WO2014002932A1 - 有機el用ガラス基板及びその製造方法 - Google Patents

有機el用ガラス基板及びその製造方法 Download PDF

Info

Publication number
WO2014002932A1
WO2014002932A1 PCT/JP2013/067200 JP2013067200W WO2014002932A1 WO 2014002932 A1 WO2014002932 A1 WO 2014002932A1 JP 2013067200 W JP2013067200 W JP 2013067200W WO 2014002932 A1 WO2014002932 A1 WO 2014002932A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass substrate
glass
organic
content
Prior art date
Application number
PCT/JP2013/067200
Other languages
English (en)
French (fr)
Inventor
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2014002932A1 publication Critical patent/WO2014002932A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Definitions

  • the present invention relates to a glass substrate for organic EL and a method for producing the same.
  • Mobile devices such as mobile phones, digital cameras, PDAs, solar cells and touch panel displays are widely used and tend to become increasingly popular in the future. These mobile devices are required to be thinner and lighter.
  • an organic EL display is manufactured using a 0.7 mm or 0.5 mm thick glass substrate, a panel is assembled, and then the glass substrate is thinned to a thickness of 0.2 to 0.3 mm by etching or the like. The way to make it.
  • the mechanical strength of the glass substrate is lowered.
  • a structure in which a tempered glass substrate is disposed on the front surface of the display is employed.
  • the glass substrate was etched after the panel was assembled.
  • etching and the like are costly, there is a risk that the manufacturing cost of the organic EL device will increase.
  • the thickness of the tempered glass substrate When a tempered glass substrate is disposed on the front surface of the display, the thickness of the tempered glass substrate must be reduced in order to reduce the overall thickness. In this case, the tensile stress inside the tempered glass substrate is high. In order not to become too much, it is necessary to limit the compressive stress value and the stress depth of the compressive stress layer, and as a result, it becomes difficult to increase the mechanical strength of the tempered glass substrate. Therefore, it is difficult to achieve both the mechanical strength and the thinning of the organic EL device.
  • the present invention has been made in view of the above technical problem, and the technical problem is to devise a glass substrate capable of achieving both a reduction in thickness and an increase in strength without increasing the manufacturing cost of an organic EL device. That is.
  • the present inventor has found that the above technical problem can be solved by regulating the content of each component in the glass composition, and proposes the present invention. That is, the glass substrate for organic EL of the present invention has a compressive stress layer on the surface.
  • the glass substrate for organic EL of the present invention contains, as a glass composition, 40% to 80% of SiO 2 , 1 to 25% of Al 2 O 3 , and 0.5 to 20% of Na 2 O as a glass composition. It is preferable.
  • the glass substrate for organic EL of this invention contains crystallized glass etc. besides tempered glass.
  • the glass substrate for organic EL of the present invention is chemically strengthened.
  • the glass substrate for organic EL of the present invention preferably has a compressive stress of the compressive stress layer of 100 MPa or more, a stress thickness of 10 ⁇ m or more, and an internal tensile stress of 200 MPa or less.
  • compressive stress value of compressive stress layer and “stress depth” are interference fringes observed when a sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). The value calculated from the number of and the interval.
  • Internal tensile stress refers to the value calculated by the following formula 1.
  • the glass substrate for organic EL of the present invention preferably has an alkali barrier film formed on at least one surface. In this way, it becomes easy to prevent the situation where alkali ions diffuse into the semiconductor material formed in the heat treatment step. As a result, it becomes easy to apply the glass substrate containing an alkali metal oxide to an organic EL device like this invention.
  • the thickness of the alkali barrier film is preferably 10 to 1000 nm.
  • the method for producing a glass substrate for organic EL of the present invention is a glass containing, by mass%, SiO 2 40-80%, Al 2 O 3 1-25%, Na 2 O 0.5-20%.
  • a glass raw material prepared to have a composition is melted and formed into a plate shape, and then subjected to an ion exchange treatment to form a compressive stress layer on the glass surface.
  • the method for producing a glass substrate for organic EL of the present invention is preferably formed into a plate shape by a downdraw method.
  • the manufacturing method of the glass substrate for organic EL of this invention shape molds in plate shape with the overflow downdraw method.
  • the structural example at the time of producing an organic EL device using the glass substrate for organic EL of the present invention is shown.
  • the structural example at the time of producing an organic EL device using the glass substrate for organic EL of the present invention is shown.
  • the glass substrate for organic EL according to the embodiment of the present invention is a tempered glass having a compressive stress layer on the surface.
  • the chemical strengthening method is a method of introducing alkali ions having a large ion radius to the surface of the glass by performing an ion exchange treatment at a temperature below the strain point of the glass. If the compressive stress layer is formed by the chemical strengthening method, a desired mechanical strength can be obtained even if the plate thickness of the glass substrate is small. Furthermore, even if the tempered glass is cut after forming the compressive stress layer, unlike a physical strengthening method such as an air cooling strengthening method, it is not easily broken.
  • the glass substrate for organic EL of the present embodiment contains, as a glass composition, 40 to 80% of SiO 2 , 1 to 25% of Al 2 O 3 and 0.5 to 20% of Na 2 O as a glass composition.
  • the reason for limiting the glass composition in this way will be described below. In the following description, “%” indicates mass% unless otherwise specified.
  • SiO 2 is a component that forms a network of glass.
  • the content of SiO 2 is preferably 40 to 80%, preferably 41 to 71%, preferably 42 to 66%, preferably 43 to 65%, preferably 44 to 63%, preferably 45 to 63%, preferably Is 50 to 59%, particularly preferably 55 to 58.5%. If the SiO 2 content is too large, it will be difficult to melt and mold the glass, or the thermal expansion coefficient will be too low, making it difficult to match the thermal expansion coefficient with the surrounding materials. On the other hand, if the content of SiO 2 is too small, it becomes difficult to vitrify. Moreover, a thermal expansion coefficient becomes high and the thermal shock resistance of glass tends to fall.
  • the upper limit of the content of SiO 2 is preferably 80% or less, preferably 71% or less, preferably 70% or less, preferably 66% or less, preferably 65% or less, preferably 63% or less, preferably Is 60% or less, preferably 59% or less, preferably 58.5% or less, and particularly preferably 56% or less.
  • the lower limit of the SiO 2 content is preferably 40% or more, preferably 41% or more, preferably 42% or more, preferably 43% or more, preferably 44% or more, preferably 45% or more, preferably 50 % Or more, particularly preferably 55% or more.
  • Al 2 O 3 is a component that improves the ion exchange performance, and also has an effect of increasing the strain point and Young's modulus.
  • the content of Al 2 O 3 is preferably 1 to 25%.
  • the coefficient of thermal expansion becomes too low, making it difficult for the peripheral material and the coefficient of thermal expansion to match, and increasing the high-temperature viscosity, making it difficult to melt.
  • the content of Al 2 O 3 is too small, a possibility arises which can not exhibit a sufficient ion exchange performance.
  • the upper limit of the content of Al 2 O 3 is preferably 23% or less, preferably 21% or less, preferably 20% or less, preferably 19% or less, preferably 18% or less, preferably 17.5. % Or less, preferably 17% or less, particularly preferably 16.5% or less.
  • the lower limit of the content of Al 2 O 3 is preferably 3% or more, preferably 7.5% or more, preferably 8.5% or more, preferably 9% or more, preferably 10% or more, preferably 12 % Or more, preferably 13% or more, preferably 14% or more, preferably 15% or more, particularly preferably 16% or more.
  • the content of Al 2 O 3 is preferably 15% or less.
  • Na 2 O is an ion exchange component and a component that lowers the high temperature viscosity and improves the meltability and moldability.
  • Na 2 O is also a component that improves devitrification resistance.
  • the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials. In this case, the strain point tends to be too low, or the balance of the glass composition is lacking, and the devitrification resistance tends to be lowered.
  • too small content of Na 2 O lowered the melting property, become too coefficient of thermal expansion is low, it tends to decrease the ion exchange performance.
  • the upper limit of the content of Na 2 O is preferably 20% or less, preferably 19% or less, preferably 18% or less, preferably 17% or less, preferably 15% or less, particularly preferably 13% or less. It is. Further, the lower limit of the content of Na 2 O is preferably 0.1% or more, preferably 3% or more, preferably 6% or more, preferably 7% or more, preferably 8% or more, preferably 10% or more, Particularly preferably, it is 12% or more.
  • the content of Na 2 O is preferably 12% or less, preferably 10% or less, preferably 8% or less, Particularly preferably, it is 6% or less.
  • Li 2 O is an ion-exchange component and a component that lowers the high-temperature viscosity and improves meltability and moldability.
  • Li 2 O is a component that improves the Young's modulus.
  • Li 2 O has a large effect of increasing the compressive stress value among alkali metal oxides.
  • the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it is difficult to match the thermal expansion coefficient with the surrounding materials.
  • the compressive stress value may be lowered.
  • the content of Li 2 O is preferably 0 to 3.5%, preferably 0 to 2%, preferably 0 to 1%, preferably 0 to 0.5%, preferably 0 to 0.1%. It is most preferable not to contain substantially, that is, to suppress to less than 0.01%.
  • K 2 O has an effect of promoting ion exchange, and has a high effect of increasing the stress depth among alkali metal oxides. Moreover, it is a component which reduces a high temperature viscosity and improves a meltability and a moldability. K 2 O is also a component that improves devitrification resistance.
  • the content of K 2 O is preferably 0 to 15%. When the content of K 2 O is too large, the thermal expansion coefficient becomes high, or the thermal shock resistance is lowered, the peripheral material and the coefficient of thermal expansion is hardly consistent. Furthermore, there is a tendency that the strain point is excessively lowered, the balance of the glass composition is lacking, and the devitrification resistance is lowered.
  • the upper limit of the content of K 2 O is preferably 12% or less, preferably 10% or less, preferably 9% or less, preferably 8% or less, preferably 7% or less, particularly preferably 6% or less.
  • the lower limit of the content of K 2 O is preferably 0.1 or more, preferably 0.5% or more, preferably 1% or more, preferably 2% or more, preferably 3% or more, preferably 4% or more. Particularly preferably, it is 4.5% or more.
  • the total amount of the alkali metal oxide R 2 O (R is one or more selected from Li, Na, K) becomes too large, the glass tends to be devitrified and the thermal expansion coefficient becomes too high. As a result, the thermal shock resistance is lowered, and the thermal expansion coefficient is difficult to match with the surrounding material. Further, there is a case where the total content of alkali metal oxides R 2 O is too large, too lowered strain point, not obtain a high compression stress value. Furthermore, the viscosity in the vicinity of the liquidus temperature may decrease, and it may be difficult to ensure a high liquidus viscosity. Therefore, the total amount of R 2 O is preferably 22% or less, preferably 20% or less, and particularly preferably 19% or less.
  • the total amount of R 2 O is preferably 8% or more, preferably 10% or more, preferably 13% or more, and particularly preferably 15% or more.
  • the value of (Na 2 O + K 2 O) / Al 2 O 3 is preferably 0.5 to 4, preferably 0.7 to 2, and preferably 0.8 to 1.
  • the amount is preferably regulated to 6, 0.9 to 1.6, preferably 1 to 1.6, particularly preferably 1.2 to 1.6.
  • the range of the mass ratio of K 2 O / Na 2 O is preferably 0-2.
  • the mass ratio of K 2 O / Na 2 O is changed, the compressive stress value and the stress depth can be changed.
  • the mass ratio is preferably adjusted to be 0 to 0.3, particularly preferably 0 to 0.2.
  • the mass ratio is preferably 0.3 to 2, preferably 0.5 to 2, preferably 1 to. It is preferable to adjust to 2, preferably 1.2 to 2, particularly preferably 1.5 to 2.
  • the reason why the upper limit of the mass ratio is set to 2 is that if it exceeds 2, the glass composition is not balanced and the glass is easily devitrified.
  • alkaline earth metal oxide R′O (R ′ is one or more selected from Mg, Ca, Sr, and Ba) is a component that can be added for various purposes.
  • R′O alkaline earth metal oxide
  • the total amount of R′O is preferably 0 to 9.9%, preferably 0 to 8%, preferably 0 to 6, particularly preferably 0 to 5%.
  • the total amount of R′O is preferably controlled to 1 to 10%, preferably 2 to 9%, preferably 4 to 8%, particularly preferably 6 to 8%. Is good.
  • MgO is a component that lowers the viscosity at high temperature to increase the meltability and formability, and increases the strain point and Young's modulus.
  • MgO has a great effect of improving ion exchange performance.
  • the MgO content is preferably 0 to 6%.
  • the content of MgO is preferably 5% or less, preferably 4% or less, preferably 3% or less, preferably 2.5% or less, preferably 2% or less, particularly preferably 1.5% or less.
  • the content of MgO is preferably 0.1% or more, particularly preferably 1% or more.
  • CaO is a component that lowers the high-temperature viscosity to increase meltability and formability, and increases the strain point and Young's modulus.
  • CaO has a great effect of improving ion exchange performance.
  • the CaO content is preferably 0 to 10%.
  • the upper limit of the CaO content is preferably 9% or less, preferably 8% or less, preferably 7% or less, and particularly preferably 6% or less.
  • the lower limit of the content of CaO is preferably 0.1% or more, preferably 1% or more, preferably 2% or more, preferably 4% or more, preferably 5% or more.
  • the CaO content is preferably 4% or less, preferably less than 2%, particularly preferably 0.9% or less.
  • SrO and BaO are components that lower the high-temperature viscosity to improve the meltability and moldability, and increase the strain point and Young's modulus.
  • the contents of SrO and BaO are each preferably 0 to 3%. When the content of SrO or BaO increases, the ion exchange performance tends to decrease. Further, the density and the thermal expansion coefficient are increased, and the glass is easily devitrified.
  • the content of SrO is preferably 2% or less, preferably 1.5% or less, preferably 1% or less, preferably 0.5% or less, preferably 0.2% or less, particularly preferably 0.1% or less. It is.
  • the content of BaO is preferably 2.5% or less, preferably 2% or less, preferably 1% or less, preferably 0.8% or less, preferably 0.5% or less, preferably 0.2%. Hereinafter, it is particularly preferably 0.1% or less.
  • ZnO is a component that enhances ion exchange performance, and is particularly effective in increasing the compressive stress value. ZnO is also a component having an effect of reducing the high temperature viscosity without reducing the low temperature viscosity.
  • the ZnO content is preferably 0 to 8%. However, if the ZnO content is increased, the glass is phase-divided, the devitrification resistance is lowered, and the density is increased. Therefore, the content is preferably 8% or less, preferably 6% or less, preferably Is 5% or less, preferably 4% or less, preferably 3% or less, preferably 2% or less, preferably 1% or less, particularly preferably less than 1%.
  • the content of SrO + BaO is preferably 0 to 3%, preferably 0 to 2.5%, preferably 0 to 2%, preferably 0 to 1%, preferably 0 to 0.2%, particularly preferably 0 to 0.1%.
  • the value of R′O / R 2 O in mass fraction is preferably regulated to 0.5 or less, preferably 0.4 or less, particularly preferably 0.3 or less.
  • SnO 2 has an effect of improving the ion exchange performance, particularly the compressive stress value. Therefore, it preferably contains 0.01 to 3%, preferably 0.01 to 1.5%, particularly preferably 0.1 to 1%. It is good to do. When the content of SnO 2 increases, devitrification due to SnO 2 occurs or the glass tends to be easily colored.
  • ZrO 2 has the effect of significantly improving the ion exchange performance, increasing the Young's modulus and strain point, and lowering the high temperature viscosity. Further, since ZrO 2 has an effect of increasing the viscosity in the vicinity of the liquid phase viscosity, the ion exchange performance and the liquid phase viscosity can be simultaneously increased by containing a predetermined amount. However, when the content of ZrO 2 is too large, the devitrification resistance may be extremely lowered. Therefore, the content of ZrO 2 is preferably 0 to 10%, preferably 0.001 to 10%, preferably 0.1 to 9%, preferably 0.5 to 8%, preferably 0.5 to 7%. %, Preferably 1 to 5%, particularly preferably 2.5 to 5%.
  • the ZrO 2 content is preferably less than 2%, preferably less than 1%, preferably less than 1%, preferably less than 0.5%, preferably less than 0. 1% or less, particularly preferably less than 0.1%.
  • B 2 O 3 has the effect of lowering the liquidus temperature, high temperature viscosity and density, and also has the effect of improving ion exchange performance, particularly the compressive stress value. Therefore, B 2 O 3 can be contained together with the above components. However, if the content is too large, there is a possibility that the surface may be burnt by ion exchange, the water resistance may be lowered, or the liquid phase viscosity may be lowered. . In this case, the stress depth tends to decrease. Therefore, the content of B 2 O 3 is preferably 0 to 6%, preferably 0 to 4%, preferably 0 to 3%, preferably 0 to 1%, preferably 0 to 0.8%, preferably It is 0 to 0.5%, particularly preferably 0 to 0.1%.
  • TiO 2 is a component that has an effect of improving ion exchange performance. It also has the effect of reducing the high temperature viscosity. However, when there is too much the content, glass will color, devitrification resistance will fall, or a density will become high. In particular, when used as a display substrate, when the content of TiO 2 is increased, the transmittance tends to change when the melting atmosphere or the raw material is changed. Therefore, in the process of bonding the glass substrate to the device using light such as ultraviolet curable resin, the ultraviolet irradiation conditions are likely to fluctuate, and stable production becomes difficult.
  • the content of TiO 2 is preferably 10% or less, preferably 8% or less, preferably 6% or less, preferably 5% or less, preferably 4% or less, preferably 2% or less, preferably 0.7%. % Or less, preferably 0.5% or less, preferably 0.1% or less, particularly preferably 0.01% or less.
  • the content (total amount) of Al 2 O 3 + ZrO 2 is preferably determined as follows.
  • the content of Al 2 O 3 + ZrO 2 is preferably more than 12%, preferably 13% or more, preferably 15% or more, preferably 17% or more, preferably 18% or more, preferably 19% or more. If it does in this way, it will become possible to improve ion exchange performance more effectively.
  • the upper limit of the content of Al 2 O 3 + ZrO 2 is preferably 28% or less, preferably 25% or less, preferably 23% or less, preferably 22% or less, and particularly preferably 21% or less.
  • P 2 O 5 is a component that enhances the ion exchange performance, and since the effect of increasing the stress depth is particularly great, its content is preferably 0 to 8%. However, when the content of P 2 O 5 is increased, the glass is phase-separated and the water resistance and devitrification resistance are liable to be lowered. Therefore, the upper limit of the content of P 2 O 5 is preferably 5% or less, preferably 4% or less, preferably 3% or less, particularly preferably 2% or less.
  • As a fining agent 0.001 to 3% of one or more selected from the group of As 2 O 3 , Sb 2 O 3 , CeO 2 , F, SO 3 , and Cl may be added.
  • As 2 O 3 and Sb 2 O 3 are preferably used as much as possible in consideration of the environment, and each content is less than 0.1%, particularly less than 0.01%, that is, substantially no content.
  • CeO 2 is a component that lowers the transmittance, and the content thereof is preferably less than 0.1%, particularly less than 0.01%, that is, it is preferably not substantially contained.
  • F may lower the low temperature viscosity and may cause a decrease in compressive stress value.
  • preferred fining agents are SO 3 and Cl, preferably one or both of SO 3 and Cl, preferably 0.001 to 3%, preferably 0.001 to 1%, 0.01 to 0.5. %, Particularly preferably 0.05 to 0.4%.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Young's modulus. However, the cost of the raw material itself is high, and if it is contained in a large amount, the devitrification resistance is lowered. Therefore, the content of the rare earth oxide is preferably 3% or less, preferably 2% or less, preferably 1% or less, preferably 0.5% or less, particularly 0.1% or less.
  • Transition metal elements such as Co and Ni that strongly color the glass are not preferable because they reduce the transmittance.
  • the content of the transition metal element is preferably 0.5% or less, preferably 0.1% or less, and particularly preferably 0.05%. Therefore, the amount of the raw material or cullet can be adjusted. desirable.
  • a suitable content range of each component can be appropriately selected to obtain a preferable glass composition range. Specific examples are shown below.
  • a glass composition that is ⁇ 10% and substantially free of As 2 O 3 and Sb 2 O 3 .
  • the compressive stress value of the compressive stress layer in the glass substrate for organic EL of the present embodiment is preferably 100 MPa or more, preferably 200 MPa or more, preferably 300 MPa or more, preferably 500 MPa or more, preferably 600 MPa or more, preferably 800 MPa or more, preferably Is 1000 MPa or more, particularly preferably 1200 MPa or more.
  • the compressive stress increases, the mechanical strength of the tempered glass increases.
  • microcracks may be generated on the surface, which may lower the mechanical strength of the tempered glass.
  • a compressive stress value shall be 2500 Mpa or less.
  • the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO, SnO 2 may be increased, or the content of SrO, BaO may be decreased.
  • what is necessary is just to shorten the time which ion exchange requires, or to lower the temperature of an ion exchange solution.
  • the stress depth is preferably 5 ⁇ m or more, preferably 10 ⁇ m or more, preferably 15 ⁇ m or more, preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more.
  • the deeper the stress depth the harder the tempered glass breaks even if the tempered glass is deeply damaged.
  • the stress depth is preferably 100 ⁇ m or less, preferably 80 ⁇ m or less, preferably 60 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the contents of K 2 O, P 2 O 5 , TiO 2 , and ZrO 2 may be increased, or the contents of SrO and BaO may be reduced. Moreover, what is necessary is just to lengthen the time which ion exchange requires, or to raise the temperature of an ion exchange solution.
  • the internal tensile stress is preferably 200 MPa or less, preferably 150 MPa or less, preferably 100 MPa or less, preferably 60 MPa or less, preferably 50 MPa or less, preferably 40 MPa or less, preferably 30 MPa or less, preferably 25 MPa or less, particularly preferably 22 MPa. It is as follows. The smaller this value, the harder it is to break the tempered glass due to internal defects. Moreover, it becomes easy to cut
  • the glass substrate for organic EL of this embodiment preferably has an alkali barrier film formed on at least one surface in order to prevent a situation where alkali ions diffuse into the semiconductor material formed in the heat treatment step.
  • an alkali barrier film formed on at least one surface in order to prevent a situation where alkali ions diffuse into the semiconductor material formed in the heat treatment step.
  • Various materials can be used as the alkali barrier film, but a film of SiO 2 or SiN x is preferable in view of film formability and cost.
  • the alkali barrier film can be formed by sputtering, CVD, or the like.
  • the thickness of the alkali barrier film is preferably 10 to 10000 nm, preferably 10 to 5000 nm, preferably 10 to 3000 nm, particularly preferably 10 to 1000 nm. If the thickness of the alkali barrier film is too small, it will be difficult to prevent the diffusion of alkali ions. On the other hand, when the thickness of the alkali barrier film is too large, the film formation cost is likely to increase.
  • the plate thickness of the organic EL glass substrate of the present embodiment is preferably 2.0 mm or less, preferably 1.5 mm or less, preferably 1.0 mm or less, preferably 0.8 mm or less, preferably 0.7 mm or less, preferably Is 0.6 mm or less, particularly preferably 0.5 mm or less.
  • the glass substrate for organic EL of this embodiment has an advantage that it is difficult to break even if the plate thickness is reduced.
  • thickness reduction and smoothing of a glass substrate can be achieved without grinding
  • the density of the glass substrate for organic EL of the present embodiment is preferably 2.8 g / cm 3 or less, preferably 2.7 g / cm 3 or less, particularly preferably 2.6 g / cm 3 or less.
  • the “density” can be measured by, for example, the well-known Archimedes method. In order to reduce the density, the content of SiO 2 , P 2 O 5 , B 2 O 3 is increased or the content of alkali metal oxide, alkaline earth metal oxide, ZnO, ZrO 2 , TiO 2 is increased. What is necessary is just to reduce the quantity.
  • the thermal expansion coefficient in a temperature range of 30 to 380 ° C. is preferably 70 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., preferably 75 ⁇ 10 ⁇ 7 to 110 ⁇ . 10 ⁇ 7 / ° C., preferably 80 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., particularly preferably 85 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient is easily matched with a member such as a metal or an organic adhesive, and peeling of the member such as a metal or an organic adhesive can be prevented.
  • thermal expansion coefficient refers to a value obtained by measuring an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. using a dilatometer.
  • the content of alkali metal oxides and alkaline earth metal oxides may be increased.
  • alkali metal oxides and alkaline earth metal oxides may be increased. What is necessary is just to reduce content.
  • the strain point of the organic EL glass substrate of the present embodiment is preferably 500 ° C. or higher, preferably 540 ° C. or higher, preferably 550 ° C. or higher, preferably 560 ° C. or higher, preferably 580 ° C. or higher, preferably 600 ° C. or higher.
  • it is 620 degreeC or more,
  • it is 630 degreeC or more,
  • it is 640 degreeC or more.
  • the “strain point” refers to a value measured based on the method of ASTM C336.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1650 ° C. or less, preferably 1500 ° C. or less, preferably 1450 ° C. or less, preferably 1430 ° C. or less, preferably 1420 ° C. or less, Especially preferably, it is 1400 degrees C or less.
  • “temperature at 10 2.5 dPa ⁇ s” refers to a value measured by a platinum ball pulling method.
  • the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s corresponds to the melting temperature of the glass, and the lower the temperature, the more the glass can be melted.
  • the glass substrate can be manufactured at low cost.
  • the content of alkali metal oxide, alkaline earth metal oxide, ZnO, B 2 O 3 , TiO 2 is increased, or SiO 2 , Al 2 O What is necessary is just to reduce the content of 3 .
  • the Young's modulus of the glass substrate for organic EL of the present embodiment is preferably 65 GPa or more, preferably 70 GPa or more, preferably 73 GPa or more, and particularly preferably 75 GPa or more.
  • the “Young's modulus” can be measured by a resonance method, for example.
  • the liquid phase temperature of the glass substrate for organic EL of the present embodiment is preferably 1250 ° C. or less, preferably 1200 ° C. or less, preferably 1050 ° C. or less, preferably 1030 ° C. or less, preferably 1010 ° C. or less, preferably 1000 ° C. or less.
  • the temperature is preferably 950 ° C. or lower, preferably 900 ° C. or lower, particularly preferably 870 ° C. or lower.
  • the content of Na 2 O, K 2 O, B 2 O 3 is increased, or the content of Al 2 O 3 , Li 2 O, MgO, ZnO, TiO 2 , ZrO 2 is increased. Can be reduced.
  • Liquid phase temperature means that glass powder that passes through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m) and remains at 50 mesh (a sieve opening of 300 ⁇ m) is placed in a platinum boat and is placed in a temperature gradient furnace for 24 hours. It refers to the temperature at which crystals precipitate after being held.
  • the liquid phase viscosity is preferably 10 4.0 dPa ⁇ s or more, preferably 10 4.3 dPa ⁇ s or more, preferably 10 4.5 dPa ⁇ s or more, preferably 10 5.0 dPa ⁇ s or more, preferably 10 5.4 dPa ⁇ s or more, Preferably 10 5.8 dPa.s. s or more, preferably 10 6.0 dPa ⁇ s or more, particularly preferably 10 6.2 dPa ⁇ s or more.
  • the “liquid phase viscosity” refers to a value obtained by measuring the viscosity at the liquid phase temperature by a platinum ball pulling method.
  • the liquidus temperature is 1200 ° C. or less, if the liquidus viscosity of 10 4.0 dPa ⁇ s or more, it is possible to form the glass substrate by an overflow down draw method.
  • the glass substrate for organic EL of this embodiment preferably has an unpolished surface, and the average surface roughness (Ra) of the unpolished surface is preferably 10 mm or less, preferably 5 mm or less, preferably 4 mm or less, Preferably it is 3 mm or less, and particularly preferably 2 mm or less.
  • the average surface roughness (Ra) may be measured by a method based on SEMI D7-97 “Measurement method of surface roughness of FPD glass substrate”. Although the theoretical strength of glass is inherently very high, it often breaks even at stresses much lower than the theoretical strength. This is because a small defect called Griffith flow is generated on the glass surface in a post-molding process such as a polishing process.
  • the polishing step can be omitted, and the manufacturing cost of the glass substrate can be reduced.
  • the glass substrate for organic EL of the present invention if the entire effective surface of the glass substrate is unpolished, the glass substrate becomes more difficult to break.
  • a glass substrate may be formed by an overflow down draw method.
  • a glass substrate is first prepared and then the glass substrate is subjected to a tempering treatment.
  • the glass substrate may be cut into a predetermined size before the strengthening process, but it is preferable to perform the glass substrate after the strengthening process because the manufacturing cost can be reduced.
  • the strengthening process is desirably performed by an ion exchange process.
  • the ion exchange treatment can be performed, for example, by immersing the glass substrate in a potassium nitrate solution at 400 to 550 ° C. for 1 to 8 hours.
  • optimum conditions may be selected in consideration of the viscosity characteristics of glass, application, plate thickness, internal tensile stress, and the like.
  • a glass raw material prepared so as to have a glass composition within the above composition range is charged into a continuous melting furnace, the glass raw material is heated and melted at 1500 to 1600 ° C., and clarified. It can be manufactured by forming molten glass into a plate shape and slowly cooling it.
  • the glass substrate is formed by the overflow down draw method, a glass substrate that is unpolished and has good surface quality can be produced.
  • the overflow down draw method is to melt the molten glass from both sides of the heat-resistant bowl-like structure and draw the overflowed molten glass downward while joining at the lower end of the bowl-like structure. This is a method for producing a glass substrate.
  • a method other than the overflow downdraw method can be adopted.
  • a molding method such as a downdraw method (slot down method, redraw method, etc.), a float method, a rollout method, or a press method can be employed.
  • Tables 1 to 8 show examples of the present invention (sample Nos. 1 to 57). In addition, the display of “not yet” in the table means not measured.
  • the samples shown in Tables 1 to 8 were prepared as follows. First, the glass raw material was prepared so that it might become the glass composition in a table
  • the density was measured by the well-known Archimedes method.
  • strain point Ps and the annealing point Ta were measured based on the method of ASTM C336.
  • the softening point Ts was measured based on the method of ASTM C338.
  • the temperature at a high temperature viscosity of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s was measured by a platinum ball pulling method.
  • the Young's modulus was measured by a bending resonance method.
  • thermal expansion coefficient ⁇ an average thermal expansion coefficient in a temperature range of 30 to 380 ° C. was measured using a dilatometer.
  • the liquid phase temperature TL is obtained by crushing glass, passing through a standard sieve 30 mesh (a sieve opening of 500 ⁇ m), and putting the glass powder remaining in 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat and placing it in a temperature gradient furnace for 24 hours. The temperature at which the crystals were deposited was measured.
  • Liquid phase viscosity log ⁇ TL is the viscosity of the glass at the liquidus temperature.
  • the obtained glass substrate had a density of 2.59 g / cm 3 or less, a thermal expansion coefficient of 83 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C., and was suitable as a material for tempered glass.
  • the liquid phase viscosity is 10 4.2 dPa ⁇ s or more, it can be molded by the overflow downdraw method, and the temperature at 10 2.5 dPa ⁇ s is as low as 1614 ° C. It is thought that it can be produced.
  • sample No. Both surfaces 1 to 46 were subjected to optical polishing and then subjected to ion exchange treatment.
  • Sample No. For samples 1 to 8, 13 to 15, 24 and 25, 47 to 57, each sample was placed in KNO 3 molten salt at 430 ° C. for 4 hours.
  • KNO 3 molten salt For Nos. 9-12, 16-23, and 26, each sample was placed in KNO 3 molten salt at 460 ° C. for 4 hours, 27 to 46 were carried out by immersing each sample in KNO 3 molten salt at 440 ° C. for 6 hours.
  • each sample is thoroughly washed, and the surface compressive stress value and stress depth are calculated from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the interval between them. did.
  • the refractive index of the sample was 1.53, and the optical elastic constant was 28 [(nm / cm) / MPa].
  • glass composition differs microscopically in the surface layer of glass, unstrengthened glass and tempered glass do not differ substantially in glass composition as the whole glass. Therefore, characteristic values such as density and viscosity are not substantially different between untempered glass and tempered glass.
  • sample No. A compressive stress of 277 MPa or more was generated on the surfaces 1 to 57, and the depth thereof was 7 ⁇ m or more.
  • the internal tensile stress was 43 MPa or less.
  • test pieces having different internal tensile stresses were prepared by changing the plate thickness and ion exchange treatment conditions. Next, the state of breakage due to internal tensile stress was evaluated for each test piece.
  • the evaluation method is as follows.
  • a glass substrate having a thickness of 0.5 mm and a thickness of 0.7 mm was prepared, and each glass substrate was cut into a size of 35 mm ⁇ 35 mm.
  • Each glass substrate thus obtained was subjected to ion exchange treatment under conditions of 460 ° C. for 6 hours, 460 ° C. for 8 hours, and 490 ° C. for 6 hours, and then the compressive stress value and the stress depth were measured.
  • the results are shown in Table 9. The compressive stress value and the stress depth were measured by the same method as described above, and the internal tensile stress was calculated from these values.
  • Table 10 shows the number of pieces after breaking the glass substrate. For reference, the number of fragments of a glass substrate (unreinforced glass substrate) having no internal tensile stress without performing ion exchange treatment is also shown. As is clear from Table 10, it can be understood that when the internal tensile stress is 50 to 94 MPa, the number of pieces is the same as that of the glass substrate having the internal stress of 0.
  • Example No. by the overflow down draw method Forty glasses were molded to a thickness of 0.7 mm. At that time, the temperature range of the annealer zone arranged at the bottom of the compact was adjusted, and the length and temperature of the annealer were adjusted so that the cooling rate in the temperature range from 730 ° C to 580 ° C was 50 ° C / min. .
  • the obtained glass substrate was subjected to ion exchange treatment in a KNO 3 molten salt containing 40 ppm of Li 2 O under conditions of 440 ° C. and 6 hours.
  • the compressive stress value of the compressive stress layer was 600 MPa
  • the stress depth was 34 ⁇ m
  • the internal tensile stress was 32 MPa.
  • FIG. 1 and 2 show structural examples when an organic EL device is produced using the organic EL glass substrate of the present invention.
  • the organic EL device shown in FIG. 1 is arranged in the order of an unstrengthened glass substrate 1, a TFT 2, an organic EL element 3, a transparent electrode 4, and a tempered glass substrate 5, and the unstrengthened glass substrate 1 and the tempered glass substrate 5 are sealed. It has a structure sealed with a stop material 6.
  • the organic EL device shown in FIG. 2 is arranged in the order of a tempered glass substrate 7, a TFT 8, a transparent electrode 9, an organic EL element 10, a metal electrode 11, and a sealing layer 12. Has a structure sealed with a sealing material 13. Although not shown in the drawing, it is preferable to form an alkali barrier film on the surface of the tempered glass substrate 7.
  • glass was melted and cast by casting, followed by optical polishing before ion exchange treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 本発明の有機EL用ガラス基板は、表面に圧縮応力層を有することを特徴とする。

Description

有機EL用ガラス基板及びその製造方法
 本発明は、有機EL用ガラス基板及びその製造方法に関する。
 携帯電話、デジタルカメラ、PDA、太陽電池、タッチパネルディスプレイ等のモバイルデバイスは、広く使用されており、今後、益々普及する傾向にある。これらのモバイルデバイスでは、更なる薄型化、軽量化が求められている。
 現在では、0.7mm厚又は0.5mm厚のガラス基板を用いて、有機ELディスプレイ等を作製し、パネルを組み立てた後、エッチング等によって、ガラス基板を0.2~0.3mm厚まで薄型化する方法が行われている。しかし、ガラス基板を0.2~0.3mm厚まで薄型化すると、ガラス基板の機械的強度が低下してしまう。この機械的強度の低下を補うために、ディスプレイの前面に強化ガラス基板を配置する構造が採用されている。
 上記の通り、有機ELデバイスでは、ガラス基板を薄型化するために、パネルを組み立てた後に、ガラス基板に対してエッチング等が行われていた。しかし、エッチング等は、処理コストがかかるため、有機ELデバイスの製造コストを高騰させる虞がある。
 また、ディスプレイの前面に強化ガラス基板を配置する場合、全体の厚みを小さくするためには、強化ガラス基板の厚みを小さくしなければならず、この場合、強化ガラス基板の内部の引っ張り応力が高くなり過ぎないように、圧縮応力層の圧縮応力値、応力深さを制限する必要があり、結果として、強化ガラス基板の機械的強度を高めることが困難になる。従って、有機ELデバイスの機械的強度と薄型化を両立させることが困難であった。
 本発明は、上記技術的課題に鑑み成されたものであり、その技術的課題は、有機ELデバイスの製造コストを高騰させることなく、薄型化と高強度化を両立し得るガラス基板を創案することである。
 本発明者は、種々の検討を行った結果、ガラス組成中の各成分の含有量を規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の有機EL用ガラス基板は、表面に圧縮応力層を有することを特徴とする。
 第二に、本発明の有機EL用ガラス基板は、ガラス組成として、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有することが好ましい。なお、本発明の有機EL用ガラス基板は、強化ガラス以外にも、結晶化ガラス等も含まれる。
 第三に、本発明の有機EL用ガラス基板は、化学的に強化されてなることが好ましい。
 第四に、本発明の有機EL用ガラス基板は、圧縮応力層の圧縮応力が100MPa以上、応力厚みが10μm以上、且つ内部の引っ張り応力が200MPa以下であることが好ましい。ここで、「圧縮応力層の圧縮応力値」及び「応力深さ」は、表面応力計(例えば、株式会社東芝製FSM-6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。「内部の引っ張り応力」は、下記式1で計算された値を指す。
(式1)
 内部の引っ張り応力=(圧縮応力値×応力深さ)/(板厚-応力深さ×2)
 第五に、本発明の有機EL用ガラス基板は、少なくとも一方の表面にアルカリバリア膜が形成されていることが好ましい。このようにすれば、熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を防止し易くなる。結果として、本発明のようにアルカリ金属酸化物を含むガラス基板を有機ELデバイスに適用し易くなる。
 第六に、本発明の有機EL用ガラス基板は、アルカリバリア膜の厚みが10~1000nmであることが好ましい。
 第七に、本発明の有機EL用ガラス基板の製造方法は、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有するガラス組成となるように調合したガラス原料を溶融し、板状に成形した後、イオン交換処理を行ってガラス表面に圧縮応力層を形成することを特徴とする。
 第八に、本発明の有機EL用ガラス基板の製造方法は、ダウンドロー法にて板状に成形することが好ましい。第九に、本発明の有機EL用ガラス基板の製造方法は、オーバーフローダウンドロー法にて板状に成形することが好ましい。
本発明の有機EL用ガラス基板を用いて、有機ELデバイスを作製した場合の構造例を示している。 本発明の有機EL用ガラス基板を用いて、有機ELデバイスを作製した場合の構造例を示している。
 本発明の実施形態に係る有機EL用ガラス基板は、表面に圧縮応力層を有する強化ガラスである。表面に圧縮応力層を形成する方法には、物理強化法と化学強化法があり、本実施形態では、化学強化法で圧縮応力層を形成することが好ましい。化学強化法は、ガラスの歪点以下の温度でイオン交換処理を行うことにより、ガラスの表面にイオン半径が大きいアルカリイオンを導入する方法である。化学強化法で圧縮応力層を形成すれば、ガラス基板の板厚が小さくても、所望の機械的強度を得ることができる。更に、圧縮応力層を形成した後に、強化ガラスを切断しても、風冷強化法等の物理強化法とは異なり、容易に破壊することがない。
 本実施形態の有機EL用ガラス基板は、ガラス組成として、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有する。このように、ガラス組成を限定した理由を以下に説明する。なお、以下の説明において、%表示は、特に断りがない限り、質量%を指す。
 SiO2は、ガラスのネットワークを形成する成分である。SiO2の含有量は、好ましくは40~80%、好ましくは41~71%、好ましくは42~66%、好ましくは43~65%、好ましくは44~63%、好ましくは45~63%、好ましくは50~59%、特に好ましくは55~58.5%である。SiO2の含有量が多過ぎると、ガラスの溶融、成形が難しくなったり、熱膨張係数が低くなり過ぎて、周辺材料と熱膨張係数が整合し難くなる。一方、SiO2の含有量が少な過ぎると、ガラス化し難くなる。また、熱膨張係数が高くなり、ガラスの耐熱衝撃性が低下し易くなる。上記観点から、SiO2の含有量の上限は、好ましくは80%以下、好ましくは71%以下、好ましくは70%以下、好ましくは66%以下、好ましくは65%以下、好ましくは63%以下、好ましくは60%以下、好ましくは59%以下、好ましくは58.5%以下、特に好ましくは56%以下である。また、SiO2の含有量の下限は、好ましくは40%以上、好ましくは41%以上、好ましくは42%以上、好ましくは43%以上、好ましくは44%以上、好ましくは45%以上、好ましくは50%以上、特に好ましくは55%以上である。
 Al23は、イオン交換性能を高める成分であり、また歪点やヤング率を高める効果もある。Al23の含有量は1~25%が好ましい。Al23の含有量が多過ぎると、ガラスに失透結晶が析出し易くなってオーバーフローダウンドロー法等による成形が困難になる。またこの場合、熱膨張係数が低くなり過ぎて、周辺材料と熱膨張係数が整合し難くなったり、高温粘性が高くなり溶融し難くなる。一方、Al23の含有量が少な過ぎると、十分なイオン交換性能を発揮できない虞が生じる。上記観点から、Al23の含有量の上限は、好ましくは23%以下、好ましくは21%以下、好ましくは20%以下、好ましくは19%以下、好ましくは18%以下、好ましくは17.5%以下、好ましくは17%以下、特に好ましくは16.5%以下である。また、Al23の含有量の下限は、好ましくは3%以上、好ましくは7.5%以上、好ましくは8.5%以上、好ましくは9%以上、好ましくは10%以上、好ましくは12%以上、好ましくは13%以上、好ましくは14%以上、好ましくは15%以上、特に好ましくは16%以上である。なお、溶融性を重視する場合、Al23の含有量は15%以下が好ましい。
 Na2Oは、イオン交換成分であると共に、高温粘度を低下させて、溶融性や成形性を向上させる成分である。また、Na2Oは、耐失透性を改善する成分でもある。しかし、Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。またこの場合、歪点が低下し過ぎたり、ガラス組成のバランスを欠き、かえって耐失透性が低下する傾向がある。一方、Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低くなり過ぎたり、イオン交換性能が低下し易くなる。上記観点から、Na2Oの含有量の上限は、好ましくは20%以下、好ましくは19%以下、好ましくは18%以下、好ましくは17%以下、好ましくは15%以下、特に好ましくは13%以下である。また、Na2Oの含有量の下限は、好ましくは0.1%以上、好ましくは3%以上、好ましくは6%以上、好ましくは7%以上、好ましくは8%以上、好ましくは10%以上、特に好ましくは12%以上である。なお、イオン交換性能よりもTFT等のデバイスとの熱膨張係数の整合性を重視する場合、Na2Oの含有量は、好ましくは12%以下、好ましくは10%以下、好ましくは8%以下、特に好ましくは6%以下である。
 上記成分以外にも、例えば、以下の成分を添加してもよい。
 Li2Oは、イオン交換成分であると共に、高温粘度を低下させて溶融性や成形性を向上させる成分である。また、Li2Oは、ヤング率を向上させる成分である。更に、Li2Oは、アルカリ金属酸化物の中では圧縮応力値を高める効果が大きい。しかし、Li2Oの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなる。また、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に、低温粘性が低下し過ぎて、応力緩和が起こり易くなると、かえって圧縮応力値が低くなる場合がある。従って、Li2Oの含有量は、好ましくは0~3.5%、好ましくは0~2%、好ましくは0~1%、好ましくは0~0.5%、好ましくは0~0.1%であり、実質的に含有しないこと、つまり0.01%未満に抑えることが最も好ましい。
 K2Oは、イオン交換を促進する効果があり、アルカリ金属酸化物の中では応力深さを深くする効果が高い。また、高温粘度を低下させて、溶融性や成形性を高める成分である。また、K2Oは、耐失透性を改善する成分でもある。K2Oの含有量は0~15%が好ましい。K2Oの含有量が多過ぎると、熱膨張係数が高くなり、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。更に、歪点が低下し過ぎたり、ガラス組成のバランスを欠き、かえって耐失透性が低下する傾向がある。よって、K2Oの含有量の上限は、好ましくは12%以下、好ましくは10%以下、好ましくは9%以下、好ましくは8%以下、好ましくは7%以下、特に好ましくは6%以下である。また、K2Oの含有量の下限は、好ましくは0.1以上、好ましくは0.5%以上、好ましくは1%以上、好ましくは2%以上、好ましくは3%以上、好ましくは4%以上、特に好ましくは4.5%以上である。
 アルカリ金属酸化物R2O(RはLi、Na、Kから選ばれる1種以上)の合量が多くなり過ぎると、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料と熱膨張係数が整合し難くなる。また、アルカリ金属酸化物R2Oの合量が多過ぎると、歪点が低下し過ぎて、高い圧縮応力値が得られない場合がある。更に、液相温度付近の粘性が低下し、高い液相粘度を確保することが困難となる場合がある。よって、R2Oの合量は、好ましくは22%以下、好ましくは20%以下、特に好ましくは19%以下である。一方、R2Oの合量が少な過ぎると、イオン交換性能や溶融性が低下する場合がある。よって、R2Oの合量は、好ましくは8%以上、好ましくは10%以上、好ましくは13%以上、特に好ましくは15%以上である。
 また、(Na2O+K2O)/Al23の値は、好ましくは0.5~4、好ましくは0.7~2、好ましくは0.8~1.好ましくは6、0.9~1.6、好ましくは1~1.6、特に好ましくは1.2~1.6に規制するのがよい。この値が大きくなると、低温粘性が低下し過ぎて、イオン交換性能が低下したり、ヤング率が低下したり、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。また、この値が大きくなると、ガラス組成の成分バランスが損なわれて、ガラスが失透し易くなる。一方、この値が小さくなると、溶融性や耐失透性が低下し易くなる。
 また、K2O/Na2Oの質量比の範囲は、0~2が好ましい。K2O/Na2Oの質量比を変化させると、圧縮応力値と応力深さを変化させることが可能になる。圧縮応力値を高く設定したい場合には、上記質量比は、好ましくは0~0.3、特に好ましくは0~0.2となるように調整するのがよい。一方、応力深さをより深くしたり、短時間で深い圧縮応力層を形成したい場合には、上記質量比が、好ましくは0.3~2、好ましくは0.5~2、好ましくは1~2、好ましくは1.2~2、特に好ましくは1.5~2となるように調整するのがよい。ここで、上記質量比の上限を2に設定した理由は、2より大きくなると、ガラス組成のバランスを欠いて、ガラスが失透し易くなるからである。
 例えば、アルカリ土類金属酸化物R’O(R’はMg、Ca、Sr、Baから選ばれる1種以上)は、種々の目的で添加可能な成分である。しかし、R’Oの合量が多くなると、密度や熱膨張係数が高くなったり、耐失透性が低下したりすることに加えて、イオン交換性能が低下する傾向がある。よって、R’Oの合量は、好ましくは0~9.9%、好ましくは0~8%、好ましくは0~6、特に好ましくは0~5%である。一方、高歪点化を達成したい場合、R’Oの合量を好ましくは1~10%、好ましくは2~9%、好ましくは4~8%、特に好ましくは6~8%に規制するのがよい。
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が大きい。MgOの含有量は0~6%が好ましい。しかし、MgOの含有量が多くなると、密度、熱膨張係数が高くなったり、ガラスが失透し易くなる。したがって、MgOの含有量は、好ましくは5%以下、好ましくは4%以下、好ましくは3%以下、好ましくは2.5%以下、好ましくは2%以下、特に好ましくは1.5%以下である。なお、MgOを導入する場合、MgOの含有量は0.1%以上、特に1%以上が好ましい。
 CaOは、高温粘度を低下させて溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を向上させる効果が大きい。CaOの含有量は0~10%が好ましい。しかし、CaOの含有量が多くなると、密度、熱膨張係数が高くなったり、ガラスが失透し易くなったり、更にはイオン交換性能が低下する場合がある。したがって、CaOの含有量の上限は、好ましくは9%以下、好ましくは8%以下、好ましくは7%以下、特に好ましくは6%以下が好ましい。一方、CaOの含有量の下限は、好ましくは0.1%以上、好ましくは1%以上、好ましくは2%以上、好ましくは4%以上、好ましくは5%以上が好ましい。なお、CaOの導入を可及的に避ける場合、CaOの含有量は、好ましくは4%以下、好ましくは2%未満、特に好ましくは0.9%以下である。
 SrO及びBaOは、高温粘度を低下させて溶融性や成形性を向上させたり、歪点やヤング率を高める成分である。SrO及びBaOの含有量は各々0~3%が好ましい。SrOやBaOの含有量が多くなると、イオン交換性能が低下する傾向がある。また、密度、熱膨張係数が高くなったり、ガラスが失透し易くなる。SrOの含有量は、好ましくは2%以下、好ましくは1.5%以下、好ましくは1%以下、好ましくは0.5%以下、好ましくは0.2%以下、特に好ましくは0.1%以下である。また、BaOの含有量は、好ましくは2.5%以下、好ましくは2%以下、好ましくは1%以下、好ましくは0.8%以下、好ましくは0.5%以下、好ましくは0.2%以下、特に好ましくは0.1%以下である。
 ZnOは、イオン交換性能を高める成分であり、特に、圧縮応力値を高くする効果が大きい。また、ZnOは、低温粘性を低下させずに高温粘性を低下させる効果を有する成分でもある。ZnOの含有量は0~8%が好ましい。しかし、ZnOの含有量が多くなると、ガラスが分相したり、耐失透性が低下したり、密度が高くなるため、その含有量は、好ましくは8%以下、好ましくは6%以下、好ましくは5%以下、好ましくは4%以下、好ましくは3%以下、好ましくは2%以下、好ましくは1%以下、特に好ましくは1%未満である。
 SrO+BaOの含有量(合量)を0~5%に規制すると、イオン交換性能をより効果的に向上させることができる。つまりSrOとBaOは、上述の通り、イオン交換反応を阻害する作用があるため、これらの成分を多く含むことは、強化ガラスの機械的強度を高める上で不利である。SrO+BaOの含有量は、好ましくは0~3%、好ましくは0~2.5%、好ましくは0~2%、好ましくは0~1%、好ましくは0~0.2%、特に好ましくは0~0.1%である。
 R’Oの合量をR2Oの合量で除した値が大きくなると、耐失透性が低下する傾向が現れる。よって、質量分率でR’O/R2Oの値を好ましくは0.5以下、好ましくは0.4以下、特に好ましくは0.3以下に規制するのがよい。
 SnO2は、イオン交換性能、特に圧縮応力値を向上させる効果があるため、好ましくは0.01~3%、好ましくは0.01~1.5%、特に好ましくは0.1~1%含有するのがよい。SnO2の含有量が多くなると、SnO2に起因する失透が発生したり、ガラスが着色し易くなる傾向がある。
 ZrO2は、イオン交換性能を顕著に向上させると共に、ヤング率や歪点を高くし、高温粘性を低下させる効果がある。また、ZrO2は、液相粘度付近の粘性を高める効果があるため、所定量含有させることで、イオン交換性能と液相粘度を同時に高めることができる。但し、ZrO2の含有量が多くなり過ぎると、耐失透性が極端に低下する場合がある。よって、ZrO2の含有量は、好ましくは0~10%、好ましくは0.001~10%、好ましくは0.1~9%、好ましくは0.5~8%、好ましくは0.5~7%、好ましくは1~5%、特に好ましくは2.5~5%である。なお、ZrO2の含有を可及的に避ける場合、ZrO2の含有量は好ましくは2%未満、好ましくは1%以下、好ましくは1%未満、好ましくは0.5%以下、好ましくは0.1%以下、特に好ましくは0.1%未満である。
 B23は、液相温度、高温粘度及び密度を低下させる効果を有すると共に、イオン交換性能、特に圧縮応力値を向上させる効果がある。そのため、B23は、上記成分と共に含有できるが、その含有量が多過ぎると、イオン交換によって表面にヤケが発生したり、耐水性が低下したり、液相粘度が低下する虞がある。またこの場合、応力深さが低下する傾向にある。よって、B23の含有量は、好ましくは0~6%、好ましくは0~4%、好ましくは0~3%、好ましくは0~1%、好ましくは0~0.8%、好ましくは0~0.5%、特に好ましくは0~0.1%である。
 TiO2は、イオン交換性能を向上させる効果がある成分である。また、高温粘度を低下させる効果がある。しかし、その含有量が多過ぎると、ガラスが着色したり、耐失透性が低下したり、密度が高くなる。特にディスプレイの基板として使用する場合、TiO2の含有量が多くなると、溶融雰囲気や原料を変更した時、透過率が変化し易くなる。そのため紫外線硬化樹脂等の光を利用してガラス基板をデバイスに接着する工程において、紫外線照射条件が変動し易くなり、安定生産が困難となる。よって、TiO2の含有量は、好ましくは10%以下、好ましくは8%以下、好ましくは6%以下、好ましくは5%以下、好ましくは4%以下、好ましくは2%以下、好ましくは0.7%以下、好ましくは0.5%以下、好ましくは0.1%以下、特に好ましくは0.01%以下である。
 本実施形態において、イオン交換性能向上の観点から、ZrO2とTiO2を上記範囲に規制することが好ましいが、TiO2源、ZrO2源として試薬を用いてもよく、原料等に含まれる不純物から導入してもよい。
 耐失透性とイオン交換性能を両立する観点から、Al23+ZrO2の含有量(合量)を以下のように定めることが好ましい。Al23+ZrO2の含有量は、好ましくは12%超、好ましくは13%以上、好ましくは15%以上、好ましくは17%以上、好ましくは18%以上、好ましくは19%以上である。このようにすれば、イオン交換性能をより効果的に向上させることが可能になる。しかし、Al23+ZrO2の含有量が多過ぎると、耐失透性が極端に低下する。そのため、Al23+ZrO2の含有量の上限は、好ましくは28%以下、好ましくは25%以下、好ましくは23%以下、好ましくは22%以下、特に好ましくは21%以下である。
 P25は、イオン交換性能を高める成分であり、特に、応力深さを深くする効果が大きいため、その含有量を0~8%とすることが好ましい。しかし、P25の含有量が多くなると、ガラスが分相したり、耐水性や耐失透性が低下し易くなる。そのため、P25の含有量の上限は、好ましくは5%以下、好ましくは4%以下、好ましくは3%以下、特に好ましくは2%以下である。
 清澄剤として、As23、Sb23、CeO2、F、SO3、Clの群から選択された一種又は二種以上を0.001~3%添加してもよい。ただし、As23及びSb23は環境に対する配慮から、使用は極力控えることが好ましく、各々の含有量は0.1%未満、特に0.01%未満、つまり実質的に含有しないことが好ましい。CeO2は、透過率を低下させる成分であり、その含有量は、好ましくは0.1%未満、特に0.01%未満、つまり実質的に含有しないことが好ましい。Fは、低温粘性を低下させ、圧縮応力値の低下を招く虞がある。よって、Fの含有量は、0.1%未満、特に0.01%未満、つまり実質的に含有しないことが好ましい。従って、好ましい清澄剤は、SO3とClであり、SO3とClの1者又は両者を、好ましくは0.001~3%、好ましくは0.001~1%、0.01~0.5%、特に好ましくは0.05~0.4%添加するのがよい。
 Nd23やLa23等の希土類酸化物は、ヤング率を高める成分である。しかし、原料自体のコストが高く、また多量に含有させると耐失透性が低下する。よって、希土類酸化物の含有量は、好ましくは3%以下、好ましくは2%以下、好ましくは1%以下、好ましくは0.5%以下、特に0.1%以下である。
 ガラスを強く着色するようなCo、Ni等の遷移金属元素は、透過率を低下させるため好ましくない。特に、ディスプレイに用いる場合、遷移金属元素の含有量が多いと、ディスプレイの視認性が低下し易くなる。よって、遷移金属酸化物の含有量は、好ましくは0.5%以下、好ましくは0.1%以下、特に好ましくは0.05%であり、そのために原料又はカレットの使用量を調整することが望ましい。
 Pb、Bi等の物質は、環境に対する配慮から、その酸化物の含有量をそれぞれ0.1%未満に制限することが好ましい。
 本実施形態の有機EL用ガラス基板において、各成分の好適な含有範囲を適宜選択し、好ましいガラス組成範囲とすることができる。その具体例を以下に示す。
(1)質量%で、SiO2 40~71%、Al23 7.5~21%、Li2O 0~2%、Na2O 10~19%、K2O 0~15%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%を含有するガラス組成。
(2)質量%で、SiO2 40~71%、Al23 7.5~21%、Li2O 0~2%、Na2O 10~19%、K2O 0~15%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%、ZrO2 0~10%を含有するガラス組成。
(3)質量%で、SiO2 40~71%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~19%、K2O 0~10%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%を含有するガラス組成。
(4)質量%で、SiO2 40~71%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~19%、K2O 0~10%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~8%、SnO2 0.01~3%、ZrO2 0~10%を含有するガラス組成。
(5)質量%で、SiO2 40~71%、Al23 9~19%、B23 0~6%、Li2O 0~2%、Na2O 10~19%、K2O 0~15%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~6%、SnO2 0.1~1%、ZrO2 0.001~10%であり、実質的にAs23及びSb23を含有しないガラス組成。
(6)質量%で、SiO2 40~71%、Al23 9~18%、B23 0~4%、Li2O 0~2%、Na2O 11~17%、K2O 0~6%、MgO 0~6%、CaO 0~6%、SrO 0~3%、BaO 0~3%、ZnO 0~6%、SnO2 0.1~1%、ZrO2 0.001~10%であり、実質的にAs23及びSb23を含有しないガラス組成。
(7)質量%で、SiO2 40~63%、Al23 9~17.5%、B23 0~3%、Li2O 0~0.1%、Na2O 10~17%、K2O 0~7%、MgO 0~5%、CaO 0~4%、SrO+BaO 0~3%、SnO2 0.01~2%であり、実質的にAs23及びSb23を含有せず、質量分率で(Na2O+K2O)/Al23の値が0.9~1.6、K2O/Na2O 0~0.4であるガラス組成。
(8)質量%で、SiO2 40~71%、Al23 3~21%、Li2O 0~2%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.001~3%を含有するガラス組成。
(9)質量%で、SiO2 40~71%、Al23 8~21%、Li2O 0~2%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.001~3%を含有し、実質的にAs23及びSb23を含有しないガラス組成。
(10)質量%で、SiO2 40~65%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.001~3%を含有し、質量分率で(Na2O+K2O)/Al23の値が0.7~2であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
(11)質量%で、SiO2 40~65%、Al23 8.5~21%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.5%、SnO2 0.01~3%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が0.9~1.7であって、実質的にAs23、Sb23及びFを含有しないガラス組成。
(12)質量%で、SiO2 40~63%、Al23 9~19%、B23 0~3%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.1%、SnO2 0.01~3%、ZrO2 0.001~10%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が1.2~1.6であって、実質的にAs23、Sb23及びFを含有しないことを特徴とするガラス組成。
(13)質量%で、SiO2 40~63%、Al23 9~17.5%、B23 0~3%、Li2O 0~1%、Na2O 10~20%、K2O 0~9%、MgO 0~5%、TiO2 0~0.1%、SnO2 0.01~3%、ZrO2 0.1~8%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が1.2~1.6であって、実質的にAs23、Sb23及びFを含有しないガラス組成。
(14)質量%で、SiO2 40~59%、Al23 10~15%、B23 0~3%、Li2O 0~0.1%、Na2O 10~20%、K2O 0~7%、MgO 0~5%、TiO2 0~0.1%、SnO2 0.01~3%、ZrO2 1~8%、MgO+CaO+SrO+BaO 0~8%を含有し、質量分率で(Na2O+K2O)/Al23の値が1.2~1.6であって、実質的にAs23、Sb23及びFを含有しないガラス組成。
(15)SiO2 50~65%、Al23 12~19%、Li2O 0~1%、Na2O 12~18%、K2O 0~8%、MgO 0~6%、CaO 0~6%、SrO 0~1%、BaO 0~1%、ZnO 0~8%、SnO2 0.01~3%含有するガラス組成。
(4)SiO2 50~65%、Al23 16~25%、B23 0~1%、Na2O 7~15%、K2O 2~9%、MgO 2~5%、CaO 0~10%、SrO 0~1%、BaO 0~1%、TiO2 0~0.5%含有するガラス組成。
(16)SiO2 50~60%、Al23 17~25%、B23 0~0.8%、Na2O 7~15%、K2O 4.5~6%、MgO 2~5%、CaO 0~10%、SrO 0~1%、BaO 0~1%、TiO2 0~0.5%、ZrO2 0~2%、ZnO 0~5%、Fe23 0~1%、SnO2 0.1~3%含有するガラス組成。
(17)SiO2 50~56%、Al23 17~23%、B23 0~0.5%、Na2O 8~12%、K2O 4.5~6%、MgO 2.5~5%、CaO 4~8%、SrO 0~0.1%、BaO 0~0.1%、TiO2 0~0.1%、ZrO2 0~0.1%、ZnO 0~5%、Fe23 0~0.1%、SnO2 0.1~3%、As23 0~0.1%、Sb23 0~0.1%含有するガラス組成
(18)SiO2 50~70%、Al23 12~25%、B23 0~1%、Na2O 10~13%、K2O 4.5~9%、MgO 2~6%、CaO 0~8%、SrO 0~1%、BaO 0~1%、TiO2 0~0.1%含有するガラス組成。
(19)SiO2 50~70%、Al23 12~25%、B23 0~0.1%、Na2O 10~13%、K2O 4.5~9%、MgO 2~6%、CaO 0~8%、SrO 0~1%、BaO 0~1%、TiO2 0~0.1%、ZrO2 0~2%、ZnO 0~1%、As23 0~0.1%、Sb23 0~0.1%含有するガラス組成。
 本実施形態の有機EL用ガラス基板における圧縮応力層の圧縮応力値は、好ましくは100MPa以上、好ましくは200MPa以上、好ましくは300MPa以上、好ましくは500MPa以上、好ましくは600MPa以上、好ましくは800MPa以上、好ましくは1000MPa以上、特に好ましくは1200MPa以上である。圧縮応力が大きくなるにつれて、強化ガラスの機械的強度が高くなる。一方、表面に極端に大きな圧縮応力が形成されると、表面にマイクロクラックが発生し、かえって強化ガラスの機械的強度が低下する虞がある。また、強化ガラスに内在する引っ張り応力が極端に高くなる虞があるため、圧縮応力値を2500MPa以下とするのが好ましい。なお圧縮応力値を大きくするには、Al23、TiO2、ZrO2、MgO、ZnO、SnO2の含有量を増加させたり、SrO、BaOの含有量を低減させればよい。また、イオン交換に要する時間を短くしたり、イオン交換溶液の温度を下げればよい。
 応力深さは、好ましくは5μm以上、好ましくは10μm以上、好ましくは15μm以上、好ましくは20μm以上、特に好ましくは30μm以上である。応力深さが深い程、強化ガラスに深い傷が付いても、強化ガラスが割れ難くなる。一方、強化ガラスを切断し難くなったり、内部の引っ張り応力が極端に高くなって破損する虞れがある。よって、応力深さは、好ましくは100μm以下、好ましくは80μm以下、好ましくは60μm以下、特に好ましくは50μm以下である。なお、応力深さを深くするには、K2O、P25、TiO2、ZrO2の含有量を増加させたり、SrO、BaOの含有量を低減させればよい。また、イオン交換に要する時間を長くしたり、イオン交換溶液の温度を高めればよい。
 内部の引っ張り応力は、好ましくは200MPa以下、好ましくは150MPa以下、好ましくは100MPa以下、好ましくは60MPa以下、好ましくは50MPa以下、好ましくは40MPa以下、好ましくは30MPa以下、好ましくは25MPa以下、特に好ましくは22MPa以下である。この値が小さくなる程、内部の欠陥によって強化ガラスが破損し難くなる。また、強化ガラスを安定して切断し易くなる。更に、切断時の寸法変化を少なくすることが可能になる。しかし、内部の引っ張り応力が極端に小さくなると、表面の圧縮応力値や応力深さが低下する。よって、内部の引っ張り応力は、好ましくは1MPa以上、好ましくは10MPa以上、特に好ましくは15MPa以上である。
 本実施形態の有機EL用ガラス基板は、熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を防止するために、少なくとも一方の表面にアルカリバリア膜が形成されていることが好ましい。アルカリバリア膜として、種々の材料が使用可能であるが、成膜性やコストを考慮すると、SiO2やSiNXの膜が好ましい。なお、アルカリバリア膜は、スパッタ法、CVD等により形成することができる。
 アルカリバリア膜の厚みは、好ましくは10~10000nm、好ましくは10~5000nm、好ましくは10~3000nm、特に好ましくは10~1000nmである。アルカリバリア膜の厚みが小さ過ぎると、アルカリイオンの拡散を防止し難くなる。一方、アルカリバリア膜の厚みが大き過ぎると、成膜コストが高騰し易くなる。
 本実施形態の有機EL用ガラス基板の板厚は、好ましくは2.0mm以下、好ましくは1.5mm以下、好ましくは1.0mm以下、好ましくは0.8mm以下、好ましくは0.7mm以下、好ましくは0.6mm以下、特に好ましくは0.5mm以下である。板厚が小さい程、ガラス基板を軽量化することできる。また、本実施形態の有機EL用ガラス基板は、板厚を小さくしても、破壊し難い利点を有している。なお、オーバーフローダウンドロー法でガラス基板を成形すると、ガラス基板の薄肉化や平滑化を無研磨で達成することができる。
 本実施形態の有機EL用ガラス基板の密度は、好ましくは2.8g/cm3以下、好ましくは2.7g/cm3以下、特に好ましくは2.6g/cm3以下である。密度が低い程、ガラスの軽量化を図ることができる。ここで、「密度」は、例えば、周知のアルキメデス法で測定可能である。なお、密度を低下させるには、SiO2、P25、B23の含有量を増加させたり、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、ZrO2、TiO2の含有量を低減させればよい。
 本実施形態の有機EL用ガラス基板において、30~380℃の温度範囲における熱膨張係数は、好ましくは70×10-7~110×10-7/℃、好ましくは75×10-7~110×10-7/℃、好ましくは80×10-7~110×10-7/℃、特に好ましくは85×10-7~110×10-7/℃である。熱膨張係数を上記範囲とすれば、金属、有機系接着剤等の部材と熱膨張係数が整合し易くなり、金属、有機系接着剤等の部材の剥離を防止することができる。ここで、「熱膨張係数」とは、ディラトメーターを用いて、30~380℃の温度範囲における平均熱膨張係数を測定した値を指す。なお、熱膨張係数を上昇させるには、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を増加さればよく、逆に低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物の含有量を低減させればよい。
 本実施形態の有機EL用ガラス基板の歪点は、好ましくは500℃以上、好ましくは540℃以上、好ましくは550℃以上、好ましくは560℃以上、好ましくは580℃以上、好ましくは600℃以上、好ましくは620℃以上、好ましくは630℃以上、特に好ましくは640℃以上である。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。歪点が高い程、耐熱性が向上し、ボトムエミッションの有機ELにおいて、強化ガラス基板上に酸化物TFT等を形成する際等に、熱処理を施したとしても、ガラス基板の熱収縮が小さくなると共に、圧縮応力層が消失し難くなる。また、歪点が高いと、イオン交換処理時に応力緩和が生じ難くなり、高い圧縮応力値を得ることが可能になる。なお、歪点を高くするためには、アルカリ金属酸化物の含有量を低減させたり、アルカリ土類金属酸化物、Al23、ZrO2、P25の含有量を増加させればよい。
 本実施形態の有機EL用ガラス基板において、102.5dPa・sにおける温度は、好ましくは1650℃以下、好ましくは1500℃以下、好ましくは1450℃以下、好ましくは1430℃以下、好ましくは1420℃以下、特に好ましくは1400℃以下である。ここで、「102.5dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。高温粘度102.5dPa・sにおける温度は、ガラスの溶融温度に相当しており、この温度が低い程、低温でガラスを溶融することができる。従って、この温度が低い程、溶融窯等のガラス製造設備への負担が小さくなる共に、泡品位を向上させることができる。結果として、ガラス基板を安価に製造することができる。なお、102.5dPa・sにおける温度を低下させるには、アルカリ金属酸化物、アルカリ土類金属酸化物、ZnO、B23、TiO2の含有量を増加させたり、SiO2、Al23の含有量を低減させればよい。
 本実施形態の有機EL用ガラス基板のヤング率は、好ましくは65GPa以上、好ましくは70GPa以上、好ましくは73GPa以上、特に好ましくは75GPa以上である。ヤング率が高い程、ディスプレイの基板として使用する際に、ガラス基板が撓み難くなる。ここで、「ヤング率」は、例えば、共振法で測定可能である。
 本実施形態の有機EL用ガラス基板の液相温度は、好ましくは1250℃以下、好ましくは1200℃以下、好ましくは1050℃以下、好ましくは1030℃以下、好ましくは1010℃以下、好ましくは1000℃以下、好ましくは950℃以下、好ましくは900℃以下、特に好ましくは870℃以下である。液相温度を低下させるには、Na2O、K2O、B23の含有量を増加させたり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を低減させればよい。なお、「液相温度」とは、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶が析出する温度を指す。
 液相粘度は、好ましくは104.0dPa・s以上、好ましくは104.3dPa・s以上、好ましくは104.5dPa・s以上、好ましくは105.0dPa・s以上、好ましくは105.4dPa・s以上、好ましくは105.8dPa.s以上、好ましくは106.0dPa・s以上、特に好ましくは106.2dPa・s以上が好ましい。液相粘度を上昇させるには、Na2O、K2Oの含有量を増加させたり、Al23、Li2O、MgO、ZnO、TiO2、ZrO2の含有量を低減させればよい。なお、「液相粘度」とは、液相温度における粘度を白金球引き上げ法で測定した値を指す。
 なお、液相粘度が高く、液相温度が低い程、耐失透性に優れると共に、成形性に優れている。そして、液相温度が1200℃以下、液相粘度が104.0dPa・s以上であれば、オーバーフローダウンドロー法でガラス基板を成形することができる。
 本実施形態の有機EL用ガラス基板は、未研磨の表面を有することが好ましく、未研磨の表面の平均表面粗さ(Ra)は、好ましくは10Å以下、好ましくは5Å以下、好ましくは4Å以下、好ましくは3Å以下、特に好ましくは2Å以下である。なお、平均表面粗さ(Ra)は、SEMI D7-97「FPDガラス基板の表面粗さの測定方法」に準拠した方法により測定すればよい。ガラスの理論強度は本来非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これはガラス表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。それ故、ガラス表面を未研磨とすれば、本来のガラスの機械的強度が損なわれず、ガラス基板が破壊し難くなる。また、ガラス表面を未研磨とすれば、研磨工程を省略できるため、ガラス基板の製造コストを下げることができる。本発明の有機EL用ガラス基板において、ガラス基板の有効面全体を未研磨とすれば、ガラス基板が更に破壊し難くなる。また、ガラス基板の切断面から破壊に至る事態を防止するため、ガラス基板の切断面に面取り加工やエッチング処理等を行ってもよい。なお、未研磨の表面を得るためには、オーバーフローダウンドロー法でガラス基板を成形すればよい。
 本実施形態の有機EL用ガラス基板を製造するには、まずガラス基板を作製し、然る後に、そのガラス基板に強化処理を施すことが好ましい。ガラス基板を所定サイズに切断するのは、強化処理の前でもよいが、強化処理後に行う方が製造コストを低減できるため好ましい。なお、強化ガラス基板上にTFT等のパターニングを施し、キャップガラスと封止した後に、強化ガラス基板を切断することが好ましい。強化処理は、イオン交換処理にて行うことが望ましい。イオン交換処理は、例えば400~550℃の硝酸カリウム溶液中にガラス基板を1~8時間浸漬することによって行うことができる。イオン交換処理の条件は、ガラスの粘度特性、用途、板厚、内部の引っ張り応力等を考慮して最適な条件を選択すればよい。
 本実施形態に係るガラス基板は、上記組成範囲内のガラス組成となるように調合したガラス原料を連続溶融炉に投入し、ガラス原料を1500~1600℃で加熱溶融し、清澄した後、成形装置に供給した上で溶融ガラスを板状に成形し、徐冷することにより製造することができる。
 ガラス基板を成形するには、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法でガラス基板を成形すれば、未研磨で表面品位が良好なガラス基板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されることにより、無研磨で表面品位が良好なガラス基板を成形できるからである。ここで、オーバーフローダウンドロー法は、溶融状態のガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を製造する方法である。
 なお、高い表面品位が要求されない場合には、オーバーフローダウンドロー法以外の方法を採用することができる。例えば、ダウンドロー法(スロットダウン法、リドロー法等)、フロート法、ロールアウト法、プレス法等の成形方法を採用することができる。
 以下、本発明の実施例を説明する。なお、本発明は、以下の実施例に何ら限定されない。以下の実施例は単なる例示である。
 表1~8は、本発明の実施例(試料No.1~57)を示している。なお、表中の「未」の表示は、未測定を意味している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 次のようにして表1~8の各試料を作製した。まず、表中のガラス組成となるように、ガラス原料を調合し、白金ポットを用いて1580℃で8時間溶融した。その後、溶融ガラスをカーボン板の上に流し出して板状に成形した。得られたガラス基板について、種々の特性を評価した。
 密度は、周知のアルキメデス法によって測定した。
 歪点Ps、徐冷点Taは、ASTM C336の方法に基づいて測定した。
 軟化点Tsは、ASTM C338の方法に基づいて測定を行った。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・sにおける温度は、白金球引き上げ法で測定した。
 ヤング率は、曲げ共振法により測定した。
 熱膨張係数αは、ディラトメーターを用いて、30~380℃の温度範囲における平均熱膨張係数を測定した。
 液相温度TLは、ガラスを粉砕し、標準篩30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した。
 液相粘度logηTLは、液相温度におけるガラスの粘度である。
 その結果、得られたガラス基板は、密度が2.59g/cm3以下、熱膨張係数が83×10-7~100×10-7/℃、強化ガラス用の素材として好適であった。また、液相粘度が104.2dPa・s以上であるため、オーバーフローダウンドロー法で成形が可能であり、しかも102.5dPa・sにおける温度が1614℃以下と低いため、大量のガラス基板を効率良く作製し得るものと考えられる。
 続いて、試料No.1~46の両表面に光学研磨を施した後、イオン交換処理を行った。試料No.1~8、13~15、24及び25、47~57については、430℃のKNO3溶融塩中に各試料を4時間、試料No.9~12、16~23及び26については、460℃のKNO3溶融塩中に各試料を4時間、No.27~46については440℃のKNO3溶融塩中に各試料を6時間浸漬することで行った。イオン交換処理後、各試料を十分に洗浄し、表面応力計(株式会社東芝製FSM-6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力値と応力深さを算出した。算出に当たり、試料の屈折率を1.53、光学弾性定数を28[(nm/cm)/MPa]とした。なお、未強化ガラスと強化ガラスは、ガラスの表層において微視的にガラス組成が異なっているものの、ガラス全体としてはガラス組成が実質的に相違していない。従って、密度、粘度等の特性値は、未強化ガラスと強化ガラスで実質的に相違していない。
 その結果、試料No.1~57の表面に277MPa以上の圧縮応力が発生しており、且つその深さは7μm以上であった。また、板厚1mmの場合、内部の引っ張り応力が43MPa以下であった。
 試料No.15のガラス基板を用いて、板厚やイオン交換処理の条件を変えることにより、内部の引っ張り応力が異なる試験片を作製した。次に、各試験片につき、内部の引っ張り応力による破損の状態を評価した。評価方法は、以下の通りである。
 板厚0.5mmと板厚0.7mmのガラス基板をそれぞれ作製し、各ガラス基板を35mm×35mmの大きさに切り出した。こうして得られた各ガラス基板について、460℃-6時間、460℃-8時間、490℃-6時間の各条件でイオン交換処理を行った後、圧縮応力値と応力深さを測定した。その結果を表9に示す。なお、圧縮応力値、応力深さは、上記と同様の方法で測定したものであり、その値から内部の引っ張り応力を計算した。
Figure JPOXMLDOC01-appb-T000009
 続いて、ガラス基板の表面に形成された傷が内部の引っ張り応力領域まで達した時に、ガラス基板が破損するかどうかを調査した。ホイールチップ材質がダイヤモンドであるスクライブマシンを使用し、エアー圧を0.3MPa、ホイールチップ刃角度を125°、ホイールチップ研磨グレードをD521に設定した上で、ホイールチップをガラス基板の表面に叩きつけてガラス基板を破壊した。
 表10は、ガラス基板を破壊した後の破片の数を示したものである。また、参考のため、イオン交換処理を行わず、内部の引っ張り応力が0のガラス基板(未強化ガラス基板)の破片の数も示した。表10から明らかなように、内部の引っ張り応力が50~94MPaであれば、内部応力が0のガラス基板と同程度の破片の数となることが理解できる。
Figure JPOXMLDOC01-appb-T000010
 オーバーフローダウンドロー法により、実施例No.40のガラスを板厚0.7mmになるように成形した。その際、成形体下部に配置されているアニーラーゾーンの温度域を調整し、730℃から580℃の温度域の冷却速度が50℃/分になるように、アニーラーの長さと温度を調整した。
 得られたガラス基板に対して、Li2Oを40ppm含むKNO3溶融塩中で440℃-6時間の条件でイオン交換処理を行った。その結果、圧縮応力層の圧縮応力値が600MPa、応力深さが34μmであり、内部引っ張り応力は32MPaであった。
 本発明の有機EL用ガラス基板を用いて、有機ELデバイスを作製した場合の構造例を図1、2に示す。
 図1に示す有機ELデバイスは、未強化ガラス基板1、TFT2、有機EL素子3、透明電極4、強化ガラス基板5の順序で配置されており、未強化ガラス基板1と強化ガラス基板5が封止材料6で封止された構造を有している。
 図2に示す有機ELデバイスは、強化ガラス基板7、TFT8、透明電極9、有機EL素子10、金属電極11、封止層12の順序で配置されており、強化ガラス基板7と封止層12が封止材料13で封止された構造を有している。なお、図中では図示されていないが、強化ガラス基板7の表面上に、アルカリバリア膜を形成することが好ましい。
 なお、上記実施例では、本発明の説明の便宜上、ガラスを溶融し、流し出しによる成形を行った後、イオン交換処理前に光学研磨を行った。工業的規模で生産する場合には、オーバーフローダウンドロー法等でガラス基板を作製し、ガラス基板の両表面が未研磨の状態でイオン交換処理を行うことが望ましい。
1 未強化ガラス基板
2、8 TFT
3、8 有機EL素子
4、9 透明電極
5、7 強化ガラス基板
6、13 封止材料
11 金属電極
12 封止層

Claims (9)

  1.  表面に圧縮応力層を有することを特徴とする有機EL用ガラス基板。
  2.  ガラス組成として、質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有することを特徴とする請求項1に記載の有機EL用ガラス基板。
  3.  化学的に強化されてなることを特徴とする請求項2に記載の有機EL用ガラス基板。
  4.  圧縮応力層の圧縮応力が100MPa以上、応力厚みが10μm以上、且つ内部の引っ張り応力が200MPa以下であることを特徴とする請求項2又は3に記載の有機EL用ガラス基板。
  5.  少なくとも一方の表面にアルカリバリア膜が形成されていることを特徴とする請求項2又は3に記載の有機EL用ガラス基板。
  6.  アルカリバリア膜の厚みが10~1000nmであることを特徴とする請求項5に記載の有機EL用ガラス基板。
  7.  質量%で、SiO2 40~80%、Al23 1~25%、Na2O 0.5~20%を含有するガラス組成となるように調合したガラス原料を溶融し、板状に成形した後、イオン交換処理を行ってガラス表面に圧縮応力層を形成することを特徴とする有機EL用ガラス基板の製造方法。
  8.  ダウンドロー法にて板状に成形することを特徴とする請求項7に記載の有機EL用ガラス基板の製造方法。
  9.  オーバーフローダウンドロー法にて板状に成形することを特徴とする請求項7に記載の有機EL用ガラス基板の製造方法。
PCT/JP2013/067200 2012-06-25 2013-06-24 有機el用ガラス基板及びその製造方法 WO2014002932A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012141915 2012-06-25
JP2012-141915 2012-06-25

Publications (1)

Publication Number Publication Date
WO2014002932A1 true WO2014002932A1 (ja) 2014-01-03

Family

ID=49783078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067200 WO2014002932A1 (ja) 2012-06-25 2013-06-24 有機el用ガラス基板及びその製造方法

Country Status (2)

Country Link
JP (1) JP2014028743A (ja)
WO (1) WO2014002932A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123384A (ko) * 2014-02-21 2016-10-25 코닝 인코포레이티드 낮은 결정도 유리-세라믹
CN109836037A (zh) * 2019-03-22 2019-06-04 科立视材料科技有限公司 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃
JP2021075462A (ja) * 2021-02-17 2021-05-20 株式会社オハラ 結晶化ガラス基板
CN115724589A (zh) * 2022-11-29 2023-03-03 西安创联电气科技(集团)有限责任公司 一种射频连接器用封接玻璃粉及其制备与封接方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013550A1 (de) * 2014-09-12 2016-03-31 Schott Ag Beschichtetes chemisch vorgespanntes flexibles dünnes Glas
EP3648547A4 (en) * 2017-06-26 2020-06-24 Kaneka Corporation FLEXIBLE ORGANIC EL SCREEN
JP6814230B2 (ja) * 2019-01-11 2021-01-13 株式会社Joled 発光パネル、発光装置および電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174810A (ja) * 2000-12-08 2002-06-21 Hoya Corp ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP2004131314A (ja) * 2002-10-09 2004-04-30 Asahi Glass Co Ltd 透明導電膜付き化学強化ガラス基板、およびその製造方法
JP2011213576A (ja) * 2010-03-19 2011-10-27 Ishizuka Glass Co Ltd 化学強化用ガラス組成物及び化学強化ガラス材
JP2012031018A (ja) * 2010-07-30 2012-02-16 Asahi Glass Co Ltd 強化ガラス基板及び強化ガラス基板の溝加工方法と強化ガラス基板の切断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174810A (ja) * 2000-12-08 2002-06-21 Hoya Corp ディスプレイ用ガラス基板及びその製造方法並びにこれを用いたディスプレイ
JP2004131314A (ja) * 2002-10-09 2004-04-30 Asahi Glass Co Ltd 透明導電膜付き化学強化ガラス基板、およびその製造方法
JP2011213576A (ja) * 2010-03-19 2011-10-27 Ishizuka Glass Co Ltd 化学強化用ガラス組成物及び化学強化ガラス材
JP2012031018A (ja) * 2010-07-30 2012-02-16 Asahi Glass Co Ltd 強化ガラス基板及び強化ガラス基板の溝加工方法と強化ガラス基板の切断方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123384A (ko) * 2014-02-21 2016-10-25 코닝 인코포레이티드 낮은 결정도 유리-세라믹
JP2017509574A (ja) * 2014-02-21 2017-04-06 コーニング インコーポレイテッド 低結晶度ガラスセラミック
US10604441B2 (en) 2014-02-21 2020-03-31 Corning Incorported Low crystallinity glass-ceramics
KR102326433B1 (ko) * 2014-02-21 2021-11-16 코닝 인코포레이티드 낮은 결정도 유리-세라믹
US11407679B2 (en) 2014-02-21 2022-08-09 Corning Incorporated Low crystallinity glass-ceramics
CN109836037A (zh) * 2019-03-22 2019-06-04 科立视材料科技有限公司 一种具有低成本高压缩应力层的磷铝硅酸盐玻璃
JP2021075462A (ja) * 2021-02-17 2021-05-20 株式会社オハラ 結晶化ガラス基板
JP7174788B2 (ja) 2021-02-17 2022-11-17 株式会社オハラ 結晶化ガラス基板
CN115724589A (zh) * 2022-11-29 2023-03-03 西安创联电气科技(集团)有限责任公司 一种射频连接器用封接玻璃粉及其制备与封接方法

Also Published As

Publication number Publication date
JP2014028743A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5867574B2 (ja) 強化ガラス基板及びその製造方法
JP5743125B2 (ja) 強化ガラス及び強化ガラス基板
JP5339173B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP2009013052A (ja) 強化ガラス基板及びその製造方法
JP2008115071A (ja) 強化ガラス基板
WO2014002932A1 (ja) 有機el用ガラス基板及びその製造方法
JP5796905B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法
JP5413817B2 (ja) 強化ガラス基板及びガラス並びに強化ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810668

Country of ref document: EP

Kind code of ref document: A1