WO2014002998A1 - 酵素電極 - Google Patents

酵素電極 Download PDF

Info

Publication number
WO2014002998A1
WO2014002998A1 PCT/JP2013/067381 JP2013067381W WO2014002998A1 WO 2014002998 A1 WO2014002998 A1 WO 2014002998A1 JP 2013067381 W JP2013067381 W JP 2013067381W WO 2014002998 A1 WO2014002998 A1 WO 2014002998A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
electrode
conductive particles
enzyme electrode
polymer
Prior art date
Application number
PCT/JP2013/067381
Other languages
English (en)
French (fr)
Inventor
慎二郎 関本
Original Assignee
合同会社バイオエンジニアリング研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社バイオエンジニアリング研究所 filed Critical 合同会社バイオエンジニアリング研究所
Priority to EP13808761.4A priority Critical patent/EP2866025B1/en
Priority to US14/410,676 priority patent/US20150192537A1/en
Priority to CN201380033557.9A priority patent/CN104583765B/zh
Priority to BR112014032559A priority patent/BR112014032559A2/pt
Priority to JP2014522637A priority patent/JP6205545B2/ja
Publication of WO2014002998A1 publication Critical patent/WO2014002998A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Definitions

  • the present invention relates to an enzyme electrode.
  • an enzyme electrode including an electrode as a substrate and a detection layer in which an enzyme and conductive particles are immobilized on the surface of the electrode using a crosslinking agent or a binder.
  • the enzyme electrode has a structure for taking out electrons generated by the enzyme reaction from the electrode.
  • One aspect of the present invention has been made in view of the above-described circumstances, and provides an enzyme electrode having a detection layer that can be appropriately immobilized on a substrate and can obtain appropriate response sensitivity.
  • the purpose is to do.
  • one embodiment of the present invention employs the following configuration in order to achieve the above-described object. That is, one embodiment of the present invention is an enzyme electrode including an electrode and a detection layer, wherein the detection layer includes an enzyme, conductive particles, and a nonconductive polymer, and the nonconductive polymer is , At least a part of the enzyme and at least a part of the conductive particles are bound to each other by a binding chain containing nitrogen or oxygen, and the non-conductive polymer has an addition concentration thereof, The enzyme electrode has a region including a positive correlation with the response sensitivity of the enzyme electrode.
  • the bond chain containing nitrogen (N) or oxygen (O) is, for example, a covalent bond.
  • the covalent bond is, for example, an amide ester bond.
  • the bond chain includes a peptide bond, carbodiimide, and Schiff base.
  • mode may be comprised so that it may originate in an oxazoline group.
  • mode may be comprised so that 4.5 mmol / g may be contained with respect to the said nonelectroconductive polymer
  • the conductive particles may be selected from at least one of carbon and metal.
  • the average particle diameter of the said electroconductive particle may be comprised so that it may be 100 nm or less.
  • the specific surface area of the said electroconductive particle may be comprised so that it may be 200 m ⁇ 2 > / g or more.
  • the said electroconductive particle can employ
  • the conductive particles may contain one or more fine particles selected from carbon nanotubes and fullerenes.
  • the weight ratio of the enzyme, the conductive particles, and the nonconductive polymer may be 0.023 to 2.0: 0.1 to 1.0: 2.5 to 10.0. It may be configured as follows.
  • Another aspect of the present invention is a biosensor including an enzyme electrode including an electrode and a detection layer, and the detection layer includes an enzyme, conductive particles, and a nonconductive polymer.
  • the non-conductive polymer is bonded to at least one of the enzyme and at least a part of the conductive particles by a bond chain containing nitrogen or oxygen, and the non-conductive polymer
  • the molecule has a region that has a positive correlation between its addition concentration and the response sensitivity of the enzyme electrode.
  • Another aspect of the present invention is an electronic device including an enzyme electrode including an electrode and a detection layer, and the detection layer includes an enzyme, conductive particles, and a nonconductive polymer.
  • the non-conductive polymer is bonded to at least one of the enzyme and at least a part of the conductive particles by a bond chain containing nitrogen or oxygen, and the non-conductive polymer
  • the molecule has a region that has a positive correlation between its addition concentration and the response sensitivity of the enzyme electrode.
  • Another aspect of the present invention includes an electrode and a detection layer, and the detection layer includes an enzyme, conductive particles, and a non-conductive polymer, and the non-conductive polymer includes: The binding chain containing nitrogen or oxygen is bonded to at least one of the enzyme and at least one of the conductive particles, and the non-conductive polymer has an addition concentration thereof,
  • the apparatus includes an enzyme electrode having a region including a positive correlation with the response sensitivity of the enzyme electrode, and a supply unit that supplies a current generated by an enzyme reaction caused by energization of the enzyme electrode to a load.
  • the other aspect of this invention can include the electronic device containing the said biosensor and the electronic device containing the said apparatus.
  • Another aspect of the present invention includes a step of preparing a reagent solution containing an enzyme, conductive particles, and a polymer, a step of applying the reagent solution on the electrode, and an applied reagent solution.
  • the enzyme, the conductive particles, and the polymer are included, and the polymer includes at least a part of the enzyme and at least one of the conductive particles by a bond chain containing nitrogen or oxygen.
  • the concentration of the non-conductive polymer added when preparing the reagent solution is, for example, 0.25% to 10%.
  • Another aspect of the present invention includes an electrode and a detection layer, and the detection layer includes an enzyme, conductive particles, and at least a part of the enzyme and at least a part of the conductive particles. It is an enzyme electrode having a polymer that forms an amide ester bond with at least one.
  • an enzyme electrode having a detection layer that can be appropriately immobilized on a base material and can obtain appropriate sensitivity.
  • FIG. 1 is a figure showing typically the side or section of the enzyme electrode concerning an embodiment.
  • FIG. 2 schematically shows a state in the detection layer 2 shown in FIG.
  • FIG. 3 is a graph showing the relationship between the adhesion of the detection layer to the electrode and the response sensitivity.
  • FIG. 1 is a figure showing typically the side or section of the enzyme electrode concerning an embodiment.
  • an enzyme electrode 10 includes an electrode (electrode layer) 1 and a detection layer 2 formed on the surface of the electrode 1 (upper surface in FIG. 1).
  • the electrode 1 is formed using a metal material such as gold (Au), platinum (Pt), silver (Ag), palladium, or a carbon material such as carbon.
  • the electrode 1 is formed on, for example, an insulating substrate 3 as shown in FIG.
  • the substrate 3 is made of a thermoplastic resin such as polyetherimide (PEI), polyethylene terephthalate (PET) or polyethylene (PE), various resins (plastics) such as polyimide resin or epoxy resin, glass, ceramic, paper, etc. It is made of an insulating material. Any known material can be applied as the electrode material forming the electrode 1 and the material of the insulating substrate 3. The size and thickness of the electrode 1 and the insulating substrate 3 can be set as appropriate.
  • the combination of the insulating substrate 3 and the electrode 1 may be referred to as a “base material”.
  • FIG. 2 schematically shows a state in the detection layer 2 shown in FIG.
  • the enzyme 5 and the conductive particles 6 are immobilized by a polymer containing an oxazoline group.
  • the enzyme 5, the conductive particles 6, the oxazoline group 7, and the acrylic / styrene chain 8 are distributed, and the ring opening of the oxazoline group 7 and the enzyme 5 or the conductive particle 6.
  • An amide ester bond is formed by the reaction with the carboxyl group.
  • the detection layer 2 forms an amide ester bond with at least one of the plurality of enzymes 5, the plurality of conductive particles 6, at least a part of the plurality of enzymes 5 and at least a part of the plurality of conductive particles 6.
  • a plurality of non-conductive polymers (amide ester 9) are included.
  • the enzyme 5 and the conductive particles 6 are firmly held or supported in the detection layer 2. Further, the enzyme 5 and the conductive particles 6 are uniformly distributed in the detection layer 2 by the amide ester bond. As a result, an appropriate number of electron transfer paths in which electrons generated by the enzyme reaction reach the electrode 1 through the conductive particles 6 are formed. Therefore, the response sensitivity of the enzyme electrode can be improved. On the other hand, the detection layer 2 exhibits appropriate adhesion to the electrode 1.
  • the enzyme 5 is, for example, an oxidoreductase.
  • GDH glucose dehydrogenase
  • FDGDH flavin adenine dinucleotide-dependent glucose dehydrogenase
  • an oxidoreductase containing cytochrome can be applied. Examples thereof include cytochrome-containing glucose dehydrogenase (Cy-GDH), D-fructose dehydrogenase, cellobiose dehydrogenase, and the like.
  • Conductive particles metal particles such as gold, platinum, silver, and palladium, or higher-order structures made of carbon can be applied.
  • the higher order structure can contain, for example, one or more kinds of fine particles (carbon fine particles) selected from conductive carbon black, ketjen black (registered trademark), carbon nanotube (CNT), and fullerene.
  • the conductive particles 6 can select one of the above metals and carbon.
  • the electroconductive particle 6 can contain at least 1 of a carboxyl group, an amino group, an aldehyde group, a hydroxyl group, and a phenyl group as a functional group for bridge
  • the surface of the detection layer 2 may be covered with an outer layer film such as cellulose acetate (CA).
  • CA cellulose acetate
  • the average particle diameter of electroconductive particle is 100 [nm] or less, for example, and a specific surface area is 200 [m ⁇ 2 > / g] or more, for example.
  • the enzyme electrode 10 described above is produced, for example, as follows. That is, a metal layer that functions as the electrode 1 is formed on one surface of the insulating substrate 3. For example, by forming a metal material on one surface of a film-like insulating substrate 3 having a predetermined thickness (for example, about 100 ⁇ m) by physical vapor deposition (PVD, for example, sputtering) or chemical vapor deposition (CVD), a desired thickness is obtained. A metal layer having a thickness (for example, about 30 nm) is formed. Instead of the metal layer, an electrode layer made of a carbon material can be formed.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • the detection layer 2 is formed on the electrode 1. That is, the electrode solution containing the nonconductive polymer polymer containing the conductive particles 6, the enzyme 5, and the oxazoline group as the binder is prepared. The electrode solution is dropped on the surface of the electrode 1. When the electrode solution is solidified on the electrode 1 by drying, the enzyme electrode 10 in which the detection layer 2 is formed on the electrode 1 can be obtained.
  • Example 1 ⁇ Prescription of detection layer>
  • electrode solutions (reagent solutions) according to Example 1, Example 2, and Comparative Example, each containing conductive particles, an enzyme, and a binder were prepared.
  • Ketjen Black registered trademark, hereinafter referred to as “KJB”
  • Cy-GDH was used as the enzyme.
  • Example 1 As a binder, EPOCROS (registered trademark), which is one of high-molecular polymers containing an oxazoline group that is a covalent bond chain containing nitrogen (N) or oxygen (O), "EPC”) was used.
  • EPOCROS registered trademark
  • Example 2 As a binder, Poly- (2-Ethyl-2-Oxazoline) which is one of polymer polymers containing an oxazoline group which is a covalent bond chain containing nitrogen (N) or oxygen (O) (2-ethyl dioxazoline), hereinafter referred to as “PEO”).
  • PEO Poly- (2-Ethyl-2-Oxazoline
  • Vylonal registered trademark
  • Example 1 The final concentrations of the electrode solutions in Example 1, Example 2, and Comparative Example are as follows.
  • a polymer containing an oxazoline group which is a covalent bond chain containing nitrogen (N) or oxygen (O) is an example of a “non-conductive polymer”.
  • Example 1 ⁇ Prescription of Example 1 >> ⁇ KJB: 0.4wt% Enzyme (Cy-GDH): 3.5 mg / mL -Na phosphate buffer: 10 mM pH 7 ⁇ EPC (EPOCROS WS-700, molecular weight 40,000 DOW CHEMICAL COMPANY (Nippon Shokubai))
  • EPC EPC
  • Example 2 ⁇ Prescription of Example 2 >> ⁇ KJB: 0.4wt% Enzyme (Cy-GDH): 3.5 mg / mL -Na phosphate buffer: 10 mM pH 7 ⁇ PEO (molecular weight 50,000 oxazoline-containing polymer, manufactured by Sigma-Aldrich)
  • PEO molecular weight 50,000 oxazoline-containing polymer, manufactured by Sigma-Aldrich
  • the average particle diameter of KJB used in Examples 1, 2 and Comparative Examples was 100 [nm] or less, and the specific surface area was 200 [m 2 / g] or more. Moreover, the ratio in the molecule
  • a 0.1 M phosphate buffer solution pH 7.0
  • an enzyme electrode using a platinum electrode as a counter electrode and an Ag / AgCl electrode as a reference electrode was electrically connected to a potentiostat and immersed in a 0.1 M phosphate buffer.
  • a constant voltage 400 mV vs Ag / AgCl was applied to the working electrode.
  • a current value (nA) at a final glucose concentration of 0 mg / dL is measured, and then, while continuously dropping the 2M glucose solution, 25 mg / dL, 50 mg / dL, 150 mg / dL The current value at dL, 250 mg / dL was measured.
  • the current value corresponds to the response sensitivity.
  • Test results >> The measurement results of the glucose concentration according to Example 1, Example 2, and Comparative Example are as shown in Table 1, Table 2, and Table 3 below. The values in each table indicate response sensitivity (nA).
  • Example 1 and Example 2 have a region including a positive correlation between the additive concentration of the binder (non-conductive polymer) and the response sensitivity of the enzyme electrode.
  • Example 1 and Example 2 have a region including a positive correlation between the additive concentration of the binder (non-conductive polymer) and the response sensitivity of the enzyme electrode.
  • the comparative example some data variation is observed, but if the measurement data is taken as a whole, a negative correlation is observed, and the response sensitivity tends to decrease with an increase in the amount of binder added. Admitted.
  • Adhesive strength (or strength) test method Next, the enzyme electrode produced using each electrode solution according to Example 1, Example 2, and Comparative Example was tested for the adhesion of the detection layer to the electrode (strength of the detection layer).
  • Adhesion (or strength) test >> In accordance with JISK5600-5-6 adhesion (cross-cut method), the adhesion of the detection layer to the electrode was tested.
  • Test results >> The test results by the crosscut method are shown in Table 4 below. The test results are classified as 0 to 5, with 0 indicating the best adhesion and 5 indicating the worst adhesion.
  • Example 1 and Example 2 an improvement in adhesion was observed with an increase in the amount of binder (polymer polymer containing an oxazoline group) added.
  • binder polymer polymer containing an oxazoline group
  • the comparative example the relationship between the added amount of the binder and the adhesion was not recognized, and a tendency for the adhesion to be poor as a whole was recognized.
  • the vertical axis of the graph is the current value (response sensitivity) (nA) and represents the test result when the glucose concentration is 150 mg / dL.
  • the horizontal axis of the graph indicates the adhesion (or strength).
  • the numerical values for classification used in the cross-cut method shown in Table 4 are opposite. That is, 5 indicates the best adhesion and 0 indicates the worst adhesion.
  • Example 1 Example in which a polymer containing an oxazoline group that is a covalent bond chain containing nitrogen (N) or oxygen (O) is applied to the binder
  • Example 2 Example in which a polymer containing an oxazoline group that is a covalent bond chain containing nitrogen (N) or oxygen (O) is applied to the binder
  • the existing crosslinker or binder it was not possible to produce a sensing layer containing a polymer containing an oxazoline group, which is a covalent bond chain containing nitrogen (N) or oxygen (O).
  • An enzyme electrode having high adhesion to the substrate (electrode) and high response sensitivity can be produced.
  • the concentration of the nonconductive polymer is, for example, 0.25% to 10%, preferably 0.5% to 5%, and more preferably 1% to 3%.
  • the enzyme electrode 10 can be applied to, for example, a biosensor or an electronic device (for example, a measuring device) that is applied to glucose measurement as described above.
  • a biosensor for example, a biosensor
  • an electronic device for example, a measuring device
  • the electronic device can include an electronic device including the biosensor to which the enzyme electrode according to the embodiment is applied, and an electronic device including the device (power supply device) to which the enzyme electrode according to the embodiment is applied.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 電極と検知層とを含む酵素電極であって、前記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、非導電性高分子は、窒素又は酸素を含む結合鎖により、酵素の少なくとも一部と、導電性粒子の少なくとも一部との、少なくとも一方と結合しており、非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する。

Description

酵素電極
 本発明は、酵素電極に関する。
 基材としての電極と、電極の表面に酵素及び導電性粒子を架橋剤やバインダを用いて固定化した検知層とを含む酵素電極がある。酵素電極は、酵素反応により生じた電子を電極から取り出す構造を有する。
特開昭63-222256号公報 特開平2-99849号公報 国際公開WO2007/055100号公報 国際公開WO2009/037838号公報 特開2004-317421号公報 特開2007-222786号公報 米国特許第6770729号公報
 一般的に、検知層に含まれる酵素及び導電性粒子を適正に保持し、且つ検知層の基材に対する適正な密着性を確保するには、架橋剤やバインダの濃度を上げることが考えられる。しかしながら、単に架橋剤やバインダの濃度を上げると、検知層内における良好な電子伝達経路の形成が阻害され、酵素電極の応答感度が架橋剤やバインダの濃度に比例して低下する傾向があった。
 また、近年では、酵素電極の小型化の傾向があり、少量のバインダで適正な基材に対する検知層の固定化状態を維持する一方で、良好な応答感度及び再現性を有する酵素電極が望まれている。
 本発明の一態様は、上記した事情に鑑みなされたものであり、基材に対して適正に固定化される一方で、適正な応答感度を得ることが可能な検知層を有する酵素電極を提供することを目的とする。
 本発明の一態様は、上述した目的を達成するために、以下の構成を採用する。すなわち、本発明の一態様は、電極と検知層とを含む酵素電極であって、上記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、上記非導電性高分子は、窒素又は酸素を含む結合鎖により、上記酵素の少なくとも一部と、上記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、上記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する、酵素電極である。
 上記一態様における、上記窒素(N)又は酸素(O)を含む結合鎖は、例えば共有結合である。また、共有結合は、例えば、アミドエステル結合である。また、上記結合鎖としては、アミドエステル結合の他に、ペプチド結合、カルボジイミドやシッフ塩基がある。また、上記一態様における、アミドエステル結合は、オキサゾリン基由来である、ように構成されていても良い。また、上記一態様における、上記オキサゾリン基は、上記非導電性高分子に対して、4.5mmol/g含有されている、ように構成されていても良い。
 上記一態様において、上記導電性粒子は、炭素、金属の少なくとも1つから選択される、ことができる。また、上記導電性粒子の平均粒子径は、100nm以下である、ように構成されていても良い。或いは、上記導電性粒子の比表面積は、200m2/g以上である、ように構成されていても良い。また、上記導電性粒子は、カルボキシル基、アミノ基、アルデヒド基、ヒドロキシル基、及びフェニル基のうちの少なくとも1つを含む、構成を採用することができる。さらに、上記導電性粒子は、カーボンナノチューブ及びフラーレンから選択される微粒子の1種以上を含有する、ことができる。
 また、上記の一態様において、上記酵素、上記導電性粒子、上記非導電性高分子の重量比率が、0.023~2.0:0.1~1.0:2.5~10.0である、ように構成されていても良い。
 また、本発明の他の態様の一つは、電極と検知層とを含む酵素電極を備えるバイオセンサであって、上記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、上記非導電性高分子は、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、上記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する。
 また、本発明の他の態様の一つは、電極と検知層とを含む酵素電極を備える電子機器であって、上記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、上記非導電性高分子は、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、上記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する。
 また、本発明の他の態様の一つは、電極と検知層とを含み、上記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、上記非導電性高分子は、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、上記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する酵素電極と、上記酵素電極に対する通電による酵素反応によって生じた電流を負荷に供給する供給部とを含む装置である。また、本発明の他の態様は、上記バイオセンサを含んだ電子機器、上記装置を含んだ電子機器を含むことができる。
 また、本発明の他の態様の一つは、酵素,導電性粒子,及び高分子を含んだ試薬溶液を調製するステップと、上記試薬溶液を電極上に適用するステップと、適用した試薬溶液を乾燥させることによって、上記酵素,上記導電性粒子,及び上記高分子を有し、上記高分子が、窒素又は酸素を含む結合鎖により、上記酵素の少なくとも一部と、上記導電性粒子の少なくとも一部との、少なくとも一方と結合している検知層を上記電極上に形成するステップと、を含み、上記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する、酵素電極の製造方法である。上記試薬溶液の調整時に添加される上記非導電性高分子の濃度は、例えば0.25%~10%である。
 また、本発明の他の態様の一つは、電極と検知層とを含み、上記検知層は、酵素,導電性粒子,及び上記酵素の少なくとも一部と上記導電性粒子の少なくとも一部との少なくとも一方とアミドエステル結合を形成する高分子を有する、酵素電極である。
 本発明の一態様によれば、基材に対して適正に固定化される一方で、適正な感度を得ることが可能な検知層を有する酵素電極を提供することができる。
図1は、実施形態に係る酵素電極の側面又は断面を模式的に示す図である。 図2は、図1に示した検知層2内の状態を模式的に示す。 図3は、検知層の電極に対する密着性と応答感度との関係を示すグラフである。
 以下、本発明の一実施形態としての酵素電極について図面を参照して説明する。以下に挙げる実施形態はそれぞれ例示であり、本発明は以下の実施形態の構成に限定されない。
〔酵素電極の構成〕
図1は、実施形態に係る酵素電極の側面又は断面を模式的に示した図である。図1において、酵素電極10は、電極(電極層)1と、電極1の表面(図1では上面)に形成された検知層2とを備える。
 <電極>
電極1は、金(Au),白金(Pt),銀(Ag),パラジウムのような金属材料、或いはカーボンのような炭素材料を用いて形成される。電極1は、例えば、図1に示すような絶縁性基板3上に形成される。基板3は、ポリエーテルイミド(PEI),ポリエチレンテレフタレート(PET),ポリエチレン(PE)のような熱可塑性樹脂、ポリイミド樹脂、エポキシ樹脂のような各種の樹脂(プラスチック),ガラス,セラミック,紙のような絶縁性材料で形成される。電極1をなす電極材料,及び絶縁性基板3の材料は、公知のあらゆる材料を適用することができる。電極1及び絶縁性基板3の大きさ、厚さは適宜設定可能である。以下、絶縁性基板3と電極1との組合せを「基材」と呼ぶこともある。
 <検知層>
図2は、図1に示した検知層2内の状態を模式的に示す。図2に示すように、検知層2は、酵素5と導電性粒子6とがオキサゾリン基を含むポリマーによって固定化される。具体的には、検知層2内は、酵素5と、導電性粒子6と、オキサゾリン基7と、アクリル/スチレン鎖8とが分布し、オキサゾリン基7の開環と酵素5又は導電性粒子6のカルボキシル基との反応により、アミドエステル結合を形成する。
 すなわち、検知層2は、複数の酵素5と、複数の導電性粒子6と、複数の酵素5の少なくとも一部及び複数の導電性粒子6の少なくとも一部の少なくとも一方とアミドエステル結合を形成する複数の非導電性高分子(アミドエステル9)を含んでいる。
 アミドエステル9が酵素5又は導電性粒子6と結合することで、検知層2内において、酵素5及び導電性粒子6が強固に保持又は担持された状態となる。また、アミドエステル結合によって、酵素5及び導電性粒子6は、検知層2内において一様に分布した状態となる。これによって、酵素反応により生じた電子が導電性粒子6を介して電極1に達する適度な数の電子伝達経路が形成された状態となる。よって、酵素電極の応答感度の向上が図られる。一方、検知層2は、電極1に対して適正な密着性を示す。
<<酵素>>
 酵素5は、例えば、酸化還元酵素である。例えば、グルコースデヒドロゲナーゼ(GDH)である。GDHとしては、電子メディエータを必要としないフラビンアデニンジヌクレオチド依存性グルコースデヒドロゲナーゼ(FADGDH)を適用するのが好ましい。また、酵素5として、シトクロムを含む酸化還元酵素を適用できる。例えば、シトクロムを含むグルコースデヒドロゲナーゼ(Cy-GDH)、D-フルクトースデヒドロゲナーゼ、セロビオースデヒドロゲナーゼなどが挙げられる。
 <<導電性粒子>>
 導電性粒子6は、金、白金、銀、パラジウムのような金属製粒子、或いは、炭素を材料とした高次構造体を適用することができる。高次構造体は、例えば、導電性カーボンブラック,ケッチェンブラック(登録商標),カーボンナノチューブ(CNT),フラーレンから選択される微粒子(炭素微粒子)の1種以上を含有することができる。導電性粒子6は、上記のような金属及び炭素の一方を選択することができる。また、導電性粒子6は、架橋のための官能基として、カルボキシル基,アミノ基、アルデヒド基、ヒドロキシル基、フェニル基のうちの少なくとも1つを含むことができる。
 なお、検知層2の表面は、セルロースアセテート(CA)のような外層膜によって被覆されても良い。
 <<酵素、導電性粒子、バインダの重量比率等>>
 検知層2を構成する酵素、導電性粒子、バインダの重量比率は、例えば、酵素:導電性粒子:バインダ=(0.023~2.0):(0.1~1.0):(2.5~10.0)であるのが好ましい。また、導電性粒子の平均粒子径は、例えば100[nm]以下であり、比表面積は、例えば、200[m2/g]以上であるのが好ましい。
 〔酵素電極の作製方法〕
 以下、上記した酵素電極10は、例えば、以下のようにして作製される。すなわち、絶縁性基板3の片面に、電極1として機能する金属層を形成する。例えば、所定の厚さ(例えば100μm程度)のフィルム状の絶縁性基板3の片面に、金属材料を物理蒸着(PVD,例えばスパッタリング)、或いは化学蒸着(CVD)によって成膜することによって、所望の厚さ(例えば30nm程度)を有する金属層が形成される。金属層の代わりに、炭素材料で形成された電極層を形成することもできる。
 次に、電極1上に検知層2が形成される。すなわち、導電性粒子6,酵素5,バインダとしてのオキサゾリン基を含有する非導電性高分子ポリマーを含む電極溶液が調整される。電極溶液は、電極1の表面に滴下される。電極溶液が電極1上で乾燥により固化することで、電極1上に検知層2が形成された酵素電極10を得ることができる。
 〔実施例〕
 以下、酵素電極の実施例について説明する。
 <検知層の処方>
 最初に、導電性粒子,酵素,及びバインダを夫々含む、実施例1、実施例2及び比較例に係る電極溶液(試薬溶液)を調製した。実施例1,実施例2及び比較例においては、それぞれ、導電性粒子としてケッチェンブラック(登録商標、以下“KJB”と表記)を用いるとともに、酵素として、Cy-GDHを用いた。
 これに対し、実施例1では、バインダとして、窒素(N)又は酸素(O)を含む共有結合鎖であるオキサゾリン基を含有する高分子ポリマーの1つであるエポクロス(EPOCROS(登録商標)、以下“EPC”と表記)を用いた。実施例2では、バインダとして、窒素(N)又は酸素(O)を含む共有結合鎖であるオキサゾリン基を含有する高分子ポリマーの1つであるPoly-(2-Ethyl-2-Oxazoline) (ポリ(2エチル2オキサゾリン)、以下“PEO”と表記)を用いた。また、比較例では、バインダとして、バイロナール(登録商標)を用いた。実施例1、実施例2及び比較例における電極溶液の最終濃度は以下の通りである。窒素(N)又は酸素(O)を含む共有結合鎖であるオキサゾリン基を含有する高分子ポリマーは、「非導電性高分子」の一例である。
  <<実施例1の処方>>
 ・KJB:0.4wt%
 ・酵素(Cy-GDH):3.5mg/mL
 ・リン酸Na緩衝液:10mM pH7
 ・EPC(EPOCROS WS-700、分子量4万 DOW CHEMICAL COMPANY(日本触媒)製)
実施例1として、EPCの濃度が、それぞれ0.25[wt%],0.5[wt%] ,1.0[wt%] ,3.0[wt%] である4種類の電極溶液(試料)を調製した。
 <<実施例2の処方>>
 ・KJB:0.4wt%
 ・酵素(Cy-GDH):3.5mg/mL
 ・リン酸Na緩衝液:10mM pH7
 ・PEO(分子量5万 オキサゾリン含有ポリマー、Sigma-Aldrich製)
実施例2として、PEOの濃度が、それぞれ0.25[wt%],0.5[wt%] ,1.0[wt%] ,3.0[wt%] である4種類の電極溶液(試料)を調製した。
 <<比較例の処方>>
 ・KJB:0.4wt%
 ・酵素(Cy-GDH):3.5mg/mL
 ・リン酸Na緩衝液:10mM pH7
・バイロナール(登録商標)MD-1200 (東洋紡 水分散型高分子量共重合ポリエステル樹脂 以下“MD-1200”と表記)
 比較例として、MD-1200の濃度が0.25[wt%],0.5[wt%] ,1.0[wt%] ,3.0[wt%] である4種類の電極溶液(試料)を用意した。
 なお、実施例1,実施例2,及び比較例で用いたKJBの平均粒子径は、100[nm]以下であり、比表面積は、200[m2/g]以上であった。また、実施例1のオキサゾリン基の分子中の比率は、4.5[mmol/g]であった。
<A.応答感度試験>
 <<酵素電極の作製>>
  絶縁性基板としてのポリエーテルイミド(PEI)表面にスパッタによって金(Au)の金属層(電極)が形成された基材を用意し、電極表面上に、電極の単位面積(cm2)当たり、10.0μL/cm2の条件で電極溶液(試料、試薬溶液)を滴下した。その後、23℃、40%RHの雰囲気で自然乾燥させた。このようにして、電極表面に酵素及び導電性粒子が上記各バインダで固定化された検知層が形成された酵素電極を得た。検知層は、窒素(N)又は酸素(O)を含む共有結合鎖を持った非導電性高分子を含んでいる。
<<応答感度の測定方法>>
 次に、酵素電極を用いたグルコース濃度の測定方法の例について説明する。測定方法として、400mVの電位差を電極系に印加するクロノアンペロメトリー法により、グルコースに対する応答感度を測定した。
 最初に、測定液としての0.1Mリン酸緩衝液(pH7.0)を用意し、37℃に保った。次に、対極に白金電極を用い、参照極にAg/AgCl電極を用いた酵素電極をポテンショスタットに電気的に接続するとともに、0.1Mリン酸緩衝液中に浸漬した。そして、作用極に定電圧(400mV vs Ag/AgCl)を印加した。
 グルコース濃度の測定については、まずグルコース終濃度が0mg/dLの電流値(nA)を測定し、その後、2Mのグルコース溶液を滴下し続けながら、連続して25mg/dL、50mg/dL、150mg/dL、250mg/dLのときの電流値を測定した。電流値が応答感度に相当する。
 <<試験結果>>
 実施例1、実施例2及び比較例に係るグルコース濃度の測定結果は、以下の表1、表2、表3に示す通りである。各表中の値は、応答感度(nA)を示す。
Figure JPOXMLDOC01-appb-T000001


Figure JPOXMLDOC01-appb-T000002


Figure JPOXMLDOC01-appb-T000003

 表1,表2,表3に示す測定結果によれば、実施例1、実施例2については、一部測定データのばらつきが認められるが、測定データを全体として捉えれば、実施例は正の相関が認められ、バインダの添加量の増加に対し、応答感度の維持又は向上が認められる領域があることが明らかとなった。すなわち、実施例1、実施例2は、バインダ(非導電性高分子)の添加濃度と酵素電極の応答感度との間に正の相関を含む領域を有する。これに対し、比較例については、一部データのばらつきが認められるが、測定データを全体として捉えれば、負の相関が認められ、バインダの添加量の増加に対し、応答感度が低下する傾向が認められた。比較例のように、通常、非導電性高分子を酵素電極に添加した場合には、応答感度が低下する傾向があるが、実施例1,実施例2では、非導電性高分子を添加すると、応答感度の向上が認められた。実施例1、実施例2より、オキサゾリン基を含有する高分子ポリマーをバインダとして用いれば、その添加量の増加に拘らず、応答感度をの向上を獲得し得ることが分かる。
<B.密着力(または強度)試験方法>
 次に、実施例1,実施例2,比較例に係る各電極溶液を用いて作製した酵素電極について、電極に対する検知層の密着力(検知層の強度)に対する試験を行った。
<<酵素電極の作製>>
 応答感度試験で用いた基材(絶縁性基板上に電極が形成された基材)と同様のものを用意し、実施例1,実施例2,比較例に係る各電極溶液を、電極表面上に、電極の単位面積(cm2)当たり、10.0μL/cm2の条件で滴下(適用)した。その後、23℃、40%RHの雰囲気で自然乾燥させた。このようにして、密着力(または強度)試験に用いる、電極上に形成された検知層(酵素電極)を作製した。
 <<密着力(または強度)試験>>
  JISK5600-5-6 付着性(クロスカット法)に従って、電極に対する検知層の密着力の試験を実施した。
 <<試験結果>>
クロスカット法による試験結果を、以下の表4に示す。試験結果は、0~5に分類され、0が最も良好な密着力を示し、5が最も悪い密着力を示す。
Figure JPOXMLDOC01-appb-T000004
上記試験結果より、実施例1、実施例2については、バインダ(オキサゾリン基を含有する高分子ポリマー)の添加量増加に伴い、密着力の向上が認められた。一方、比較例については、バインダの添加量と密着力との関係は認められず、全体として密着力は悪い傾向が認められた。
 <C.応答感度試験結果と、密着力(または強度)との関係>
 図3は、A.応答感度試験で得た結果と、B.密着力(または強度)試験で得た結果との関係を示すグラフである。図3において、白丸のプロットは、実施例1(EPC)を示し、プロット近傍のローマ文字A~Dは、EPCの濃度(添加量)を示す。すなわち、A=0.25%,B=0.50%,C=1%,D=3%である。
 また、図3における黒丸のプロットは、実施例2(PEO)を示し、プロット近傍のローマ文字A~Fは、PEOの濃度(添加量)を示す。すなわち、A=0.25%,B=0.50%,C=1%,D=3%,E=5%,F=10%である。
 また、図3における三角のプロットは、比較例(MD-1200)を示し、プロット近傍のローマ文字A~Fは、MD-1200の濃度(添加量)を示す。すなわち、A=0.25%,B=0.50%,C=1%,D=3%,E=5%,F=7%である。
 グラフの縦軸は、電流値(応答感度)(nA)であり、グルコース濃度が150mg/dLのときの試験結果を表す。一方、グラフの横軸は、密着力(または強度)を示す。但し、表4に示したクロスカット法で用いた分類用の数値とは逆を示す。すなわち、5が最も密着力が良く、0が最も密着力が悪いことを示す。
 図3に示すように、比較例においては、密着力を高めるためにバインダの濃度を上げても、感度は殆ど変わらない、或いは若干低下する傾向が認められた。これに対して、実施例1,実施例2(バインダに窒素(N)又は酸素(O)を含む共有結合鎖であるオキサゾリン基を含有する高分子を適用した実施例)においては、比較例と比べて応答感度は高く、またバインダ濃度の上昇による感度の低下傾向は認められず、比較例より高い応答感度を維持可能であることが分かった。
 このように、窒素(N)又は酸素(O)を含む共有結合鎖であるオキサゾリン基を含有する高分子を含む検知層を作製することで、既存の架橋剤やバインダの使用では達成できなかった、基材(電極)に対する高い密着性と高い応答感度を有する酵素電極を作製することができる。上記実施例より、非導電性高分子の濃度は、例えば0.25%~10%であり、好ましくは、0.5%~5%であり、さらに好ましくは、1%~3%である。
 〔実施形態の作用効果〕
 上述した酵素電極10によれば、適正な酵素5及び導電性粒子6の固定化により良好な応答感度を得ることができる一方で、基材に対して適正な密着性を有することができる。特に、既存のバインダに比べて、適正な固定化に要求される濃度又は量を減らすことができるので、酵素電極10の小型化に寄与することが考えられる。
 なお、酵素電極10は、例えば、上記したようなグルコース測定に適用されるバイオセンサや電子機器(例えば、測定装置)に適用することができる。或いは、酵素反応により生じた応答電流(電極へ伝達された電子による電流)を、電極と負荷とを結ぶ供給部を介し、負荷に電力として供給する電源装置の一部としての適用も考えられる。電子機器は、実施形態に係る酵素電極が適用されたバイオセンサを含んだ電子機器、実施形態に係る酵素電極が適用された上記装置(電源装置)を含んだ電子機器を含むことができる。
1・・・基材(電極)
2・・・検知層
3・・・絶縁性基板
5・・・酵素
6・・・導電性粒子
7・・・オキサゾリン基
8・・・アクリル/スチレン鎖
9・・・アミドエステル

Claims (18)

  1.  電極と検知層とを含む酵素電極であって、
     前記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、
     前記非導電性高分子は、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、
     前記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する
    酵素電極。
  2.  前記結合鎖は、共有結合である
    請求項1に記載の酵素電極。
  3.  前記共有結合は、アミドエステル結合である
    請求項2に記載の酵素電極。
  4.  前記アミドエステル結合が、オキサゾリン基由来である
    請求項3に記載の酵素電極。
  5.  前記オキサゾリン基は、前記高分子に対して、4.5mmol/g含有されている、
    請求項4に記載の酵素電極。
  6.  前記導電性粒子は、炭素、金属の少なくとも1つから選択される
    請求項1から5のいずれか1項に記載の酵素電極。
  7.  前記導電性粒子の平均粒子径は、100nm以下である
    請求項1から6の何れか1項に記載の酵素電極。
  8.  前記導電性粒子の比表面積は、200m2/g以上である
    請求項1から7のいずれか1項に記載の酵素電極。
  9.  前記導電性粒子は、カルボキシル基、アミノ基、アルデヒド基、ヒドロキシル基、及びフェニル基のうちの少なくとも1つを含む
    請求項1から8の何れか1項に記載の酵素電極。
  10.  前記導電性粒子は、カーボンナノチューブ及びフラーレンから選択される微粒子の1種以上を含有する
    請求項1から9のいずれか1項に記載の酵素電極。
  11.  前記酵素、前記導電性粒子、前記非導電性高分子の重量比率が、0.023~2.0:0.1~1.0:2.5~10.0である
    請求項1から10の何れか1項に記載の酵素電極。
  12.  電極と検知層とを含む酵素電極を備えるバイオセンサであって、
     前記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、
     前記非導電性高分子は、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、前記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する、
    バイオセンサ。
  13.  請求項12に記載のバイオセンサを含んだ電子機器。
  14.  電極と検知層とを含み、前記検知層は、酵素,導電性粒子,及び非導電性高分子を有し、前記非導電性高分子は、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合しており、前記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する酵素電極と、
     前記酵素電極に対する通電による酵素反応によって生じた電流を負荷に供給する供給部と
    を含む装置。
  15.  請求項14に記載の装置を含んだ電子機器。
  16.  酵素,導電性粒子,及び非導電性高分子を含んだ試薬溶液を調製するステップと、
     前記試薬溶液を電極上に適用するステップと、
     適用した試薬溶液を乾燥させることによって、前記酵素,前記導電性粒子,及び前記非導電性高分子を有し、前記非導電性高分子が、窒素又は酸素を含む結合鎖により、前記酵素の少なくとも一部と、前記導電性粒子の少なくとも一部との、少なくとも一方と結合している検知層を前記電極上に形成するステップと、
    を含み、
     前記非導電性高分子は、その添加濃度と、前記酵素電極の応答感度との間に、正の相関を含む領域を有する
    酵素電極の製造方法。
  17.  前記試薬溶液の調製時に添加される前記非導電性高分子の濃度が0.25%~10%である
    請求項16に記載の酵素電極の製造方法。
  18.  電極と検知層とを含み、
     前記検知層は、酵素,導電性粒子,及び上記酵素の少なくとも一部と上記導電性粒子の少なくとも一部との少なくとも一方とアミドエステル結合を形成する高分子を有する、
    酵素電極。
PCT/JP2013/067381 2012-06-25 2013-06-25 酵素電極 WO2014002998A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13808761.4A EP2866025B1 (en) 2012-06-25 2013-06-25 Enzyme electrode
US14/410,676 US20150192537A1 (en) 2012-06-25 2013-06-25 Enzyme Electrode
CN201380033557.9A CN104583765B (zh) 2012-06-25 2013-06-25 酶电极
BR112014032559A BR112014032559A2 (pt) 2012-06-25 2013-06-25 eletrodo de enzima
JP2014522637A JP6205545B2 (ja) 2012-06-25 2013-06-25 酵素電極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012142375 2012-06-25
JP2012-142375 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002998A1 true WO2014002998A1 (ja) 2014-01-03

Family

ID=49783144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067381 WO2014002998A1 (ja) 2012-06-25 2013-06-25 酵素電極

Country Status (6)

Country Link
US (1) US20150192537A1 (ja)
EP (1) EP2866025B1 (ja)
JP (1) JP6205545B2 (ja)
CN (1) CN104583765B (ja)
BR (1) BR112014032559A2 (ja)
WO (1) WO2014002998A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037812A1 (en) * 2014-12-24 2016-06-29 ARKRAY, Inc. Enzyme electrode
WO2020262327A1 (ja) * 2019-06-28 2020-12-30 東洋紡株式会社 酵素-電極間電子伝達増強作用の有無の予測方法
US11136612B2 (en) 2016-08-29 2021-10-05 National Institute Of Advanced Industrial Science And Technology Reagent for glucose sensor, glucose sensor, method for manufacturing glucose sensor, and glucose measuring device
WO2023285582A1 (de) 2021-07-16 2023-01-19 Arthur Flury Ag Kufe für einen streckentrenner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492902B (zh) * 2013-08-07 2020-07-24 爱科来株式会社 使用电化学式生物传感器的物质测量方法和测量装置
US10842147B2 (en) 2014-11-26 2020-11-24 Microban Products Company Surface disinfectant with residual biocidal property
US10834922B2 (en) 2014-11-26 2020-11-17 Microban Products Company Surface disinfectant with residual biocidal property
US10577637B2 (en) * 2015-10-15 2020-03-03 Arkray, Inc. Enzyme electrode
WO2017091251A1 (en) 2015-11-23 2017-06-01 Microban Products Company Surface disinfectant with residual biocidal property
WO2017143396A1 (en) * 2016-02-23 2017-08-31 Fred Bergman Healthcare Pty Ltd Faecal detection sensor
EP3249050B1 (en) * 2016-05-23 2019-01-23 ARKRAY, Inc. Enzyme electrode and biosensor using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222256A (ja) 1987-03-12 1988-09-16 Kokuritsu Shintai Shiyougaishiya Rihabiriteeshiyon Center 生体機能物質の固定化法及びそれを用いた電極
JPH0299849A (ja) 1988-07-28 1990-04-11 Cambridge Life Sci Plc 酵素電極およびその製造方法
JP2001516039A (ja) * 1997-09-05 2001-09-25 アボット・ラボラトリーズ 薄形作用層を備える電極
JP2001520367A (ja) * 1997-10-16 2001-10-30 アボット・ラボラトリーズ 補因子の再生用バイオセンサー電極メディエーター
US6770729B2 (en) 2002-09-30 2004-08-03 Medtronic Minimed, Inc. Polymer compositions containing bioactive agents and methods for their use
JP2004317421A (ja) 2003-04-18 2004-11-11 Nisshinbo Ind Inc 生物学的活性物質を固定化した素子
WO2007055100A1 (ja) 2005-11-08 2007-05-18 Ultizyme International Ltd. 酵素電極
JP2007222786A (ja) 2006-02-23 2007-09-06 Pilot Corporation マイクロカプセルおよびその製造法ならびにマイクロカプセルを具備してなる表示媒体
WO2009037838A1 (ja) 2007-09-18 2009-03-26 Tokyo University Of Agriculture And Technology 酵素電極

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8612861D0 (en) * 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US5755953A (en) * 1995-12-18 1998-05-26 Abbott Laboratories Interference free biosensor
WO2006009324A1 (en) * 2004-07-23 2006-01-26 Canon Kabushiki Kaisha Enzyme electrode, and device, sensor, fuel cell and electrochemical reactor employing the enzyme electrode
EP2004796B1 (en) * 2006-01-18 2015-04-08 DexCom, Inc. Membranes for an analyte sensor
EP2017350A1 (de) * 2007-07-19 2009-01-21 F. Hoffmann-La Roche AG Elektrochemischer Sensor mit kovalent gebundenem Enzym
JPWO2009031484A1 (ja) * 2007-09-07 2010-12-16 東レ株式会社 液体展開用シート
KR20100085911A (ko) * 2007-10-09 2010-07-29 유니버시티 오브 노트르 담 디락 다중 타겟 검출을 위한 미소유체 플랫폼
US20110174614A1 (en) * 2008-06-16 2011-07-21 Itamar Willner Electrode, method and system for determining an analyte in a liquid medium
CN101650331B (zh) * 2009-08-27 2012-09-05 无锡爱康生物科技有限公司 一种酶生物电化学传感芯片及其制备方法
EP2482724A2 (en) * 2009-09-30 2012-08-08 Dexcom, Inc. Transcutaneous analyte sensor
US20120122197A1 (en) * 2010-11-12 2012-05-17 Abner David Jospeh Inkjet reagent deposition for biosensor manufacturing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63222256A (ja) 1987-03-12 1988-09-16 Kokuritsu Shintai Shiyougaishiya Rihabiriteeshiyon Center 生体機能物質の固定化法及びそれを用いた電極
JPH0299849A (ja) 1988-07-28 1990-04-11 Cambridge Life Sci Plc 酵素電極およびその製造方法
JP2001516039A (ja) * 1997-09-05 2001-09-25 アボット・ラボラトリーズ 薄形作用層を備える電極
JP2001520367A (ja) * 1997-10-16 2001-10-30 アボット・ラボラトリーズ 補因子の再生用バイオセンサー電極メディエーター
US6770729B2 (en) 2002-09-30 2004-08-03 Medtronic Minimed, Inc. Polymer compositions containing bioactive agents and methods for their use
JP2004317421A (ja) 2003-04-18 2004-11-11 Nisshinbo Ind Inc 生物学的活性物質を固定化した素子
WO2007055100A1 (ja) 2005-11-08 2007-05-18 Ultizyme International Ltd. 酵素電極
JP2007222786A (ja) 2006-02-23 2007-09-06 Pilot Corporation マイクロカプセルおよびその製造法ならびにマイクロカプセルを具備してなる表示媒体
WO2009037838A1 (ja) 2007-09-18 2009-03-26 Tokyo University Of Agriculture And Technology 酵素電極

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037812A1 (en) * 2014-12-24 2016-06-29 ARKRAY, Inc. Enzyme electrode
CN105738446A (zh) * 2014-12-24 2016-07-06 爱科来株式会社 酶电极
US11136612B2 (en) 2016-08-29 2021-10-05 National Institute Of Advanced Industrial Science And Technology Reagent for glucose sensor, glucose sensor, method for manufacturing glucose sensor, and glucose measuring device
WO2020262327A1 (ja) * 2019-06-28 2020-12-30 東洋紡株式会社 酵素-電極間電子伝達増強作用の有無の予測方法
JP2021007323A (ja) * 2019-06-28 2021-01-28 東洋紡株式会社 酵素−電極間電子伝達増強作用の有無の予測方法
WO2023285582A1 (de) 2021-07-16 2023-01-19 Arthur Flury Ag Kufe für einen streckentrenner

Also Published As

Publication number Publication date
BR112014032559A2 (pt) 2017-06-27
EP2866025A1 (en) 2015-04-29
US20150192537A1 (en) 2015-07-09
EP2866025A4 (en) 2016-03-23
CN104583765A (zh) 2015-04-29
EP2866025C0 (en) 2023-08-16
JPWO2014002998A1 (ja) 2016-06-02
EP2866025B1 (en) 2023-08-16
JP6205545B2 (ja) 2017-10-04
CN104583765B (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6205545B2 (ja) 酵素電極
Naseri et al. Recent Progress in the development of conducting polymer‐based nanocomposites for electrochemical biosensors applications: a mini‐review
Gao et al. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors
Rivas et al. Carbon nanotubes for electrochemical biosensing
KR100842886B1 (ko) 나노선을 이용한 식품 첨가물 l-글루타민산나트륨 검출용바이오센서 및 이의 제조 방법
Balasubramanian et al. Biosensors based on carbon nanotubes
Lahiff et al. The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors
CN1227525C (zh) 生物传感器
JP6933500B2 (ja) 酵素電極およびそれを用いたバイオセンサ
Scampicchio et al. Electrospun nonwoven nanofibrous membranes for sensors and biosensors
EP2866024A1 (en) Enzyme electrode
US20120181173A1 (en) Electrochemical sensor for the detection of analytes in liquid media
Dalkiran et al. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: a review
KR102423250B1 (ko) 효소 기반의 전위차법 글루코스 검출용 센서 및 이의 제조방법
Song et al. Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit
JP2014006154A (ja) 酵素電極
Bagal-Kestwal et al. Electrically nanowired-enzymes for probe modification and sensor fabrication
Albayati et al. Novel fabrication of a laccase biosensor to detect phenolic compounds using a carboxylated multiwalled carbon nanotube on the electropolymerized support
Guzsvány et al. Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles
Vilian et al. Simple approach for the immobilization of horseradish peroxidase on poly-L-histidine modified reduced graphene oxide for amperometric determination of dopamine and H 2 O 2
Mano et al. Detection of glucose at 2 fM concentration
Vilian et al. Direct electrochemistry and electrocatalysis of glucose oxidase based poly (l-arginine)-multi-walled carbon nanotubes
Wilson et al. Enhanced NADH oxidation using polytyramine/carbon nanotube modified electrodes for ethanol biosensing
Gonzalez-Gallardo et al. Electrochemical creatinine detection for advanced point-of-care sensing devices: a review
Che et al. Hydrogen peroxide sensor based on horseradish peroxidase immobilized on an electrode modified with DNA-L-cysteine-gold-platinum nanoparticles in polypyrrole film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13808761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014522637

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14410676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014032559

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014032559

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141224