WO2013190621A1 - Electroluminescence element - Google Patents

Electroluminescence element Download PDF

Info

Publication number
WO2013190621A1
WO2013190621A1 PCT/JP2012/065535 JP2012065535W WO2013190621A1 WO 2013190621 A1 WO2013190621 A1 WO 2013190621A1 JP 2012065535 W JP2012065535 W JP 2012065535W WO 2013190621 A1 WO2013190621 A1 WO 2013190621A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode layer
thin film
translucent
concave
Prior art date
Application number
PCT/JP2012/065535
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
秀雄 工藤
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/065535 priority Critical patent/WO2013190621A1/en
Publication of WO2013190621A1 publication Critical patent/WO2013190621A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an electroluminescence element.
  • An organic electroluminescence element (hereinafter referred to as an organic EL element) in which an organic functional layer including a light emitting layer is sandwiched between an anode layer and a cathode layer on a glass substrate is known.
  • an organic EL element when a voltage is applied between the anode and the cathode, the light emitting layer emits light. The emitted light is extracted from the glass substrate by making the anode transparent. Since the light emitted from the light emitting layer is confined and extinguished by total reflection between the anode-glass interface and between the glass-air interface, only about 20% of the light generated in the light emitting layer is extracted outside. There is a problem that the light extraction efficiency is low.
  • an organic EL display device in which a plurality of organic EL elements each having a concavo-convex reflective electrode formed on a wiring substrate are arranged (see, for example, Patent Document 1).
  • the light directed to the wiring board is scattered and reflected by the reflective electrode having a concavo-convex surface, and is directed outward from the second electrode on the outermost surface to improve the light extraction efficiency. ing.
  • a wiring substrate having a concavo-convex surface is formed, a reflective electrode or the like is sequentially formed thereon, planarized with a conductive transparent organic film, a light emitting layer is formed, and a second electrode is formed.
  • a reflective electrode or the like is sequentially formed thereon, planarized with a conductive transparent organic film, a light emitting layer is formed, and a second electrode is formed. The process of making.
  • a plurality of organic electroluminescent elements formed by providing an organic light emitting layer between transparent electrodes are spaced apart and arranged on a plane, and light is extracted from both sides of each element.
  • a light emitting module provided with a concave mirror larger than the element is also known (see, for example, Patent Document 2).
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an electroluminescence element capable of improving the light extraction efficiency as compared with the prior art.
  • the electroluminescent element of the present invention is an electroluminescent element including a light emitting laminate sandwiched between a light-transmitting electrode layer and a reflective metal electrode layer, and sandwiched between the light emitting laminate and the reflective metal electrode layer.
  • the reflective metal electrode layer has a reflective portion having a plurality of concave reflective surfaces each facing the translucent conductive thin film, and each of the concave reflective surfaces and the A plurality of light-transmitting portions that are optically in close contact with the light-transmitting conductive thin film are provided.
  • FIG. 1 is a partial cross-sectional view of an organic EL element which is an embodiment of the present invention.
  • FIG. 2 is a partially cutaway perspective view of the organic EL element of FIG.
  • FIG. 3 is a perspective view of a hemispherical light transmitting portion of the organic EL element of FIG.
  • FIG. 4 is a partially transparent plan view seen from the light emitting laminate showing the reflective metal electrode layer of the organic EL device of another embodiment of the present invention.
  • FIG. 5 is a partially transparent plan view seen from the light emitting laminate showing the reflective metal electrode layer of the organic EL device of the further embodiment of the present invention.
  • FIG. 6 is a perspective view of a light transmitting portion of an organic EL element according to another embodiment of the present invention.
  • FIG. 1 is a partial cross-sectional view of an organic EL element which is an embodiment of the present invention.
  • FIG. 2 is a partially cutaway perspective view of the organic EL element of FIG.
  • FIG. 3 is a perspective view of
  • FIG. 7 is a schematic cross-sectional view showing an organic EL device according to another embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing an organic EL device according to still another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a conical concave reflecting surface in an organic EL device according to another embodiment of the present invention.
  • FIG. 10 is a schematic perspective view of a conical light transmitting portion of the organic EL element of FIG.
  • an organic EL device includes a translucent electrode layer 2, an organic functional layer 3, a translucent conductive thin film TTCF, and a reflective metal electrode layer on a translucent substrate 1. 4 are laminated in order.
  • the organic functional layer 3 is a hole injection layer 3a, a light emitting layer 3c, an electron transport layer 3d, and an electron injection layer 3e, which are sequentially stacked. Moreover, in this laminated structure, it is also possible to laminate
  • the organic functional layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
  • the light emitting material of the light emitting layer 3c may be, for example, a fluorescent material or a phosphorescent material.
  • a fluorescent material may be used for the blue light emitting layer
  • a phosphorescent material may be used for the green and red light emitting layers.
  • a diffusion preventing layer can be provided between the light emitting layers.
  • Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene.
  • fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light include rubrene derivatives.
  • Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like.
  • Examples of the phosphorescent material include iridium, platinum, ruthenium, rhodium, and palladium complex compounds. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
  • the organic functional layer 3 includes dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. It has been.
  • the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed as a solid film by a wet coating method
  • the electron transport layer and the electron injection layer are uniformly formed as a solid film by a dry coating method, respectively. You may form into a film sequentially.
  • all the functional layers may be uniformly and sequentially formed as a solid film by a wet coating method.
  • the translucent electrode layer 2 for supplying positive holes to the functional layers up to the light emitting layer 3c is made of ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2, or the like. Furthermore, it is preferable to select a material having a transmissivity of at least 10% at the emission wavelength obtained from the organic EL material for the translucent electrode layer.
  • the translucent electrode layer 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the material of the cathode reflective metal electrode layer 4 that supplies electrons to the functional layers up to the light emitting layer 3c is preferably a metal having a low work function in order to efficiently inject electrons, for example, tin, magnesium, indium, calcium,
  • a suitable metal such as aluminum or silver or an alloy thereof is used.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • a metal layer having a high work function and stable to the atmosphere on the cathode because the stability of the organic EL panel is increased.
  • metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used.
  • these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the translucent conductive thin film TTCF is formed so as to be sandwiched between the organic functional layer 3 and the reflective metal electrode layer 4.
  • the translucent conductive thin film TTCF is made of an electric conductor having an electric conductivity of 10 6 S / m or more, and is approximately 360 nm or less, which is the shortest wavelength of visible light, that is, a film thickness in the range of ultra soft X-ray to ultraviolet wavelength. Is a thin film.
  • the material of the translucent conductive thin film TTCF includes carbon such as metal, graphite, and graphene.
  • a silver thin film having a film thickness of 20 nm as a metal thin film of the translucent conductive thin film TTCF has a transmittance of 50%.
  • An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%.
  • the 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%.
  • a thin film made of an electric conductor and having a thickness of a thin film having a thickness in the range of ultra-soft X-ray to ultraviolet wavelength and having a transmittance of at least 50% may be adopted. preferable.
  • the translucent conductive thin film TTCF is formed of a metal thin film, the conductivity can be obtained if the lower limit of the film thickness is about 3 nm.
  • the translucent conductive thin film TTCF is formed on the organic functional layer 3 by a vacuum deposition method.
  • the organic functional layer 3 Since the organic functional layer 3 is sandwiched between and in electrical contact with the translucent electrode layer 2 and the translucent conductive thin film TTCF, the electrically translucent electrode layer 2 and the reflective metal electrode layer 4 are in contact with each other.
  • the drive voltage is applied to the organic functional layer 3 through the light, the light generated in the light emitting layer 3c in the organic functional layer 3 passes through the translucent electrode layer 2 and further passes through the translucent conductive thin film TTCF. After being reflected by the reflective metal electrode layer 4, the light passes through the translucent electrode layer 2 and is taken out from the surface of the translucent substrate 1.
  • the reflective metal electrode layer 4 has a plurality of concave reflective surfaces 4a each facing the translucent conductive thin film TTCF. Each concave reflective surface 4a is curved toward the reflective metal electrode layer.
  • the reflective portion of the reflective metal electrode layer is composed of a flat reflective metal electrode layer 4 in contact with the interface with the translucent conductive thin film TTCF and a concave reflective surface 4a.
  • the plurality of translucent portions 5 have substantially the same hemispherical shape.
  • the translucent portions 5 may be arranged with a substantially uniform distribution density on the flat interface (XY plane) with the translucent conductive thin film TTCF, and may be arranged periodically.
  • the cycle is the organic functional layer 3. Is preferably sufficiently larger than the wavelength of the light generated in
  • FIG. 3 is a perspective view showing the hemispherical translucent portion 5 viewed from the organic functional layer 3 side.
  • the interface 5a on the reflective metal electrode layer 4 side of each translucent part 5 is a concave surface including an inclined surface inclined at an inclination angle ⁇ degree with respect to the flat interface 5b on the organic functional layer 3 side. That is, each of the concave reflecting surfaces 4 a is defined as a concave mirror by the interface 5 a with the hemispherical light transmitting portion 5.
  • the hemispherical shape means not only a true spherical shape but also a shape having all concavely curved inner wall surfaces such as an elliptical sphere.
  • the plurality of translucent portions 5 may be arranged on all lattices having the same shape and size and intersecting each other at an angle of 60 degrees. Further, as shown in FIG. 5, the shape, size, and height of each translucent portion 5 may be configured randomly. In the case of such a random arrangement of the translucent portions 5, random reflection is obtained and the light scattering effect is increased. In addition, as shown in FIG. 5, the some translucent part 5 embed
  • FIG. 6 is a perspective view showing a modification of the shape of the translucent part 5 embedded in the concave reflective surface 4a of the reflective metal electrode layer 4, respectively.
  • the translucent part 5 may be composed of a polyhedron other than a hemispherical shape, such as a conical shape as shown in FIG. 6A, a triangular pyramid shape as shown in FIG. As shown, it may be a quadrangular pyramid. In the case of the triangular pyramid shape, since the light transmitting portions 5 can be arranged at the vertices of each triangle, a dense state can be configured. In the above description, the case where each shape of the light transmitting portion 5 is a pyramid is illustrated, but the shape of the light transmitting portion 5 may be a truncated cone shape or a truncated pyramid shape.
  • the translucent material constituting the translucent portion 5 is selected from an inorganic material or an organic material having a refractive index equal to or higher than the refractive index of the organic functional layer 3, and may be an insulator or a material having conductivity or electron transporting property. Good.
  • the size of the translucent part 5 is preferably sufficiently larger than the wavelength of light generated in the organic functional layer 3.
  • the length of the bottom surface at the interface 5b of the light transmitting portion 5 is 20 ⁇ m, for example, and the height from the bottom surface of the light transmitting portion 5 is about 10 ⁇ m, for example.
  • a method for forming a composite electrode composed of the reflective metal electrode layer 4 and the translucent portion 5 will be described.
  • a transparent electrode layer 2 and an organic functional layer 3 are sequentially formed on a flat transparent substrate 1 by a known method, and a transparent conductive thin film TTCF is formed on the surface of the organic functional layer 3.
  • the light-transmitting conductive thin film TTCF is prepared so that the surface thereof is flat.
  • the composite electrode layer can be completed by, for example, a mask film forming method.
  • a mask in which a plurality of predetermined through openings are formed in advance is formed in advance.
  • a plurality of hemispherical light-transmitting portions 5 can be formed by depositing ITO on the light-transmitting conductive thin film TTCF through the mask opening by vacuum deposition or low-temperature sputtering film formation. After removing the mask, a metal material is vacuum-deposited on the translucent conductive thin film TTCF so as to cover all of the translucent portion 5, thereby completing a composite electrode layer in contact with a flat interface.
  • the shape in the thickness direction of the translucent portion 5 can be controlled by providing a ridge or taper at the mask opening.
  • a composite electrode layer can be formed by intaglio printing.
  • An intaglio mold in which a plurality of hemispherical recesses are formed using a known surface processing technique is formed in advance, and a translucent material is placed on the intaglio mold, and then this is wiped with a blade or the like. If this intaglio mold is left on the translucent conductive thin film TTCF and pressure is applied, the translucent material in the recess is transferred to the translucent conductive thin film TTCF, and a plurality of hemispherical translucent portions 5 are formed. it can.
  • a composite electrode layer is completed by vacuum-depositing a metal material on the translucent conductive thin film TTCF so as to cover all of the translucent portion 5.
  • the translucent conductive thin film TTCF is a metal
  • the reflective metal electrode layer 4 is preferably formed of the same material.
  • an intaglio mold can be formed using well-known surface processing techniques, such as a sandblast and a water blast.
  • the translucent part 5 when it is an organic material, it can be formed by vapor deposition using a mesh mask, or the translucent part can be formed by a coating process such as an ink jet method, a screen printing method, a relief printing method, or a spray method. it can.
  • each of the hemispherical, conical, pyramidal, frustoconical or truncated pyramidal concave reflecting surfaces is defined as a concave mirror defined corresponding to the translucent part of those shapes. It becomes.
  • the conductive material is not necessarily required for the translucent part 5 and the degree of freedom of the material of the translucent part 5 is increased.
  • a light-transmitting conductive thin film TTCF a plurality of light-transmitting portions 5 and a reflective metal electrode layer 4 as a composite electrode layer on the organic functional layer 3 such as a light-emitting layer or an electron injection layer, a cathode, light emission
  • the parallelism between the layer and the anode can be kept high, and the concave reflecting surface 4a of the reflective metal electrode layer 4 formed on the plurality of light transmitting portions 5 exhibits the effect of a concave mirror.
  • the application voltage as the cathode can be applied in a well-balanced manner because the translucent portion 5 is embedded in the interface of the reflective metal electrode layer 4 (cathode).
  • the electron dispersion from the reflective metal electrode layer 4 and the hole-dispersing locations from the light-transmissive electrode layer 2 are made uniform.
  • the organic EL device includes an anode translucent electrode layer 2, a hole injection layer 3 a, a hole transport layer 3 b, a light emitting layer 3 c, and a cathode, which are sequentially laminated on the glass substrate of the translucent substrate 1. It consists of a reflective metal electrode layer 4.
  • the organic functional layer 3 is a hole injection layer 3a, a hole transport layer 3b, and a light emitting layer 3c. It is assumed that a plurality of light-transmitting portions 5 are arranged between the reflective metal electrode layer 4 and the light emitting layer 3c with thicknesses and sizes being changed depending on places. It is assumed that the light incident on the reflective metal electrode layer 4 and the light transmitting portion 5 at the same angle is also reflected or scattered at different angles by the reflective metal electrode layer 4 and the light transmitting portion 5 depending on the location.
  • the light emitted from the light emitting point of the light emitting layer indicated by the broken line and the solid line arrow passes through the hole transport layer 3b and the hole injection layer 3a, passes through the translucent electrode layer 2, and passes through the glass layer. Enter the optical substrate 1.
  • the light emitting layer 3c, the hole transport layer 3b, the hole injection layer 3b, and the translucent electrode layer 2 are approximately equal in refractive index of about 1.8.
  • the totally reflected light reaches the reflective metal electrode layer 4 from the translucent electrode layer 2 through the hole injection layer 3a, the hole transport layer 3b, and the light emitting layer 3c.
  • the concave reflective surface 4a of the reflective metal electrode layer 4 from the light emitting layer 3c interface of the translucent portion 5 differs depending on the location, the concave reflective surface 4a is reflected at an angle different from the incident angle after passing through the translucent portion 5. .
  • the reflection angle varies depending on the case, but when reflected at an angle smaller than the incident angle, the light passes through without being totally reflected at the light transmitting portion and the glass interface or the glass and air layer interface.
  • the translucent conductive thin film TTCF that also functions as an electrode and a plurality of concave reflection surfaces 4a are distributed on the surface of the reflective metal electrode layer 4, so that the reflective metal electrode layer 4 reflects at the same angle as the incident angle.
  • the confinement action is reduced for light that enters the glass layer beyond the critical angle.
  • FIG. 8 shows a basic configuration of an organic EL element of another embodiment.
  • symbol is the same as that of the organic EL element of the said Example, those description is abbreviate
  • the plurality of concave reflecting surfaces 4a formed on the reflective metal electrode layer 4 are conical.
  • FIG. 9 is a cross-sectional view of the conical concave reflecting surface 4a of the reflective metal electrode layer. Since the translucent electrode layer 2 and the organic functional layer 3 have the same refractive index, it is assumed that no refraction or reflection occurs at each interface.
  • is an incident angle of the light beam to be extracted from the central axis of the height of the center of the cone to the conical surface.
  • each translucent part 5 forms an inclined surface or a concave surface inclined at an angle ⁇ degree with respect to the planar interface 5b on the organic functional layer 3 side, and the angle ⁇ is 15 ⁇ It is preferable to set so as to satisfy ⁇ .
  • the organic EL element of this example has a composite electrode layer of the translucent conductive thin film TTCF, the reflective metal electrode layer 4 including the concave reflective surface 4a, and the translucent part 5, so that comparison is made.
  • Light can be extracted outside with a relatively short optical path length and a relatively small number of reflections, and the light extraction efficiency can be dramatically improved. That is, by constructing a plurality of translucent portions 5 between the flat translucent conductive thin film TTCF and the reflective metal electrode layer 4, the concave reflective surface 4a by the translucent conductive material portion is formed into the translucent electrode layer.
  • the light extraction efficiency can be improved by changing the reflection angle of light confined by repeated total reflection between the glass and glass-air interface.
  • a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1.
  • a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL panel may be deteriorated by the outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • an inexpensive glass substrate which is not an expensive polishing glass substrate for displays can also be used for an organic EL panel substrate.
  • the organic functional layer is a light-emitting laminate, but a light-emitting laminate can be formed by laminating inorganic material films.

Abstract

An electroluminescence element including a light-emitting laminate sandwiched between a light-transmitting electrode layer and a reflective metal electrode layer, and having a light-transmitting conductive thin film sandwiched between the light-emitting laminate and the reflective metal electrode layer. The reflective metal electrode layer has a reflective section having a plurality of recessed reflective surfaces each facing the light-transmitting conductive thin film. The element has a plurality of light-transmitting sections each optically close to each of the recessed reflective surfaces and to the light-transmitting conductive thin film.

Description

エレクトロルミネッセンス素子Electroluminescence element
 本発明は、エレクトロルミネッセンス素子に関する。 The present invention relates to an electroluminescence element.
 ガラス基板上の陽極と陰極の電極層の間に発光層を含む有機機能層が挟持された有機エレクトロルミネッセンス素子(以下、有機EL素子と称する)が知られている。この有機EL素子においては、陽極と陰極の間に電圧を印加すると発光層が発光する。発光光は陽極を透明とすることによりガラス基板から取り出される。発光層から発せられた光は陽極-ガラス界面間及びガラス-空気界面間での全反射により閉じ込められ消衰する故に、発光層で生成された光のうち約20%程度の光しか外部に取り出すことができず、光取り出し効率が低いという問題がある。 An organic electroluminescence element (hereinafter referred to as an organic EL element) in which an organic functional layer including a light emitting layer is sandwiched between an anode layer and a cathode layer on a glass substrate is known. In this organic EL element, when a voltage is applied between the anode and the cathode, the light emitting layer emits light. The emitted light is extracted from the glass substrate by making the anode transparent. Since the light emitted from the light emitting layer is confined and extinguished by total reflection between the anode-glass interface and between the glass-air interface, only about 20% of the light generated in the light emitting layer is extracted outside. There is a problem that the light extraction efficiency is low.
 この問題に対して、光取り出し効率を向上させる提案がなされてきた。 In response to this problem, proposals have been made to improve the light extraction efficiency.
 例えば、配線基板上に凹凸構造の反射電極を形成した有機EL素子の複数を配列した有機EL表示装置が知られている(例えば特許文献1参照)。各有機EL素子の発光層から発光した光のうち配線基板へ向かう光は凹凸面を有する反射電極で散乱反射され、最表面の第二電極から外へ向かうようにして、光取り出し効率を向上させている。特許文献1の素子の製法は、凹凸面を有する配線基板を形成し、その上に反射電極などを順次形成し、導電性透明有機膜で平坦化した後、発光層を形成し、第二電極を作る工程を含んでいる。 For example, an organic EL display device is known in which a plurality of organic EL elements each having a concavo-convex reflective electrode formed on a wiring substrate are arranged (see, for example, Patent Document 1). Of the light emitted from the light-emitting layer of each organic EL element, the light directed to the wiring board is scattered and reflected by the reflective electrode having a concavo-convex surface, and is directed outward from the second electrode on the outermost surface to improve the light extraction efficiency. ing. In the method of manufacturing the element of Patent Document 1, a wiring substrate having a concavo-convex surface is formed, a reflective electrode or the like is sequentially formed thereon, planarized with a conductive transparent organic film, a light emitting layer is formed, and a second electrode is formed. The process of making.
 また、透明電極間に有機発光層を設けて形成される有機電界発光素子の複数を離間して平面上に配列して各素子両側から光を取り出し、複数素子のそれぞれに、平面の片側に各素子より大きな凹面鏡を設けた発光モジュールも知られている(例えば特許文献2参照)。 In addition, a plurality of organic electroluminescent elements formed by providing an organic light emitting layer between transparent electrodes are spaced apart and arranged on a plane, and light is extracted from both sides of each element. A light emitting module provided with a concave mirror larger than the element is also known (see, for example, Patent Document 2).
特開2008-235605号公報JP 2008-235605 A 特開2004-119147号公報JP 2004-119147 A
 しかしながら、特許文献1の開示技術では、反射電極が凹凸構造である故に、陰極及び陽極の間でショートする可能性が高く電流リークを招来する危険性がある。 However, in the technique disclosed in Patent Document 1, since the reflective electrode has a concavo-convex structure, there is a high possibility of short-circuiting between the cathode and the anode, leading to a risk of current leakage.
 特許文献2の開示技術では、有機EL素子の外部に凹面鏡や凸プリズム反射膜を形成している故に、空間に不活性ガスを封止したり、凸プリズムを接着するなど工程数の多く、歩留まりの向上が期待できない。また素子に比べ大なる凹面鏡を用いている故、素子内の光の閉じ込めには十分対応できていない。 In the disclosed technique of Patent Document 2, since a concave mirror or a convex prism reflecting film is formed outside the organic EL element, there are many processes such as sealing an inert gas in the space or adhering a convex prism. Improvement cannot be expected. In addition, since a concave mirror larger than the element is used, it cannot sufficiently cope with light confinement in the element.
 本発明は、上記した点に鑑みてなされたものであり、光取り出し効率を従来よりも向上させることができるエレクトロルミネッセンス素子を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide an electroluminescence element capable of improving the light extraction efficiency as compared with the prior art.
 本発明のエレクトロルミネッセンス素子は、透光性電極層及び反射金属電極層の間に挟持された発光積層体を含むエレクトロルミネッセンス素子であって、前記発光積層体と前記反射金属電極層の間に挟持された透光性導電薄膜を有し、前記反射金属電極層は、各々が前記透光性導電薄膜に対向する複数の凹反射面を有する反射部を有し、前記凹反射面の各々と前記透光性導電薄膜とに各々光学的に密接している複数の透光部を有することを特徴とすることを特徴とする。 The electroluminescent element of the present invention is an electroluminescent element including a light emitting laminate sandwiched between a light-transmitting electrode layer and a reflective metal electrode layer, and sandwiched between the light emitting laminate and the reflective metal electrode layer. The reflective metal electrode layer has a reflective portion having a plurality of concave reflective surfaces each facing the translucent conductive thin film, and each of the concave reflective surfaces and the A plurality of light-transmitting portions that are optically in close contact with the light-transmitting conductive thin film are provided.
図1は、本発明の一実施例である有機EL素子の一部の断面図である。FIG. 1 is a partial cross-sectional view of an organic EL element which is an embodiment of the present invention. 図2は、図1の有機EL素子の一部切り欠き斜視図である。FIG. 2 is a partially cutaway perspective view of the organic EL element of FIG. 図3は、図1の有機EL素子の半球状の透光部の斜視図である。FIG. 3 is a perspective view of a hemispherical light transmitting portion of the organic EL element of FIG. 図4は、本発明の他の実施例の有機EL素子の反射金属電極層を示す発光積層体から眺めた部分透視平面図である。FIG. 4 is a partially transparent plan view seen from the light emitting laminate showing the reflective metal electrode layer of the organic EL device of another embodiment of the present invention. 図5は、本発明の更なる実施例の有機EL素子の反射金属電極層を示す発光積層体から眺めた部分透視平面図である。FIG. 5 is a partially transparent plan view seen from the light emitting laminate showing the reflective metal electrode layer of the organic EL device of the further embodiment of the present invention. 図6は、本発明の他の実施例の有機EL素子の透光部の斜視図である。FIG. 6 is a perspective view of a light transmitting portion of an organic EL element according to another embodiment of the present invention. 図7は、本発明の他の実施例の有機EL素子を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing an organic EL device according to another embodiment of the present invention. 図8は、本発明の更なる他の実施例の有機EL素子を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing an organic EL device according to still another embodiment of the present invention. 図9は、本発明の他の実施例の有機EL素子における円錐形凹反射面の断面図である。FIG. 9 is a cross-sectional view of a conical concave reflecting surface in an organic EL device according to another embodiment of the present invention. 図10は、図9の有機EL素子の円錐状の透光部の概略斜視図である。FIG. 10 is a schematic perspective view of a conical light transmitting portion of the organic EL element of FIG.
 以下、本発明の実施例について図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に示すように、本発明の実施例である有機EL素子は、透光性基板1上に、透光性電極層2、有機機能層3、透光性導電薄膜TTCF及び反射金属電極層4が順に積層されて構成されている。 As shown in FIG. 1, an organic EL device according to an embodiment of the present invention includes a translucent electrode layer 2, an organic functional layer 3, a translucent conductive thin film TTCF, and a reflective metal electrode layer on a translucent substrate 1. 4 are laminated in order.
 有機機能層3は、順に積層された正孔注入層3a、発光層3c、電子輸送層3d及び電子注入層3eである。また、この積層構成において、基板以外の構成要素を逆の順に積層することも可能である。いずれにしても、有機機能層3は発光積層体であり、これら積層構成に限定されることなく、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成も本発明に含まれる。有機機能層3は、上記積層構造から正孔輸送層3bを省いて構成しても、正孔注入層3aを省いて構成しても、正孔注入層3aと電子輸送層3dを省いて構成してもよい。 The organic functional layer 3 is a hole injection layer 3a, a light emitting layer 3c, an electron transport layer 3d, and an electron injection layer 3e, which are sequentially stacked. Moreover, in this laminated structure, it is also possible to laminate | stack components other than a board | substrate in reverse order. In any case, the organic functional layer 3 is a light-emitting laminated body, and is not limited to these laminated structures, and a laminated structure including at least a light-emitting layer or a charge transporting layer that can also be used is also included in the present invention. The organic functional layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
 発光層3cの発光材料は、例えば、蛍光材料でも燐光材料であってもよい。例えば、青色発光層は蛍光材料を用い、緑色や赤色の発光層は燐光材料を用いるなど、様々な組み合わせで用いてもよい。また、発光層の間に拡散防止層を設けることもできる。 The light emitting material of the light emitting layer 3c may be, for example, a fluorescent material or a phosphorescent material. For example, a fluorescent material may be used for the blue light emitting layer, and a phosphorescent material may be used for the green and red light emitting layers. Further, a diffusion preventing layer can be provided between the light emitting layers.
 青色発光を与える蛍光材料としては、例えば、ナフタレン、ペリレン、ピレンなどが挙げられる。緑色発光を与える蛍光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。黄色発光を与える蛍光材料としては、例えば、ルブレン誘導体などが挙げられる。赤色発光を与える蛍光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体などが挙げられる。燐光材料としては、例えば、イリジウム、白金、ルテニウム、ロジウム、パラジウムの錯体化合物などが挙げられる。燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウムなどが挙げられる。 Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene. Examples of fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum). Examples of fluorescent materials that give yellow light include rubrene derivatives. Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like. Examples of the phosphorescent material include iridium, platinum, ruthenium, rhodium, and palladium complex compounds. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
 有機機能層3を成膜する手法として、スパッタリング法や真空蒸着法などの乾式塗布法や、スクリーン印刷、スプレー法、インクジェット法、スピンコート法、グラビア印刷、ロールコータ法などの湿式塗布法が知られている。例えば、正孔注入層、正孔輸送層、発光層を湿式塗布法でベタ膜として一様に成膜して、電子輸送層及び電子注入層を、それぞれ乾式塗布法でベタ膜として一様に順次成膜してもよい。また、すべての機能層を湿式塗布法でベタ膜として一様に順次成膜してもよい。 Known techniques for forming the organic functional layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. It has been. For example, the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed as a solid film by a wet coating method, and the electron transport layer and the electron injection layer are uniformly formed as a solid film by a dry coating method, respectively. You may form into a film sequentially. Further, all the functional layers may be uniformly and sequentially formed as a solid film by a wet coating method.
 発光層3cまでの機能層に正孔を供給する陽極の透光性電極層2は、ITOの他に、透光性電極層2はZnO、ZnO-Al23(所謂、AZO)、In23-ZnO(所謂、IZO)、SnO2-Sb23(所謂、ATO)、RuO2などにより構成され得る。さらに、透光性電極層は、有機EL材料から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 In addition to ITO, the translucent electrode layer 2 for supplying positive holes to the functional layers up to the light emitting layer 3c is made of ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2, or the like. Furthermore, it is preferable to select a material having a transmissivity of at least 10% at the emission wavelength obtained from the organic EL material for the translucent electrode layer.
 透光性電極層2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The translucent electrode layer 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 発光層3cまでの機能層に電子を供給する陰極の反射金属電極層4の材料としては、効率良く電子注入を行う為に仕事関数の低い金属が好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。 The material of the cathode reflective metal electrode layer 4 that supplies electrons to the functional layers up to the light emitting layer 3c is preferably a metal having a low work function in order to efficiently inject electrons, for example, tin, magnesium, indium, calcium, A suitable metal such as aluminum or silver or an alloy thereof is used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 なお、反射金属電極層4の材料は、1種のみを用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 In addition, only 1 type may be used for the material of the reflective metal electrode layer 4, and 2 or more types may be used together by arbitrary combinations and a ratio.
 さらに、低仕事関数金属から成る陰極を保護する目的で、陰極の上に更に、仕事関数が高く大気に対して安定な金属層を積層すると、有機ELパネルの安定性が増すので好ましい。この目的のために、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 Further, for the purpose of protecting the cathode made of a low work function metal, it is preferable to further stack a metal layer having a high work function and stable to the atmosphere on the cathode because the stability of the organic EL panel is increased. For this purpose, for example, metals such as aluminum, silver, copper, nickel, chromium, gold and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 透光性導電薄膜TTCFは有機機能層3及び反射金属電極層4の間に挟持されるように形成されている。透光性導電薄膜TTCFは、106S/m以上の電気伝導率を有する電気伝導体からなり、可視光の最短波長の略360nm以下すなわち、超軟X線から紫外線の波長の範囲の膜厚を有する薄膜である。透光性導電薄膜TTCFの材料には、金属やグラファイト、グラフェン(graphene)などの炭素が含まれる。透光性導電薄膜TTCFの金属薄膜としての膜厚20nmの銀薄膜は透過率50%を有する。同金属薄膜としての膜厚10nmのAl膜は透過率50%を有する。同金属薄膜としての膜厚20nmのMgAg合金膜は透過率50%を有する。透光性導電薄膜は、電気伝導体からなり且つ超軟X線から紫外線の波長の範囲の膜厚を有する薄膜の膜厚を有し且つ少なくとも50%の透過率を有する薄膜を採用することが好ましい。なお、金属薄膜で透光性導電薄膜TTCFを構成する場合、その膜厚の下限値は3nm程度あれば導電性を得ることができる。 The translucent conductive thin film TTCF is formed so as to be sandwiched between the organic functional layer 3 and the reflective metal electrode layer 4. The translucent conductive thin film TTCF is made of an electric conductor having an electric conductivity of 10 6 S / m or more, and is approximately 360 nm or less, which is the shortest wavelength of visible light, that is, a film thickness in the range of ultra soft X-ray to ultraviolet wavelength. Is a thin film. The material of the translucent conductive thin film TTCF includes carbon such as metal, graphite, and graphene. A silver thin film having a film thickness of 20 nm as a metal thin film of the translucent conductive thin film TTCF has a transmittance of 50%. An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%. The 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%. As the light-transmitting conductive thin film, a thin film made of an electric conductor and having a thickness of a thin film having a thickness in the range of ultra-soft X-ray to ultraviolet wavelength and having a transmittance of at least 50% may be adopted. preferable. When the translucent conductive thin film TTCF is formed of a metal thin film, the conductivity can be obtained if the lower limit of the film thickness is about 3 nm.
 透光性導電薄膜TTCFは真空蒸着法により有機機能層3上に形成される。 The translucent conductive thin film TTCF is formed on the organic functional layer 3 by a vacuum deposition method.
 有機機能層3は透光性電極層2及び透光性導電薄膜TTCFの間に電気的に接して挟持されている故に、電気的に接した透光性電極層2と反射金属電極層4とを介して有機機能層3に駆動電圧が印加されることにより、有機機能層3内の発光層3cにおいて生成された光は透光性電極層2を通過して、さらに透光性導電薄膜TTCFを通して反射金属電極層4で反射した後に透光性電極層2を通過して透光性基板1の表面から取り出される。 Since the organic functional layer 3 is sandwiched between and in electrical contact with the translucent electrode layer 2 and the translucent conductive thin film TTCF, the electrically translucent electrode layer 2 and the reflective metal electrode layer 4 are in contact with each other. When the drive voltage is applied to the organic functional layer 3 through the light, the light generated in the light emitting layer 3c in the organic functional layer 3 passes through the translucent electrode layer 2 and further passes through the translucent conductive thin film TTCF. After being reflected by the reflective metal electrode layer 4, the light passes through the translucent electrode layer 2 and is taken out from the surface of the translucent substrate 1.
 図2に示すように、反射金属電極層4は、各々が透光性導電薄膜TTCFに対向した複数の凹反射面4aを有している。各凹反射面4aは反射金属電極層側に湾曲している。 As shown in FIG. 2, the reflective metal electrode layer 4 has a plurality of concave reflective surfaces 4a each facing the translucent conductive thin film TTCF. Each concave reflective surface 4a is curved toward the reflective metal electrode layer.
 各凹反射面4aと透光性導電薄膜TTCFの間には、両者に光学的に密接した透光部5が設けられている。反射金属電極層の反射部は透光性導電薄膜TTCFとの界面に接する平坦な反射金属電極層4の部分と凹反射面4aとからなる。 Between each concave reflective surface 4a and the translucent conductive thin film TTCF, a translucent portion 5 that is optically intimately connected to both is provided. The reflective portion of the reflective metal electrode layer is composed of a flat reflective metal electrode layer 4 in contact with the interface with the translucent conductive thin film TTCF and a concave reflective surface 4a.
 複数の透光部5は、互いに略同一の半球形状を有している。透光部5は、透光性導電薄膜TTCFとの平坦な界面(XY平面)上にて略均一な分布密度で配置され、周期的に配置されてもよく、その周期は、有機機能層3において生成される光の波長よりも十分に大きいことが好ましい。 The plurality of translucent portions 5 have substantially the same hemispherical shape. The translucent portions 5 may be arranged with a substantially uniform distribution density on the flat interface (XY plane) with the translucent conductive thin film TTCF, and may be arranged periodically. The cycle is the organic functional layer 3. Is preferably sufficiently larger than the wavelength of the light generated in
 図3は有機機能層3側から眺めた半球状の透光部5を示す斜視図である。各々の透光部5の反射金属電極層4側の界面5aは、有機機能層3側の平坦な界面5bに対して傾斜角度α度で傾斜した傾斜面を含む凹面である。すなわち、凹反射面4aの各々は半球状の透光部5との界面5aにより凹面鏡として画定されている。なお、ここで半球状とは真球のものだけでなく楕円球などのあらゆる凹曲内壁面を有する形状を意味する。 FIG. 3 is a perspective view showing the hemispherical translucent portion 5 viewed from the organic functional layer 3 side. The interface 5a on the reflective metal electrode layer 4 side of each translucent part 5 is a concave surface including an inclined surface inclined at an inclination angle α degree with respect to the flat interface 5b on the organic functional layer 3 side. That is, each of the concave reflecting surfaces 4 a is defined as a concave mirror by the interface 5 a with the hemispherical light transmitting portion 5. Here, the hemispherical shape means not only a true spherical shape but also a shape having all concavely curved inner wall surfaces such as an elliptical sphere.
 図4に示すように、複数の透光部5は、各々の形状、大きさが同一に形成され互いに60度の角度で交差する等ピッチの全格子に配置してもよい。また、図5に示すように、それぞれの透光部5の形状、大きさ、高さはランダムに構成してもよい。かかる透光部5のランダム配置の場合はランダムな反射が得られ光の散乱効果を大きくする。なお、図5に示すように、反射金属電極層4の凹反射面4aに埋設された複数の透光部5は、隣接するもの同士の間に間隙を有して配置され得る。 As shown in FIG. 4, the plurality of translucent portions 5 may be arranged on all lattices having the same shape and size and intersecting each other at an angle of 60 degrees. Further, as shown in FIG. 5, the shape, size, and height of each translucent portion 5 may be configured randomly. In the case of such a random arrangement of the translucent portions 5, random reflection is obtained and the light scattering effect is increased. In addition, as shown in FIG. 5, the some translucent part 5 embed | buried under the concave reflective surface 4a of the reflective metal electrode layer 4 may be arrange | positioned with a gap | interval between adjacent things.
 図6は、それぞれ反射金属電極層4の凹反射面4aに埋設された透光部5の形状の変形例を示す斜視図である。透光部5は、半球状以外に多面体で構成されていてもよく、図6(a)に示すように円錐状、図6(b)に示すように三角錐状、図6(c)に示すように四角錐状であってもよい。三角錐状にした場合、透光部5を互いの三角形頂点に配置できるので密な状態を構成できる。なお、上記の説明においては、透光部5の各々の形状を錐体とした場合を例示したが、透光部5の形状は円錐台状や角錐台状であってもよい。 FIG. 6 is a perspective view showing a modification of the shape of the translucent part 5 embedded in the concave reflective surface 4a of the reflective metal electrode layer 4, respectively. The translucent part 5 may be composed of a polyhedron other than a hemispherical shape, such as a conical shape as shown in FIG. 6A, a triangular pyramid shape as shown in FIG. As shown, it may be a quadrangular pyramid. In the case of the triangular pyramid shape, since the light transmitting portions 5 can be arranged at the vertices of each triangle, a dense state can be configured. In the above description, the case where each shape of the light transmitting portion 5 is a pyramid is illustrated, but the shape of the light transmitting portion 5 may be a truncated cone shape or a truncated pyramid shape.
 透光部5を構成する透光性材料は、屈折率が有機機能層3の屈折率と同等以上の無機材料又は有機材料から選択され、絶縁物でも、導電性又は電子輸送性を有するものでもよい。 The translucent material constituting the translucent portion 5 is selected from an inorganic material or an organic material having a refractive index equal to or higher than the refractive index of the organic functional layer 3, and may be an insulator or a material having conductivity or electron transporting property. Good.
 透光部5の大きさは、有機機能層3において生成される光の波長よりも十分に大きいことが好ましい。一例を挙げれば、透光部5の界面5bにある底面の差し渡しの長さは例えば20μm、透光部5の底面からの高さは例えば10μm程度である。 The size of the translucent part 5 is preferably sufficiently larger than the wavelength of light generated in the organic functional layer 3. For example, the length of the bottom surface at the interface 5b of the light transmitting portion 5 is 20 μm, for example, and the height from the bottom surface of the light transmitting portion 5 is about 10 μm, for example.
 反射金属電極層4と透光部5からなる複合電極の形成方法を説明する。 A method for forming a composite electrode composed of the reflective metal electrode layer 4 and the translucent portion 5 will be described.
 まず、平坦な透光性基板1上に、透光性電極層2及び有機機能層3を公知の方法で順に成膜し、有機機能層3の表面に透光性導電薄膜TTCFを成膜し、透光性導電薄膜TTCFの表面が平坦となるように用意しておく。 First, a transparent electrode layer 2 and an organic functional layer 3 are sequentially formed on a flat transparent substrate 1 by a known method, and a transparent conductive thin film TTCF is formed on the surface of the organic functional layer 3. The light-transmitting conductive thin film TTCF is prepared so that the surface thereof is flat.
 透光部5がインジウム酸化物とスズ酸化物の複合酸化物(所謂、ITO)などの無機材料の場合、例えば、マスク成膜法で複合電極層を完成できる。予め複数の所定の貫通開口を形成したマスクを予め形成しておく。マスク開口を介してITOを透光性導電薄膜TTCF上に真空蒸着又は低温スパッタ成膜して、複数の半球状の透光部5が形成できる。マスクを除いた後に、この透光部5のすべてを覆うように透光性導電薄膜TTCF上に金属材料を真空蒸着して平坦な界面に接する複合電極層が完成する。なお、マスクを用いた場合、当該マスク開口部に庇を設けたり、テーパーをつけることにより、透光部5の厚み方向の形状も制御可能となる。 When the translucent part 5 is an inorganic material such as a composite oxide (so-called ITO) of indium oxide and tin oxide, the composite electrode layer can be completed by, for example, a mask film forming method. A mask in which a plurality of predetermined through openings are formed in advance is formed in advance. A plurality of hemispherical light-transmitting portions 5 can be formed by depositing ITO on the light-transmitting conductive thin film TTCF through the mask opening by vacuum deposition or low-temperature sputtering film formation. After removing the mask, a metal material is vacuum-deposited on the translucent conductive thin film TTCF so as to cover all of the translucent portion 5, thereby completing a composite electrode layer in contact with a flat interface. When a mask is used, the shape in the thickness direction of the translucent portion 5 can be controlled by providing a ridge or taper at the mask opening.
 また、透光部5が透光性有機材料の場合、例えば、凹版印刷で複合電極層を形成できる。公知の表面加工技術を用いて複数の半球凹部を形成した凹版モールドを予め形成して、該凹版モールドに透光性材料を乗せた後に、これをブレードなどで拭き、該凹部にのみ透光性材料を残し、この凹版モールドを透光性導電薄膜TTCFに重ねて圧力をかければ、凹部の透光性材料が透光性導電薄膜TTCFに転写され、複数の半球状の透光部5が形成できる。マスクを除いた後に、この透光部5のすべてを覆うように透光性導電薄膜TTCF上に金属材料を真空蒸着して複合電極層が完成する。なお、反射金属電極層4は、透光性導電薄膜TTCFが金属の場合、これと同一材料で形成することが好ましい。なお、図5に示すランダム配置の透光部のための凹版モールドを形成する場合はサンドブラストやウォータブラスト等の公知の表面加工技術を用いて凹版モールドを形成することができる。さらに、透光部5が有機材料の場合、メッシュマスクを用いて蒸着で形成することも、インクジェット法、スクリーン印刷法、凸版印刷法、スプレー法などの塗布プロセスで透光部を形成することもできる。 Further, when the light transmitting portion 5 is a light transmitting organic material, for example, a composite electrode layer can be formed by intaglio printing. An intaglio mold in which a plurality of hemispherical recesses are formed using a known surface processing technique is formed in advance, and a translucent material is placed on the intaglio mold, and then this is wiped with a blade or the like. If this intaglio mold is left on the translucent conductive thin film TTCF and pressure is applied, the translucent material in the recess is transferred to the translucent conductive thin film TTCF, and a plurality of hemispherical translucent portions 5 are formed. it can. After removing the mask, a composite electrode layer is completed by vacuum-depositing a metal material on the translucent conductive thin film TTCF so as to cover all of the translucent portion 5. In addition, when the translucent conductive thin film TTCF is a metal, the reflective metal electrode layer 4 is preferably formed of the same material. In addition, when forming the intaglio mold for the light transmission part of random arrangement | positioning shown in FIG. 5, an intaglio mold can be formed using well-known surface processing techniques, such as a sandblast and a water blast. Furthermore, when the translucent part 5 is an organic material, it can be formed by vapor deposition using a mesh mask, or the translucent part can be formed by a coating process such as an ink jet method, a screen printing method, a relief printing method, or a spray method. it can.
 以上の複合電極の形成方法により、上記の半球状、円錐状、角錐状、円錐台状又は角錐台状の凹反射面の各々は、それらの形状の透光部に対応して画定された凹面鏡となる。 By the above composite electrode forming method, each of the hemispherical, conical, pyramidal, frustoconical or truncated pyramidal concave reflecting surfaces is defined as a concave mirror defined corresponding to the translucent part of those shapes. It becomes.
 上記の実施例によれば、透光部5に必ずしも導電性材料を要せず、透光部5の材料の自由度があがるというメリットがある。発光層や電子注入層の有機機能層3の上に複合電極層となる透光性導電薄膜TTCFや複数の透光部5と反射金属電極層4とを順次、形成したことにより、陰極、発光層及び陽極の平行度を高く保つことができるうえ、複数の透光部5上に形成した反射金属電極層4の凹反射面4aが凹面鏡の効果を発揮する。さらに、反射金属電極層4(陰極)の界面に透光部5を埋設した構成としたことで、陰極としての印加電圧をバランスよく加えることができる。とくに複数の透光部5を均等に配置することで、反射金属電極層4からの電子分散と透光性電極層2からの正孔の分散場所が均一になる。 According to the above-described embodiment, there is an advantage that the conductive material is not necessarily required for the translucent part 5 and the degree of freedom of the material of the translucent part 5 is increased. By sequentially forming a light-transmitting conductive thin film TTCF, a plurality of light-transmitting portions 5 and a reflective metal electrode layer 4 as a composite electrode layer on the organic functional layer 3 such as a light-emitting layer or an electron injection layer, a cathode, light emission The parallelism between the layer and the anode can be kept high, and the concave reflecting surface 4a of the reflective metal electrode layer 4 formed on the plurality of light transmitting portions 5 exhibits the effect of a concave mirror. Furthermore, the application voltage as the cathode can be applied in a well-balanced manner because the translucent portion 5 is embedded in the interface of the reflective metal electrode layer 4 (cathode). In particular, by uniformly arranging the plurality of light-transmitting portions 5, the electron dispersion from the reflective metal electrode layer 4 and the hole-dispersing locations from the light-transmissive electrode layer 2 are made uniform.
 図7に示す本発明による有機EL素子の光学的光線追跡図を用いてその動作を説明する。 The operation of the organic EL device according to the present invention shown in FIG.
 本発明による有機EL素子は、透光性基板1のガラス基板上に順に積層された、陽極の透光性電極層2、正孔注入層3a、正孔輸送層3b、発光層3c及び陰極の反射金属電極層4からなる。有機機能層3は正孔注入層3a、正孔輸送層3b及び発光層3cである。なお、反射金属電極層4と発光層3cの間に複数の透光部5が場所により厚み、大きさを変えて配置されているとする。反射金属電極層4及び透光部5へ同じ角度で入射した光も場所により、反射金属電極層4及び透光部5により異なる角度で反射、即ち散乱するようになっているとする。 The organic EL device according to the present invention includes an anode translucent electrode layer 2, a hole injection layer 3 a, a hole transport layer 3 b, a light emitting layer 3 c, and a cathode, which are sequentially laminated on the glass substrate of the translucent substrate 1. It consists of a reflective metal electrode layer 4. The organic functional layer 3 is a hole injection layer 3a, a hole transport layer 3b, and a light emitting layer 3c. It is assumed that a plurality of light-transmitting portions 5 are arranged between the reflective metal electrode layer 4 and the light emitting layer 3c with thicknesses and sizes being changed depending on places. It is assumed that the light incident on the reflective metal electrode layer 4 and the light transmitting portion 5 at the same angle is also reflected or scattered at different angles by the reflective metal electrode layer 4 and the light transmitting portion 5 depending on the location.
 図7において、破線及び実線の矢印で示す発光層の発光点で発光した光は、正孔輸送層3b、正孔注入層3aを経て、透光性電極層2を通過し、ガラス層の透光性基板1に入る。発光層3c、正孔輸送層3b、正孔注入層3b及び透光性電極層2は概ね屈折率が1.8程度で等しいが、ガラスの屈折率は1.5で大きく異なり、透光性電極層2からガラス層の透光性基板1へ入射する際に臨界角を超えると、破線の矢印で示すように全反射がおきる。 In FIG. 7, the light emitted from the light emitting point of the light emitting layer indicated by the broken line and the solid line arrow passes through the hole transport layer 3b and the hole injection layer 3a, passes through the translucent electrode layer 2, and passes through the glass layer. Enter the optical substrate 1. The light emitting layer 3c, the hole transport layer 3b, the hole injection layer 3b, and the translucent electrode layer 2 are approximately equal in refractive index of about 1.8. When the critical angle is exceeded when the light enters the translucent substrate 1 of the glass layer from the electrode layer 2, total reflection occurs as indicated by a broken arrow.
 この全反射した光は、透光性電極層2から正孔注入層3a、正孔輸送層3b及び発光層3cを経て反射金属電極層4へ到達する。 The totally reflected light reaches the reflective metal electrode layer 4 from the translucent electrode layer 2 through the hole injection layer 3a, the hole transport layer 3b, and the light emitting layer 3c.
 反射金属電極層4の凹反射面4aにおける透光部5の発光層3c界面からの厚みが所により異なるため、透光部5を通過後に凹反射面4aで、入射角度と異なる角度で反射する。反射角度は、場合により異なるが、入射角度より小さい角度で反射すると、透光部及びガラス界面やガラス及び空気層界面で全反射せずに通過する。 Since the thickness of the concave reflection surface 4a of the reflective metal electrode layer 4 from the light emitting layer 3c interface of the translucent portion 5 differs depending on the location, the concave reflective surface 4a is reflected at an angle different from the incident angle after passing through the translucent portion 5. . The reflection angle varies depending on the case, but when reflected at an angle smaller than the incident angle, the light passes through without being totally reflected at the light transmitting portion and the glass interface or the glass and air layer interface.
 本実施例は反射金属電極層4の表面に電極としても機能する透光性導電薄膜TTCF及び複数の凹反射面4aを分布させているので、反射金属電極層4において入射角と同じ角度で反射して臨界角を超えてガラス層に入る光については閉じ込め作用が低減される。 In the present embodiment, the translucent conductive thin film TTCF that also functions as an electrode and a plurality of concave reflection surfaces 4a are distributed on the surface of the reflective metal electrode layer 4, so that the reflective metal electrode layer 4 reflects at the same angle as the incident angle. Thus, the confinement action is reduced for light that enters the glass layer beyond the critical angle.
 図8に他の実施例の有機EL素子の基本構成を示す。なお、同一符号で示した構成部分は、上記実施例の有機EL素子と同様であるので、それらの説明は省略する。なお、反射金属電極層4に形成される複数の凹反射面4aが円錐形で存在するものとして説明する。図9は、反射金属電極層の円錐形凹反射面4aの断面図である。透光性電極層2及び有機機能層3は、互いに同程度の屈折率を有する故、各界面において屈折や反射が生じないとする。 FIG. 8 shows a basic configuration of an organic EL element of another embodiment. In addition, since the component shown with the same code | symbol is the same as that of the organic EL element of the said Example, those description is abbreviate | omitted. In the following description, it is assumed that the plurality of concave reflecting surfaces 4a formed on the reflective metal electrode layer 4 are conical. FIG. 9 is a cross-sectional view of the conical concave reflecting surface 4a of the reflective metal electrode layer. Since the translucent electrode layer 2 and the organic functional layer 3 have the same refractive index, it is assumed that no refraction or reflection occurs at each interface.
 図8に示すように、円錐の中心の高さにある発光点から上下に±約30度の範囲の光しか取り出せなかったが、反射金属電極層4に凹構造の凹反射面4aをつけた場合、例えば図9に示す底面角度α度の二等辺三角形断面の凹反射面4aにすると次のように光を取り出せるようになる。 As shown in FIG. 8, only light in the range of about ± 30 degrees up and down from the light emitting point at the height of the center of the cone could be extracted, but the reflective metal electrode layer 4 was provided with a concave reflective surface 4a having a concave structure. In this case, for example, when the concave reflecting surface 4a having an isosceles triangular cross section having a bottom surface angle α degree shown in FIG. 9 is used, light can be extracted as follows.
 図9から約30度で臨界角となるので、β-2α≦30度となり、かつ、β≦90がβの条件であり、α≦30度である。βは円錐の中心の高さの中心軸からの取り出したい光線の円錐面への入射角である。 Since the critical angle is reached at about 30 degrees from FIG. 9, β-2α ≦ 30 degrees, and β ≦ 90 is the condition of β, and α ≦ 30 degrees. β is an incident angle of the light beam to be extracted from the central axis of the height of the center of the cone to the conical surface.
 一方、楔の斜面を最大限活用できるαは図9から、α=15度である。 On the other hand, α that can make the maximum use of the slope of the wedge is α = 15 degrees from FIG.
 したがって15≦α≦30の範囲の場合、左右の両方の斜面それぞれで発光点から±30度の光が空気層に取り出せる。なお、円錐中心上の発光点では円錐形凹反射面がない場合に比べて倍の角度の光が取り出せることになる。 Therefore, in the range of 15 ≦ α ≦ 30, light of ± 30 degrees can be extracted from the light emitting point to the air layer on both the left and right slopes. Note that light at a double angle can be extracted at the light emitting point on the center of the cone as compared with the case where there is no conical concave reflecting surface.
 発光点が円錐中心から左側に入った場合、右向きの光で左斜面に入る光が発生し取り出せないエリアが増加するため、すべての発光点位置で光取り出しが増加しないが、断面が楔形を構成する立体例えば円錐などを考えると、円錐形凹反射面がない場合には中心±30度の光しか取り出せないが、角度をつけることでそれぞれの斜面で反射した±30度の光が取り出せることとなり効率増加が見込まれる。したがって、凹構造を作成するときは15度以上の角度の傾斜面(凹面)構造を形成することが好ましい。図10は有機機能層3側から眺めた好適な円錐状の透光部5を示す斜視図である。各々の透光部5の反射金属電極層4側の界面5aは、有機機能層3側の平面の界面5bに対して角度α度で傾斜した傾斜面又は凹面を形成し、角度αは15≦αを満たすように設定することが好適である。 When the light emission point enters the left side from the center of the cone, the light that enters the left slope is generated by the rightward light, and the area that cannot be extracted increases, so the light extraction does not increase at all light emission point positions, but the cross section forms a wedge shape Considering a solid such as a cone, if there is no conical concave reflecting surface, only light with a center of ± 30 degrees can be extracted, but by setting an angle, light with a reflection of ± 30 degrees reflected at each slope can be extracted. Increase in efficiency is expected. Therefore, when creating a concave structure, it is preferable to form an inclined surface (concave surface) structure having an angle of 15 degrees or more. FIG. 10 is a perspective view showing a preferable conical light-transmitting portion 5 as viewed from the organic functional layer 3 side. The interface 5a on the reflective metal electrode layer 4 side of each translucent part 5 forms an inclined surface or a concave surface inclined at an angle α degree with respect to the planar interface 5b on the organic functional layer 3 side, and the angle α is 15 ≦ It is preferable to set so as to satisfy α.
 以上の説明から明らかなように、本実施例の有機EL素子は、透光性導電薄膜TTCFと凹反射面4aを含む反射金属電極層4と透光部5の複合電極層を有するので、比較的短い光路長及び比較的少ない反射回数で外部に光を取り出すことができ、光取り出し効率を飛躍的に向上させることができる。すなわち、平坦な透光性導電薄膜TTCF及び反射金属電極層4の間に複数の透光部5を構築することで、該透光性導電材料部による凹反射面4aが、透光性電極層-ガラス及びガラス-空気層の各界面との間で全反射を繰り返し閉じ込められた光の反射角度を変えて、光取り出し効率を改善することができる。 As is clear from the above description, the organic EL element of this example has a composite electrode layer of the translucent conductive thin film TTCF, the reflective metal electrode layer 4 including the concave reflective surface 4a, and the translucent part 5, so that comparison is made. Light can be extracted outside with a relatively short optical path length and a relatively small number of reflections, and the light extraction efficiency can be dramatically improved. That is, by constructing a plurality of translucent portions 5 between the flat translucent conductive thin film TTCF and the reflective metal electrode layer 4, the concave reflective surface 4a by the translucent conductive material portion is formed into the translucent electrode layer. -The light extraction efficiency can be improved by changing the reflection angle of light confined by repeated total reflection between the glass and glass-air interface.
 なお、上記の何れの実施例では、透光性基板1として、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの合成樹脂の透明板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機ELパネルが劣化することがあるので好ましくない。よって、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。 In any of the above-described embodiments, a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1. In particular, a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL panel may be deteriorated by the outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 なお、湿式塗布法にて透明陽極を厚膜で形成する場合、基板表面の凹凸を緩和できるので、高価なディスプレー用研磨ガラス基板でない廉価なガラス基板も有機ELパネル基板に用いることができる。 In addition, when forming a transparent anode with a thick film by a wet coating method, since the unevenness | corrugation of a board | substrate surface can be eased, an inexpensive glass substrate which is not an expensive polishing glass substrate for displays can also be used for an organic EL panel substrate.
 なお、上記の何れの実施例では有機機能層を発光積層体としているが、無機材料膜の積層によっても発光積層体を構成できる。 In any of the above embodiments, the organic functional layer is a light-emitting laminate, but a light-emitting laminate can be formed by laminating inorganic material films.
 また、上記実施例では有機層を1種類で示したが、複数の発光層からなるタンデム構造や積層構造などでもこの効果は変わらない。さらに、実施例ではボトムエミッションタイプの素子を示したが、エミッション方向が逆のトップエミッショタイプの素子にも適用できる。 In the above embodiment, one kind of organic layer is shown, but this effect does not change even in a tandem structure or a laminated structure composed of a plurality of light emitting layers. Furthermore, although the bottom emission type element was shown in the Example, it is applicable also to the top emission type element with the emission direction reverse.
 1 透光性基板
 2 透光性電極層
 3 有機機能層
 3a 正孔注入層
 3b 正孔輸送層
 3c 発光層
 3d 電子輸送層
 3e 電子注入層
 4 反射金属電極層
 4a 凹反射面
 5 透光部
 TTCF 透光性導電薄膜
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Translucent electrode layer 3 Organic functional layer 3a Hole injection layer 3b Hole transport layer 3c Light emitting layer 3d Electron transport layer 3e Electron injection layer 4 Reflective metal electrode layer 4a Concave reflection surface 5 Translucent part TTCF Translucent conductive thin film

Claims (9)

  1.  透光性電極層及び反射金属電極層の間に挟持された発光積層体を含むエレクトロルミネッセンス素子であって、
     前記発光積層体と前記反射金属電極層の間に挟持された透光性導電薄膜を有し、
     前記反射金属電極層は、各々が前記透光性導電薄膜に対向する複数の凹反射面を有する反射部を有し、
     前記凹反射面の各々と前記透光性導電薄膜とに各々光学的に密接している複数の透光部を有することを特徴とするエレクトロルミネッセンス素子。
    An electroluminescent device comprising a light emitting laminate sandwiched between a translucent electrode layer and a reflective metal electrode layer,
    A translucent conductive thin film sandwiched between the light emitting laminate and the reflective metal electrode layer;
    The reflective metal electrode layer has a reflective portion having a plurality of concave reflective surfaces each facing the translucent conductive thin film,
    An electroluminescence element comprising a plurality of light-transmitting portions that are optically in close contact with each of the concave reflecting surfaces and the light-transmitting conductive thin film.
  2.  前記透光性導電薄膜は、電気伝導体からなり且つ超軟X線から紫外線の波長の範囲の膜厚を有する薄膜の膜厚を有し且つ少なくとも50%の透過率を有する薄膜であることを特徴とする請求項1に記載のエレクトロルミネッセンス素子。 The translucent conductive thin film is a thin film made of an electric conductor and having a thickness of a thin film having a thickness in the range of ultra-soft X-ray to ultraviolet wavelength and having a transmittance of at least 50%. The electroluminescent device according to claim 1, wherein
  3.  前記凹反射面は周期的に配置され、当該周期は前記発光積層体からの発光波長より大きいことを特徴とする請求項2に記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 2, wherein the concave reflection surface is periodically arranged, and the period is longer than the emission wavelength from the light emitting laminate.
  4.  前記凹反射面は、均一な形状及び大きさの凹面形状を有することを特徴とする請求項3に記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 3, wherein the concave reflection surface has a concave shape with a uniform shape and size.
  5.  前記凹反射面の各々は半球状の凹面形状を有することを特徴とする請求項4に記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 4, wherein each of the concave reflecting surfaces has a hemispherical concave shape.
  6.  前記凹反射面の各々は円錐状の凹面形状を有することを特徴とする請求項4に記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 4, wherein each of the concave reflecting surfaces has a conical concave shape.
  7.  前記凹反射面の各々は角錐状の凹面形状を有することを特徴とする請求項4に記載のエレクトロルミネッセンス素子。 The electroluminescent element according to claim 4, wherein each of the concave reflecting surfaces has a pyramid-shaped concave shape.
  8.  前記凹反射面は、形状、大きさ、高さの少なくとも何れか一つが不均一な凹面形状を有することを特徴とする請求項3に記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 3, wherein the concave reflecting surface has a concave shape in which at least one of shape, size, and height is not uniform.
  9. 前記反射金属電極層と前記透光性導電薄膜は少なくとも一部で電気的接続点を有することを特徴とする請求項3に記載のエレクトロルミネッセンス素子。 The electroluminescent device according to claim 3, wherein the reflective metal electrode layer and the translucent conductive thin film have at least a part of an electrical connection point.
PCT/JP2012/065535 2012-06-18 2012-06-18 Electroluminescence element WO2013190621A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065535 WO2013190621A1 (en) 2012-06-18 2012-06-18 Electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065535 WO2013190621A1 (en) 2012-06-18 2012-06-18 Electroluminescence element

Publications (1)

Publication Number Publication Date
WO2013190621A1 true WO2013190621A1 (en) 2013-12-27

Family

ID=49768252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065535 WO2013190621A1 (en) 2012-06-18 2012-06-18 Electroluminescence element

Country Status (1)

Country Link
WO (1) WO2013190621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701350A (en) * 2015-03-03 2015-06-10 京东方科技集团股份有限公司 Electrode and manufacturing method thereof, and array substrate and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332067A (en) * 2002-05-14 2003-11-21 Casio Comput Co Ltd Light emitting panel
JP2011040411A (en) * 2008-04-22 2011-02-24 Nippon Zeon Co Ltd Organic electroluminescent light source device
JP2012146641A (en) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd Light-emitting device and illuminating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332067A (en) * 2002-05-14 2003-11-21 Casio Comput Co Ltd Light emitting panel
JP2011040411A (en) * 2008-04-22 2011-02-24 Nippon Zeon Co Ltd Organic electroluminescent light source device
JP2012146641A (en) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd Light-emitting device and illuminating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701350A (en) * 2015-03-03 2015-06-10 京东方科技集团股份有限公司 Electrode and manufacturing method thereof, and array substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6074423B2 (en) Organic electroluminescence device
JP5808905B2 (en) ORGANIC LIGHT EMITTING ELEMENT, LIGHTING DEVICE INCLUDING THE SAME, AND ORGANIC LIGHT EMITTING DISPLAY DEVICE EQUIPPED WITH THE SAME
JP2017103254A (en) Light emitting device
US8987767B2 (en) Light emitting device having improved light extraction efficiency
CN104241535A (en) Organic lighting structure
US20130234590A1 (en) Display device and method for manufacturing the same
TW201535821A (en) Organic electroluminescent element, lighting device and display device
JP5758366B2 (en) Organic electroluminescent device and light emitting device
WO2013190621A1 (en) Electroluminescence element
JP2008171993A (en) Organic electroluminescent element, light source for optical communication, and lighting apparatus
US10763456B2 (en) EL device use front plate and lighting device
WO2015125308A1 (en) Organic electroluminescent element, lighting apparatus, and lighting system
WO2013190622A1 (en) Electroluminescence element
CN111584611B (en) Display panel, transparent display panel and manufacturing method thereof
WO2013186919A1 (en) Organic electroluminescence device
WO2013190623A1 (en) Electroluminescence element
WO2013161000A1 (en) Light emitting element and method for manufacturing same
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
WO2013186916A1 (en) Organic electroluminescence device
JP2015179584A (en) Light emitting element
JP6488593B2 (en) Lighting device
WO2013186918A1 (en) Organic electroluminescence device
JP6266599B2 (en) Optical device
WO2013161001A1 (en) Organic el light emitting element
WO2016017072A1 (en) Organic el element and organic el element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP