and the sodium carbonate aqueous solution 34 in the negative electrode chamber are electrolyzed by the current flowing from the electrodes inserted in the positive electrode chamber and the negative electrode chamber, respectively. It is converted into an aqueous sodium solution 26.
  • the positive electrode chamber and the negative electrode chamber there are a water level meter (+) 3 and a water level meter ( ⁇ ) 4 for measuring the water level, a salt concentration meter (+) 5 and a salt concentration meter ( ⁇ ) 6 for measuring the salt concentration.
  • the measured values measured by the water level meter (+) 3 and the water level meter ( ⁇ ) 4, the salt concentration meter (+) 5 and the salt concentration meter ( ⁇ ) 6 are input to the arithmetic unit 1. ing. Furthermore, in this embodiment, a chlorine ion concentration meter (+) 31 for measuring the chlorine ion concentration in the positive electrode chamber of the electrolytic cell 14 is provided, and the measured chlorine ion concentration data in the positive electrode chamber is input to the arithmetic unit 1. It has become.
  • the chlorine gas 18 generated in the positive electrode chamber during the electrolysis in the electrolytic cell 14 is supplied to the cooler 8, cooled by the cooler 8, and then separated and washed into water vapor and salts by the mist separator 9. The Then, after drying with the drying tower 10 to which the concentrated sulfuric acid 19 is supplied, it is cooled and pressurized by the cooler 11 and stored as liquid chlorine 21 in the tank. The generated hydrogen is supplied to the gas turbine 12 as fuel.
  • the high-concentration salt water 29 discharged from the positive electrode chamber of the electrolytic cell 14 is supplied again to the MED 2 and concentrated.
  • Reference numeral 20 denotes a route of waste sulfuric acid from the drying tower 10.
  • a sodium hydroxide aqueous solution 26 is formed by the above reaction, and is introduced into the aeration tank 15 through the pump 7.
  • the sodium hydroxide aqueous solution 26 reacts with the carbon dioxide in the exhaust gas 25 by bringing the sodium hydroxide aqueous solution 26 into contact with the exhaust gas 25 containing carbon dioxide introduced from the CO 2 blowing section 16. , Conversion to sodium bicarbonate 27 and / or sodium carbonate.
  • Sodium hydrogen carbonate 27 and / or an aqueous sodium carbonate solution generated in the aeration tank 15 is introduced into the precipitation tank 42.
  • sodium bicarbonate 27 and / or sodium carbonate is precipitated by setting the temperature different from that of the aeration tank 15 and using the temperature dependency of the solubility of the substance in water. For example, as shown in FIG. 8, by setting the temperature of the aeration tank 15 to T1 and the temperature of the precipitation tank 42 to T2, an amount corresponding to the solubility difference W1-W2 can be recovered.
  • the centrifugal separation mechanism 17 is used as a means for collecting the precipitate in the precipitation tank 42.
  • the centrifugal separation mechanism 17 can efficiently separate and collect the precipitate and the aqueous solution from the solid-liquid material.
  • the gas turbine 12 is supplied with hydrogen gas 22 as a fuel from the positive electrode chamber of the electrolytic cell 14, and the gas turbine 12 drives the generator 24 to generate power.
  • the electric energy 23 generated by the generator 24 is used for the operation of the MED 2 and the electrolytic cell 14.
  • An important point for efficiently recovering the target sodium hydrogen carbonate 27 and / or sodium carbonate solids of the present embodiment is that the temperatures of the aeration tank 15, the precipitation tank 42, and the heat exchanger 13 are set to T1 respectively. , T2, and T3, the following relationship is satisfied at the same time.
  • FIG. 9 shows the temperature dependence of the solubility of sodium carbonate in water in this example.
  • the difference in solubility at the temperature shown in FIG. 9 can be collected. From the solubility curve of sodium carbonate, it can be seen that it has a maximum value in the vicinity of 40 ° C., and the solubility hardly changes at a temperature higher than that.
  • the temperature (T3) of the heat converter 13 needs to be higher than at least the temperature (T2) of the precipitation tank 42.
  • T3 is lower than T2
  • sodium bicarbonate 27 and sodium carbonate are deposited in the heat exchanger 13.
  • the piping in the vicinity of the heat exchanger 13 is clogged, causing a problem as a continuous system.
  • the upper limit of T3 is 100.3 ° C. This is a temperature at which the aqueous solution passing through the heat exchanger 13 is not boiled.
  • the boiling point of water is 100 ° C., but since the sodium carbonate remains slightly dissolved in the aqueous solution here, the boiling point can be increased.
  • the temperature T1 of the aeration tank 15 is preferably higher as long as it is at least higher than the temperature T2 of the precipitation tank 42 from the viewpoint of solubility.
  • the condition of (Equation 4) is required.
  • sodium hydrogen carbonate 27 and / or sodium carbonate is generated by blowing exhaust gas 25 containing carbon dioxide into the aeration tank 15.
  • the solubility of carbon dioxide in water is as shown in the temperature dependence shown in FIG. That is, the lower the temperature, the higher the solubility of carbon dioxide.
  • the solubility of carbon dioxide at 0 ° C. is about 4 times that at 60 ° C. That is, by increasing the solubility of carbon dioxide, the production of sodium hydrogen carbonate 27 and sodium carbonate in the aeration tank 15 can be promoted.
  • the temperature T1 of the aeration tank 15 is a temperature range in which both of (1) increasing the solubility of carbon dioxide and (2) increasing the solubility of sodium bicarbonate 27 are compatible. In the temperature range of (Formula 4), (1) and (2) can be satisfied simultaneously. Furthermore, the temperature T1 of the aeration tank 15 is desirably around 40 ° C. at which the solubility is maximum.
  • the lower limit value of the temperature T2 of the precipitation tank 42 is considered as follows. Considering precipitation of sodium carbonate or the like, it is preferable that the difference from the temperature T1 of the aeration tank 15 is large. That is, the lower the temperature T2 of the precipitation tank 42, the better. However, it is necessary to consider a lower limit for the temperature T2 of the precipitation tank 42 as well. When the temperature is set to an extremely low temperature, there is a concern that the aqueous solution itself may solidify in addition to the intended precipitation of sodium carbonate.
  • the lower limit value of the temperature T2 of the precipitation tank 42 was set as follows. That is, the temperature at which the aqueous solution itself solidifies was set as the lower limit. In the aqueous solution in which the target sodium carbonate is precipitated by lowering the temperature T2 of the precipitation tank 42 to 0 ° C., about 6 g of sodium carbonate is dissolved (FIG. 9).
  • sodium carbonate is an impurity and causes a freezing point depression, so the aqueous solution does not solidify at normal 0 ° C.
  • the freezing point depression of this aqueous solution it can be calculated as follows.
  • Kf the freezing point depression coefficient
  • m the molar concentration of sodium carbonate
  • the temperature T1 of the aeration tank 15 may be in an environment as shown in (Expression 6). That is, the temperature T1 of the aeration tank 15 is lower than 40 ° C. In such a case, the conditions described in (Equation 7) are particularly essential. That is, it is necessary to set the temperature T3 of the heat exchanger 13 to a temperature higher than the temperature T1 of the aeration tank 15.
  • the aqueous solution separated in the precipitation tank 42 may be supplied again to the negative electrode chamber of the electrolytic cell 14 via the heat exchanger 13.
  • sodium hydrogen carbonate 27 and sodium carbonate partially remain and dissolve, and are returned again to the negative electrode chamber of the electrolytic cell 14 and passed through the precipitation step, so that sodium hydrogen carbonate is more efficiently obtained. 27 and sodium carbonate can be recovered.
  • the temperature T2 of the precipitation tank 42 needs to be adjusted as described above, and for example, needs to be set lower than that of the aeration tank 15.
  • the aqueous solution can be heated using the electrical energy 23 from the generator 24.
  • a cooling function like a refrigerator is required.
  • the electric energy 23 from the generator 24 may be used.
  • the exhaust heat from the gas turbine 12 can also be utilized, for example.
  • An absorption refrigerator is a refrigerator that absorbs a refrigerant in a liquid having a high absorption capacity and vaporizes the refrigerant by a low pressure generated at that time to obtain a low temperature.
  • water having high absorption power uses water and the refrigerant uses ammonia, for example.
  • cold water can be obtained by putting the exhaust heat into the refrigeration apparatus.
  • the precipitation tank 42 can be cooled by using the cold water obtained by the absorption refrigerator using the exhaust heat from the gas turbine 12 or the like.
  • sodium hydroxide is generated by electrolysis of the salt effluent, and this sodium hydroxide and carbon dioxide are reacted so that sodium bicarbonate (sodium bicarbonate) 27 and / or carbonate
  • sodium bicarbonate sodium bicarbonate
  • the cost is low, but also the effect of converting the sodium chloride into a substance that can be effectively used with a low environmental load can be obtained with high yield and high efficiency.
  • salt wastewater treatment it becomes possible to preferentially produce a more valuable salt, and to minimize the salt concentration in the salt wastewater.
  • the temperature of the wastewater can be lowered, which has an impact on the environment. Can be reduced.
  • FIG. 2 shows a second embodiment of the salt drainage treatment apparatus of the present invention.
  • the negative electrode chamber of the electrolytic cell 14 and the aeration tank 15 are different, but in this example shown in FIG. 2, the negative electrode chamber of the electrolytic cell 14 also serves as the aeration tank 15. ing.
  • exhaust gas 25 containing carbon dioxide is introduced into the negative electrode chamber of the electrolytic cell 14, and carbon dioxide is brought into contact with sodium hydroxide in the negative electrode chamber, so that sodium hydrogen carbonate and / or sodium carbonate is obtained.
  • Convert to Sodium hydrogen carbonate 27 and / or sodium carbonate aqueous solution generated in the negative electrode chamber of the electrolytic cell 14 is introduced into the precipitation tank 42, and the precipitation tank 42 is set to a temperature different from that of the negative electrode chamber of the electrolytic cell 14 that also serves as an aeration tank, By utilizing the temperature dependence of the solubility of the substance in water, sodium bicarbonate 27 and / or sodium carbonate is precipitated.
  • the centrifugal separation mechanism 17 since the centrifugal separation mechanism 17 is used as a means for collecting the precipitate in the precipitation tank 42, the centrifugal separation mechanism 17 can efficiently separate and collect the precipitate and the aqueous solution from the solid-liquid material. And sodium bicarbonate 27 and / or sodium carbonate can be obtained.
  • the temperature T1 is the temperature of the negative electrode chamber of the electrolytic cell 14.
  • Such a configuration of the present embodiment has the advantage that the same effect as that of the first embodiment can be obtained, the configuration is simplified by the absence of the aeration tank, and the cost is reduced.
  • FIG. 3 and 4 show an example of an electrolytic cell employed in Examples 1 and 2 of the present invention.
  • 200 is an electrolytic cell constituting an electrolytic cell
  • 201 is a positive electrode chamber
  • 202 is a negative electrode chamber
  • 203 is high-concentration salt water filled in the positive electrode chamber 201
  • 204 is negative electrode electrolyzed water filled in the negative electrode chamber 202
  • 205 is a positive electrode
  • 206 is a negative electrode
  • 207 is a temperature sensor of the positive electrode chamber 201
  • 207 ' is a temperature sensor of the negative electrode chamber 202
  • 208 is a salt concentration sensor of the positive electrode chamber 201
  • 208' is a salt concentration sensor of the negative electrode chamber 202
  • 209 is Chlorine gas
  • 210 is a chlorine gas recovery port
  • 211 is a hydrogen gas discharge port
  • 212 is a negative electrode electrolyzed water 204 inlet
  • 213 is a high-concentration salt water inlet
  • 214 is hydrogen
  • the positive electrode chamber 201 and the negative electrode chamber 202 are installed adjacent to each other only through the ion exchange membrane 221, and the positive electrode 205 and the negative electrode 206 are adjacent to the ion exchange membrane 221 in the positive electrode chamber 201 and the negative electrode chamber 202, respectively.
  • the ion exchange membrane 221 is laid in parallel.
  • the positive electrode 205 and the negative electrode 206 are provided with a positive electrode terminal 219 and a negative electrode terminal 220, respectively.
  • the positive electrode 205 and the negative electrode 206 are preferably made of a plate made of copper, platinum, gold, iridium oxide, or the like, and these may have a mesh shape installed on a current collector. Further, the positive electrode 205 and the negative electrode 206 are preferably arranged as close to the ion exchange membrane 221 as possible in order to minimize loss due to resistance during electrolysis.
  • the ion exchange membrane 221 As the ion exchange membrane 221, a semi-permeable membrane that selectively permeates cations such as sodium is used. Although this film moves sodium ions from the positive electrode to the negative electrode side, chloride ions and hydroxide ions cannot permeate the film, so that chlorine is contained in the positive electrode chamber 201 and sodium hydroxide is contained in the negative electrode chamber 202. Accumulated. If the ion exchange membrane 221 is not provided, it is not preferable because chloride ions, hydroxide ions, and sodium ions react with each other to form sodium hypochlorite and the like.
  • the positive electrode chamber 201 is provided with an introduction port 213 and a discharge port 216 for introducing the high-concentration salt water 203, and the high-concentration salt water 203 is input and drained.
  • the negative electrode chamber 202 is provided with an inlet 212 and a discharge port 215 for introducing the negative electrode electrolyzed water 204, and the negative electrode electrolyzed water 204 is input and discharged.
  • the negative electrode electrolyzed water 204 is introduced in order to perform electrolysis with low resistance, and is salt water containing a large amount of sodium ions and the like.
  • the positive electrode chamber 201 is provided with a recovery port 210 for recovering chlorine gas 209 generated by electrolysis
  • the negative electrode chamber 202 is provided with a recovery port 211 for recovering hydrogen gas 214 generated by electrolysis. Yes.
  • the positive electrode chamber 201 and the negative electrode chamber 202 are provided with temperature sensors 207 and 207 ′, salt concentration sensors 208 and 208 ′, and water level meters 217 and 218, respectively.
  • the temperature, salt concentration, and water level measured by these are transferred as data to the arithmetic device 1 shown in the first and second embodiments.
  • the electrolytic cell 14 configured in this manner, when an electric field is generated between the positive electrode 205 and the negative electrode 206, a current is generated across the ion exchange membrane 221, and sodium ions flow from the positive electrode 205 side to the negative electrode 206 side.
  • the above-described electrochemical reaction of Chemical Formula 1 and Chemical Formula 2 occurs at the electrode, and chlorine is generated on the positive electrode 205 side and hydrogen is generated on the negative electrode 206 side.
  • sodium hydroxide is formed. It is accumulated in the negative electrode electrolyzed water 204.
  • the electrolytic cell 200 is preferably provided with a small volume with respect to the electrode in order to efficiently electrolyze the high-concentration salt water 203 that has passed therethrough.
  • a plurality of the electrolytic cells 200 are installed in parallel. Thus, it is preferable to perform an electric field.
  • FIG. 5 shows another example of the electrolytic cell employed in Examples 1 and 2 of the present invention.
  • the exhaust gas 25 containing carbon dioxide from the generator 24 is aerated in the negative electrode chamber 202
  • sodium hydroxide and carbon dioxide generated in the negative electrode electrolyzed water 204 in the negative electrode chamber 202 are aerated in the negative electrode chamber 202.
  • This is an electrolytic cell for obtaining sodium bicarbonate 27 and / or sodium carbonate.
  • 222 is a carbon dioxide inlet
  • 223 is a carbon dioxide outlet.
  • FIG. 6 shows still another example of the electrolytic cell employed in Examples 1 and 2 of the present invention.
  • the example shown in the figure shows an electrolytic cell in which a plurality of electrolytic cells 200 shown in FIGS. 3 and 4 are arranged in parallel.
  • 200 is an electrolysis cell
  • 224 is a recovery tube for recovering hydrogen generated in the negative electrode chamber of each electrolysis cell
  • 225 is a recovery tube for recovering chlorine generated in the positive electrode chamber of each electrolysis cell 200
  • 226 is negative electrode electrolysis
  • An introduction pipe for water 204, 227 is an introduction pipe for high-concentration waste water introduced into the positive electrode chamber, 228 is a discharge pipe for negative electrode electrolyzed water 204, and 229 is a discharge pipe for high-concentration salt drainage in the positive electrode chamber.
  • FIG. 6 shows an example in which the electrolytic cells 200 shown in FIG. 3 are connected in parallel, but the number of cells in parallel is not particularly limited to this, and a large-capacity electrolytic cell such as 80 to 100 cells is used. It is also possible to form.
  • the hydrogen recovery pipe 224 is a pipe that connects the recovery port 211 provided in the negative electrode chamber of each electrolysis cell 200 in parallel, and is supplied again as fuel for the gas turbine 12, and if necessary. Exhaust by power from a blower (not shown).
  • the chlorine recovery pipe 225 is a pipe connecting the chlorine gas recovery port 210 provided in the positive electrode chamber of each electrolysis cell 200 in parallel, and the coolers 8 and 11, the mist separator 9, the drying tower of FIGS. 1 and 2. 10 is introduced into a chlorination section composed of 10 to form liquid chlorine 21 and finally carried out as a valuable resource. Exhaust by power such as a blower (not shown) if necessary.
  • these liquids are supplied to the electrolysis cell 200 by power of a liquid feed pump or the like separately provided through the introduction pipe 226 of the negative electrode electrolyzed water 204 and the introduction pipe 227 of the high-concentration salt drain to be introduced into the positive electrode.
  • the negative electrode electrolyzed water 204 is fed to a sodium carbonate or sodium hydrogen carbonate recovery unit by power of a liquid feed pump or the like separately provided through the discharge pipe 228 of the negative electrode electrolyzed water 204, and the high-concentration salt water 203 filled in the positive electrode chamber. Is introduced into the MED 2 or the negative electrode chamber 202 through the discharge pipe 229 of the high concentration salt drainage of the positive electrode.
  • FIG. 7 shows still another example of the electrolytic cell employed in each embodiment of the present invention.
  • the example shown in the figure shows an electrolytic cell in which a plurality of electrolytic cells 200 having a mechanism for aeration of carbon dioxide shown in FIG. 5 are arranged in parallel.
  • reference numeral 230 denotes an introduction pipe for the exhaust gas 25 containing carbon dioxide.
  • the introduction pipe 230 is a pipe for connecting the carbon dioxide introduction ports 222 of the electrolysis cells 200 in parallel, and is introduced using power such as a blower (not shown) as necessary.
  • the salt drainage treatment apparatus of Example 2 shown in FIG. 2 is used.
  • the aeration tank also serves as the negative electrode chamber of the electrolytic tank.
  • the setting of the temperature T1 of the aeration tank, the temperature T2 of the precipitation tank, and the temperature T3 of the heat converter differs for each application example.
  • Application example 1 The application example which processes the accompanying water discharged
  • carbon dioxide gas is introduced in the negative electrode chamber of the electrolytic cell. That is, since the aeration tank is also used as the negative electrode chamber of the electrolytic cell, the aeration tank and the negative electrode chamber of the electrolytic cell are the same.
  • Aeration tank temperature T1, precipitation tank temperature T2, and heat exchanger temperature T3 are set to 80 ° C., 20 ° C., and 40 ° C., respectively. This is a condition that satisfies the above (Formula 1), (Formula 2) and (Formula 3) simultaneously.
  • Concentrated high-concentration salt drainage is obtained by passing the accompanying water through the RO system and MED.
  • concentrations of cation species and anion species were as follows.
  • Cationic species Na 59,000 mg / L, Other cations 700 mg / L or less.
  • Anion species Cl 77, 200 mg / L, CO 3 181 mg / L, HCO 3 23,000 mg / L, Other anions 700 mg / L or less. Moreover, COD is 300 mg / L or less.
  • This salt drainage is put into the positive electrode chamber 201 of the electrolysis cell 200 shown in FIG.
  • the negative electrode chamber 202 is charged with 60,000 mg / L sodium carbonate aqueous solution. This is the electrolyzed water concentration after passing through the centrifugal separation mechanism 17 shown in FIG.
  • the internal methods of the positive electrode side and the negative electrode side of the electrolysis cell 200 are both 1 m ⁇ 1 m ⁇ 0.01 m, and the volume is 10 L.
  • the water temperature at the time of introduction of both is 70 ° C.
  • a voltage of 3V and a current of 60A are applied.
  • bubbles of chlorine gas are generated from the positive electrode, and electrolysis proceeds.
  • sodium ions in the positive electrode chamber 201 move to the negative electrode chamber 202 and the sodium ion concentration in the positive electrode chamber 201 decreases.
  • the sodium concentration in the positive electrode chamber 201 and the negative electrode chamber 202 is reduced by the sodium ion concentration adjusting mechanism. Since the difference is 3% or more, this state is set as a steady state, and high-concentration salt drainage is allowed to flow into a stable operation state.
  • the sodium ion concentration in the negative electrode chamber 202 becomes 72,000 mg / L. This indicates an increase of 12,000 mg / L sodium ion compared to the initial 60,000 mg / L. This shows that 21,000 mg / L of sodium hydroxide is generated in the negative electrode chamber 202.
  • exhaust gas 25 from the gas turbine 12 is blown into the sodium carbonate to form sodium carbonate, and crystallized to be collected in a tank as powder (sodium hydrogen carbonate 27).
  • the exhaust gas composition used in this application example is shown below.
  • the gas temperature immediately after being discharged from the gas turbine 12 is 330 ° C.
  • This gas is sent to the negative electrode chamber of the electrolytic cell 14 through the heat exchanger 13, and the temperature after passing through the heat exchanger 13 is 180 ° C. Since the carbon dioxide concentration is 0.01% or more, it becomes a normal operating condition.
  • the sodium carbonate recovered at this time becomes 5.5 kg when the flow rate of the high-concentration salt water passing through the electrolytic cell 14 is 100 L.
  • This condition satisfies (Expression 4) in addition to (Expression 1), (Expression 2), and (Expression 3).
  • the drainage composition, gas composition, and electrolysis conditions are the same as in Application Example 1.
  • the sodium carbonate recovered at this time becomes 6.0 kg when the flow rate of high-concentration drainage water flowing through the electrolytic cell 14 is 100 L.
  • This condition satisfies (Expression 4) and (Expression 5) in addition to (Expression 1), (Expression 2), and (Expression 3).
  • the sodium carbonate recovered at this time becomes 11.0 kg when the flow rate of high-concentration drainage water flowing through the electrolytic cell 14 is 100 L.
  • the sodium carbonate recovered at this time becomes 11.0 kg when the flow rate of high-concentration drainage water flowing through the electrolytic cell 14 is 100 L.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Neutralization Tank 110 ... High pressure water pump, 111 ... RO membrane desalination device, 112 ... Chemical cleaning / wastewater treatment device, 113 ... Pressure energy recovery device, 114 ... Backwash device, 115 ... Product gas supply blower, 116 ... MED device, 118 ... Radiating section, 119, 120 ... Ejector, 123 ... Waste heat recovery boiler, 124, 125, 126, 131, 132, 140, 141, 142, 145, 152 ... Liquid feed pump, 127 ... Transformer, 129 ... Scrubber , 130, 134 ... powder separator, 133 ... CO 2 absorber, 135 ... soda bath, 136 ...
  • salt concentration sensor in positive electrode chamber 208 '... salt concentration sensor in negative electrode chamber, 210 ... chlorine gas recovery port, 211 ... hydrogen gas discharge port, 212 ... negative electrode electrolyzed water inlet, 213 ... high concentration salt water introduced Mouth, 214 ... Hydrogen gas, 215 ... Negative electrode electrolyzed water outlet, 216 ... Positive electrode high-concentration salt water outlet, 217 ... Water level meter in positive electrode chamber, 218 ... Water level meter in negative electrode chamber, 219 ... Positive electrode terminal, 220 ... Negative electrode Terminal, 22 DESCRIPTION OF SYMBOLS ... Ion exchange membrane, 222 ... Carbon dioxide inlet, 223 ... Carbon dioxide outlet, 224 ...
  • Recovery tube for recovering hydrogen generated in the negative electrode chamber 225 ... Recovery tube for recovering chlorine generated in the positive electrode chamber, 226 ... negative electrode electrolyzed water introduction pipe, 227 ... high concentration salt effluent introduction pipe introduced into the positive electrode chamber, 228 ... negative electrode electrolyzed water discharge pipe, 229 ... high concentration salt effluent discharge pipe in the positive electrode compartment, 230 ... introduction of exhaust gas tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treating Waste Gases (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

 本発明の目的は、低コストであることは勿論、低環境負荷で塩化ナトリウムを有効利用可能な物質に高収率、かつ、高効率で転換できる塩排水の処理方法の提供にある。本発明の塩排水の処理方法は、上記課題を解決するために、電解槽の負極室に挿入されている負極に生成される水酸化ナトリウムと二酸化炭素を接触させて炭酸ナトリウム及び/又は炭酸水素ナトリウムを生成する曝気槽の温度をT1(℃)、該曝気槽で生成された炭酸ナトリウム及び/又は炭酸水素ナトリウムを結晶化させ、固液分離により炭酸ナトリウム及び/又は炭酸水素ナトリウムの結晶と水溶液を分離して回収する析出槽の温度をT2(℃)、該析出槽で分離した炭酸ナトリウム及び/又は炭酸水素ナトリウムの水溶液を加熱して電解槽の負極室に供給する熱交換器の温度をT3(℃)とした時に、T2<T1、T2<40.0(℃)、T2<T3<100.3(℃)を同時に満足することを特徴とする。

Description

塩排水の処理方法及びその処理装置
 本発明は塩排水の処理方法及びその処理装置に係り、特に、塩化ナトリウムを含む排水の減容処理に好適な塩排水の処理方法及びその処理装置に関するものである。
 油田、ガス田の採掘では、石油や天然ガスと共に塩分を含む随伴水が発生する。随伴水は、地盤沈下抑制等のため、通常、油田、ガス田の井戸に返送される場合が多い。しかし、採掘に用いる蒸気注入等の増大に伴い、井戸への返送量と比べて過剰量の随伴水が発生する場合については、近年、環境保護の観点から随伴水の処理により発生量を限りなくゼロに近づけるニーズが出てくる場合がある。また、海水淡水化においても、濃縮された塩水を海に返送することで環境への変動を招く場合もあり、塩を含む排水を出来るだけ低減することが望ましい。
 これらの処理について、従来は、RO(Reverse Osmosis)膜や加熱による濃縮処理による塩化ナトリウム等の塩を含んだ排水(塩排水)量を低減する技術がある。
 例えば、特許文献1では、排水の濃縮に必要となる電気、蒸気等を、ガスタービン等の内燃機関と発電機による電力供給、及び燃焼排ガスの熱による蒸気発生器による蒸気供給により賄う方式を取っている。この方式は、エネルギー使用効率の向上、二酸化炭素等の排気ガス発生量低減等が付随する課題が生じる。また、更に一歩進んで、塩排水の蒸発乾固によるNaClを中心とした塩の固体まで減容する方法も、特許文献1に記載されている。
 これについては、廃棄物をできるだけ低減するためには減容だけでなく、廃棄物を有価物に転換して社会で引き取りやすい状態にするか、或いはできれば有効利用してもらうことで消化する工夫が追加されることが望ましい。
 このような観点からは、固体塩まで減容の後、精製し食塩に転換するのは一つの有望な手段である。しかし、通常の食塩との製造コストと比較すると、様々な不純物除去工程を必要とする点で、排水から食塩を製造するのは経済的に著しく不利である。
 また、廃棄物から回収した製品を口にすることの生理的な拒絶感の観点からは、できるだけ通常の製造プロセスに近い方式で人間の健康を含めた環境への負荷が低い形で利用される製品に、高効率で転換できることが望ましく、これを達成する技術が高収率と共に望まれていた。
 塩化ナトリウムを含む水を他の有価物に転換する従来手法の一例に、電気分解による苛性ソーダと液化塩素の製造がある。
 本手法は、次式に示す電気化学反応を利用して製造を行うものである。
[化1]
 2NaCl→2Na++2Cl-→2Na++Cl2+2e-[化2]
 2H2O+2e-→2OH++H2 この反応では、苛性ソーダ生成量と等モル量の電荷が必要となるので、大規模で継続的
に実施する場合、膨大な直流電流が必要となる。また、塩化ナトリウム濃度について、電流の利用効率の観点からは低い方が望ましいが、設備規模の観点からは濃い方が望ましい。これらのバランスを考えると、塩化ナトリウム濃度は、15重量%程度に調整すると電流利用効率を高い水準に維持しつつ、設備規模の低減を実現することができる。
 また、塩素イオンが正極で酸化され塩素ガスとして揮発すると共に、残るナトリウムイオンは負極側に移行する。一方、負極側では水素イオンが還元され生成した水素ガスが揮発し、残された水酸化物イオンがナトリウムイオンと共に水酸化ナトリウム(苛性ソーダ)を生成する。
 塩素ガスについては、通常、0~15℃への冷却による水分を中心とした不純物の凝縮(粗い精製)、濃硫酸への曝気による乾燥、圧縮や塩素沸点(-34℃)以下への冷却による液化のプロセスを経て、液化塩素に変換される。液化塩素は、塩酸、塩化ビニル、次亜塩素酸塩等を合成する原料として用いられる。
 なお、塩素ガスは腐食性かつ有害なため、特に乾燥前のガスを取り扱う設備、配管の材料(ガラスライニング材、テフロン(登録商標)シール等)の選定、ガスリークの検知等が必要となる。水素ガスについては、可燃ガスのため、電解槽内にとどまらないよう十分な排気、安全確保が必要である。
 このように、効率の良い電解を行うためには、電源の確保、塩水の濃縮及び水素ガスの処理が必要となる。また、電気分解による苛性ソーダと液化塩素の製造技術を塩排水処理に適用する場合、これらに加えて、前述の電気、蒸気等のユーティリティのために必要なエネルギー使用効率の向上、二酸化炭素等の排気ガス発生量低減等を解決するための技術が必要であった。
国際公開第2012/008013号
 しかしながら、上述した従来の電気分解による苛性ソーダと液化塩素の製造技術では、効率の良い電気分解を行うためには、電源の確保、塩水の濃縮及び水素ガスの処理が必要となる。また、電気分解による苛性ソーダと液化塩素の製造技術を塩排水の処理に適用する場合は、電源の確保、塩水の濃縮及び水素ガスの処理に加えて、前述の電気、蒸気等のユーティリティのために必要なエネルギー使用効率の向上、及び二酸化炭素等の排気ガス発生量低減等を解決するための技術が必要であった。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、低コストであることは勿論、低環境負荷で塩化ナトリウムを有効利用可能な物質に高収率、かつ、高効率で転換できる塩排水の処理方法及びその処理装置を提供することにある。
 本発明の塩排水の処理方法は、上記課題を解決するために、塩化ナトリウムを含む塩排水を濃縮して高濃度塩排水を製造する第1の工程と、前記塩排水を濃縮するために必要な電気エネルギーを発生させる第2の工程と、前記高濃度塩排水を正極室と負極室及びそれを隔てるイオン交換膜とから構成される電解槽に注入し、電極を用いて電気分解して水酸化ナトリウムを生成させる第3の工程と、前記水酸化ナトリウムに前記第2の工程で生じる排ガス中に含有される二酸化炭素を接触させることにより炭酸ナトリウム及び/又は炭酸水素ナトリウムを得る第4の工程と、生成した炭酸ナトリウム及び/又は炭酸水素ナトリウムを析出槽で結晶化させる第5の工程と、前記結晶化させた炭酸ナトリウム及び/又は炭酸水素ナトリウムを固液分離により炭酸ナトリウム及び/又は炭酸水素ナトリウムの結晶と水溶液を分離して回収する第6の工程と、前記分離した水溶液を回収して熱交換器を通じて、前記分離水溶液を前記電解槽の負極室に供給する第7の工程とを含み、かつ、前記第4の工程を行う曝気槽の温度をT1(℃)、前記第5の工程を行う析出槽の温度をT2(℃)、前記第7の工程を行う熱交換器の温度をT3(℃)とした時に、下記(式1)と(式2)及び(式3)を同時に満足することを特徴とする。
 (式1):T2<T1
 (式2):T2<40.0(℃)
 (式3):T2<T3<100.3(℃)
 また、本発明の塩排水の処理装置は、上記課題を解決するために、塩化ナトリウムを含む塩排水を濃縮する濃縮装置と、正極室と負極室及びそれを隔てるイオン交換膜から形成され、前記濃縮装置で濃縮された塩排水を電気分解する電解槽と、前記濃縮装置での塩排水の濃縮及び前記分解層での塩排水の電気分解を実施するために必要な電気エネルギーを発生させる発電機と、前記電解槽の負極室に挿入されている負極に生成される水酸化ナトリウムと二酸化炭素を接触させて炭酸ナトリウム及び/又は炭酸水素ナトリウムを生成する曝気槽と、該曝気槽で生成された前記炭酸ナトリウム及び/又は炭酸水素ナトリウムを結晶化させ、固液分離により炭酸ナトリウム及び/又は炭酸水素ナトリウムの結晶と水溶液を分離して回収する析出槽と、該析出槽で分離した前記炭酸ナトリウム及び/又は炭酸水素ナトリウムの水溶液を加熱して前記電解槽の負極室に供給する熱交換器とを備え、
 前記曝気槽と析出槽及び熱交換器は、前記曝気槽の温度をT1(℃)、前記析出槽の温度をT2(℃)、前記熱交換器の温度をT3(℃)とした時に、下記(式1)と(式2)及び(式3)を同時に満足する関係にあることを特徴とする。
 (式1):T2<T1
 (式2):T2<40.0(℃)
 (式3):T2<T3<100.3(℃)
 本発明によれば、低コストであることは勿論、低環境負荷で塩化ナトリウムを有効利用可能な物質に高収率、かつ、高効率で転換できる効果を得ることができる。
本発明の塩排水の処理装置の実施例1を示すシステム構成である。 本発明の塩排水の処理装置の実施例2を示すシステム構成である。 本発明の塩排水の処理装置の実施例1及び2に採用される電解槽の例を示す斜視図である。 図3の平面図である。 本発明の塩排水の処理装置の実施例1及び2に採用される電解槽の他の例を示す斜視図である。 本発明の塩排水の処理装置の実施例1及び2に採用される電解槽の更に他の例を示す斜視図である。 本発明の塩排水の処理装置の実施例1及び2に採用される電解槽の更に他の例を示す斜視図である。 曝気槽と析出槽の温度差に伴う炭酸ナトリウムの回収量を示す特性図である。 本発明における炭酸ナトリウムの水への溶解度の温度依存性を示す特性図である。 本発明における二酸化炭素の水への溶解度の温度依存性を示す特性図である。 本発明の塩排水の処理装置を、実際の石炭ガス田に適用する例を示す図である。
 上記課題を解決するための手段について、本発明者等が鋭意検討した結果、濃縮装置から排出される塩化ナトリウムを含む塩排水を、電解槽で電気分解して水酸化ナトリウムを得、これに燃焼排ガスを曝気して、燃焼ガスに含まれる二酸化炭素を吸収させ、水酸化ナトリウムと反応させることで、炭酸水素ナトリウム(重曹、NaHCO3)及び/又は炭酸ナトリウム(Na2CO3)を生成させて二酸化炭素を固定化し、これら生成物を効率よく回収するようにした塩排水の処理方法及びその処理装置の発明に至ったものである。
 特に、本発明では、生成した炭酸水素ナトリウム及び/又は炭酸ナトリウムを結晶化させる析出槽、析出させた後に分離した水溶液を、熱交換器を介して電解槽に再供給するシステムを設けることが重要であり、更に、曝気槽(構成によっては電解槽)、析出槽、熱交換器の温度を制御することで、炭酸水素ナトリウムや炭酸ナトリウムを効率よく回収することがポイントである。
 上記塩排水の処理装置を、実際の石炭ガス田に適用する例を図11に示す。該図に示す塩排水処理システムは、石炭ガス田に随伴する塩排水を処理するRO膜システム、MED(Multi Effect Distillation)システムによって上水を得るシステムと、このシステムを駆動させる電力・熱供給システムと、上記MEDシステムで生じる高濃度塩排水を処理して炭酸ナトリウム、炭酸水素ナトリウムなどの有価塩を得る電解・減容システムと、電解によって生じる塩素ガスを処理する塩素精製・液化システムとから構成される。
 図11において、101はガス田、102はガス処理装置、103は吸水ポンプ、104はストレーナ、105はMF膜、UF膜等の前処理装置、106は加圧空気タンク、107はアルカリ供給タンク、108は酸供給タンク、109は中和タンク、110は高圧水ポンプ、 111はRO膜淡水化装置、112は薬品洗浄/排水処理装置、113は圧力エネルギー回収装置、114は逆洗装置(ブロア)、115は製品ガス供給ブロア、116はMED装置、117は熱交換器、118は放熱部、119、120はエジェクタ、121はガスタービン、122、148は発電機、123は排熱回収ボイラ、124、125、126は送液ポンプ、127は変圧器、128は電解槽、129はスクラバ、130、134は粉体分離機、131、132は送液ポンプ、133はCO2吸収装置、135は炭酸ソーダ槽、136は熱交換式冷却器、137は気液分離器、138は乾燥機、139は濃硫酸槽、140、141、142、145、152は送液ポンプ、143は硫酸濃縮槽、144は塩素ガス液化装置、146は液化塩素槽、147は蒸気タービンである。
 電気分解で得られる水酸化ナトリウムに燃焼排ガスを曝気することで、燃焼排ガスに含まれる二酸化炭素を吸収させ、苛性ソーダと反応させることで炭酸水素ナトリウム(重曹、NaHCO3)及び/又は炭酸ナトリウム(Na2CO3)を生成させて二酸化炭素を固定化し、これを回収する際、苛性ソーダの水溶液に変換することで塩化ナトリウムの水溶液と比べて、二酸化炭素の溶解吸収量が増大する。
 曝気の方法については、電解槽に直接曝気を実施する方法、電解槽から曝気槽へ排出されたアルカリ溶液に曝気する方法等がある。電解槽に直接曝気を実施する方法においては、例えば、曝気槽が電解槽の負極室と同一である場合である。
 電解槽で直接曝気する場合や電解槽から排出されたアルカリ溶液に曝気する場合、電解や燃焼排ガスの熱により反応液の温度が高くなるため、NaHCO3やNa2CO3の溶解度が増大し溶液として回収できるメリットがある。電解槽から排出されたアルカリ溶液に曝気する方法については、例えば、エジェクタを用いて溶液の流速及び流路狭化に伴う負圧により排ガスを引き込み溶解する方式等がある。
 また、アルカリ溶液に曝気する場合、通常、150-200℃程度は、ある燃焼排ガスの温度を予め下げておく必要がある。この熱エネルギーを有効利用する観点からは、排ガス排熱で液中の水分を蒸発除去し、NaHCO3、Na2CO3を乾燥させるアイデアを本発明者等は着想した。
 これにより、排ガスの熱を利用して固体として最終製品を回収可能と出来る。その際、蒸発するのは自由水だけでなくNaHCO3、Na2CO3の結晶水も脱揮可能となる。
また、最終製品としてガラス原料であるNaHCO3を想定する場合、ガラス製造時の高温工程での安全性の観点からは結晶水が除去されていることが望ましい。
 特に、本発明では塩排水を、電気分解により水酸化ナトリウムを生成し、この塩化ナトリウムと二酸化炭素を反応させて炭酸水素ナトリウム及び/又は炭酸ナトリウムを生成する効率を高めるものである。以下、その詳細について説明する。
 本発明の塩排水の処理装置の実施例1を説明する。
 図1は、本発明の塩排水の処理装置の実施例1を示すものである。該図に示す如く、本実施例の塩排水の処理装置は、電解槽14等の電解機構、MED(蒸発濃縮装置)2、発電機24から成る発電機構及び演算装置1からなる制御機構を備えている。
 そして、図1に示す如く、塩排水41及び電解槽14からの高濃度塩水29は、ポンプ7等によってMED2に供給され、ここで濃縮及び浄化されて上水30と高濃度塩排水28とに分離される。なお、分離された上水30は、負極側に供給することも可能である。
 分離された高濃度塩排水28は、電解槽14に供給される。この時、MED2を運転する電力は、ガスタービン12で駆動される発電機24から供給される電気エネルギー23である。ガスタービン12及び発電機24は、動力が不足する場合等は必要に応じて、その台数を2台以上に増やしてよい。また、このように複数台のガスタービンを備えることにより、不良時のバックアップとして利用することができる。
 上記のように、MED2から電解槽14に供給された高濃度塩排水28が電解槽14の正極室に、また、熱交換器13によって加熱された炭酸ナトリウム水溶液34が電解槽14の負極室にそれぞれ供給される。
 電解槽14においては、正極室の高濃度塩排水28と負極室の炭酸ナトリウム水溶液34は、正極室及び負極室に挿入された電極から流れる電流により電気分解され、それぞれ高濃度塩水29と水酸化ナトリウム水溶液26に変換される。また、正極室及び負極室には、水位を計測する水位計(+)3及び水位計(-)4と、塩濃度を計測する塩濃度計(+)5及び塩濃度計(-)6がそれぞれ設置されており、この水位計(+)3及び水位計(-)4と塩濃度計(+)5及び塩濃度計(-)6で計測された計測値は、演算装置1に入力されている。更に、本実施例では、電解槽14の正極室の塩素イオン濃度を測定する塩素イオン濃度計(+)31を備え、測定した正極室の塩素イオン濃度のデータを、演算装置1に入力するようになっている。
 その電解槽14での電気分解時に正極室で発生した塩素ガス18は、冷却器8に供給され、この冷却器8で冷却された後に、ミストセパレータ9にて水蒸気と塩類とに分離・洗浄される。その後、濃硫酸19が供給される乾燥塔10で乾燥された後、冷却器11にて冷却・加圧され、タンクに液体塩素21として貯蔵される。発生した水素は、ガスタービン12に燃料として供給される。電解槽14の正極室から排出された高濃度塩水29は、再度、MED2に供給され、濃縮される。なお、20は、乾燥塔10からの廃硫酸の経路である。
 一方、電解槽14の負極室では、上記反応により水酸化ナトリウム水溶液26となっており、ポンプ7を通じて曝気槽15に導入される。この曝気槽15で、水酸化ナトリウム水溶液26に、CO2吹込み部16から導入された二酸化炭素を含む排ガス25に接触させることにより、水酸化ナトリウム水溶液26と排ガス25中の二酸化炭素が反応し、炭酸水素ナトリウム27及び/又は炭酸ナトリウムに変換が可能である。この曝気槽15で生成した炭酸水素ナトリウム27及び/又は炭酸ナトリウム水溶液を析出槽42に導入する。
 析出槽42では、曝気槽15と異なる温度設定にし、物質の水への溶解度の温度依存性を利用することにより、炭酸水素ナトリウム27及び/又は炭酸ナトリウムを析出させる。例えば、図8に示すように、曝気槽15の温度をT1、析出槽42の温度をT2と設定することで、溶解度の差分W1-W2に相当する量を回収することができる。
 本実施例では、析出槽42での析出物を回収する手段として、遠心分離機構17を用いている。遠心分離機構17により固液物から析出物と水溶液を効率よく分離、回収することができる。
 次に、ガスタービン12には、電解槽14の正極室から水素ガス22が燃料として供給され、ガスタービン12で発電機24を駆動することにより発電を行う。発電機24により生成された電気エネルギー23は、MED2及び電解槽14の運転に使用される。
 本実施例では、このような発電機24からの電気エネルギー23やガスタービン12からの排熱、MED2からの高濃度塩排水28などを利用することで、従来、無駄にしていたエネルギーから炭酸水素ナトリウム27及び/又は炭酸ナトリウムなどの有価物を生成することが目的である。
 本実施例の目的の炭酸水素ナトリウム27及び/又は炭酸ナトリウムの固形物を、効率よく回収するための重要なポイントは、前述した曝気槽15、析出槽42、熱交換器13の温度をそれぞれT1、T2、T3とした時に、次の関係を同時に満たすことである。
 (式1):T2<T1
 (式2):T2<40℃
 (式3):T2<T3<100.3(℃)
 ここでは、水に対する溶解度の温度依存性を利用して、目的物を析出・回収する。一般には、水溶液の温度が高いほど溶解度が高く、逆に温度が低い程溶解度は低い。
 従って、効率よく目的物を析出させるためには、析出槽42の温度(T2)を曝気槽15の温度(T1)よりも低く設定する必要がある(T2<T1)。この条件が(式1)に相当する。
 図9に、本実施例における炭酸ナトリウムの水への溶解度の温度依存性を示す。図9に示す温度における溶解度の差分を回収できる。この炭酸ナトリウムの溶解度曲線から、40℃近傍に最大値を有し、それ以上の温度では溶解度がほとんど変化しないことがわかる。
 即ち、(式1)の条件を満足しても、T2が40℃以上の場合には、T1とT2の温度差による溶解度差がほとんどないため、析出槽42での析出が困難である。T2が40℃より低い場合に、溶解度差による目的物の析出が期待できる。このことから、上記(式2)を導き出すことができる。
 更に、熱変換器13の温度(T3)は、少なくとも析出槽42の温度(T2)よりも高い必要がある。T3がT2より低い条件では、熱交換器13で炭酸水素ナトリウム27や炭酸ナトリウムが析出してしまうことになる。この場合、例えば、熱交換器13の近辺の配管が詰まってしまうなど、連続システムとして不具合を生じてしまう。
 一方、T3の上限は100.3℃となる。これは熱交換器13を通過する水溶液を沸騰させない温度である。一般には、水の沸点は100℃であるが、ここでの水溶液には、炭酸ナトリウムが僅かに溶解して残存しているために、沸点上昇が考えられる。
 図9に示す炭酸ナトリウムの溶解度曲線から、析出槽42の温度T2を0℃に設定したとしても、水100gに対して6gの炭酸ナトリウムが溶存している。この値を用いて、沸点上昇を計算すると、沸点上昇度ΔT=0.34℃(=0.515K kg/mol×0.66mol/kg)と算出できる。
 従って、少なくともT3は100.3℃以下であれば、水溶液が沸騰することなく、熱交換器13を通過することができる。これらのことから、上記(式3)が導かれる。
 以上のことから、本実施例においては、効率よく炭酸水素ナトリウム27及び/又は炭酸ナトリウムを効率よく析出、回収するためには、少なくとも上記(式1)、(式2)、(式3)を同時に満たす必要がある。
 また、更に炭酸ナトリウムなどを効率よく回収するために、次の(式4)を満足することが望ましい。
 (式4):35.0<T1<45.0(℃)
 本実施例では、先に述べたように曝気槽15の温度T1は、少なくとも析出槽42の温度T2より高い温度であれば、溶解度の観点からは、温度が高い程よい。しかし、炭酸水素ナトリウム27や炭酸ナトリウムの生成を考慮すると、(式4)の条件が必要となる。
 本実施例では、曝気槽15に二酸化炭素を含む排ガス25を吹き込むことによって、炭酸水素ナトリウム27及び/又は炭酸ナトリウムを生成している。この二酸化炭素の水への溶解度は、図10に示す温度依存性の通りである。即ち、温度が低いほど、二酸化炭素の溶解度は高くなる。例えば、0℃における二酸化炭素の溶解度は、60℃における溶解度の約4倍である。つまり、二酸化炭素の溶解度を上げることで、曝気槽15における炭酸水素ナトリウム27や炭酸ナトリウムの生成を促進することができる。
 このことから、曝気槽15の温度T1は、(1)二酸化炭素の溶解度を高くすること、(2)炭酸水素ナトリウム27の溶解度を高くすることの二つを両立できる温度範囲が望ましい。上記(式4)の温度範囲において、(1)と(2)を同時に満足することができる。更には、曝気槽15の温度T1は、溶解度が最大となる40℃近傍が望ましい。
 更に、析出槽42の温度T2の下限値は次のように考える。炭酸ナトリウムなどの析出を考えると、曝気槽15の温度T1との差が大きい方がよい。即ち、析出槽42の温度T2は低い程よい。しかし、析出槽42の温度T2にも下限値を考える必要がある。極度に低い温度に設定した場合には、目的の炭酸ナトリウムの析出だけに留まらず、水溶液そのものが凝固してしまう懸念がある。
 本実施例では、この点を考慮して、以下のように析出槽42の温度T2の下限値を設定した。即ち、水溶液そのものが凝固する温度を下限値とした。析出槽42の温度T2を0℃まで低下させて、目的の炭酸ナトリウムを析出した水溶液において、炭酸ナトリウムは6g程度溶解している(図9)。
 このような水溶液では、炭酸ナトリウムが不純物として、凝固点降下を生じるため、通常の0℃では水溶液は凝固しない。この水溶液の凝固点降下を計算すると次のように算出できる。
 ΔT=Kf×m=1.86×0.66=1.2(K)
 ここで、ΔTは、凝固点降下(K)、Kfは凝固点降下係数、mは炭酸ナトリウムのモル濃度である。
 このことから、本水溶液では-1.2℃までは凝固しないということがわかる。従って、析出槽42の温度T2、曝気槽15の温度T1に対して低いほどよいが、その下限値は水溶液が凝固しない-1.2℃であることがわかる。
 これより(式5)を決定した。
 (式5):-1.2<T2(℃)
 また、本システムを運用する上で、曝気槽15の温度T1が(式6)に示すような環境になる場合がある。即ち、曝気槽15の温度T1が40℃より低い場合である。このような場合には、特に(式7)に記載した条件が必須となる。つまり、熱交換器13の温度T3を、曝気槽15の温度T1よりも高い温度に設定する必要がある。
 (式6):T1<40(℃)
 (式7):T1<T3
 例えば、図1に示すように、回収された水溶液は、熱交換器13を介して曝気槽15に再供給される。従って、熱交換器13からの水溶液温度は、曝気槽15の水溶液温度に影響を及ぼす。曝気槽15の温度T1が40℃よりも高い温度範囲では、熱交換器13からの水溶液の流入によって、温度が多少変化しても曝気槽15内での炭酸ナトリウムの析出が生じることはほとんどない。これは、図9の炭酸ナトリウムの溶解度曲線が示すように、曝気槽15の温度T1が40℃以上では、溶解度がほとんど変化しないためである。
 しかし、曝気槽15の温度T1が40℃以下の場合には、溶解度が温度に大きく依存するため、熱交換器13からの流入によって曝気槽15内の温度が下がってしまうと、曝気槽15内で炭酸ナトリウムが析出するという問題を生じる。これを解決するためには、熱交換器13の温度を、少なくとも曝気槽15の温度よりも高く設定しておく必要がある。これらのことから、上記(式6)の環境の場合には、(式7)を満足しておく必要がある。
 なお、析出槽42で分離した水溶液を、熱交換器13を介して、再度、電解槽14の負極室に供給してもよい。分離した水溶液には、炭酸水素ナトリウム27や炭酸ナトリウムが一部残存して溶解しており、再度、電解槽14の負極室に戻して、析出工程を通過させることで、さらに効率よく炭酸水素ナトリウム27や炭酸ナトリウムを回収することができる。
 また、析出槽42の温度T2は、上述したように、調整する必要があり、例えば、曝気槽15よりも低く設定する必要がある。室温より高い温度が必要な場合は、発電機24からの電気エネルギー23を利用して水溶液を加温できる。一方、室温より温度を下げるためには、冷凍機のような冷却機能が必要となる。一般的な冷凍機の場合には、発電機24からの電気エネルギー23を利用してもよい。また、次のような吸収式冷凍機を利用する場合には、例えば、ガスタービン12からの排熱も利用できる。
 吸収式冷凍機は、吸収力が高い液体に冷媒を吸収させて、その時に発生する低圧によって、冷媒を気化させて低温を得る冷凍機である。吸収力の高い液体には、例えば水を利用し、冷媒には、例えばアンモニアを利用するものがある。このような冷凍機では、排熱を冷凍装置に投入することにより、冷水を得ることができる。ガスタービン12などからの排熱を利用して、吸収式冷凍機で得られた冷水を利用することで、析出槽42を冷却することができる。
 このような本実施例の構成とすることにより、塩排水を電気分解により水酸化ナトリウムを生成し、この水酸化ナトリウムと二酸化炭素を反応させることで、炭酸水素ナトリウム(重曹)27及び/又は炭酸ナトリウムを生成する効率を高めることができる。
 従って、本実施例により、低コストであることは勿論、低環境負荷で塩化ナトリウムを有効利用可能な物質に高収率、かつ、高効率で転換できる効果が得られる。また、塩排水処理において、より有価性の高い塩を優先的に製造することが可能となり、かつ、塩排水中の塩濃度を最低限にすることが可能となる。更に、本設備に使用する電力を賄うために設置される化石由来燃料のタービンで駆動される発電機から排出される二酸化炭素量を低減できるほか、排水の温度を低温化でき、環境に対する影響を少なくすることができる。
 次に、本発明の塩排水の処理装置の実施例2を説明する。
 図2は、本発明の塩排水の処理装置の実施例2を示すものである。
 上述した実施例1においては、電解槽14の負極室と曝気槽15は異なるものであるが、図2に示す本実施例では、電解槽14の負極室が曝気槽15を兼ねた構成となっている。
 このような本実施例では、二酸化炭素を含む排ガス25を電解槽14の負極室に導入し、負極室の中で二酸化炭素を水酸化ナトリウムに接触させることにより、炭酸水素ナトリウム及び/又は炭酸ナトリウムに変換する。電解槽14の負極室で生成した炭酸水素ナトリウム27及び/又は炭酸ナトリウム水溶液を析出槽42に導入し、析出槽42では、曝気槽を兼ねている電解槽14の負極室と異なる温度設定にし、物質の水への溶解度の温度依存性を利用することにより、炭酸水素ナトリウム27及び/又は炭酸ナトリウムを析出させる。
 本実施例では、析出槽42での析出物を回収する手段として、遠心分離機構17を用いているので、遠心分離機構17により固液物から析出物と水溶液を効率よく分離、回収することができ、炭酸水素ナトリウム27及び/又は炭酸ナトリウムを得ることができる。
 なお、本実施例では、曝気槽を電解槽14の負極室が兼用していることから、温度T1は、電解槽14の負極室の温度となる。
 このような本実施例の構成としても、実施例1と同様な効果が得られることは勿論、曝気槽が無い分構成が簡略化され、コスト低減に繋がるメリットがある。
 図3及び図4に、本発明の実施例1及び2に採用される電解槽の一例を示す。該図において、200は電解槽を構成する電解セル、201は正極室、202は負極室、203は正極室201に充填される高濃度塩水、204は負極室202に充填される負極電解水、205は正極、206は負極、207は正極室201の温度センサ、207´は負極室202の温度センサ、208は正極室201の塩濃度センサ、208´は負極室202の塩濃度センサ、209は塩素ガス、210は塩素ガスの回収口、211は水素ガスの排出口、212は負極電解水204の導入口、213は高濃度塩水の導入口、214は水素ガス、215は負極電解水204の排出口、216は正極高濃度塩水の排出口、217は正極室の水位計、218は負極室の水位計、219は正極端子、220は負極端子、221はイオン交換膜である。
 そして、正極室201と負極室202はイオン交換膜221のみを介して隣接して設置され、正極205と負極206は、それぞれ正極室201、負極室202内のイオン交換膜221に隣接し、かつ、イオン交換膜221と並行に敷設される。正極205と負極206には、それぞれの正極端子219、負極端子220が設けられている。正極205及び負極206には、銅、白金、金、イリジウム酸化物等の板が好ましく、これらは集電体上に設置される網目状でもよい。また、正極205と負極206は、電気分解時の抵抗による損失を極力小さくするために、イオン交換膜221の極力近くに配置されることが好ましい。
 イオン交換膜221は、ナトリウム等の陽イオンを選択的に透過させる半透過膜が用いられる。この膜によって、ナトリウムイオンは正極から負極側に移動するが、塩化物イオンや水酸化物イオンは、この膜を透過できないため、正極室201には塩素が、負極室202には水酸化ナトリウムが蓄積される。仮に、このイオン交換膜221がない場合には、正極で生成した塩化物イオンと水酸化物イオン、ナトリウムイオンが反応し、次亜塩素酸ナトリウム等が生成するため、好ましくない。
 正極室201には、高濃度塩水203を導入するための導入口213と排出口216が設けられ、高濃度塩水203の入排水が行われる。また、負極室202には、負極電解水204を導入するための導入口212と排出口215が設けられ、負極電解水204の入排水が行われる。ここで負極電解水204は、電気分解を低抵抗で行うために導入されるものであり、ナトリウムイオン等を多く含む塩水である。
 更に、正極室201には、電気分解で生じる塩素ガス209を回収する回収口210が設けられ、また、負極室202には、電気分解で生じる水素ガス214を回収する回収口211が設けられている。
 また、正極室201及び負極室202には、それぞれ温度センサ207、207´、塩濃度センサ208、208´、水位計217、218が設けられている。これらで計測される温度、塩濃度、水位は、実施例1及び2に示す演算装置1にデータとして転送される。
 このように構成される電解槽14は、正極205と負極206の間に電界を生じさせると、イオン交換膜221を挟んで電流が生じ、ナトリウムイオンが正極205側から負極206側に流れ、それぞれの電極で上述した化1、化2の電気化学反応が生じて、正極205側に塩素が発生し、負極206側に水素が発生するのと同時に水酸化ナトリウムが形成され、負極室202内の負極電解水204中に蓄積されるものである。
 この電解セル200は、通液した高濃度塩水203を効率よく電解するため電極に対する体積を小さく設けることが好ましく、処理液の量を稼ぐためには、この電解セル200を、複数個並列に設置して電界を行うことが好ましい。
 図5に、本発明の実施例1及び2に採用される電解槽の他の例を示す。該図に示す例は、負極室202内に、発電機24からの二酸化炭素を含む排ガス25を曝気し、負極室202内の負極電解水204に生成した水酸化ナトリウムと二酸化炭素を負極室202内で反応させ、炭酸水素ナトリウム27及び/又は炭酸ナトリウムを得るための電解槽である。なお、図5において、222は二酸化炭素の導入口、223は二酸化炭素の吹き出し口である。
 図5に示す電解セル200を用いることにより、負極側に生成した水酸化ナトリウムに直接二酸化炭素を反応させて、炭酸水素ナトリウム27及び/又は炭酸ナトリウムを生成することが可能となる。
 図6に、本発明の実施例1及び2に採用される電解槽の更に他の例を示す。該図に示す例は、図3及び図4に示した電解セル200を、複数個並列に並べて形成した電解槽を示すものである。
 図6において、200は電解セル、224は各電解セルの負極室で発生する水素を回収する回収管、225は各電解セル200の正極室で発生する塩素を回収する回収管、226は負極電解水204の導入管、227は正極室に導入する高濃度排塩水の導入管、228は負極電解水204の排出管、229は正極室の高濃度塩排水の排出管である。
 図6では、図3に示した電解セル200を8セル並列に接続した場合の例について示すが、並列のセル数は特にこれに限定されず、80セル~100セルといった大容量の電解槽を形成することも可能である。
 図6に示す例では、水素の回収管224は、各電解セル200の負極室に設けられる回収口211を並列に接続する管であり、再度ガスタービン12の燃料として供給され、必要に応じて図示しないブロア等の動力により排気する。
 塩素の回収管225は、各電解セル200の正極室に設けられる塩素ガスの回収口210を並列に接続する管であり、図1及び図2の冷却器8、11、ミストセパレータ9、乾燥塔10で構成される塩素処理部に導入され、液体塩素21となり、最終的には有価物として搬出される。必要に応じて図示しないブロア等の動力により排気する。
 また、負極電解水204の導入管226、及び正極に導入する高濃度塩排水の導入管227を通して、これらの液が別途設けられる送液ポンプ等の動力により電解セル200に供給される。また、負極電解水204の排出管228を通して別途設けられる送液ポンプ等の動力により負極電解水204は、炭酸ナトリウム又は炭酸水素ナトリウム回収部に送液され、正極室に充填される高濃度塩水203は、正極の高濃度塩排水の排出管229を通して、MED2又は負極室202に導入される。
 図7に、本発明の各実施例に採用される電解槽の更に他の例を示す。該図に示す例は、図5に示した二酸化炭素を曝気する機構を有する電解セル200を、複数個並列に並べて形成した電解槽を示すものである。
 図7において、230は二酸化炭素を含む排ガス25の導入管である。この導入管230は、各電解セル200の二酸化炭素の導入口222同士を並列に接続するための管であり、必要に応じて図示しないブロア等の動力を用いて導入される。
 図5及び図7に示す二酸化炭素の曝気を負極室内で行う場合には、排ガス25中に含まれる窒素、酸素、水分、未反応の二酸化炭素が負極内に導入され、水素の排気管224からガスタービン12に燃料である水素と一緒に送気されるが、これらのガスが混合していてもガスタービン12の燃焼には問題は生じない。
 以下、本発明者等による適用例について説明する。
 以下に示す適用例では、図2に示した実施例2の塩排水の処理装置を利用する。この実施例2の塩排水の処理装置では、曝気槽を電解槽の負極室が兼ねているものである。これら塩排水の処理装置で、曝気槽の温度T1、析出槽の温度T2、熱変換器の温度T3の設定が、適用例ごとに異なる。
≪適用例1≫
 図2及び図11に示すシステムで、ガス田から排出される随伴水を処理する適用例について説明する。
 本適用例では、電解槽の負極室にて、二酸化炭素ガスの導入を行う。即ち、曝気槽を電解槽の負極室が兼用していることから、曝気槽と電解槽の負極室は同一である。
 曝気槽の温度T1、析出槽の温度T2、熱交換器の温度T3をそれぞれ80℃、20℃、40℃に設定する。これは上述した(式1)と(式2)及び(式3)を同時に満足する条件である。
 随伴水をROシステム、MEDを通すことにより、濃縮された高濃度塩排水を得る。この高濃度塩排水を分析したところ、陽イオン種、陰イオン種の濃度は、下記の通りである。
 陽イオン種:
Na           59、000mg/L、
その他の陽イオン     700mg/L以下。
 陰イオン種:
Cl           77、200mg/L、
CO3          181mg/L、
HCO3         23、000mg/L、
その他の陰イオン     700mg/L以下。
また、CODは300mg/L以下である。
 以上より、高濃度塩排水中には、水以外は塩化ナトリウム(128、000mg/L:1L中に12.8g(2.2モル))、炭酸ナトリウム(247mg/L:1L中に0.247g(0.0032モル))、炭酸水素ナトリウム(32、000mg/L:1L中に32g(0.38モル))からなる物質が主に含まれている。従って、本適用例は、塩化ナトリウム濃度が10%を超える場合である。
 この塩排水を、図3に示す電解セル200の正極室201に投入する。また、負極室202には、60、000mg/Lの炭酸ナトリウム水溶液を投入する。これは、図2に示す遠心分離機構17を通過したあとの電解水濃度である。電解セル200の正極側、負極側の内法は、どちらも1m×1m×0.01mであり、容積は10Lである。両者の投入時の水温は70℃である。
 ここで、電圧3V、電流60Aを通電する。すると、正極から塩素ガスの気泡が発生し、電気分解が進行する。電気分解の進行に伴い、正極室201のナトリウムイオンが負極室202に移動して正極室201のナトリウムイオン濃度が低下するが、ナトリウムイオン濃度調整機構により、正極室201と負極室202のナトリウム濃度差が3%以上なので、この状態を定常状態として高濃度塩排水を流入させ、安定運転状態となる。
 このとき、正極室201からは、90、000mg/Lの塩化ナトリウムの高濃度塩水が排出口から排出され、MED2に再度投入する。これに従って、38、000mg/Lの塩化ナトリウムに相当する量のナトリウムが負極室202に移動することを示す。
 これに伴って、負極室202のナトリウムイオン濃度は、72、000mg/Lとなる。これは、初期の60、000mg/Lに比べて、12、000mg/Lナトリウムイオンが増加することを示す。これにより負極室202には、21、000mg/Lの水酸化ナトリウムが生成することが分かる。
 ここに、ガスタービン12の排ガス25を吹き込み、水酸化ナトリウムの炭酸ナトリウム化を実施すると共に、結晶化して粉末(炭酸水素ナトリウム27)として、タンクに回収する。
 本適用例で使用した排ガス組成を、下記に示す。
(排ガス組成)
2:70.0%
2:13.0%
CO2:3.4%
2O:11.0%
Ar:0.9%
その他:11.7%
 ガスタービン12から排出された直後のガス温度は330℃である。このガスは、熱交換器13を介して電解槽14の負極室に送気されるが、熱交換器13を通過後の温度は180℃である。二酸化炭素濃度は0.01%以上であるので、正常な運転状況となる。このとき回収できた炭酸ナトリウムは、この電解槽14に通液する高濃度排塩水の通液量が100Lのとき、5.5kgとなる。
 この電解セル200を、図7に示すように86セル並列化し、8、600Lの処理を行う場合、473kgの炭酸ナトリウムを回収できる。
≪適用例2≫
 本適用例では、適用例1と比較して、曝気槽の温度T1、析出槽の温度T2、熱交換器の温度T3の設定が異なるのみで、その他システムは適用例1と同様である。
 本適用例では、温度設定をそれぞれT1=40℃、T2=20℃、T3=40℃とする。この条件は、上記(式1)と(式2)及び(式3)に加え、(式4)を満足する。
 排水組成、ガス組成、電解条件は適用例1と同一である。
 このとき回収できた炭酸ナトリウムは、電解槽14に通液する高濃度排塩水の通液量が100Lのとき、6.0kgとなる。
 この電解セル200を、図7に示すように86セル並列化し、8、600Lの処理を行う場合、516kgの炭酸ナトリウムを回収できる。
≪適用例3≫
 本適用例では、適用例1と比較して、曝気槽の温度T1、析出槽の温度T2、熱交換器の温度T3の設定が異なるのみで、その他システムは適用例1と同様である。
 本適用例では、温度設定をそれぞれT1=80℃、T2=0℃、T3=40℃とする。この条件は、上記(式1)と(式2)及び(式3)に加え、(式4)と(式5)を満足する。
 このとき回収できた炭酸ナトリウムは、電解槽14に通液する高濃度排塩水の通液量が100Lのとき、11.0kgとなる。
 この電解セル200を、図7に示すように86セル並列化し、8、600Lの処理を行う場合、950kgの炭酸ナトリウムを回収できる。
≪適用例4≫
 本適用例では、適用例1と比較して、曝気槽の温度T1、析出槽の温度T2、熱交換器の温度T3の設定が異なるのみで、その他システムは適用例1と同様である。
 本適用例では、温度設定をそれぞれT1=35℃、T2=0℃、T3=40℃とする。
この条件は、(式6)と(式7)を満足する。
 このとき回収できた炭酸ナトリウムは、電解槽14に通液する高濃度排塩水の通液量が100Lのとき、11.0kgとなる。
 この電解セル200を、図7に示すように86セル並列化し、8、600Lの処理を行う場合、960kgの炭酸ナトリウムを回収できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…演算装置、2…MED(蒸発濃縮装置)、3…水位計(+)、4…水位計(-)、5…塩濃度計(+)、6…塩濃度計(-)、7…ポンプ、8、11…冷却器、9…ミストセパレータ、10…乾燥塔、12、121…ガスタービン、13、117…熱交換器、14、128…電解槽、15…曝気槽、16…CO2吹き込み部、17…遠心分離機構、18、209…塩素ガス、19…濃硫酸、20…廃硫酸、21…液体塩素、22…水素ガス、23…電気エネルギー、24、122,148…発電機、25…排ガス、26…水酸化ナトリウム水溶液、27…炭酸水素ナトリウム、28…高濃度塩排水、29…高濃度塩水、30…上水、31…塩素イオン濃度計(+)、33…ブロア、34…炭酸ナトリウム水溶液、41…塩排水、42…析出槽、101…ガス田、102…ガス処理装置、103…吸水ポンプ、104…ストレーナ、105…前処理装置、106…加圧空気タンク、107…アルカリ供給タンク、108…酸供給タンク、109…中和タンク、110…高圧水ポンプ、111…RO膜淡水化装置、112…薬品洗浄/排水処理装置、113…圧力エネルギー回収装置、114…逆洗装置、115…製品ガス供給ブロア、116…MED装置、118…放熱部、119、120…エジェクタ、123…排熱回収ボイラ、124、125、126、131、132、140、141、142、145、152…送液ポンプ、127…変圧器、129…スクラバ、130、134…粉体分離機、133…CO2吸収装置、135…炭酸ソーダ槽、136…熱交換式冷却器、137…気液分離器、138…乾燥機、139…濃硫酸槽、143…硫酸濃縮槽、144…塩素ガス液化装置、146…液化塩素槽、147…蒸気タービン、200…電解セル、201…正極室、202…負極室、203…正極室に充填される高濃度塩水、204…負極電解水、205…正極、206…負極、207…正極室の温度センサ、207´…負極室の温度センサ、208…正極室の塩濃度センサ、208´…負極室の塩濃度センサ、210…塩素ガスの回収口、211…水素ガスの排出口、212…負極電解水の導入口、213…高濃度塩水の導入口、214…水素ガス、215…負極電解水の排出口、216…正極高濃度塩水の排出口、217…正極室の水位計、218…負極室の水位計、219…正極端子、220…負極端子、221…イオン交換膜、222…二酸化炭素の導入口、223…二酸化炭素の吹き出し口、224…負極室で発生する水素を回収する回収管、225…正極室で発生する塩素を回収する回収管、226…負極電解水の導入管、227…正極室に導入する高濃度塩排水の導入管、228…負極電解水の排出管、229…正極室の高濃度塩排水の排出管、230…排ガスの導入管。

Claims (12)

  1.  塩化ナトリウムを含む塩排水を濃縮して高濃度塩排水を製造する第1の工程と、前記塩排水を濃縮するために必要な電気エネルギーを発生させる第2の工程と、前記高濃度塩排水を正極室と負極室及びそれを隔てるイオン交換膜とから構成される電解槽に注入し、電極を用いて電気分解して水酸化ナトリウムを生成させる第3の工程と、前記水酸化ナトリウムに前記第2の工程で生じる排ガス中に含有される二酸化炭素を接触させることにより炭酸ナトリウム及び/又は炭酸水素ナトリウムを得る第4の工程と、生成した炭酸ナトリウム及び/又は炭酸水素ナトリウムを析出槽で結晶化させる第5の工程と、前記結晶化させた炭酸ナトリウム及び/又は炭酸水素ナトリウムを固液分離により炭酸ナトリウム及び/又は炭酸水素ナトリウムの結晶と水溶液を分離して回収する第6の工程と、前記分離した水溶液を回収して熱交換器を通じて、前記分離水溶液を前記電解槽の負極室に供給する第7の工程とを含み、
     かつ、前記第4の工程を行う曝気槽の温度をT1(℃)、前記第5の工程を行う析出槽の温度をT2(℃)、前記第7の工程を行う熱交換器の温度をT3(℃)とした時に、下記(式1)と(式2)及び(式3)を同時に満足することを特徴とする塩排水の処理方法。
     (式1):T2<T1
     (式2):T2<40.0(℃)
     (式3):T2<T3<100.3(℃)
  2.  請求項1に記載の塩排水の処理方法において、
     前記第4の工程が行われる曝気槽が、前記電解槽の負極室と同一であることを特徴とする塩排水の処理方法。
  3.  請求項1に記載の塩排水の処理方法において、
     下記(式4)を満足することを特徴とする塩排水の処理方法。
     (式4):35.0<T1<45.0(℃)
  4.  請求項1に記載の塩排水の処理方法において、
     下記(式5)を満足することを特徴とする塩排水の処理方法。
     (式5):-1.2<T2(℃)
  5.  請求項1に記載の塩排水の処理方法において、
     下記(式6)の条件の場合に、下記(式7)を満足することを特徴とする塩排水の処理方法。
     (式6):T1<40.0(℃)
     (式7):T1<T3(℃)
  6.  請求項1に記載の塩排水の処理方法において、
     前記第5の工程に、前記第2の工程で発生する電気と蒸気を利用することを特徴とする塩排水の処理方法。
  7.  請求項1に記載の塩排水の処理方法において、
     前記第7の工程に、前記第2の工程で発生する電気と蒸気を利用することを特徴とする塩排水の処理方法。
  8.  塩化ナトリウムを含む塩排水を濃縮する濃縮装置と、正極室と負極室及びそれを隔てるイオン交換膜から形成され、前記濃縮装置で濃縮された塩排水を電気分解する電解槽と、前記濃縮装置での塩排水の濃縮及び前記分解層での塩排水の電気分解を実施するために必要な電気エネルギーを発生させる発電機と、前記電解槽の負極室に挿入されている負極に生成される水酸化ナトリウムと二酸化炭素を接触させて炭酸ナトリウム及び/又は炭酸水素ナトリウムを生成する曝気槽と、該曝気槽で生成された前記炭酸ナトリウム及び/又は炭酸水素ナトリウムを結晶化させ、固液分離により炭酸ナトリウム及び/又は炭酸水素ナトリウムの結晶と水溶液を分離して回収する析出槽と、該析出槽で分離した前記炭酸ナトリウム及び/又は炭酸水素ナトリウムの水溶液を加熱して前記電解槽の負極室に供給する熱交換器とを備え、
     前記曝気槽と析出槽及び熱交換器は、前記曝気槽の温度をT1(℃)、前記析出槽の温度をT2(℃)、前記熱交換器の温度をT3(℃)とした時に、下記(式1)と(式2)及び(式3)を同時に満足する関係にあることを特徴とする塩排水の処理装置。
     (式1):T2<T1
     (式2):T2<40.0(℃)
     (式3):T2<T3<100.3(℃)
  9.  請求項8に記載の塩排水の処理装置において、
     前記曝気槽は、前記電解槽の負極室が兼ねていることを特徴とする塩排水の処理装置。
  10.  請求項8に記載の塩排水の処理装置において、
     前記曝気槽は、35.0<T1<45.0(℃)を満足することを特徴とする塩排水の処理装置。
  11.  請求項8に記載の塩排水の処理装置において、
     前記析出槽は、-1.2<T2(℃)を満足することを特徴とする塩排水の処理装置。
  12.  請求項8に記載の塩排水の処理装置において、
     前記曝気槽は、T1<40.0(℃)の時に、T1<T3(℃)を満足することを特徴とする塩排水の処理装置。
PCT/JP2013/066138 2012-07-06 2013-06-12 塩排水の処理方法及びその処理装置 WO2014007033A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-152244 2012-07-06
JP2012152244A JP2014014743A (ja) 2012-07-06 2012-07-06 塩排水の処理方法及びその処理装置

Publications (1)

Publication Number Publication Date
WO2014007033A1 true WO2014007033A1 (ja) 2014-01-09

Family

ID=49881793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066138 WO2014007033A1 (ja) 2012-07-06 2013-06-12 塩排水の処理方法及びその処理装置

Country Status (2)

Country Link
JP (1) JP2014014743A (ja)
WO (1) WO2014007033A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928716A (zh) * 2015-05-26 2015-09-23 南通星球石墨设备有限公司 一种淡盐水预处理装置
JP5865495B2 (ja) * 2012-07-06 2016-02-17 株式会社日立製作所 塩排水の処理方法及び装置
CN115285969A (zh) * 2022-08-06 2022-11-04 华南理工大学 生物质衍生的氮掺杂硬炭材料及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101571251B1 (ko) * 2014-09-25 2015-11-23 한국전력공사 중탄산나트륨 제조 장치 및 그 제조 방법
JP6528173B2 (ja) * 2015-04-02 2019-06-12 株式会社微酸研 電解槽および次亜塩素酸水製造装置
WO2017023029A1 (ko) * 2015-07-31 2017-02-09 한국에너지기술연구원 기액 접촉 효율이 높은 산성가스 제거를 위한 전기분해 반응기 및 방법
JP2018035024A (ja) * 2016-08-30 2018-03-08 クボタ環境サ−ビス株式会社 次亜塩素酸ソーダの製造方法及び次亜塩素酸ソーダの製造装置
KR102028709B1 (ko) * 2019-02-28 2019-11-05 울산과학기술원 이산화탄소 활용 시스템을 이용한 평형수 처리 시스템
KR102025559B1 (ko) * 2018-12-20 2019-09-26 (주) 테크로스 전기분해를 이용한 선박평형수 및 선박 배기 가스 처리 방법
CN109468656B (zh) * 2019-01-04 2020-05-05 北京神州瑞霖环境技术研究院有限公司 电解前除碳的阳离子隔膜电解槽串联装置及其应用
CN109609971B (zh) * 2019-01-04 2019-12-31 北京神州瑞霖环境技术研究院有限公司 电解后除碳的阳离子隔膜电解槽串联装置及其应用
US20210308623A1 (en) * 2020-01-22 2021-10-07 Kenji SORIMACHI Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and carbon dioxide fixation apparatus
CN111517556A (zh) * 2020-05-14 2020-08-11 逸辰环保科技(厦门)有限公司 电镀废水处理工艺及***
KR102647111B1 (ko) * 2022-03-03 2024-03-13 (주)테크윈 전기분해에 의한 tmah 회수시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421997A (en) * 1977-07-19 1979-02-19 Diamond Shamrock Corp Method of making alkali matal carbonates
JPS5589485A (en) * 1978-12-26 1980-07-07 Toagosei Chem Ind Co Ltd Manufacture of potassium bicarbonate
JP2008532904A (ja) * 2005-03-08 2008-08-21 ソルヴェイ(ソシエテ アノニム) 炭酸ナトリウム結晶を得るための方法
JP2008538738A (ja) * 2005-03-08 2008-11-06 ソルヴェイ(ソシエテ アノニム) 塩素誘導体及び炭酸ナトリウムの結晶を共に得るための方法
JP2011000522A (ja) * 2009-06-17 2011-01-06 Fuji Clean:Kk 浸出液から酸およびアルカリを製造する方法および装置
WO2012008013A1 (ja) * 2010-07-12 2012-01-19 株式会社日立製作所 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5421997A (en) * 1977-07-19 1979-02-19 Diamond Shamrock Corp Method of making alkali matal carbonates
JPS5589485A (en) * 1978-12-26 1980-07-07 Toagosei Chem Ind Co Ltd Manufacture of potassium bicarbonate
JP2008532904A (ja) * 2005-03-08 2008-08-21 ソルヴェイ(ソシエテ アノニム) 炭酸ナトリウム結晶を得るための方法
JP2008538738A (ja) * 2005-03-08 2008-11-06 ソルヴェイ(ソシエテ アノニム) 塩素誘導体及び炭酸ナトリウムの結晶を共に得るための方法
JP2011000522A (ja) * 2009-06-17 2011-01-06 Fuji Clean:Kk 浸出液から酸およびアルカリを製造する方法および装置
WO2012008013A1 (ja) * 2010-07-12 2012-01-19 株式会社日立製作所 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865495B2 (ja) * 2012-07-06 2016-02-17 株式会社日立製作所 塩排水の処理方法及び装置
JPWO2014006741A1 (ja) * 2012-07-06 2016-06-02 株式会社日立製作所 塩排水の処理方法及び装置
CN104928716A (zh) * 2015-05-26 2015-09-23 南通星球石墨设备有限公司 一种淡盐水预处理装置
CN115285969A (zh) * 2022-08-06 2022-11-04 华南理工大学 生物质衍生的氮掺杂硬炭材料及其制备方法和应用

Also Published As

Publication number Publication date
JP2014014743A (ja) 2014-01-30

Similar Documents

Publication Publication Date Title
WO2014007033A1 (ja) 塩排水の処理方法及びその処理装置
JP5865495B2 (ja) 塩排水の処理方法及び装置
Mavukkandy et al. Brine management in desalination industry: From waste to resources generation
US4141825A (en) Desalination process system and by-product recovery
US4083781A (en) Desalination process system and by-product recovery
CN110923738B (zh) 一种高温电解海水制备氢气的装置和方法
CN110965069B (zh) 电解水生产高纯氢气和/或氧气的装置和方法
KR102207458B1 (ko) 수소 생산가능한 담수시스템
WO2006072122A2 (en) Process for conversion of high pressure sea water reverse osmosis concentrate discharge (hpswro) from seawater desalination plants into magnesium chloride (for recovery of magnesium metal by electrolysis) and sodium chloride and hydrogen with cogeneration of electricity and heat by pem (proton exchange membrane) fuel cell
WO2014007032A1 (ja) 塩排水の処理方法及び装置
EP2824082A1 (en) Process and apparatus for exploitation of seawater
CN113502485B (zh) 火电厂电解海水制氢***和方法
EP2655261A1 (en) Unit for desalination and greenhouse gas sequestration
KR20210010937A (ko) 수소 생산가능한 담수시스템
US8178059B2 (en) Systems and methods for supplying chlorine to and recovering chlorine from a polysilicon plant
WO2014006742A1 (ja) 塩排水の処理装置及びその処理方法
CN116575038A (zh) 一种海水电解制氢***与方法
Tu et al. Reclaimed seawater discharge–desalination brine treatment and resource recovery system
CN116145165A (zh) 一种电解高盐水制氢***、电厂储能***及方法
US20240198288A1 (en) Sustainable desalination systems and methods using recycled brine streams
KR101489642B1 (ko) 연료전지장치를 이용한 복합담수시스템
JP3281728B2 (ja) 重水素製造装置
CN104445731B (zh) 一种镍电解净液***制备碳酸镍后上清液废水综合回收净化***及工艺
JP3281727B2 (ja) 重水製造装置
CN111151140B (zh) 一种浓缩氯碱阳极淡盐水的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813793

Country of ref document: EP

Kind code of ref document: A1