WO2013186919A1 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
WO2013186919A1
WO2013186919A1 PCT/JP2012/065373 JP2012065373W WO2013186919A1 WO 2013186919 A1 WO2013186919 A1 WO 2013186919A1 JP 2012065373 W JP2012065373 W JP 2012065373W WO 2013186919 A1 WO2013186919 A1 WO 2013186919A1
Authority
WO
WIPO (PCT)
Prior art keywords
bank
organic
light
translucent
light emitting
Prior art date
Application number
PCT/JP2012/065373
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
秀雄 工藤
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/065373 priority Critical patent/WO2013186919A1/en
Publication of WO2013186919A1 publication Critical patent/WO2013186919A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present invention relates to an organic electroluminescence device (hereinafter referred to as an organic EL device) including at least one organic electroluminescence element.
  • An organic electroluminescent element is configured by, for example, sequentially laminating an anode, an organic layer including a light emitting layer, and a cathode on a transparent glass substrate, and electroluminescence (hereinafter referred to as EL) by current injection from the anode and the cathode to the organic layer.
  • EL electroluminescence
  • Light-emitting element that expresses The emitted light from the light emitting layer is taken out through the transparent electrode and the substrate by making the electrode on the substrate side transparent. However, since a part of the emitted light from the light emitting layer is trapped and extinguished by total reflection between the transparent electrode-glass interface and between the glass-air interface, about 20% of the light emitted from the light emitting layer is about 20%. Only light can be taken out.
  • Patent Document 1 discloses a reflector (bank) that partitions an organic layer on a transparent substrate on the light extraction side, made of a transparent material, and extracts light guided in the translucent bank to the transparent substrate side in the viewing direction. A technique for improving the light extraction efficiency by providing the above is disclosed.
  • the organic EL device of the present invention is an organic EL device having a translucent substrate and at least one organic EL element carried on the translucent substrate,
  • the organic EL element is formed on an insulating bank disposed on the light transmissive substrate, a light transmissive electrode disposed on the light transmissive substrate and in contact with the bank, and the light transmissive electrode.
  • the bank is made of a translucent dielectric material having a refractive index equal to or higher than that of the organic layer, The bank has an uneven reflection surface facing the light emitting layer.
  • FIG. 1 is a plan view of an organic EL device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line CC in FIG.
  • FIG. 3 is a schematic cross-sectional view schematically showing a laminated structure of the light emitting portion of the organic EL device shown in FIG.
  • FIG. 4 is an enlarged cross-sectional view of a part of the organic EL device of FIG.
  • FIG. 5 is a partially cutaway perspective view of an organic EL device according to another embodiment of the present invention.
  • FIG. 6 is a partially cutaway perspective view showing a main part of an organic EL device of a comparative example.
  • FIG. 7 is a partially cutaway perspective view of an organic EL device according to Modification 1 of the embodiment of the present invention.
  • FIG. 8 is a partially cutaway perspective view of an organic EL device according to Modification 2 of the embodiment of the present invention.
  • an organic EL device OLED has a plurality of organic EL elements separated by a plurality of banks BK on a light-transmitting flat substrate 1 such as glass or resin, that is, a rectangular light emitting portion extending in the y direction.
  • a light-transmitting flat substrate 1 such as glass or resin
  • the plurality of organic EL elements are juxtaposed in parallel, and include, for example, organic EL elements having different emission colors of red light emission R, green light emission G, and blue light emission B.
  • the organic EL elements of RGB emission colors are arranged as a set in the x direction for each set.
  • each of the organic EL elements of the organic EL device includes a translucent electrode 2, a metal bus line MBL, an organic layer 3 including a light emitting layer, and a reflective electrode 4 on a substrate 1 between banks BK.
  • This organic EL device is a so-called bottom emission type organic EL panel that takes out light generated in the organic layer 3 from the surface of the substrate 1 by applying a voltage between the translucent electrode 2 and the reflective electrode 4. .
  • the plurality of translucent electrodes 2 constituting the anode each have a band shape, extend along the y direction on the substrate 1, and are juxtaposed in parallel with each other at a constant interval in the x direction.
  • a bus line MBL for supplying a power supply voltage to the translucent electrode 2 is formed extending along the y direction.
  • a bank BK is formed extending along the y direction so as to cover them.
  • the bank BK is formed of a translucent dielectric material such as optical glass or optical resin having a refractive index equal to or higher than that of the organic layer 3.
  • rectangular openings each extending in the y direction are formed.
  • An organic layer 3 is disposed in each of the openings.
  • the organic layer 3 is juxtaposed in a state of being separated from each other by the bank BK, and partitions a plurality of light emitting regions separated by the bank BK.
  • the bank BK is covered with at least a part of the reflective electrode 4.
  • “equivalent refractive index” means that the difference between one refractive index and the other refractive index is less than 0.3, preferably 0.2 or less, particularly preferably 0.1 or less. That means. Further, the refractive index “low” or “high” may be “low” or “high” to such an extent that a difference in measurement occurs, but in practice, it exceeds 0.1, preferably exceeds 0.2. More preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, indicating a low or high difference.
  • a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron is laminated in order.
  • the organic layer 3 sandwiched between the translucent electrode 2 and the reflective electrode 4 is a light emitting laminated body, and is not limited to these laminated structures.
  • a hole blocking layer between the light emitting layer 3c and the electron transporting layer 3d (
  • a layered structure including at least a light emitting layer or a charge transport layer that can also be used may be used.
  • the organic layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
  • any known light emitting material such as a fluorescent material or a phosphorescent material can be applied.
  • Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene.
  • fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light include rubrene derivatives.
  • Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like.
  • Examples of the phosphorescent material include iridium, platinum, ruthenium, rhodium, and palladium complex compounds. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
  • the organic layers 3 that emit red, green, and blue emission colors are repeatedly arranged in parallel, and red, green, and blue light are arbitrarily emitted from the surface of the substrate 1 that serves as a light extraction surface. Light that is mixed in proportion and recognized as a single emission color is emitted.
  • Known methods for forming the organic layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. ing.
  • dry coating methods such as sputtering and vacuum deposition
  • wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater.
  • the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed by a wet coating method
  • the electron transport layer and the electron injection layer are sequentially formed uniformly by a dry coating method.
  • a film may be formed.
  • all the functional layers may be sequentially formed in a uniform film thickness by a wet coating method.
  • the anode translucent electrode 2 for supplying holes to the functional layers up to the light emitting layer 3c is ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 ⁇ It may be composed of ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the light emitting layer.
  • the translucent electrode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the cathode reflective electrode 4 that supplies electrons to the functional layers up to the light emitting layer 3c is not limited, and for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material of the reflective electrode 4 preferably includes a metal having a low work function in order to efficiently inject electrons.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof may be used. Used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the silver thin film with a thickness of 20 nm of the reflective electrode 4 has a transmittance of 50%.
  • An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%.
  • the 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%.
  • electroconductivity can be ensured if the lower limit of the film thickness is 5 nm.
  • the reflective electrode 4 can be formed as a single layer film or a multilayer film on the organic layer 3 by sputtering or vacuum deposition.
  • the metal bus line MBL is embedded in a bank BK made of a transparent material and is electrically connected to the translucent electrode 2.
  • the light emitting layer 3c is also electrically connected on the translucent electrode 2 as an organic layer.
  • the side surface of the metal bus line MBL is opposed to the light emitting layer 3c as the uneven reflection surface DRS.
  • the side surface of the metal bus line MBL is opposed to the light emitting layer 3c to define a light passage portion.
  • Both the outer reflective electrode 4 and the inner metal bus line MBL have side surfaces with concave and convex reflective surfaces DRS change the direction of taking out all the light incident on the bank BK from the light emitting layer 3c, and light passes through the light passage portion. It is arranged to do.
  • the light L1 having an angle greater than the critical angle to the glass is totally reflected in the light directly traveling from the certain light emitting point of the light emitting layer 3c in contact with the bank BK to the translucent electrode 2.
  • the light L2 that goes directly from the light emitting point to the concave / convex reflective surface DRS of the metal bus line MBL is reflected by the concave / convex reflective surface DRS, reflected by the reflective electrode 4, and directed toward the substrate 1.
  • the light L3 propagating through the transparent material of the bank BK on the metal bus line MBL from the light emitting point is reflected by the reflective electrode 4 and the metal bus line MBL and travels toward the substrate 1.
  • the light L4 that travels directly from the light emitting point to the reflective electrode 4 is reflected by the reflective electrode 4 and travels toward the substrate 1.
  • Any reflected light is reflected by the metal bus line MBL and the reflective electrode 4 and becomes light directed from the inside of the bank BK to the translucent electrode 2 through the light passage portion.
  • the side surface of the metal bus line MBL is configured not to have the shape of the uneven reflection surface DRS as a simple trapezoidal column but to have a plurality of inclined surfaces and surfaces having different inclination angles.
  • the uneven reflection surface DRS can reflect the light from the light emitting layer 3c in various directions. That is, among the light confined in the translucent electrode 2, the light impinging on the side surface of the metal bus line MBL and the light impinging on the side surface of the bank BK are directed to the translucent electrode 2 from different angles, and the translucent electrode 2- Those having an angle less than the critical angle of the glass interface can exit to the glass substrate 1.
  • the concave / convex reflective surface DRS of the metal bus line MBL is formed by arranging and connecting a plurality of reflective surfaces in the longitudinal direction (y direction).
  • Each reflection surface of the uneven reflection surface DRS is a mirror surface that intersects the xy plane where the light emitting layer 3c spreads at various angles. Thereby, the uneven reflection surface DRS reflects light from the light emitting layer 3c in various directions.
  • a translucent bank TBK having a triangular cross section is formed by extending in the y direction so that the bottom surface faces the light extraction side, a reflective film RF is provided on the side surface, and the side surface is provided with the reflective film RF.
  • the translucent bank TBK extends with a constant width in the y direction in FIG. 6, light from a certain light emitting point is perpendicular to the longitudinal direction (y direction) of the translucent bank TBK (x direction).
  • the translucent bank BK has the uneven reflection surface DRS facing the light emitting layer 3c
  • the traveling direction of the light can be changed to the extraction surface by the metal bus line MBL or the reflective electrode 4.
  • the concave / convex reflective surface DRS differs from the conventional case in that the angle of the inclined surface of the mirror surface changes depending on the position of the inclined surface along the longitudinal direction of the bank BK, so that only light in a narrow angle range in the xz plane is used. It is possible to extract light from the light emitting layer 3c in the xy plane. As shown in FIG.
  • the angle of each mirror surface of the concave and convex reflection surface DRS of the metal bus line MBL and the direction of the inclined surface are random, but the angle of each mirror surface and the direction of the inclined surface are periodically changed in the y direction. It may be changed and set.
  • FIG. 7 shows a partial perspective view of an organic EL device as a first modification.
  • each bank BK is provided as a single body, but in the first modification, the bank BK is divided into two by the reflective electrode 4 along the y direction.
  • the bank is divided into left and right banks BK1 and BK2, and a bus line MBL in contact with the translucent electrode 2 is provided between both banks.
  • An insulating layer is disposed between the bus line MBL and the reflective electrode 4. Insulation is ensured by depositing the reflective electrode 4 after the bus line MBL is covered with an insulating layer.
  • the reflective electrodes 4 are in contact with the banks BK1 and BK2 divided into the left and right sides, and the angle of the inclined surface inside the reflective electrode 4 changes depending on the position in the longitudinal direction, so that the path of light entering the bank BK from the light emitting layer 3c is changed. It is changing randomly.
  • a part of the reflective electrode 4 that covers the banks BK1 and BK2 facing the light emitting layer 3c constitutes the concave-convex reflective surface DRS. This also provides the same effect as in the above embodiment.
  • FIG. 8 shows a partial perspective view of an organic EL device as a second modification.
  • each bank BK is provided as a single body, but in the second modification, the bank BK is divided into two along the y direction by the bus line MBL.
  • the side surface of the bus line MBL also serves as the reflective surface of the slope of the bank BK to form the concave / convex reflective surface DRS, and a slit is provided in the reflective electrode 4 of the cathode to make it independent for each light emitting part.
  • the anode translucent electrode 2 may be integrated. That is, it is only necessary that at least a part of the reflective electrode 4 is in contact with at least a part of the inner surface of the bank BK facing the substrate 1.
  • a bus line MBL in contact with the translucent electrode 2 is provided in the center between the banks BK1 and BK2 divided into the left and right sides, and the recesses face each other, and an insulating layer is provided between the bus line MBL and the reflective electrode 4. It is arranged. After covering the bus line MBL with an insulating layer, the reflective electrode 4 is separated and evaporated to ensure insulation.
  • the path of the light entering the bank BK from the light emitting layer 3c is randomly selected by changing the angle of the slope on the side of the bus line MBL and the inner side of the reflective electrode 4 depending on the position in the longitudinal direction. It is changing. The same effect as that of the above-described embodiment can be obtained by the modification shown in FIG.
  • a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1.
  • a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL device may be deteriorated by outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • a light extraction film (not shown) may be attached to the outer surface of the substrate 1 so as to cover the light emitting portion.
  • the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by laminating inorganic material films.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL device is provided with an insulating bank that is arranged on a translucent substrate, a translucent electrode that is in contact with the bank, an organic layer that is formed on the translucent electrode and that comprises a light-emitting layer that is in contact with the bank, and a reflective electrode that is formed on the organic layer. At least one section of the reflective electrode is in contact with at least one section of the bank. The bank is made from a translucent dielectric material having a refractive index that is equal to or greater than the refractive index of the organic layer. The bank includes an uneven reflective surface that is opposite the light-emitting layer.

Description

有機エレクトロルミネッセンスデバイスOrganic electroluminescence device
 本発明は、少なくとも1つの有機エレクトロルミネッセンス素子を含む有機エレクトロルミネッセンスデバイス(以下、有機ELデバイスと称する)に関する。 The present invention relates to an organic electroluminescence device (hereinafter referred to as an organic EL device) including at least one organic electroluminescence element.
 有機エレクトロルミネッセンス素子は、例えば、透明ガラス基板上に陽極、発光層を含む有機層及び陰極を順次積層して構成され、陽極及び陰極から有機層への電流注入により、エレクトロルミネッセンス(以下、ELと称する)を発現する発光素子である。発光層からの発光光は基板側の電極を透明とすることによりこの透明電極と基板を介して取り出される。ところが、発光層からの発光光の一部は透明電極-ガラス界面間及びガラス-空気界面間での全反射により閉じ込められて消衰する故に、発光層からの発光光のうち約20%程度の光しか外部に取り出すことができない。 An organic electroluminescent element is configured by, for example, sequentially laminating an anode, an organic layer including a light emitting layer, and a cathode on a transparent glass substrate, and electroluminescence (hereinafter referred to as EL) by current injection from the anode and the cathode to the organic layer. Light-emitting element that expresses The emitted light from the light emitting layer is taken out through the transparent electrode and the substrate by making the electrode on the substrate side transparent. However, since a part of the emitted light from the light emitting layer is trapped and extinguished by total reflection between the transparent electrode-glass interface and between the glass-air interface, about 20% of the light emitted from the light emitting layer is about 20%. Only light can be taken out.
 特許文献1は、光取り出し側の透明基板上の有機層を区画するバンク(土手)を透明材料で構成し、透光性バンク内を導波する光を視認方向の透明基板側に取り出す反射部を設けて光取り出し効率を高めた技術を開示している。 Patent Document 1 discloses a reflector (bank) that partitions an organic layer on a transparent substrate on the light extraction side, made of a transparent material, and extracts light guided in the translucent bank to the transparent substrate side in the viewing direction. A technique for improving the light extraction efficiency by providing the above is disclosed.
特開2005-310591号公報Japanese Patent Laid-Open No. 2005-310591
 特許文献1の技術においては、導波する光が透光性バンク内で減衰してしまうという問題があった。 In the technique of Patent Document 1, there is a problem that guided light is attenuated in the translucent bank.
 そこで、本発明では、光取り出し効率を高めることができる有機ELデバイスを提供することが課題の一例としてあげられる。 Therefore, in the present invention, providing an organic EL device that can increase the light extraction efficiency is an example of a problem.
 本発明の有機ELデバイスは、透光性基板と前記透光性基板上に担持された少なくとも1つの有機EL素子とを有する有機ELデバイスであって、
 前記有機EL素子は、前記透光性基板上に配置された絶縁性のバンクと、前記透光性基板上に配置され前記バンクに接する透光性電極と、前記透光性電極上に形成され前記バンクに接する発光層を含む有機層と、前記有機層上に形成された反射電極と、を含み、
 前記反射電極の少なくとも一部分が前記バンクの少なくとも一部分に接触し、
 前記バンクは前記有機層の屈折率と同等以上の屈折率を有する透光性誘電体材料からなり、
 前記バンクは前記発光層に対向した凹凸反射面を有していることを特徴とする。
The organic EL device of the present invention is an organic EL device having a translucent substrate and at least one organic EL element carried on the translucent substrate,
The organic EL element is formed on an insulating bank disposed on the light transmissive substrate, a light transmissive electrode disposed on the light transmissive substrate and in contact with the bank, and the light transmissive electrode. An organic layer including a light emitting layer in contact with the bank, and a reflective electrode formed on the organic layer,
At least a portion of the reflective electrode contacts at least a portion of the bank;
The bank is made of a translucent dielectric material having a refractive index equal to or higher than that of the organic layer,
The bank has an uneven reflection surface facing the light emitting layer.
図1は本発明の実施例の有機ELデバイスの平面図である。FIG. 1 is a plan view of an organic EL device according to an embodiment of the present invention. 図2は図1中のC-C線に沿った断面図である。FIG. 2 is a sectional view taken along the line CC in FIG. 図3は図1に示す有機ELデバイスの発光部の積層構成を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing a laminated structure of the light emitting portion of the organic EL device shown in FIG. 図4は図1の有機ELデバイスの一部の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a part of the organic EL device of FIG. 図5は本発明の他の実施例の有機ELデバイスの一部切り欠き斜視図である。FIG. 5 is a partially cutaway perspective view of an organic EL device according to another embodiment of the present invention. 図6は比較例の有機ELデバイスの要部を示す一部切り欠き斜視図である。FIG. 6 is a partially cutaway perspective view showing a main part of an organic EL device of a comparative example. 図7は本発明の実施例の変形例1の有機ELデバイスの一部切り欠き斜視図である。FIG. 7 is a partially cutaway perspective view of an organic EL device according to Modification 1 of the embodiment of the present invention. 図8は本発明の実施例の変形例2の有機ELデバイスの一部切り欠き斜視図である。FIG. 8 is a partially cutaway perspective view of an organic EL device according to Modification 2 of the embodiment of the present invention.
 以下に本発明による実施例を図面を参照しつつ説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 図1において、有機ELデバイスOLEDは、ガラスや樹脂などの光透過性平板の基板1上に複数のバンクBKによって区切られた複数の有機EL素子、すなわち、y方向に伸長する長方形の発光部を含んでいる。複数の有機EL素子は平行に並置され、例えば、赤色発光R、緑色発光G及び青色発光Bの互いに異なる発光色の有機EL素子を含んでいる。RGB発光色の有機EL素子を一組としてx方向に組毎に並べられている。 In FIG. 1, an organic EL device OLED has a plurality of organic EL elements separated by a plurality of banks BK on a light-transmitting flat substrate 1 such as glass or resin, that is, a rectangular light emitting portion extending in the y direction. Contains. The plurality of organic EL elements are juxtaposed in parallel, and include, for example, organic EL elements having different emission colors of red light emission R, green light emission G, and blue light emission B. The organic EL elements of RGB emission colors are arranged as a set in the x direction for each set.
 図2に示すように、有機ELデバイスの有機EL素子の各々は、バンクBK間の基板1上に、透光性電極2、金属のバスラインMBL、発光層を含む有機層3、反射電極4が積層されて構成される。この有機ELデバイスは、透光性電極2と反射電極4との間に電圧を印加することにより有機層3において生成される光を基板1の表面から取り出す所謂ボトムエミッション型の有機ELパネルである。 As shown in FIG. 2, each of the organic EL elements of the organic EL device includes a translucent electrode 2, a metal bus line MBL, an organic layer 3 including a light emitting layer, and a reflective electrode 4 on a substrate 1 between banks BK. Are stacked. This organic EL device is a so-called bottom emission type organic EL panel that takes out light generated in the organic layer 3 from the surface of the substrate 1 by applying a voltage between the translucent electrode 2 and the reflective electrode 4. .
 陽極を構成する複数の透光性電極2は、それぞれ帯状をなしており、基板1上においてy方向に沿って伸長し、互いに一定間隔おいてx方向に平行に並置されている。 The plurality of translucent electrodes 2 constituting the anode each have a band shape, extend along the y direction on the substrate 1, and are juxtaposed in parallel with each other at a constant interval in the x direction.
 透光性電極2の各々の端側上には、透光性電極2に電源電圧を供給する為のバスラインMBLがy方向に沿って伸長して形成されている。 On each end side of the translucent electrode 2, a bus line MBL for supplying a power supply voltage to the translucent electrode 2 is formed extending along the y direction.
 基板1及び透光性電極2のバスラインMBL上にはこれらを覆うようにバンクBKがy方向に沿って伸長して形成されている。バンクBKは有機層3の屈折率と同等以上の屈折率を有する例えば光学ガラスや光学樹脂などの透光性誘電体材料から形成される。バンクBKには、各々がy方向に伸張する長方形の開口部が形成されている。開口部の各々に有機層3が配置されている。有機層3は、バンクBKによって互いに隔てられた状態で並置されて、バンクBKによって隔てられた複数の発光領域を区画している。バンクBKは反射電極4の少なくとも一部分により覆われている。 On the bus line MBL of the substrate 1 and the translucent electrode 2, a bank BK is formed extending along the y direction so as to cover them. The bank BK is formed of a translucent dielectric material such as optical glass or optical resin having a refractive index equal to or higher than that of the organic layer 3. In the bank BK, rectangular openings each extending in the y direction are formed. An organic layer 3 is disposed in each of the openings. The organic layer 3 is juxtaposed in a state of being separated from each other by the bank BK, and partitions a plurality of light emitting regions separated by the bank BK. The bank BK is covered with at least a part of the reflective electrode 4.
 なお、本明細書において、「屈折率が同等」とは、一方の屈折率と他方の屈折率との差が0.3未満、好ましくは0.2以下、とりわけ好ましくは0.1以下であることをいう。また屈折率が「低い」又は「高い」とは、測定上差が生じる程度に「低く」又は「高」ければよいが、実際上は0.1を超えて、好ましくは0.2を超えて、より好ましくは0.3以上、更に好ましくは0.4以上、とりわけ好ましくは0.5以上差があって低い又は高いことを示す。 In the present specification, “equivalent refractive index” means that the difference between one refractive index and the other refractive index is less than 0.3, preferably 0.2 or less, particularly preferably 0.1 or less. That means. Further, the refractive index “low” or “high” may be “low” or “high” to such an extent that a difference in measurement occurs, but in practice, it exceeds 0.1, preferably exceeds 0.2. More preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, indicating a low or high difference.
 バンクBKの各開口部内における透光性電極2上には、図3に示すように、有機層3として、正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d及び電子注入層3eが順に積層されている。透光性電極2と反射電極4の間に挟持有機層3は発光積層体であり、これら積層構成に限定されることなく、例えば発光層3cと電子輸送層3dの間に正孔阻止層(図示せず)を追加するなど、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成であってもよい。有機層3は、上記積層構造から正孔輸送層3bを省いて構成しても、正孔注入層3aを省いて構成しても、正孔注入層3aと電子輸送層3dを省いて構成してもよい。 On the translucent electrode 2 in each opening of the bank BK, as shown in FIG. 3, as the organic layer 3, a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron The injection layer 3e is laminated in order. The organic layer 3 sandwiched between the translucent electrode 2 and the reflective electrode 4 is a light emitting laminated body, and is not limited to these laminated structures. For example, a hole blocking layer (between the light emitting layer 3c and the electron transporting layer 3d ( For example, a layered structure including at least a light emitting layer or a charge transport layer that can also be used may be used. The organic layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
 例えば、発光層3cの発光材料としては、例えば、蛍光材料や燐光材料など、任意の公知の発光材料が適用可能である。 For example, as the light emitting material of the light emitting layer 3c, any known light emitting material such as a fluorescent material or a phosphorescent material can be applied.
 青色発光を与える蛍光材料としては、例えば、ナフタレン、ペリレン、ピレンなどが挙げられる。緑色発光を与える蛍光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。黄色発光を与える蛍光材料としては、例えば、ルブレン誘導体などが挙げられる。赤色発光を与える蛍光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体などが挙げられる。燐光材料としては、例えば、イリジウム、白金、ルテニウム、ロジウム、パラジウムの錯体化合物などが挙げられる。燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウムなどが挙げられる。 Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene. Examples of fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum). Examples of fluorescent materials that give yellow light include rubrene derivatives. Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like. Examples of the phosphorescent material include iridium, platinum, ruthenium, rhodium, and palladium complex compounds. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
 このように、赤、緑、青の発光色をそれぞれ発する有機層3は、平行に繰り返し配置されており、光取り出し面となる基板1の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色として認識される光が放出される。 In this way, the organic layers 3 that emit red, green, and blue emission colors are repeatedly arranged in parallel, and red, green, and blue light are arbitrarily emitted from the surface of the substrate 1 that serves as a light extraction surface. Light that is mixed in proportion and recognized as a single emission color is emitted.
 有機層3を成膜する手法として、スパッタリング法や真空蒸着法などの乾式塗布法や、スクリーン印刷、スプレー法、インクジェット法、スピンコート法、グラビア印刷、ロールコータ法などの湿式塗布法が知られている。例えば、正孔注入層、正孔輸送層、発光層を湿式塗布法で膜厚を均一に成膜して、電子輸送層及び電子注入層を、それぞれ乾式塗布法で膜厚を均一に順次成膜してもよい。また、すべての機能層を湿式塗布法で膜厚を均一に順次成膜してもよい。 Known methods for forming the organic layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. ing. For example, the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed by a wet coating method, and the electron transport layer and the electron injection layer are sequentially formed uniformly by a dry coating method. A film may be formed. Further, all the functional layers may be sequentially formed in a uniform film thickness by a wet coating method.
 発光層3cまでの機能層に正孔を供給する陽極の透光性電極2は、ITO(Indium-tin-oxide)やZnO、ZnO-Al(所謂、AZO)、In-ZnO(所謂、IZO)、SnO-Sb(所謂、ATO)、RuOなどにより構成され得る。さらに、透光性電極2は、発光層から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 The anode translucent electrode 2 for supplying holes to the functional layers up to the light emitting layer 3c is ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 − It may be composed of ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the light emitting layer.
 透光性電極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The translucent electrode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 発光層3cまでの機能層に電子を供給する陰極の反射電極4には、限定されないが、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The cathode reflective electrode 4 that supplies electrons to the functional layers up to the light emitting layer 3c is not limited, and for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 反射電極4の材料としては、効率良く電子注入を行う為に仕事関数の低い金属が含まれること好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。反射電極4の膜厚20nmの銀薄膜は透過率50%を有する。同金属薄膜としての膜厚10nmのAl膜は透過率50%を有する。同金属薄膜としての膜厚20nmのMgAg合金膜は透過率50%を有する。なお、金属薄膜で反射電極4を構成する場合、その膜厚の下限値は5nmあれば導電性を確保することができる。 The material of the reflective electrode 4 preferably includes a metal having a low work function in order to efficiently inject electrons. For example, a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof may be used. Used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. The silver thin film with a thickness of 20 nm of the reflective electrode 4 has a transmittance of 50%. An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%. The 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%. In addition, when the reflective electrode 4 is comprised with a metal thin film, electroconductivity can be ensured if the lower limit of the film thickness is 5 nm.
 反射電極4はスパッタ法や真空蒸着法などにより有機層3上に、単層膜、又は多層膜として形成され得る。 The reflective electrode 4 can be formed as a single layer film or a multilayer film on the organic layer 3 by sputtering or vacuum deposition.
 この有機ELデバイスにおいては、有機層3は透光性電極2及び反射電極4の間に接して挟持されている故に、透光性電極2と反射電極4とを介して有機層3に駆動電圧が印加されることにより、有機層3内の発光層3cにおいて生成された光は透光性電極2を通過して、さらに反射電極4で反射した後に透光性電極2を通過して透光性基板1の表面から取り出される。 In this organic EL device, since the organic layer 3 is sandwiched between the translucent electrode 2 and the reflective electrode 4, a driving voltage is applied to the organic layer 3 via the translucent electrode 2 and the reflective electrode 4. Is applied, the light generated in the light emitting layer 3c in the organic layer 3 passes through the translucent electrode 2 and is further reflected by the reflective electrode 4 and then passes through the translucent electrode 2 to transmit the light. It is taken out from the surface of the conductive substrate 1.
 [透光性バンク]
 図4に示すように、金属バスラインMBLは透明材料からなるバンクBKに包埋されかつ透光性電極2上に電気的に接続されている。発光層3cも有機層として透光性電極2上に電気的に接続されている。バンクBK内にて金属バスラインMBLの側面が凹凸反射面DRSとして発光層3cに対向している。そして、金属バスラインMBLの側面が発光層3cに対向し光通過部を画定する。
[Translucent bank]
As shown in FIG. 4, the metal bus line MBL is embedded in a bank BK made of a transparent material and is electrically connected to the translucent electrode 2. The light emitting layer 3c is also electrically connected on the translucent electrode 2 as an organic layer. In the bank BK, the side surface of the metal bus line MBL is opposed to the light emitting layer 3c as the uneven reflection surface DRS. The side surface of the metal bus line MBL is opposed to the light emitting layer 3c to define a light passage portion.
 外側の反射電極4と内側の金属バスラインMBLの側面が凹凸反射面DRSとの両方が、発光層3cからバンクBKに入射するあらゆる光の取り出し方向に変え、さらに当該光通過部を光が通過するように配置してある。 Both the outer reflective electrode 4 and the inner metal bus line MBL have side surfaces with concave and convex reflective surfaces DRS change the direction of taking out all the light incident on the bank BK from the light emitting layer 3c, and light passes through the light passage portion. It is arranged to do.
 図4に示すように、バンクBKに接触する発光層3cの或る発光点から透光性電極2へ直接向かう光の中でガラスへの臨界角以上の角の光L1は全反射される。発光点から金属バスラインMBLの凹凸反射面DRSへ直接向かう光L2は凹凸反射面DRSで反射、反射電極4で反射されて基板1向かう。発光点から金属バスラインMBL上のバンクBKの透明材料を伝搬する光L3は反射電極4や金属バスラインMBLで反射されて基板1向かう。発光点から反射電極4へ直接向かう光L4は反射電極4で反射されて基板1向かう。 As shown in FIG. 4, the light L1 having an angle greater than the critical angle to the glass is totally reflected in the light directly traveling from the certain light emitting point of the light emitting layer 3c in contact with the bank BK to the translucent electrode 2. The light L2 that goes directly from the light emitting point to the concave / convex reflective surface DRS of the metal bus line MBL is reflected by the concave / convex reflective surface DRS, reflected by the reflective electrode 4, and directed toward the substrate 1. The light L3 propagating through the transparent material of the bank BK on the metal bus line MBL from the light emitting point is reflected by the reflective electrode 4 and the metal bus line MBL and travels toward the substrate 1. The light L4 that travels directly from the light emitting point to the reflective electrode 4 is reflected by the reflective electrode 4 and travels toward the substrate 1.
 いずれの反射した光も金属バスラインMBL及び反射電極4で反射されバンクBK内から光通過部を経て、透光性電極2に向かう光などになる。 Any reflected light is reflected by the metal bus line MBL and the reflective electrode 4 and becomes light directed from the inside of the bank BK to the translucent electrode 2 through the light passage portion.
 金属バスラインMBLの側面が凹凸反射面DRSの形状を単なる台形柱としておらず、複数の傾斜面の角度や傾斜角の異なる面を有するように、構成することが好ましい。これにより、凹凸反射面DRSは発光層3cのからの光をさまざまな方向へ光を反射することができる。すなわち、透光性電極2内に閉じ込められる光のうち、金属バスラインMBLの側面に当たる光及びバンクBKの側面に当たる光は、角度をかえて透光性電極2へ向かい、透光性電極2―ガラス界面の臨界角未満の角度のものはガラス基板1へ出ることができる。 It is preferable that the side surface of the metal bus line MBL is configured not to have the shape of the uneven reflection surface DRS as a simple trapezoidal column but to have a plurality of inclined surfaces and surfaces having different inclination angles. Thereby, the uneven reflection surface DRS can reflect the light from the light emitting layer 3c in various directions. That is, among the light confined in the translucent electrode 2, the light impinging on the side surface of the metal bus line MBL and the light impinging on the side surface of the bank BK are directed to the translucent electrode 2 from different angles, and the translucent electrode 2- Those having an angle less than the critical angle of the glass interface can exit to the glass substrate 1.
 図5に示すように、金属バスラインMBLの凹凸反射面DRSは、その長手方向(y方向)に複数の反射面の配置して結合したものである。凹凸反射面DRSの各反射面は、発光層3cが拡がるxy平面にいろいろな角度で交差する鏡面である。これにより、凹凸反射面DRSは発光層3cのからの光をさまざまな方向へ光を反射する。 As shown in FIG. 5, the concave / convex reflective surface DRS of the metal bus line MBL is formed by arranging and connecting a plurality of reflective surfaces in the longitudinal direction (y direction). Each reflection surface of the uneven reflection surface DRS is a mirror surface that intersects the xy plane where the light emitting layer 3c spreads at various angles. Thereby, the uneven reflection surface DRS reflects light from the light emitting layer 3c in various directions.
 比較例として、図6に示すように、光取り出し側に底面が向くように三角形断面の透光性バンクTBKをy方向に伸長させて形成し、その側面に反射膜RFを設け、当該側面に対向して発光層3cを配置した、従来の構成を考察する。透光性バンクTBKは図6においてy方向に向かって一定の幅で伸びている故に、或る発光点からの光は透光性バンクTBKの長手方向(y方向)に対して直角(x方向)に入り、反射膜RFで45度の反射され、図6の破線矢印のように光取り出し方向に垂直(z方向)に向かい垂直に底面にあたる。しかし、透光性バンク長手方向(xy平面)に角度例えば45度を持った発光点からの光は、光取り出し方向に向かわず、図6の実線矢印のようにある傾斜角度からバンク底界面にあたり、透光性バンク長手方向に角度があればあるほど底面との傾斜角度が増加し、界面で全反射してしまい、導波する光が透光性バンクTBK内で減衰してしまう。 As a comparative example, as shown in FIG. 6, a translucent bank TBK having a triangular cross section is formed by extending in the y direction so that the bottom surface faces the light extraction side, a reflective film RF is provided on the side surface, and the side surface is provided with the reflective film RF. Consider a conventional configuration in which the light emitting layer 3c is disposed oppositely. Since the translucent bank TBK extends with a constant width in the y direction in FIG. 6, light from a certain light emitting point is perpendicular to the longitudinal direction (y direction) of the translucent bank TBK (x direction). ) And is reflected by the reflective film RF at 45 degrees, and hits the bottom surface perpendicular to the light extraction direction (z direction) as indicated by the broken line arrow in FIG. However, light from a light emitting point having an angle of, for example, 45 degrees in the longitudinal direction (xy plane) of the translucent bank does not go in the light extraction direction, but hits the bank bottom interface from an inclination angle as indicated by a solid line arrow in FIG. As the angle in the longitudinal direction of the translucent bank increases, the inclination angle with the bottom surface increases, and the light is totally reflected at the interface, and the guided light is attenuated in the translucent bank TBK.
 しかし、本実施例によれば透光性のバンクBKは、発光層3cに対向した凹凸反射面DRSを有している故に、図5に示すようにバンクBKに接する有機層3からのバンクBKへの光を、金属バスラインMBLまたは反射電極4で、取り出し面へ光の進行方向を変えることができる。また、凹凸反射面DRSは、斜面の角度がバンクBKの長手方向に沿った位置により鏡面の斜面の角度が変化している故に、従来とは異なり、xz平面内の狭い角度範囲の光だけでなく、xy平面内の発光層3cからの光を取り出すことが可能となる。図5に示すように金属バスラインMBLの凹凸反射面DRSの各鏡面の角度や斜面の面の向きをランダムにしているが、y方向において周期的に各鏡面の角度や斜面の面の向きを変化させて設定してもよい。 However, according to the present embodiment, since the translucent bank BK has the uneven reflection surface DRS facing the light emitting layer 3c, the bank BK from the organic layer 3 in contact with the bank BK as shown in FIG. The traveling direction of the light can be changed to the extraction surface by the metal bus line MBL or the reflective electrode 4. In addition, the concave / convex reflective surface DRS differs from the conventional case in that the angle of the inclined surface of the mirror surface changes depending on the position of the inclined surface along the longitudinal direction of the bank BK, so that only light in a narrow angle range in the xz plane is used. It is possible to extract light from the light emitting layer 3c in the xy plane. As shown in FIG. 5, the angle of each mirror surface of the concave and convex reflection surface DRS of the metal bus line MBL and the direction of the inclined surface are random, but the angle of each mirror surface and the direction of the inclined surface are periodically changed in the y direction. It may be changed and set.
 [変形例1]
 図7に変形例1として有機ELデバイスの一部斜視図を示す。なお、上記実施例と同一符号で示した構成部分は、上記実施例の有機ELデバイスと同様であるので、それらの説明は省略する。上記実施例では各バンクBKが単一体として設けて構成しているが、変形例1ではy方向に沿ってバンクBKが反射電極4により2分割されている。
[Modification 1]
FIG. 7 shows a partial perspective view of an organic EL device as a first modification. In addition, since the component shown with the same code | symbol as the said Example is the same as that of the organic EL device of the said Example, those description is abbreviate | omitted. In the above embodiment, each bank BK is provided as a single body, but in the first modification, the bank BK is divided into two by the reflective electrode 4 along the y direction.
 バンクが左右バンクBK1、BK2に分かれており、両バンクの間に透光性電極2と接するバスラインMBLが設けてある。バスラインMBLと反射電極4の間には絶縁層が配置されてある。バスラインMBLを絶縁層で被覆した後に反射電極4を蒸着することで、絶縁を確保している。左右に分かれたバンクBK1、BK2には反射電極4が接しており、反射電極4内側の斜面の角度が長手方向の位置により変化することで、発光層3cからバンクBKに進入した光の進路をランダムに変えている。図7に示す変形例の有機ELデバイスにおいては、バンクBK1、BK2を覆っている反射電極4の発光層3cに対向する一部分が凹凸反射面DRSを構成する。これによっても、上記実施例と同様の効果が得られる。 The bank is divided into left and right banks BK1 and BK2, and a bus line MBL in contact with the translucent electrode 2 is provided between both banks. An insulating layer is disposed between the bus line MBL and the reflective electrode 4. Insulation is ensured by depositing the reflective electrode 4 after the bus line MBL is covered with an insulating layer. The reflective electrodes 4 are in contact with the banks BK1 and BK2 divided into the left and right sides, and the angle of the inclined surface inside the reflective electrode 4 changes depending on the position in the longitudinal direction, so that the path of light entering the bank BK from the light emitting layer 3c is changed. It is changing randomly. In the organic EL device of the modified example shown in FIG. 7, a part of the reflective electrode 4 that covers the banks BK1 and BK2 facing the light emitting layer 3c constitutes the concave-convex reflective surface DRS. This also provides the same effect as in the above embodiment.
 [変形例2]
 図8に変形例2として有機ELデバイスの一部斜視図を示す。なお、上記実施例と同一符号で示した構成部分は、上記実施例の有機ELデバイスと同様であるので、それらの説明は省略する。上記実施例では各バンクBKが単一体として設けて構成しているが、変形例2でもy方向に沿ってバンクBKがバスラインMBLにより2分割されている。
[Modification 2]
FIG. 8 shows a partial perspective view of an organic EL device as a second modification. In addition, since the component shown with the same code | symbol as the said Example is the same as that of the organic EL device of the said Example, those description is abbreviate | omitted. In the above embodiment, each bank BK is provided as a single body, but in the second modification, the bank BK is divided into two along the y direction by the bus line MBL.
 図8に示すように、有機ELデバイスは、バスラインMBLの側面がバンクBKの斜面の反射面を兼ねて凹凸反射面DRSを構成し、陰極の反射電極4にスリットを入れ発光部毎に独立させ、陽極の透光性電極2を一体型にしても良い。すなわち、反射電極4の少なくとも一部分が、基板1に対向するバンクBKの内面の少なくとも一部分に接触するようになされていればよい。 As shown in FIG. 8, in the organic EL device, the side surface of the bus line MBL also serves as the reflective surface of the slope of the bank BK to form the concave / convex reflective surface DRS, and a slit is provided in the reflective electrode 4 of the cathode to make it independent for each light emitting part. The anode translucent electrode 2 may be integrated. That is, it is only necessary that at least a part of the reflective electrode 4 is in contact with at least a part of the inner surface of the bank BK facing the substrate 1.
 左右に分かれたバンクBK1、BK2の間の中央に凹部の対向する斜面の間に透光性電極2と接するバスラインMBLが設けてあり、バスラインMBLと反射電極4の間には絶縁層が配置されてある。バスラインMBLを絶縁層で被覆した後に反射電極4を分離して蒸着することで、絶縁を確保している。左右に分かれたバンクBK1、BK2各々では、バスラインMBL側面と反射電極4内側の斜面の角度が長手方向の位置により変化することで、発光層3cからバンクBKに進入した光の進路をランダムに変えている。図7に示す変形例によっても、上記実施例と同様の効果が得られる。 A bus line MBL in contact with the translucent electrode 2 is provided in the center between the banks BK1 and BK2 divided into the left and right sides, and the recesses face each other, and an insulating layer is provided between the bus line MBL and the reflective electrode 4. It is arranged. After covering the bus line MBL with an insulating layer, the reflective electrode 4 is separated and evaporated to ensure insulation. In each of the banks BK1 and BK2 divided into the left and right, the path of the light entering the bank BK from the light emitting layer 3c is randomly selected by changing the angle of the slope on the side of the bus line MBL and the inner side of the reflective electrode 4 depending on the position in the longitudinal direction. It is changing. The same effect as that of the above-described embodiment can be obtained by the modification shown in FIG.
 なお、上記の何れの実施例では、透光性基板1として、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの合成樹脂の透明板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機ELデバイスが劣化することがあるので好ましくない。よって、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。 In any of the above-described embodiments, a quartz or glass plate, a metal plate or metal foil, a bent resin substrate, a plastic film, a sheet, or the like is used as the translucent substrate 1. In particular, a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL device may be deteriorated by outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 なお、有機ELデバイスの帯状に並置された発光部とその周りのバンクを覆いこれらを封止する封止缶(図示せず)を設けてもよい。さらに、出力光の取り出し効率を上げるために、基板1の外部面に、発光部を覆うように、これを超える面積で光取り出しフィルム(図示せず)を取り付けてもよい。 In addition, you may provide the sealing can (not shown) which covers the light emission part juxtaposed in the strip | belt shape of the organic EL device, and the bank around it, and seals these. Furthermore, in order to increase the output light extraction efficiency, a light extraction film (not shown) may be attached to the outer surface of the substrate 1 so as to cover the light emitting portion.
 さらに、上記の何れの実施例では有機層を発光積層体としているが、無機材料膜の積層によっても発光積層体を構成できる。 Furthermore, in any of the above-described embodiments, the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by laminating inorganic material films.
 1 基板
 2 透光性電極
 3 有機層
 3a 正孔注入層
 3b 正孔輸送層
 3c 発光層
 3d 電子輸送層
 3e 電子注入層
 4 反射電極
 BK バンク
 DRS 凹凸反射面
 MBL バスライン
 
DESCRIPTION OF SYMBOLS 1 Substrate 2 Translucent electrode 3 Organic layer 3a Hole injection layer 3b Hole transport layer 3c Light emitting layer 3d Electron transport layer 3e Electron injection layer 4 Reflective electrode BK Bank DRS Uneven reflection surface MBL Bus line

Claims (4)

  1.  透光性基板と前記透光性基板上に担持された少なくとも1つの有機EL素子とを有する有機ELデバイスであって、
     前記有機EL素子は、前記透光性基板上に配置された絶縁性のバンクと、前記透光性基板上に配置され前記バンクに接する透光性電極と、前記透光性電極上に形成され前記バンクに接する発光層を含む有機層と、前記有機層上に形成された反射電極と、を含み、
     前記反射電極の少なくとも一部分が前記バンクの少なくとも一部分に接触し、
     前記バンクは前記有機層の屈折率と同等以上の屈折率を有する透光性誘電体材料からなり、
     前記バンクは前記発光層に対向した凹凸反射面を有していることを特徴とする有機ELデバイス。
    An organic EL device having a translucent substrate and at least one organic EL element carried on the translucent substrate,
    The organic EL element is formed on an insulating bank disposed on the light transmissive substrate, a light transmissive electrode disposed on the light transmissive substrate and in contact with the bank, and the light transmissive electrode. An organic layer including a light emitting layer in contact with the bank, and a reflective electrode formed on the organic layer,
    At least a portion of the reflective electrode contacts at least a portion of the bank;
    The bank is made of a translucent dielectric material having a refractive index equal to or higher than that of the organic layer,
    2. The organic EL device according to claim 1, wherein the bank has an uneven reflection surface facing the light emitting layer.
  2.  前記バンクに包埋されかつ前記透光性電極上に電気的に接続した金属バスラインを有し、前記金属バスラインの側面が前記発光層に対向し光通過部を画定するとともに前記凹凸反射面を構成することを特徴とする請求項1に記載の有機ELデバイス。 A metal bus line embedded in the bank and electrically connected to the translucent electrode, wherein a side surface of the metal bus line faces the light emitting layer to define a light passage part and the concave-convex reflective surface The organic EL device according to claim 1, wherein:
  3.  前記バンクを覆っている前記反射電極の一部分が前記凹凸反射面を構成することを特徴とする請求項2に記載の有機ELデバイス。 3. The organic EL device according to claim 2, wherein a part of the reflective electrode covering the bank constitutes the uneven reflective surface.
  4.  前記凹凸反射面は前記透光性基板に対して傾斜角の異なる複数の反射面を含むことを特徴とする請求項2又は3に記載の有機ELデバイス。
     
    The organic EL device according to claim 2, wherein the uneven reflective surface includes a plurality of reflective surfaces having different inclination angles with respect to the translucent substrate.
PCT/JP2012/065373 2012-06-15 2012-06-15 Organic electroluminescence device WO2013186919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065373 WO2013186919A1 (en) 2012-06-15 2012-06-15 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065373 WO2013186919A1 (en) 2012-06-15 2012-06-15 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2013186919A1 true WO2013186919A1 (en) 2013-12-19

Family

ID=49757780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065373 WO2013186919A1 (en) 2012-06-15 2012-06-15 Organic electroluminescence device

Country Status (1)

Country Link
WO (1) WO2013186919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933709B2 (en) 2014-09-15 2018-04-03 Asml Netherlands B.V. Lithographic apparatus and method
JP2022515578A (en) * 2019-01-08 2022-02-21 京東方科技集團股▲ふん▼有限公司 Array board and display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083689A (en) * 2000-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd Luminescence device
JP2002208491A (en) * 2000-11-09 2002-07-26 Toshiba Corp Self-illuminating display device
JP2002229482A (en) * 2001-01-30 2002-08-14 Semiconductor Energy Lab Co Ltd Light emitting device
JP2004152738A (en) * 2002-11-01 2004-05-27 Seiko Epson Corp Organic el panel, its manufacturing method, and electro-optic panel and electronic device using the same
JP2005310590A (en) * 2004-04-22 2005-11-04 Seiko Epson Corp Organic el display device and its manufacturing method, and electronic apparatus
JP2005310591A (en) * 2004-04-22 2005-11-04 Seiko Epson Corp Organic el display device and its manufacturing method, and electronic apparatus
JP2005534145A (en) * 2002-07-23 2005-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent display and electronic device having such a display
JP2008226746A (en) * 2007-03-15 2008-09-25 Sony Corp Display device and electronic equipment
JP2009151955A (en) * 2007-12-18 2009-07-09 Sony Corp Surface emitting light source and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083689A (en) * 2000-06-29 2002-03-22 Semiconductor Energy Lab Co Ltd Luminescence device
JP2002208491A (en) * 2000-11-09 2002-07-26 Toshiba Corp Self-illuminating display device
JP2002229482A (en) * 2001-01-30 2002-08-14 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005534145A (en) * 2002-07-23 2005-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent display and electronic device having such a display
JP2004152738A (en) * 2002-11-01 2004-05-27 Seiko Epson Corp Organic el panel, its manufacturing method, and electro-optic panel and electronic device using the same
JP2005310590A (en) * 2004-04-22 2005-11-04 Seiko Epson Corp Organic el display device and its manufacturing method, and electronic apparatus
JP2005310591A (en) * 2004-04-22 2005-11-04 Seiko Epson Corp Organic el display device and its manufacturing method, and electronic apparatus
JP2008226746A (en) * 2007-03-15 2008-09-25 Sony Corp Display device and electronic equipment
JP2009151955A (en) * 2007-12-18 2009-07-09 Sony Corp Surface emitting light source and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9933709B2 (en) 2014-09-15 2018-04-03 Asml Netherlands B.V. Lithographic apparatus and method
JP2022515578A (en) * 2019-01-08 2022-02-21 京東方科技集團股▲ふん▼有限公司 Array board and display device

Similar Documents

Publication Publication Date Title
JP6074423B2 (en) Organic electroluminescence device
US9583734B2 (en) OLED micro-cavity structure and method of making
JP2017054601A (en) Organic el element, organic el display panel using the same, and manufacturing method for organic el display panel
US7327081B2 (en) Stacked organic electroluminescent device and method for manufacturing thereof
US20100327304A1 (en) Organic el device and design method thereof
US20120080668A1 (en) Organic el lighting device and method of manufacturing the same
JP6168610B2 (en) Organic EL lighting panel substrate, organic EL lighting panel, and organic EL lighting device
KR20090064310A (en) Organic el device and electronic apparatus
WO2014119052A1 (en) Organic electroluminescent element, lighting apparatus, and lighting system
US7129635B2 (en) Organic EL display device with plural electrode segments
WO2013186919A1 (en) Organic electroluminescence device
US9082736B2 (en) Organic EL panel and method of manufacturing the same
WO2015125308A1 (en) Organic electroluminescent element, lighting apparatus, and lighting system
WO2013186918A1 (en) Organic electroluminescence device
CN111584611B (en) Display panel, transparent display panel and manufacturing method thereof
WO2013186916A1 (en) Organic electroluminescence device
CN105514137B (en) Organic light emitting diode display
WO2013186917A1 (en) Organic electroluminescence device
WO2016151820A1 (en) Light-emitting device
KR20120035027A (en) Organic light emitting device and illuminator using the same
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
JP2005183048A (en) Light-emitting element substrate and light-emitting element using the same
WO2014013567A1 (en) Light-emitting element
WO2013190621A1 (en) Electroluminescence element
WO2014083693A1 (en) Light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP