WO2014005457A1 - 长骨骨折复位机器人 - Google Patents

长骨骨折复位机器人 Download PDF

Info

Publication number
WO2014005457A1
WO2014005457A1 PCT/CN2013/074159 CN2013074159W WO2014005457A1 WO 2014005457 A1 WO2014005457 A1 WO 2014005457A1 CN 2013074159 W CN2013074159 W CN 2013074159W WO 2014005457 A1 WO2014005457 A1 WO 2014005457A1
Authority
WO
WIPO (PCT)
Prior art keywords
long bone
bone fracture
locking
hydraulic
fracture reduction
Prior art date
Application number
PCT/CN2013/074159
Other languages
English (en)
French (fr)
Inventor
唐佩福
胡磊
王田苗
Original Assignee
Tang Peifu
Hu Lei
Wang Tianmiao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tang Peifu, Hu Lei, Wang Tianmiao filed Critical Tang Peifu
Priority to EP13812951.5A priority Critical patent/EP2862527B1/en
Publication of WO2014005457A1 publication Critical patent/WO2014005457A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/62Ring frames, i.e. devices extending around the bones to be positioned
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00535Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated
    • A61B2017/00539Surgical instruments, devices or methods, e.g. tourniquets pneumatically or hydraulically operated hydraulically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]

Definitions

  • the present invention relates to the field of medical device technology, and in particular, to a long bone fracture reduction robot.
  • the traditional fracture reduction and reduction is in the direct vision environment, and the doctor uses the instrument method to reset. After the reduction and reduction, the patient is fixed with a hard internal fixation or external fixation. ⁇ The treatment of open reduction and reduction makes the closed fracture artificially open fracture, which increases the chance of infection. During the operation, it is easy to destroy the blood supply, increase the necrotic area of the fracture end, and cause delayed healing. Not even heal. At the same time, when the reduction is performed, the removal of the hematoma will interfere with the body's ability to repair itself, and it will also affect the fracture healing.
  • the intramedullary nail technique and minimally invasive plate fixation technology have solved the problem of open reduction.
  • X-ray irradiation is required during the operation, and the radiation dose to doctors and patients is large.
  • the prior art performs resetting in a two-dimensional information environment, which tends to cause poor resetting, and has problems such as low surgical stability.
  • the present invention has the priority of Chinese Patent Application No. 201210191841.6.
  • At least one object of the present invention is to provide a long bone fracture reduction robot for solving the need of continuous X-ray irradiation during surgery, large radiation dose to doctors and patients, poor reset, and stable operation. Poor sex.
  • a long bone fracture reduction robot includes a base and a plurality of electro-hydraulic actuators, wherein the base is slidably coupled with a vertically movable bracket, and the bracket is provided with a six-degree-of-freedom parallel robot, the six free
  • the degree parallel robot includes a plurality of first hydraulic cylinders, and the number of the first hydraulic cylinders is The number of the electro-hydraulic drives is the same, and a plurality of the first hydraulic cylinders are connected to a plurality of the electro-hydraulic actuators.
  • the long bone fracture reduction robot provided by the present invention can plan the motion trajectory of a six-degree-of-freedom parallel robot according to a computed tomography (CT) before surgery, and accurately controls the six-degree-of-freedom parallel robot.
  • CT computed tomography
  • the movement of the affected limb completes the restoration of the affected limb. It can be seen that the above-mentioned long bone fracture reduction robot performs the reduction surgery, and only one CT scan is needed, thereby reducing the radiation amount to the doctor and the patient.
  • the six-degree-of-freedom parallel robot controls the movement of the affected limb with high reset accuracy and good surgical stability.
  • FIG. 1 is a perspective view of a long bone fracture reduction robot according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of an electro-hydraulic actuator according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of the two long bone fixing frames fixedly connected according to an embodiment of the present invention
  • FIG. 4 is a perspective view of a mounting fixing plate according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a long bone fixing frame according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a lock clamping unit according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a locking shaft according to an embodiment of the present invention.
  • the parallel robot 2, the six-degree-of-freedom parallel robot 2 includes a plurality of first hydraulic cylinders 6, the number of the first hydraulic cylinders 6 being the same as the number of the electro-hydraulic actuators 4, the plurality of first hydraulic cylinders 6 and the plurality of electro-hydraulic actuators 4 - Corresponding to the drive connection.
  • the long bone fracture reduction robot of the above scheme can plan the motion trajectory of the six-degree-of-freedom parallel robot 2 according to a CT scan before the operation, and accurately control the movement of the affected limb through the six-degree-of-freedom parallel robot 2 to complete the affected limb. Reset. It can be seen that the above-mentioned long bone fracture reduction robot performs the reduction surgery, and only one CT scan is needed, thereby reducing the radiation amount to the doctor and the patient. In addition, the six-degree-of-freedom parallel robot controls the movement of the affected limb with high reset accuracy and good surgical stability.
  • the bracket 5 may be a welded steel structure, including a bottom plate 7, and the bottom plate 7 is connected with two parallel and upwardly extending support plates 8, and the top plate 9 is connected between the tops of the two support plates 8.
  • the top plate 9 can be used as a stationary platform to place a long bone holder 3 .
  • the support base 10 is spliced between the support plate 8 and the bottom plate 7.
  • the electro-hydraulic drive 4 is fixedly attached to the base 1.
  • Bracket 5 can be moved up and down along the inclined rail on the base 1.
  • FIG. 2 is a perspective view of an electro-hydraulic actuator according to an embodiment of the present invention.
  • the electro-hydraulic drive 4 includes a drive motor 17 and a second hydraulic cylinder 16,
  • the driving motor 17 is driven to be connected with a screw rod 14.
  • the screw rod 14 is screwed with a slider 18, and the piston rod of the second hydraulic cylinder 16 is fixedly connected with the slider 18, and the plurality of first cylinders 6 and the plurality of second cylinders are connected.
  • the cylinder 16 is connected via a hydraulic line-corresponding connection, and the first port of the corresponding first hydraulic cylinder 6 communicates with the first port of the second hydraulic cylinder 16, and the second port of the first hydraulic cylinder 6 It is in communication with the second port of the second hydraulic cylinder 16.
  • the six-degree-of-freedom parallel robot 2 includes six first hydraulic cylinders 6, and six first cylinders 6 are supported between the stacked parallel mechanism fixing plates 19 and the parallel mechanism interface plates 20, By the cooperative action of the six first hydraulic cylinders 6, the parallel mechanism interface plate 20 can be driven to perform six degrees of freedom movement in the space.
  • the electro-hydraulic actuator 4 is used to drive the expansion and contraction of the first hydraulic cylinder 6, and an electro-hydraulic actuator 4 is connected to a first hydraulic cylinder 6 to realize one-to-one correspondence. Drive connection.
  • the electro-hydraulic actuator 4 includes a drive motor ⁇ and a second hydraulic cylinder 16.
  • the driving motor 17 can be, but is not limited to, a stepping motor, and the stepping motor can improve the control precision, thereby improving the motion accuracy of the six-degree-of-freedom parallel robot 2.
  • the driving motor 17 is mounted on the base 12, and two bearing seats 13 are mounted on the base 12.
  • the bearings are mounted in the two bearing housings 13.
  • a screw 14 is mounted between the two bearing housings 13 by rotation of the bearing.
  • the lead screw 14 and the screw 14 The drive motor 17 is connected, and the lead screw 14 is driven to rotate by the drive motor 17.
  • a screw block 18 is screwed onto the lead screw 14, and the slider 18 is in sliding engagement with the slide rail on the base 12.
  • the slider 18 is driven to move linearly along the slide rail by the rotation of the lead screw 14.
  • a slider 18 is fixedly connected to the slider 18, and the connector frame 15 is fixedly connected to the piston rod of the second cylinder 16, and the cylinder of the second cylinder 16 is fixedly coupled to one of the bearing housings.
  • the expansion and contraction of the piston rod of the second hydraulic cylinder 16 is controlled by the movement of the slider 18.
  • the first oil port of the first hydraulic cylinder 6 communicates with the first oil port of the second hydraulic cylinder 16, and the second oil port of the first hydraulic cylinder 6 communicates with the second oil port of the second hydraulic cylinder 16 to make the first hydraulic pressure
  • the cylinder 6 and the second hydraulic cylinder 16 constitute a hydraulic transmission system, and the operation of the first hydraulic cylinder 6 is controlled by the action of the second hydraulic cylinder 16. Using this driving method, the motion accuracy of the high six-degree-of-freedom parallel robot 2 is improved, and the resetting accuracy of the surgery is improved.
  • the bracket 5 and the six-degree-of-freedom parallel robot 2 are each provided with a set of long bone holders 3.
  • the long bone fixation frame 3 is used to fix the affected limb.
  • fixation nails are inserted into the two ends of the fractured long bone.
  • the doctor adjusts the long bone posture of the two fractures manually and performs a preliminary reset.
  • the two long bone fixing frames 3 are used to connect the fixing nails to fix the affected limb to the long bone fixing frame 3.
  • One of the long bone fixing frames 3 is fixedly attached to the bracket 5 and remains stationary during the operation, and the other long bone fixing frame fixed 3 is connected to the parallel mechanism interface plate 20 of the six-degree-of-freedom parallel robot 1 with the parallel mechanism interface
  • the plate 20 performs a six-degree-of-freedom movement in the space to effect translation, stretching, rotation, and the like of the affected limb.
  • FIG. 3 is a perspective view of the two long bone fixing frames fixedly connected according to an embodiment of the present invention
  • FIG. 4 is a perspective view of the mounting fixing plate according to an embodiment of the present invention.
  • the fixing plate 21 is further installed, and the two sets of long bone fixing frames 3 are arranged side by side and fixedly connected to the mounting fixing plate 21.
  • the two sets of long bone fixation frames 3 are fixedly connected by two sets of mounting plates 21.
  • Two sets of long bone fixation frames 3 are fixedly connected to a pair of affected limbs for CT scanning. After scanning, the affected limbs are connected to two fixed long bone fixation frames 3 correspondingly mounted on the long bone fracture reduction robot, and then the two installations are fixed.
  • the plate 21 allows one of the long bone holders 3 to move with the movement of the parallel mechanism interface plate 20. ⁇ Fixing two sets of long bone fixation brackets with the mounting plate 21 can ensure the consistency of the posture of the affected limb during CT scanning and the posture of the affected limb after being installed on the long bone fracture reduction robot.
  • the long bone fracture reduction robot according to the CT scan result
  • the planned path is used to control the movement of the six-degree-of-freedom parallel robot 1 to achieve the reset of the affected limb.
  • FIG. 5 is a perspective view of a long bone fixing frame according to an embodiment of the present invention.
  • the long bone fixing frame 3 includes a mounting seat 24, and the mounting seat 24 is provided with a positioning frame.
  • the positioning frame includes a fixing rod 26, and the end portion and the middle portion of the fixing rod 26 are provided with a locking clip.
  • the holding unit 27 and the lock clamping unit 27 provided at the end of the fixing rod 26 are slidably engaged with the mounting seat 24.
  • the mount 24 may be a plate member.
  • the mounting plate 21 is a strip-shaped member, and one side of the mounting plate 21 is provided with a card slot 22, and one side of the card slot 22 is screwed with a top wire through the through hole 23, and the edge of the mounting seat 24 is stuck on the card.
  • a fixed connection of the mounting seat 24 to the mounting fixture 21 is achieved on the mounting seat 24 by the top wire.
  • the latch clamping unit 27 is slidably engaged with the mounting seat 24 and can be used to adjust the relative position of the fixing lever 26 so that the fixing lever 26 can be placed at a suitable position to pass the latching clamping unit 27 of the middle portion. Connect to the fixation nail on the affected limb.
  • FIG. 6 is a perspective view of a lock clamping unit according to an embodiment of the present invention.
  • the lock clamping unit 27 includes a locking bolt 32, and a locking bolt 32 is stacked with at least four locking clamping blocks 33, between at least the first piece and the second piece of the locking clamping block 33 and between the third piece and the fourth piece locking clamping block 33 A bayonet 34 is provided.
  • the lock clamping unit has a simple structure, reliable connection and convenient operation.
  • the fixing rod is U-shaped, and the mounting seat is provided with two parallel sliding rods, and both ends of the fixing rod are provided with a locking clamping unit, and are disposed on the same fixing rod The two locking clamp units at the two ends are placed on the two sliding bars.
  • the fixing rod 26 is U-shaped, and both ends thereof are fixed to the mounting seat 24 by the locking and clamping unit 27, so that the fixing rod 26 is connected with the mounting seat 24. More tight. In actual use, two U-shaped fixing rods 26 can be arranged side by side on each long bone fixing frame 3.
  • One of the latches 34 of the latch holding unit 27 connected to the mount 24 is caught on the slide bar 25 of the mount 24 and is movable along the slide bar 25 to adjust the position so as to be mounted on the fixed lever 26
  • the central locking clamp unit 27 can be used to connect to the fixation pins on the affected limb. After the position adjustment is in place, tighten the nut at the end of the locking bolt 32 to fix the lock clamping unit 27 and the slide bar 25 to prevent the movement of the fixing rod 26 during the operation, thereby affecting the reset effect.
  • Fig. 7 is a perspective view of a locking shaft according to an embodiment of the present invention.
  • a locking shaft 31 is rotatably mounted on the mounting seat 24, and one end of the locking shaft 31 is set to be locked.
  • Block 29, the locking block 29 has a locking ramp 30, and the locking ramp 30 faces the mounting seat 24.
  • the bracket 5 and the six-degree-of-freedom parallel robot 2 are disposed on the upper side, and the long bone fixing frame 3 is disposed correspondingly on the interface board 11.
  • the interface board 11 is sandwiched between the mounting seat 24 and the locking slope 30.
  • the interface board 11 can be a rectangular flat plate.
  • a handle 28 is connected to one end of the locking shaft 31 away from the locking block 29, and the handle 28 can be an oblong plate member, and a locking hole 31, a shaft, a square hole, a shaft, etc. Stop the rotation.
  • the locking shaft 31 is rotated by the handle 28, and as the locking shaft 31 rotates, the locking ramp 30 also rotates synchronously. During the rotation, the locking plate contacts the interface plate 11 at different heights to complete the locking. Tightening and unlocking, for example, the higher position of the locking ramp 32 is in a locked state when the interface board 11 is in contact.
  • a linear actuator 35 that slides up and down the drive bracket is provided between the base 1 and the bracket 5.
  • the linear actuator 35 can be an electric push rod, a hydraulic cylinder or a pneumatic cylinder.
  • an error is unavoidable in the transmission system, and a displacement sensor is provided on the first hydraulic cylinder 6 in order to reduce the adverse effect of the error.
  • the displacement sensor is used to detect the movement of the first hydraulic cylinder 6, and the motion of the first hydraulic cylinder 6 is fed back to the control system to realize closed-loop control, so that the control system performs motion compensation to overcome or reduce the adverse effects caused by the error.
  • the control system of the reset motion of the long bone fracture resetting robot includes two parts of the stepping motor control and the position sensor detection, and the stepping motor control part finally realizes the expansion and contraction of the first hydraulic cylinder 6 by controlling the rotation of the stepping motor, and the position
  • the sensor detects and detects the amount of expansion and contraction of the first hydraulic cylinder 6, and causes the stepping motor control portion to adjust the amount of rotation of the stepping motor to correct the amount of expansion and contraction of the first hydraulic cylinder 6, so as to achieve precise control.
  • the long bone fracture reduction robot can use the control system of the double-layer structure of the upper and lower position machine.
  • the upper computer is a personal computer (PC), and the functions include the processing of the position information of the actuator (including the stepping motor, the first hydraulic cylinder 6, the second hydraulic cylinder 16), the processing of the CT three-dimensional data, and the calculation of the control parameters. And the transmission of human-computer interaction function instructions.
  • the lower computer is an Advanced RISC Machines (ARM) control board and a stepper motor driver that controls the operation of the stepper motor and feeds the stepper motor running status to the PC in real time.
  • the upper computer PC and the lower computer control board are connected by wireless.
  • the data collection card can periodically feed back the position information of each first hydraulic cylinder to the upper computer, and the motion control card can monitor the abnormal situation occurring in real time and send it to the upper computer.
  • fixation nails are placed on the proximal and distal ends of the patient's affected limb, and the affected limbs are placed in the two long bone fixation frames 3, and the fixing rod 26 and the fixing rod 26 are adjusted for connection. Fixing the position of the locking unit 27 of the nail, fixing the fixing nail to the long bone fixing frame 3, fixing the affected limb to the long bone fixing frame 3, and then fixing the two sets of the long bone fixing frame 3 by installing the fixing plate 24 A whole.
  • the patient's affected limb is sent to the CT scanning device together with the two sets of long bone fixation frames 3 and the contralateral limb corresponding to the affected limb to obtain CT images of the affected side bone and the healthy side bone, and the affected side bones are in two sets. Position information in the long bone holder 3. [51] 3. Path planning
  • the contralateral bone was mirror-transformed, and the contralateral bone after mirror transformation was used as the reference standard for the registration of the affected side.
  • the matching characteristic regions are selected at the two ends of the affected side bone and the healthy bone respectively, and the two sides of the affected side bone are respectively overlapped with the two ends of the healthy bone by using automatic registration and combined with manual fine adjustment, and the affected side bone is obtained after the coincidence.
  • the coordinates of these feature points in the CT image coordinate space are known.
  • the coordinates in the coordinate space of the long bone fracture reduction robot can also be calculated and calculated.
  • mapping relationship between the CT image coordinate space and the coordinates in the robot coordinate space is used to calculate the pose transformation matrix of the long bone fixation frame to be moved relative to the stationary long bone fixation frame 3, and the control parameters of the long bone fracture reduction robot motion are obtained. Then plan a reasonable long bone fracture to reset the path of the robot movement.
  • the long bone fracture reduction robot replaces the doctor's reset operation with high precision and small trauma. It has changed the traditional open fracture resetting method, which has reduced the occurrence of delayed healing, nonunion, infection, etc. at the fracture site, and prevented the doctor from operating errors caused by surgical fatigue.
  • [59] 2) A series-parallel hybrid mechanism consisting of an electro-hydraulic actuator 4 and a six-degree-of-freedom parallel robot 2 is used, which has 6 degrees of freedom.
  • the integrated series has a large working space, good flexibility and high positioning accuracy of the parallel mechanism. , large load capacity, compact structure, and high rigidity. Meet the requirements of working space, degrees of freedom, stiffness, etc. required for fracture reduction.
  • the long bone fixation frame 3 has the functions of initial resetting and limb fixation, and can be connected or split with the six-degree-of-freedom parallel robot 2 and the bracket 5, which facilitates the doctor to fix the series mechanism and The affected limb increases the space for the doctor to operate, and also facilitates the CT scan or other operations of the preoperative limb.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Abstract

一种长骨骨折复位机器人,包括机座(1)和多套电液驱动器(4),所述机座(1)上滑动连接有可上下运动的支架(5),支架(5)上设置有六自由度并联机器人(2),六自由度并联机器人(2)包括多个第一液压缸(6),第一液压缸(6)的数量与所述电液驱动器(4)的数量相同,多个所述第一液压缸(6)与多个所述电液驱动器(4)一一对应驱动连接。该长骨骨折复位机器人可以根据手术前的一次CT扫描来规划出六自由度并联机器人(2)的运动轨迹,通过六自由度并联机器人(2)来精准控制患肢的移动,完成患肢的复位。采用该长骨骨折复位机器人进行复位手术,仅需一次CT扫描即可,因此降低了对医生和病人的辐射量。另外,通过六自由度并联机器人(2)控制患肢移动,复位精度高,手术稳定性好。

Description

长骨骨折复位机器人
技术领域
[01] 本发明涉及医疗器械技术领域, 尤其涉及一种长骨骨折复位机器人。
背景技术
【02】 传统的骨折切开复位是在直视环境下, 医生利用器械手法进行复位。 切开复位后,釆用坚硬的内固定或者外固定来固定患肢。釆用切开复位的 治疗方式, 使闭合性骨折人为地变成开放性骨折, 增加了感染的机会,在 手术操作过程中, 容易破坏血运, 使骨折端坏死区增大, 引起迟愈合,甚 至不愈合。 同时, 切开复位时, 血肿的清除将干扰人体自身修复的能力, 也会影响骨折愈合。
【03】 目前发 ^来的髓内钉技术和微创钢板固定技术解决了切开复位的 问题, 但是在手术过程中需要不断进行 X光照射, 对医生和病人的辐射 量较大。 另外, 现有技术是在二维信息环境下进行复位, 容易导致复位不 良, 存在手术稳定性不高等问题。
[04] 本发明享有中国专利申请号为 201210191841.6的优先权。
发明内容
[05] 在下文中给出了关于本发明的筒要概述,以便提供关于本发明的某些 方面的基本理解。 应当理解, 这个概述并不是关于本发明的穷举性概述。 它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范 围。其目的仅仅是以简化的形式给出某些概念, 以此作为稍后论述的更详 细描述的前序。
[06] 本发明的至少一个目的在于提供一种长骨骨折复位机器人,用以解决 现有技术中在手术时需要不断进行 X光照射, 对医生和病人的辐射量较 大及复位不良、 手术稳定性差的问题。
[07] 一种长骨骨折复位机器人, 包括机座和多套电液驱动器,所述机座上 滑动连接有可上下运动的支架, 所述支架上设置有六自由度并联机器人, 所述六自由度并联机器人包括多个第一液压缸,所述第一液压缸的数量与 所述电液驱动器的数量相同,多个所述第一液压缸与多个所述电液驱动器 ——对应驱动连接。
[08] 本发明提供的长骨骨折复位机器人,可以根据手术前的一次计算机断 层扫描 (Computed Tomography, 以下简称 CT)来规划出六自由度并联机 器人的运动轨迹,通过六自由度并联机器人来精准控制患肢的移动, 完成 患肢的复位。 可见, 釆用上述长骨骨折复位机器人进行复位手术, 仅需一 次 CT扫描即可, 因此降低了对医生和病人的辐射量。 另外, 通过六自由 度并联机器人控制患肢移动, 复位精度高, 手术稳定性好。
[09] 通过以下结合附图对本发明的最佳实施例的详细说明,本发明的这些 以及其它的优点将更加明显。
附图说明
[10] 本发明可以通过参考下文中结合附图所给出的描述而得到更好的理 解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似 的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本 说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本 发明的原理和优点。 在附图中:
[11] 图 1为本发明实施例提供的长骨骨折复位机器人的立体图;
【12】 图 2为本发明实施例提供的电液驱动器的立体图;
【13】 图 3为本发明实施例提供的两长骨固定架固定连接后的立体图;
[14] 图 4为本发明实施例提供的安装固定板的立体图;
[15] 图 5为本发明实施例提供的长骨固定架的立体图;
[16] 图 6为本发明实施例提供的锁扣夹持单元的立体图;
[17] 图 7为本发明实施例提供的锁紧轴的立体图。
[18] 本领域技术人员应当理解,附图中的元件仅仅是为了筒单和清楚起见 而示出的, 而且不一定是按比例绘制的。 例如, 附图中某些元件的尺寸可 能相对于其他元件放大了, 以便有助于提高对本发明实施例的理解。
具体实施方式
[19] 在下文中将结合附图对本发明的示范性实施例进行详细描述。为了清 楚和简明起见, 在说明书中并未描述实际实施方式的所有特征。 然而,应 该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方 式的决定, 以便实现开发人员的具体目标, 例如, 符合与***及业务相关 的那些 P艮制条件,并且这些限制条件可能会随着实施方式的不同而有所改 变。 此外, 还应该了解, 虽然开发工作有可能是非常复杂和费时的, 但对 得益于^ ^开内容的本领域技术人员来说,这种开发工作仅仅是例行的任 务。
[20] 在此,还需要说明的一点是, 为了避免因不必要的细节而模糊了本发 明,在附图和说明中仅仅描述了与根据本发明的方案密切相关的装置结构 和 /或处理步骤, 而省略了对与本发明关系不大的、 本领域普通技术人员 已知的部件和处理的表示和描述。
[21] 图 1为本发明实施例提供的长骨骨折复位机器人的立体图。 如图 1 所示,本发明实施例提供的长骨骨折复位机器人, 包括机座 1和多套电液 驱动器 4, 机座 1上滑动连接有可上下运动的支架 5, 支架 5上设置有六 自由度并联机器人 2, 六自由度并联机器人 2包括多个第一液压缸 6, 第 一液压缸 6的数量与电液驱动器 4的数量相同,多个第一液压缸 6与多个 电液驱动器 4——对应驱动连接。
【22】 上述方案的长骨骨折复位机器人,可以根据手术前的一次 CT扫描来 规划出六自由度并联机器人 2的运动轨迹, 通过六自由度并联机器人 2 来精准控制患肢的移动, 完成患肢的复位。 可见, 釆用上述长骨骨折复位 机器人进行复位手术, 仅需一次 CT扫描即可, 因此降低了对医生和病人 的辐射量。 另外, 通过六自由度并联机器人控制患肢移动, 复位精度高, 手术稳定性好。
【23】 实际使用中, 支架 5可以是焊接的钢结构, 包括底板 7, 底板 7上连 接有两块相互平行、 向上延伸的支撑板 8, 两支撑板 8的顶部之间烊接顶 板 9。 顶板 9可以作为静止平台来安放一个长骨固定架 3。 为了提高支撑 板 8与底板 7之间的连接刚度及强度,在支撑板 8与底板 7之间烊接支撑 座 10。
[24] 电液驱动器 4固定连接在机座 1上。
[25] 支架 5可以沿机座 1上倾斜设置的轨道来进行上下运动。
[26] 进一步地,基于上述实施例, 图 2为本发明实施例提供的电液驱动器 的立体图。如图 2所示,电液驱动器 4包括驱动电机 17和第二液压缸 16, 驱动电机 17驱动连接有丝杠 14, 丝杠 14上螺接有滑块 18, 第二液压缸 16的活塞杆与滑块 18固定连接,多个第一 ί½缸 6与多个第二 ¾^缸 16 通过液压管路——对应连接,且——对应连接的第一液压缸 6的第一油口 与第二液压缸 16的第一油口连通, 第一液压缸 6的第二油口与所述第二 液压缸 16的第二油口连通。
[27] 实际使用中, 六自由度并联机器人 2包括六个第一液压缸 6, 六个第 一^ U£缸 6支撑在层叠设置的并联机构固定板 19与并联机构接口板 20之 间, 通过六个第一液压缸 6的协同动作, 可以驱动并联机构接口板 20在 空间内进行六自由度的运动。 为了提高六自由度并联机器人 2的运动精 度,分别釆用电液驱动器 4来驱动第一液压缸 6的伸缩,且一个电液驱动 器 4与一个第一液压缸 6连接, 来实现一一对应的驱动连接。
[28] 具体地, 电液驱动器 4包括驱动电机 Π和第二液压缸 16。 驱动电机 17可以但不限于釆用步进电机, 釆用步进电机可以提高控制精度, 进而 提高六自由度并联机器人 2的运动精度。 驱动电机 17安装于底座 12上, 在底座 12上安装两个轴承座 13, 两轴承座 13内均安装轴承, 两轴承座 13之间通过轴承转动安装有一根丝杠 14,该丝杠 14与驱动电机 17连接, 由驱动电机 17驱动该丝杠 14转动。 丝杠 14上螺接有一个滑块 18, 滑块 18与底座 12上的滑轨对应滑动配合。 通过丝杠 14的转动来驱动滑块 18 沿着滑轨直线运动。 滑块 18上通过螺钉固定连接有一个连接架 15, 连接 架 15与第二 ^缸 16的活塞杆固定连接, 第二:^缸 16的缸体固定连 接在其中一个轴承座上。通过滑块 18的运动来控制第二液压缸 16活塞杆 的伸缩。 第一液压缸 6的第一油口与第二液压缸 16的第一油口连通, 第 一液压缸 6的第二油口与第二液压缸 16的第二油口连通, 使第一液压缸 6与第二液压缸 16组成液压传动***, 通过第二液压缸 16的动作来控制 第一液压缸 6的动作。釆用此种驱动方式,提高了高六自由度并联机器人 2的运动精度, 进而提高了手术的复位精度。
[29] 进一步地,基于上述实施例, 支架 5及六自由度并联机器人 2上均设 置有一套长骨固定架 3。 长骨固定架 3用来固定患肢。
[30] 手术过程中, 首先在骨折长骨的两端分别打入一枚或多枚固定钉,由 医生手动调整两段骨折长骨位姿,进行初步复位。 然后用两个长骨固定架 3来连接固定钉, 使患肢固定到长骨固定架 3上。 其中一个长骨固定架 3 固定连接于支架 5上, 在手术过程中保持静止, 另一长骨固定架固定 3 连接到六自由度并联机器人 1的并联机构接口板 20上, 随并联机构接口 板 20在空间内进行六自由度的运动, 以实现对患肢的平移、 拉伸、 旋转 等操作。
[31] 进一步地,基于上述实施例, 图 3为本发明实施例提供的两长骨固定 架固定连接后的立体图; 图 4为本发明实施例提供的安装固定板的立体 图。 如图 3、 图 4所示, 为了提高复位精度, 还包括安装固定板 21, 两套 长骨固定架 3并排设置、 且与安装固定板 21固定连接。
【32】 在两套长骨固定架 3与患肢连接后, 通过两套安装固定板 21来将两 套长骨固定架 3固定连接在一起。 两套长骨固定架 3固定连接在一 对患肢进行 CT扫描, 扫描后将患肢连通两个固定在一起的长骨固定架 3 对应安装在该长骨骨折复位机器人上, 之后在拆除两个安装固定板 21, 使其中一个长骨固定架 3可以随并联机构接口板 20的运动而运动。 釆用 安装固定板 21来固定两套长骨固定架, 可以保证 CT扫描时患肢的位姿 与安装于长骨骨折复位机器人上后患肢的位姿的一致性,长骨骨折复位机 器人根据 CT扫描结果规划出的路径来控制六自由度并联机器人 1的运 动, 实现患肢的复位。
【33】 进一步地,基于上述实施例, 图 5为本发明实施例提供的长骨固定架 的立体图。 如图 5所示, 为了提高复位精度, 长骨固定架 3包括安装座 24, 安装座 24上设置有定位架, 定位架包括固定杆 26, 固定杆 26的端 部和中部均设置有锁扣夹持单元 27, 设置于固定杆 26的端部的锁扣夹持 单元 27与安装座 24滑动配合。
[34] 其中, 安装座 24可以是板状构件。 安装固定板 21为条状部件, 该安 装固定板 21的一侧设置有卡槽 22, 卡槽 22的其中一侧边上通过通孔 23 螺接有顶丝, 安装座 24的边缘卡在卡槽 22内, 并通过顶丝顶在安装座 24上实现安装座 24与安装固定板 21的固定连接。 釆用此种结构可以实 现两长骨固定架 3通过安装固定板 21的快速拆装, 方便医生固定患肢, 增加了医生的操作空间, 同时为术前患肢的 CT扫描或其它操作提供了方 便。
[35] 锁扣夹持单元 27与安装座 24滑动配合, 可以用来调节固定杆 26的 相对位置, 以使固定杆 26可以处于较合适的位置来通过其中部的锁扣夹 持单元 27来与患肢上的固定钉连接。
[36] 进一步地,基于上述实施例, 图 6为本发明实施例提供的锁扣夹持单 元的立体图。 如图 6所示, 锁扣夹持单元 27包括锁紧螺栓 32, 锁紧螺栓 32上层叠穿装有至少四片锁紧夹持块 33, 至少第一片与第二片所述锁紧 夹持块 33之间及第三片与第四片锁紧夹持块 33之间均设置有卡口 34。 该锁扣夹持单元结构简单, 卡接可靠, 便于操作。
[37] 进一步地, 基于上述实施例, 固定杆为 U形, 安装座上设置有两条 相互平行的滑杆, 固定杆的两端均设置有锁扣夹持单元,且设置于同一固 定杆两端的两锁扣夹持单元分置于两滑杆上。
[38] 为了提高对患肢固定的可靠性, 则固定杆 26釆用 U形结构, 其两端 均通过锁扣夹持单元 27固定在安装座 24上, 使得固定杆 26与安装座 24 连接比较紧固。 实际使用中, 每个长骨固定架 3上可以并排设置两个 U 形的固定杆 26。
[39] 与安装座 24连接的锁扣夹持单元 27的其中一个卡口 34卡在安装座 24的滑杆 25上, 并可以沿滑杆 25移动来调节位置, 以使安装在固定杆 26中部的锁扣夹持单元 27可以用来与患肢上的固定钉连接。 在位置调节 到位后, 旋紧锁紧螺栓 32端部的螺母, 使锁扣夹持单元 27与滑杆 25固 定在一起, 防止手术过程中固定杆 26出现移动, 而影响复位效果。
[40] 进一步地,基于上述实施例, 图 7为本发明实施例提供的锁紧轴的立 体图。如 7所示, 为了便于长骨固定架 3与支架 5及六自由度并联机器人 2进行拆装连接, 则在安装座 24上转动安装有锁紧轴 31,锁紧轴 31的一 端设置于锁紧块 29, 锁紧块 29上具有锁紧斜面 30, 锁紧斜面 30朝向安 装座 24。
[41] 进一步地, 基于上述实施例, 为了便于使用锁紧轴 31来将长骨固定 架 3与支架 5及六自由度并联机器人 2进行拆装连接,则在支架 5及六自 由度并联机器人 2上均设置有接口板 11, 长骨固定架 3—一对应设置于 接口板 11上, 接口板 11夹装于安装座 24与锁紧斜面 30之间。
【42】 接口板 11可以是一块矩形平板。 在锁紧轴 31远离锁紧块 29的一端 连接一个手柄 28, 该手柄 28可以是长圆形的板件, 并通过相互配合的扁 孔, 轴, 方孔、 轴等结构与锁紧轴 31止旋配合。 通过手柄 28带动锁紧轴 31进行转动, 随着锁紧轴 31的转动, 则锁紧斜面 30亦同步转动, 在转 动过程中,锁紧斜面的不同高度处与接口板 11接触, 以完成锁紧及解锁, 例如,锁紧斜面 32的较高位置处于接口板 11接触则处于锁紧状态,此时, 长骨固定架 3紧紧的固定在支架 5及六自由度并联机器人 2的接口板上, 以进行复位手术。 【43】 进一步地, 基于上述实施例, 为了适应不同的使用环境, 则在机座 1 与支架 5之间设置有驱动支架上下滑动的直线驱动器 35。 直线驱动器 35 可以是电动推杆、 液压缸或气压缸。
[44] 另夕卜,在传动***中误差是不可避免的, 为了降低误差带来的不利影 响,在第一液压缸 6上设置了位移传感器。通过位移传感器来检测第一液 压缸 6的运动情况, 并将其运动情况反馈给控制***, 实现闭环控制,使 控制***进行运动补偿克服或降低误差带来的不利影响。也即该长骨骨折 复位机器人的复位运动的控制***包括步进电机控制和位置传感器检测 两部分, 步进电机控制部分通过控制步进电机的转动,最终实现第一液压 缸 6的伸缩, 而位置传感器检测检测第一液压缸 6的伸缩量, 并使步进电 机控制部分调节步进电机的转动量来修正第一液压缸 6的伸缩量,以达到 精确控制的目的。
[45] 该的长骨骨折复位机器人可以釆用上下位机双层结构的控制***。上 位机为个人计算机(Personal Computer; 简称 PC ), 功能包括执行机构 (包括步进电机、 第一液压缸 6、 第二液压缸 16 )位置信息的处理, CT 三维数据的处理,控制参数的计算以及人机交互功能指令的传送等。 下位 机为高级指令集处理器( Advanced RISC Machines; 简称 ARM )控制板 及步进电机驱动器,控制步进电机运行以及将步进电机运行状态实时反馈 给 PC机。 上位机 PC与下位机控制板通过无线连接。 在驱动过程中, 数 据釆集卡能定时反馈每个第一液压缸的位置信息给上位机,同时运动控制 卡能实时监测所发生的异常情况并发送给上位机。
[46] 采用上述长骨骨折复位机器人进行手术的步骤为:
[47] 1、 断骨固定
[48] 将患者的患肢近端和远端分别打上两根或多根固定钉,并将患肢放入 到两套长骨固定架 3中,调节固定杆 26及固定杆 26上用来连接固定钉的 锁扣夹持单元 27的位置, 把固定钉固定到长骨固定架 3上, 以使患肢与 长骨固定架 3相固定, 然后通过安装固定板 24将两套长骨固定架 3固定 成一个整体。
[49] 1、 CT扫描
[50] 将患者的患肢连同两套长骨固定架 3及与患肢对应的健侧肢体一同 送入 CT扫描设备, 获取患侧骨与健侧骨的 CT图像, 以及患侧骨在两套 长骨固定架 3中的位置信息。 [51] 3、 路径规划
【52】 对健侧骨进行镜像变换,将镜像变换后的健侧骨作为患侧骨配准的参 考标准。分别在患侧骨和健康骨的两端选择配准的特征区域, 利用自动配 准并结合手动微调的方法,使患侧骨两端分别与健康骨两端重合, 重合后 得到患侧骨两端位姿相对变化的转换矩阵。接下来选择两套长骨固定架 3 上一些点作为特征点, 这些特征点在 CT图像坐标空间中的坐标是已知 的,在该长骨骨折复位机器人坐标空间中的坐标也可以计算得到,计算出 CT图像坐标空间与机器人坐标空间中坐标的映射关系, 从而计算出需运 动的长骨固定架相对于静止的长骨固定架 3的位姿变换矩阵,得到长骨骨 折复位机器人运动的控制参数。再规划出合理的长骨骨折复位机器人运动 的路径。
【53】 4、 牵引复位
[54] 将患者的患肢连同两套长骨固定架 3对应与支架 5和六自由度并联机 器人 2连接。将其中一套长骨固定架 3与六自由度并联机器人 2上的接口 板 11固定连接, 另一套长骨固定架 3与支架 5固定连接, 连接后卸除安 装固定板 24, 使患肢两端能够跟随六自由度并联机器人 2相对运动。 上 位机控制六自由度并联机器人 2按照规划好的运动路径对患肢进行牵引 复位操作。
[55] 5、 复位固定
【56】 患肢达到复位标准后, 利用固定杆 26将患肢远近端通过支架杆相对 固定, 并将固定后的患肢从两套长骨固定架 3内移出来。
[57] 可见, 釆用上述长骨骨折复位机器人具有以下优点:
[58] 1 ) 实现在闭合状态下微创的长骨骨折复位功能, 由长骨骨折复位机 器人代替医生的复位操作, 精度高、创伤小。 改变了传统的开放式骨折复 位方式, 减少了骨折部位发生延迟愈合、 骨不连、 感染等情况的发生,防 止医生因手术疲劳而造成的手术失误等问题。
[59] 2 )釆用了由电液驱动器 4和六自由度并联机器人 2组成的串并联混 合机构, 具有 6个自由度, 综合了串联机构工作空间大、 灵活性好和并联 机构定位精度高、 负载能力大、 结构紧凑、 刚度大等优点。 满足骨折复位 所需的工作空间、 自由度、 刚度等要求。
[60] 3 )长骨固定架 3具有初步复位和患肢固定的功能, 并可与六自由度 并联机器人 2及支架 5进行相互连接或拆分,方便了医生固定串联机构与 患肢, 增加了医生操作的空间, 同时也为术前患肢的 CT扫描或其他操作 提供了方便。
[61] 4 )采用了立式结构, 六自由度并联机器人 2及支架 5位于患肢下方, 减小了对患肢的干扰, 同时增加了工作空间。 通过电动推杆 35调整支架 的位姿, 能够使其更好的适应患者。
【62】 以上虽然结合附图详细描述了本发明的实施例,但 当明白,上面 所描述的实施方式只是用于说明本发明, 而并不构成对本发明的限制。对 于本领域的技术人员来说,可以在不偏离本发明的精神和范围的情况下对 上述实施方式作出各种修改和变更。 因此,本发明的范围仅由所附的权利 要求及其等效内容来限定。

Claims

权利 要求 书
1、 一种长骨骨折复位机器人, 其特征在于, 包括机座和多套电液驱 动器, 所述机座上滑动连接有可上下运动的支架, 所述支架上设置有六自 由度并联机器人, 所述六自由度并联机器人包括多个第一液压缸, 所述第 一液压缸的数量与所述电液驱动器的数量相同,多个所述第一液压缸与多 个所述电液驱动器——对应驱动连接。
2、 根据权利要求 1所述的长骨骨折复位机器人, 其特征在于, 所述 电液驱动器包括驱动电机和第二液压缸, 所述驱动电机驱动连接有丝杠, 所述丝杠上螺接有滑块, 所述第二液压缸的活塞杆与所述滑块固定连接, 多个所述第一液压缸与多个所述第二液压缸——对应连接,且——对应连 接的所述第一液压缸的第一油口与所述第二液压缸的第一油口连通,所述 第一液压缸的第二油口与所述第二液压缸的第二油口连通。
3、 根据权利要求 1所述的长骨骨折复位机器人, 其特征在于, 所述 支架及所述六自由度并联机器人上均设置有一套长骨固定架。
4、 根据权利要求 3所述的长骨骨折复位机器人, 其特征在于, 包括 安装固定板, 两套所述长骨固定架并排设置、且与所述安装固定板固定连 接。
5、 根据权利要求 2或 3或 4所述的长骨骨折复位机器人, 其特征在 于, 所述长骨固定架包括安装座, 所述安装座上设置有定位架, 所述定位 架包括固定杆, 所述固定杆的端部和中部均设置有锁扣夹持单元,设置于 所述固定杆的端部的所述锁扣夹持单元与所述安装座滑动配合。
6、 根据权利要求 5所述的长骨骨折复位机器人, 其特征在于, 所述 锁扣夹持单元包括锁紧螺栓,所述锁紧螺栓上层叠穿装有至少四片锁紧夹 持块,至少第一片与第二片所述锁紧夹持块之间及第三片与第四片所述锁 紧夹持块之间均设置有卡口。
7、 根据权利要求 5所述的长骨骨折复位机器人, 其特征在于, 所述 固定杆为 U形, 所述安装座上设置有两条相互平行的滑杆, 所述固定杆 的两端均设置有所述锁扣夹持单元,且设置于同一所述固定杆两端的两所 述锁扣夹持单元分置于两所述滑杆上。
8、 根据权利要求 5所述的长骨骨折复位机器人, 其特征在于, 所述 安装座上转动安装有锁紧轴,所述锁紧轴的一端设置于锁紧块,所述锁紧 块上具有锁紧斜面, 所述锁紧斜面朝向所述安装座。
9、 根据权利要求 8所述的长骨骨折复位机器人, 其特征在于, 所述 支架及所述六自由度并联机器人上均设置有接口板,所述长骨固定架一一 对应设置于所述接口板上,所述接口板夹装于所述安装座与所述锁紧斜面 之间。
10、根据权利要求 1或 2或 3或 4所述的长骨骨折复位机器人, 其特 征在于,所述机座与所述支架之间设置有驱动所述支架上下滑动的直线驱 动器, 所述第一液压缸上设置有位移传感器。
PCT/CN2013/074159 2012-06-11 2013-04-12 长骨骨折复位机器人 WO2014005457A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13812951.5A EP2862527B1 (en) 2012-06-11 2013-04-12 Long bone fracture resetting robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210191841.6 2012-06-11
CN201210191841.6A CN102715955B (zh) 2012-06-11 2012-06-11 一种用于医用机器人的液压-伺服电机混合驱动***

Publications (1)

Publication Number Publication Date
WO2014005457A1 true WO2014005457A1 (zh) 2014-01-09

Family

ID=46941921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074159 WO2014005457A1 (zh) 2012-06-11 2013-04-12 长骨骨折复位机器人

Country Status (3)

Country Link
EP (1) EP2862527B1 (zh)
CN (1) CN102715955B (zh)
WO (1) WO2014005457A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610101B2 (en) 2012-06-11 2017-04-04 Lihai Zhang Long-bone fracture-reduction robot
CN107789060A (zh) * 2017-11-10 2018-03-13 威海威高骨科手术机器人有限公司 机器人的控制缸箱车
CN112022315A (zh) * 2020-09-24 2020-12-04 北华大学 一种带有外固定钉的骨折外固定支架
CN118000882A (zh) * 2024-04-03 2024-05-10 吉林大学 一种框架式骨折复位手术机器人

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102715955B (zh) * 2012-06-11 2014-05-14 北京航空航天大学 一种用于医用机器人的液压-伺服电机混合驱动***
CN103190957A (zh) * 2013-04-25 2013-07-10 哈尔滨首创骨科微创医疗设备有限公司 整骨机器人远程控制***
CN104000640B (zh) * 2014-05-12 2016-03-16 北京航空航天大学 一种主从同构遥操作骨折复位机构
CN104688307A (zh) * 2015-03-13 2015-06-10 王国栋 一种骨关节强制定型装置
CN104840239A (zh) * 2015-03-20 2015-08-19 张立海 一种不稳定骨盆骨折微创手术闭合复位装置
CN109192051A (zh) * 2018-11-08 2019-01-11 吉林大学 一种液电耦合的汽车运动模拟平台装置和方法
CN110680484B (zh) * 2019-10-28 2023-03-17 上海大学 一种用于机器人辅助下肢骨折复位手术的夹持机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030191466A1 (en) * 2002-04-05 2003-10-09 Ed Austin Orthopaedic fixation method and device
CN1561923A (zh) * 2004-03-17 2005-01-12 哈尔滨工业大学 机器人辅助带锁髓内钉正骨手术医疗***
US20080269741A1 (en) * 2007-04-28 2008-10-30 John Peter Karidis Orthopedic fixation device with zero backlash and adjustable compliance, and process for adjusting same
CN101847182A (zh) * 2010-05-05 2010-09-29 唐佩福 基于六自由度并联机构的长骨虚拟与现实复位配准方法
CN102715955A (zh) * 2012-06-11 2012-10-10 北京航空航天大学 一种用于医用机器人的液压-伺服电机混合驱动***

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1145459C (zh) * 1995-03-01 2004-04-14 史密夫和内修有限公司 立体固定架
DE19645392C1 (de) * 1996-11-04 1998-04-30 Joerg Dr Dr Wiltfang Distraktionsvorrichtung zum Dehnen von Knochen
US20020010465A1 (en) * 2000-01-31 2002-01-24 Ja Kyo Koo Frame fixator and operation system thereof
DE10030620A1 (de) * 2000-06-28 2002-01-17 Karlsruhe Forschzent Vorrichtung zur Injektion von medizinischen Präparaten unter CT-/MRT-Kontrolle
CN101411632B (zh) * 2008-12-03 2010-06-16 天津大学 一种用于辅助微创外科手术的机器人主动支架
EP2305144B1 (en) * 2009-03-24 2012-10-31 Olympus Medical Systems Corp. Robot system for endoscope treatment
CN101524287A (zh) * 2009-04-03 2009-09-09 昆山市工业技术研究院有限责任公司 微创外科机器人关节液压锁紧机构
CN201492456U (zh) * 2009-08-24 2010-06-02 昆山市工业技术研究院有限责任公司 外科手术机械臂关节液压锁紧动力机构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030191466A1 (en) * 2002-04-05 2003-10-09 Ed Austin Orthopaedic fixation method and device
CN1561923A (zh) * 2004-03-17 2005-01-12 哈尔滨工业大学 机器人辅助带锁髓内钉正骨手术医疗***
US20080269741A1 (en) * 2007-04-28 2008-10-30 John Peter Karidis Orthopedic fixation device with zero backlash and adjustable compliance, and process for adjusting same
CN101847182A (zh) * 2010-05-05 2010-09-29 唐佩福 基于六自由度并联机构的长骨虚拟与现实复位配准方法
CN102715955A (zh) * 2012-06-11 2012-10-10 北京航空航天大学 一种用于医用机器人的液压-伺服电机混合驱动***

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9610101B2 (en) 2012-06-11 2017-04-04 Lihai Zhang Long-bone fracture-reduction robot
CN107789060A (zh) * 2017-11-10 2018-03-13 威海威高骨科手术机器人有限公司 机器人的控制缸箱车
CN112022315A (zh) * 2020-09-24 2020-12-04 北华大学 一种带有外固定钉的骨折外固定支架
CN112022315B (zh) * 2020-09-24 2022-09-16 北华大学 一种带有外固定钉的骨折外固定支架
CN118000882A (zh) * 2024-04-03 2024-05-10 吉林大学 一种框架式骨折复位手术机器人
CN118000882B (zh) * 2024-04-03 2024-06-04 吉林大学 一种框架式骨折复位手术机器人

Also Published As

Publication number Publication date
CN102715955B (zh) 2014-05-14
EP2862527A1 (en) 2015-04-22
EP2862527A4 (en) 2015-07-29
EP2862527B1 (en) 2020-06-03
CN102715955A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2014005457A1 (zh) 长骨骨折复位机器人
US9610101B2 (en) Long-bone fracture-reduction robot
JP6905036B2 (ja) ドリルガイド固定具、頭蓋挿入固定具、および関連する方法およびロボットシステム
CN109771811B (zh) 一种***柔性针粒子植入并联机器人
US20200289236A1 (en) Apparatus and method for supporting a robotic arm
CN107361859B (zh) 一种辅助脊柱微创手术定位***
US9161800B2 (en) Robotic arms
Lieberman et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I—Technical development and a test case result
US20110040304A1 (en) Three-Dimensional Positioning Device for Minimally Invasive surgery
DE102008052680A1 (de) Vorrichtung zur kontrollierten Einstellung einer chirurgischen Positioniereinheit
CN105310777A (zh) 用于运行医学机器人设备的方法
US10478362B2 (en) Device for repositioning bone fracture fragments
US11589946B2 (en) Head-holder support
WO2022095289A1 (zh) 一种空间混联骨盆骨折复位机器人
CN101904757A (zh) 无框架脊柱导航手术机器人
EP3871625A1 (en) Robotic rod benders and related mechanical and motor housings
US20240091929A1 (en) Robotic rod benders and related mechanical and motor housings
CN107550569B (zh) 一种脊椎微创机器人
JP6811228B2 (ja) 器具の配置調整時の画像整列方法とこの方法を実行するロボットシステム
CN116421274A (zh) 一种椎板切除超声手术器械
US20220265320A1 (en) Methods providing bend plans for surgical rods and related controllers and computer program products
CN108618845A (zh) 一种可固定于颅骨的并联脑外科微创手术机器人
CN215229764U (zh) 手术床及具有其的骨科手术辅助***
CN219207225U (zh) 一种手术穿刺定位设备
CN218474638U (zh) 一种微创复位固定手术机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13812951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013812951

Country of ref document: EP