WO2013161001A1 - Organic el light emitting element - Google Patents

Organic el light emitting element Download PDF

Info

Publication number
WO2013161001A1
WO2013161001A1 PCT/JP2012/060931 JP2012060931W WO2013161001A1 WO 2013161001 A1 WO2013161001 A1 WO 2013161001A1 JP 2012060931 W JP2012060931 W JP 2012060931W WO 2013161001 A1 WO2013161001 A1 WO 2013161001A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
organic
light scattering
light emitting
Prior art date
Application number
PCT/JP2012/060931
Other languages
French (fr)
Japanese (ja)
Inventor
安伸 東家
研至 河合
岡野 誠
田中 覚
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/060931 priority Critical patent/WO2013161001A1/en
Publication of WO2013161001A1 publication Critical patent/WO2013161001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means

Definitions

  • an organic EL light emitting element is configured by laminating a cathode made of a metal such as aluminum, an organic layer, an anode made of a transparent alloy such as ITO, and a glass substrate, and includes a light emitting layer in the organic layer.
  • the refractive index of the transparent electrode is about 1.8, for example, and the refractive index of glass is about 1.5, for example. Because of this difference in refractive index, light emitted from the light emitting layer is reflected at the interface between the transparent electrode and the glass substrate and at the interface between the glass substrate and the air layer, and finally only about 20% of the light is extracted into the air layer. It is said that it cannot be done.
  • Patent Document 1 discloses a light-emitting device in which a refractive material layer made of a highly refractive resin is provided on the upper surface of a glass substrate for the purpose of improving light extraction efficiency.
  • FIG. 1 shows a configuration of a light-emitting element 1 that is an embodiment of the present invention.
  • the light emitting layer 4c is made of an organic EL material.
  • the organic EL material for example, any known material such as a fluorescent material or a phosphorescent material can be applied.
  • FIG. 3 shows the second electrode layer 5, the light scattering layer 7, the reflection layer 8, and how the light beams 21 and 22 are reflected and refracted by these configurations.
  • the light-emitting element 1 of this example not only the first electrode layer 3 but also the second electrode layer 5 is a light-transmitting electrode layer.
  • a light scattering layer 7 is formed on the second electrode layer 5, and a reflection layer 8 is further formed on the light scattering layer 7.
  • the light scattering layer 7 includes a plurality of light scattering particles 7b having a high refractive index.
  • the light beam 22 from the organic layer 4 is repeatedly reflected and refracted randomly by the reflective layer 8 and the light scattering particles 7 b, and can be incident on the second electrode layer 5 at an angle that can be taken out. Thereby, the extraction efficiency of the light beam 22 to the transparent substrate 2 side can be improved.
  • FIG. 4 shows a configuration of the light emitting element 1 that does not include the resin portion 7a.
  • the light scattering layer 7 is composed of a plurality of light scattering particles 7b adhered to each other. Similar to the above embodiment, the light scattering layer 7 is formed on the second electrode layer 5, and the reflection layer 8 is formed on the light scattering layer 7. Since the resin portion 7a is not used, the cost can be reduced.
  • a first electrode layer 3 made of a light transmissive electrode material such as ITO is formed on a transparent substrate 2 made of a light transmissive material such as glass or a resin film by a film forming method such as sputtering. (FIG. 7A).
  • plasma treatment for modifying the surface of the first electrode layer 3 may be performed.
  • the efficiency of hole injection into the organic layer 4 formed on the first electrode layer 3 is improved by performing such plasma treatment.

Abstract

[Problem] To provide an organic EL light emitting element having high light extraction efficiency. [Solution] This organic EL light emitting element includes: a light emitting section, which is configured of an organic layer including an organic EL light emitting layer, and transparent first and second electrode layers sandwiching the organic layer; and a transparent substrate, which supports the light emitting section with the first electrode layer therebetween. Furthermore, the organic EL light emitting element has a light scattering layer in contact with the second electrode layer, and a reflection layer sandwiching the light scattering layer with the second electrode layer, said reflection layer being on the light scattering layer.

Description

有機EL発光素子Organic EL light emitting device
 本発明は、有機EL(Electro Luminescence)発光素子に関する。 The present invention relates to an organic EL (Electro Luminescence) light emitting element.
 従来より、有機EL発光素子の光取出し効率を向上させることが課題となっている。有機EL発光素子は、一般に、例えばアルミニウムなどの金属からなる陰極、有機層、例えばITOなどの透明合金からなる陽極、及びガラス基板が積層されて構成され、当該有機層内に発光層を含んでいる。透明電極の屈折率は例えば1.8程度、ガラスの屈折率は例えば1.5程度というように各構成要素の屈折率は同一ではない。この屈折率の違いから、発光層から発せられた光は、透明電極とガラス基板の界面、ガラス基板と空気層の界面でそれぞれ反射し、最終的には20%程度しか空気層に光を取り出すことができないとされている。例えば特許文献1には、光取出し効率を向上させる目的で、高屈折性の樹脂からなる屈折材料層をガラス基板上面に設けた発光装置が開示されている。 Conventionally, it has been an issue to improve the light extraction efficiency of the organic EL light emitting device. In general, an organic EL light emitting element is configured by laminating a cathode made of a metal such as aluminum, an organic layer, an anode made of a transparent alloy such as ITO, and a glass substrate, and includes a light emitting layer in the organic layer. Yes. The refractive index of the transparent electrode is about 1.8, for example, and the refractive index of glass is about 1.5, for example. Because of this difference in refractive index, light emitted from the light emitting layer is reflected at the interface between the transparent electrode and the glass substrate and at the interface between the glass substrate and the air layer, and finally only about 20% of the light is extracted into the air layer. It is said that it cannot be done. For example, Patent Document 1 discloses a light-emitting device in which a refractive material layer made of a highly refractive resin is provided on the upper surface of a glass substrate for the purpose of improving light extraction efficiency.
特開2006-269328号公報JP 2006-269328 A
 しかしながら、特許文献1に開示される構造の場合には以下の問題がある。すなわち、有機層内に低屈折率層が存在した場合には、当該低屈折率層と、裏面反射層として作用する陰極層との間が導波路構造になり、光取出し効率を向上させる目的でガラス基板上面に設けられた屈折材料層にまで光が十分に届かないという問題がある。 However, the structure disclosed in Patent Document 1 has the following problems. That is, when a low refractive index layer is present in the organic layer, a waveguide structure is formed between the low refractive index layer and the cathode layer acting as the back surface reflection layer, so that the light extraction efficiency is improved. There is a problem that light does not sufficiently reach the refractive material layer provided on the upper surface of the glass substrate.
 本発明は上記した如き問題点に鑑みてなされたものであって、光取り出し効率の高い有機EL発光素子を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide an organic EL light emitting device having high light extraction efficiency.
 本発明による発光素子は、有機EL発光層を含む有機層と前記有機層を挟む各々が透明な第1及び第2電極層とからなる発光部と、前記発光部を前記第1電極層を介して担持する透明基板と、を含む有機EL発光素子であって、前記第2電極層に接する光散乱層と、前記第2電極層と共に前記光散乱層上を挟む反射層とを更に有することを特徴とする。 The light-emitting device according to the present invention includes a light-emitting portion including an organic layer including an organic EL light-emitting layer and first and second electrode layers each sandwiching the organic layer, and the light-emitting portion is interposed through the first electrode layer. An organic EL light-emitting element including a transparent substrate that is supported on the second electrode layer, and a light scattering layer in contact with the second electrode layer, and a reflective layer sandwiching the light scattering layer together with the second electrode layer. Features.
 本発明による有機EL発光素子によれば、光取り出し効率を向上させることができる。 The organic EL light emitting device according to the present invention can improve the light extraction efficiency.
第1の実施例である有機EL発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the organic electroluminescent light emitting element which is a 1st Example. 有機層の構成の一例を示す図である。It is a figure which shows an example of a structure of an organic layer. 図1の第2電極層、光散乱層、反射層、及びこれらの構成による光線の反射及び屈折の様子を示す断面図である。It is sectional drawing which shows the mode of reflection and refraction of the light ray by the 2nd electrode layer of FIG. 1, a light-scattering layer, a reflection layer, and these structures. 高屈折樹脂部を含まない発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light emitting element which does not contain a high refractive resin part. 第1の実施例である有機EL発光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the organic electroluminescent light emitting element which is a 1st Example. 図5の第2電極層、光散乱層、反射層、及びこれらの構成による光線の反射及び屈折の様子を示す断面図である。FIG. 6 is a cross-sectional view illustrating a state of reflection and refraction of light rays by the second electrode layer, the light scattering layer, the reflection layer, and the configuration of FIG. 5. 有機EL発光素子の製造プロセスを順に示す断面図である。It is sectional drawing which shows the manufacturing process of an organic electroluminescent light emitting element in order.
 以下、本発明に係る実施例について添付の図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <第1の実施例>
 図1には、本発明の実施例である発光素子1の構成が示されている。
<First embodiment>
FIG. 1 shows a configuration of a light-emitting element 1 that is an embodiment of the present invention.
 発光素子1は、有機EL発光素子である。有機層4は、少なくとも発光層を含む。有機層4は、典型的には図2に示される如く、ホール注入層4a、ホール輸送層4b、発光層4c、電子輸送層4d、及び電子注入層4eが積層されて構成される。 The light emitting element 1 is an organic EL light emitting element. The organic layer 4 includes at least a light emitting layer. As shown in FIG. 2, the organic layer 4 is typically formed by laminating a hole injection layer 4a, a hole transport layer 4b, a light emitting layer 4c, an electron transport layer 4d, and an electron injection layer 4e.
 発光層4cは、有機EL材料からなる。有機EL材料としては、例えば、蛍光材料や燐光材料等の任意の公知の材料を適用可能である。 The light emitting layer 4c is made of an organic EL material. As the organic EL material, for example, any known material such as a fluorescent material or a phosphorescent material can be applied.
 青色発光を与える蛍光材料としては、例えば、ナフタレン、ペリレン、ピレンなどが挙げられる。緑色発光を与える蛍光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。黄色発光を与える蛍光材料としては、例えば、ルブレン、ペリミドン誘導体などが挙げられる。赤色発光を与える蛍光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体などが挙げられる。燐光材料としては、例えば、ルテニウム、ロジウム、パラジウムなどが挙げられる。燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウム、などが挙げられる。 Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene. Examples of fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum). Examples of fluorescent materials that give yellow light include rubrene and perimidone derivatives. Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like. Examples of the phosphorescent material include ruthenium, rhodium, and palladium. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
 有機層4の一方の面上には第1電極層3が形成され、他方の面上には第2電極層5が形成されている。第1電極層3は陽極であり、第2電極層5は陰極である。第1電極層3及び第2電極層5の各々は、光透過性電極層からなる。例えばITO(Indium-tin-oxide)やFTO(fluorine-tin-oxide)が光透過性電極材料として用いられる。また、ZnO、ZnO-Al23(所謂、AZO)、In23-ZnO(所謂、IZO)、SnO2-Sb23(所謂、ATO)、RuO2などの材料を用いることもできる。第1電極層3及び第2電極層5は、有機層4を挟む位置に存在する。以下、第1電極層3、有機層4、及び第2電極層5からなる構成を発光部6と称する。 A first electrode layer 3 is formed on one surface of the organic layer 4, and a second electrode layer 5 is formed on the other surface. The first electrode layer 3 is an anode, and the second electrode layer 5 is a cathode. Each of the 1st electrode layer 3 and the 2nd electrode layer 5 consists of a transparent electrode layer. For example, ITO (Indium-tin-oxide) or FTO (fluorine-tin-oxide) is used as the light transmissive electrode material. It is also possible to use materials such as ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 —ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2, etc. it can. The first electrode layer 3 and the second electrode layer 5 are present at positions sandwiching the organic layer 4. Hereinafter, a configuration including the first electrode layer 3, the organic layer 4, and the second electrode layer 5 is referred to as a light emitting unit 6.
 透明基板2は、第1電極層3を介して発光部6を担持している。透明基板2は、例えばガラスやポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの樹脂フィルムなどの光透過性材料からなる。発光部6から発せられた光10が透明基板2を介して出力される。 The transparent substrate 2 carries the light emitting part 6 via the first electrode layer 3. The transparent substrate 2 is made of a light transmissive material such as a resin film such as glass, polyester, polymethacrylate, polycarbonate, or polysulfone. Light 10 emitted from the light emitting unit 6 is output via the transparent substrate 2.
 第2電極層5上には光散乱層7が形成されている。光散乱層7は、第2電極層5に接している。光散乱層7は、樹脂部7aと、樹脂部7a内に包埋された複数の光散乱粒子7bとからなる。樹脂部7aの材料としては、例えばアクリル、エポキシ、スチレンなどの有機物が用いられる。光散乱層7の厚さは例えば1μm~50μmである。なお、光散乱層7の厚さはこれに限られず、光散乱粒子7bの粒径や総量等に応じて適宜定めることができる。 A light scattering layer 7 is formed on the second electrode layer 5. The light scattering layer 7 is in contact with the second electrode layer 5. The light scattering layer 7 includes a resin portion 7a and a plurality of light scattering particles 7b embedded in the resin portion 7a. As a material for the resin portion 7a, for example, an organic material such as acrylic, epoxy, or styrene is used. The thickness of the light scattering layer 7 is, for example, 1 μm to 50 μm. In addition, the thickness of the light-scattering layer 7 is not restricted to this, It can determine suitably according to the particle size, total amount, etc. of the light-scattering particle 7b.
 光散乱粒子7bは、例えばジルコニア、チタニアなどの高屈折率の無機材料の粒子である。光散乱粒子7bは、例えば球形や楕円形などの粒子表面が曲率を有する形状からなる。光散乱粒子7bの粒径は例えば10nm~200nmである。光散乱粒子7bの各々の粒径は均一又は不均一である。また、光散乱粒子7bの各々は、同一の材料又は2以上の材料からなる。また、光散乱粒子7bは、樹脂部7a内に均一又は不均一に分布している。光散乱粒子7bは、樹脂部7aの全体に亘って分布していることが望ましい。 The light scattering particles 7b are particles of a high refractive index inorganic material such as zirconia or titania. The light scattering particle 7b has a shape in which the particle surface has a curvature, for example, a spherical shape or an elliptical shape. The particle diameter of the light scattering particles 7b is, for example, 10 nm to 200 nm. The particle size of each of the light scattering particles 7b is uniform or non-uniform. Each of the light scattering particles 7b is made of the same material or two or more materials. Further, the light scattering particles 7b are uniformly or non-uniformly distributed in the resin portion 7a. It is desirable that the light scattering particles 7b are distributed over the entire resin portion 7a.
 光散乱層6上には反射層8が形成されている。反射層8は、第2電極層と共に光散乱層6を挟んでいる。反射層8の材料としては、例えばアルミニウムや銀などの金属が用いられる。 A reflective layer 8 is formed on the light scattering layer 6. The reflective layer 8 sandwiches the light scattering layer 6 together with the second electrode layer. As a material of the reflective layer 8, for example, a metal such as aluminum or silver is used.
 透明基板2の屈折率は例えば1.5である。有機層4の屈折率は例えば1.0~2.0である。第1電極層3及び第2電極層5の各々の屈折率は例えば1.8~2.0である。樹脂部7aの屈折率は例えば1.5である。光散乱粒子7bの屈折率は例えば2.0である。光散乱層7の屈折率は例えば1.8~1.9である。なお、これらの屈折率は一例である。 The refractive index of the transparent substrate 2 is 1.5, for example. The refractive index of the organic layer 4 is, for example, 1.0 to 2.0. The refractive indexes of the first electrode layer 3 and the second electrode layer 5 are, for example, 1.8 to 2.0. The refractive index of the resin portion 7a is, for example, 1.5. The refractive index of the light scattering particle 7b is, for example, 2.0. The refractive index of the light scattering layer 7 is, for example, 1.8 to 1.9. In addition, these refractive indexes are examples.
 図3には、第2電極層5、光散乱層7、反射層8、及び、これらの構成による光線21及び22の反射及び屈折の様子が示されている。 FIG. 3 shows the second electrode layer 5, the light scattering layer 7, the reflection layer 8, and how the light beams 21 and 22 are reflected and refracted by these configurations.
 仮に、高屈折率の光散乱粒子7bが存在しない場合には、図3に破線で示されるように、有機層4からの光線21は反射層8で入射角と同じ角度で反射する。その結果、光線21のうち、臨界角以上の角度で入射する光は、第2電極層5と反射層8との間で全反射を繰り返して、透明基板2(図1)側には取り出されなくなってしまう。 If the high-refractive-index light scattering particles 7b do not exist, the light beam 21 from the organic layer 4 is reflected by the reflective layer 8 at the same angle as the incident angle, as shown by the broken line in FIG. As a result, light incident on the light beam 21 at an angle greater than the critical angle repeats total reflection between the second electrode layer 5 and the reflective layer 8 and is extracted to the transparent substrate 2 (FIG. 1) side. It will disappear.
 これに対して、光散乱層7を有する本実施例の発光素子1においては、図3に実線で示されるように、有機層4からの光線22は反射層8及び光散乱粒子7bにより反射及び屈折を繰り返す。反射及び屈折の繰り返しにより、光線22の大部分が第2電極層5に対して取出し可能な角度で入射し得る。 On the other hand, in the light emitting element 1 of the present example having the light scattering layer 7, the light beam 22 from the organic layer 4 is reflected and reflected by the reflection layer 8 and the light scattering particles 7b as shown by the solid line in FIG. Repeat refraction. By repeating reflection and refraction, most of the light beam 22 can be incident on the second electrode layer 5 at an extractable angle.
 上記したように、本実施例の発光素子1においては、第1電極層3のみならず、第2電極層5をも光透過性電極層としている。そして、第2電極層5上には光散乱層7が形成され、更に、光散乱層7上に反射層8が形成されている。光散乱層7は、複数の高屈折率の光散乱粒子7bを含んでいる。有機層4からの光線22は反射層8及び光散乱粒子7bによりランダムに反射及び屈折を繰り返し、第2電極層5に対して取出し可能な角度で入射し得る。これにより、透明基板2側への光線22の取出し効率を向上させることができる。 As described above, in the light-emitting element 1 of this example, not only the first electrode layer 3 but also the second electrode layer 5 is a light-transmitting electrode layer. A light scattering layer 7 is formed on the second electrode layer 5, and a reflection layer 8 is further formed on the light scattering layer 7. The light scattering layer 7 includes a plurality of light scattering particles 7b having a high refractive index. The light beam 22 from the organic layer 4 is repeatedly reflected and refracted randomly by the reflective layer 8 and the light scattering particles 7 b, and can be incident on the second electrode layer 5 at an angle that can be taken out. Thereby, the extraction efficiency of the light beam 22 to the transparent substrate 2 side can be improved.
 また、光散乱層7が複数の光散乱粒子7bを含む構成としたことにより、屈折率を容易に調整することができる。すなわち、光散乱粒子7bの粒径及び/又は分布を均一又は不均一に調整することにより、又は、光散乱粒子7bの材料を変更することにより、光散乱層7の屈折率を容易に調整することができる。 In addition, since the light scattering layer 7 includes a plurality of light scattering particles 7b, the refractive index can be easily adjusted. That is, the refractive index of the light scattering layer 7 is easily adjusted by adjusting the particle size and / or distribution of the light scattering particles 7b uniformly or non-uniformly or by changing the material of the light scattering particles 7b. be able to.
 樹脂部7aの屈折率よりも高い屈折率の光散乱粒子を用いることにより光散乱層7の屈折率を大きくしている。また、光散乱粒子7bを球形などの粒子表面が曲率を有する形状とすることにより、有機層4からの光線22を反射及び屈折させ易くなる。光散乱粒子7bの粒径を不均一とすることによっても光線22を反射及び屈折させ易くなる。 The refractive index of the light scattering layer 7 is increased by using light scattering particles having a refractive index higher than that of the resin portion 7a. Further, by making the light scattering particles 7b have a spherical shape such as a spherical surface, the light rays 22 from the organic layer 4 can be easily reflected and refracted. The light beam 22 can be easily reflected and refracted by making the particle diameter of the light scattering particles 7b nonuniform.
 なお、樹脂部7aは必ずしも必要では無い。図4には、樹脂部7aを含まない発光素子1の構成が示されている。光散乱層7は、互いに接着された複数の光散乱粒子7bからなる。上記の実施例と同様に、光散乱層7は第2電極層5上に形成され、光散乱層7上には反射層8が形成されている。樹脂部7aを用いないのでコストを削減できる。 The resin part 7a is not always necessary. FIG. 4 shows a configuration of the light emitting element 1 that does not include the resin portion 7a. The light scattering layer 7 is composed of a plurality of light scattering particles 7b adhered to each other. Similar to the above embodiment, the light scattering layer 7 is formed on the second electrode layer 5, and the reflection layer 8 is formed on the light scattering layer 7. Since the resin portion 7a is not used, the cost can be reduced.
 また、上記の実施例は、光散乱層7が複数の光散乱粒子7bを含む場合の例であるが、これに限られない。光散乱層7は複数の気泡を含む樹脂から構成されても良い。この場合にも当該気泡による屈折により、同様の効果を奏することができる。 The above embodiment is an example in which the light scattering layer 7 includes a plurality of light scattering particles 7b, but is not limited thereto. The light scattering layer 7 may be made of a resin containing a plurality of bubbles. Also in this case, the same effect can be obtained by refraction by the bubbles.
 <第2の実施例>
 以下、第1の実施例と異なる部分について主に説明する。
<Second embodiment>
In the following, differences from the first embodiment will be mainly described.
 図5には、本実施例の発光素子1は、表面及び/又は裏面が反射面として作用する反射部7cを更に含む。反射部7cは、光散乱層7内に設けられている。2つ以上の反射部7cが設けられることが望ましい。この場合、反射部7cは、等間隔に設けられても良いし、例えば発光素子1の端部に近付く程間隔が広くなる等任意の位置に設けることができる。反射部7cの反射面は、光散乱層7の厚さ方向に垂直な方向をよぎるように設けられている。反射部7cは例えばアルミニウムや銀などの金属の薄板からなる。 In FIG. 5, the light-emitting element 1 of the present embodiment further includes a reflection portion 7 c whose front surface and / or back surface acts as a reflection surface. The reflection part 7 c is provided in the light scattering layer 7. It is desirable to provide two or more reflecting portions 7c. In this case, the reflection parts 7c may be provided at equal intervals, or may be provided at any position, for example, as the distance from the end of the light emitting element 1 increases. The reflection surface of the reflection part 7 c is provided so as to cross a direction perpendicular to the thickness direction of the light scattering layer 7. The reflecting portion 7c is made of a thin metal plate such as aluminum or silver.
 図6には、第2電極層5、光散乱層7、反射層8、及びこれらの構成による光線の反射及び屈折の様子が示されている。有機層4からの光線22は、反射層8及び光散乱粒子7bのみならず、反射部7cによっても反射される。これにより、第2電極層5に対して取出し可能な角度で入射する光線22a及び22bを増加させることができる。これにより、透明基板2側への光線22の取出し効率を更に向上させることができる。 FIG. 6 shows the second electrode layer 5, the light scattering layer 7, the reflective layer 8, and the state of reflection and refraction of light rays by these configurations. The light beam 22 from the organic layer 4 is reflected not only by the reflective layer 8 and the light scattering particles 7b but also by the reflective portion 7c. Thereby, the light rays 22a and 22b incident on the second electrode layer 5 at an angle that can be taken out can be increased. Thereby, the extraction efficiency of the light beam 22 to the transparent substrate 2 side can be further improved.
 <発光素子の製造方法>
 以下、図7を参照しつつ、発光素子1の製造方法について説明する。
<Method for manufacturing light-emitting element>
Hereinafter, the manufacturing method of the light-emitting element 1 will be described with reference to FIG.
 先ず、例えばガラスや樹脂フィルムなどの光透過性材料からなる透明基板2上に、例えばスパッタリング法など成膜法により、例えばITOなどの光透過性電極材料からなる第1電極層3を成膜する(図7(a))。なお、第1電極層3の形成後に、第1電極層3の表面を改質するためのプラズマ処理が行われても良い。例えば、第1電極層3がITOからなる場合、かかるプラズマ処理を施すことによって、この後に第1電極層3上に形成される有機層4への正孔注入効率が向上する。 First, a first electrode layer 3 made of a light transmissive electrode material such as ITO is formed on a transparent substrate 2 made of a light transmissive material such as glass or a resin film by a film forming method such as sputtering. (FIG. 7A). In addition, after the formation of the first electrode layer 3, plasma treatment for modifying the surface of the first electrode layer 3 may be performed. For example, when the first electrode layer 3 is made of ITO, the efficiency of hole injection into the organic layer 4 formed on the first electrode layer 3 is improved by performing such plasma treatment.
 次に、第1電極層3上に、エレクトロルミネセンス特性を呈する有機化合物を含有する発光層4c(図2)を含む有機層4を形成する(図7(b))。有機ELパネルの機能層を成膜する手法として、スパッタリング法や真空蒸着法などの乾式塗布法や、スクリーン印刷、スプレイ法、インクジェット法、スピンコート法、グラビア印刷、ロールコータ法などの湿式塗布法が知られている。一般的に、有機機能層の材料が低分子有機化合物である場合には蒸着法等の乾式成膜法が用いられ、有機機能層の材料が高分子有機化合物である場合にはスピンコート法等の湿式成膜法が用いられる。また、例えば、ホール注入層4a、ホール輸送層4b、発光層4c(図2)を湿式塗布法により成膜して、電子輸送層4d及び電子注入層4e(図2)を、それぞれ乾式塗布法により順次成膜しても良い。また、これらの全ての層を湿式塗布法により順次成膜しても良い。 Next, an organic layer 4 including a light emitting layer 4c (FIG. 2) containing an organic compound exhibiting electroluminescence characteristics is formed on the first electrode layer 3 (FIG. 7B). As a method for forming a functional layer of an organic EL panel, a dry coating method such as a sputtering method or a vacuum deposition method, or a wet coating method such as a screen printing, a spray method, an ink jet method, a spin coating method, a gravure printing, or a roll coater method. It has been known. Generally, when the organic functional layer material is a low molecular organic compound, a dry film forming method such as vapor deposition is used, and when the organic functional layer material is a high molecular organic compound, a spin coating method or the like is used. The wet film forming method is used. Further, for example, the hole injection layer 4a, the hole transport layer 4b, and the light emitting layer 4c (FIG. 2) are formed by a wet coating method, and the electron transport layer 4d and the electron injection layer 4e (FIG. 2) are respectively formed by a dry coating method. May be sequentially formed. Further, all these layers may be sequentially formed by a wet coating method.
 次に、有機層4上に、例えばスパッタリング法など成膜法により、例えばITOなどの光透過性電極材料からなる第2電極層5を成膜する(図7(c))。 Next, the second electrode layer 5 made of a light transmissive electrode material such as ITO is formed on the organic layer 4 by a film forming method such as sputtering (FIG. 7C).
 次に、第2電極層5上に、例えばスピンコート法、インクジェット法等の成膜法により、樹脂内に例えばジルコニア、チタニアなどの無機材料からなる複数の光散乱粒子7bが混入された光散乱層7を成膜する(図7(d))。樹脂部7aは、例えばアクリル、エポキシ、スチレンなどの有機物化合物からなる。光散乱層7の厚さは例えば1μm~50μmである。 Next, light scattering in which a plurality of light scattering particles 7b made of an inorganic material such as zirconia or titania are mixed in the resin on the second electrode layer 5 by a film forming method such as a spin coating method or an ink jet method. Layer 7 is formed (FIG. 7D). The resin portion 7a is made of an organic compound such as acrylic, epoxy, or styrene. The thickness of the light scattering layer 7 is, for example, 1 μm to 50 μm.
 光散乱層7内に反射部7c(図5、図6)を更に形成しても良い。反射部7cを含む光散乱層7は、例えば、第2電極層5上に光散乱層7の厚さにほぼ等しい高さ(厚さ)を有する例えばアルミニウムなどからなる不透明な盤状のハニカム構造体を接着しておいて、その上から光散乱粒子7bが混入された溶融状態の樹脂を塗布することにより形成することができる。 A reflective portion 7c (FIGS. 5 and 6) may be further formed in the light scattering layer 7. The light scattering layer 7 including the reflecting portion 7c is, for example, an opaque disk-shaped honeycomb structure made of, for example, aluminum having a height (thickness) substantially equal to the thickness of the light scattering layer 7 on the second electrode layer 5. It can be formed by adhering a body and applying a molten resin mixed with the light scattering particles 7b from above.
 また、光散乱層7が複数の気泡を含む樹脂からなる構造とすることもできる。かかる構造からなる光散乱層7は、例えば空気などの雰囲気中で樹脂を攪拌して当該樹脂中に複数の気泡を生じさせた後、これを用いて例えばスピンコート法などの成膜法によって成膜することにより形成することができる。 Also, the light scattering layer 7 may be made of a resin containing a plurality of bubbles. The light scattering layer 7 having such a structure is formed by, for example, forming a plurality of bubbles in the resin by stirring the resin in an atmosphere such as air, and then using this to form a film by a film forming method such as a spin coating method. It can be formed by forming a film.
 次に、光散乱層7上に、例えば蒸着法など成膜法により、例えばアルミニウムや銀などの金属等の反射性材料からなる反射層8を形成する(図7(e))。 Next, a reflective layer 8 made of a reflective material such as a metal such as aluminum or silver is formed on the light scattering layer 7 by a film forming method such as vapor deposition (FIG. 7E).
 上記した工程により、発光素子1を製造することができる。 The light emitting device 1 can be manufactured by the above-described steps.
1 発光素子
2 透明基板
3 第1電極層
4 有機層
5 第2電極層
6 発光部
7 光散乱層
7a 樹脂部
7b 光散乱粒子
7c 反射部
8 反射層
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Transparent substrate 3 1st electrode layer 4 Organic layer 5 2nd electrode layer 6 Light emission part 7 Light scattering layer 7a Resin part 7b Light scattering particle 7c Reflection part 8 Reflection layer

Claims (7)

  1.  有機EL発光層を含む有機層と前記有機層を挟む各々が透明な第1及び第2電極層とからなる発光部と、前記発光部を前記第1電極層を介して担持する透明基板と、を含む有機EL発光素子であって、
     前記第2電極層に接する光散乱層と、前記第2電極層と共に前記光散乱層上を挟む反射層とを更に有することを特徴とする有機EL発光素子。
    A light emitting part comprising an organic layer including an organic EL light emitting layer and each of the transparent first and second electrode layers sandwiching the organic layer, a transparent substrate carrying the light emitting part via the first electrode layer, An organic EL light emitting device containing
    An organic EL light emitting device, further comprising: a light scattering layer in contact with the second electrode layer; and a reflective layer sandwiching the light scattering layer together with the second electrode layer.
  2.  前記光散乱層は、樹脂部と、前記樹脂部内に包埋された複数の光散乱粒子とからなることを特徴とする請求項1に記載の有機EL発光素子。 The organic light-emitting device according to claim 1, wherein the light scattering layer includes a resin portion and a plurality of light scattering particles embedded in the resin portion.
  3.  前記光散乱粒子の粒径が均一又は不均一であることを特徴とする請求項2に記載の有機EL発光素子。 The organic EL light-emitting device according to claim 2, wherein the light scattering particles have a uniform or non-uniform particle size.
  4.  前記光散乱粒子の表面は曲率を有することを特徴とする請求項2に記載の有機EL発光素子。 3. The organic EL light emitting device according to claim 2, wherein the surface of the light scattering particle has a curvature.
  5.  前記光散乱粒子の屈折率は前記樹脂部の屈折率よりも高いことを特徴とする請求項2に記載の有機EL発光素子。 The organic EL light-emitting element according to claim 2, wherein a refractive index of the light scattering particles is higher than a refractive index of the resin portion.
  6.  前記光散乱層は、複数の気泡を含む樹脂からなることを特徴とする請求項1に記載の有機EL発光素子。 2. The organic EL light-emitting element according to claim 1, wherein the light scattering layer is made of a resin containing a plurality of bubbles.
  7.  前記光散乱層は、その厚さ方向に垂直な方向をよぎる表面及び/又は裏面が反射面として作用する少なくとも1つの反射部を更に含むことを特徴とする請求項1に記載の有機EL発光素子。 2. The organic EL light-emitting device according to claim 1, wherein the light scattering layer further includes at least one reflection portion in which a front surface and / or a back surface crossing a direction perpendicular to a thickness direction of the light scattering layer acts as a reflection surface. .
PCT/JP2012/060931 2012-04-24 2012-04-24 Organic el light emitting element WO2013161001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060931 WO2013161001A1 (en) 2012-04-24 2012-04-24 Organic el light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060931 WO2013161001A1 (en) 2012-04-24 2012-04-24 Organic el light emitting element

Publications (1)

Publication Number Publication Date
WO2013161001A1 true WO2013161001A1 (en) 2013-10-31

Family

ID=49482372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060931 WO2013161001A1 (en) 2012-04-24 2012-04-24 Organic el light emitting element

Country Status (1)

Country Link
WO (1) WO2013161001A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289806A (en) * 2020-10-16 2021-01-29 Tcl华星光电技术有限公司 Array substrate and display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303677A (en) * 2002-04-09 2003-10-24 Dainippon Printing Co Ltd Self-luminous element
JP2006294491A (en) * 2005-04-13 2006-10-26 Seiko Epson Corp Electroluminescence device, method for manufacturing the same, and electronic apparatus
JP2009216862A (en) * 2008-03-10 2009-09-24 Toshiba Corp Light taking-out layer for luminous device and organic electroluminescence element using the same
JP2010182449A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Organic electroluminescent display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303677A (en) * 2002-04-09 2003-10-24 Dainippon Printing Co Ltd Self-luminous element
JP2006294491A (en) * 2005-04-13 2006-10-26 Seiko Epson Corp Electroluminescence device, method for manufacturing the same, and electronic apparatus
JP2009216862A (en) * 2008-03-10 2009-09-24 Toshiba Corp Light taking-out layer for luminous device and organic electroluminescence element using the same
JP2010182449A (en) * 2009-02-03 2010-08-19 Fujifilm Corp Organic electroluminescent display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112289806A (en) * 2020-10-16 2021-01-29 Tcl华星光电技术有限公司 Array substrate and display panel

Similar Documents

Publication Publication Date Title
US8921841B2 (en) Porous glass substrate for displays and method of manufacturing the same
US8987767B2 (en) Light emitting device having improved light extraction efficiency
WO2013190661A1 (en) Organic electroluminescence device
CN103490020A (en) Organic electroluminescence device, manufacturing method thereof, display device and illuminating device
JP2007273397A (en) Organic el polychromatic display panel
WO2013027508A1 (en) Planar light-emitting body
US9960387B2 (en) Method for manufacturing light extraction substrate for organic light-emitting element, light extraction substrate for organic light-emitting element, and organic light-emitting element comprising same
WO2012090712A1 (en) Organic light-emitting device
US20150340658A1 (en) Light-emitting device
JP5179392B2 (en) Organic EL light emitting device
US20170358763A1 (en) Flexible substrate and method of manufacturing same
EP3200195A1 (en) Flexible substrate and method of manufacturing same
EP3200254B1 (en) Light extraction substrate for organic light emitting element and organic light emitting element comprising same
WO2013161001A1 (en) Organic el light emitting element
WO2013065177A1 (en) Light-emitting device
KR20140074446A (en) Light emitting device having improved light extraction efficiency and method of fabricating the same
US10276834B2 (en) Organic light-emitting device
WO2015005638A1 (en) Light extraction substrate for organic light emitting device, fabrication method therefor and organic light emitting device including same
WO2015009057A1 (en) Light extraction substrate for organic light-emitting device, manufacturing method therefor, and organic light-emitting device comprising same
WO2013161000A1 (en) Light emitting element and method for manufacturing same
KR101342467B1 (en) High efficiency organic light emitting diode and manufacturing method thereof
WO2013190621A1 (en) Electroluminescence element
WO2013161002A1 (en) Light-emitting element, and production method therefor
WO2013186916A1 (en) Organic electroluminescence device
JP2017147042A (en) Light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12875344

Country of ref document: EP

Kind code of ref document: A1