WO2012008013A1 - 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法 - Google Patents

濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法 Download PDF

Info

Publication number
WO2012008013A1
WO2012008013A1 PCT/JP2010/061803 JP2010061803W WO2012008013A1 WO 2012008013 A1 WO2012008013 A1 WO 2012008013A1 JP 2010061803 W JP2010061803 W JP 2010061803W WO 2012008013 A1 WO2012008013 A1 WO 2012008013A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
concentration
concentrated
pretreatment
function
Prior art date
Application number
PCT/JP2010/061803
Other languages
English (en)
French (fr)
Inventor
みさき 隅倉
堀次 睦
俊一 久芳
高橋 文夫
康ニ 原田
Original Assignee
株式会社日立製作所
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 株式会社ササクラ filed Critical 株式会社日立製作所
Priority to JP2012524356A priority Critical patent/JP5495403B2/ja
Priority to AU2010357340A priority patent/AU2010357340B9/en
Priority to PCT/JP2010/061803 priority patent/WO2012008013A1/ja
Publication of WO2012008013A1 publication Critical patent/WO2012008013A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • C02F5/025Hot-water softening devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a concentrating plant and a concentrating method for separating raw water such as brine and seawater, in particular accompanying water discharged from a coal seam together with coal seam gas into fresh water and salt solids, and a concentrated water production system comprising the concentrating plant.
  • the present invention relates to a plant and an operation method thereof.
  • Non-Patent Document 1 water in the coal seam (hereinafter referred to as accompanying water) is discharged with CBM collection.
  • the accompanying water is brine containing salt, and it is necessary to press into the formation again or to separate the salts by desalting and return to the soil.
  • the treatment capacity of the accompanying water is a limiting condition for increasing the amount of collected CBM.
  • the accompanying water is stored in a pond and removed by natural evaporation to remove water and concentrate and separate the salt as solid matter.
  • Non-Patent Document 2 As a main desalting method, a membrane method for separating salts with a reverse osmosis membrane or an ion exchange membrane, an evaporation method for condensing moisture evaporated by heating, and the like have been studied. According to Non-Patent Document 3, there is a case where fresh water is produced from accompanying water by a two-stage reverse osmosis membrane treatment.
  • Concentrated water separated by the reverse osmosis membrane device is discharged through a valve or supplied to a desalination device of an evaporation method together with second-stage nanofiltration water to generate fresh water.
  • Non-Patent Document 1 As a method for treating the accompanying water (brine containing salt) discharged with CBM collection, the evaporating pond system described in Non-Patent Document 1 is currently being implemented in many CBM production facilities. A vast site is required.
  • Non-Patent Document 2 As described in Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3, as a treatment method that replaces the evaporating pond method, a membrane method and an evaporation method have been studied and partially implemented.
  • the accompanying water is concentrated by a two-stage reverse osmosis membrane treatment to reduce the volume.
  • the volume of the concentrated water after separating the fresh water is reduced to about 1/10 of the supplied accompanying water, and the volume of the evaporation pond for separating salt from the concentrated water can also be reduced to 1/10. It is.
  • the volume even if the volume is reduced, there is no change in the need for an evaporating pond for solidifying and separating the salts.
  • Patent Document 2 a reverse osmosis membrane and an evaporation method are combined in order to improve water production efficiency.
  • a part of pretreatment wastewater second-stage filtration membrane unit concentrated water
  • a reverse osmosis membrane device When the concentrated water separated in (1) is discarded to the outside, and this is applied to the treatment of accompanying water, an evaporation pond for solidifying and separating the salts is also required.
  • the object of the present invention is to solve the above-mentioned conventional problems, and by concentrating water containing salts such as associated water stably at low equipment cost by combining a demineralizer by a membrane method and a concentrator by an evaporation method. And providing a concentration plant and a concentration method for separating into fresh water and salts.
  • the present invention provides a concentrating device, a reverse osmosis membrane device for separating accompanying water discharged from a coal bed together with coal bed gas into permeated water and non-permeated water, and concentrating the non-permeated water. And an evaporating and concentrating device for discharging concentrated water to the storage facility.
  • this invention for achieving the said objective is a pretreatment apparatus which pre-processes raw
  • the concentration and volume reduction of the raw water (associated water) can be achieved by combining the previous stage and the latter stage.
  • the concentrated water can be evaporated to dryness.
  • the evaporation pond is unnecessary and the installation cost of the evaporation pond becomes zero. .
  • the present invention provides a gas turbine power generator equipped with a gas turbine using hydrocarbon as a main fuel, an exhaust heat recovery boiler that generates steam by exhaust heat of the gas turbine, and concentrates raw water.
  • a concentrated desalination power plant comprising a concentrating device, the concentrating device separates raw water after pretreatment through the pretreatment device into permeated water and non-permeated water.
  • the energy cost for generating steam in the evaporative concentrator is no longer required. Resources can be used efficiently throughout the facility, and operating costs can be reduced.
  • the concentration device preferably includes a precipitation device for precipitating inorganic components in the non-permeate water in a flow path through which the non-permeate water flows into the evaporative concentration device.
  • the precipitation apparatus may have one or more of a function of increasing the pH of the non-permeate water, a function of increasing carbonate ions, a function of heating, a function of injecting fine bubbles, and a function of injecting calcium ions. preferable.
  • the precipitation apparatus is a heater for heating the non-permeated water using the generated steam of the exhaust heat recovery boiler as a heat source, or an apparatus for injecting the exhaust gas discharged from the gas turbine into the non-permeate water. Is provided.
  • the concentrated water production power plant further includes a steam supply system for injecting the generated steam of the exhaust heat recovery boiler into a combustor of the gas turbine, and in this case, the steam supply system includes the exhaust heat recovery It is preferable to have a valve that adjusts the supply amount of steam generated by the boiler to the combustor.
  • the concentrated desalination power plant further includes an indirect heat exchanger that generates steam to be supplied to the evaporative concentrator with the steam generated by the exhaust heat recovery boiler.
  • the present invention for achieving the above object is a concentration method, wherein the accompanying water discharged together with the coal bed gas from the coal bed is separated into permeated water and non-permeated water using a reverse osmosis membrane, A step of concentrating non-permeated water by an evaporation concentration method and discharging the concentrated water to a storage facility.
  • the present invention for achieving the above object includes a step of pretreating raw water in the concentration method, and a step of separating the pretreated water into permeated water and non-permeated water using a reverse osmosis membrane. And a step of producing concentrated water by concentrating the pretreated waste water generated as a result of the pretreatment and the non-permeated water produced in the separation step by an evaporation concentration method.
  • the present invention provides an operation of a concentrated freshwater power plant having a gas turbine power generation device, an exhaust heat recovery boiler, a pretreatment device, a reverse osmosis membrane device, and an evaporative concentration device.
  • the step of generating electric power and exhaust heat by the gas turbine power generation device, the step of generating steam by the exhaust heat of the gas turbine power generation device by the exhaust heat recovery boiler, and the raw water using the pretreatment device A step of pre-treatment, a step of separating water after pre-treatment via the pre-treatment device into permeated water and non-permeated water using the reverse osmosis membrane device, and steam generated in the exhaust heat recovery boiler
  • a heat source it has the process of producing
  • the site for the associated water treatment facility in the CBM production facility can be reduced, and the facility cost can be greatly reduced.
  • waste can be reduced and stable operation can be realized.
  • the site for the associated water treatment facility in the CBM production facility be reduced and the operation with reduced waste can be realized, but also the entire facility can be utilized by using the exhaust heat of the power generation facility. This makes it possible to efficiently use resources and reduce operating costs.
  • FIG. 1 is a schematic diagram showing a configuration of a concentration plant according to a first embodiment of the present invention.
  • the present embodiment is an example in the case where the accompanying water of a CBM production plant is targeted as raw water.
  • the raw water may be water other than the accompanying water (for example, industrial wastewater, groundwater, salt lake water, etc.), or seawater.
  • a brine concentrating plant denoted as a whole by reference numeral 100 includes a pretreatment facility 3, a reverse osmosis membrane concentration facility 4 (reverse osmosis membrane device), a storage tank 5, and an evaporation concentration facility 6 (evaporation concentration device). And the concentrated water tank 7 and the precipitation part 10 (precipitation apparatus).
  • the accompanying water 20 is pretreated water 21 from which the solid and soluble substances are removed or the water temperature and pH are adjusted.
  • the purpose of the pretreatment is to prevent concentration / precipitation of calcium carbonate or the like on the membrane surface of the reverse osmosis membrane concentration equipment 4.
  • the pH of the accompanying water 20 is usually 7 to less than 10, and when the pH is adjusted in the pretreatment, it is generally adjusted to about 6 to 7, although it varies depending on the membrane used, the water temperature, and the like.
  • the pretreated water 21 flows into the reverse osmosis membrane concentration equipment 4 and is separated into permeated water 22 and membrane concentrated water 24.
  • the permeated water 22 is used as fresh water.
  • the membrane concentrated water 24 contains calcium carbonate, silica, and the like, which are components of the accompanying water 20.
  • All of the evaporated and concentrated feed water 25 flows into the evaporated and concentrated equipment 6 and is separated into condensed water 26 and evaporated and concentrated water 27.
  • the condensed water 26 is used as fresh water.
  • the evaporated concentrated water 27 is stored in the concentrated water tank 7.
  • the evaporated concentrated water 27 stored in the concentrated water tank 7 is preferably evaporated to dryness at an appropriate timing thereafter.
  • the evaporative concentration facility 6 is, for example, a multi-effect evaporator having a plurality of evaporators.
  • the multi-effect evaporator for example, the one described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-41850) can be used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-41850
  • the evaporative concentration facility 6 includes a plurality of evaporators, there is a problem that insoluble salts adhere as scales to the inner wall surface of each evaporator.
  • the insoluble salt is precipitated as fine crystals floating in water in the precipitation unit 10 in advance, so that the insoluble salt is grown as a nucleus in the evaporator.
  • scale deposition / growth on the wall surface of the subsequent evaporator can be avoided, stable operation can be realized, and the amount of chemical used and labor for cleaning the inside of the can can be reduced.
  • FIGS. 2A to 2D Examples of the apparatus configuration of the precipitation unit 10 are shown in FIGS. 2A to 2D.
  • the membrane concentrated water 24 flows into the mixing water tank 40 and is mixed with the alkaline agent added from the chemical injection equipment 41 to precipitate an insoluble salt such as calcium carbonate.
  • an insoluble salt such as calcium carbonate.
  • caustic soda or slaked lime can be used as the alkaline agent.
  • the mixing water tank 40 is not provided, and mixing can be performed by a pipe line. In this case, a line mixer may be installed.
  • a line mixer may be installed.
  • calcium carbonate can be easily deposited.
  • the silica solubility increases and the silica scale generation potential can be reduced.
  • calcium ions may be injected.
  • a heating tank 42 (heater) may be provided in the previous stage of mixing the alkaline agent, and the membrane concentrated water 24 may be heated.
  • the solubility of calcium carbonate decreases and precipitation is promoted.
  • You may provide only the heating tank 42, without providing the mixing water tank 40 and a line mixer.
  • a gas 35 containing CO 2 may be injected into the mixing water tank 40a before the addition of the alkaline agent.
  • the pH is adjusted to be slightly acidic by dissolving CO2
  • the solubility of slaked lime is increased and the amount of calcium ions can be increased, so that precipitation of calcium carbonate can be promoted.
  • the membrane concentrated water 24 that has flowed into the mixing water tank 40 b is taken into the fine bubble generating device 43, and the gas 36 containing air or CO 2 is added to the membrane concentrated water 24 in the fine bubble generating device 43.
  • fine bubbles having a diameter of about 50 micrometers or less may be generated, and the fine bubbles may be returned to the mixing water tank 40b. In this case, fine crystal nuclei are generated with rapid dissolution of fine bubbles, and precipitation of insoluble salt can be promoted.
  • the accompanying water 20, the permeated water 22, and the condensed water 26 before flowing into the pretreatment facility 3 may be used as the cooling water 28.
  • the salt permeability in the reverse osmosis membrane concentration facility 4 increases as the water temperature increases when the pretreatment facility 3 is supplied and processed by the reverse osmosis membrane concentration facility 4. Therefore, it is desirable that the permeated water 22 be maintained within a range where the water quality can be maintained at a necessary level.
  • the former has a higher salt content than the latter, and therefore may be mixed and used according to the purpose of use.
  • the permeated water 22 as a raw material for drinking water and the condensed water 26 as industrial water that requires a low salt content.
  • the accompanying water 20 is used as the cooling water 28 as mentioned above, the accompanying water 20 is heated and the salt content of the permeated water 22 may increase by the heating. In this case, the quality of the water can be adjusted by mixing the accompanying water 20 after heating with the condensed water 26.
  • FIG. 3A is a conceptual diagram of the effect of the present embodiment.
  • the vertical axis is the expected value of the ratio when the installation cost of the evaporation pond is compared with the conventional evaporation pond method and the reverse osmosis membrane concentration method.
  • the water to be treated in the evaporating pond is reduced to about 1/10 compared to the evaporating basin method without concentration. Installation costs will be reduced accordingly.
  • the evaporating concentrated water 27 stored in the concentrated water tank 7 is evaporated to dryness, the evaporating pond is unnecessary and the evaporating pond installation cost is zero.
  • an evaporating pond may be provided, and also in this case, the installation area of an evaporating pond can be reduced significantly and the installation cost of an evaporating pond can be reduced.
  • the site for the associated water treatment facility in the CBM production facility can be reduced, and the equipment cost can be greatly reduced.
  • waste can be reduced and stable operation can be realized.
  • FIG. 4 is a schematic diagram showing a configuration of a concentrated desalination power plant according to the second embodiment of the present invention.
  • a gas turbine power generation facility is additionally provided in the concentration plant in the first embodiment.
  • the concentrated desalination power plant includes a gas turbine power generation device 200 including a gas turbine 1 that uses hydrocarbon, for example, LNG as a main fuel, and an exhaust heat recovery boiler 2 that generates steam by the exhaust heat of the power generation device 200. And a concentrating device 300.
  • the concentration apparatus 300 for example, the concentration plant 100 of the first embodiment is used.
  • the gas turbine 1 includes a compressor 1a, a turbine 1b, a combustor 8, a generator 9, and an exhaust gas treatment tower 12.
  • the air 30 is compressed by the compressor 1 a to become compressed air 30 a, flows into the combustor 8, and is mixed with the fuel gas 33.
  • the fuel gas 33 is combusted in the combustor 8 to become combustion gas, and flows out as exhaust gas 31 after rotating the turbine 1b.
  • the generator 9 receives electricity from the turbine 1b and generates electricity.
  • the exhaust gas 31 flows into the exhaust heat recovery boiler 2, generates steam by exhaust heat, is sent to the exhaust gas treatment tower 12, is processed by the exhaust gas treatment tower 12, and is diffused into the atmosphere.
  • the heat exchanger 2a of the first steam supply system 32A is arranged. Circulating water flows through the first steam supply system 32 ⁇ / b> A, and the exhaust gas 31 that has flowed into the exhaust heat recovery boiler 2 supplies heat to the circulating water through the heat exchanger 2 a to change the phase to the steam 32.
  • the steam 32 flows into the evaporative concentration facility 6 and heats the evaporative concentrated feed water 25 to change the phase to steam.
  • the generated steam is cooled by cooling water 28 to become condensed water 26.
  • the steam 32 is deprived of heat and returns to the circulating water.
  • the configuration of the concentration apparatus 300 (concentration plant 100) is the same as that of the first embodiment. That is, the accompanying water 20 is subjected to removal of solid / soluble substances by the pretreatment facility 3 or the water temperature / pH and the like are adjusted to become pretreated water 21.
  • the pretreated water 21 flows into the reverse osmosis membrane concentration equipment 4 and is separated into permeated water 22 and membrane concentrated water 24.
  • the permeated water 22 is used as fresh water.
  • the membrane concentrated water 24 flows into the precipitation part 10 and is mixed with an alkaline agent to precipitate insoluble components, and then flows into the storage tank 5.
  • Pretreatment wastewater 23 containing solid and soluble substances removed from the accompanying water 20 by the pretreatment device 3 also flows into the storage tank 5 and is mixed with the membrane concentrated water 24 to become the evaporated concentrated supply water 25.
  • the evaporated concentrated feed water 25 flows into the evaporated concentration facility 6 and is separated into condensed water 26 and evaporated concentrated water 27.
  • the condensed water 26 is used as fresh water.
  • the evaporated concentrated water 27 is stored in the concentrated water tank 7.
  • the exhaust gas 31 of the gas turbine 1 may be used as the heat source of the heating tank 42. Moreover, you may utilize the waste gas 31 of the gas turbine 1 as the gas 33 containing CO2 in the example of FIG. 2C and FIG. 2D.
  • the exhaust gas 31 may be after heat exchange in the exhaust heat recovery boiler 2.
  • FIG. 4 is an example in which the exhaust gas 31 after heat exchange in the exhaust heat recovery boiler 2 is supplied to the precipitation unit 10.
  • the power generated by the generator 9 can be used as a power source for the pretreatment facility 3 and the reverse osmosis membrane concentration facility 4.
  • LNG produced from CBM can be used.
  • FIG. 5 shows an example (third embodiment) in which the amount of heat of the steam 32 is supplied to the evaporative concentration facility 6 through the indirect heat exchanger 13.
  • the first steam supply system includes a primary steam supply system 32B including a heat exchanger 2a, a secondary evaporator supply system 32C that supplies steam to the evaporation concentration facility 6, and a primary steam supply system 32B.
  • an indirect heat exchanger 13 that generates steam by supplying heat to the circulating water of the secondary evaporator supply system 32C. Since the system 32B of the steam 32 and the system 32C flowing into and out of the evaporative concentration facility 6 are separated, salt is not mixed into the steam 32, and corrosion of the exhaust heat recovery boiler 2 can be avoided.
  • FIG. 6 shows an example (fourth embodiment) when the steam generated in the exhaust heat recovery boiler 2 is injected into the combustor 8.
  • the heat source generated by the exhaust heat recovery boiler 2 is also used as the heat source of the heating tank 42 (FIG. 2B) of the precipitation unit 10.
  • FIG. 6 in the exhaust heat recovery boiler 2, there are a heat exchanger 2a of the first steam supply system 32A, a heat exchanger 2b of the heat source supply system 202A, and a heat exchanger 2c of the second steam supply system 34A.
  • the steam 32 to the evaporative concentration facility 6 the heat source 210 to the heating tank 42 of the precipitation unit 10, and the steam 34 to the combustor 8 are generated separately.
  • the heat source 210 to the heating tank 42 of the precipitation unit 10 may be steam-water or hot water-cold water. Moreover, substances other than water can also be used.
  • a normally closed valve 11 is provided in a pipeline through which the steam 34 of the second steam supply system 34 ⁇ / b> A flows, and the valve 11 is opened to supply the steam 34 to the combustor 8.
  • the steam 34 is supplied to the combustor 8
  • the mass flow rate of the combustion gas flowing into the turbine 1b increases, and the power generation amount of the generator 9 can be increased.
  • the consumption amount of the fuel gas 33 can be reduced.
  • the steam 34 is mixed into the exhaust gas 31 and is released to the atmosphere via the exhaust heat recovery boiler 2 and the exhaust gas treatment tower 12.
  • the permeated water 22 and the condensed water 26 are generated as fresh water, and water is supplied to the heat exchanger 2 c in the exhaust heat recovery boiler 2 using these.
  • FIG. 6 shows an example in which a part of the condensed water 26 is taken out and supplied to the heat exchanger 2c.
  • This embodiment is extremely effective for treatment of accompanying water from CBM.
  • Hydrocarbons such as methane produced from CBM can be used as fuel for the gas turbine 1.
  • the electric power generated by the gas turbine 1 can be used in the concentrator 100. Surplus power can be supplied to the outside.
  • the associated water concentration from CBM is as small as about 1/5 of the seawater concentration, and the osmotic pressure is small. Therefore, the power consumption of the reverse osmosis membrane concentration equipment 4 can be kept small in the present invention in which the reverse osmosis membrane concentration equipment 4 is placed in the front stage and the evaporation concentration equipment 6 is placed in the rear stage.
  • Steam 32 to be supplied to the evaporative concentration facility 6 can be generated by exhaust heat of the gas turbine 1.
  • the pre-stage and the post-stage can be combined to greatly reduce the volume, and the electric power and exhaust heat from the gas turbine 1 can be used.
  • the accompanying water from CBM contains more carbonate, which is an underground rock component, than seawater.
  • the carbonate precipitates when the temperature is raised, causing contamination of the heat transfer surface of the evaporative concentration facility 6.
  • the heating tank 42 is provided in the precipitation unit 10 and heated by the heat source 210, the carbonate is precipitated and separated, and the concentrated water is sent to the evaporation concentration facility 6.
  • the exhaust heat of the gas turbine 1 is also used as the heat source of the heat source 210.
  • the opening degree of the valve 11 is adjusted in accordance with fluctuations in the accompanying water treatment amount and power supply amount. For example, when the accompanying water treatment amount is small and the power supply amount is large, the valve 34 is opened and the steam 34 sent to the combustor 8 is increased. In this case, the amount of heat recovered by the exhaust heat recovery boiler 2 is often used to generate the steam 34, and the heating amount of the steam 32 and the heat source 210 is reduced.
  • FIG. 3B is a conceptual diagram of the effect of the present embodiment.
  • the vertical axis is the expected value of the ratio when the operation cost of the concentration plant is compared with the conventional evaporating basin method and the reverse osmosis membrane concentration method.
  • the conventional evaporating basin method uses solar concentration, so the operating cost is 0.
  • the conventional reverse osmosis membrane concentration method requires operating costs such as power and membrane replacement for reverse osmosis membrane concentration equipment. Is required.
  • Pretreatment drainage 24 Membrane concentrated water 25 ... Evaporated concentrated feed water 26 ... Condensed water 27 ... Evaporated concentrated water 28 ... Cooling water 30 ... Air 30a ... Compressed air 31 ... Exhaust gas 32 ... Steam 32A ... first steam supply system 33 ... fuel gas 34 ... steam 34A ... second steam supply system 35 ... CO2-containing gas 40 ... mixed water tank 41 ... chemical injection equipment 42 ... Heating tank (heater) 43 ... Microbubble generator 100 ... Concentration plant (concentrator) 200 ... Gas turbine power generation device 210 ... Heat source 210A ... Heat source supply system 300 ... Concentration device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 膜法による脱塩装置と蒸発法による濃縮装置を組み合わせることにより、低い設備コストで安定して随伴水などの塩類を含む水を濃縮し、淡水と塩類に分離する。 随伴水20は前処理設備3で固形性・溶解性物質を除去され前処理水21となる。前処理水21は逆浸透膜濃縮設備4に流入し、透過水22と膜濃縮水24に分離される。透過水22は淡水として利用される。膜濃縮水24は析出部10に流入し、アルカリ剤を混和されて不溶解性成分が析出した後、前処理装置3からの前処理排水23とともに貯留槽5に流入して、蒸発濃縮供給水25となり、更に蒸発濃縮設備6に流入し、凝縮水26と蒸発濃縮水27に分離される。凝縮水26は淡水として利用される。蒸発濃縮水27は濃縮水槽7に貯留される。蒸発濃縮設備6は排熱回収ボイラ2の発生蒸気を熱源として濃縮を行う。

Description

濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法
 本発明は、かん水、海水などの原水、特に石炭層から炭層ガスと共に排出される随伴水を淡水と塩類固形物に分離するための濃縮プラント及び濃縮方法、並びに濃縮プラントを備えた濃縮造水発電プラント及びその運転方法に関する。
 近年、石炭採掘時に石炭層から副次的に排出される、メタンを含む炭層ガス(以後、CBMと呼ぶ)の利用が進んでいる。非特許文献1によると、CBM採取に伴い、炭層内の水(以後、随伴水と呼ぶ)が排出される。随伴水は塩分を含むかん水である場合が多く、再び地層中に圧入するか、脱塩処理により塩類を分離したうえで土壌に戻す必要がある。CBMの採取量変動に伴い随伴水量も変動するため、随伴水の処理能力がCBMの採取量増量の制限条件となっている。現在、多くのCBM生産設備において、随伴水は池に貯留して自然蒸発により水分を除去し濃縮・塩類を固形物として分離する蒸発池方式により処理されている。
 一般的な塩類の濃縮・分離方法の一つとして、特許文献1に記載の多重効用蒸発器などの蒸発濃縮法によるものがある。
 一方、近年、水不足の拡大に伴い、随伴水を脱塩処理して淡水を生産・利用する取組みが進められている。非特許文献2によると、主な脱塩方法として、逆浸透膜やイオン交換膜で塩類を分離する膜法と、加熱して蒸発させた水分を凝縮させる蒸発法などが検討されている。非特許文献3によると、二段階の逆浸透膜処理により、随伴水から淡水を生産している事例がある。
 また、海水淡水化の分野で、造水効率をアップするために、ハイブリッド法と呼ばれる、逆浸透膜と蒸発法を組み合わせる方式がある。特許文献2においては、前処理装置において、塩水を第一段ナノろ過膜ユニットでろ過することによってスケール成分を含むイオン含有量を低減した後、逆浸透膜装置に供給してろ過水(淡水)を生成するとともに、
第1段ナノろ過膜ユニットを透過しない排水を更に第二段ろ過膜ユニットに供給してその濃縮水を系外に排出する一方、第2段ナノろ過水を蒸発法の淡水化装置に供給して更に淡水を生成し、スケール成分の析出を抑制しながら、高効率で淡水を製造するとしている。逆浸透膜装置で分離された濃縮水については、弁を経て放流されるか、第二段ナノろ過水とともに蒸発法の淡水化装置に供給して淡水を生成する。
特開2004-41850号公報 特開2008-100219号公報
坂本茂樹、大野泰伸、石油・天然ガスレビュー、Vol. 42,No. 6,p 31-49 (2008) James R Kuipers et al, Coal Bed Methane-Produced Water: Management Options for Substainable Development, pages 52-58, August 2004 James Welch,the edition of OIL & GAS JOURNAL,October 5 (2009)
 CBM採取に伴い排出される随伴水(塩分を含むかん水)の処理法として、現在、多くのCBM生産設備において非特許文献1に記載のような蒸発池方式が実施されているが、この場合は、広大な敷地が必要となる。
 特許文献1、非特許文献2、非特許文献3に記載のように、蒸発池方式に代わる処理法として、膜法と蒸発法が検討され、一部実施されている。特に、非特許文献3では、二段階の逆浸透膜処理により随伴水を濃縮し、容積を縮小している。この場合、淡水を分離した後の濃縮水の容積は、供給された随伴水の1/10程度に低減され、濃縮水から塩分を分離するための蒸発池も、容積は1/10に低減可能である。しかし、容積が縮小したとしても、塩類を固形化して分離するための蒸発池が必要であることには、変わりはない。このため蒸発池の設置面積の広さに伴う高い設備コストや立地条件の制限の問題がある。また、蒸発濃縮装置を用いた場合は、蒸発池と比べて設備容量が大幅に縮小できるが、加熱のための熱源が必要であり、運転コストが高くなる。
 特許文献2では、造水効率をアップするために逆浸透膜と蒸発法を組み合わせているが、前処理排水の一部(第二段ろ過膜ユニット濃縮水)や、場合によっては逆浸透膜装置で分離された濃縮水を外部に捨てており、これを随伴水の処理に適用した場合には、やはり塩類を固形化して分離するための蒸発池が必要となる。
 本発明の目的は、上述した従来の問題点を解決し、膜法による脱塩装置と蒸発法による濃縮装置を組み合わせることにより、低い設備コストで安定して随伴水などの塩類を含む水を濃縮し、淡水と塩類に分離する濃縮プラント及び濃縮方法を提供することである。
 上記目的を達成するための本発明は、濃縮装置において、石炭層から炭層ガスと共に排出される随伴水を透過水と非透過水とに分離する逆浸透膜装置と、前記非透過水を濃縮して濃縮水を貯留設備に排出する蒸発濃縮装置とを備えるものとする。
 また、上記目的を達成するための本発明は、濃縮装置において、原水を前処理する前処理装置と、この前処理装置を経由した前処理後の水を透過水と非透過水とに分離する逆浸透膜装置と、前記前処理装置で生じた前処理排水と、前記逆浸透膜装置で生じた前記非透過水とを濃縮して濃縮水を生成する蒸発濃縮装置とを備えるものとする。
 このように逆浸透膜装置を前段に置き、後段に蒸発濃縮装置を置くことで、前段と後段を合わせて原水(随伴水)の大幅な濃縮減容化を図れる。その結果、濃縮水を一旦貯留設備に貯留した後、濃縮水を蒸発乾固化することが可能となり、濃縮水を蒸発乾固化する場合、蒸発池は不要となり、蒸発池の設置コストは0となる。蒸発池を設けた場合でも、蒸発池の設置面積は著しく縮減し、蒸発池の設置コストを低減することができる。
 このように本発明の構成をとることで、CBM生産施設における随伴水処理設備用の敷地を低減し、設備コストを大幅に低減することができる。また、廃棄物を低減し、安定した運転を実現することができる。
 更に、高い設備コストや立地条件の制限が緩和されるため、CBMの採取量変動に伴う随伴水量の変動に柔軟に対応することができ、随伴水の処理能力を増大させ、CBMの採取量を増量させることが可能となる。
 上記目的を達成するための本発明は、炭化水素を主燃料とするガスタービンを備えたガスタービン発電装置と、前記ガスタービンの排熱で蒸気を発生させる排熱回収ボイラと、原水を濃縮する濃縮装置とを備えた濃縮造水発電プラントにおいて、前記濃縮装置は、原水を前処理する前処理装置と、この前処理装置を経由した前処理後の水を透過水と非透過水とに分離する逆浸透膜装置と、前記排熱回収ボイラの発生蒸気を熱源として、前記前処理の結果生じた前処理排水と、前記非透過水とを濃縮して濃縮水を生成する蒸発濃縮装置とを備えるものとする。
 これにより上述した如く、設備コストを低減することができる。
 また、排熱回収ボイラの発生蒸気を熱源として蒸発濃縮装置で濃縮水を生成することにより、蒸発濃縮装置での蒸気発生用のエネルギー費は不要となるため、発電設備の排熱を利用して施設全体での資源の効率的な利用が可能となり、運転コストを低減することができる。
 上記濃縮装置は、好ましくは、前記非透過水が前記蒸発濃縮装置へ流入する流路に、前記非透過水中の無機成分を析出させる析出装置を備える。前記析出装置は、前記非透過水のpHを上昇させる機能、炭酸イオンを増加させる機能、加熱する機能、微細気泡を注入する機能、カルシウムイオンを注入する機能のうちの一つ以上を有することが好ましい。
 このようにあらかじめ水中に浮遊する微細な結晶として析出させることにより、蒸発濃縮装置の蒸発缶内で不溶解性塩をこの結晶を核として成長させることが可能となり、その結果、蒸発缶壁面でのスケール析出・成長が回避され、安定した運転を実現することができ、かつ缶内洗浄などの薬品使用量や労力を低減できる。
 また、好ましくは、前記析出装置は、前記排熱回収ボイラの発生蒸気を熱源として、前記非透過水を加熱する加熱器、或いは前記ガスタービンより排出された排ガスを前記非透過水に注入する装置を備える。
 これにより炭酸カルシウム等の析出を促進し、蒸発濃縮装置の蒸発缶壁面でのスケール析出・成長が回避される。
 また、好ましくは、濃縮造水発電プラントは、前記排熱回収ボイラの発生蒸気を前記ガスタービンの燃焼器に注入する蒸気供給系統を更に備え、その場合、前記蒸気供給系統は、前記排熱回収ボイラの発生蒸気の前記燃焼器への供給量を調整する弁を有することが好ましい。
  このように蒸気が燃焼器に供給されることで、タービンに流入する燃焼ガスの質量流量が増大し、発電機の発電量を増加できる。或いは、発電機の発電量を増加させる必要のない場合は、燃料ガスの消費量を低減することができる。
 また、好ましくは、濃縮造水発電プラントは、前記排熱回収ボイラの発生蒸気で前記蒸発濃縮装置に供給する蒸気を生成する間接熱交換器を更に備える。
 これにより排熱回収ボイラで蒸気を発生する系統と、蒸発濃縮装置に蒸気が流入・流出する系統とが分離されるため、排熱回収ボイラで発生する蒸気に塩類が混入することはなく、排熱回収ボイラ2の腐食を回避することができる。
 また、上記目的を達成するための本発明は、濃縮方法において、石炭層から炭層ガスと共に排出される随伴水を、逆浸透膜を用いて透過水と非透過水とに分離する工程と、前記非透過水を蒸発濃縮法によって濃縮して濃縮水を貯留設備に排出する工程とを有するものとする。
 更に、上記目的を達成するための本発明は、濃縮方法において、原水を前処理する工程と、前記前処理後の水を、逆浸透膜を用いて透過水と非透過水とに分離する工程と、前記前処理の結果生じた前処理排水と、前記分離工程で生じた前記非透過水とを蒸発濃縮法によって濃縮して濃縮水を生成する工程とを有するものとする。
 また、上記目的を達成するための本発明は、ガスタービン発電装置と、排熱回収ボイラと、前処理装置と、逆浸透膜装置と、蒸発濃縮装置と、を有する濃縮造水発電プラントの運転方法において、前記ガスタービン発電装置によって電力と排熱を生成する工程と、前記排熱回収ボイラによって前記ガスタービン発電装置の排熱で蒸気を発生させる工程と、前記前処理装置を用いて原水を前処理する工程と、前記前処理装置を経由した前処理後の水を、前記逆浸透膜装置を用いて透過水と非透過水とに分離する工程と、前記排熱回収ボイラの発生蒸気を熱源として、前記蒸発濃縮装置を用いて前記前処理の結果生じた前処理排水と、前記非透過水とを濃縮して濃縮水を生成する工程とを有するものとする。
 本発明によれば、CBM生産施設における随伴水処理設備用の敷地を低減し、設備コストを大幅に低減することができる。また、廃棄物を低減し、安定した運転を実現することができる。更に、高い設備コストや立地条件の制限が緩和されるため、CBMの採取量変動に伴う随伴水量の変動に柔軟に対応することができ、随伴水の処理能力を増大させ、CBMの採取量を増量させることが可能となる。
 また、本発明によれば、CBM生産施設における随伴水処理設備用の敷地を低減し、かつ廃棄物を低減した運転を実現することができるだけでなく、発電設備の排熱を利用して施設全体での資源の効率的な利用が可能となり、運転コストを低減することが可能となる。
本発明の第1の実施の形態における濃縮プラントの構成を示す模式図である。 本発明の第1の実施の形態における濃縮プラントの析出部の一構成例の模式図である。 本発明の第1の実施の形態における濃縮プラントの析出部の他の構成例の模式図である。 本発明の第1の実施の形態における濃縮プラントの析出部の更に他の構成例の模式図である。 本発明の第1の実施の形態における濃縮プラントの析出部の更に他の構成例の模式図である。 本発明の第1の実施の形態における濃縮プラントの作用効果を示す図である。 本発明の第2の実施の形態における濃縮造水発電プラントの作用効果を示す図である。 本発明の第2の実施の形態における濃縮造水発電プラントの構成を示す模式図である。 本発明の第3の実施の形態における濃縮造水発電プラントの構成を示す模式図である。 本発明の第4の実施の形態における濃縮造水発電プラントの構成を示す模式図である。
 以下、本発明の実施の形態について図面を用いて詳細に説明する。なお、各図を通して同一の符号は同等のものを示している。
(第1の実施の形態)
 図1は本発明の第1の実施の形態による濃縮プラントの構成を示す模式図である。本実施の形態は、原水として、CBM生産プラントの随伴水を対象とした場合の例である。なお、原水として随伴水以外のかん水(例えば工場排水、地下水、塩湖水等)を対象としてもよいし、海水を対象としてもよい。
 図1において、全体を符号100で示されるかん水濃縮プラントは、前処理設備3と、逆浸透膜濃縮設備4(逆浸透膜装置)と、貯留槽5と、蒸発濃縮設備6(蒸発濃縮装置)と、濃縮水槽7と、析出部10(析出装置)とを備えている。
 随伴水20は前処理設備3で固形性・溶解性物質を除去され、あるいは水温・pHなどを調整され、前処理水21となる。前処理の目的は、逆浸透膜濃縮設備4の逆浸透膜の膜面での炭酸カルシウムなどの濃縮/析出を防ぐためである。随伴水20のpHは、通常、7から10未満であり、前処理でpHを調整する場合は、使用する膜や水温等によっても異なるが、概ね、6~7程度に調整される。前処理水21は逆浸透膜濃縮設備4に流入し、透過水22と膜濃縮水24に分離される。透過水22は淡水として利用される。膜濃縮水24には、随伴水20の含有成分である炭酸カルシウム、シリカ等が含まれている。膜濃縮水24はその全てが析出部10に流入し、アルカリ剤を混和するなどの処理がなされて炭酸カルシウム等の不溶解性成分が析出した後、貯留槽5に流入する。前処理装置3で随伴水20から除去された固形性・溶解性物質を含む前処理排水23も、その全てが、貯留槽5に流入して膜濃縮水24と混合され、蒸発濃縮供給水25となる。蒸発濃縮供給水25はその全てが蒸発濃縮設備6に流入し、凝縮水26と蒸発濃縮水27に分離される。凝縮水26は淡水として利用される。蒸発濃縮水27は濃縮水槽7に貯留される。逆浸透膜濃縮設備4を前段に置き、後段に蒸発濃縮設備6を置くことで、前段と後段を合わせて大幅な濃縮減容化を図れる。その結果、濃縮水槽7に貯留した蒸発濃縮水27の処理が容易となる。濃縮水槽7に貯留した蒸発濃縮水27は、好ましくは、その後、適当なタイミングで蒸発乾固化される。
 蒸発濃縮設備6は、例えば、複数の蒸発缶を備えた多重効用蒸発器である。多重効用蒸発器としては、例えば特許文献1(特開2004-41850号公報)に記載されたものが使用可能である。蒸発濃縮設備6が複数の蒸発缶を備える場合、各蒸発缶の缶内側壁面に不溶解性塩類がスケールとして付着する問題がある。本実施の形態では、不溶解性塩を析出部10であらかじめ水中に浮遊する微細な結晶として析出させることにより、蒸発缶内で不溶解性塩をこの結晶を核として成長させる。その結果、後段の蒸発缶壁面でのスケール析出・成長が回避され、安定した運転を実現することができ、かつ缶内洗浄などの薬品使用量や労力を低減できる。
 析出部10の装置構成の例を図2Aから図2Dに示す。図2Aの例では、膜濃縮水24は混和水槽40に流入して薬品注入設備41から添加されたアルカリ剤と混和され、炭酸カルシウム等の不溶解性塩を析出する。アルカリ剤は例えば苛性ソーダや消石灰を用いることができる。混和水槽40は設けず、管路にて混合することもでき、この場合ラインミキサを設置してもよい。アルカリ剤を注入して蒸発濃縮供給水25のpHを8.5以上に調整することで、炭酸カルシウムを析出し易くすることができる。蒸発濃縮設備6にてpHを8以上、蒸発温度を40℃以上にすることで、シリカの溶解度が増加し、シリカスケール生成ポテンシャルを低減できる。アルカリ剤に代え、カルシウムイオンを注入してもよい。
 図2Bの例のように、アルカリ剤混和の前段に加温槽42(加熱器)を設け、膜濃縮水24を加熱してもよい。水温が上昇すると炭酸カルシウムの溶解度が低下し、析出が促進される。混和水槽40やラインミキサを設けずに、加温槽42だけを設けてもよい。また、図2Cの例のようにCO2を含むガス35をアルカリ剤添加前段の混和水槽40aに注入してもよい。CO2を溶解させてpHを微酸性に調整すると消石灰の溶解度が高まり、カルシウムイオン量を増加できるため、炭酸カルシウム析出を促進できる。さらに、図2Dの例のように、混和水槽40bに流入した膜濃縮水24を微細気泡生成装置43に取り込み、微細気泡生成装置43内でその膜濃縮水24に空気やCO2を含むガス36を注入して、直径50マイクロメートル以下程度の微細気泡を生成し、この微細気泡を混和水槽40bに戻してもよい。この場合、微細気泡の急速な溶解に伴い微細な結晶核が生成され、不溶解性塩の析出を促進できる。
 いずれの場合も、析出物が混和水槽40や析出部10内の管路に沈殿しないように、各部分での流速が所定の値を下回らないように設計することが望ましい。なお、析出部10は貯留槽5の後段に設けてもよい。
 図1に戻り、冷却水28には、前処理設備3に流入する前の随伴水20、透過水22、凝縮水26を利用してもよい。随伴水20を冷却水28として用いる場合は、その後、前処理設備3に供給して逆浸透膜濃縮設備4で処理する際に、水温上昇に伴い逆浸透膜濃縮設備4における塩透過率が上昇するため、透過水22の水質を必要な水準に維持できる範囲で実施することが望ましい。
 また、透過水22と凝縮水26を比較すると、前者は塩分含有量が後者より多いため、利用目的に応じて混合して使用してもよい。例えば、透過水22は飲料水の原料、凝縮水26は低い塩分含有量が求められる工業用水に使用することが考えられる。なお、上述のように随伴水20を冷却水28として用いた場合、随伴水20が加温され、その加温により透過水22の塩分含有量が増加する可能性がある。この場合は、加温後の随伴水20を凝縮水26と混合することで水質を調整することもできる。
 以下に、上記構成による作用効果を説明する。
 図3Aは本実施の形態の効果の概念図である。縦軸は、蒸発池の設置コストを従来の蒸発池方式及び逆浸透膜濃縮法と比べた場合の比の予想値である。
 従来の蒸発池方式の設備コストを1とした場合、従来の逆浸透膜濃縮法の場合、蒸発池で処理する水は濃縮なしの蒸発池方式に比べ1/10程度に低減され、蒸発池の設置コストもそれに応じて低減する。本実施の形態においては、濃縮水槽7に貯留した蒸発濃縮水27を蒸発乾固化する場合、蒸発池は不要であり、蒸発池の設置コストは0となる。また、本実施の形態において、貯留設備として濃縮水槽7に代えて蒸発池を設けてもよく、この場合でも、蒸発池の設置面積は著しく縮減し、蒸発池の設置コストを低減することができる。
 このように本実施の形態の構成をとることで、CBM生産施設における随伴水処理設備用の敷地を低減し、設備コストを大幅に低減することができる。また、廃棄物を低減し、安定した運転を実現することができる。
 更に、高い設備コストや立地条件の制限が緩和されるため、CBMの採取量変動に伴う随伴水量の変動に柔軟に対応することができ、随伴水の処理能力を増大させ、CBMの採取量を増量させることが可能となる。
 また、膜濃縮水24が蒸発濃縮設備6へ流入する流路に析出部10を設けることで、蒸発缶壁面でのスケール析出・成長が回避され、安定した運転を実現することができるとともに、缶内洗浄などの薬品使用量や労力を低減できる。
(第2~第4の実施の形態)
 図4は本発明の第2の実施の形態による濃縮造水発電プラントの構成を示す模式図である。本実施の形態では、第1の実施の形態における濃縮プラントにガスタービン発電設備が併設されている。
 図4において、濃縮造水発電プラントは、炭化水素、例えばLNGを主燃料とするガスタービン1を備えたガスタービン発電装置200と、発電装置200の排熱で蒸気を発生させる排熱回収ボイラ2と、濃縮装置300とを備えている。濃縮装置300としては、例えば、第1の実施の形態の濃縮プラント100が使用される。
 ガスタービン発電設備200において、ガスタービン1は圧縮機1a、タービン1b、燃焼器8、発電機9、排ガス処理塔12を備えている。空気30は圧縮機1aで圧縮されて圧縮空気30aとなり、燃焼器8に流入し、燃料ガス33と混合される。燃焼器8内で燃料ガス33は燃焼して燃焼ガスとなり、タービン1bを回転させた後、排ガス31として流出する。発電機9はタービン1bよりトルクを受けて電気を発生する。排ガス31は排熱回収ボイラ2に流入し、排熱で蒸気を発生させた後、排ガス処理塔12に送られ、排ガス処理塔12で処理されて大気中へ放散する。
 排熱回収ボイラ2内には、第1蒸気供給系統32Aの熱交換器2aが配置されている。第1蒸気供給系統32Aには循環水が流れており、排熱回収ボイラ2に流入した排ガス31は、熱交換器2aにて循環水に熱を供給して蒸気32に相変化させる。蒸気32は蒸発濃縮設備6に流入し蒸発濃縮供給水25を加熱し、蒸気に相変化させる。生成した蒸気は冷却水28で冷却され凝縮水26となる。蒸気32は熱を奪われ循環水に戻る。
 濃縮装置300(濃縮プラント100)の構成は第1の実施の形態と同様である。すなわち、随伴水20は前処理設備3で固形性・溶解性物質を除去され、あるいは水温・pHなどを調整され、前処理水21となる。前処理水21は逆浸透膜濃縮設備4に流入し、透過水22と膜濃縮水24に分離される。透過水22は淡水として利用される。膜濃縮水24は析出部10に流入し、アルカリ剤を混和されて不溶解性成分が析出した後、貯留槽5に流入する。前処理装置3で随伴水20から除去された固形性・溶解性物質を含む前処理排水23も貯留槽5に流入して膜濃縮水24と混合され、蒸発濃縮供給水25となる。蒸発濃縮供給水25は蒸発濃縮設備6に流入し、凝縮水26と蒸発濃縮水27に分離される。凝縮水26は淡水として利用される。蒸発濃縮水27は濃縮水槽7に貯留される。
 析出部10の装置構成として、図2Bの例に示す加熱槽42を設けた場合、加熱槽42の熱源として、ガスタービン1の排ガス31を利用してもよい。また、図2Cや図2Dの例における、CO2を含むガス33としてガスタービン1の排ガス31を利用してもよい。排ガス31は、排熱回収ボイラ2で熱交換された後でもよい。図4は、排熱回収ボイラ2で熱交換された後の排ガス31を析出部10に供給する例である。
 前処理設備3や逆浸透膜濃縮設備4の電力源として、発電機9により生成した電力を用いることができる。また、燃料ガス33は、CBMから生産したLNGを用いることができる。このように、プラント内に存在するエネルギーや原料を用いることにより、送電ロスや輸送費が軽減される。
 間接熱交換器13を介して蒸気32の熱量を蒸発濃縮設備6へ供給する場合の例(第3の実施の形態)を図5に示す。蒸気32を直接蒸発濃縮設備6に供給する場合、蒸発濃縮設備6の構造によっては、蒸発濃縮設備6に流入した蒸気に蒸発濃縮供給水25由来の塩類が混入する場合がある。図5の例では、第1蒸気供給系統は、熱交換器2aを備えた一次蒸気供給系統32Bと、蒸発濃縮設備6に蒸気を供給する二次蒸発器供給系統32Cと、一次蒸気供給系統32Bの蒸気で二次蒸発器供給系統32Cの循環水に熱を供給して蒸気を生成する間接熱交換器13とを備えている。蒸気32の系統32Bと蒸発濃縮設備6に流入・流出する系統32Cが分離されているため、蒸気32に塩類が混入することはなく、排熱回収ボイラ2の腐食を回避することができる。
 排熱回収ボイラ2で生成した蒸気を燃焼器8に注入する場合の例(第4の実施の形態)を図6に示す。この例では、析出部10の加熱槽42(図2B)の熱源にも排熱回収ボイラ2で生成した熱源を利用している。
 図6において、排熱回収ボイラ2内には、第1蒸気供給系統32Aの熱交換器2aと、熱源供給系統202Aの熱交換器2bと、第2蒸気供給系統34Aの熱交換器2cとが配置され、排熱回収ボイラ2では蒸発濃縮設備6への蒸気32、析出部10の加熱槽42への熱源210、燃焼器8への蒸気34が別々に生成される。析出部10の加熱槽42への熱源210は熱媒体は蒸気-水でもよいし、温水-冷水でもよい。また、水以外の他の物質を用いることもできる。第2蒸気供給系統34Aの蒸気34が流れる管路には、通常閉じている弁11が設けられ、弁11が開き、蒸気34が燃焼器8に供給される。蒸気34が燃焼器8に供給されると、タービン1bに流入する燃焼ガスの質量流量が増大し、発電機9の発電量を増加できる。発電機9の発電量を増加させる必要のない場合は、燃料ガス33の消費量を低減することができる。蒸気34は排ガス31に混入し、排熱回収ボイラ2及び排ガス処理塔12を経由し大気に放出される。濃縮装置300では淡水として透過水22及び凝縮水26が生成されるため、これらを利用して排熱回収ボイラ2内の熱交換器2cに水を供給する。図6では凝縮水26の一部を取り出して熱交換器2cに供給する例を示す。また、図示しないが、得られる淡水の純度が低い場合、純粋化装置を設けてもよい。
 本実施の形態は、CBMからの随伴水処理に極めて有効なものである。CBMから生産されるメタンなどの炭化水素はガスタービン1の燃料に使うことができる。ガスタービン1で発電された電力は濃縮装置100内で使える。余剰な電力を外部に供給することもできる。CBMからの随伴水濃度は海水濃度の約1/5と小さく浸透圧が小さい。したがって、逆浸透膜濃縮設備4を前段に置き、後段に蒸発濃縮設備6を置いた本発明で、逆浸透膜濃縮設備4の消費電力を小さく保てる。蒸発濃縮設備6に供給する蒸気32をガスタービン1の排熱により生成できる。しかも、前段と後段を合わせて大幅な濃縮減容化を図れ、それにガスタービン1からの電力と排熱を利用できる。
 さらに、CBMからの随伴水には地下の岩石成分である炭酸塩が海水より多く含まれる。炭酸塩は温度を上昇させると析出し蒸発濃縮設備6の伝熱面の汚れの原因となる。これを避けるために、析出部10に加温槽42を設けて熱源210で加熱し、炭酸塩を析出分離し、濃縮水を蒸発濃縮設備6に送る。熱源210の大元の熱源にもガスタービン1の排熱が用いられる。
 また、随伴水処理量及び電力供給量などの変動に応じて、弁11の開度を調整する。例えば、随伴水処理量が少なく、電力供給量が多くする場合、弁11を開き燃焼器8に送る蒸気34を増やす。この場合、排熱回収ボイラ2で回収された熱量は蒸気34の生成に多く使われ、蒸気32、熱源210の加熱量が減少する。
 以下に、濃縮装置300にガスタービン発電設備200と排熱回収ボイラ2を併設した上記実施の形態の構成による作用効果を説明する。
 図3Bは本実施の形態の効果の概念図である。縦軸は、濃縮プラントの運転コストを従来の蒸発池方式及び逆浸透膜濃縮法と比べた場合の比の予想値である。
 従来の蒸発池方式では天日濃縮であるため、運転コストは0であるのに対して、従来の逆浸透膜濃縮法の場合、逆浸透膜濃縮設備の電力費・膜交換費等の運転コストが必要となる。
 一方、濃縮プラント単独の構成の場合、二段階の濃縮であるため逆浸透膜濃縮設備4での濃縮率を低減することが可能であるが、蒸発濃縮設備6での蒸気発生用のエネルギー費が必要となる。これに対し、本実施の形態のガスタービン発電設備200と排熱回収ボイラ2を併設する構成の場合、排熱回収ボイラ2から蒸気が供給されるため、蒸発濃縮設備6での蒸気発生用のエネルギー費は不要である。
 このように本実施の形態の構成をとることで、CBM生産施設における随伴水処理設備用の敷地を低減し、かつ廃棄物を低減した運転を実現することができるだけでなく、発電設備の排熱を利用して、施設全体での資源の効率的な利用が可能となり、運転コストを低減することもできる。
1・・・ガスタービン
1a・・・圧縮機
1b・・・タービン
2・・・排熱回収ボイラ
2a,2b,2c・・・熱交換器
3・・・前処理設備
4・・・逆浸透膜濃縮設備(逆浸透膜装置)
5・・・貯留槽
6・・・蒸発濃縮設備(蒸発濃縮装置)
7・・・濃縮水槽
8・・・燃焼器
9・・・発電機
10・・・析出部(析出装置)
11・・・弁
12・・・排ガス処理塔
13・・・間接熱交換器
20・・・随伴水
21・・・前処理水
22・・・透過水
23・・・前処理排水
24・・・膜濃縮水
25・・・蒸発濃縮供給水
26・・・凝縮水
27・・・蒸発濃縮水
28・・・冷却水
30・・・空気
30a・・・圧縮空気
31・・・排ガス
32・・・蒸気
32A・・・第1蒸気供給系統
33・・・燃料ガス
34・・・蒸気
34A・・・第2蒸気供給系統
35・・・CO2含有ガス
40・・・混和水槽
41・・・薬品注入設備
42・・・加温槽(加熱器)
43・・・微細気泡生成装置
100・・・濃縮プラント(濃縮装置)
200・・・ガスタービン発電装置
210・・・熱源
210A・・・熱源供給系統
300・・・濃縮装置

Claims (19)

  1.  石炭層から炭層ガスと共に排出される随伴水を透過水と非透過水とに分離する逆浸透膜装置(4)と、
     前記非透過水を濃縮して濃縮水を貯留設備(7)に排出する蒸発濃縮装置(6)と、
    を備えたことを特徴とする濃縮プラント。
  2.  原水を前処理する前処理装置(3)と、
     この前処理装置を経由した前処理後の水を透過水と非透過水とに分離する逆浸透膜装置(4)と、
     前記前処理装置で生じた前処理排水と、前記逆浸透膜装置で生じた前記非透過水とを濃縮して濃縮水を生成する蒸発濃縮装置(6)と、
    を備えたことを特徴とする濃縮プラント。
  3.  前記非透過水が前記蒸発濃縮装置(6)へ流入する流路に、前記非透過水中の無機成分を析出させる析出装置(10)を備えた、
    ことを特徴とする請求項1又は2に記載の濃縮プラント。
  4.  前記析出装置(10)は、前記非透過水のpHを上昇させる機能、炭酸イオンを増加させる機能、加熱する機能、微細気泡を注入する機能、カルシウムイオンを注入する機能のうちの一つ以上を有する、
    ことを特徴とする請求項3に記載の濃縮プラント。
  5.  炭化水素を主燃料とするガスタービン(1)を備えたガスタービン発電装置(200)と、
     前記ガスタービンの排熱で蒸気を発生させる排熱回収ボイラ(2)と、
     原水を濃縮する濃縮装置(300)と、
    を備えた濃縮造水発電プラントにおいて、
     前記濃縮装置(300)は、
     原水を前処理する前処理装置(3)と、
     この前処理装置を経由した前処理後の水を透過水と非透過水とに分離する逆浸透膜装置(4)と、
     前記排熱回収ボイラ(2)の発生蒸気を熱源として、前記前処理の結果生じた前処理排水と、前記非透過水とを濃縮して濃縮水を生成する蒸発濃縮装置(6)と、
    を備えたことを特徴とする濃縮造水発電プラント。
  6.  前記濃縮装置(300)は、前記非透過水が前記蒸発濃縮装置(6)へ流入する流路に、前記非透過水中の無機成分を析出させる析出装置(10)を更に備えた、
    ことを特徴とする請求項5に記載の濃縮造水発電プラント。
  7.  前記析出装置(10)は、前記非透過水のpHを上昇させる機能、炭酸イオンを増加させる機能、加熱する機能、微細気泡を注入する機能、カルシウムイオンを注入する機能のうちの一つ以上を有する、
    ことを特徴とする請求項6に記載の濃縮造水発電プラント。
  8.  前記析出装置(10)は、前記排熱回収ボイラ(2)の発生蒸気を熱源として、前記非透過水を加熱する加熱器(42)を有する、
    ことを特徴とする請求項6に記載の濃縮造水発電プラント。
  9.  前記排熱回収ボイラ(2)の発生蒸気を前記ガスタービン(1)の燃焼器(8)に注入する蒸気供給系統(34A)を更に備えた、
    ことを特徴とする請求項5~8のいずれか1項に記載の濃縮造水発電プラント。
  10.  前記蒸気供給系統(34A)は、前記排熱回収ボイラ(2)の発生蒸気の前記燃焼器(8)への供給量を調整する弁(11)を有する、
    ことを特徴とする請求項9に記載の濃縮造水発電プラント。
  11.  前記析出装置(10)は、前記ガスタービン(1)より排出された排ガスを前記非透過水に注入する装置(40a)を備えた、
    ことを特徴とする請求項6~10のいずれか1項に記載の濃縮造水発電プラント。
  12.  前記排熱回収ボイラ(2)の発生蒸気で前記蒸発濃縮装置(6)に供給する蒸気を生成する間接熱交換器(13)を更に備えた、
    ことを特徴とする請求項5~11のいずれか1項に記載の濃縮造水発電プラント。
  13.  石炭層から炭層ガスと共に排出される随伴水を、逆浸透膜を用いて透過水と非透過水とに分離する工程(4)と、
     前記非透過水を蒸発濃縮法によって濃縮して濃縮水を貯留設備(7)に排出する工程(6)と、
    を有することを特徴とする濃縮方法。
  14.  原水を前処理する工程(3)と、
     前記前処理後の水を、逆浸透膜を用いて透過水と非透過水とに分離する工程(4)と、
     前記前処理の結果生じた前処理排水と、前記分離工程で生じた前記非透過水とを蒸発濃縮法によって濃縮して濃縮水を生成する工程(6)と、
    を有することを特徴とする濃縮方法。
  15.  前記逆浸透膜を用いた分離工程(4)と、前記非透過水を蒸発濃縮法によって濃縮する工程(6)の間に、前記非透過水中の無機成分を析出させる工程(10)を介在させた、
    ことを特徴とする請求項13又は14に記載の濃縮方法。
  16.  前記析出工程(10)は、前記非透過水のpHを上昇させる機能、炭酸イオンを増加させる機能、加熱する機能、微細気泡を注入する機能、カルシウムイオンを注入する機能のうちの一つ以上を用いて前記析出を行う、
    ことを特徴とする請求項15に記載の濃縮方法。
  17.  ガスタービン発電装置(200)と、排熱回収ボイラ(2)と、前処理装置(3)と、逆浸透膜装置(4)と、蒸発濃縮装置(6)と、を有する濃縮造水発電プラントの運転方法において、
     前記ガスタービン発電装置(200)によって電力と排熱を生成する工程と、
     前記排熱回収ボイラ(2)によって前記ガスタービン発電装置(200)の排熱で蒸気を発生させる工程と、
     前記前処理装置(3)を用いて原水を前処理する工程と、
     前記前処理装置(3)を経由した前処理後の水を、前記逆浸透膜装置(4)を用いて透過水と非透過水とに分離する工程と、
     前記排熱回収ボイラ(2)の発生蒸気を熱源として、前記蒸発濃縮装置(6)を用いて前記前処理の結果生じた前処理排水と、前記非透過水とを濃縮して濃縮水を生成する工程と、
    を有することを特徴とする濃縮造水発電プラントの運転方法。
  18.  前記逆浸透膜装置(4)を用いた分離工程と、前記蒸発濃縮装置(6)を用いて非透過水を濃縮する工程の間に、析出装置(10)を用いて前記非透過水中の無機成分を析出させる工程を介在させた、
    ことを特徴とする請求項17に記載の濃縮造水発電プラントの運転方法。
  19.  前記析出工程は、前記析出装置(10)において、前記非透過水のpHを上昇させる機能、炭酸イオンを増加させる機能、加熱する機能、微細気泡を注入する機能、カルシウムイオンを注入する機能のうちの一つ以上を用いて前記析出を行う、
    ことを特徴とする請求項18に記載の濃縮造水発電プラントの運転方法。
PCT/JP2010/061803 2010-07-12 2010-07-12 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法 WO2012008013A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012524356A JP5495403B2 (ja) 2010-07-12 2010-07-12 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法
AU2010357340A AU2010357340B9 (en) 2010-07-12 2010-07-12 Concentration plant, plant for producing fresh water by concentration and for generating electric power, concentration method, and method for operating plant for producing fresh water by concentration and for generating electric power
PCT/JP2010/061803 WO2012008013A1 (ja) 2010-07-12 2010-07-12 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061803 WO2012008013A1 (ja) 2010-07-12 2010-07-12 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法

Publications (1)

Publication Number Publication Date
WO2012008013A1 true WO2012008013A1 (ja) 2012-01-19

Family

ID=45469038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061803 WO2012008013A1 (ja) 2010-07-12 2010-07-12 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法

Country Status (3)

Country Link
JP (1) JP5495403B2 (ja)
AU (1) AU2010357340B9 (ja)
WO (1) WO2012008013A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071057A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 水処理装置
WO2013153587A1 (ja) * 2012-04-11 2013-10-17 Jfeエンジニアリング株式会社 坑井からの随伴水処理方法および装置
JP2014001085A (ja) * 2012-06-15 2014-01-09 Sasakura Engineering Co Ltd 炭酸水素ナトリウムの回収装置及び回収方法
WO2014007033A1 (ja) * 2012-07-06 2014-01-09 株式会社 日立製作所 塩排水の処理方法及びその処理装置
CN104098150A (zh) * 2013-04-05 2014-10-15 笹仓机械工程有限公司 水溶液的蒸发处理方法
WO2015002309A1 (ja) * 2013-07-05 2015-01-08 三菱重工業株式会社 水処理システム及び方法、冷却設備、発電設備
WO2015001888A1 (ja) * 2013-07-05 2015-01-08 三菱重工業株式会社 水処理方法及び水処理システム
CN104276707A (zh) * 2013-07-08 2015-01-14 笹仓机械工程有限公司 水溶液的蒸发处理方法
JP2015150553A (ja) * 2014-02-19 2015-08-24 株式会社ササクラ 造水装置及び造水方法
CN104632307B (zh) * 2014-12-12 2016-01-20 芜湖新兴铸管有限责任公司 一种钢铁厂低压蒸汽回收***的应用方法
WO2018159693A1 (ja) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 イオン除去装置
KR101904156B1 (ko) 2017-04-27 2018-10-04 주식회사 에어로워터스 스케일 및 거품 제거 기능이 구비된 진공 증발 농축장치
JP2020028872A (ja) * 2018-08-24 2020-02-27 パナソニックIpマネジメント株式会社 イオン交換樹脂再生システム
WO2021261410A1 (ja) * 2020-06-22 2021-12-30 学校法人早稲田大学 二酸化炭素の固定化方法
WO2022071153A1 (ja) * 2020-09-30 2022-04-07 日東電工株式会社 含油排水の処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2645025A1 (es) * 2017-06-08 2017-12-01 Corporacion De Organizacion Y Representaciones Sa Corsa Dispositivo de tratamiento de agua
JP7170239B2 (ja) * 2018-04-27 2022-11-14 パナソニックIpマネジメント株式会社 イオン除去システム
DE102019132562A1 (de) * 2019-11-29 2021-06-02 Röchling Automotive SE & Co. KG Wasserzuführungssystem zum Zuführen von demineralisiertem Wasser zu einer Brennkraftmaschine und Demineralisierungsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507183A (ja) * 1999-08-20 2003-02-25 エル.イー.ティー. リーディング エッジ テクノロジーズ リミテッド イオン選択性膜を用いる水脱塩プロセス
JP2005279384A (ja) * 2004-03-29 2005-10-13 Aroma Kagaku Kikai Kogyo:Kk 海水から理想的な飲料水を製造する方法
JP2006070889A (ja) * 2004-08-02 2006-03-16 Jgc Corp 発電淡水化方法および装置
JP2008100220A (ja) * 2006-09-22 2008-05-01 Toray Ind Inc 造水方法
JP2008207166A (ja) * 2007-01-31 2008-09-11 Tokyo Gas Co Ltd 排水リサイクル方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507183A (ja) * 1999-08-20 2003-02-25 エル.イー.ティー. リーディング エッジ テクノロジーズ リミテッド イオン選択性膜を用いる水脱塩プロセス
JP2005279384A (ja) * 2004-03-29 2005-10-13 Aroma Kagaku Kikai Kogyo:Kk 海水から理想的な飲料水を製造する方法
JP2006070889A (ja) * 2004-08-02 2006-03-16 Jgc Corp 発電淡水化方法および装置
JP2008100220A (ja) * 2006-09-22 2008-05-01 Toray Ind Inc 造水方法
JP2008207166A (ja) * 2007-01-31 2008-09-11 Tokyo Gas Co Ltd 排水リサイクル方法

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071057A (ja) * 2011-09-28 2013-04-22 Toshiba Corp 水処理装置
JPWO2013153587A1 (ja) * 2012-04-11 2015-12-17 Jfeエンジニアリング株式会社 坑井からの随伴水処理方法および装置
WO2013153587A1 (ja) * 2012-04-11 2013-10-17 Jfeエンジニアリング株式会社 坑井からの随伴水処理方法および装置
US10392283B2 (en) 2012-04-11 2019-08-27 Jfe Engineering Corporation Method and apparatus for treating accompanied water from a well
JP2014001085A (ja) * 2012-06-15 2014-01-09 Sasakura Engineering Co Ltd 炭酸水素ナトリウムの回収装置及び回収方法
AU2013202562B2 (en) * 2012-06-15 2014-07-31 Sasakura Engineering Co., Ltd. Apparatus for recovering sodium hydrogen carbonate and method for recovering the same
WO2014007033A1 (ja) * 2012-07-06 2014-01-09 株式会社 日立製作所 塩排水の処理方法及びその処理装置
CN104098150A (zh) * 2013-04-05 2014-10-15 笹仓机械工程有限公司 水溶液的蒸发处理方法
JP2014210252A (ja) * 2013-04-05 2014-11-13 株式会社ササクラ 水溶液の蒸発処理方法
US10329166B2 (en) 2013-04-05 2019-06-25 Sasakura Engineering Co., Ltd. Evaporative treatment method for aqueous solution
JP6038318B2 (ja) * 2013-07-05 2016-12-07 三菱重工業株式会社 水処理システム及び方法、冷却設備、発電設備
US10029929B2 (en) 2013-07-05 2018-07-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
WO2015002309A1 (ja) * 2013-07-05 2015-01-08 三菱重工業株式会社 水処理システム及び方法、冷却設備、発電設備
WO2015001888A1 (ja) * 2013-07-05 2015-01-08 三菱重工業株式会社 水処理方法及び水処理システム
US10160671B2 (en) 2013-07-05 2018-12-25 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment process and water treatment system
AU2014285450B2 (en) * 2013-07-05 2016-11-24 Mitsubishi Heavy Industries Engineering, Ltd. Water treatment method, and water treatment system
WO2015001887A1 (ja) * 2013-07-05 2015-01-08 三菱重工業株式会社 水処理方法及び水処理システム
US9914653B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9914652B2 (en) 2013-07-05 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9950936B2 (en) 2013-07-05 2018-04-24 Mitsubishi Heavy Industries, Ltd. Water treatment process and water treatment system
US9969629B2 (en) 2013-07-05 2018-05-15 Mitsubishi Heavy Industries, Inc. Water treatment process and water treatment system
CN104276707A (zh) * 2013-07-08 2015-01-14 笹仓机械工程有限公司 水溶液的蒸发处理方法
JP2015013268A (ja) * 2013-07-08 2015-01-22 株式会社ササクラ 水溶液の蒸発処理方法
JP2015150553A (ja) * 2014-02-19 2015-08-24 株式会社ササクラ 造水装置及び造水方法
CN104632307B (zh) * 2014-12-12 2016-01-20 芜湖新兴铸管有限责任公司 一种钢铁厂低压蒸汽回收***的应用方法
US11242273B2 (en) 2017-02-28 2022-02-08 Panasonic Intellectual Property Management Co., Ltd. Ion removal device
WO2018159693A1 (ja) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 イオン除去装置
KR101904156B1 (ko) 2017-04-27 2018-10-04 주식회사 에어로워터스 스케일 및 거품 제거 기능이 구비된 진공 증발 농축장치
JP2020028872A (ja) * 2018-08-24 2020-02-27 パナソニックIpマネジメント株式会社 イオン交換樹脂再生システム
US20210238060A1 (en) * 2018-08-24 2021-08-05 Panasonic Intellectual Property Management Co., Ltd. Ion-exchange resin regeneration system
WO2020039731A1 (ja) * 2018-08-24 2020-02-27 パナソニックIpマネジメント株式会社 イオン交換樹脂再生システム
US11780752B2 (en) 2018-08-24 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Ion-exchange resin regeneration system
WO2021261410A1 (ja) * 2020-06-22 2021-12-30 学校法人早稲田大学 二酸化炭素の固定化方法
WO2022071153A1 (ja) * 2020-09-30 2022-04-07 日東電工株式会社 含油排水の処理方法

Also Published As

Publication number Publication date
AU2010357340B9 (en) 2014-11-06
AU2010357340A1 (en) 2013-05-09
JPWO2012008013A1 (ja) 2013-09-05
JP5495403B2 (ja) 2014-05-21
AU2010357340B2 (en) 2014-07-10

Similar Documents

Publication Publication Date Title
JP5495403B2 (ja) 濃縮プラント、濃縮造水発電プラント、濃縮方法及び濃縮造水発電プラントの運転方法
Mavukkandy et al. Brine management in desalination industry: From waste to resources generation
Nassrullah et al. Energy for desalination: A state-of-the-art review
Ghaffour et al. Membrane distillation hybrids for water production and energy efficiency enhancement: A critical review
Giwa et al. Brine management methods: Recent innovations and current status
Morillo et al. Comparative study of brine management technologies for desalination plants
AU2009259824B2 (en) Forward osmosis separation processes
Drioli et al. Integrating membrane contactors technology and pressure-driven membrane operations for seawater desalination: energy, exergy and costs analysis
US20140319056A1 (en) Process for manufacturing potable water and apparatus therefor
JP5575015B2 (ja) 淡水製造システム
US9822021B2 (en) Forward osmosis separation processes
EA025403B1 (ru) Системы и способы осмотического разделения
CA3103568C (en) Methods for producing potassium sulfate and sodium chloride from wastewater
TW201328984A (zh) 海水脫鹽方法
Duong et al. Membrane distillation for strategic water treatment applications: opportunities, challenges, and current status
CN102139983A (zh) 一种废水处理方法及***
WO2006072122A2 (en) Process for conversion of high pressure sea water reverse osmosis concentrate discharge (hpswro) from seawater desalination plants into magnesium chloride (for recovery of magnesium metal by electrolysis) and sodium chloride and hydrogen with cogeneration of electricity and heat by pem (proton exchange membrane) fuel cell
KR101825784B1 (ko) 정삼투법을 이용한 액비 제조 시스템 및 제조 방법
CA2986925C (en) Methods for producing potassium sulfate and sodium chloride from wastewater
US20240123400A1 (en) Systems and methods for integrated direct air carbon dioxide capture and desalination mineral recovery
Misra Advances in nuclear desalination
Gryta Water demineralization by membrane distillation utilizing cooling water from municipal waste incinerator
Sangeetha et al. Integrated Membrane Distillation Approaches for Sustainable Desalination and Water/Resource Recovery
Palenzuela et al. State of the Art of Desalination Processes
EA040135B1 (ru) Способы производства сульфата калия и хлорида натрия из сточных вод

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10854697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012524356

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010357340

Country of ref document: AU

Date of ref document: 20100712

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10854697

Country of ref document: EP

Kind code of ref document: A1