WO2013186858A1 - Graphene laminate and method for manufacturing graphene laminate - Google Patents

Graphene laminate and method for manufacturing graphene laminate Download PDF

Info

Publication number
WO2013186858A1
WO2013186858A1 PCT/JP2012/065036 JP2012065036W WO2013186858A1 WO 2013186858 A1 WO2013186858 A1 WO 2013186858A1 JP 2012065036 W JP2012065036 W JP 2012065036W WO 2013186858 A1 WO2013186858 A1 WO 2013186858A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
adhesive layer
graphene film
film
adhesive
Prior art date
Application number
PCT/JP2012/065036
Other languages
French (fr)
Japanese (ja)
Inventor
正治 長谷川
Original Assignee
グラフェンプラットフォーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グラフェンプラットフォーム株式会社 filed Critical グラフェンプラットフォーム株式会社
Priority to PCT/JP2012/065036 priority Critical patent/WO2013186858A1/en
Publication of WO2013186858A1 publication Critical patent/WO2013186858A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED

Definitions

  • the present invention relates to a graphene laminate and a graphene laminate in which graphene used in a product such as a transparent electrode, a conductive thin film, a heat dissipation / heating element, a display, an organic LED, and a solar cell can be directly attached to these products. It relates to a manufacturing method.
  • Graphene is composed of carbon atoms in layers or sheets, has electrical, mechanical and chemical stability, and has excellent electrical conductivity. It is attracting attention as a basic element. Graphene has been found to be easily adsorbed by molecules such as gas due to the structure of carbon atoms forming a hexagonal plane. This is due to the van der Waals force acting between the carbon atom of graphene and other molecules, and the force is about a few tenths of a chemical bond. It is expected that this adsorption function will be used because the pressure of carbon atoms is a considerable pressure when integrated.
  • a hydrophilic oxide layer is formed on a silicon wafer on which a hydrophobic metal catalyst layer is formed, and the graphene layer is formed into a metal by using chemical vapor deposition. Some are formed by growing in a film shape on the upper surface of the catalyst layer (see, for example, Patent Document 1).
  • Patent Document 1 when transferring to another molded member, it is necessary to remove the metal catalyst layer from the graphene member on which the graphene layer is formed by an etching process. There is a problem that a process for transferring to the formed member is required, an equipment for an etching process is required, it takes time and is difficult to handle.
  • the present invention has been made paying attention to such problems, and an object of the present invention is to provide a graphene laminate including a graphene layer that is easy to handle and a method for producing the graphene laminate.
  • the graphene laminate of the present invention is At least one graphene film in which carbon atoms are covalently bonded; and An adhesive layer with physical adhesive strength; A base material having a predetermined strength; With The adhesive layer is adhered to one surface of the graphene film, and the substrate is provided on the other surface side of the graphene film. According to this feature, the adhesive layer is adhered to one surface of the graphene film, and the substrate is provided on the other surface side of the graphene film, so that the graphene film is formed on the substrate having a predetermined strength. Therefore, the graphene film can be easily handled, and the adhesive layer can be attached to another member by providing the adhesive layer.
  • membrane can be affixed on another member through an adhesion layer.
  • a graphene film membrane can be formed on another member through an adhesive layer.
  • a second adhesive layer having a physical adhesive force is provided between the other surface of the graphene film and the base material.
  • the adhesive layer can be provided on one surface of the graphene film, and the second adhesive layer can be provided on the other surface.
  • the graphene film is formed on the base material having a predetermined strength via the second adhesive layer, the graphene film can be easily handled.
  • the pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive different from the second pressure-sensitive adhesive layer.
  • the second adhesive layer is configured such that the adhesive strength can be lost or reduced, and the adhesive layer is configured so that the adhesive strength is not lost or reduced, so that only the second adhesive layer loses the adhesive strength.
  • the base material and the graphene film can be separated by decreasing, and the adhesive force does not disappear or decrease on the adhesive layer side, so that the graphene film can be attached to another member as it is.
  • the second adhesive layer is characterized in that the adhesive force can be lost or reduced.
  • the graphene film can be peeled from the substrate by eliminating or reducing the physical adhesive force of the second adhesive layer. In this case, if the graphene film is adhered to another member via the adhesive layer, and then the physical adhesive force of the second adhesive layer is lost, the substrate and the graphene film can be separated, In addition, the graphene film can be attached to another member by the adhesive function of the adhesive layer.
  • the adhesive force of the second adhesive layer is characterized in that it disappears or is reduced by light irradiation. According to this feature, the adhesive force of the second adhesive layer is lost or reduced by irradiating light, and the graphene film can be peeled from the substrate.
  • the second pressure-sensitive adhesive layer can use a pressure-sensitive adhesive that loses its adhesive strength when irradiated with light such as ultraviolet rays.
  • the adhesive force of the second adhesive layer is characterized in that it disappears or is reduced by irradiation with ultraviolet rays. According to this feature, the adhesive force of the second adhesive layer is lost or reduced by irradiating ultraviolet rays, and the graphene film can be peeled from the substrate.
  • the adhesive force of the second adhesive layer is characterized in that it disappears or is reduced by heat or a solvent.
  • the graphene film can be peeled from the substrate by the disappearance or reduction of the adhesive force of the second adhesive layer by heat or a solvent.
  • the pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are made of the same pressure-sensitive adhesive. According to this feature, since the pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are composed of the same pressure-sensitive adhesive, only one type of pressure-sensitive adhesive may be used for manufacturing, which is convenient and convenient.
  • the adhesive layer is configured so that the adhesive force does not disappear or decrease. According to this feature, since the adhesive force of the adhesive layer is maintained so that the adhesive force does not disappear or decrease, the graphene film can be attached to another member via the adhesive layer.
  • the base material is characterized by having flexibility or elasticity. According to this feature, since the base material has flexibility or elasticity, the shape of the base material can be changed in accordance with the shape of the object to which the graphene film is attached.
  • the base material is formed of a resin film. According to this feature, since the base material is made of a resin film, the shape of the base material can be changed in accordance with the shape of the object to which the graphene film is attached.
  • the substrate is characterized by having at least one of thermosetting, thermoplastic, heat-shrinkable, biodegradable, and water-soluble functions.
  • the substrate can be provided with at least one of thermosetting, thermoplastic, heat-shrinkable, biodegradable, and water-soluble functions in accordance with the shape of other members to be used. .
  • the base material is characterized by being composed of at least one of glass, metal, and ceramics. According to this feature, since the base material is made of glass, metal, or ceramics, the base material can have a predetermined strength.
  • the base material is characterized by having translucency. According to this feature, since the substrate has translucency, the second adhesive layer can be irradiated with light or ultraviolet light from the substrate side. Further, when the graphene film is adhered to another member via the adhesive layer, light can pass through the base material and reach the graphene film.
  • a protective member for protecting the adhesive layer is provided. According to this feature, since the adhesive layer can be protected by the protective member, handling becomes easy.
  • the protective member is characterized by being processed to be peelable from the adhesive layer. According to this feature, since the protective member is processed so as to be peelable from the adhesive layer, the protective member is easily peeled from the adhesive layer.
  • the graphene film is characterized in that a predetermined pattern is formed. According to this feature, a graphene stack having a patterned graphene film can be formed.
  • the graphene laminate of the present invention At least one graphene film in which carbon atoms are covalently bonded; and An adhesive layer with physical adhesive strength; With The adhesive layer is adhered to one surface of the graphene film.
  • the adhesive layer since the adhesive layer is provided on one surface of the graphene film, the adhesive layer can be attached to another member. Thereby, a graphene film
  • membrane can be affixed on another member through an adhesion layer.
  • a second adhesive layer having physical adhesive strength is adhered to the other surface of the graphene film.
  • the adhesive layer is adhered to one surface of the graphene film, and the second adhesive layer is adhered to the other surface of the graphene film.
  • membrane can be affixed on another member via an adhesion layer or a 2nd adhesion layer.
  • a method for producing a graphene laminate comprising attaching at least one graphene film covalently bonded with carbon atoms to a member, An adhesive layer forming step of forming an adhesive layer having physical adhesive force on the member; An attaching step of attaching a graphene film formed on one surface of a base material having a predetermined strength to the adhesive layer of the member; It is characterized by providing.
  • a pressure-sensitive adhesive layer forming step a pressure-sensitive adhesive layer having a physical pressure-sensitive adhesive force is formed on the member, and in the attaching step, one surface of the base material having a predetermined strength with respect to the pressure-sensitive adhesive layer of the member.
  • the graphene film formed on can be attached.
  • a material whose surface of the member is rough it may be difficult to adsorb only by van der Waals force of the graphene film, but by forming an adhesive layer on the surface of the member, the adhesive layer on the member Through this, a graphene film can be formed.
  • the method for producing a graphene laminate of the present invention is characterized by comprising a peeling step for peeling off the substrate after the attaching step.
  • the base material is peeled off in the peeling step, thereby simplifying the graphene laminate. Can be manufactured.
  • FIG. 6 is a cross-sectional view (a) to (c) of another configuration example of the graphene laminate in the example. It is explanatory drawing (a)-(c) which shows the usage example of the graphene laminated body in an Example. It is explanatory drawing (a) which shows the other usage example of the graphene laminated body in an Example.
  • FIG. 1 shows a configuration diagram of a graphene laminate in the example
  • FIG. 1 (a) shows a plan view
  • FIG. 1 (b) shows a cross-sectional view.
  • a graphene laminate 1 includes at least one graphene film 2 in which carbon atoms are covalently bonded, an adhesive layer 3 having a physical adhesive force, and a base material 4 having a predetermined strength.
  • the graphene film 2 is adhered to at least a part of one surface of the layer 3, and the substrate 4 is adhered to the other surface of the adhesive layer 3.
  • the graphene laminate 1 is laminated in three layers by forming the adhesive layer 3 on the upper surface of the substrate 4 and further forming the graphene film 2 on the upper surface of the adhesive layer 3.
  • the graphene laminate 1 in the present example includes an adhesive layer 3 having a physical adhesive force larger than the van der Waals force acting between the carbon atom of the graphene film 2 and other molecules.
  • the graphene film 2 and the substrate 4 are physically adhered by the adhesive layer 3 by providing the adhesive layer 3 having a physical adhesive force larger than the adsorption force that the graphene film 2 adsorbs to other objects. I am letting.
  • the graphene film 2 can be peeled from the base material 4 by configuring the adhesive layer 3 so that the adhesive strength can be lost or reduced.
  • the graphene laminated body which can affix the graphene film 2 on other products directly can be comprised.
  • the base material 4 for example, a substrate having a predetermined strength such as a resin film, glass, metal, ceramics, or the like can be used, and a deformable material having flexibility or elasticity can be used.
  • the shape of the base material can be changed in accordance with the shape of the object to which the graphene film is attached.
  • the substrate 4 may be provided with at least one of thermosetting, thermoplasticity, heat shrinkability, biodegradability, and water solubility.
  • the graphene film 2 is formed on the base material 4 having a predetermined strength via the adhesive layer 3, it is possible to easily handle a graphene film that is difficult to handle.
  • a pressure-sensitive adhesive, an adhesive, or the like that can be configured to lose or reduce the pressure-sensitive adhesive force can be used.
  • an adhesive that loses its adhesive strength when irradiated with light such as ultraviolet rays an adhesive that loses or decreases its adhesive strength when heated or cooled, or is immersed in a solvent such as water
  • An adhesive that loses or reduces its power can be used.
  • the pressure-sensitive adhesive whose adhesive strength is lost or reduced by heating is at least a urea resin type, a melamine resin type, a phenol resin type, an epoxy resin type, a cyanoacrylate type, a polyurethane type, an acrylic resin type, and an EVA resin.
  • a resin composition can be used.
  • the pressure sensitive adhesive whose viscosity is lost or reduced by cooling is at least a urea resin type, a melamine resin type, a phenol resin type, an epoxy resin type, a cyanoacrylate type, a polyurethane type, an acrylic resin type, an acrylic resin.
  • a resin composition comprising any one of a system pressure sensitive system, a rubber pressure sensitive system, and other pressure sensitive adhesives and composed of one or a plurality of pressure sensitive adhesives can be used.
  • a resin composition comprising one or more of resin-based emulsion, water-soluble isocyanate-based, synthetic rubber-based latex, and other water-soluble adhesives can be used.
  • the graphene laminate is temporarily attached to another member in the adhesive layer 3 where the graphene film 2 is not formed. Therefore, positioning to another member to which the graphene film 2 is attached becomes easy.
  • the graphene film 2 may be formed on the entire upper surface of the adhesive layer 3.
  • the adhesive layer 3 may be formed on at least a part of the upper surface of the base material 4, the portion of the base material 4 on which the adhesive layer 3 is not formed can be gripped with tweezers or the like. Handling of the laminated body 1 becomes easy.
  • the adhesive layer 3 may be formed on the entire upper surface of the substrate 4.
  • the graphene laminate 1 in this example can be configured by forming the graphene film 2 on the adhesive sheet 11.
  • the graphene film 2 is formed on the metal film 7 (for example, copper Cu, nickel Ni, aluminum AL, iron Fe, cobalt Co, etc.) as a catalyst by using chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • FIG. 2A a two-layer roll sheet 8 composed of the metal film 7 and the graphene film 2 is prepared.
  • CVD chemical vapor deposition
  • thermal CVD film formation, plasma CVD, or the like can be used.
  • the two-layer roll sheet 8 on which the graphene film 2 is formed is cut into a two-layer rectangular sheet 9 having an arbitrary size as shown in FIG.
  • an adhesive sheet 11 is attached to the graphene film 2 side of a two-layer rectangular sheet 9 using a laminator 10.
  • the graphene film 2, the metal film 7 and the adhesive sheet 11 composed of the two-layer rectangular sheet 9 and the adhesive sheet 11 are acidic. Is immersed in a water tank 12 filled with an etching solution 13. Thereby, the metal film 7 is melted by the etching solution 13, and only the graphene film 2 and the adhesive sheet 11 remain.
  • the base material 4 and the pressure-sensitive adhesive layer 3 of the pressure-sensitive adhesive sheet 11 use acid-resistant materials that can withstand the etching solution 13. Further, as shown in FIG. 3 (e), the graphene film 2 and the pressure-sensitive adhesive sheet 11 are washed with the neutralizing solution 14 to complete the production of the graphene laminate 1.
  • the graphene laminate 1 in the present example can be formed by the steps as described above.
  • the graphene film 2 can be directly formed on the adhesive sheet 11 instead of forming the graphene film 2 on the metal film 7. Furthermore, as another method of forming the graphene film 2 on the pressure-sensitive adhesive sheet 11, the pressure-sensitive adhesive sheet 11 is attached to the member on which the graphene film 2 is formed, and the pressure-sensitive adhesive sheet 11 is peeled off from the member. It can be formed by transferring the graphene film 2. As another method for forming the graphene film 2 on the pressure-sensitive adhesive sheet 11, graphite powder obtained by pulverizing graphite is dispersed with ultrasonic waves or the like, dissolved in a solvent, and the solvent is volatilized to form the pressure-sensitive adhesive sheet 11. It can also be formed by coating, and then removing the solvent by removing it.
  • the graphene film 2 is formed on the surface of the pressure-sensitive adhesive sheet 11 and is exposed, so that the graphene film 2 is not damaged when shipped or handled. Therefore, a protective member for protecting the graphene film 2 on the surface of the graphene laminate 1 may be provided.
  • the graphene laminate 1 can be provided with a protective film 15 as a protective member on the graphene film 2 side as shown in FIG.
  • a resin film such as a silicone film, a fluorine film, or a polyethylene film can be used.
  • the surfaces of these films may be subjected to embossing or the like for facilitating peeling from the graphene film 2.
  • a light shielding film may be further formed on the surface of the film by aluminum vapor deposition or the like.
  • the protective film 15 includes gas barrier properties (functions that block moisture, oxygen, etc.), light shielding properties (functions that block visible light, ultraviolet rays, etc.), releasability (functions that make the protective film 15 easy to peel off from the graphene film 2). Etc. are desirable.
  • the graphene film 2 can be further protected by packing it in a case or a packing bag 16 as a protective member.
  • the packing bag 16 can prevent oxidation of graphene by filling a vacuum state or an inert gas such as nitrogen or argon.
  • the packaging bag 16 desirably has gas barrier properties (function of blocking moisture, oxygen, etc.), light shielding properties (function of blocking visible light, ultraviolet rays, etc.) and the like.
  • FIG. 5A shows a case where the graphene laminate 1 of the above-described embodiment is formed in a rectangular sheet shape 1A
  • FIG. 5B shows the graphene laminate 1 of the above-described embodiment of A4 size
  • FIG. 5 (c) shows a case where the graphene laminate 1C is formed as a narrow roll-like shape 5 as shown in FIG.
  • FIG.5 (d) shows the case where the graphene laminated body 1D is formed by making the graphene laminated body 1 of the Example mentioned above into the roll shape 6 of the width
  • FIG.5 (e) is the implementation mentioned above.
  • the graphene laminated body 1 of an example has shown the modification of the rectangular sheet form 1E.
  • the rectangular sheet-like shape 1 ⁇ / b> E may partially expose the adhesive layer 3 of the graphene laminate 1 by removing a part of the graphene film 2. Since the graphene laminate can be temporarily held by another member at the portion of the adhesive layer 3 where the graphene film 2 is not formed, positioning to the other member to which the graphene film 2 is attached becomes easy. .
  • the graphene film 2 of the graphene laminated body 1 in the present embodiment can be transferred to the object 17 of another member by the following method.
  • the graphene laminate 1A taken out from the packing bag 16 is cut into an arbitrary size, and the protective film 15 is peeled off. Then, with the graphene film 2 side facing upward, the object 17 is placed thereon, and the graphene laminate 1A is brought into contact with the object 17. Thereafter, the graphene laminate 1A and the object 17 are pressed and bonded together. Then, after the graphene laminate 1A is peeled off after the adhesiveness of the adhesive layer 3 is lost or reduced by various peeling methods described later, only the graphene film 2 can be left on the object 17.
  • the pressure-sensitive adhesive layer 3 of the pressure-sensitive adhesive sheet 11 uses a material whose adhesive strength is reduced by reacting with ultraviolet rays, and the graphene film 2, the object 17 and the pressure-sensitive adhesive sheet 11 are transferred to a roller.
  • 18 shows an example in which the pressure-sensitive adhesive sheet 11 is gradually peeled from one end while being irradiated with ultraviolet rays by the ultraviolet irradiation device 19 while being sandwiched by 18.
  • the substrate 4 of the pressure-sensitive adhesive sheet 11 has translucency to transmit light, and the pressure-sensitive adhesive polymer is taken into the photocrosslinking structure by irradiating the pressure-sensitive adhesive layer 3 of the pressure-sensitive adhesive sheet 11 with ultraviolet light.
  • the pressure-sensitive adhesive sheet 11 is adhered to the graphene film 2 side, and then the physical adhesive force disappears by irradiating the pressure-sensitive adhesive layer 3 with ultraviolet rays, the pressure-sensitive adhesive sheet 11 and the graphene film 2 can be separated.
  • the graphene film 2 can be attached to the object 17 by the adsorption function of the graphene film 2.
  • the substrate 4 of the adhesive sheet 11 may not have translucency.
  • the ultraviolet irradiation device 19 is irradiated from the object 17 side,
  • the adhesive layer 3 can be irradiated with ultraviolet rays.
  • the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 11 has a pressure-sensitive adhesive force lowered by heating to a temperature equal to or higher than a predetermined temperature or cooling to a temperature equal to or lower than a predetermined temperature.
  • the graphene film 2, the object 17, and the pressure-sensitive adhesive sheet 11 are sandwiched between rollers 20 having heating / cooling functions, and the pressure-sensitive adhesive sheet 11 is gradually peeled from one end.
  • the graphene film 2 is separated from the pressure-sensitive adhesive sheet 11 due to expansion of the foaming agent.
  • the base material 4 is provided with a thermosetting function, since the base material 4 is cured when heated, it can be more easily peeled off.
  • a pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 11 when using a material whose adhesive strength is reduced by cooling to a temperature equal to or lower than a predetermined temperature, the molecular movement of the pressure-sensitive adhesive composition is eliminated by cooling and the adhesiveness is lost. .
  • the physical adhesive force of the adhesive layer 3 disappears by making the graphene film 2 side of the adhesive sheet 11 adhere to the object 17 and then heating or cooling the adhesive sheet 11, the adhesive sheet 11 and the graphene film 2 And the graphene film 2 can be attached to the object 17 by the adsorption function of the graphene film 2.
  • the peeling method shown in FIG.7 (c) uses the water-soluble thing for the adhesive of the adhesive sheet 11,
  • the graphene film 2, the target object 17, and the adhesive sheet 11 are put into the water tank 21 filled with water.
  • An example in which the pressure-sensitive adhesive sheet 11 is peeled off by immersion is shown.
  • the pressure-sensitive adhesive of the pressure-sensitive adhesive layer 3 dissolves in water and loses the pressure-sensitive adhesiveness.
  • the adhesive sheet 11 which consists of the adhesion layer 3 and the base material 4 can be dissolved by making the base material 4 also have a water-soluble function.
  • the pressure-sensitive adhesive sheet 11 has flexibility and elasticity even when the graphene film 2 is transferred to the object 22 having a convex portion.
  • the graphene film 2 can be transferred regardless of the shape of the object 22 by the above-described peeling process of the pressure-sensitive adhesive sheet 11.
  • the substrate 4 of the pressure-sensitive adhesive sheet 11 is made of a thermoplastic film
  • the graphene laminate 1 is mounted on a heating and pressurizing tank
  • the graphene laminate 1 is heated to a predetermined temperature
  • the object 22 Then, a pressure medium such as air or liquid is injected into the tank and the graphene laminate 1 is pressed against the object 22 to press the object 22 according to the shape of the object 22 and pressurize the object 22.
  • the graphene laminated body 1 can be stuck.
  • the tank is cut off from the graphene laminate 1 and the object 22, the adhesiveness of the adhesive layer 3 is lost by the above-described various peeling methods, and the adhesive sheet 11 is peeled off, so that the graphene film 2 is attached to the object 22. You can turn it on.
  • the graphene film 2 is transferred to the object 24 or the object 75 having a recess.
  • the pressure-sensitive adhesive sheet 11 has heat shrinkability, the pressure-sensitive adhesive sheet 11 can be closely adhered along the shape of the concave portion. Can be transferred.
  • the substrate 4 of the pressure-sensitive adhesive sheet 11 is made of a heat-shrinkable film, and as shown in FIG. The object 24 or the object 75 is put in (see FIGS. 9A and 10B).
  • the graphene laminate 1A is wound around the outside of the object 24 or the object 75 with the graphene film 2 inside. Thereafter, as shown in FIGS.
  • the pressure-sensitive adhesive sheet 11 of the graphene laminated body 1A is contracted by heating the periphery of the graphene laminated body 1A with warm air such as a dryer. Is closely attached to the object 24 or the object 75 (see FIGS. 9B and 10C). Thereafter, the adhesiveness of the adhesive layer 3 is eliminated by the various peeling methods described above (see FIG. 10D), and the graphene film 2 is attached to the object 24 or the object 75 by peeling the adhesive sheet 11. (See FIG. 9C and FIG. 10E).
  • the object to be molded includes, for example, a resin, a ceramic material before sintering (green sheet, etc.), an iron-based (ferrite, etc.), carbon-based, ceramic-based, and other various powder-based molded products, a low melting point Glass etc. can be used.
  • a resin for example, a resin, a ceramic material before sintering (green sheet, etc.), an iron-based (ferrite, etc.), carbon-based, ceramic-based, and other various powder-based molded products, a low melting point Glass etc.
  • membrane 2 can be affixed on the shape
  • FIG. Examples of the molding method of the object include injection molding, blow molding, vacuum molding, foam molding, polymerization molding (heating, UV (ultraviolet light), EB (electron beam), etc.), hot emboss molding, imprint molding, and the like. .
  • the graphene laminate 1 is attached to the mold when molding by these molding methods, the graphene laminate 1 can be applied simultaneously with the molding, and after the adhesive sheet 11 has disappeared, the adhesive sheet 11 is removed. By peeling off, the object on which the graphene film 2 is formed can be molded.
  • FIG. 11 shows a manufacturing method of film molding to which the graphene laminate in the example is attached.
  • the graphene laminate 1 is attached to the surface of the formed film-like member during the forming step.
  • molds is shown.
  • the manufacturing apparatus 130A pushes the raw material of the melt held in the raw material extruder 71 through a T die 72 in which a die having a linear lip provided at the tip of the raw material extruder 71 is installed.
  • the raw material is flattened into a sheet shape and cooled through a mirror-finished cast roll 73 to have a forming step of continuously forming into a film shape.
  • the roll-shaped 1D graphene laminate 1 having the graphene film 2 attached to the pressure-sensitive adhesive sheet 11 is held, and the graphene laminate is formed on the surface of the film-like member 25 conveyed via the roller 74.
  • the graphene film 2 side of the body 1 is brought into close contact, and is pressed by the pressing roller 26. Thereby, the graphene laminated body 1 can be affixed on the surface of the formed film-like member 25.
  • the peeling process 28 various peeling methods for peeling the pressure-sensitive adhesive sheet 11 from the graphene film 2 described above are performed, whereby the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer of the graphene laminate 1 is lost or reduced, and the graphene attached to the member 25 By peeling the base material 4 from the graphene film 2 of the laminate 1, only the integrated graphene film 2 is left in the member 25, and the molded member 30 to which the graphene film 2 is attached can be obtained.
  • the adhesive force of the adhesive layer is lost or reduced by performing the above-described heating or cooling treatment, ultraviolet irradiation treatment, or water impregnation treatment.
  • the substrate 4 is used by the roller 27 even if no peeling process is provided.
  • the molded member 30 to which the graphene film 2 is attached can be rolled up by the winding roller 29 after being cooled by the cooling unit 80 and can be collected in a roller shape.
  • the width of the molded member 30 can be adjusted by cutting off the end portion in the process until the final winding.
  • the protective film 15 or the protective sheet as a protective member for protecting the graphene film 2 as described above may be attached to the molded member 30 together.
  • the protective film 15 or the protective sheet can be attached before being collected on the winding roller 29.
  • membrane 2 attached can be utilized in various scenes and uses.
  • the graphene laminate is attached when the raw material is in a semi-molten state formed in a sheet form, so the graphene film of the graphene laminate is in close contact with the sheet form of the raw material, When the raw material is molded and cured, the graphene film of the graphene laminate is also integrated with the raw material and molded.
  • FIG. 12 shows another manufacturing method of film forming with the graphene laminate in the example attached.
  • the graphene laminate 1 is attached to the surface of the film-like member in the middle of the forming step.
  • the manufacturing method which is attached to and molded is shown.
  • the thing of the same number as the structure shown in FIG. 11, such as the peeling process 28, has the same structure.
  • a manufacturing apparatus 130B in which the member 25 is formed on the belt 82 conveyed through the roller 81 is shown.
  • the graphene film 2 side of the graphene laminate 1 is brought into close contact with the surface of the film-like member 25 conveyed on the belt 82 and pressed by the pressing roller 26.
  • the graphene laminate 1 can be attached to the surface of the formed film-like member 25.
  • the graphene integrated with the member 25 is obtained by peeling the base material 4 from the graphene film 2 of the graphene laminate 1 attached to the member 25 by performing the various peeling methods described above. Only the film 2 can be left to form the molded member 30 to which the graphene film 2 is attached.
  • FIG. 13 shows another production method of film forming with the graphene laminate in the example attached.
  • the graphene laminate 1 is attached to the surface of the film-like member in the middle of the forming step.
  • a manufacturing method for forming the mold in the manufacturing method in the case of forming a film-like member such as a resin by a calendar method, the graphene laminate 1 is attached to the surface of the film-like member in the middle of the forming step. And a manufacturing method for forming the mold.
  • the thing of the same number as the structure shown in FIG. 11, such as the peeling process 28, has the same structure.
  • a calendar roller 84 is used, and the raw material extruded from the kneader 83 is formed into a sheet-like member 25 through the calendar roller 84.
  • Device 130C is shown.
  • the graphene film 2 side of the graphene laminate 1 is brought into close contact with the surface of the film-like member 25 conveyed through the roller 74 and pressed by the pressing roller 26.
  • the graphene laminate 1 can be attached to the surface of the formed film-like member 25.
  • the graphene integrated with the member 25 is obtained by peeling the base material 4 from the graphene film 2 of the graphene laminate 1 attached to the member 25 by performing the various peeling methods described above. Only the film 2 can be left to form the molded member 30 to which the graphene film 2 is attached.
  • FIG. 14 shows an injection molding manufacturing method to which the graphene laminate in the example is attached.
  • 14 (a) to 14 (d) in the manufacturing method in which a member such as a resin is molded by an injection molding method, the graphene laminate 1 is attached to the surface of the member during the injection molding step.
  • molds is shown.
  • the manufacturing apparatus 130D includes a mold 31 and a cylinder 35.
  • the raw material resin in the cylinder 35 is injected from the injection hole 33 of the mold 31, and after the resin is cured, the molded member is replaced with the mold. It has a molding step of molding the resin into a shape corresponding to the mold by taking it out from the mold 31.
  • the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is placed and held at a predetermined position 32 of the mold 31 (see FIG. 14A), and thereafter The raw material resin in the cylinder 35 is injected from the injection hole 33 of the mold 31 (see FIG. 14B).
  • the graphene laminated body 1 can be affixed on the surface of the member 34 at the time of injection molding.
  • the mold 31 is shown as being recessed so that the position where the graphene laminate 1 is disposed on the mold 31 is clear, but the actual mold has the same shape as the conventional one. Can be used (the same applies to a mold or the like described later).
  • the mold may be provided with a holding unit that prevents displacement of the graphene laminate 1 as described later.
  • the peeling process 36 by performing the various peeling methods described above, the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the member 34 is lost or reduced, and the base material 4 is peeled from the graphene film 2.
  • the adhesive force of the adhesive layer is lost or reduced by performing the above-described heating or cooling treatment, ultraviolet irradiation treatment, or water impregnation treatment.
  • the pressure-sensitive adhesive force of the pressure-sensitive adhesive is not particularly required without a peeling step. Therefore, if the member 34 is taken out from the mold 31 after the mold is cooled and the resin is cured, the substrate 4 can be peeled from the graphene film 2 of the attached graphene laminate 1 (FIG. 14). (See (d)). Thereby, the shaping
  • a protective film 15 or a protective sheet as a protective member for protecting the graphene film 2 as described above may be attached to the molding member 37 together.
  • the molded member 30 formed by injection molding and attached with the graphene film 2 can be used in various scenes and applications.
  • the graphene laminate since the graphene laminate is attached when the raw material is in a molten state, the raw material adheres to the graphene film 2 of the graphene laminate 1, and when the raw material is molded and cured.
  • the graphene film 2 of the graphene laminated body 1 is also formed integrally with the raw material.
  • the graphene film 2 of the graphene laminated body 1 can correspond to the shape of the member, and the carbon atoms of the graphene film 2 and the molecules of the raw material When the van der Waals force is absorbed between the two, it is adsorbed more closely. Therefore, according to the present embodiment, the graphene film 2 of the graphene laminate 1 is formed integrally with the member, so that the graphene of the graphene laminate 1 is attached rather than attaching the graphene laminate 1 to the molded member later. The film 2 and the member can be adhered evenly.
  • FIG. 15 shows a foam molding manufacturing method to which the graphene laminate in the example is attached.
  • 15A to 15E in a manufacturing method in which a member such as a resin is formed by a foam molding method, the graphene laminate 1 is formed on the surface of the member in the manufacturing apparatus 130E during the foam molding step.
  • molds by attaching is shown.
  • the thing of the same number as the structure shown in FIG. 14, such as the peeling process 36, is provided with the same structure.
  • the inert gas 39 is simultaneously injected from the cylinder 35, so that the inert gas 40 in the raw material foams and expands to form polystyrene foam or the like.
  • the graphene film 2 can be attached to the surface of the molded member 41 at the time of foam molding. Since the graphene laminated body 1 is attached when the raw material is in a molten state where the raw material is injected, the raw material adheres to the graphene film 2 of the graphene laminated body 1, and the graphene of the graphene laminated body 1 when the raw material is molded and cured The membrane 2 is also molded integrally with the molding member 41.
  • FIG. 16 shows a blow molding or hollow molding manufacturing method to which the graphene laminate in the example is attached.
  • the graphene laminate 1 is attached to the surface of the member during the blow molding step.
  • mold is shown.
  • the manufacturing apparatus 130 ⁇ / b> F includes a mold 42 and an injection hole 44 for injecting a pressurized medium such as air or liquid, and a raw material 43 to be blow-molded is attached to the mold 42 and pressurized from the injection hole 44.
  • a molding process is performed in which the raw material 43 is molded into a shape corresponding to the mold by removing the molded member from the mold 42.
  • the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is disposed and held at a predetermined position of the mold 42 (FIG. 16A).
  • a pressurized medium is injected from the injection hole 44 of the mold 42 (see FIG. 16B).
  • the graphene laminated body 1 can be affixed on the surface of the raw material 43 at the time of blow molding.
  • FIG. 17 shows a production method of polymerization molding to which the graphene laminate in the example is attached.
  • 17 (a) to 17 (e) in a manufacturing method in which a member such as a resin is molded by a polymerization molding method, molding is performed by attaching a graphene laminate to the surface of the member during the polymerization molding step.
  • the manufacturing method is shown.
  • the manufacturing apparatus 130G includes a mold 46, and a raw material 47 that undergoes a polymerization reaction is poured into the mold 46 from a container 48, and heat treatment, UV (ultraviolet irradiation) treatment, EB (electron beam) that triggers the polymerization reaction.
  • a treatment 49 such as the above is applied to cure the resin.
  • a molding process is performed in which the molded member is removed from the mold 46 to mold the raw material 47 into a shape corresponding to the mold.
  • the sheet-like graphene laminated body 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is arranged and held at a predetermined position of the mold 46 (FIG. 17A )), And then, a raw material 47 to be polymerized is poured from the upper side of the mold 46 (see FIG. 17B), and a treatment for triggering the polymerization reaction is performed to cure the resin.
  • the graphene laminated body 1 can be affixed on the surface of the raw material 47 at the time of polymerization molding.
  • the peeling step 36 by performing various peeling methods as shown in FIG. 7 described above (see FIG. 17D), the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the raw material 47 is lost.
  • the molded member with the graphene film 2 attached to the raw material 47 leaving only the integrated graphene film 2 is left. 51.
  • a peeling method for example, when using a pressure-sensitive adhesive whose viscosity disappears or decreases by heating, when heating by the polymerization reaction of the raw material 47, even if a peeling step is not particularly provided, Since the adhesive strength of the adhesive disappears, the substrate 4 can be peeled from the graphene film 2 of the attached graphene laminate 1 by removing the molding member 51 from the mold 46 after the resin is cured. Further, as a peeling method, for example, when an adhesive whose viscosity is lost or reduced by ultraviolet irradiation is used, when the ultraviolet ray is irradiated during the polymerization reaction of the raw material 47, a peeling process is particularly performed.
  • the adhesive strength of the adhesive disappears. Therefore, if the molding member 51 is taken out from the mold 46 after the resin is cured, the substrate 4 is peeled from the graphene film 2 of the attached graphene laminate 1. Can do.
  • FIG. 18 shows a manufacturing method of hot emboss molding (thermal imprint molding) to which the graphene laminate in the example is attached.
  • 18A to 18E in a manufacturing method in which a member such as a resin is molded by a hot emboss molding (thermal imprint molding) method, during the process of hot emboss molding (thermal imprint molding).
  • the manufacturing method which attaches to the said member and shape
  • the manufacturing apparatus 130H includes a mold 53, an upper pressure plate 52A, and a lower pressure plate 52B, heats the space between the upper pressure plate 52A and the lower pressure plate 52B, and forms the mold 53 on the surface of the raw material 54. Is pressed to form the raw material 54 such as resin into a shape corresponding to the mold.
  • the graphene film 2 of the sheet-like graphene laminate 1 is placed and held at a predetermined position of the lower pressure plate 52B facing upward, and the raw material 54 is placed thereon (FIG. 18). After that, the mold 53 is pressed 55 against the surface of the raw material 54 (see FIG. 18B).
  • the graphene laminated body 1 can be affixed on the back surface (surface which is not hot-embossed) of the raw material 54 at the time of hot embossing molding.
  • the peeling process 36 by applying the various peeling methods described above (see FIG. 18C), the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the raw material 54 is lost or reduced, and the graphene film 2 to remove the base material 4 from the raw material 54, leaving only the integrated graphene film 2 on the raw material 54, and forming the molded member 57 with the graphene film 2 attached to the surface not subjected to hot embossing. Can do.
  • the case where the molding member 57 to which the graphene film 2 is attached is formed on the surface not subjected to hot embossing is shown, but the graphene film 2 is formed on the surface subjected to hot embossing. Can be molded.
  • the manufacturing method in this case is shown in FIG. In FIG. 19, the raw material 54 is disposed at a predetermined position of the lower pressure plate 52 ⁇ / b> B, and the graphene film of the sheet-like graphene laminated body 1 is disposed thereon so as to face upward (see FIG. 19A). Then, the metal mold
  • the graphene laminated body 1 can be affixed on the surface of the raw material 54 at the time of hot embossing molding (surface subjected to hot embossing), and at the same time, the hot embossing is applied to the graphene film 2 of the graphene laminated body 1. Processing can be performed. For this reason, according to this manufacturing method, the graphene film 2 can be formed in a predetermined pattern simultaneously with the hot embossing of the raw material 54.
  • FIG. 20 shows a manufacturing method of vacuum / pressure forming with the graphene laminate in the example attached.
  • 16 (a) to 16 (d) in a manufacturing method in which a member such as a resin is formed by a vacuum / pressure forming method, the graphene laminate 1 is formed on the surface of the member during the vacuum / pressure forming step.
  • molds by attaching is shown.
  • the manufacturing apparatus 130J includes a mold 58 and a tank 60 having an injection hole 61 for injecting a pressurized medium such as air or liquid and a raw material holding frame 59 of a raw material holding means.
  • the raw material 43 to be vacuum / pressure-air-molded is attached to 59, the raw material 43 is heated to a predetermined temperature, the mold 58 is pressed, and the pressurizing medium 63 is placed in the tank 60 and pressurized so as to follow the shape of the mold 58. Then, after the molded product is cured, the molding member is formed by removing the molded member from the mold 58 and the tank to mold the raw material 43 into a shape corresponding to the mold.
  • the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is placed and held at a predetermined position of the mold 58 before being pressed by the mold (FIG. 20).
  • the mold 58 is pressed against the raw material 43 held by the raw material holding frame 59 of the tank 60, and a pressurized medium is injected (see FIG. 20B).
  • the graphene laminated body 1 can be affixed on the surface of the raw material 43 at the time of vacuum and pressure forming.
  • the graphene laminate 1 may be placed on the surface of the raw material 43.
  • the adhesive force of the adhesive layer of the graphene laminate 1 attached to the raw material 43 is lost.
  • the base material 4 is peeled off from the graphene film 2 so that only the integrated graphene film 2 is left in the raw material 43, and the molded member 65 to which the graphene film 2 is attached can be obtained.
  • FIG. 21 shows a powder molding manufacturing method to which the graphene laminate in the example is attached.
  • 21 (a) to 21 (d) in the manufacturing method in the case of forming by a powder forming method in which a powder such as iron powder is formed into a fixed shape, the surface of the member is formed during the powder forming step.
  • molds by attaching a graphene laminated body is shown.
  • the manufacturing apparatus 130K includes an upper die (punch) 86 and a lower die (die) 89, and powder raw material 87 is poured into the lower die 89 from the hopper 85, and the upper die 86 is lowered.
  • a molding step of molding the powder 87 into a shape corresponding to the mold by pressing the mold 89 and applying a pressure treatment 90 is a molding step of molding the powder 87 into a shape corresponding to the mold by pressing the mold 89 and applying a pressure treatment 90.
  • the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is placed and held at a predetermined position of the lower mold 89 (FIG. 21). (See (a).)
  • the upper die 86 is pressed against the lower die 89 to apply a pressure treatment 90 (see FIG. 21B), thereby forming the powder 87 into a shape corresponding to the die. .
  • the graphene laminate 1 can be attached to the surface of the powder 87.
  • the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the powder 87 is increased.
  • the graphene film 2 was attached by leaving only the integrated graphene film 2 on the powder 87 by removing or reducing the substrate 4 from the graphene film 2 (see FIG. 21D).
  • the molded member 91 can be used.
  • the graphene laminate is attached when the raw material is in a molten state or a semi-molten state. Therefore, the raw material adheres to the graphene film of the graphene stack, and when the raw material is molded, the graphene film of the graphene stack is also formed integrally with the raw material. For this reason, since the raw material is evenly in close contact with the graphene film, the graphene film of the graphene stack can correspond to the shape of the member, and between the carbon atoms of the graphene film and the molecules of the raw material When the van der Waals force is absorbed and absorbed, it is adsorbed more closely.
  • the graphene film 2 of the graphene laminate 1 is formed integrally with the member, the graphene laminate 1 is attached rather than attaching the graphene laminate 1 to the molded member later.
  • the graphene film 2 and the member can be adhered more evenly. With such a configuration, the member to which the graphene film 2 is attached can be used in various scenes and applications.
  • FIG. 11 to 21 in order to prevent the graphene laminate 1 from being displaced during molding, FIG. The functions shown in a) to (c) may be provided.
  • an adhesive layer 3A is formed on one surface of the base material 4 of the graphene laminate 1, and the graphene film 2 is attached on the adhesive layer 3A.
  • An adhesive layer 3B is formed on the surface opposite to the graphene film. That is, the graphene laminated body 1 in this case is configured by four layers of a graphene film 2, an adhesive layer 3A, a base material 4 having a predetermined strength, and an adhesive layer 3B. In this case, since the adhesive layer 3B is formed on the other surface of the base material 4, when the graphene laminate 1 is placed on the mold 31 of the manufacturing apparatus 130 shown in FIG. 14 and the like, the mold 31 is formed by the adhesive layer 3B.
  • the graphene laminated body 1 Since the graphene laminated body 1 is affixed to the graphene, the graphene laminated body 1 can be prevented from being displaced during molding.
  • the base material 4 When the base material 4 is peeled from the graphene film 2 of the graphene laminate 1 attached to the member, the pressure-sensitive adhesive layer 3 ⁇ / b> A and the pressure-sensitive adhesive layer 3 ⁇ / b> B are removed from the mold 31.
  • the substrate 4 can also be peeled off at the same time.
  • the manufacturing apparatus 130 holds the graphene laminate 1 including the graphene film 2, the adhesive layer 3, and the substrate 4 having a predetermined strength at a predetermined position of the mold 31.
  • a portion 77 is provided.
  • the holding unit 77 can include a suction unit that sucks the base material 4, and a suction path for suction by the suction unit in the mold 31.
  • the graphene laminate 1 can be prevented from being displaced during molding by sucking the graphene laminate 1 to the mold 31 by vacuum suction from the outside as suction means for the holding portion 77.
  • the manufacturing apparatus 130 is provided with a base material holding frame 78 for holding the base material 4 of the graphene laminated body 1 in the mold 79 so that the graphene is attached to the base material holding frame 78. You may make it hold
  • FIG. 23A and 23B show a first pattern forming process for forming a predetermined pattern by an electron beam (EB) or a laser.
  • FIG. 23A shows a bird's eye view
  • FIG. 23B shows a side view.
  • an electron beam or laser transmission source 92 and a magnetic field or lens 93 are provided, and the graphene film 2 of the graphene laminate 1 is directly applied by the electron beam or laser through the magnetic field or lens 93. Patterning can be performed by drawing and removing a part of the graphene film 2.
  • fine patterning at the nano level is possible, and in the case of lasers, patterning at the micron level is possible.
  • the output of the electron beam (EB) or laser it is possible to pattern only the graphene film 2 of the graphene stack 1. Thereby, the graphene laminated body 94 provided with the patterned graphene film 2 can be obtained.
  • the predetermined pattern as shown in FIG. 23A, a pattern of a semiconductor element or circuit can be formed.
  • FIGS. 24A to 24E show a second pattern formation process for forming a predetermined pattern by reactive ion etching or inductively coupled plasma using a predetermined photoresist.
  • a photosensitive organic material of a photoresist 95 is applied onto the graphene film 2 of the graphene laminate 1 (see FIG. 24A), and a photomask 98 is used using an exposure device 96 such as a stepper.
  • the pattern of the element / circuit drawn in (1) is baked on the photoresist 95 (see FIG. 24B), and a patterned photoresist 95 is created (see FIG. 24C).
  • the graphene laminated body 101 provided with the graphene film 2 in which is formed can be manufactured. Although there are a negative type and a positive type depending on a difference in pattern transfer method by photolithography, a pattern can be formed on the graphene film 2 in either case.
  • FIGS. 25A to 25E show a third pattern forming process for forming a predetermined pattern with ozone gas using a predetermined photoresist.
  • a photosensitive organic material of a photoresist 95 is applied on the graphene film 2 of the graphene laminate 1 (see FIG. 25A), and an exposure device 96 such as a stepper and a lens 97 are used.
  • the element / circuit pattern drawn on the photomask 98 is baked on the photoresist 95 (see FIG. 25B), and a patterned photoresist 95 is created (see FIG. 25C).
  • patterning can be performed by oxidizing (CO 2 ) the graphene film using the ozone gas 102 and removing a part of the graphene film 2.
  • oxidizing CO 2
  • the graphene laminated body 103 provided with the graphene film 2 in which the pattern was formed can be manufactured.
  • 26 (a) to 26 (e) show a fourth pattern forming process for forming a predetermined pattern by microblasting using a predetermined photoresist.
  • a photosensitive organic material of a photoresist 95 is applied on the graphene film 2 of the graphene laminate 1 (see FIG. 26A), and a photomask 98 is used using an exposure device 96 such as a stepper.
  • the pattern of the element / circuit drawn in FIG. 2 is baked on the photoresist 95 (see FIG. 26B), and a part of the graphene film 2 is removed to form a patterned photoresist 95 (FIG. 26C). )reference).
  • the blast particles 105 are ejected from the ejector 104 to physically scrape the graphene film, whereby patterning can be performed.
  • the graphene laminated body 106 provided with the graphene film 2 in which the pattern was formed can be manufactured.
  • FIG. 27 (a) and 27 (b) show a fifth pattern forming process for forming a predetermined pattern using a predetermined stamper.
  • a flat stamper 107A having a predetermined pattern as shown in FIG. 27 (a) is used to press the flat stamper 107A against the graphene film side of the graphene laminate 1 and apply a pressure treatment 108 to thereby obtain a graphene film. 2 can be patterned together with the substrate 4. Thereby, the graphene laminated body 109 provided with the graphene film
  • the roller stamper 107B is rotated and pressed against a predetermined position on the graphene film side of the graphene laminated body 1 so that the graphene film 2 By removing a part, the graphene film 2 can be patterned together with the substrate 4.
  • the pattern of the flat stamper 107A and the like is a corresponding opposite pattern.
  • the graphene laminated body 110 provided with the graphene film 2 in which the pattern was formed can be manufactured.
  • FIGS. 28A to 28C show a sixth pattern forming process for forming a predetermined pattern using a predetermined electric discharge machining apparatus.
  • the electric discharge machining apparatus 111 in which a predetermined pattern as shown in FIG. 28A is formed, the electric discharge machining apparatus 111 is brought close to 112 on the upper surface of the graphene film 2 of the graphene laminate 1 and then discharged. A part of the film 2 can be directly scraped off and patterned. Thereby, the graphene laminated body 113 provided with the graphene film 2 in which the pattern was formed can be manufactured.
  • FIGS. 29A to 29C show a seventh pattern forming process for forming a predetermined pattern by punching (pressing) using an upper die on which the predetermined pattern is formed.
  • the upper mold 114A and the lower mold 114B in which a predetermined pattern as shown in FIG. 29A is formed the upper mold 114A is pressed against the lower mold 114B on the graphene film side of the graphene laminate 1.
  • the press process 115 the graphene film 2 can be punched and patterned together with the substrate 4.
  • the graphene laminated body 116 provided with the graphene film 2 in which the pattern was formed can be manufactured.
  • FIG. 30A to 30 (c) show an eighth pattern forming process for forming a predetermined pattern using an adhesive having a predetermined pattern formed thereon.
  • a predetermined pattern as shown in FIG. 30A is formed on the substrate 117 using the adhesive 118, and the substrate 117 is pressed against the graphene film side of the graphene laminate 1 to perform press processing 119 (FIG. 30).
  • the graphene film 2 is attached only to the portion where the adhesive 118 is applied, and the graphene film 2 is peeled off by moving the substrate 117 upward, and the graphene film 2 is patterned. (See FIG. 30C). Thereby, the graphene laminated body 120 provided with the graphene film
  • a pattern can be formed on the graphene film 2 by any of the pattern forming processes on the graphene film 2 as shown in FIGS.
  • the manufacturing apparatus 140 forms a graphene film 2 on the roll-shaped metal film 7 using chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the formed metal film 7 is transported through a roller 74, and the pressure-sensitive adhesive sheet 11 is attached to the graphene film 2 side of the metal film 7 using a laminator 10. Thereafter, in order to remove the metal film 7, the graphene film 2, the metal film 7, and the adhesive sheet 11 are immersed in a water tank 12 filled with an acidic etching solution 13. Thereby, the metal film 7 is melted by the etching solution 13, and only the graphene film 2 and the adhesive sheet 11 remain.
  • CVD chemical vapor deposition
  • the graphene laminated body 1D which consists of the graphene film 2 and the adhesive sheet 11 is wound around a roller, and the roller-shaped graphene laminated body 1D is manufactured.
  • the patterning process 122 (B) during the attaching process of the pressure-sensitive adhesive sheet 11 of the graphene laminate 1 by the laminator 10, the patterning process 122 (A) before the attaching process, or the pattern after the attaching process In any of the crystallization treatments 122 (C), the graphene film 2 can be patterned by the pattern formation process as described above.
  • the metal film 7 on which the graphene film 2 is formed is subjected to the pattern forming process as shown in FIGS. A pattern is formed on the graphene film 2 on the film 7.
  • the graphene film 2 can be attached to the adhesive sheet 11 after the graphene film 2 is patterned on the metal film.
  • the lower metal film may be scraped depending on the pattern forming process, but after the graphene film 2 is patterned on the metal film, the pressure-sensitive adhesive sheet
  • the surface of the adhesive layer 3 or the base material 4 of the adhesive sheet 11 was patterned in a clean state (state in which no pattern was formed) without removing the adhesive sheet 11 by reattaching the graphene film 2 to 11
  • the graphene film 2 can be attached. Thereby, it can be set as the state in which the pattern is not formed in the base material 4 or the adhesion layer 3 of the adhesive sheet 11.
  • the patterns as shown in FIGS. 23 to 30 described above are used.
  • the graphene film 2 between the pressure-sensitive adhesive sheet 11 and the metal film 7 is patterned by the forming process.
  • the graphene film 2 can be patterned by applying the seventh pattern forming step from the adhesive sheet 11 side or the metal film 7 side. A pattern can be formed more easily by performing this pattern formation step during the attachment. According to these pattern formation steps, since the processing time is short, it is easier to manufacture and more advantageous when the graphene laminate 1 is continuously produced in a roll shape.
  • the pressure-sensitive adhesive sheet 11 to which the graphene film 2 is attached is subjected to the pattern forming step as shown in FIGS. A pattern is formed on the graphene film 2 on 11.
  • the graphene film 2 can be patterned by the pattern forming step as described above. Thereby, the graphene laminated body 1 can be manufactured and the graphene film 2 can be patterned simultaneously (another configuration example of the graphene laminated body 1).
  • the graphene laminate 1 was laminated in three layers by forming the adhesive layer 3 on the upper surface of the substrate 4 and further forming the graphene film 2 on the upper surface of the adhesive layer 3.
  • the graphene laminated body 1F which does not include the adhesion layer 3 and forms the graphene film 2 on the upper surface of the substrate 4 and is laminated in two layers can be configured. A sectional view of this configuration example is shown in FIG.
  • the same material as the substrate 4 described above can be used as the substrate 4.
  • a transparent solid material such as polymethyl methacrylate resin (PMMA) may be used.
  • the graphene film 2 is formed on the metal film 7 by chemical vapor deposition (CVD), and the graphene film 2 is formed on the metal film 7 on which the graphene film 2 is formed.
  • CVD chemical vapor deposition
  • the graphene film 2 is sandwiched between the PMMA and the metal film 7, and then the etching solution 13 is filled as shown in FIGS. 3 (d) and 3 (e).
  • the metal film 7 is melted by the etching solution 13 and only the graphene film 2 and PMMA remain, and the graphene film 2 and PMMA are washed with the neutralizing solution 14 to form the graphene film 2 and PMMA 2.
  • a graphene laminate 1F having a single layer can be manufactured.
  • the graphene film 2 is applied to the metal film 7 on which the graphene film 2 is formed by applying liquid PMMA on the graphene film 2 side and curing the graphene film 2. It may be sandwiched between the PMMA and the metal film 7.
  • the graphene film 2 when the graphene film 2 is attached to another member, as shown in FIG.
  • the graphene film 2 can be attached to the object 17 by pasting and pressing the body 1F.
  • the base material 4 of the graphene laminate 1F may be attached as it is.
  • the substrate 4 is PMMA or the like
  • the two-layer graphene laminate 1F is used instead of the three-layer graphene laminate 1.
  • the graphene film 2 can be left on the molded member by dissolving PMMA with an organic solvent such as acetone.
  • positioned Further, the pattern forming process on the graphene film 2 shown in FIGS.
  • the graphene film is formed on the substrate having a predetermined strength, so that the graphene film can be easily handled, and the predetermined pattern is formed on the graphene film.
  • a graphene film can be used.
  • the graphene laminate 1F can similarly include the protective film 15 as a protective member for protecting the graphene film 2 as described above.
  • the graphene film 2 can be further protected by packing it into a case or a packing bag 16 as a protective member, as shown in FIG. 32 (a). Can do.
  • the graphene laminate 1 was laminated in three layers by forming the adhesive layer 3 on the upper surface of the substrate 4 and further forming the graphene film 2 on the upper surface of the adhesive layer 3. Furthermore, the adhesion layer 3C is formed on the upper surface of the graphene film 2, and the graphene laminated body 1G laminated in four layers can be configured. A cross-sectional view of this configuration example is shown in FIG.
  • the graphene laminate 1G includes at least one graphene film 2 in which carbon atoms are covalently bonded, and an adhesive layer 3C and an adhesive layer that are first and second adhesive layers having physical adhesive force. 3 and a base material 4 having a predetermined strength, the adhesive layer 3C is adhered to one surface of the graphene film 2, and the adhesive layer 3 is adhered to the other surface side of the graphene film 2.
  • the adhesive layer 3C and the adhesive layer 3 may be formed on the entire surface of the graphene film 2, or may be formed on at least a part of the graphene film 2.
  • the substrate 4 is adhered to the surface of the adhesive layer 3 on the side where the graphene film 2 is not adhered.
  • the graphene laminated body 1G includes an adhesive layer 3C and an adhesive layer 3 having a physical adhesive force larger than the van der Waals force acting between the carbon atom of the graphene film 2 and other molecules. That is, by providing the adhesive layer 3C and the adhesive layer 3 having a physical adhesive force larger than the adsorption force that the graphene film 2 adsorbs to other objects, the adhesive layer 3 allows the graphene film 2 and the base material 4 to be bonded. As shown in FIG. 33A, the graphene film 2 can be physically adhered to the object 17 by the adhesion layer 3C as shown in FIG.
  • a graphene film can be formed on the object 17 via the adhesive layer 3C.
  • the thickness of the adhesive layer 3 ⁇ / b> C is set to be equal to or higher than the height difference of the unevenness of the surface of the object 17,
  • the height difference of the unevenness can be absorbed, and the surface of the graphene film 2 can be a uniform surface with no height difference.
  • the pressure-sensitive adhesive layer 3C can use a pressure-sensitive adhesive having a function different from that of the pressure-sensitive adhesive layer 3.
  • the adhesive layer 3C is made of an adhesive that does not lose or reduce its adhesive strength, and as shown in FIG. 33 (b), only the adhesive layer 3 loses or decreases its adhesive strength, and the substrate 4 and the graphene film 2, and the adhesive force does not disappear or decrease on the adhesive layer 3C side. Therefore, as shown in FIG. 33C, the graphene film 2 may be attached to the object 17 as it is. it can.
  • the adhesive for the adhesive layer 3C one of urea resin, melamine resin, phenol resin, epoxy resin, cyanoacrylate, polyurethane, and acrylic resin that does not lose or reduce the adhesive strength.
  • the resin composition comprised from two or more can be utilized.
  • the adhesive layer 3C and the graphene film 2 are provided as shown in FIG.
  • a two-layer graphene laminate 1G1 can be formed.
  • the graphene laminated body 1G1 in which the adhesive layer 3C is adhered to one surface of the graphene film 2 can be formed.
  • a protective member 15B that protects the adhesive layer 3C on the surface of the graphene laminate 1G may be provided.
  • a release paper or the like that is generally used can be used, and a resin film such as a silicone film, a fluorine film, or a polyethylene film can be used. The surfaces of these films may be subjected to embossing or the like for easy peeling from the adhesive layer 3C.
  • a light shielding film may be further formed on the surface of the film by vapor deposition of aluminum or the like so that the graphene film 2 can be shielded from light.
  • gas barrier properties functions that block moisture, oxygen, etc.
  • light shielding properties functions that block visible light, ultraviolet rays, etc.
  • releasability functions that make it easy to peel the protective member 15B from the adhesive layer 3C
  • the graphene film 2 can be further protected by packing it into a case or a packing bag 16 as a protective member as shown in FIG. 32 (b). Can do.
  • a liquid adhesive is applied to the upper surface of the graphene film 2 of the graphene laminated body 1 manufactured in the above embodiment, and the applied adhesive is dried or heated,
  • An adhesive layer 3C can be formed.
  • the adhesion layer 3C can be formed on the upper surface of the graphene film 2 after the manufacturing process of the graphene laminated body 1 shown in FIG.
  • double-sided tape such as a double-sided tape having an adhesive layer on both sides with a protective sheet 15B attached to one side of the top surface of the graphene film 2 of the graphene laminate 1 manufactured in the above embodiment.
  • An adhesive layer may be attached.
  • the double-sided tape since the double-sided tape is configured to have an adhesive layer on both surfaces of a predetermined base material, the double-sided tape has a three-layer structure in which the adhesive layer 3C is formed on both surfaces via the base material. Therefore, as the graphene laminate 1G, the adhesive layer 3 is formed on the upper surface of the base material 4, the graphene film 2 is further formed on the upper surface of the adhesive layer 3, and the adhesive layer 3C, the base material is formed on the upper surface of the graphene film 2. And by attaching a double-sided adhesive layer comprising the adhesive layer 3C, a six-layer structure is obtained.
  • the pattern forming process for the graphene film 2 shown in FIGS. 23 to 31 as described above is performed on the three-layer graphene stack 1. Thereafter, a liquid adhesive is applied to the upper surface of the graphene film 2 of the patterned graphene laminate 1, and the applied adhesive can be dried or heated to form the adhesive layer 3C. . Further, in the pattern forming process on the graphene film 2 shown in FIGS. 27 to 30, a pattern is directly formed on the four-layer graphene laminate 1G to which the protective member 15B is attached instead of the three-layer graphene laminate 1. You may do it.
  • the metal film 7 is dissolved by the etching solution 13, and the patterned graphene film 2 and the pressure-sensitive adhesive sheet 11 are dissolved.
  • the pressure-sensitive adhesive layer 3C is formed on the upper surface of the patterned graphene film 2, and then the pressure-sensitive adhesive layer 3C is protected by the sheet-like protective sheet 15B, and then wound around a roller.
  • a roller-shaped graphene laminate 1G can be produced.
  • an adhesive layer 3C is formed on the upper surface of the patterned graphene film 2 in a step subsequent to the patterning process 122 (C), and then After protecting the adhesive layer 3C with the sheet-like protective sheet 15B, the roller-like graphene laminate 1G can be produced by winding it around a roller.
  • the shape of the graphene laminate 1G can be formed into various shapes in addition to the rectangular sheet shape as in FIGS. 5 (a) to 5 (e) shown in the above embodiments.
  • the adhesive layer 3C is adhered to one surface of the graphene film 2, and the adhesive layer 3 is adhered to the other surface side of the graphene film 2. Since the adhesive layer 3 is provided with the adhesive layer 3C and the adhesive layer 3 having a physical adhesive force larger than the adsorptive power that the graphene film 2 adsorbs to other objects, The graphene film 2 can be physically adhered to the object 17 by the adhesion layer 3 ⁇ / b> C while the substrate 4 is physically adhered.
  • FIG. 32 (c) Another configuration example shown in FIG. 32 (c) will be described.
  • the graphene laminate 1 is laminated in two layers by forming the graphene film 2 on the upper surface of the base material 4.
  • the graphene laminated body 1H which formed the adhesion layer 3C on the upper surface of 2, and was laminated
  • a cross-sectional view of this configuration example is shown in FIG.
  • the graphene laminate 1H includes at least one graphene film 2 in which carbon atoms are covalently bonded, an adhesive layer 3C having a physical adhesive force, and a substrate 4 having a predetermined strength.
  • the adhesive layer 3C is adhered to one surface of the graphene film 2, and the substrate 4 is adhered to the other surface side of the graphene film 2.
  • the graphene laminate 1H includes an adhesive layer 3C having a physical adhesive force larger than the van der Waals force acting between the carbon atom of the graphene film 2 and other molecules. That is, by providing the adhesive layer 3C having a physical adhesive force larger than the adsorptive power that the graphene film 2 adsorbs to other objects, as shown in FIG.
  • the graphene film 2 can be physically adhered.
  • the adhesion layer 3C of the graphene laminate is adhered to the surface of the object 17 Therefore, a graphene film can be formed on the object 17 via the adhesive layer 3C.
  • the adhesive layer 3 whose adhesive strength disappears or decreases is not provided as in the graphene laminate 1G of another configuration example illustrated in FIG.
  • the base material 4 is attached as it is.
  • the graphene laminate 1H As a method for producing the graphene laminate 1H, after the production of the two-layer graphene laminate 1F shown in FIG. 32A, the graphene is formed in the same manner as the method for forming the adhesive layer 3C shown in FIG.
  • An adhesive layer 3C can be formed by applying a liquid adhesive on the top surface of the graphene film 2 of the laminate 1F and drying or heating the applied adhesive.
  • the pressure-sensitive adhesive layer 3C can be made of the above-described material, and is set as a pressure-sensitive adhesive that does not lose or reduce its adhesive strength.
  • the graphene laminate 1H is in a state where the adhesive layer 3C is exposed, and therefore, when shipped or handled, it is necessary to maintain adhesiveness so that dust or the like does not adhere to the surface of the adhesive layer 3C. Therefore, similarly to the graphene laminate 1G, as shown in FIG. 32C, a protective member 15B that protects the adhesive layer 3C on the surface of the graphene laminate 1H may be provided. Further, when the graphene laminate 1H is shipped, as shown in FIG. 32C, the graphene film 2 can be further protected by packing in a case or a packing bag 16 as a protective member. Can do.
  • the adhesive layer 3C is adhered to one surface of the graphene film 2, and the substrate 4 is disposed on the other surface side of the graphene film 2. Is attached to the object 17 by the adhesive layer 3C by providing the adhesive layer 3C having a physical adhesive force larger than the adsorption force that the graphene film 2 adsorbs to another object. 2 can be physically adhered.
  • an adhesive having a function different from that of the adhesive layer 3 is used for the adhesive layer 3C and the adhesive layer 3.
  • the adhesive layer 3C and the adhesive layer 3 may be the same adhesive.
  • the pressure-sensitive adhesive layer 3C and the pressure-sensitive adhesive layer 3 are configured so as to maintain the pressure-sensitive adhesive strength of both pressure-sensitive adhesive layers by keeping the pressure-sensitive adhesive force from disappearing or decreasing, as shown in FIG.
  • the graphene film 2 can be attached to the object 17 as it is by the adhesive layer 3 ⁇ / b> C, and the substrate 4 can be attached as it is by the adhesive layer 3.
  • the pressure-sensitive adhesive for the pressure-sensitive adhesive layer 3C and the pressure-sensitive adhesive layer 3 is a urea resin-based, melamine-based, phenolic-based, epoxy-based, cyanoacrylate-based, polyurethane-based, or acrylic-resin-based adhesive that does not lose or reduce adhesive strength Among them, a resin composition composed of one type or a plurality of types can be used. Moreover, when it is set as the structure which the adhesion force of 3 C of adhesion layers and the adhesion layer 3 does not lose
  • the adhesive layer 3C or the graphene film is prepared by dissolving the PMMA or the like of the base material 4 with an organic solvent such as acetone after the adhesive layer 3C is attached to the object 17. 2.
  • a three-layer graphene laminate 1G2 including an adhesive layer 3C can be configured.
  • the graphene laminated body 1G2 in which the adhesive layer 3 is adhered to one surface of the graphene film 2 and the adhesive layer 3C is adhered to the other surface of the graphene film 2 can be formed. Thereby, both surfaces of the graphene film 2 can be protected by the adhesive layer.
  • the graphene laminates 1, 1A to 1E, 1F, 1G, 1G1, 1G2, and 1H in the above-described embodiments and other configuration examples are attached to an object, they can be used for various purposes.
  • vacuum and sealed containers are attached to living organisms and foods. In this case, contact with outside air can be prevented and airtightness can be maintained.
  • the graphene film 2 is directly attached to the object 17 by the adhesive layer 3C, and the base material 4 is directly attached by the adhesive layer 3, or FIG.
  • the base material 4 is not separated when the graphene film 2 is attached to the object 17 and the base material 4 is attached as it is, for example, a semiconductor or a transparent electrode is used.
  • the graphene film 2 can be attached and used. Thereby, the surface of the graphene film 2 can be protected by the base material 4.
  • the base material 4 can also utilize what has translucency.
  • the base material 4 is made of glass
  • the adhesive layer 3 can be made of an adhesive that loses its adhesive strength when irradiated with light such as ultraviolet rays.
  • the adhesive force can be lost by irradiating the adhesive layer 3 of the adhesive sheet 11 with ultraviolet rays from the glass side.
  • the base material 4 can be decomposed by microorganisms after being peeled from the graphene film 2, thereby reducing the burden on the natural environment. Can do.
  • the adhesive layer 3C is formed on the top surface of the graphene film 2.
  • the adhesive layer 3C may be formed on the object side.
  • a liquid pressure-sensitive adhesive is applied to the object side, and the applied pressure-sensitive adhesive is dried or heated to perform a pressure-sensitive adhesive layer forming step for forming the pressure-sensitive adhesive layer 3C.
  • a pressure-sensitive adhesive layer forming step for forming a pressure-sensitive adhesive layer 3C by applying a double-sided pressure-sensitive adhesive layer such as a double-sided tape having pressure-sensitive adhesive layers on both sides is performed on the object side, and the graphene shown in FIGS.
  • a stacking process is performed in which the graphene film 2 of the stack 1, 1A to 1E or the graphene stack 1F of another configuration example shown in FIG. 32A is attached to the adhesive layer 3C on the object side. Also good.
  • the graphene film 2 can be physically adhered to the object 17 by the adhesion layer 3C, and the graphene film 2 can be attached to the object via the adhesion layer 3C.
  • the object to which the graphene film 2 is attached in this case is shown in FIG. 1 because the adhesive layer 3C is adhered to the upper surface of the object portion as a base material and the graphene film 2 is formed on the upper surface.
  • the same structure as the graphene laminated body 1 is provided.
  • the base material 4 may be attached as it is without being separated.
  • the adhesive layer 3 is provided, the graphene laminates 1 and 1A shown in FIG. 1 and FIG.
  • the base material 4 can also be separated by eliminating or reducing the adhesive strength of the adhesive layer 3 at ⁇ 1E.

Abstract

Provided is a graphene laminate provided with a graphene layer that is easy to handle. The graphene laminate (1H) comprises at least one layer of a graphene film (2) wherein carbon atoms are covalently bonded, an adhesive layer (3C) having mechanical adhesive power, and a substrate (4) having definite strength, wherein the adhesive layer (3C) is adhered to one surface of the graphene film (2) and another adhesive layer (3) is adhered to the other surface of the graphene film (2). The substrate (4) is adhered to the surface of the adhesive layer (3) on the side where the graphene film (2) is not adhered. Due to the presence of the adhesive layer (3C) and the adhesive layer (3) each having mechanical adhesive power larger than the adsorptive power of the graphene film (2) that adsorbs an object, the graphene film (2) can be mechanically adhered to the substrate (4) via the adhesive layer (3), and the graphene film (2) can be mechanically adhered to an object (17) via the adhesive layer (3C).

Description

グラフェン積層体およびグラフェン積層体の製造方法Graphene laminate and method for producing graphene laminate
 本発明は、透明電極、導電性薄膜、放熱・発熱素子、ディスプレイ、有機LED、太陽電池等の製品で利用するグラフェンを、これらの製品に直接貼り付けることができるグラフェン積層体およびグラフェン積層体の製造方法に関する。 The present invention relates to a graphene laminate and a graphene laminate in which graphene used in a product such as a transparent electrode, a conductive thin film, a heat dissipation / heating element, a display, an organic LED, and a solar cell can be directly attached to these products. It relates to a manufacturing method.
 近年、グラフェンに関する研究が活発に行われており、ここ数年で大面積グラフェンの製造技術は飛躍的に発展している。グラフェンは、炭素原子が層またはシート状に構成されているものであり、電気的、機械的及び化学的な安定性を備えており、かつ優れた導電性を有しているので、電子回路の基本要素として注目されている。また、グラフェンは、六角網平面を形成する炭素原子の構造により気体などの分子が吸着しやすいことが判明している。これは、グラフェンの炭素原子と他の分子との間にファンデルワールス力が働くことによるものであり、その力は化学結合の数十分の1程度であるが、六角網目構造で並ぶ個々の炭素原子の力を積算するとかなりの圧力となるため、この吸着機能を利用することが期待されている。 In recent years, research on graphene has been actively conducted, and the technology for producing large-area graphene has been dramatically improved in recent years. Graphene is composed of carbon atoms in layers or sheets, has electrical, mechanical and chemical stability, and has excellent electrical conductivity. It is attracting attention as a basic element. Graphene has been found to be easily adsorbed by molecules such as gas due to the structure of carbon atoms forming a hexagonal plane. This is due to the van der Waals force acting between the carbon atom of graphene and other molecules, and the force is about a few tenths of a chemical bond. It is expected that this adsorption function will be used because the pressure of carbon atoms is a considerable pressure when integrated.
 このようなグラフェンの従来の製造方法としては、疎水性を有する金属触媒層が形成されたシリコンウエハに、親水性を有する酸化層を形成し、化学気相蒸着法を用いて、グラフェン層を金属触媒層の上面に膜状に成長させて形成しているものがある(例えば、特許文献1参照)。 As a conventional method for manufacturing such graphene, a hydrophilic oxide layer is formed on a silicon wafer on which a hydrophobic metal catalyst layer is formed, and the graphene layer is formed into a metal by using chemical vapor deposition. Some are formed by growing in a film shape on the upper surface of the catalyst layer (see, for example, Patent Document 1).
特開2011-063506号公報(段落0032~0040、図1)Japanese Unexamined Patent Publication No. 2011-063506 (paragraphs 0032 to 0040, FIG. 1)
 しかしながら、特許文献1にあっては、他の成形された部材に転写する場合には、グラフェン層が形成されたグラフェン部材を、金属触媒層をエッチング工程により除去する必要があるため、他の成形された部材に転写するための工程が必要になったり、また、エッチング工程の設備が必要になったり、手間がかかり、取り扱いにくいという問題がある。 However, in Patent Document 1, when transferring to another molded member, it is necessary to remove the metal catalyst layer from the graphene member on which the graphene layer is formed by an etching process. There is a problem that a process for transferring to the formed member is required, an equipment for an etching process is required, it takes time and is difficult to handle.
 本発明は、このような問題点に着目してなされたもので、取り扱いやすいグラフェン層を備えるグラフェン積層体およびグラフェン積層体の製造方法を提供することを目的とする。 The present invention has been made paying attention to such problems, and an object of the present invention is to provide a graphene laminate including a graphene layer that is easy to handle and a method for producing the graphene laminate.
 前記課題を解決するために、本発明のグラフェン積層体は、
 炭素原子が共有結合された少なくとも一層のグラフェン膜と、
 物理的粘着力を備える粘着層と、
 所定の強度を備える基材と、
 を備え、
 前記グラフェン膜の一方面に、前記粘着層が粘着され、前記グラフェン膜の他方面側に前記基材を備えることを特徴としている。
 この特徴によれば、グラフェン膜の一方面に、粘着層が粘着され、前記グラフェン膜の他方面側に基材が備えられているため、所定の強度を備える基材にグラフェン膜が形成されるので、グラフェン膜を取り扱いやすくすることができ、また、粘着層を備えていることで、他の部材にこの粘着層を貼り付けることができる。これにより、他の部材に粘着層を介してグラフェン膜を貼り付けることができる。例えば、他の部材の表面がざらざらしているような材質の場合、グラフェン膜のファンデルワールス力だけでは吸着しにくいことがあるが、他の部材の表面にグラフェン積層体の粘着層を粘着させることができるため、他の部材に粘着層を介してグラフェン膜を形成できる。
In order to solve the above problems, the graphene laminate of the present invention is
At least one graphene film in which carbon atoms are covalently bonded; and
An adhesive layer with physical adhesive strength;
A base material having a predetermined strength;
With
The adhesive layer is adhered to one surface of the graphene film, and the substrate is provided on the other surface side of the graphene film.
According to this feature, the adhesive layer is adhered to one surface of the graphene film, and the substrate is provided on the other surface side of the graphene film, so that the graphene film is formed on the substrate having a predetermined strength. Therefore, the graphene film can be easily handled, and the adhesive layer can be attached to another member by providing the adhesive layer. Thereby, a graphene film | membrane can be affixed on another member through an adhesion layer. For example, when the surface of another member is rough, it may be difficult to adsorb only by van der Waals force of the graphene film, but the adhesive layer of the graphene laminate is adhered to the surface of the other member Therefore, a graphene film can be formed on another member through an adhesive layer.
 本発明のグラフェン積層体において、
 前記グラフェン膜の他方面と、前記基材との間に物理的粘着力を備える第2粘着層を備えることを特徴としている。
 この特徴によれば、グラフェン膜の一方面に粘着層を備え、他方面に第2粘着層を備えることができる。また、所定の強度を備える基材に第2粘着層を介してグラフェン膜が形成されるので、グラフェン膜を取り扱いやすくすることができる。
In the graphene laminate of the present invention,
A second adhesive layer having a physical adhesive force is provided between the other surface of the graphene film and the base material.
According to this feature, the adhesive layer can be provided on one surface of the graphene film, and the second adhesive layer can be provided on the other surface. In addition, since the graphene film is formed on the base material having a predetermined strength via the second adhesive layer, the graphene film can be easily handled.
 本発明のグラフェン積層体において、
 前記粘着層は、前記第2粘着層と異なる粘着剤で構成されていることを特徴としている。
 この特徴によれば、粘着層と第2粘着層とを同じ粘着剤で構成しておけば、製造する際は都合がよいが、異なる粘着剤で構成することもできる。例えば、第2粘着層を粘着力が消失または減少可能に構成させておき、また、粘着層を粘着力が消失または減少しないように構成しておくことで、第2粘着層のみ粘着力を消失または減少させて基材とグラフェン膜とを分離することができ、また、粘着層側は粘着力が消失または減少しないので、他の部材にグラフェン膜をそのまま貼りつけておくことができる。
In the graphene laminate of the present invention,
The pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive different from the second pressure-sensitive adhesive layer.
According to this feature, if the pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are made of the same pressure-sensitive adhesive, it is convenient for manufacturing, but they can be made of different pressure-sensitive adhesives. For example, the second adhesive layer is configured such that the adhesive strength can be lost or reduced, and the adhesive layer is configured so that the adhesive strength is not lost or reduced, so that only the second adhesive layer loses the adhesive strength. Alternatively, the base material and the graphene film can be separated by decreasing, and the adhesive force does not disappear or decrease on the adhesive layer side, so that the graphene film can be attached to another member as it is.
 本発明のグラフェン積層体において、
 前記第2粘着層は、前記粘着力が消失または減少可能に構成されていることを特徴としている。
 この特徴によれば、第2粘着層の物理的粘着力を消失または減少させることで、グラフェン膜を基材から剥離することができる。この場合、他の部材に、粘着層を介してグラフェン膜を粘着させ、その後、第2の粘着層の物理的粘着力を消失させれば、基材とグラフェン膜とを分離することができ、また、粘着層の粘着機能により、他の部材にグラフェン膜を貼りつけることができる。
In the graphene laminate of the present invention,
The second adhesive layer is characterized in that the adhesive force can be lost or reduced.
According to this feature, the graphene film can be peeled from the substrate by eliminating or reducing the physical adhesive force of the second adhesive layer. In this case, if the graphene film is adhered to another member via the adhesive layer, and then the physical adhesive force of the second adhesive layer is lost, the substrate and the graphene film can be separated, In addition, the graphene film can be attached to another member by the adhesive function of the adhesive layer.
 本発明のグラフェン積層体において、
 前記第2粘着層の前記粘着力は、光の照射により消失または減少されることを特徴としている。
 この特徴によれば、光を照射させることで第2粘着層の粘着力が消失または減少され、グラフェン膜を基材から剥離することができる。例えば、第2粘着層は、紫外線などの光を照射させることで粘着力が消失される粘着剤を利用することができる。
In the graphene laminate of the present invention,
The adhesive force of the second adhesive layer is characterized in that it disappears or is reduced by light irradiation.
According to this feature, the adhesive force of the second adhesive layer is lost or reduced by irradiating light, and the graphene film can be peeled from the substrate. For example, the second pressure-sensitive adhesive layer can use a pressure-sensitive adhesive that loses its adhesive strength when irradiated with light such as ultraviolet rays.
 本発明のグラフェン積層体において、
 前記第2粘着層の前記粘着力は、紫外線の照射により消失または減少されることを特徴としている。
 この特徴によれば、紫外線を照射させることで第2粘着層の粘着力が消失または減少され、グラフェン膜を基材から剥離することができる。
In the graphene laminate of the present invention,
The adhesive force of the second adhesive layer is characterized in that it disappears or is reduced by irradiation with ultraviolet rays.
According to this feature, the adhesive force of the second adhesive layer is lost or reduced by irradiating ultraviolet rays, and the graphene film can be peeled from the substrate.
 本発明のグラフェン積層体において、
 前記第2粘着層の前記粘着力は、熱または溶媒により消失または減少されることを特徴としている。
 この特徴によれば、熱または溶媒により第2粘着層の粘着力が消失または減少されることで、グラフェン膜を基材から剥離することができる。例えば、加熱または冷却することで粘着力が消失または減少される粘着剤を利用したり、水などの溶媒に浸すことで粘着力が消失または減少される粘着剤を利用したりすることができる。
In the graphene laminate of the present invention,
The adhesive force of the second adhesive layer is characterized in that it disappears or is reduced by heat or a solvent.
According to this feature, the graphene film can be peeled from the substrate by the disappearance or reduction of the adhesive force of the second adhesive layer by heat or a solvent. For example, it is possible to use an adhesive whose adhesive strength is lost or reduced by heating or cooling, or an adhesive whose adhesive strength is lost or reduced by immersion in a solvent such as water.
 本発明のグラフェン積層体において、
 前記粘着層と、前記第2粘着層とは、同じ粘着剤で構成されていることを特徴としている。
 この特徴によれば、粘着層と第2粘着層とを同じ粘着剤で構成しているため、製造する際は粘着剤の種類が一つでよいので、製造が簡単になり都合がよい。
In the graphene laminate of the present invention,
The pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are made of the same pressure-sensitive adhesive.
According to this feature, since the pressure-sensitive adhesive layer and the second pressure-sensitive adhesive layer are composed of the same pressure-sensitive adhesive, only one type of pressure-sensitive adhesive may be used for manufacturing, which is convenient and convenient.
 本発明のグラフェン積層体において、
 前記粘着層は、前記粘着力が消失または減少しないように構成されていることを特徴としている。
 この特徴によれば、粘着層は、粘着力が消失しないように、または減少しないように、粘着力が維持されるため、他の部材に粘着層を介してグラフェン膜を貼り付けることができる。
In the graphene laminate of the present invention,
The adhesive layer is configured so that the adhesive force does not disappear or decrease.
According to this feature, since the adhesive force of the adhesive layer is maintained so that the adhesive force does not disappear or decrease, the graphene film can be attached to another member via the adhesive layer.
 本発明のグラフェン積層体において、
 前記基材は、可撓性または弾性を備えることを特徴としている。
 この特徴によれば、基材は、可撓性または弾性を備えるため、グラフェン膜を貼り付ける対象物の形状に合わせて基材の形状を変形させることができる。
In the graphene laminate of the present invention,
The base material is characterized by having flexibility or elasticity.
According to this feature, since the base material has flexibility or elasticity, the shape of the base material can be changed in accordance with the shape of the object to which the graphene film is attached.
 本発明のグラフェン積層体において、
 前記基材は、樹脂製のフィルムにより構成されていることを特徴としている。
 この特徴によれば、基材は、樹脂製のフィルムにより構成されているため、グラフェン膜を貼り付ける対象物の形状に合わせて基材の形状を変形させることができる。
In the graphene laminate of the present invention,
The base material is formed of a resin film.
According to this feature, since the base material is made of a resin film, the shape of the base material can be changed in accordance with the shape of the object to which the graphene film is attached.
 本発明のグラフェン積層体において、
 前記基材は、熱硬化性、熱可塑性、熱収縮性、生分解性、水溶性の少なくともいずれかの機能を備えることを特徴としている。
 この特徴によれば、使用する他の部材の形状等に合わせて、基材を、熱硬化性、熱可塑性、熱収縮性、生分解性、水溶性の少なくともいずれかの機能を備えるようにできる。
In the graphene laminate of the present invention,
The substrate is characterized by having at least one of thermosetting, thermoplastic, heat-shrinkable, biodegradable, and water-soluble functions.
According to this feature, the substrate can be provided with at least one of thermosetting, thermoplastic, heat-shrinkable, biodegradable, and water-soluble functions in accordance with the shape of other members to be used. .
 本発明のグラフェン積層体において、
 前記基材は、ガラス、金属、セラミックスの少なくともいずれかで構成されていることを特徴としている。
 この特徴によれば、基材は、ガラス、金属、セラミックスにより構成されているため、基材が所定の強度を備えるようにできる。
In the graphene laminate of the present invention,
The base material is characterized by being composed of at least one of glass, metal, and ceramics.
According to this feature, since the base material is made of glass, metal, or ceramics, the base material can have a predetermined strength.
 本発明のグラフェン積層体において、
 前記基材は、透光性を備えることを特徴としている。
 この特徴によれば、基材は透光性を備えるため、第2粘着層に対して基材側より、光や紫外線を照射させることができる。また、他の部材に粘着層を介してグラフェン膜を粘着させた場合に、光が基材を透過してグラフェン膜まで到達することができる。
In the graphene laminate of the present invention,
The base material is characterized by having translucency.
According to this feature, since the substrate has translucency, the second adhesive layer can be irradiated with light or ultraviolet light from the substrate side. Further, when the graphene film is adhered to another member via the adhesive layer, light can pass through the base material and reach the graphene film.
 本発明のグラフェン積層体において、
 前記粘着層を保護する保護部材を備えることを特徴としている。
 この特徴によれば、保護部材により粘着層を保護することができるので、取り扱いが容易となる。
In the graphene laminate of the present invention,
A protective member for protecting the adhesive layer is provided.
According to this feature, since the adhesive layer can be protected by the protective member, handling becomes easy.
 本発明のグラフェン積層体において、
 前記保護部材は、前記粘着層から剥離可能な加工が施されていることを特徴としている。
 この特徴によれば、保護部材が粘着層から剥離可能な加工が施されているため、保護部材を粘着層から剥離しやすくなる。
In the graphene laminate of the present invention,
The protective member is characterized by being processed to be peelable from the adhesive layer.
According to this feature, since the protective member is processed so as to be peelable from the adhesive layer, the protective member is easily peeled from the adhesive layer.
 本発明のグラフェン積層体において、
 前記グラフェン膜は、所定のパターンが形成されていることを特徴としている。
 この特徴によれば、パターン化されたグラフェン膜を有するグラフェン積層体を構成できる。
In the graphene laminate of the present invention,
The graphene film is characterized in that a predetermined pattern is formed.
According to this feature, a graphene stack having a patterned graphene film can be formed.
 本発明のグラフェン積層体において、
炭素原子が共有結合された少なくとも一層のグラフェン膜と、
 物理的粘着力を備える粘着層と、
 を備え、
 前記グラフェン膜の一方面に、前記粘着層が粘着されていることを特徴としている。
 この特徴によれば、グラフェン膜の一方面に、粘着層を備えていることで、他の部材にこの粘着層を貼り付けることができる。これにより、他の部材に粘着層を介してグラフェン膜を貼り付けることができる。例えば、他の部材の表面がざらざらしているような材質の場合、グラフェン膜のファンデルワールス力だけでは吸着しにくいことがあるが、他の部材の表面にグラフェン積層体の粘着層を粘着させることができるため、他の部材に粘着層を介してグラフェン膜を形成できる。
In the graphene laminate of the present invention,
At least one graphene film in which carbon atoms are covalently bonded; and
An adhesive layer with physical adhesive strength;
With
The adhesive layer is adhered to one surface of the graphene film.
According to this feature, since the adhesive layer is provided on one surface of the graphene film, the adhesive layer can be attached to another member. Thereby, a graphene film | membrane can be affixed on another member through an adhesion layer. For example, when the surface of another member is rough, it may be difficult to adsorb only by van der Waals force of the graphene film, but the adhesive layer of the graphene laminate is adhered to the surface of the other member Therefore, a graphene film can be formed on another member through an adhesive layer.
 本発明のグラフェン積層体において、
物理的粘着力を備える第2粘着層を備え、
 前記グラフェン膜の他方面に、前記第2粘着層が粘着されていることを特徴とする。
 この特徴によれば、グラフェン膜の一方面に、粘着層が粘着され、前記グラフェン膜の他方面に第2粘着層が粘着されているため、グラフェン膜の両面に他の部材や基材をそれぞれ貼り付けることができる。これにより、他の部材に粘着層または第2粘着層を介してグラフェン膜を貼り付けることができる。
In the graphene laminate of the present invention,
A second adhesive layer having physical adhesive strength;
The second adhesive layer is adhered to the other surface of the graphene film.
According to this feature, the adhesive layer is adhered to one surface of the graphene film, and the second adhesive layer is adhered to the other surface of the graphene film. Can be pasted. Thereby, a graphene film | membrane can be affixed on another member via an adhesion layer or a 2nd adhesion layer.
 本発明のグラフェン積層体の製造方法において、
 炭素原子が共有結合された少なくとも一層のグラフェン膜を部材に対して添付するグラフェン積層体の製造方法であって、
 前記部材に、物理的粘着力を備える粘着層を形成する粘着層形成工程と、
 前記部材の前記粘着層に対して、所定の強度を備える基材の一方面に形成されたグラフェン膜を貼り付ける貼り付け工程と、
 を備えることを特徴とする。
 この特徴によれば、粘着層形成工程において、部材に、物理的粘着力を備える粘着層を形成し、貼り付け工程において、部材の粘着層に対して、所定の強度を備える基材の一方面に形成されたグラフェン膜を貼り付けることができる。これにより、部材の表面がざらざらしているような材質の場合、グラフェン膜のファンデルワールス力だけでは吸着しにくいことがあるが、部材の表面に粘着層を形成することで、部材に粘着層を介してグラフェン膜を形成できる。
In the method for producing a graphene laminate of the present invention,
A method for producing a graphene laminate comprising attaching at least one graphene film covalently bonded with carbon atoms to a member,
An adhesive layer forming step of forming an adhesive layer having physical adhesive force on the member;
An attaching step of attaching a graphene film formed on one surface of a base material having a predetermined strength to the adhesive layer of the member;
It is characterized by providing.
According to this feature, in the pressure-sensitive adhesive layer forming step, a pressure-sensitive adhesive layer having a physical pressure-sensitive adhesive force is formed on the member, and in the attaching step, one surface of the base material having a predetermined strength with respect to the pressure-sensitive adhesive layer of the member. The graphene film formed on can be attached. As a result, in the case of a material whose surface of the member is rough, it may be difficult to adsorb only by van der Waals force of the graphene film, but by forming an adhesive layer on the surface of the member, the adhesive layer on the member Through this, a graphene film can be formed.
 本発明のグラフェン積層体の製造方法において、
 前記貼り付け工程後、前記基材を剥離する剥離工程を備えることを特徴とする。
 この特徴によれば、部材の粘着層に対して基材の一方面に形成されたグラフェン膜を貼り付ける貼り付け工程後、剥離工程において、前記基材を剥離することで、グラフェン積層体を簡単に製造することができる。
In the method for producing a graphene laminate of the present invention,
It is characterized by comprising a peeling step for peeling off the substrate after the attaching step.
According to this feature, after the step of attaching the graphene film formed on one surface of the base material to the adhesive layer of the member, the base material is peeled off in the peeling step, thereby simplifying the graphene laminate. Can be manufactured.
実施例におけるグラフェン積層体の平面図(a)および断面図(b)である。It is the top view (a) and sectional drawing (b) of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の製造工程を示す説明図(a)~(c)である。It is explanatory drawing (a)-(c) which shows the manufacturing process of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の製造工程を示す説明図(d)および(e)である。It is explanatory drawing (d) and (e) which show the manufacturing process of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の外観図である。It is an external view of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の他の外観図である。It is another external view of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の使用例を示す説明図である。It is explanatory drawing which shows the usage example of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の剥離法を示す説明図(a)~(c)である。It is explanatory drawing (a)-(c) which shows the peeling method of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の他の使用例を示す説明図(a)、(b)である。It is explanatory drawing (a) which shows the other usage example of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の他の使用例を示す説明図(a)~(c)である。It is explanatory drawing (a)-(c) which shows the other usage example of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の他の使用例を示す説明図(a)~(e)である。It is explanatory drawing (a)-(e) which shows the other usage example of the graphene laminated body in an Example. 実施例におけるグラフェン積層体を添付したフィルム成形の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the film shaping | molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付したフィルム成形の他の製造方法を示す説明図である。It is explanatory drawing which shows the other manufacturing method of the film shaping which attached the graphene laminated body in an Example. 実施例におけるグラフェン積層体を添付したフィルム成形の他の製造方法を示す説明図である。It is explanatory drawing which shows the other manufacturing method of the film shaping which attached the graphene laminated body in an Example. 実施例におけるグラフェン積層体を添付した射出成形の製造方法を示す説明図(a)~(d)である。It is explanatory drawing (a)-(d) which shows the manufacturing method of the injection molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付した発泡成形の製造方法を示す説明図(a)~(e)である。It is explanatory drawing (a)-(e) which shows the manufacturing method of the foam molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付したブロー成形の製造方法を示す説明図(a)~(d)である。It is explanatory drawing (a)-(d) which shows the manufacturing method of the blow molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付した重合成形の製造方法を示す説明図(a)~(e)である。It is explanatory drawing (a)-(e) which shows the manufacturing method of the polymerization shaping | molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付したホットエンボス成形の製造方法を示す説明図(a)~(e)である。It is explanatory drawing (a)-(e) which shows the manufacturing method of the hot embossing shaping | molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付したホットエンボス成形の他の製造方法を示す説明図(a)~(e)である。It is explanatory drawing (a)-(e) which shows the other manufacturing method of the hot embossing shaping | molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付した真空・圧空成形の製造方法を示す説明図(a)~(d)である。It is explanatory drawing (a)-(d) which shows the manufacturing method of the vacuum and pressure forming which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付した粉体成形の製造方法を示す説明図(a)~(d)である。It is explanatory drawing (a)-(d) which shows the manufacturing method of the powder molding which attached the graphene laminated body in the Example. 実施例におけるグラフェン積層体を添付したグラフェン膜を備える部材を成形する製造装置の説明図(a)~(c)である。It is explanatory drawing (a)-(c) of the manufacturing apparatus which shape | molds the member provided with the graphene film attached with the graphene laminated body in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第1パターン形成工程の説明図(a)、(b)である。It is explanatory drawing (a), (b) of the 1st pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第2パターン形成工程の説明図(a)~(e)である。It is explanatory drawing (a)-(e) of the 2nd pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第3パターン形成工程の説明図(a)~(e)である。It is explanatory drawing (a)-(e) of the 3rd pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第4パターン形成工程の説明図(a)~(e)である。It is explanatory drawing (a)-(e) of the 4th pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第5パターン形成工程の説明図(a)、(b)である。It is explanatory drawing (a), (b) of the 5th pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第6パターン形成工程の説明図(a)~(c)である。It is explanatory drawing (a)-(c) of the 6th pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第7パターン形成工程の説明図(a)~(c)である。It is explanatory drawing (a)-(c) of the 7th pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン膜に、所定のパターンを形成する第8パターン形成工程の説明図(a)~(c)である。It is explanatory drawing (a)-(c) of the 8th pattern formation process which forms a predetermined pattern in the graphene film in an Example. 実施例におけるグラフェン積層体の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の他の構成例の断面図(a)~(c)である。FIG. 6 is a cross-sectional view (a) to (c) of another configuration example of the graphene laminate in the example. 実施例におけるグラフェン積層体の使用例を示す説明図(a)~(c)である。It is explanatory drawing (a)-(c) which shows the usage example of the graphene laminated body in an Example. 実施例におけるグラフェン積層体の他の使用例を示す説明図(a)、(b)である。It is explanatory drawing (a) which shows the other usage example of the graphene laminated body in an Example.
 本発明に係るグラフェン積層体を実施するための形態を実施例に基づいて以下に説明する。 Embodiments for carrying out a graphene laminate according to the present invention will be described below based on examples.
 まず、実施例で利用するグラフェン積層体につき、図1から図9を参照して説明する。 First, the graphene laminate used in the examples will be described with reference to FIGS.
 図1は、実施例におけるグラフェン積層体の構成図を示し、図1(a)は平面図、図1(b)は断面図を示している。 FIG. 1 shows a configuration diagram of a graphene laminate in the example, FIG. 1 (a) shows a plan view, and FIG. 1 (b) shows a cross-sectional view.
 図1において、グラフェン積層体1は、炭素原子が共有結合された少なくとも一層のグラフェン膜2と、物理的粘着力を備える粘着層3と、所定の強度を備える基材4と、を備え、粘着層3の一方面の少なくとも一部に、グラフェン膜2が粘着され、粘着層3の他方面に基材4が粘着されている。このため、グラフェン積層体1は、基材4の上面に粘着層3が形成され、さらに粘着層3の上面にグラフェン膜2が形成されることにより、三層に積層されている。本実施例におけるグラフェン積層体1は、グラフェン膜2の炭素原子と他の分子との間に働くファンデルワールス力よりも大きい物理的粘着力を備える粘着層3を備えている。すなわち、グラフェン膜2が他の対象物に吸着する吸着力よりも大きい物理的粘着力を備える粘着層3を備えることで、粘着層3により、グラフェン膜2と基材4とを物理的に粘着させている。また、粘着層3を、粘着力が消失または減少可能に構成しておくことで、グラフェン膜2を基材4から剥離することができる。これにより、グラフェン膜2を、他の製品に直接貼る付けることができるグラフェン積層体を構成できる。 In FIG. 1, a graphene laminate 1 includes at least one graphene film 2 in which carbon atoms are covalently bonded, an adhesive layer 3 having a physical adhesive force, and a base material 4 having a predetermined strength. The graphene film 2 is adhered to at least a part of one surface of the layer 3, and the substrate 4 is adhered to the other surface of the adhesive layer 3. For this reason, the graphene laminate 1 is laminated in three layers by forming the adhesive layer 3 on the upper surface of the substrate 4 and further forming the graphene film 2 on the upper surface of the adhesive layer 3. The graphene laminate 1 in the present example includes an adhesive layer 3 having a physical adhesive force larger than the van der Waals force acting between the carbon atom of the graphene film 2 and other molecules. That is, the graphene film 2 and the substrate 4 are physically adhered by the adhesive layer 3 by providing the adhesive layer 3 having a physical adhesive force larger than the adsorption force that the graphene film 2 adsorbs to other objects. I am letting. Moreover, the graphene film 2 can be peeled from the base material 4 by configuring the adhesive layer 3 so that the adhesive strength can be lost or reduced. Thereby, the graphene laminated body which can affix the graphene film 2 on other products directly can be comprised.
 本実施例において、基材4としては、例えば、樹脂製のフィルム、ガラス、金属、セラミックスなどの所定の強度を備える基板を利用することができ、また、可撓性または弾性を備える変形自在な素材を用いることで、グラフェン膜を貼り付ける対象物の形状に合わせて基材の形状を変形させることができる。また、基材4としては、熱硬化性、熱可塑性、熱収縮性、生分解性、水溶性のいずれかを少なくとも備えるようにしてもよい。また、所定の強度を備える基材4に、粘着層3を介してグラフェン膜2が形成されるので、取り扱いにくいグラフェン膜を取り扱いやすくすることができる。 In the present embodiment, as the base material 4, for example, a substrate having a predetermined strength such as a resin film, glass, metal, ceramics, or the like can be used, and a deformable material having flexibility or elasticity can be used. By using the material, the shape of the base material can be changed in accordance with the shape of the object to which the graphene film is attached. Further, the substrate 4 may be provided with at least one of thermosetting, thermoplasticity, heat shrinkability, biodegradability, and water solubility. In addition, since the graphene film 2 is formed on the base material 4 having a predetermined strength via the adhesive layer 3, it is possible to easily handle a graphene film that is difficult to handle.
 本実施例において、粘着層3としては、粘着力が消失または減少可能に構成されるような粘着剤、接着剤等を利用することができる。例えば、紫外線などの光を照射させることで粘着力が消失される粘着剤、加熱または冷却することで粘着力が消失または減少される粘着剤を利用したり、水などの溶媒に浸すことで粘着力が消失または減少される粘着剤を利用したりすることができる。例えば、紫外線などの光を照射させることで粘着力が消失される粘着剤としては、少なくとも、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、エポキシ樹脂系、シアノアクリレート系、ポリウレタン系、アクリル樹脂系、その他の紫外線にて反応する粘着剤のいずれかを含有し、一種類または複数から構成される樹脂組成物を利用できる。また、加熱することで粘着力が消失または減少される粘着剤としては、少なくとも、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、エポキシ樹脂系、シアノアクリレート系、ポリウレタン系、アクリル樹脂系、EVA樹脂ホットメルト系、合成ゴムホットメルト系、その他ホットメルト系、アクリル樹脂系感圧系、ゴム系感圧系、その他の感圧系粘着剤のいずれかを含有し、一種類または複数から構成される樹脂組成物を利用することができる。また、冷却することで粘着力が消失または減少される粘着剤としては、少なくとも、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、エポキシ樹脂系、シアノアクリレート系、ポリウレタン系、アクリル樹脂系、アクリル樹脂系感圧系、ゴム系感圧系、その他の感圧系粘着剤のいずれかを含有し、一種類または複数から構成される樹脂組成物を利用することができる。また、水などの溶媒に浸すことで粘着力が消失または減少される粘着剤としては、少なくとも、酢酸ビニル系樹脂系エマルション、酢酸ビニル共重合系エマルション、EVA樹脂系エマルション、アクリル樹脂系エマルション、その他樹脂系エマルション、水溶性イソシアネート系、合成ゴム系ラテックス、その他の水溶性着剤のいずれかを含有し、一種類または複数から構成される樹脂組成物を利用することができる。 In this embodiment, as the pressure-sensitive adhesive layer 3, a pressure-sensitive adhesive, an adhesive, or the like that can be configured to lose or reduce the pressure-sensitive adhesive force can be used. For example, an adhesive that loses its adhesive strength when irradiated with light such as ultraviolet rays, an adhesive that loses or decreases its adhesive strength when heated or cooled, or is immersed in a solvent such as water An adhesive that loses or reduces its power can be used. For example, at least urea resin, melamine resin, phenol resin, epoxy resin, cyanoacrylate, polyurethane, acrylic resin as adhesive that loses adhesive strength when irradiated with light such as ultraviolet rays In addition, a resin composition comprising any one or a plurality of other pressure-sensitive adhesives that react with ultraviolet rays can be used. In addition, the pressure-sensitive adhesive whose adhesive strength is lost or reduced by heating is at least a urea resin type, a melamine resin type, a phenol resin type, an epoxy resin type, a cyanoacrylate type, a polyurethane type, an acrylic resin type, and an EVA resin. Contains one or more of hot melt, synthetic rubber, hot melt, other hot melt, acrylic resin pressure sensitive, rubber pressure sensitive, and other pressure sensitive adhesives A resin composition can be used. In addition, the pressure sensitive adhesive whose viscosity is lost or reduced by cooling is at least a urea resin type, a melamine resin type, a phenol resin type, an epoxy resin type, a cyanoacrylate type, a polyurethane type, an acrylic resin type, an acrylic resin. A resin composition comprising any one of a system pressure sensitive system, a rubber pressure sensitive system, and other pressure sensitive adhesives and composed of one or a plurality of pressure sensitive adhesives can be used. In addition, as an adhesive whose adhesive strength disappears or decreases by being immersed in a solvent such as water, at least vinyl acetate resin emulsion, vinyl acetate copolymer emulsion, EVA resin emulsion, acrylic resin emulsion, and others A resin composition comprising one or more of resin-based emulsion, water-soluble isocyanate-based, synthetic rubber-based latex, and other water-soluble adhesives can be used.
 また、粘着層3の一方面の少なくとも一部に、グラフェン膜2を粘着させておくことで、グラフェン膜2が形成されていない粘着層3の部分で、他の部材にグラフェン積層体を一時的に仮保持させることができるので、グラフェン膜2を貼付する他の部材への位置決めが容易となる。また、粘着層3上面の全面にグラフェン膜2を形成してもよい。また、基材4の上面の少なくとも一部に、粘着層3を形成しておくことで、粘着層3が形成されていない基材4の部分を、ピンセット等で把持することができるので、グラフェン積層体1の取扱いが容易となる。また、基材4の上面の全面に粘着層3を形成するようにしてもよい。 In addition, by adhering the graphene film 2 to at least a part of one surface of the adhesive layer 3, the graphene laminate is temporarily attached to another member in the adhesive layer 3 where the graphene film 2 is not formed. Therefore, positioning to another member to which the graphene film 2 is attached becomes easy. Further, the graphene film 2 may be formed on the entire upper surface of the adhesive layer 3. Further, by forming the adhesive layer 3 on at least a part of the upper surface of the base material 4, the portion of the base material 4 on which the adhesive layer 3 is not formed can be gripped with tweezers or the like. Handling of the laminated body 1 becomes easy. Further, the adhesive layer 3 may be formed on the entire upper surface of the substrate 4.
 また、基材4および粘着層3は、粘着シート11として構成できるので、本実施例におけるグラフェン積層体1は、粘着シート11にグラフェン膜2が形成されることで構成するようにできる。 Moreover, since the base material 4 and the adhesive layer 3 can be configured as an adhesive sheet 11, the graphene laminate 1 in this example can be configured by forming the graphene film 2 on the adhesive sheet 11.
 つぎに、本実施例におけるグラフェン積層体の製造工程の一例を図2および図3を参照して説明する。まず、触媒としての金属膜7(例えば銅Cu、ニッケルNi、アルミニウムAL、鉄Fe、コバルトCo等)に、化学気相蒸着法(CVD)を用いてグラフェン膜2を成膜する。そして図2(a)に示すように、金属膜7およびグラフェン膜2から構成される2層のロール状シート8を作成しておく。化学気相蒸着法(CVD)としては、熱CVD成膜やプラズマCVD法などを利用できる。つぎに、グラフェン膜2が形成された2層のロール状シート8を、図2(b)に示すように、任意の大きさの2層の矩形状シート9に切り分け、図2(c)に示すように、ラミネーター10を用いて2層の矩形状シート9のグラフェン膜2側に粘着シート11を貼り付ける。 Next, an example of the manufacturing process of the graphene laminate in the present embodiment will be described with reference to FIGS. First, the graphene film 2 is formed on the metal film 7 (for example, copper Cu, nickel Ni, aluminum AL, iron Fe, cobalt Co, etc.) as a catalyst by using chemical vapor deposition (CVD). Then, as shown in FIG. 2A, a two-layer roll sheet 8 composed of the metal film 7 and the graphene film 2 is prepared. As chemical vapor deposition (CVD), thermal CVD film formation, plasma CVD, or the like can be used. Next, the two-layer roll sheet 8 on which the graphene film 2 is formed is cut into a two-layer rectangular sheet 9 having an arbitrary size as shown in FIG. As shown, an adhesive sheet 11 is attached to the graphene film 2 side of a two-layer rectangular sheet 9 using a laminator 10.
 つぎに、金属膜7を除去するため、図3(d)に示されるように、2層の矩形状シート9と粘着シート11とからなるグラフェン膜2、金属膜7および粘着シート11は、酸性であるエッチング液13を満した水槽12に浸漬させる。これにより、エッチング液13により金属膜7が溶かされ、グラフェン膜2および粘着シート11のみが残る。なお、粘着シート11の基材4および粘着層3は、エッチング液13に耐えうるような耐酸性の素材を利用する。さらに図3(e)に示されるように、グラフェン膜2および粘着シート11が中和液14により洗浄されてグラフェン積層体1の製造が完了する。 Next, in order to remove the metal film 7, as shown in FIG. 3D, the graphene film 2, the metal film 7 and the adhesive sheet 11 composed of the two-layer rectangular sheet 9 and the adhesive sheet 11 are acidic. Is immersed in a water tank 12 filled with an etching solution 13. Thereby, the metal film 7 is melted by the etching solution 13, and only the graphene film 2 and the adhesive sheet 11 remain. The base material 4 and the pressure-sensitive adhesive layer 3 of the pressure-sensitive adhesive sheet 11 use acid-resistant materials that can withstand the etching solution 13. Further, as shown in FIG. 3 (e), the graphene film 2 and the pressure-sensitive adhesive sheet 11 are washed with the neutralizing solution 14 to complete the production of the graphene laminate 1.
 以上説明したような工程で、本実施例におけるグラフェン積層体1を形成することができる。 The graphene laminate 1 in the present example can be formed by the steps as described above.
 また、上述したプラズマCVD法を利用する場合には、金属膜7にグラフェン膜2を成膜する代わりに、粘着シート11に、直接グラフェン膜2を成膜することができる。さらに、粘着シート11にグラフェン膜2を形成する他の方法としては、グラフェン膜2が形成された部材に粘着シート11を貼り付け、この粘着シート11を部材より引き剥がすことで、粘着シート11にグラフェン膜2を転写することで形成できる。また、粘着シート11にグラフェン膜2を形成する他の方法としては、グラファイトを粉砕させたグラファイトの粉体を超音波等で分散させ、溶媒に溶かし込み、この溶媒を揮発させて粘着シート11に塗布し、その後、溶媒を飛ばして除去することでも形成できる。 Further, when the plasma CVD method described above is used, the graphene film 2 can be directly formed on the adhesive sheet 11 instead of forming the graphene film 2 on the metal film 7. Furthermore, as another method of forming the graphene film 2 on the pressure-sensitive adhesive sheet 11, the pressure-sensitive adhesive sheet 11 is attached to the member on which the graphene film 2 is formed, and the pressure-sensitive adhesive sheet 11 is peeled off from the member. It can be formed by transferring the graphene film 2. As another method for forming the graphene film 2 on the pressure-sensitive adhesive sheet 11, graphite powder obtained by pulverizing graphite is dispersed with ultrasonic waves or the like, dissolved in a solvent, and the solvent is volatilized to form the pressure-sensitive adhesive sheet 11. It can also be formed by coating, and then removing the solvent by removing it.
 上述したように形成されたグラフェン積層体1は、グラフェン膜2が粘着シート11の表面に形成され、剥き出した状態のため、出荷する際や取扱いの際には、グラフェン膜2を傷つけないようにする必要があるので、グラフェン積層体1の表面のグラフェン膜2を保護する保護部材を設けるようにしてもよい。 In the graphene laminate 1 formed as described above, the graphene film 2 is formed on the surface of the pressure-sensitive adhesive sheet 11 and is exposed, so that the graphene film 2 is not damaged when shipped or handled. Therefore, a protective member for protecting the graphene film 2 on the surface of the graphene laminate 1 may be provided.
 そこで、グラフェン積層体1は、図4に示すように、グラフェン膜2側に、保護部材としての保護膜15を備えるようにできる。保護膜15の材質としては、シリコーン系フィルム、フッ素系フィルム、ポリエチレン系フィルム等の樹脂製のフィルムを利用することができる。それらフィルムの表面は、グラフェン膜2から剥離しやすくするためのエンボス加工等を施しておいてもよい。また、アルミ蒸着等によりさらにフィルムの表面に遮光膜を形成しておいてもよい。保護膜15としては、ガスバリア性(水分、酸素等を遮断する機能)、遮光性(可視光線、紫外線等を遮断する機能)、離型性(保護膜15をグラフェン膜2から剥がしやすくする機能)等を備えることが望ましい。 Therefore, the graphene laminate 1 can be provided with a protective film 15 as a protective member on the graphene film 2 side as shown in FIG. As the material of the protective film 15, a resin film such as a silicone film, a fluorine film, or a polyethylene film can be used. The surfaces of these films may be subjected to embossing or the like for facilitating peeling from the graphene film 2. Further, a light shielding film may be further formed on the surface of the film by aluminum vapor deposition or the like. The protective film 15 includes gas barrier properties (functions that block moisture, oxygen, etc.), light shielding properties (functions that block visible light, ultraviolet rays, etc.), releasability (functions that make the protective film 15 easy to peel off from the graphene film 2). Etc. are desirable.
 さらに、グラフェン積層体1を出荷する際には、保護部材として、ケースまたは梱包袋16等にパック詰めしておくことで、さらにグラフェン膜2を保護することができる。また、梱包袋16は、真空状態、または窒素やアルゴンなどの不活性ガスを充填しておくことで、グラフェンの酸化を防止することができる。梱包袋16としては、ガスバリア性(水分、酸素等を遮断する機能)、遮光性(可視光線、紫外線等を遮断する機能)等を備えることが望ましい。 Furthermore, when the graphene laminate 1 is shipped, the graphene film 2 can be further protected by packing it in a case or a packing bag 16 as a protective member. Moreover, the packing bag 16 can prevent oxidation of graphene by filling a vacuum state or an inert gas such as nitrogen or argon. The packaging bag 16 desirably has gas barrier properties (function of blocking moisture, oxygen, etc.), light shielding properties (function of blocking visible light, ultraviolet rays, etc.) and the like.
 上述した実施例においては、グラフェン積層体1を矩形状のシート状に形成する場合を例に説明してきたが、グラフェン膜2および粘着シート11の長さおよび形状を適宜調整することで、図5に示されるような様々な形状に成形しておくことが可能である。図5(a)~(e)に示すように、実施例に係るグラフェン積層体1は、様々な形状に成形できる。図5(a)は、上述した実施例のグラフェン積層体1を矩形状のシート状1Aに形成した場合を示し、図5(b)は、上述した実施例のグラフェン積層体1をA4サイズの大型の矩形状のシート状1Bに形成した場合を示し、図5(c)は、上述した実施例のグラフェン積層体1を幅狭のロール状5としてグラフェン積層体1Cを形成した場合を示し、図5(d)は、上述した実施例のグラフェン積層体1をA4サイズの幅の幅大のロール状6としてグラフェン積層体1Dを形成した場合を示し、図5(e)は、上述した実施例のグラフェン積層体1を矩形状のシート状1Eの変形例を示している。図5(e)に示すように、矩形状のシート状1Eは、グラフェン膜2の一部を除去することで、グラフェン積層体1の粘着層3を一部表面に剥き出しとしておいてもよい。グラフェン膜2が形成されていない粘着層3の部分で、他の部材にグラフェン積層体を一時的に仮保持させることができるので、グラフェン膜2を貼付する他の部材への位置決めが容易となる。 In the embodiment described above, the case where the graphene laminated body 1 is formed in a rectangular sheet shape has been described as an example. However, by appropriately adjusting the length and shape of the graphene film 2 and the pressure-sensitive adhesive sheet 11, FIG. Can be formed into various shapes as shown in FIG. As shown in FIGS. 5A to 5E, the graphene laminate 1 according to the embodiment can be formed into various shapes. FIG. 5A shows a case where the graphene laminate 1 of the above-described embodiment is formed in a rectangular sheet shape 1A, and FIG. 5B shows the graphene laminate 1 of the above-described embodiment of A4 size. FIG. 5 (c) shows a case where the graphene laminate 1C is formed as a narrow roll-like shape 5 as shown in FIG. 5 (c). FIG.5 (d) shows the case where the graphene laminated body 1D is formed by making the graphene laminated body 1 of the Example mentioned above into the roll shape 6 of the width | variety of A4 size, and FIG.5 (e) is the implementation mentioned above. The graphene laminated body 1 of an example has shown the modification of the rectangular sheet form 1E. As shown in FIG. 5 (e), the rectangular sheet-like shape 1 </ b> E may partially expose the adhesive layer 3 of the graphene laminate 1 by removing a part of the graphene film 2. Since the graphene laminate can be temporarily held by another member at the portion of the adhesive layer 3 where the graphene film 2 is not formed, positioning to the other member to which the graphene film 2 is attached becomes easy. .
 次に、グラフェン積層体1の使用方法について図6から図9を参照して説明する。本実施例におけるグラフェン積層体1のグラフェン膜2は、以下に示すような方法で、他の部材の対象物17に転写することができる。 Next, a method of using the graphene laminate 1 will be described with reference to FIGS. The graphene film 2 of the graphene laminated body 1 in the present embodiment can be transferred to the object 17 of another member by the following method.
 図6に示されるように、梱包袋16から取り出されたグラフェン積層体1Aを任意の大きさにカットし、保護膜15を剥がす。そしてグラフェン膜2側を上向きにして、その上に、対象物17を載置し、対象物17にグラフェン積層体1Aを接触させる。その後、グラフェン積層体1Aと対象物17を加圧して貼り合わせる。その後、後述する各種剥離法により粘着層3の粘着性を消失または減少させてから、グラフェン積層体1Aを剥がすと対象物17にグラフェン膜2のみを残すことができる。 As shown in FIG. 6, the graphene laminate 1A taken out from the packing bag 16 is cut into an arbitrary size, and the protective film 15 is peeled off. Then, with the graphene film 2 side facing upward, the object 17 is placed thereon, and the graphene laminate 1A is brought into contact with the object 17. Thereafter, the graphene laminate 1A and the object 17 are pressed and bonded together. Then, after the graphene laminate 1A is peeled off after the adhesiveness of the adhesive layer 3 is lost or reduced by various peeling methods described later, only the graphene film 2 can be left on the object 17.
 続いて、グラフェン膜2から粘着シート11を剥離させる各種剥離法について図7を用いて説明する。 Subsequently, various peeling methods for peeling the adhesive sheet 11 from the graphene film 2 will be described with reference to FIG.
 図7(a)に示す剥離法は、粘着シート11の粘着層3に、紫外線に反応して粘着力が低下するものが用いられており、グラフェン膜2、対象物17および粘着シート11をローラー18で挟持しつつ、粘着シート11に紫外線照射装置19で紫外線を照射しながら粘着シート11を一端から漸次剥離させる例を示したものである。この場合、粘着シート11の基板4は、光を透過させる透光性を備えており、粘着シート11の粘着層3に紫外線を照射することで、粘着剤ポリマーが光架橋構造に取り込まれ、体積収縮が起り、粘着力が消失される。粘着シート11のグラフェン膜2側を密着させ、その後、粘着層3に紫外線を照射して物理的粘着力が消失させれば、粘着シート11とグラフェン膜2とを分離することができ、また、グラフェン膜2の吸着機能により、対象物17にグラフェン膜2を貼りつけることができる。また、対象物17が透光性を備える場合には、粘着シート11の基板4は透光性を備えなくてもよく、この場合、紫外線照射装置19を、対象物17側から照射させて、粘着層3に紫外線を照射することができる。 In the peeling method shown in FIG. 7 (a), the pressure-sensitive adhesive layer 3 of the pressure-sensitive adhesive sheet 11 uses a material whose adhesive strength is reduced by reacting with ultraviolet rays, and the graphene film 2, the object 17 and the pressure-sensitive adhesive sheet 11 are transferred to a roller. 18 shows an example in which the pressure-sensitive adhesive sheet 11 is gradually peeled from one end while being irradiated with ultraviolet rays by the ultraviolet irradiation device 19 while being sandwiched by 18. In this case, the substrate 4 of the pressure-sensitive adhesive sheet 11 has translucency to transmit light, and the pressure-sensitive adhesive polymer is taken into the photocrosslinking structure by irradiating the pressure-sensitive adhesive layer 3 of the pressure-sensitive adhesive sheet 11 with ultraviolet light. Shrinkage occurs and the adhesive strength disappears. If the pressure-sensitive adhesive sheet 11 is adhered to the graphene film 2 side, and then the physical adhesive force disappears by irradiating the pressure-sensitive adhesive layer 3 with ultraviolet rays, the pressure-sensitive adhesive sheet 11 and the graphene film 2 can be separated. The graphene film 2 can be attached to the object 17 by the adsorption function of the graphene film 2. When the object 17 has translucency, the substrate 4 of the adhesive sheet 11 may not have translucency. In this case, the ultraviolet irradiation device 19 is irradiated from the object 17 side, The adhesive layer 3 can be irradiated with ultraviolet rays.
 図7(b)に示す剥離法は、粘着シート11の粘着剤に、所定温度以上の温度に加熱または所定温度以下の温度に冷却することで、粘着力が低下するものが用いられており、グラフェン膜2、対象物17および粘着シート11を加熱/冷却機能を有するローラー20で挟持し、粘着シート11を一端から漸次剥離させる例を示している。この場合、粘着シート11の粘着剤として、所定温度以上の温度で加熱すると粘着力が低下するものを利用する場合、内包する発泡剤が膨張することで、粘着シート11からグラフェン膜2が分離される。この場合、基材4としては、熱硬化性の機能を備えるものにしておくことで、加熱した際に基材4が硬化するため、より剥がしやすくすることができる。また、粘着シート11の粘着剤として、所定温度以下の温度に冷却することで、粘着力が低下するものを利用する場合、冷却することで粘着剤組成物の分子運動が無くなり粘着性を消失する。粘着シート11のグラフェン膜2側を対象物17に密着させ、その後、粘着シート11を加熱または冷却することで、粘着層3の物理的粘着力が消失させれば、粘着シート11とグラフェン膜2とを分離することができ、また、グラフェン膜2の吸着機能により、対象物17にグラフェン膜2を貼りつけることができる。 In the peeling method shown in FIG. 7 (b), the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 11 has a pressure-sensitive adhesive force lowered by heating to a temperature equal to or higher than a predetermined temperature or cooling to a temperature equal to or lower than a predetermined temperature. In this example, the graphene film 2, the object 17, and the pressure-sensitive adhesive sheet 11 are sandwiched between rollers 20 having heating / cooling functions, and the pressure-sensitive adhesive sheet 11 is gradually peeled from one end. In this case, when a pressure-sensitive adhesive having a pressure-sensitive adhesive strength that is reduced when heated at a temperature equal to or higher than a predetermined temperature is used as the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 11, the graphene film 2 is separated from the pressure-sensitive adhesive sheet 11 due to expansion of the foaming agent. The In this case, as the base material 4 is provided with a thermosetting function, since the base material 4 is cured when heated, it can be more easily peeled off. Moreover, as a pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 11, when using a material whose adhesive strength is reduced by cooling to a temperature equal to or lower than a predetermined temperature, the molecular movement of the pressure-sensitive adhesive composition is eliminated by cooling and the adhesiveness is lost. . If the physical adhesive force of the adhesive layer 3 disappears by making the graphene film 2 side of the adhesive sheet 11 adhere to the object 17 and then heating or cooling the adhesive sheet 11, the adhesive sheet 11 and the graphene film 2 And the graphene film 2 can be attached to the object 17 by the adsorption function of the graphene film 2.
 また図7(c)に示す剥離法は、粘着シート11の粘着剤に、水溶性のものが用いられており、グラフェン膜2、対象物17および粘着シート11を、水を満たした水槽21に浸漬させて、粘着シート11を剥離させる例を示している。この場合、粘着シート11の粘着剤として、水溶性の粘着剤を利用することで、粘着層3の粘着剤が水へ溶解し粘着性を消失する。粘着シート11のグラフェン膜2側を対象物17に密着させ、その後、粘着シート11を水に含浸させることで、粘着層3の物理的粘着力が消失させれば、粘着シート11とグラフェン膜2とを分離することができ、また、グラフェン膜2の吸着機能により、対象物17にグラフェン膜2を貼りつけることができる。さらに、基材4も水溶性の機能を備えるようにしておくことで、粘着層3および基材4からなる粘着シート11を溶解させることができる。 Moreover, the peeling method shown in FIG.7 (c) uses the water-soluble thing for the adhesive of the adhesive sheet 11, The graphene film 2, the target object 17, and the adhesive sheet 11 are put into the water tank 21 filled with water. An example in which the pressure-sensitive adhesive sheet 11 is peeled off by immersion is shown. In this case, by using a water-soluble pressure-sensitive adhesive as the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 11, the pressure-sensitive adhesive of the pressure-sensitive adhesive layer 3 dissolves in water and loses the pressure-sensitive adhesiveness. If the physical adhesive force of the adhesive layer 3 disappears by adhering the graphene film 2 side of the adhesive sheet 11 to the object 17 and then impregnating the adhesive sheet 11 with water, the adhesive sheet 11 and the graphene film 2 And the graphene film 2 can be attached to the object 17 by the adsorption function of the graphene film 2. Furthermore, the adhesive sheet 11 which consists of the adhesion layer 3 and the base material 4 can be dissolved by making the base material 4 also have a water-soluble function.
 また、図8(a)および(b)に示されるように、凸部を有する対象物22にグラフェン膜2を転写する場合であっても、粘着シート11が可撓性、弾性力を備えることで凸部の形状に沿って密着可能であり、前述した粘着シート11の剥離工程により対象物22の形状に関わらずグラフェン膜2を転写することができる。この場合、例えば、粘着シート11の基板4を熱可塑性のフィルムで構成し、グラフェン積層体1を加熱および加圧用のタンクに装着させて、グラフェン積層体1を所定温度まで加熱し、対象物22に接触させた後に、タンクに空気又は液体などの加圧媒体を注入して、対象物22にグラフェン積層体1を押し付けることで、対象物22の形状に添わせ加圧することで対象物22とグラフェン積層体1とを密着させることができる。その後、グラフェン積層体1および対象物22から、タンクを切り離し、上述した各種剥離法により、粘着層3の粘着性を消失させ、粘着シート11を剥がすことで、対象物22にグラフェン膜2を貼りつけることができる。 In addition, as shown in FIGS. 8A and 8B, the pressure-sensitive adhesive sheet 11 has flexibility and elasticity even when the graphene film 2 is transferred to the object 22 having a convex portion. The graphene film 2 can be transferred regardless of the shape of the object 22 by the above-described peeling process of the pressure-sensitive adhesive sheet 11. In this case, for example, the substrate 4 of the pressure-sensitive adhesive sheet 11 is made of a thermoplastic film, the graphene laminate 1 is mounted on a heating and pressurizing tank, the graphene laminate 1 is heated to a predetermined temperature, and the object 22 Then, a pressure medium such as air or liquid is injected into the tank and the graphene laminate 1 is pressed against the object 22 to press the object 22 according to the shape of the object 22 and pressurize the object 22. The graphene laminated body 1 can be stuck. Thereafter, the tank is cut off from the graphene laminate 1 and the object 22, the adhesiveness of the adhesive layer 3 is lost by the above-described various peeling methods, and the adhesive sheet 11 is peeled off, so that the graphene film 2 is attached to the object 22. You can turn it on.
 また、図9(a)~(c)、または、図10(a)~(e)に示されるように、凹部を有する対象物24または対象物75にグラフェン膜2を転写する場合であっても、粘着シート11が熱収縮性を備えることで、凹部の形状に沿って密着可能であり、前述した粘着シート11の剥離工程により対象物24または対象物75の形状に関わらずグラフェン膜2を転写することができる。この場合、例えば、粘着シート11の基板4を熱収縮性のフィルムで構成し、図10(a)に示すように、グラフェン膜2を内側にしてグラフェン積層体1Aを円筒上にして、その内側に対象物24または対象物75を入れる(図9(a)、図10(b)参照)。もしくは、対象物24または対象物75の外側に、グラフェン膜2を内側にしてグラフェン積層体1Aを巻きつける。その後、図9(b)、図10(c)に示すように、グラフェン積層体1Aの周りをドライヤーなどの温風で加熱してグラフェン積層体1Aの粘着シート11を収縮させて、粘着シート11を対象物24または対象物75に密着させる(図9(b)、図10(c)参照)。その後、上述した各種剥離法により、粘着層3の粘着性を消失させ(図10(d)参照)、粘着シート11を剥がすことで、対象物24または対象物75にグラフェン膜2を貼りつけることができる(図9(c)、図10(e)参照)。 Further, as shown in FIGS. 9A to 9C or FIGS. 10A to 10E, the graphene film 2 is transferred to the object 24 or the object 75 having a recess. In addition, since the pressure-sensitive adhesive sheet 11 has heat shrinkability, the pressure-sensitive adhesive sheet 11 can be closely adhered along the shape of the concave portion. Can be transferred. In this case, for example, the substrate 4 of the pressure-sensitive adhesive sheet 11 is made of a heat-shrinkable film, and as shown in FIG. The object 24 or the object 75 is put in (see FIGS. 9A and 10B). Alternatively, the graphene laminate 1A is wound around the outside of the object 24 or the object 75 with the graphene film 2 inside. Thereafter, as shown in FIGS. 9B and 10C, the pressure-sensitive adhesive sheet 11 of the graphene laminated body 1A is contracted by heating the periphery of the graphene laminated body 1A with warm air such as a dryer. Is closely attached to the object 24 or the object 75 (see FIGS. 9B and 10C). Thereafter, the adhesiveness of the adhesive layer 3 is eliminated by the various peeling methods described above (see FIG. 10D), and the graphene film 2 is attached to the object 24 or the object 75 by peeling the adhesive sheet 11. (See FIG. 9C and FIG. 10E).
 また、上述した使用例においては、既に成形された対象物に対して、グラフェン膜2を貼りつける例を示しているが、他の使用例として、例えば、対象物そのものを成形する際に、グラフェン膜2を添付することもできる。 Moreover, in the usage example mentioned above, although the example which affixes the graphene film 2 with respect to the already shape | molded target object is shown, as another usage example, when shape | molding the target object itself, for example, graphene A membrane 2 can also be attached.
 この場合、成形する対象物としては、例えば、樹脂、焼結前のセラミックス素材(グリーンシート等)、鉄系(フェライト等)、カーボン系、セラミックス系、その他様々な粉体系による成形物、低融点ガラス等を利用できる。これらの対象物を金型等で成形する際に、上述したグラフェン積層体1を、その金型の対応する位置(対象物の貼付したい位置に対応する位置)に装着させて成形することで、成形した対象物にグラフェン積層体1を密着させる。その後、上述した各種剥離法により、粘着層3の粘着性を消失させ、粘着シート11を剥がすことで、成形された対象物にグラフェン膜2を貼りつけることができる。対象物の成形方法としては、例えば、射出成型、ブロー成形、真空成型、発砲成形、重合成形(加熱、UV(紫外線)、EB(電子線)等)、ホットエンボス成形、インプリント成形等がある。これらの成形方法で成形する際に、金型にグラフェン積層体1を装着しておけば、成形と同時にグラフェン積層体1を貼付でき、その後粘着シート11の粘着性を消失後、粘着シート11を剥がすことで、グラフェン膜2が形成された対象物を成形することができる。 In this case, the object to be molded includes, for example, a resin, a ceramic material before sintering (green sheet, etc.), an iron-based (ferrite, etc.), carbon-based, ceramic-based, and other various powder-based molded products, a low melting point Glass etc. can be used. When molding these objects with a mold or the like, by attaching the above-described graphene laminate 1 to a corresponding position of the mold (a position corresponding to a position where the object is to be attached), The graphene laminate 1 is brought into close contact with the molded object. Then, the graphene film | membrane 2 can be affixed on the shape | molded target object by making the adhesiveness of the adhesion layer 3 lose | disappear by the various peeling method mentioned above, and peeling the adhesive sheet 11. FIG. Examples of the molding method of the object include injection molding, blow molding, vacuum molding, foam molding, polymerization molding (heating, UV (ultraviolet light), EB (electron beam), etc.), hot emboss molding, imprint molding, and the like. . When the graphene laminate 1 is attached to the mold when molding by these molding methods, the graphene laminate 1 can be applied simultaneously with the molding, and after the adhesive sheet 11 has disappeared, the adhesive sheet 11 is removed. By peeling off, the object on which the graphene film 2 is formed can be molded.
 以下、対象物そのものを成形する際に、グラフェン膜2を添付する場合の具体的な製造方法について図11~図22を参照して説明する。 Hereinafter, a specific manufacturing method in the case where the graphene film 2 is attached when the object itself is molded will be described with reference to FIGS.
 図11には、実施例におけるグラフェン積層体を添付したフィルム成形の製造方法を示している。図11においては、樹脂等のフィルム状の部材をキャストロール方法により成形する場合の製造方法において、成形工程の際に、形成されたフィルム状の部材の表面にグラフェン積層体1を貼り付けることにより当該部材に添付して成形する製造方法を示している。この場合、製造装置130Aは、原料押出機71に保持している溶融物の原料を、原料押出機71の先端に備える直線状のリップを持つ金型が設置されたTダイ72を介して押出すことで、原料をシート状に平たくし、鏡面処理されたキャストロール73を介して冷却することで、フィルム状に連続的に成形する成形工程を有している。本実施例においては、粘着シート11にグラフェン膜2が貼りついたロール状1Dのグラフェン積層体1を保持しておき、ローラー74を介して搬送されたフィルム状の部材25の表面に、グラフェン積層体1のグラフェン膜2側を密着させ、押圧ローラー26により押圧する。これにより、形成されたフィルム状の部材25の表面にグラフェン積層体1を貼り付けることができる。さらに、剥離工程28として、上述したグラフェン膜2から粘着シート11を剥離させる各種剥離法を施すことにより、グラフェン積層体1の粘着層の粘着力を消失または減少させ、部材25に添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することで、部材25に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材30とすることができる。剥離工程28としては、上述した加熱や冷却処理、紫外線照射処理、水溶を含浸させる処理を施すことにより、粘着層の粘着力を消失または減少させる。剥離手法としては、例えば、加熱により粘着性が消失または減少するような粘着剤を利用する場合には、部材25の温度が熱い場合には、特に剥離工程を備えなくとも、ローラー27で基板4を巻き取ることで部材25に添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することができる。グラフェン膜2が添付された成形部材30は、冷却部80にて冷却された後に、巻取りローラー29に巻き取られて、ローラー状にまとめておくことができる。最終的に巻き取られるまでの過程で端部の切り落としなどを行い成形部材30の幅を調整することができる。また、成形部材30に、上述したようなグラフェン膜2を保護する保護部材としての保護膜15または保護シートを一緒に添付するようにしてもよい。この場合、巻取りローラー29にまとめる前に、保護膜15または保護シートを添付することができる。本実施例によれば、フィルム成形により成形された、グラフェン膜2が添付された成形部材30を様々な場面や用途で利用することができる。本実施例によれば、原料がシート状に形成された状態の半溶融状態にあるときにグラフェン積層体が貼り付けられるため、原料のシート状に合わせてグラフェン積層体のグラフェン膜が密着し、原料が成形されて硬化する際にグラフェン積層体のグラフェン膜も原料に一体化されて成形されることとなる。 FIG. 11 shows a manufacturing method of film molding to which the graphene laminate in the example is attached. In FIG. 11, in a manufacturing method in which a film-like member such as a resin is formed by a cast roll method, the graphene laminate 1 is attached to the surface of the formed film-like member during the forming step. The manufacturing method which attaches to the said member and shape | molds is shown. In this case, the manufacturing apparatus 130A pushes the raw material of the melt held in the raw material extruder 71 through a T die 72 in which a die having a linear lip provided at the tip of the raw material extruder 71 is installed. By taking out, the raw material is flattened into a sheet shape and cooled through a mirror-finished cast roll 73 to have a forming step of continuously forming into a film shape. In this embodiment, the roll-shaped 1D graphene laminate 1 having the graphene film 2 attached to the pressure-sensitive adhesive sheet 11 is held, and the graphene laminate is formed on the surface of the film-like member 25 conveyed via the roller 74. The graphene film 2 side of the body 1 is brought into close contact, and is pressed by the pressing roller 26. Thereby, the graphene laminated body 1 can be affixed on the surface of the formed film-like member 25. Further, as the peeling process 28, various peeling methods for peeling the pressure-sensitive adhesive sheet 11 from the graphene film 2 described above are performed, whereby the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer of the graphene laminate 1 is lost or reduced, and the graphene attached to the member 25 By peeling the base material 4 from the graphene film 2 of the laminate 1, only the integrated graphene film 2 is left in the member 25, and the molded member 30 to which the graphene film 2 is attached can be obtained. As the peeling process 28, the adhesive force of the adhesive layer is lost or reduced by performing the above-described heating or cooling treatment, ultraviolet irradiation treatment, or water impregnation treatment. As a peeling method, for example, when an adhesive whose adhesiveness is lost or reduced by heating is used, when the temperature of the member 25 is hot, the substrate 4 is used by the roller 27 even if no peeling process is provided. Can be peeled off from the graphene film 2 of the graphene laminate 1 attached to the member 25. The molded member 30 to which the graphene film 2 is attached can be rolled up by the winding roller 29 after being cooled by the cooling unit 80 and can be collected in a roller shape. The width of the molded member 30 can be adjusted by cutting off the end portion in the process until the final winding. Further, the protective film 15 or the protective sheet as a protective member for protecting the graphene film 2 as described above may be attached to the molded member 30 together. In this case, the protective film 15 or the protective sheet can be attached before being collected on the winding roller 29. According to the present Example, the shaping | molding member 30 shape | molded by the film shaping | molding and the graphene film | membrane 2 attached can be utilized in various scenes and uses. According to this example, the graphene laminate is attached when the raw material is in a semi-molten state formed in a sheet form, so the graphene film of the graphene laminate is in close contact with the sheet form of the raw material, When the raw material is molded and cured, the graphene film of the graphene laminate is also integrated with the raw material and molded.
 また、図12には、実施例におけるグラフェン積層体を添付したフィルム成形の他の製造方法を示している。図12においては、樹脂等のフィルム状の部材をベルト成膜方法により成形する場合の製造方法において、成形工程の途中で、フィルム状の部材の表面にグラフェン積層体1を貼り付けることにより当該部材に添付して成形する製造方法を示している。図12においても、剥離工程28など、図11に示す構成と同じ番号のものは、同様の構成を備えている。図12においては、図11に示すキャストロールを用いる代わりに、ローラー81介して搬送されるベルト82上に、部材25が成膜される製造装置130Bを示している。ベルト成膜方法により成形する場合の製造方法においても、ベルト82上を搬送されるフィルム状の部材25の表面に、グラフェン積層体1のグラフェン膜2側を密着させ、押圧ローラー26により押圧することで、形成されたフィルム状の部材25の表面にグラフェン積層体1を貼り付けることができる。さらに、剥離工程28として、上述した各種剥離法を施すことにより、部材25に添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することで、部材25に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材30とすることができる。 FIG. 12 shows another manufacturing method of film forming with the graphene laminate in the example attached. In FIG. 12, in a manufacturing method in which a film-like member such as a resin is formed by a belt film forming method, the graphene laminate 1 is attached to the surface of the film-like member in the middle of the forming step. The manufacturing method which is attached to and molded is shown. Also in FIG. 12, the thing of the same number as the structure shown in FIG. 11, such as the peeling process 28, has the same structure. In FIG. 12, instead of using the cast roll shown in FIG. 11, a manufacturing apparatus 130B in which the member 25 is formed on the belt 82 conveyed through the roller 81 is shown. Also in the manufacturing method in the case of forming by the belt film forming method, the graphene film 2 side of the graphene laminate 1 is brought into close contact with the surface of the film-like member 25 conveyed on the belt 82 and pressed by the pressing roller 26. Thus, the graphene laminate 1 can be attached to the surface of the formed film-like member 25. Further, as the peeling step 28, the graphene integrated with the member 25 is obtained by peeling the base material 4 from the graphene film 2 of the graphene laminate 1 attached to the member 25 by performing the various peeling methods described above. Only the film 2 can be left to form the molded member 30 to which the graphene film 2 is attached.
 また、図13には、実施例におけるグラフェン積層体を添付したフィルム成形の他の製造方法を示している。図13においては、樹脂等のフィルム状の部材をカレンダー方法により成形する場合の製造方法において、成形工程の途中で、フィルム状の部材の表面にグラフェン積層体1を貼り付けることにより当該部材に添付して成形する製造方法を示している。図13においても、剥離工程28など、図11に示す構成と同じ番号のものは、同様の構成を備えている。図13においては、図11に示すキャストロールを用いる代わりに、カレンダーローラー84を用いており、混練機83から押し出された原料が、カレンダーローラー84を介してシート状の部材25が成形される製造装置130Cを示している。カレンダー方法により成形する場合の製造方法においても、ローラー74を介して搬送されたフィルム状の部材25の表面に、グラフェン積層体1のグラフェン膜2側を密着させ、押圧ローラー26により押圧することで、形成されたフィルム状の部材25の表面にグラフェン積層体1を貼り付けることができる。さらに、剥離工程28として、上述した各種剥離法を施すことにより、部材25に添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することで、部材25に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材30とすることができる。 FIG. 13 shows another production method of film forming with the graphene laminate in the example attached. In FIG. 13, in the manufacturing method in the case of forming a film-like member such as a resin by a calendar method, the graphene laminate 1 is attached to the surface of the film-like member in the middle of the forming step. And a manufacturing method for forming the mold. Also in FIG. 13, the thing of the same number as the structure shown in FIG. 11, such as the peeling process 28, has the same structure. In FIG. 13, instead of using the cast roll shown in FIG. 11, a calendar roller 84 is used, and the raw material extruded from the kneader 83 is formed into a sheet-like member 25 through the calendar roller 84. Device 130C is shown. Also in the manufacturing method in the case of forming by the calendar method, the graphene film 2 side of the graphene laminate 1 is brought into close contact with the surface of the film-like member 25 conveyed through the roller 74 and pressed by the pressing roller 26. The graphene laminate 1 can be attached to the surface of the formed film-like member 25. Further, as the peeling step 28, the graphene integrated with the member 25 is obtained by peeling the base material 4 from the graphene film 2 of the graphene laminate 1 attached to the member 25 by performing the various peeling methods described above. Only the film 2 can be left to form the molded member 30 to which the graphene film 2 is attached.
 図14には、実施例におけるグラフェン積層体を添付した射出成形の製造方法を示している。図14(a)~(d)においては、樹脂等の部材を射出成形方法により成形する場合の製造方法において、射出成形する工程の際に、部材の表面にグラフェン積層体1を添付することにより当該部材に添付して成形する製造方法を示している。この場合、製造装置130Dは、金型31とシリンダ35とを備え、金型31の注入孔33より、シリンダ35内の原料の樹脂を注入し、樹脂が硬化した後に、成形された部材を金型31から取り出すことで樹脂を金型に対応した形状に成形する成形工程を有している。本実施例においては、粘着シート11にグラフェン膜2が貼りついたシート状のグラフェン積層体1を金型31の所定位置32に配置して保持しておき(図14(a)参照)、その後、金型31の注入孔33より、シリンダ35内の原料の樹脂を注入する(図14(b)参照)。これにより、射出成形時の部材34の表面にグラフェン積層体1を貼り付けることができる。なお、図面においては、金型31にグラフェン積層体1を配置する位置が明らかになるように金型31を凹ましているように表示しているが、実際の金型は、従来と同様の形状の金型を用いることができる(後述する金型等においても同様である)。また、金型は、後述するようなグラフェン積層体1の位置ずれを防止する保持手段を備えるようにしてもよい。つぎに、剥離工程36として、上述した各種剥離法を施すことにより、部材34に添付されたグラフェン積層体1の粘着層の粘着力を消失または減少させ、グラフェン膜2から基材4を剥離することで(図14(c)参照)、部材34に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材37とすることができる。剥離工程36としては、上述した加熱や冷却処理、紫外線照射処理、水溶を含浸させる処理を施すことにより、粘着層の粘着力を消失または減少させる。剥離手法としては、例えば、加熱により粘着性が消失または減少するような粘着剤を利用する場合には、部材34の温度が熱い場合には、特に剥離工程を備えなくとも、粘着剤の粘着力が消失するので、金型を冷やして樹脂が硬化した後に、金型31から部材34を取り出せば、添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することができる(図14(d)参照)。これにより、グラフェン膜2が添付された成形部材37を製造することができる。成形部材37に、上述したようなグラフェン膜2を保護する保護部材としての保護膜15または保護シートを一緒に添付するようにしてもよい。本実施例によれば、射出成形により成形された、グラフェン膜2が添付された成形部材30を様々な場面や用途で利用することができる。本実施例によれば、原料が射出される溶融状態にあるときにグラフェン積層体が添付されるため、原料がグラフェン積層体1のグラフェン膜2に密着し、原料が成形されて硬化する際にグラフェン積層体1のグラフェン膜2も原料に一体化されて成形されることとなる。このため、原料がグラフェン膜2に対してまんべんなく密接することとなるので、グラフェン積層体1のグラフェン膜2が部材の形状に対応することができ、また、グラフェン膜2の炭素原子と原料の分子との間でファンデルワールス力が働いて吸着される際により密接に吸着されることとなる。従って、本実施例によれば、グラフェン積層体1のグラフェン膜2が部材に一体化されて形成されるので、成形部材に後からグラフェン積層体1を添付するよりも、グラフェン積層体1のグラフェン膜2と部材とが、よりまんべんなく密着することができる。 FIG. 14 shows an injection molding manufacturing method to which the graphene laminate in the example is attached. 14 (a) to 14 (d), in the manufacturing method in which a member such as a resin is molded by an injection molding method, the graphene laminate 1 is attached to the surface of the member during the injection molding step. The manufacturing method which attaches to the said member and shape | molds is shown. In this case, the manufacturing apparatus 130D includes a mold 31 and a cylinder 35. The raw material resin in the cylinder 35 is injected from the injection hole 33 of the mold 31, and after the resin is cured, the molded member is replaced with the mold. It has a molding step of molding the resin into a shape corresponding to the mold by taking it out from the mold 31. In this embodiment, the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is placed and held at a predetermined position 32 of the mold 31 (see FIG. 14A), and thereafter The raw material resin in the cylinder 35 is injected from the injection hole 33 of the mold 31 (see FIG. 14B). Thereby, the graphene laminated body 1 can be affixed on the surface of the member 34 at the time of injection molding. In the drawing, the mold 31 is shown as being recessed so that the position where the graphene laminate 1 is disposed on the mold 31 is clear, but the actual mold has the same shape as the conventional one. Can be used (the same applies to a mold or the like described later). In addition, the mold may be provided with a holding unit that prevents displacement of the graphene laminate 1 as described later. Next, as the peeling process 36, by performing the various peeling methods described above, the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the member 34 is lost or reduced, and the base material 4 is peeled from the graphene film 2. Thus (see FIG. 14C), only the integrated graphene film 2 is left on the member 34, and the molded member 37 to which the graphene film 2 is attached can be obtained. As the peeling step 36, the adhesive force of the adhesive layer is lost or reduced by performing the above-described heating or cooling treatment, ultraviolet irradiation treatment, or water impregnation treatment. For example, when a pressure-sensitive adhesive whose viscosity is lost or reduced by heating is used as a peeling method, and the temperature of the member 34 is high, the pressure-sensitive adhesive force of the pressure-sensitive adhesive is not particularly required without a peeling step. Therefore, if the member 34 is taken out from the mold 31 after the mold is cooled and the resin is cured, the substrate 4 can be peeled from the graphene film 2 of the attached graphene laminate 1 (FIG. 14). (See (d)). Thereby, the shaping | molding member 37 to which the graphene film 2 was attached can be manufactured. A protective film 15 or a protective sheet as a protective member for protecting the graphene film 2 as described above may be attached to the molding member 37 together. According to the present embodiment, the molded member 30 formed by injection molding and attached with the graphene film 2 can be used in various scenes and applications. According to the present embodiment, since the graphene laminate is attached when the raw material is in a molten state, the raw material adheres to the graphene film 2 of the graphene laminate 1, and when the raw material is molded and cured. The graphene film 2 of the graphene laminated body 1 is also formed integrally with the raw material. For this reason, since the raw material is evenly in close contact with the graphene film 2, the graphene film 2 of the graphene laminated body 1 can correspond to the shape of the member, and the carbon atoms of the graphene film 2 and the molecules of the raw material When the van der Waals force is absorbed between the two, it is adsorbed more closely. Therefore, according to the present embodiment, the graphene film 2 of the graphene laminate 1 is formed integrally with the member, so that the graphene of the graphene laminate 1 is attached rather than attaching the graphene laminate 1 to the molded member later. The film 2 and the member can be adhered evenly.
 図15には、実施例におけるグラフェン積層体を添付した発泡成形の製造方法を示している。図15(a)~(e)においては、樹脂等の部材を発泡成形方法により成形する場合の製造方法において、発泡成形する工程の際に、製造装置130Eにおいて、部材の表面にグラフェン積層体1を添付することにより成形する製造方法を示している。図15においても、剥離工程36など、図14に示す構成と同じ番号のものは、同様の構成を備えている。図15においては、図14に示す射出成形の樹脂注入の際に、シリンダ35から不活性ガス39を同時に注入することにより、原料内の不活性ガス40が発泡し、膨らむことで発泡スチロール等を成形することができる。発泡成形方法により成形する場合の製造方法においても、発泡成形時の成形部材41の表面にグラフェン膜2を貼り付けることができる。原料が射出される溶融状態にあるときにグラフェン積層体1が添付されるため、原料がグラフェン積層体1のグラフェン膜2に密着し、原料が成形されて硬化する際にグラフェン積層体1のグラフェン膜2も成形部材41に一体化されて成形されることとなる。 FIG. 15 shows a foam molding manufacturing method to which the graphene laminate in the example is attached. 15A to 15E, in a manufacturing method in which a member such as a resin is formed by a foam molding method, the graphene laminate 1 is formed on the surface of the member in the manufacturing apparatus 130E during the foam molding step. The manufacturing method which shape | molds by attaching is shown. Also in FIG. 15, the thing of the same number as the structure shown in FIG. 14, such as the peeling process 36, is provided with the same structure. In FIG. 15, when injecting the resin in the injection molding shown in FIG. 14, the inert gas 39 is simultaneously injected from the cylinder 35, so that the inert gas 40 in the raw material foams and expands to form polystyrene foam or the like. can do. Also in the manufacturing method in the case of molding by the foam molding method, the graphene film 2 can be attached to the surface of the molded member 41 at the time of foam molding. Since the graphene laminated body 1 is attached when the raw material is in a molten state where the raw material is injected, the raw material adheres to the graphene film 2 of the graphene laminated body 1, and the graphene of the graphene laminated body 1 when the raw material is molded and cured The membrane 2 is also molded integrally with the molding member 41.
 図16には、実施例におけるグラフェン積層体を添付したブロー成形または中空成形の製造方法を示している。図16(a)~(d)においては、樹脂等の部材をブロー成形方法により成形する場合の製造方法において、ブロー成形する工程の際に、部材の表面にグラフェン積層体1を添付することにより成形する製造方法を示している。この場合、製造装置130Fは、金型42と、空気又は液体等の加圧媒体を注入する注入孔44とを備え、金型42にブロー成形する原料43を装着し、注入孔44より加圧媒体を注入して原料43を膨らませて金型42に押し付け、成形物が硬化した後に、成形された部材を金型42から取り出すことで原料43を金型に対応した形状に成形する成形工程を有している。本実施例においては、型締め前に、粘着シート11にグラフェン膜2が貼りついたシート状のグラフェン積層体1を金型42の所定位置に配置して保持しておき(図16(a)参照)、その後、金型42の注入孔44より、加圧媒体を注入する(図16(b)参照)。これにより、ブロー成形時の原料43の表面にグラフェン積層体1を貼り付けることができる。つぎに、剥離工程36として、上述した図7に示すような各種剥離法を施すことにより、原料43に添付されたグラフェン積層体1の粘着層の粘着力を消失または減少させ、グラフェン膜2から基材4を剥離することで(図16(c)参照)、原料43に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材45とすることができる。 FIG. 16 shows a blow molding or hollow molding manufacturing method to which the graphene laminate in the example is attached. In FIGS. 16A to 16D, in the manufacturing method in which a member such as a resin is formed by a blow molding method, the graphene laminate 1 is attached to the surface of the member during the blow molding step. The manufacturing method to shape | mold is shown. In this case, the manufacturing apparatus 130 </ b> F includes a mold 42 and an injection hole 44 for injecting a pressurized medium such as air or liquid, and a raw material 43 to be blow-molded is attached to the mold 42 and pressurized from the injection hole 44. After the medium is injected and the raw material 43 is inflated and pressed against the mold 42 and the molded product is cured, a molding process is performed in which the raw material 43 is molded into a shape corresponding to the mold by removing the molded member from the mold 42. Have. In this embodiment, before clamping, the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is disposed and held at a predetermined position of the mold 42 (FIG. 16A). After that, a pressurized medium is injected from the injection hole 44 of the mold 42 (see FIG. 16B). Thereby, the graphene laminated body 1 can be affixed on the surface of the raw material 43 at the time of blow molding. Next, as the peeling process 36, various peeling methods as shown in FIG. 7 described above are performed, whereby the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the raw material 43 is lost or reduced, and the graphene film 2 By exfoliating the base material 4 (see FIG. 16C), only the integrated graphene film 2 is left in the raw material 43, and the molded member 45 to which the graphene film 2 is attached can be obtained.
 図17には、実施例におけるグラフェン積層体を添付した重合成形の製造方法を示している。図17(a)~(e)においては、樹脂等の部材を重合成形方法により成形する場合の製造方法において、重合成形する工程の際に、部材の表面にグラフェン積層体を添付することにより成形する製造方法を示している。この場合、製造装置130Gは、金型46を備え、金型46に重合反応する原料47を容器48から流し込み、重合反応のきっかけとなる加熱処理、UV(紫外線照射)処理、EB(電子線)等の処理49を施し、樹脂を硬化させる。成形物が硬化した後に、成形された部材を金型46から取り出すことで原料47を金型に対応した形状に成形する成形工程を有している。本実施例においては原料47を流し込む前に、粘着シート11にグラフェン膜2が貼りついたシート状のグラフェン積層体1を金型46の所定位置に配置して保持しておき(図17(a)参照)、その後、金型46の上側より、重合反応する原料47を流し込み(図17(b)参照)、重合反応のきっかけとなる処理を施し、樹脂を硬化させる。これにより、重合成形時の原料47の表面にグラフェン積層体1を貼り付けることができる。つぎに、剥離工程36として、上述した図7に示すような各種剥離法を施すことにより(図17(d)参照)、原料47に添付されたグラフェン積層体1の粘着層の粘着力を消失または減少させ、グラフェン膜2から基材4を剥離することで(図17(e)参照)、原料47に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材51とすることができる。この場合、剥離手法としては、例えば、加熱により粘着性が消失または減少するような粘着剤を利用する場合には、原料47の重合反応により加熱する場合には、特に剥離工程を備えなくとも、粘着剤の粘着力が消失するので、樹脂が硬化した後に、金型46から成形部材51を取り出せば、添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することができる。また、剥離手法としては、例えば、紫外線照射により粘着性が消失または減少するような粘着剤を利用する場合には、原料47の重合反応の際に紫外線を照射する場合には、特に剥離工程を備えなくとも、粘着剤の粘着力が消失するので、樹脂が硬化した後に、金型46から成形部材51を取り出せば、添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離することができる。 FIG. 17 shows a production method of polymerization molding to which the graphene laminate in the example is attached. 17 (a) to 17 (e), in a manufacturing method in which a member such as a resin is molded by a polymerization molding method, molding is performed by attaching a graphene laminate to the surface of the member during the polymerization molding step. The manufacturing method is shown. In this case, the manufacturing apparatus 130G includes a mold 46, and a raw material 47 that undergoes a polymerization reaction is poured into the mold 46 from a container 48, and heat treatment, UV (ultraviolet irradiation) treatment, EB (electron beam) that triggers the polymerization reaction. A treatment 49 such as the above is applied to cure the resin. After the molded product is cured, a molding process is performed in which the molded member is removed from the mold 46 to mold the raw material 47 into a shape corresponding to the mold. In this embodiment, before pouring the raw material 47, the sheet-like graphene laminated body 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is arranged and held at a predetermined position of the mold 46 (FIG. 17A )), And then, a raw material 47 to be polymerized is poured from the upper side of the mold 46 (see FIG. 17B), and a treatment for triggering the polymerization reaction is performed to cure the resin. Thereby, the graphene laminated body 1 can be affixed on the surface of the raw material 47 at the time of polymerization molding. Next, as the peeling step 36, by performing various peeling methods as shown in FIG. 7 described above (see FIG. 17D), the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the raw material 47 is lost. Alternatively, by removing the base material 4 from the graphene film 2 (see FIG. 17E), the molded member with the graphene film 2 attached to the raw material 47 leaving only the integrated graphene film 2 is left. 51. In this case, as a peeling method, for example, when using a pressure-sensitive adhesive whose viscosity disappears or decreases by heating, when heating by the polymerization reaction of the raw material 47, even if a peeling step is not particularly provided, Since the adhesive strength of the adhesive disappears, the substrate 4 can be peeled from the graphene film 2 of the attached graphene laminate 1 by removing the molding member 51 from the mold 46 after the resin is cured. Further, as a peeling method, for example, when an adhesive whose viscosity is lost or reduced by ultraviolet irradiation is used, when the ultraviolet ray is irradiated during the polymerization reaction of the raw material 47, a peeling process is particularly performed. Even if the adhesive is not provided, the adhesive strength of the adhesive disappears. Therefore, if the molding member 51 is taken out from the mold 46 after the resin is cured, the substrate 4 is peeled from the graphene film 2 of the attached graphene laminate 1. Can do.
 図18には、実施例におけるグラフェン積層体を添付したホットエンボス成形(熱インプリント成形)の製造方法を示している。図18(a)~(e)においては、樹脂等の部材をホットエンボス成形(熱インプリント成形)方法により成形する場合の製造方法において、ホットエンボス成形(熱インプリント成形)する工程の際に、部材の表面にグラフェン積層体1を添付することにより当該部材に添付して成形する製造方法を示している。この場合、製造装置130Hは、金型53と、上加圧板52Aおよび下加圧板52Bとを備え、上加圧板52Aと下加圧板52Bとの間を加熱し、原料54の表面に金型53を押圧させることで樹脂等の原料54を金型に対応した形状に成形する成形工程を有している。本実施例においては、シート状のグラフェン積層体1のグラフェン膜2を上方に向けて下加圧板52Bの所定位置に配置して保持しておき、その上に原料54を載置し(図18(a)参照)、その後、原料54の表面に金型53を押圧55する(図18(b)参照)。これにより、ホットエンボス成形時の原料54の裏面(ホットエンボス加工が施されていない面)にグラフェン積層体1を貼り付けることができる。つぎに、剥離工程36として、上述した各種剥離法を施すことにより(図18(c)参照)、原料54に添付されたグラフェン積層体1の粘着層の粘着力を消失または減少させ、グラフェン膜2から基材4を剥離することで、原料54に、一体化されたグラフェン膜2のみを残して、ホットエンボス加工が施されていない面にグラフェン膜2が添付された成形部材57とすることができる。 FIG. 18 shows a manufacturing method of hot emboss molding (thermal imprint molding) to which the graphene laminate in the example is attached. 18A to 18E, in a manufacturing method in which a member such as a resin is molded by a hot emboss molding (thermal imprint molding) method, during the process of hot emboss molding (thermal imprint molding). The manufacturing method which attaches to the said member and shape | molds by attaching the graphene laminated body 1 to the surface of the member is shown. In this case, the manufacturing apparatus 130H includes a mold 53, an upper pressure plate 52A, and a lower pressure plate 52B, heats the space between the upper pressure plate 52A and the lower pressure plate 52B, and forms the mold 53 on the surface of the raw material 54. Is pressed to form the raw material 54 such as resin into a shape corresponding to the mold. In this embodiment, the graphene film 2 of the sheet-like graphene laminate 1 is placed and held at a predetermined position of the lower pressure plate 52B facing upward, and the raw material 54 is placed thereon (FIG. 18). After that, the mold 53 is pressed 55 against the surface of the raw material 54 (see FIG. 18B). Thereby, the graphene laminated body 1 can be affixed on the back surface (surface which is not hot-embossed) of the raw material 54 at the time of hot embossing molding. Next, as the peeling process 36, by applying the various peeling methods described above (see FIG. 18C), the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the raw material 54 is lost or reduced, and the graphene film 2 to remove the base material 4 from the raw material 54, leaving only the integrated graphene film 2 on the raw material 54, and forming the molded member 57 with the graphene film 2 attached to the surface not subjected to hot embossing. Can do.
 図18に示す例においては、ホットエンボス加工が施されていない面にグラフェン膜2が添付された成形部材57を成形する場合を示したが、ホットエンボス加工が施されている面にグラフェン膜2が添付された成形部材83を成形することもできる。この場合の製造方法を図19に示す。図19においては、原料54を下加圧板52Bの所定位置に配置しておき、その上にシート状のグラフェン積層体1のグラフェン膜を上方に向けて配置する(図19(a)参照)。その後、グラフェン積層体1の表面に金型53を押圧させる(図19(b)参照)。これにより、ホットエンボス成形時の原料54の表面(ホットエンボス加工が施された面)にグラフェン積層体1を貼り付けることができ、また、同時に、グラフェン積層体1のグラフェン膜2に、ホットエンボス加工を施すことができる。このため、本製造方法によれば、原料54のホットエンボス加工と同時に、グラフェン膜2を所定のパターンに形成することができる。 In the example shown in FIG. 18, the case where the molding member 57 to which the graphene film 2 is attached is formed on the surface not subjected to hot embossing is shown, but the graphene film 2 is formed on the surface subjected to hot embossing. Can be molded. The manufacturing method in this case is shown in FIG. In FIG. 19, the raw material 54 is disposed at a predetermined position of the lower pressure plate 52 </ b> B, and the graphene film of the sheet-like graphene laminated body 1 is disposed thereon so as to face upward (see FIG. 19A). Then, the metal mold | die 53 is pressed on the surface of the graphene laminated body 1 (refer FIG.19 (b)). Thereby, the graphene laminated body 1 can be affixed on the surface of the raw material 54 at the time of hot embossing molding (surface subjected to hot embossing), and at the same time, the hot embossing is applied to the graphene film 2 of the graphene laminated body 1. Processing can be performed. For this reason, according to this manufacturing method, the graphene film 2 can be formed in a predetermined pattern simultaneously with the hot embossing of the raw material 54.
 図20には、実施例におけるグラフェン積層体を添付した真空・圧空成形の製造方法を示している。図16(a)~(d)においては、樹脂等の部材を真空・圧空成形方法により成形する場合の製造方法において、真空・圧空成形する工程の際に、部材の表面にグラフェン積層体1を添付することにより成形する製造方法を示している。この場合、製造装置130Jは、金型58と、空気又は液体等の加圧媒体を注入する注入孔61および原料保持手段の原料保持枠59を有するタンク60とを備え、タンク60の原料保持枠59に真空・圧空成形する原料43を装着し、原料43を所定温度まで加熱して、金型58を押し付け、タンク60に加圧媒体63を入れて金型58の形状に添わせるよう加圧し、成形物が硬化した後に、成形された部材を金型58およびタンクから取り外すことで原料43を金型に対応した形状に成形する成形工程を有している。本実施例においては、金型による押圧の前に、粘着シート11にグラフェン膜2が貼りついたシート状のグラフェン積層体1を金型58の所定位置に配置して保持しておき(図20(a)参照)、その後、金型58をタンク60の原料保持枠59に保持されている原料43に対して押し当て、加圧媒体を注入する(図20(b)参照)。これにより、真空・圧空成形時の原料43の表面にグラフェン積層体1を貼り付けることができる。この場合、グラフェン積層体1を金型58の所定位置に配置する代わりに、原料43の表面にグラフェン積層体1を載置するようにしてもよい。つぎに、剥離工程36として、上述した図7に示すような各種剥離法を施すことにより(図20(c)参照)、原料43に添付されたグラフェン積層体1の粘着層の粘着力を消失または減少させ、グラフェン膜2から基材4を剥離することで、原料43に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材65とすることができる。 FIG. 20 shows a manufacturing method of vacuum / pressure forming with the graphene laminate in the example attached. 16 (a) to 16 (d), in a manufacturing method in which a member such as a resin is formed by a vacuum / pressure forming method, the graphene laminate 1 is formed on the surface of the member during the vacuum / pressure forming step. The manufacturing method which shape | molds by attaching is shown. In this case, the manufacturing apparatus 130J includes a mold 58 and a tank 60 having an injection hole 61 for injecting a pressurized medium such as air or liquid and a raw material holding frame 59 of a raw material holding means. The raw material 43 to be vacuum / pressure-air-molded is attached to 59, the raw material 43 is heated to a predetermined temperature, the mold 58 is pressed, and the pressurizing medium 63 is placed in the tank 60 and pressurized so as to follow the shape of the mold 58. Then, after the molded product is cured, the molding member is formed by removing the molded member from the mold 58 and the tank to mold the raw material 43 into a shape corresponding to the mold. In the present embodiment, the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is placed and held at a predetermined position of the mold 58 before being pressed by the mold (FIG. 20). Thereafter, the mold 58 is pressed against the raw material 43 held by the raw material holding frame 59 of the tank 60, and a pressurized medium is injected (see FIG. 20B). Thereby, the graphene laminated body 1 can be affixed on the surface of the raw material 43 at the time of vacuum and pressure forming. In this case, instead of disposing the graphene laminate 1 at a predetermined position of the mold 58, the graphene laminate 1 may be placed on the surface of the raw material 43. Next, by performing various peeling methods as shown in FIG. 7 described above as the peeling step 36 (see FIG. 20C), the adhesive force of the adhesive layer of the graphene laminate 1 attached to the raw material 43 is lost. Alternatively, the base material 4 is peeled off from the graphene film 2 so that only the integrated graphene film 2 is left in the raw material 43, and the molded member 65 to which the graphene film 2 is attached can be obtained.
 図21に、実施例におけるグラフェン積層体を添付した粉体成形の製造方法を示している。図21(a)~(d)においては、鉄粉等の粉体を一定形状に形成する粉体成形方法により成形する場合の製造方法において、粉体成形する工程の際に、部材の表面にグラフェン積層体を添付することにより成形する製造方法を示している。この場合、製造装置130Kは、上金型(パンチ)86と下金型(ダイ)89とを備え、下金型89に粉体の原料87をホッパー85から定量流し込み、上金型86を下金型89に押し付けて加圧処理90を施すことで粉体87を金型に対応した形状に成形する成形工程を有している。本実施例においては粉体87を流し込む前に、粘着シート11にグラフェン膜2が貼りついたシート状のグラフェン積層体1を下金型89の所定位置に配置して保持しておき(図21(a)参照)、その後、上金型86を下金型89に押し付けて加圧処理90を施す(図21(b)参照)ことで、粉体87を金型に対応した形状に成形する。これにより、粉体87の表面にグラフェン積層体1を貼り付けることができる。つぎに、剥離工程36として、上述した図7に示すような各種剥離法を施すことにより(図21(c)参照)、粉体87に添付されたグラフェン積層体1の粘着層の粘着力を消失または減少させ、グラフェン膜2から基材4を剥離することで(図21(d)参照)、粉体87に、一体化されたグラフェン膜2のみを残して、グラフェン膜2が添付された成形部材91とすることができる。 FIG. 21 shows a powder molding manufacturing method to which the graphene laminate in the example is attached. 21 (a) to 21 (d), in the manufacturing method in the case of forming by a powder forming method in which a powder such as iron powder is formed into a fixed shape, the surface of the member is formed during the powder forming step. The manufacturing method which shape | molds by attaching a graphene laminated body is shown. In this case, the manufacturing apparatus 130K includes an upper die (punch) 86 and a lower die (die) 89, and powder raw material 87 is poured into the lower die 89 from the hopper 85, and the upper die 86 is lowered. There is a molding step of molding the powder 87 into a shape corresponding to the mold by pressing the mold 89 and applying a pressure treatment 90. In this embodiment, before pouring the powder 87, the sheet-like graphene laminate 1 in which the graphene film 2 is adhered to the adhesive sheet 11 is placed and held at a predetermined position of the lower mold 89 (FIG. 21). (See (a).) Then, the upper die 86 is pressed against the lower die 89 to apply a pressure treatment 90 (see FIG. 21B), thereby forming the powder 87 into a shape corresponding to the die. . As a result, the graphene laminate 1 can be attached to the surface of the powder 87. Next, as the peeling step 36, by applying various peeling methods as shown in FIG. 7 described above (see FIG. 21C), the adhesive strength of the adhesive layer of the graphene laminate 1 attached to the powder 87 is increased. The graphene film 2 was attached by leaving only the integrated graphene film 2 on the powder 87 by removing or reducing the substrate 4 from the graphene film 2 (see FIG. 21D). The molded member 91 can be used.
 図11~図21を参照して説明したような、グラフェン積層体を添付した部材成形の各種の製造方法によれば、原料が溶融状態または半溶融状態にあるときにグラフェン積層体が貼り付けられるため、原料がグラフェン積層体のグラフェン膜に密着し、原料が成形される際にグラフェン積層体のグラフェン膜も原料に一体化されて成形されることとなる。このため、原料がグラフェン膜に対してまんべんなく密接することとなるので、グラフェン積層体のグラフェン膜が部材の形状に対応することができ、また、グラフェン膜の炭素原子と原料の分子との間でファンデルワールス力が働いて吸着される際により密接に吸着されることとなる。従って、上記実施例によれば、グラフェン積層体1のグラフェン膜2が部材に一体化されて形成されるので、成形された部材に後からグラフェン積層体1を添付するよりも、グラフェン積層体1のグラフェン膜2と部材とが、よりまんべんなく密着することができる。このような構成により、グラフェン膜2が添付された部材を様々な場面や用途で利用することができる。 As described with reference to FIGS. 11 to 21, according to various member forming manufacturing methods attached with a graphene laminate, the graphene laminate is attached when the raw material is in a molten state or a semi-molten state. Therefore, the raw material adheres to the graphene film of the graphene stack, and when the raw material is molded, the graphene film of the graphene stack is also formed integrally with the raw material. For this reason, since the raw material is evenly in close contact with the graphene film, the graphene film of the graphene stack can correspond to the shape of the member, and between the carbon atoms of the graphene film and the molecules of the raw material When the van der Waals force is absorbed and absorbed, it is adsorbed more closely. Therefore, according to the above embodiment, since the graphene film 2 of the graphene laminate 1 is formed integrally with the member, the graphene laminate 1 is attached rather than attaching the graphene laminate 1 to the molded member later. The graphene film 2 and the member can be adhered more evenly. With such a configuration, the member to which the graphene film 2 is attached can be used in various scenes and applications.
 また、図11~図21を参照して説明したような、グラフェン積層体を添付した部材成形の各種の製造方法において、成形時にグラフェン積層体1が位置ずれしないようにするために、図22(a)~(c)に示すような機能を備えてもよい。 Further, in various manufacturing methods for forming a member attached with a graphene laminate as described with reference to FIGS. 11 to 21, in order to prevent the graphene laminate 1 from being displaced during molding, FIG. The functions shown in a) to (c) may be provided.
 図22(a)においては、グラフェン積層体1の基材4の一方面に粘着層3Aが形成されてその上にグラフェン膜2が添付されており、また、基材4の他方面(基板のグラフェン膜とは反対側の面)に粘着層3Bが形成されている。すなわち、この場合のグラフェン積層体1は、グラフェン膜2と、粘着層3Aと、所定の強度を備える基材4と、粘着層3Bとの4層に構成されている。この場合、基材4の他方面に粘着層3Bが形成されているため、図14などに示す製造装置130の金型31にグラフェン積層体1を配置する際に、粘着層3Bにより金型31にグラフェン積層体1が貼り付けられるので、成形時にグラフェン積層体1が位置ずれしないようにすることができる。粘着層3Aおよび粘着層3Bとは、上述した各種剥離法における粘着剤を用いることで、部材に添付されたグラフェン積層体1のグラフェン膜2から基材4を剥離する際に、金型31から基材4も同時に剥離することができる。また、この構成においては、グラフェン膜2を保護する保護部材としての保護膜15または保護シートをグラフェン膜2側と、粘着層3B側との両方に備えるようにしてもよい。 In FIG. 22A, an adhesive layer 3A is formed on one surface of the base material 4 of the graphene laminate 1, and the graphene film 2 is attached on the adhesive layer 3A. An adhesive layer 3B is formed on the surface opposite to the graphene film. That is, the graphene laminated body 1 in this case is configured by four layers of a graphene film 2, an adhesive layer 3A, a base material 4 having a predetermined strength, and an adhesive layer 3B. In this case, since the adhesive layer 3B is formed on the other surface of the base material 4, when the graphene laminate 1 is placed on the mold 31 of the manufacturing apparatus 130 shown in FIG. 14 and the like, the mold 31 is formed by the adhesive layer 3B. Since the graphene laminated body 1 is affixed to the graphene, the graphene laminated body 1 can be prevented from being displaced during molding. When the base material 4 is peeled from the graphene film 2 of the graphene laminate 1 attached to the member, the pressure-sensitive adhesive layer 3 </ b> A and the pressure-sensitive adhesive layer 3 </ b> B are removed from the mold 31. The substrate 4 can also be peeled off at the same time. Moreover, in this structure, you may make it equip both the graphene film 2 side and the adhesion layer 3B side with the protective film 15 or protective sheet as a protective member which protects the graphene film 2.
 図22(b)においては、製造装置130は、グラフェン膜2と、粘着層3と、所定の強度を備える基材4とを備えるグラフェン積層体1を、金型31の所定位置に保持する保持部77を備えている。この場合、保持部77は、基材4を吸引する吸引手段と、金型31に、吸引手段による吸引のための吸引路とを備えることができる。例えば、保持部77の吸引手段として、外部より真空吸着でグラフェン積層体1を金型31に吸いつけておくことで、成形時にグラフェン積層体1が位置ずれしないようにすることができる。 In FIG. 22B, the manufacturing apparatus 130 holds the graphene laminate 1 including the graphene film 2, the adhesive layer 3, and the substrate 4 having a predetermined strength at a predetermined position of the mold 31. A portion 77 is provided. In this case, the holding unit 77 can include a suction unit that sucks the base material 4, and a suction path for suction by the suction unit in the mold 31. For example, the graphene laminate 1 can be prevented from being displaced during molding by sucking the graphene laminate 1 to the mold 31 by vacuum suction from the outside as suction means for the holding portion 77.
 また、図22(C)に示すように、製造装置130が、グラフェン積層体1の基材4を保持する基材保持枠78を金型79に備えるようにして、基材保持枠78にグラフェン積層体1の基材4を保持するようにしてもよい。 Further, as shown in FIG. 22C, the manufacturing apparatus 130 is provided with a base material holding frame 78 for holding the base material 4 of the graphene laminated body 1 in the mold 79 so that the graphene is attached to the base material holding frame 78. You may make it hold | maintain the base material 4 of the laminated body 1. FIG.
 このような構成とすることで、グラフェン積層体を添付した部材成形の各種の製造方法において、成形時にグラフェン積層体1が位置ずれしないようにすることができる。 By adopting such a configuration, it is possible to prevent the graphene laminate 1 from being displaced at the time of molding in various manufacturing methods for forming a member to which the graphene laminate is attached.
 上述した実施例においては、グラフェン膜2を基板の一部に備える例を示していたが、グラフェン膜2に所定のパターンを形成しておいてもよい。以下、グラフェン膜2へのパターン形成工程について図23~図31を参照して説明する。 In the embodiment described above, an example in which the graphene film 2 is provided on a part of the substrate is shown, but a predetermined pattern may be formed on the graphene film 2. Hereinafter, a pattern forming process on the graphene film 2 will be described with reference to FIGS.
 図23(a)、(b)に、電子線(EB)またはレーザーにより所定パターンを形成する第1パターン形成工程を示す。図23(a)に鳥瞰図を示し、図23(b)に側面図を示している。第1パターン形成工程においては、電子線またはレーザーの発信源92と磁界またはレンズ93とを備えておき、磁界またはレンズ93を介して電子線またはレーザーにより、グラフェン積層体1のグラフェン膜2を直接描画してグラフェン膜2の一部を除去することでパターンニングすることができる。電子線の場合は、ナノレベルの細かいパターンニングが可能であり、レーザーの場合は、ミクロンレベルのパターンニングが可能となる。また、電子線(EB)またはレーザーの出力を最適化することで、グラフェン積層体1のグラフェン膜2のみにパターンニングを施すことができる。これにより、パターン化されたグラフェン膜2を備えるグラフェン積層体94を得ることができる。所定のパターンとしては、図23(a)に示すように、半導体の素子・回路などのパターンを形成することができる。 23A and 23B show a first pattern forming process for forming a predetermined pattern by an electron beam (EB) or a laser. FIG. 23A shows a bird's eye view, and FIG. 23B shows a side view. In the first pattern forming step, an electron beam or laser transmission source 92 and a magnetic field or lens 93 are provided, and the graphene film 2 of the graphene laminate 1 is directly applied by the electron beam or laser through the magnetic field or lens 93. Patterning can be performed by drawing and removing a part of the graphene film 2. In the case of electron beams, fine patterning at the nano level is possible, and in the case of lasers, patterning at the micron level is possible. Further, by optimizing the output of the electron beam (EB) or laser, it is possible to pattern only the graphene film 2 of the graphene stack 1. Thereby, the graphene laminated body 94 provided with the patterned graphene film 2 can be obtained. As the predetermined pattern, as shown in FIG. 23A, a pattern of a semiconductor element or circuit can be formed.
 図24(a)~(e)に、所定のフォトレジストを用いて反応性イオンエッチングまたは誘導結合プラズマにより所定パターンを形成する第2パターン形成工程を示す。図24に示すように、グラフェン積層体1のグラフェン膜2上にフォトレジスト95の感光性有機物質を塗布し(図24(a)参照)、ステッパーなどの露光装置96を用いて、フォトマスク98に描かれた素子・回路のパターンをフォトレジスト95に焼き付け(図24(b)参照)、パターン化されたフォトレジスト95を作成する(図24(c)参照)。その後、交流電圧99を介して反応性イオンエッチング(RIE)または誘導結合プラズマ(ICP)100により、エッチングしてグラフェン膜2の一部を除去することで、グラフェン膜をパターンニングすることで、パターンが形成されたグラフェン膜2を備えるグラフェン積層体101を製造することができる。なお、フォトリソグラフィによるパターンの転写方式の違いによりネガ型とポジ型があるが、どちらでもグラフェン膜2にパターンを形成することができる。 FIGS. 24A to 24E show a second pattern formation process for forming a predetermined pattern by reactive ion etching or inductively coupled plasma using a predetermined photoresist. As shown in FIG. 24, a photosensitive organic material of a photoresist 95 is applied onto the graphene film 2 of the graphene laminate 1 (see FIG. 24A), and a photomask 98 is used using an exposure device 96 such as a stepper. The pattern of the element / circuit drawn in (1) is baked on the photoresist 95 (see FIG. 24B), and a patterned photoresist 95 is created (see FIG. 24C). Then, by patterning the graphene film by removing a part of the graphene film 2 by etching with reactive ion etching (RIE) or inductively coupled plasma (ICP) 100 via the alternating voltage 99, the pattern is obtained. The graphene laminated body 101 provided with the graphene film 2 in which is formed can be manufactured. Although there are a negative type and a positive type depending on a difference in pattern transfer method by photolithography, a pattern can be formed on the graphene film 2 in either case.
 図25(a)~(e)に、所定のフォトレジストを用いてオゾンガスにより所定パターンを形成する第3パターン形成工程を示す。図25に示すように、グラフェン積層体1のグラフェン膜2上にフォトレジスト95の感光性有機物質を塗布し(図25(a)参照)、ステッパーなどの露光装置96およびレンズ97を用いて、フォトマスク98に描かれた素子・回路のパターンをフォトレジスト95に焼き付け(図25(b)参照)、パターン化されたフォトレジスト95を作成する(図25(c)参照)。その後、オゾンガス102を用いてグラフェン膜を酸化(CO)させてグラフェン膜2の一部を除去することで、パターンニングすることができる。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体103を製造することができる。 FIGS. 25A to 25E show a third pattern forming process for forming a predetermined pattern with ozone gas using a predetermined photoresist. As shown in FIG. 25, a photosensitive organic material of a photoresist 95 is applied on the graphene film 2 of the graphene laminate 1 (see FIG. 25A), and an exposure device 96 such as a stepper and a lens 97 are used. The element / circuit pattern drawn on the photomask 98 is baked on the photoresist 95 (see FIG. 25B), and a patterned photoresist 95 is created (see FIG. 25C). Then, patterning can be performed by oxidizing (CO 2 ) the graphene film using the ozone gas 102 and removing a part of the graphene film 2. Thereby, the graphene laminated body 103 provided with the graphene film 2 in which the pattern was formed can be manufactured.
 図26(a)~(e)に、所定のフォトレジストを用いてマイクロブラスト加工により所定パターンを形成する第4パターン形成工程を示す。図26に示すように、グラフェン積層体1のグラフェン膜2上にフォトレジスト95の感光性有機物質を塗布し(図26(a)参照)、ステッパーなどの露光装置96を用いて、フォトマスク98に描かれた素子・回路のパターンをフォトレジスト95に焼き付け(図26(b)参照)、グラフェン膜2の一部を除去することでパターン化されたフォトレジスト95を作成する(図26(c)参照)。その後、噴射機104よりブラスト粒子105を噴射することでグラフェン膜を物理的に削り取ることで、パターンニングすることができる。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体106を製造することができる。 26 (a) to 26 (e) show a fourth pattern forming process for forming a predetermined pattern by microblasting using a predetermined photoresist. As shown in FIG. 26, a photosensitive organic material of a photoresist 95 is applied on the graphene film 2 of the graphene laminate 1 (see FIG. 26A), and a photomask 98 is used using an exposure device 96 such as a stepper. The pattern of the element / circuit drawn in FIG. 2 is baked on the photoresist 95 (see FIG. 26B), and a part of the graphene film 2 is removed to form a patterned photoresist 95 (FIG. 26C). )reference). Thereafter, the blast particles 105 are ejected from the ejector 104 to physically scrape the graphene film, whereby patterning can be performed. Thereby, the graphene laminated body 106 provided with the graphene film 2 in which the pattern was formed can be manufactured.
 図27(a)、(b)に、所定のスタンパーを用いて所定パターンを形成する第5パターン形成工程を示す。図27(a)に示すような所定のパターンが形成された平板スタンパー107Aを用いて、平板スタンパー107Aをグラフェン積層体1のグラフェン膜側に押し付けて、加圧処理108を施すことで、グラフェン膜2を基板4ごとパターンニングすることができる。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体109を製造することができる。また、図27(b)に示すような所定のパターンが形成されたローラスタンパー107Bを用いて、ローラスタンパー107Bを回転させながら、グラフェン積層体1のグラフェン膜側の所定位置に押し付けグラフェン膜2の一部を除去することで、グラフェン膜2を基板4ごとパターンニングすることができる。なお、グラフェン膜2に所定のパターンを形成する場合に、平板スタンパー107A等のパターンは、対応するような反対のパターンとなる。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体110を製造することができる。 27 (a) and 27 (b) show a fifth pattern forming process for forming a predetermined pattern using a predetermined stamper. A flat stamper 107A having a predetermined pattern as shown in FIG. 27 (a) is used to press the flat stamper 107A against the graphene film side of the graphene laminate 1 and apply a pressure treatment 108 to thereby obtain a graphene film. 2 can be patterned together with the substrate 4. Thereby, the graphene laminated body 109 provided with the graphene film | membrane 2 in which the pattern was formed can be manufactured. Further, using the roller stamper 107B in which a predetermined pattern as shown in FIG. 27B is formed, the roller stamper 107B is rotated and pressed against a predetermined position on the graphene film side of the graphene laminated body 1 so that the graphene film 2 By removing a part, the graphene film 2 can be patterned together with the substrate 4. When a predetermined pattern is formed on the graphene film 2, the pattern of the flat stamper 107A and the like is a corresponding opposite pattern. Thereby, the graphene laminated body 110 provided with the graphene film 2 in which the pattern was formed can be manufactured.
 図28(a)~(c)に、所定の放電加工装置を用いて所定パターンを形成する第6パターン形成工程を示す。図28(a)に示すような所定のパターンが形成された放電加工装置111を用いて、グラフェン積層体1のグラフェン膜2上面に放電加工装置111を接近112させてから放電させることで、グラフェン膜2の一部が直接削り取られ、パターンニングすることができる。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体113を製造することができる。 FIGS. 28A to 28C show a sixth pattern forming process for forming a predetermined pattern using a predetermined electric discharge machining apparatus. By using the electric discharge machining apparatus 111 in which a predetermined pattern as shown in FIG. 28A is formed, the electric discharge machining apparatus 111 is brought close to 112 on the upper surface of the graphene film 2 of the graphene laminate 1 and then discharged. A part of the film 2 can be directly scraped off and patterned. Thereby, the graphene laminated body 113 provided with the graphene film 2 in which the pattern was formed can be manufactured.
 図29(a)~(c)に、所定のパターンが形成された上金型を用いて打ち抜き(プレス加工)することで所定パターンを形成する第7パターン形成工程を示す。図29(a)に示すような所定のパターンが形成された上金型114Aおよび下金型114Bを用いて、上金型114Aをグラフェン積層体1のグラフェン膜側の下金型114Bに押し付けて、プレス処理115を施すことで、グラフェン膜2を基板4ごと打ち抜いてパターンニングすることができる。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体116を製造することができる。 FIGS. 29A to 29C show a seventh pattern forming process for forming a predetermined pattern by punching (pressing) using an upper die on which the predetermined pattern is formed. Using the upper mold 114A and the lower mold 114B in which a predetermined pattern as shown in FIG. 29A is formed, the upper mold 114A is pressed against the lower mold 114B on the graphene film side of the graphene laminate 1. By applying the press process 115, the graphene film 2 can be punched and patterned together with the substrate 4. Thereby, the graphene laminated body 116 provided with the graphene film 2 in which the pattern was formed can be manufactured.
 図30(a)~(c)に、所定のパターンが形成された粘着剤を用いて所定パターンを形成する第8パターン形成工程を示す。図30(a)に示すような所定のパターンを、粘着剤118を用いて基板117に形成しておき、基板117をグラフェン積層体1のグラフェン膜側に押し付けて、プレス処理119を施す(図30(b)参照)ことで、粘着剤118が塗布された部分のみにグラフェン膜2が貼りつき、基板117を上方に移動させることで、グラフェン膜2が剥がされて、グラフェン膜2をパターンニングすることができる(図30(c)参照)。これにより、パターンが形成されたグラフェン膜2を備えるグラフェン積層体120を製造することができる。 30 (a) to 30 (c) show an eighth pattern forming process for forming a predetermined pattern using an adhesive having a predetermined pattern formed thereon. A predetermined pattern as shown in FIG. 30A is formed on the substrate 117 using the adhesive 118, and the substrate 117 is pressed against the graphene film side of the graphene laminate 1 to perform press processing 119 (FIG. 30). 30 (b)), the graphene film 2 is attached only to the portion where the adhesive 118 is applied, and the graphene film 2 is peeled off by moving the substrate 117 upward, and the graphene film 2 is patterned. (See FIG. 30C). Thereby, the graphene laminated body 120 provided with the graphene film | membrane 2 in which the pattern was formed can be manufactured.
 上述した図23~図30に示したようなグラフェン膜2へのパターン形成工程のいずれかによりにグラフェン膜2へパターンを形成することができる。 A pattern can be formed on the graphene film 2 by any of the pattern forming processes on the graphene film 2 as shown in FIGS.
 さらに、前述した図2および図3に示すようなグラフェン積層体1の製造の際に、グラフェン膜2へパターンを形成する場合の製造方法を、図31を参照して説明する。 Further, a manufacturing method for forming a pattern on the graphene film 2 in manufacturing the graphene laminated body 1 as shown in FIGS. 2 and 3 will be described with reference to FIG.
 図31に示すように、製造装置140は、成膜処理121において、ロール状の金属膜7に、化学気相蒸着法(CVD)を用いてグラフェン膜2を成膜し、このグラフェン膜2が製膜された金属膜7を、ローラー74を介して搬送し、ラミネーター10を用いて金属膜7のグラフェン膜2側に粘着シート11を貼り付ける。その後、金属膜7を除去するため、グラフェン膜2、金属膜7および粘着シート11は、酸性であるエッチング液13を満した水槽12に浸漬させる。これにより、エッチング液13により金属膜7が溶かされ、グラフェン膜2および粘着シート11のみが残る。その後、グラフェン膜2および粘着シート11からなるグラフェン積層体1を、ローラーに巻き取ることでローラー状のグラフェン積層体1Dを製造している。この際に、ラミネーター10によるグラフェン積層体1の粘着シート11の貼り付け工程中のパターン化処理122(B)、貼り付け工程の前のパターン化処理122(A)または貼り付け工程の後のパターン化処理122(C)のいずれかにおいて、上述したようなパターン形成工程により、グラフェン膜2にパターンを施すことができる。 As shown in FIG. 31, in the film forming process 121, the manufacturing apparatus 140 forms a graphene film 2 on the roll-shaped metal film 7 using chemical vapor deposition (CVD). The formed metal film 7 is transported through a roller 74, and the pressure-sensitive adhesive sheet 11 is attached to the graphene film 2 side of the metal film 7 using a laminator 10. Thereafter, in order to remove the metal film 7, the graphene film 2, the metal film 7, and the adhesive sheet 11 are immersed in a water tank 12 filled with an acidic etching solution 13. Thereby, the metal film 7 is melted by the etching solution 13, and only the graphene film 2 and the adhesive sheet 11 remain. Then, the graphene laminated body 1D which consists of the graphene film 2 and the adhesive sheet 11 is wound around a roller, and the roller-shaped graphene laminated body 1D is manufactured. At this time, the patterning process 122 (B) during the attaching process of the pressure-sensitive adhesive sheet 11 of the graphene laminate 1 by the laminator 10, the patterning process 122 (A) before the attaching process, or the pattern after the attaching process In any of the crystallization treatments 122 (C), the graphene film 2 can be patterned by the pattern formation process as described above.
 貼り付け工程の前のパターン化処理122(A)においては、グラフェン膜2が製膜された金属膜7に対して、上述した図23~図30に示したようなパターン形成工程を施し、金属膜7上のグラフェン膜2にパターンを形成している。この貼り付け工程の前122(A)によりパターン化することで、金属膜上でグラフェン膜2をパターン化した後に、粘着シート11へグラフェン膜2を貼り替えることができる。このため、パターン化の際にグラフェン膜2を除去する際に、パターン形成工程によっては下側の金属膜も削られる場合があるが、金属膜上でグラフェン膜2をパターン化した後に、粘着シート11へグラフェン膜2を貼り替えることで、粘着シート11が削られることなく、粘着シート11の粘着層3または基材4の表面がきれいな状態(パターンが形成されていない状態)でパターン化されたグラフェン膜2を貼り付けることができる。これにより、粘着シート11の基材4または粘着層3には、パターンが形成されていない状態とすることができる。 In the patterning process 122 (A) before the attaching process, the metal film 7 on which the graphene film 2 is formed is subjected to the pattern forming process as shown in FIGS. A pattern is formed on the graphene film 2 on the film 7. By patterning by 122 (A) before this attaching step, the graphene film 2 can be attached to the adhesive sheet 11 after the graphene film 2 is patterned on the metal film. For this reason, when the graphene film 2 is removed during patterning, the lower metal film may be scraped depending on the pattern forming process, but after the graphene film 2 is patterned on the metal film, the pressure-sensitive adhesive sheet The surface of the adhesive layer 3 or the base material 4 of the adhesive sheet 11 was patterned in a clean state (state in which no pattern was formed) without removing the adhesive sheet 11 by reattaching the graphene film 2 to 11 The graphene film 2 can be attached. Thereby, it can be set as the state in which the pattern is not formed in the base material 4 or the adhesion layer 3 of the adhesive sheet 11.
 貼り付け工程中のパターン化処理122(B)においては、ラミネーター10により、金属膜7のグラフェン膜2側に粘着シート11を貼り付ける際に、上述した図23~図30に示したようなパターン形成工程により、粘着シート11および金属膜7間にあるグラフェン膜2にパターンを施している。この場合、特に、図27(a)、(b)に示す所定のスタンパーを用いて所定パターンを形成する第5パターン形成工程、図28(a)~(c)に示す所定の放電加工装置を用いて所定パターンを形成する第6パターン形成工程、図29(a)~(c)に示す所定のパターンが形成された上金型を用いて打ち抜き(プレス加工)することで所定パターンを形成する第7パターン形成工程を、粘着シート11側または金属膜7側から施すことで、グラフェン膜2をパターン化することができる。このパターン形成工程を、貼り付け中に行うことで、より簡単にパターンを形成することができる。これらのパターン形成工程によれば、加工時間が短いので、グラフェン積層体1をロール状に連続生産する場合に、製造しやすくより有利となる。 In the patterning process 122 (B) during the attaching process, when the adhesive sheet 11 is attached to the graphene film 2 side of the metal film 7 by the laminator 10, the patterns as shown in FIGS. 23 to 30 described above are used. The graphene film 2 between the pressure-sensitive adhesive sheet 11 and the metal film 7 is patterned by the forming process. In this case, in particular, a fifth pattern forming step for forming a predetermined pattern using a predetermined stamper shown in FIGS. 27A and 27B, and a predetermined electric discharge machining apparatus shown in FIGS. 28A to 28C. A sixth pattern forming step for forming a predetermined pattern by using the upper mold on which the predetermined pattern shown in FIGS. 29 (a) to 29 (c) is punched (pressed) to form the predetermined pattern. The graphene film 2 can be patterned by applying the seventh pattern forming step from the adhesive sheet 11 side or the metal film 7 side. A pattern can be formed more easily by performing this pattern formation step during the attachment. According to these pattern formation steps, since the processing time is short, it is easier to manufacture and more advantageous when the graphene laminate 1 is continuously produced in a roll shape.
 貼り付け工程の後のパターン化処理122(C)においては、グラフェン膜2が添付された粘着シート11に対して、上述した図23~図30に示したようなパターン形成工程を施し、粘着シート11上のグラフェン膜2にパターンを形成している。 In the patterning process 122 (C) after the attaching step, the pressure-sensitive adhesive sheet 11 to which the graphene film 2 is attached is subjected to the pattern forming step as shown in FIGS. A pattern is formed on the graphene film 2 on 11.
 以上説明したように、グラフェン積層体1を製造する場合に、グラフェン積層体1の粘着シート11の貼り付け工程の中のパターン化処理122(B)、貼り付け工程の前のパターン化処理122(A)または貼り付け工程の後のパターン化処理122(C)のいずれかにおいて、上述したようなパターン形成工程により、グラフェン膜2にパターンを施すことができる。これにより、グラフェン積層体1を製造と、グラフェン膜2のパターン化とを同時に行うことができる
(グラフェン積層体1の他の構成例)
As explained above, when manufacturing the graphene laminated body 1, the patterning process 122 (B) in the attaching process of the adhesive sheet 11 of the graphene laminated body 1 and the patterning process 122 (before the attaching process) ( In either A) or the patterning process 122 (C) after the attaching step, the graphene film 2 can be patterned by the pattern forming step as described above. Thereby, the graphene laminated body 1 can be manufactured and the graphene film 2 can be patterned simultaneously (another configuration example of the graphene laminated body 1).
 つぎに、グラフェン積層体1の他の構成例を、図32(a)~(c)を参照して三つ説明する。 Next, another configuration example of the graphene laminate 1 will be described with reference to FIGS. 32 (a) to 32 (c).
 上記実施例においては、グラフェン積層体1は、基材4の上面に粘着層3が形成され、さらに粘着層3の上面にグラフェン膜2が形成されることにより、三層に積層されていたが、粘着層3を備えず、基材4の上面にグラフェン膜2を形成して二層に積層したグラフェン積層体1Fを構成できる。この構成例の断面図を図32(a)に示す。 In the above embodiment, the graphene laminate 1 was laminated in three layers by forming the adhesive layer 3 on the upper surface of the substrate 4 and further forming the graphene film 2 on the upper surface of the adhesive layer 3. The graphene laminated body 1F which does not include the adhesion layer 3 and forms the graphene film 2 on the upper surface of the substrate 4 and is laminated in two layers can be configured. A sectional view of this configuration example is shown in FIG.
 図32(a)において、基材4は上述した基材4と同じものを利用することができるが、例えば、ポリメタクリル酸メチル樹脂(Poly methyl methacrylate:PMMA)等による透明固体材としてもよい。この場合の製造方法としては、金属膜7に、化学気相蒸着法(CVD)を用いてグラフェン膜2を成膜し、このグラフェン膜2が製膜された金属膜7に対してグラフェン膜2側に、板状のPMMAを加圧して押し付けることで、グラフェン膜2をPMMAと金属膜7とで挟み込み、その後、図3(d)および(e)に示されるように、エッチング液13を満した水槽12に浸漬させ、エッチング液13により金属膜7が溶かされ、グラフェン膜2およびPMMAのみが残り、グラフェン膜2およびPMMAを中和液14により洗浄して、グラフェン膜2およびPMMAからなる2層のグラフェン積層体1Fを製造することができる。または、板状のPMMAを加圧して押し付ける代わりに、グラフェン膜2が製膜された金属膜7に対してグラフェン膜2側に液体状のPMMAを塗布して硬化させることで、グラフェン膜2をPMMAと金属膜7とで挟み込んでもよい。 In FIG. 32 (a), the same material as the substrate 4 described above can be used as the substrate 4. However, for example, a transparent solid material such as polymethyl methacrylate resin (PMMA) may be used. As a manufacturing method in this case, the graphene film 2 is formed on the metal film 7 by chemical vapor deposition (CVD), and the graphene film 2 is formed on the metal film 7 on which the graphene film 2 is formed. By pressing and pressing plate-like PMMA on the side, the graphene film 2 is sandwiched between the PMMA and the metal film 7, and then the etching solution 13 is filled as shown in FIGS. 3 (d) and 3 (e). The metal film 7 is melted by the etching solution 13 and only the graphene film 2 and PMMA remain, and the graphene film 2 and PMMA are washed with the neutralizing solution 14 to form the graphene film 2 and PMMA 2. A graphene laminate 1F having a single layer can be manufactured. Alternatively, instead of pressing and pressing the plate-like PMMA, the graphene film 2 is applied to the metal film 7 on which the graphene film 2 is formed by applying liquid PMMA on the graphene film 2 side and curing the graphene film 2. It may be sandwiched between the PMMA and the metal film 7.
 このような二層のグラフェン積層体1Fの場合に、他の部材に対してグラフェン膜2を貼り付けるときには、図34(a)に示すように、対象物17に対して、二層のグラフェン積層体1Fを張り合わせて加圧することで、対象物17にグラフェン膜2を貼り付けることができる。この場合、グラフェン積層体1Fの基材4は、そのまま添付しておいてもよい。もしくは、基材4がPMMA等の場合には、対象物17にグラフェン膜2を貼り付けた後に、アセトン等の有機溶媒でPMMA等を溶解させることで、グラフェン膜2のみを対象物17に残すことができる。 In the case of such a two-layer graphene laminate 1F, when the graphene film 2 is attached to another member, as shown in FIG. The graphene film 2 can be attached to the object 17 by pasting and pressing the body 1F. In this case, the base material 4 of the graphene laminate 1F may be attached as it is. Alternatively, when the substrate 4 is PMMA or the like, after the graphene film 2 is attached to the object 17, only the graphene film 2 is left on the object 17 by dissolving PMMA or the like with an organic solvent such as acetone. be able to.
 この場合、上述したような図11~図22に示す対象物そのものを成形する際に、グラフェン膜2を添付する場合に、三層のグラフェン積層体1の代わりに、二層のグラフェン積層体1Fを利用することができる。この場合、成形部材から二層のグラフェン積層体1のPMMAを剥離する際には、PMMAをアセトン等の有機溶媒で溶解させることで、グラフェン膜2を成形部材に残すことができる。また、二層のグラフェン積層体1のPMMAのグラフェン膜2が配置されていない他方面に、物理的粘着力を備える第2の粘着層3Bを備えるようにしてもよい。さらに、上述したような図23~図31に示すグラフェン膜2へのパターン形成工程を、三層のグラフェン積層体1の代わりに、二層のグラフェン積層体1Fに施すようにしてもよい。これにより、所定の強度を備える基材に、グラフェン膜が形成されるので、グラフェン膜を取り扱いやすくすることができ、また、グラフェン膜に所定のパターンが形成されているので、そのままパターン化されたグラフェン膜を利用することができる。 In this case, when the graphene film 2 is attached when the object itself shown in FIGS. 11 to 22 is molded, the two-layer graphene laminate 1F is used instead of the three-layer graphene laminate 1. Can be used. In this case, when the PMMA of the two-layer graphene laminate 1 is peeled from the molded member, the graphene film 2 can be left on the molded member by dissolving PMMA with an organic solvent such as acetone. Moreover, you may make it provide the 2nd adhesion layer 3B provided with a physical adhesive force in the other surface in which the graphene film | membrane 2 of PMMA of the bilayer graphene laminated body 1 is not arrange | positioned. Further, the pattern forming process on the graphene film 2 shown in FIGS. 23 to 31 as described above may be performed on the two-layer graphene stack 1F instead of the three-layer graphene stack 1. As a result, the graphene film is formed on the substrate having a predetermined strength, so that the graphene film can be easily handled, and the predetermined pattern is formed on the graphene film. A graphene film can be used.
 また、グラフェン積層体1Fは、上述したようなグラフェン膜2を保護する保護部材としての保護膜15を同様に備えることができる。 Further, the graphene laminate 1F can similarly include the protective film 15 as a protective member for protecting the graphene film 2 as described above.
 さらに、グラフェン積層体1Fを出荷する際にも、保護部材として、図32(a)に示すように、ケースまたは梱包袋16等にパック詰めしておくことで、さらにグラフェン膜2を保護することができる。 Furthermore, when the graphene laminate 1F is shipped, the graphene film 2 can be further protected by packing it into a case or a packing bag 16 as a protective member, as shown in FIG. 32 (a). Can do.
 つぎに、図32(b)に示す他の構成例を説明する。上記実施例においては、グラフェン積層体1は、基材4の上面に粘着層3が形成され、さらに粘着層3の上面にグラフェン膜2が形成されることにより、三層に積層されていたが、さらに、グラフェン膜2の上面に粘着層3Cを形成し、四層に積層したグラフェン積層体1Gを構成できる。この構成例の断面図を図32(b)に示している。 Next, another configuration example shown in FIG. 32B will be described. In the above embodiment, the graphene laminate 1 was laminated in three layers by forming the adhesive layer 3 on the upper surface of the substrate 4 and further forming the graphene film 2 on the upper surface of the adhesive layer 3. Furthermore, the adhesion layer 3C is formed on the upper surface of the graphene film 2, and the graphene laminated body 1G laminated in four layers can be configured. A cross-sectional view of this configuration example is shown in FIG.
 図32(b)において、グラフェン積層体1Gは、炭素原子が共有結合された少なくとも一層のグラフェン膜2と、物理的粘着力を備える第1及び第2の粘着層である粘着層3Cおよび粘着層3と、所定の強度を備える基材4と、を備え、グラフェン膜2の一方面に、粘着層3Cが粘着され、グラフェン膜2の他方面側に粘着層3が粘着されている。粘着層3Cと粘着層3は、グラフェン膜2の全面に形成しておいてもよいが、グラフェン膜2の少なくとも一部に形成しておいてもよい。また、基材4は、粘着層3のグラフェン膜2が粘着されていない側の面に粘着されている。グラフェン積層体1Gは、グラフェン膜2の炭素原子と他の分子との間に働くファンデルワールス力よりも大きい物理的粘着力を備える粘着層3Cおよび粘着層3を備えている。すなわち、グラフェン膜2が他の対象物に吸着する吸着力よりも大きい物理的粘着力を備える粘着層3Cおよび粘着層3を備えることで、粘着層3により、グラフェン膜2と基材4とを物理的に粘着させるとともに、図33(a)に示すように、粘着層3Cにより、対象物17に対して、グラフェン膜2を物理的に粘着させることができる。例えば、対象物17の表面がざらざらしているような材質の場合、グラフェン膜のファンデルワールス力だけでは吸着しにくいことがあるが、対象物17の表面にグラフェン積層体の粘着層3Cを粘着させることができるため、対象物17に粘着層3Cを介してグラフェン膜を形成できる。また、例えば、対象物17の表面の凸凹に高低差があるような場合にも、粘着層3Cの厚みを、対象物17の表面の凸凹の高低差分以上に設定しておくことで、粘着層3Cの弾力性で凸凹の形状に合わせて形状が変化することで、凸凹の高低差を吸収することができ、グラフェン膜2の表面は、高低差のない均一な表面にすることができる。 In FIG. 32 (b), the graphene laminate 1G includes at least one graphene film 2 in which carbon atoms are covalently bonded, and an adhesive layer 3C and an adhesive layer that are first and second adhesive layers having physical adhesive force. 3 and a base material 4 having a predetermined strength, the adhesive layer 3C is adhered to one surface of the graphene film 2, and the adhesive layer 3 is adhered to the other surface side of the graphene film 2. The adhesive layer 3C and the adhesive layer 3 may be formed on the entire surface of the graphene film 2, or may be formed on at least a part of the graphene film 2. The substrate 4 is adhered to the surface of the adhesive layer 3 on the side where the graphene film 2 is not adhered. The graphene laminated body 1G includes an adhesive layer 3C and an adhesive layer 3 having a physical adhesive force larger than the van der Waals force acting between the carbon atom of the graphene film 2 and other molecules. That is, by providing the adhesive layer 3C and the adhesive layer 3 having a physical adhesive force larger than the adsorption force that the graphene film 2 adsorbs to other objects, the adhesive layer 3 allows the graphene film 2 and the base material 4 to be bonded. As shown in FIG. 33A, the graphene film 2 can be physically adhered to the object 17 by the adhesion layer 3C as shown in FIG. For example, in the case where the surface of the object 17 is rough, it may be difficult to adsorb only by van der Waals force of the graphene film, but the adhesion layer 3C of the graphene laminate is adhered to the surface of the object 17 Therefore, a graphene film can be formed on the object 17 via the adhesive layer 3C. Further, for example, even when there is a height difference in the unevenness of the surface of the object 17, by setting the thickness of the adhesive layer 3 </ b> C to be equal to or higher than the height difference of the unevenness of the surface of the object 17, By changing the shape according to the uneven shape with the elasticity of 3C, the height difference of the unevenness can be absorbed, and the surface of the graphene film 2 can be a uniform surface with no height difference.
 粘着層3Cは、粘着層3とは異なる機能の粘着剤を用いることができる。粘着層3Cは、その粘着力が消失または減少しないような粘着剤としておくことで、図33(b)に示すように、粘着層3のみ粘着力を消失または減少させて基材4とグラフェン膜2とを分離することができ、また、粘着層3C側は粘着力が消失または減少しないので、図33(c)に示すように、対象物17にグラフェン膜2をそのまま貼りつけておくことができる。粘着層3Cの粘着剤としては、粘着力が消失または減少しないような、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、エポキシ樹脂系、シアノアクリレート系、ポリウレタン系、アクリル樹脂系のうち、一種類または複数から構成される樹脂組成物を利用することができる。この構成により、粘着層3の粘着力を消失または減少させて基材4とグラフェン膜2とを分離させた後は、図33(c)に示すように、粘着層3Cおよびグラフェン膜2を備える二層のグラフェン積層体1G1を構成できる。このように、グラフェン膜2の一方面に、粘着層3Cが粘着されたグラフェン積層体1G1を形成できる。 The pressure-sensitive adhesive layer 3C can use a pressure-sensitive adhesive having a function different from that of the pressure-sensitive adhesive layer 3. The adhesive layer 3C is made of an adhesive that does not lose or reduce its adhesive strength, and as shown in FIG. 33 (b), only the adhesive layer 3 loses or decreases its adhesive strength, and the substrate 4 and the graphene film 2, and the adhesive force does not disappear or decrease on the adhesive layer 3C side. Therefore, as shown in FIG. 33C, the graphene film 2 may be attached to the object 17 as it is. it can. As the adhesive for the adhesive layer 3C, one of urea resin, melamine resin, phenol resin, epoxy resin, cyanoacrylate, polyurethane, and acrylic resin that does not lose or reduce the adhesive strength. Or the resin composition comprised from two or more can be utilized. With this configuration, after the base material 4 and the graphene film 2 are separated by eliminating or reducing the adhesive strength of the adhesive layer 3, the adhesive layer 3C and the graphene film 2 are provided as shown in FIG. A two-layer graphene laminate 1G1 can be formed. Thus, the graphene laminated body 1G1 in which the adhesive layer 3C is adhered to one surface of the graphene film 2 can be formed.
 この構成において、グラフェン積層体1Gは、粘着層3Cが剥き出した状態のため、出荷する際や取扱いの際には、粘着層3Cの表面にごみ等が付着しないように粘着性を維持させる必要があるので、図32(b)に示すように、グラフェン積層体1Gの表面の粘着層3Cを保護する保護部材15Bを設けるようにしてもよい。保護部材15Bの材質としては、一般的に利用されている剥離紙等を利用でき、シリコーン系フィルム、フッ素系フィルム、ポリエチレン系フィルム等の樹脂製のフィルムを利用することができる。それらフィルムの表面は、粘着層3Cから剥離しやすくするためのエンボス加工等を施しておいてもよい。また、アルミ蒸着等によりさらにフィルムの表面に遮光膜を形成しておくことで、グラフェン膜2に対して遮光できるようにしてもよい。保護部材15Bとしては、ガスバリア性(水分、酸素等を遮断する機能)、遮光性(可視光線、紫外線等を遮断する機能)、離型性(保護部材15Bを粘着層3Cから剥がしやすくする機能)等を備えてもよい。 In this configuration, the graphene laminate 1G is in a state in which the adhesive layer 3C is exposed, and therefore, when shipped or handled, it is necessary to maintain adhesiveness so that dust or the like does not adhere to the surface of the adhesive layer 3C. Therefore, as shown in FIG. 32B, a protective member 15B that protects the adhesive layer 3C on the surface of the graphene laminate 1G may be provided. As the material of the protection member 15B, a release paper or the like that is generally used can be used, and a resin film such as a silicone film, a fluorine film, or a polyethylene film can be used. The surfaces of these films may be subjected to embossing or the like for easy peeling from the adhesive layer 3C. Further, a light shielding film may be further formed on the surface of the film by vapor deposition of aluminum or the like so that the graphene film 2 can be shielded from light. As the protective member 15B, gas barrier properties (functions that block moisture, oxygen, etc.), light shielding properties (functions that block visible light, ultraviolet rays, etc.), releasability (functions that make it easy to peel the protective member 15B from the adhesive layer 3C) Etc. may be provided.
 さらに、グラフェン積層体1Gを出荷する際にも、保護部材として、図32(b)に示すように、ケースまたは梱包袋16等にパック詰めしておくことで、さらにグラフェン膜2を保護することができる。 Further, when the graphene laminate 1G is shipped, the graphene film 2 can be further protected by packing it into a case or a packing bag 16 as a protective member as shown in FIG. 32 (b). Can do.
 このグラフェン積層体1Gの製造方法としては、上記実施例で製造したグラフェン積層体1のグラフェン膜2の上面に、液状の粘着剤を塗布し、この塗布した粘着剤を乾燥または加熱することで、粘着層3Cを形成することができる。例えば、上記実施例の図3(e)に示されるグラフェン積層体1の製造工程の後に、グラフェン膜2の上面に、粘着層3Cを形成することができる。または、粘着層3Cを形成する場合、上記実施例で製造したグラフェン積層体1のグラフェン膜2の上面に、片方の面に保護シート15Bが添付された両面に粘着層を有する両面テープ等の両面粘着層を貼り付けるようにしてもよい。この場合、両面テープは、所定の基材の両面に粘着層を有する構成であるため、基材を介して粘着層3Cが両面に形成された三層構造となっている。このため、グラフェン積層体1Gとしては、基材4の上面に粘着層3が形成され、さらに粘着層3の上面にグラフェン膜2が形成され、グラフェン膜2の上面に、粘着層3C、基材および粘着層3Cとを備える両面粘着層を添付することで六層構造となる。 As a manufacturing method of this graphene laminated body 1G, a liquid adhesive is applied to the upper surface of the graphene film 2 of the graphene laminated body 1 manufactured in the above embodiment, and the applied adhesive is dried or heated, An adhesive layer 3C can be formed. For example, the adhesion layer 3C can be formed on the upper surface of the graphene film 2 after the manufacturing process of the graphene laminated body 1 shown in FIG. Alternatively, when forming the adhesive layer 3C, double-sided tape such as a double-sided tape having an adhesive layer on both sides with a protective sheet 15B attached to one side of the top surface of the graphene film 2 of the graphene laminate 1 manufactured in the above embodiment. An adhesive layer may be attached. In this case, since the double-sided tape is configured to have an adhesive layer on both surfaces of a predetermined base material, the double-sided tape has a three-layer structure in which the adhesive layer 3C is formed on both surfaces via the base material. Therefore, as the graphene laminate 1G, the adhesive layer 3 is formed on the upper surface of the base material 4, the graphene film 2 is further formed on the upper surface of the adhesive layer 3, and the adhesive layer 3C, the base material is formed on the upper surface of the graphene film 2. And by attaching a double-sided adhesive layer comprising the adhesive layer 3C, a six-layer structure is obtained.
 また、グラフェン積層体1Gにおいて、グラフェン膜2にパターンを形成する場合には、上述したような図23~図31に示すグラフェン膜2へのパターン形成工程を、三層のグラフェン積層体1において施した後に、パターン化されたグラフェン積層体1のグラフェン膜2の上面に、液状の粘着剤を塗布し、この塗布した粘着剤を乾燥または加熱することで、粘着層3Cを形成することで形成できる。また、図27~図30に示すグラフェン膜2へのパターン形成工程においては、三層のグラフェン積層体1の代わりに、保護部材15Bを添付した四層のグラフェン積層体1Gに直接パターンを形成するようにしてもよい。 In the case of forming a pattern on the graphene film 2 in the graphene stack 1G, the pattern forming process for the graphene film 2 shown in FIGS. 23 to 31 as described above is performed on the three-layer graphene stack 1. Thereafter, a liquid adhesive is applied to the upper surface of the graphene film 2 of the patterned graphene laminate 1, and the applied adhesive can be dried or heated to form the adhesive layer 3C. . Further, in the pattern forming process on the graphene film 2 shown in FIGS. 27 to 30, a pattern is directly formed on the four-layer graphene laminate 1G to which the protective member 15B is attached instead of the three-layer graphene laminate 1. You may do it.
 また、上記実施例の図31に示すパターン化処理122(A)およびパターン化処理122(B)においては、エッチング液13により金属膜7が溶かされ、パターン化されたグラフェン膜2および粘着シート11のみが残った後の工程で、パターン化されたグラフェン膜2の上面に、粘着層3Cを形成し、その後、シート状の保護シート15Bで粘着層3Cを保護した後に、ローラーに巻き取ることでローラー状のグラフェン積層体1Gを製造できる。また、上記実施例のパターン化処理122(C)においては、このパターン化処理122(C)の後の工程で、パターン化されたグラフェン膜2の上面に、粘着層3Cを形成し、その後、シート状の保護シート15Bで粘着層3Cを保護した後に、ローラーに巻き取ることでローラー状のグラフェン積層体1Gを製造できる。 In the patterning process 122 (A) and the patterning process 122 (B) shown in FIG. 31 of the above embodiment, the metal film 7 is dissolved by the etching solution 13, and the patterned graphene film 2 and the pressure-sensitive adhesive sheet 11 are dissolved. In the process after only the remaining, the pressure-sensitive adhesive layer 3C is formed on the upper surface of the patterned graphene film 2, and then the pressure-sensitive adhesive layer 3C is protected by the sheet-like protective sheet 15B, and then wound around a roller. A roller-shaped graphene laminate 1G can be produced. Further, in the patterning process 122 (C) of the above embodiment, an adhesive layer 3C is formed on the upper surface of the patterned graphene film 2 in a step subsequent to the patterning process 122 (C), and then After protecting the adhesive layer 3C with the sheet-like protective sheet 15B, the roller-like graphene laminate 1G can be produced by winding it around a roller.
 また、グラフェン積層体1Gの形状についても、矩形状のシート状の他に、上記実施例に示す図5(a)~(e)と同様に、様々な形状に成形できる。 Also, the shape of the graphene laminate 1G can be formed into various shapes in addition to the rectangular sheet shape as in FIGS. 5 (a) to 5 (e) shown in the above embodiments.
 上述したような図11~図22に示す対象物そのものを成形する際にグラフェン膜2を添付する場合においても、三層のグラフェン積層体1の代わりに、四層のグラフェン積層体1Gを利用することもできる。 Even when the graphene film 2 is attached when the object itself shown in FIGS. 11 to 22 is formed as described above, the four-layer graphene laminate 1G is used instead of the three-layer graphene laminate 1. You can also
 このように、図32(b)に示す他の構成例のグラフェン積層体1Gによれば、グラフェン膜2の一方面に、粘着層3Cが粘着され、グラフェン膜2の他方面側に粘着層3が粘着されているので、グラフェン膜2が他の対象物に吸着する吸着力よりも大きい物理的粘着力を備える粘着層3Cおよび粘着層3を備えることで、粘着層3により、グラフェン膜2と基材4とを物理的に粘着させるとともに、粘着層3Cにより、対象物17に対して、グラフェン膜2を物理的に粘着させることができる。 Thus, according to the graphene laminate 1G of another configuration example shown in FIG. 32B, the adhesive layer 3C is adhered to one surface of the graphene film 2, and the adhesive layer 3 is adhered to the other surface side of the graphene film 2. Since the adhesive layer 3 is provided with the adhesive layer 3C and the adhesive layer 3 having a physical adhesive force larger than the adsorptive power that the graphene film 2 adsorbs to other objects, The graphene film 2 can be physically adhered to the object 17 by the adhesion layer 3 </ b> C while the substrate 4 is physically adhered.
 つぎに、図32(c)に示す他の構成例を説明する。上記図32(a)に示す他の構成例においては、グラフェン積層体1は、基材4の上面にグラフェン膜2が形成されることにより、二層に積層されていたが、さらに、グラフェン膜2の上面に粘着層3Cを形成して三層に積層したグラフェン積層体1Hを構成できる。この構成例の断面図を図32(c)に示している。 Next, another configuration example shown in FIG. 32 (c) will be described. In the other configuration example shown in FIG. 32A, the graphene laminate 1 is laminated in two layers by forming the graphene film 2 on the upper surface of the base material 4. The graphene laminated body 1H which formed the adhesion layer 3C on the upper surface of 2, and was laminated | stacked on the three layers can be comprised. A cross-sectional view of this configuration example is shown in FIG.
 図32(c)において、グラフェン積層体1Hは、炭素原子が共有結合された少なくとも一層のグラフェン膜2と、物理的粘着力を備える粘着層3Cと、所定の強度を備える基材4と、を備え、グラフェン膜2の一方面に、粘着層3Cが粘着され、グラフェン膜2の他方面側に基材4が粘着されている。グラフェン積層体1Hは、グラフェン膜2の炭素原子と他の分子との間に働くファンデルワールス力よりも大きい物理的粘着力を備える粘着層3Cを備えている。すなわち、グラフェン膜2が他の対象物に吸着する吸着力よりも大きい物理的粘着力を備える粘着層3Cを備えることで、図34(b)に示すように、粘着層3Cにより、対象物17に対して、グラフェン膜2を物理的に粘着させることができる。例えば、対象物17の表面がざらざらしているような材質の場合、グラフェン膜のファンデルワールス力だけでは吸着しにくいことがあるが、対象物17の表面にグラフェン積層体の粘着層3Cを粘着させることができるため、対象物17に粘着層3Cを介してグラフェン膜を形成できる。グラフェン積層体1Hの構成例においては、図32(b)に示す他の構成例のグラフェン積層体1Gのように、粘着力が消失または減少する粘着層3を備えていないため、対象物17に対して、粘着層3Cによりグラフェン膜2を物理的に粘着させた後は、基材4はそのまま添付された状態となる。 In FIG. 32C, the graphene laminate 1H includes at least one graphene film 2 in which carbon atoms are covalently bonded, an adhesive layer 3C having a physical adhesive force, and a substrate 4 having a predetermined strength. The adhesive layer 3C is adhered to one surface of the graphene film 2, and the substrate 4 is adhered to the other surface side of the graphene film 2. The graphene laminate 1H includes an adhesive layer 3C having a physical adhesive force larger than the van der Waals force acting between the carbon atom of the graphene film 2 and other molecules. That is, by providing the adhesive layer 3C having a physical adhesive force larger than the adsorptive power that the graphene film 2 adsorbs to other objects, as shown in FIG. In contrast, the graphene film 2 can be physically adhered. For example, in the case where the surface of the object 17 is rough, it may be difficult to adsorb only by van der Waals force of the graphene film, but the adhesion layer 3C of the graphene laminate is adhered to the surface of the object 17 Therefore, a graphene film can be formed on the object 17 via the adhesive layer 3C. In the configuration example of the graphene laminate 1H, the adhesive layer 3 whose adhesive strength disappears or decreases is not provided as in the graphene laminate 1G of another configuration example illustrated in FIG. On the other hand, after the graphene film 2 is physically adhered by the adhesion layer 3C, the base material 4 is attached as it is.
 グラフェン積層体1Hの製造方法としては、上述した図32(a)に示す二層のグラフェン積層体1Fの製造後、上述した図32(b)に示す粘着層3Cの形成方法と同様に、グラフェン積層体1Fのグラフェン膜2の上面に、液状の粘着剤を塗布し、この塗布した粘着剤を乾燥または加熱することで、粘着層3Cを形成することができる。粘着層3Cは、上述した材質で構成でき、その粘着力が消失または減少しないような粘着剤としておく。 As a method for producing the graphene laminate 1H, after the production of the two-layer graphene laminate 1F shown in FIG. 32A, the graphene is formed in the same manner as the method for forming the adhesive layer 3C shown in FIG. An adhesive layer 3C can be formed by applying a liquid adhesive on the top surface of the graphene film 2 of the laminate 1F and drying or heating the applied adhesive. The pressure-sensitive adhesive layer 3C can be made of the above-described material, and is set as a pressure-sensitive adhesive that does not lose or reduce its adhesive strength.
 この構成においても、グラフェン積層体1Hは、粘着層3Cが剥き出した状態のため、出荷する際や取扱いの際には、粘着層3Cの表面にごみ等が付着しないように粘着性を維持させる必要があるので、グラフェン積層体1Gと同様に、図32(c)に示すように、グラフェン積層体1Hの表面の粘着層3Cを保護する保護部材15Bを設けるようにしてもよい。また、グラフェン積層体1Hを出荷する際にも、保護部材として、図32(c)に示すように、ケースまたは梱包袋16等にパック詰めしておくことで、さらにグラフェン膜2を保護することができる。 Even in this configuration, the graphene laminate 1H is in a state where the adhesive layer 3C is exposed, and therefore, when shipped or handled, it is necessary to maintain adhesiveness so that dust or the like does not adhere to the surface of the adhesive layer 3C. Therefore, similarly to the graphene laminate 1G, as shown in FIG. 32C, a protective member 15B that protects the adhesive layer 3C on the surface of the graphene laminate 1H may be provided. Further, when the graphene laminate 1H is shipped, as shown in FIG. 32C, the graphene film 2 can be further protected by packing in a case or a packing bag 16 as a protective member. Can do.
 このように、図32(c)に示す他の構成例のグラフェン積層体1Hによれば、グラフェン膜2の一方面に、粘着層3Cが粘着され、グラフェン膜2の他方面側に基材4が添付されているので、グラフェン膜2が他の対象物に吸着する吸着力よりも大きい物理的粘着力を備える粘着層3Cを備えることで、粘着層3Cにより対象物17に対して、グラフェン膜2を物理的に粘着させることができる。 Thus, according to the graphene laminate 1H of another configuration example shown in FIG. 32C, the adhesive layer 3C is adhered to one surface of the graphene film 2, and the substrate 4 is disposed on the other surface side of the graphene film 2. Is attached to the object 17 by the adhesive layer 3C by providing the adhesive layer 3C having a physical adhesive force larger than the adsorption force that the graphene film 2 adsorbs to another object. 2 can be physically adhered.
 また、上述した図32(b)に示す他の構成例のグラフェン積層体1Gにおいて、粘着層3Cおよび粘着層3とは、粘着層3とは異なる機能の粘着剤を用いることようにしているが、粘着層3Cおよび粘着層3を、同一粘着剤としてもよい。この場合、粘着層3Cおよび粘着層3は、その粘着力が消失または減少しないような粘着剤としておくことで、両方の粘着層の粘着力を維持できるような構成とし、図33(a)に示すように、粘着層3Cにより対象物17にグラフェン膜2をそのまま貼りつけておき、また、粘着層3により基材4をそのまま貼りつけておくことができる。粘着層3Cおよび粘着層3の粘着剤としては、粘着力が消失または減少しないような、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、エポキシ樹脂系、シアノアクリレート系、ポリウレタン系、アクリル樹脂系のうち、一種類または複数から構成される樹脂組成物を利用することができる。また、粘着層3Cおよび粘着層3の粘着力が消失または減少しないような構成とした場合、基材4のみを分離することで、図33(b)における粘着層3、グラフェン膜2、粘着層3Cを備える三層のグラフェン積層体1G2を構成できる。例えば、基材4がPMMA等の場合には、対象物17に粘着層3Cを貼り付けた後に、アセトン等の有機溶媒で基材4のPMMA等を溶解させることで、粘着層3、グラフェン膜2、粘着層3Cを備える三層のグラフェン積層体1G2を構成できる。このようにして、グラフェン膜2の一方面に、粘着層3が粘着され、グラフェン膜2の他方面に、粘着層3Cが粘着されたグラフェン積層体1G2を形成できる。これにより、グラフェン膜2の両面を粘着層でそれぞれ保護することができる。 In addition, in the graphene laminate 1G of another configuration example shown in FIG. 32B described above, an adhesive having a function different from that of the adhesive layer 3 is used for the adhesive layer 3C and the adhesive layer 3. The adhesive layer 3C and the adhesive layer 3 may be the same adhesive. In this case, the pressure-sensitive adhesive layer 3C and the pressure-sensitive adhesive layer 3 are configured so as to maintain the pressure-sensitive adhesive strength of both pressure-sensitive adhesive layers by keeping the pressure-sensitive adhesive force from disappearing or decreasing, as shown in FIG. As shown, the graphene film 2 can be attached to the object 17 as it is by the adhesive layer 3 </ b> C, and the substrate 4 can be attached as it is by the adhesive layer 3. The pressure-sensitive adhesive for the pressure-sensitive adhesive layer 3C and the pressure-sensitive adhesive layer 3 is a urea resin-based, melamine-based, phenolic-based, epoxy-based, cyanoacrylate-based, polyurethane-based, or acrylic-resin-based adhesive that does not lose or reduce adhesive strength Among them, a resin composition composed of one type or a plurality of types can be used. Moreover, when it is set as the structure which the adhesion force of 3 C of adhesion layers and the adhesion layer 3 does not lose | disappear or reduce, by separating only the base material 4, the adhesion layer 3, the graphene film 2, and the adhesion layer in FIG. A three-layer graphene laminate 1G2 including 3C can be configured. For example, when the base material 4 is PMMA or the like, the adhesive layer 3C or the graphene film is prepared by dissolving the PMMA or the like of the base material 4 with an organic solvent such as acetone after the adhesive layer 3C is attached to the object 17. 2. A three-layer graphene laminate 1G2 including an adhesive layer 3C can be configured. Thus, the graphene laminated body 1G2 in which the adhesive layer 3 is adhered to one surface of the graphene film 2 and the adhesive layer 3C is adhered to the other surface of the graphene film 2 can be formed. Thereby, both surfaces of the graphene film 2 can be protected by the adhesive layer.
 上述した実施例、他の構成例におけるグラフェン積層体1、1A~1E、1F、1G、1G1、1G2、1Hを対象物に添付する場合、様々な用途で利用できるが、特に、グラフェン膜2によるガスバリア性の機能を利用して、生体や食品の周囲、また、真空、密閉容器の内周面または外周面に、これらのグラフェン積層体を添付することで、生体や食品に、真空、密閉容器において、外気への接触を防ぎ、気密性を保持させるようにすることができる。 When the graphene laminates 1, 1A to 1E, 1F, 1G, 1G1, 1G2, and 1H in the above-described embodiments and other configuration examples are attached to an object, they can be used for various purposes. By attaching these graphene laminates to the surroundings of living organisms and foods, and to the inner and outer peripheral surfaces of vacuum and sealed containers using the gas barrier function, vacuum and sealed containers are attached to living organisms and foods. In this case, contact with outside air can be prevented and airtightness can be maintained.
 図33(a)に示すように、粘着層3Cにより対象物17にグラフェン膜2をそのまま貼りつけておき、また、粘着層3により基材4をそのまま貼りつけておくような場合や、図34(a)に示すように、対象物17にグラフェン膜2を貼りつけて基材4をそのまま貼りつけておくような場合の基材4を分離しない場合の用途としては、例えば、半導体や透明電極として、グラフェン膜2を添付して利用することができる。これにより、グラフェン膜2の表面を基材4で保護することができる。また、グラフェン膜2の透光性を利用する場合には、基材4も透光性を有するものを利用することができる。 As shown in FIG. 33 (a), the graphene film 2 is directly attached to the object 17 by the adhesive layer 3C, and the base material 4 is directly attached by the adhesive layer 3, or FIG. As shown to (a), as an application in the case where the base material 4 is not separated when the graphene film 2 is attached to the object 17 and the base material 4 is attached as it is, for example, a semiconductor or a transparent electrode is used. The graphene film 2 can be attached and used. Thereby, the surface of the graphene film 2 can be protected by the base material 4. Moreover, when utilizing the translucency of the graphene film 2, the base material 4 can also utilize what has translucency.
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。 Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.
 上述した実施例における基材4と粘着層3との材質や機能の組み合わせは、自由に設定することができる。例えば、基材4をガラスとし、粘着層3として、紫外線などの光を照射させることで粘着力が消失される粘着剤を用いることができる。この場合、ガラスは透光性を備えるので、ガラス側から粘着シート11の粘着層3に紫外線を照射することで、粘着力を消失させることができる。 The combination of materials and functions of the base material 4 and the adhesive layer 3 in the above-described embodiments can be freely set. For example, the base material 4 is made of glass, and the adhesive layer 3 can be made of an adhesive that loses its adhesive strength when irradiated with light such as ultraviolet rays. In this case, since glass has translucency, the adhesive force can be lost by irradiating the adhesive layer 3 of the adhesive sheet 11 with ultraviolet rays from the glass side.
 また、基材4を生分解性の機能を備えるようにしておくことで、基材4をグラフェン膜2から剥離した後に、微生物などによって分解させることができ、自然環境への負担を少なくすることができる。 In addition, by providing the base material 4 with a biodegradable function, the base material 4 can be decomposed by microorganisms after being peeled from the graphene film 2, thereby reducing the burden on the natural environment. Can do.
 また、図32(b)に示す他の構成例のグラフェン積層体1Gと、図32(c)に示す他の構成例のグラフェン積層体1Hとの構成において、グラフェン膜2の上面に粘着層3Cを形成しているが、対象物側に粘着層3Cを形成するようにしてもよい。この場合、対象物側に、液状の粘着剤を塗布し、この塗布した粘着剤を乾燥または加熱することで、粘着層3Cを形成する粘着層形成工程を施す。その後、上記実施例における図1及び図5に示すグラフェン積層体1、1A~1E、または、図32(a)に示す他の構成例のグラフェン積層体1Fのグラフェン膜2を、対象物側の粘着層3Cに貼り付ける貼り付け工程を施すようにできる。または、対象物側に、両面に粘着層を有する両面テープ等の両面粘着層を貼り付けることで粘着層3Cを形成する粘着層形成工程を施し、上記実施例における図1及び図5に示すグラフェン積層体1、1A~1E、または、図32(a)に示す他の構成例のグラフェン積層体1Fのグラフェン膜2を、対象物側の粘着層3Cに貼り付ける貼り付け工程を施すようにしてもよい。これにより、粘着層3Cにより、対象物17に対して、グラフェン膜2を物理的に粘着させることができ、グラフェン膜2を、粘着層3Cを介して対象物に添付することができる。この場合のグラフェン膜2が添付された対象物は、この対象物部分を基材として、その上面に粘着層3Cが粘着され、その上面にグラフェン膜2が形成されているため、図1に示すグラフェン積層体1と同じ構成を備えたものとなる。この場合においても、基材4は、分離させずにそのまま添付しておいてもよいし、粘着層3を備える場合には、上記実施例における図1及び図5に示すグラフェン積層体1、1A~1Eにおける粘着層3の粘着力を消失または減少させることで、基材4を分離させることもできる。 Further, in the configuration of the graphene stack 1G of another configuration example illustrated in FIG. 32B and the graphene stack 1H of another configuration example illustrated in FIG. 32C, the adhesive layer 3C is formed on the top surface of the graphene film 2. However, the adhesive layer 3C may be formed on the object side. In this case, a liquid pressure-sensitive adhesive is applied to the object side, and the applied pressure-sensitive adhesive is dried or heated to perform a pressure-sensitive adhesive layer forming step for forming the pressure-sensitive adhesive layer 3C. Thereafter, the graphene laminated body 1, 1A to 1E shown in FIG. 1 and FIG. 5 in the above embodiment, or the graphene film 2 of the graphene laminated body 1F of another configuration example shown in FIG. It is possible to perform an attaching step for attaching to the adhesive layer 3C. Alternatively, a pressure-sensitive adhesive layer forming step for forming a pressure-sensitive adhesive layer 3C by applying a double-sided pressure-sensitive adhesive layer such as a double-sided tape having pressure-sensitive adhesive layers on both sides is performed on the object side, and the graphene shown in FIGS. A stacking process is performed in which the graphene film 2 of the stack 1, 1A to 1E or the graphene stack 1F of another configuration example shown in FIG. 32A is attached to the adhesive layer 3C on the object side. Also good. Thereby, the graphene film 2 can be physically adhered to the object 17 by the adhesion layer 3C, and the graphene film 2 can be attached to the object via the adhesion layer 3C. The object to which the graphene film 2 is attached in this case is shown in FIG. 1 because the adhesive layer 3C is adhered to the upper surface of the object portion as a base material and the graphene film 2 is formed on the upper surface. The same structure as the graphene laminated body 1 is provided. Also in this case, the base material 4 may be attached as it is without being separated. When the adhesive layer 3 is provided, the graphene laminates 1 and 1A shown in FIG. 1 and FIG. The base material 4 can also be separated by eliminating or reducing the adhesive strength of the adhesive layer 3 at ˜1E.
1、1A~1E、1F、1G、1G1、1G2、1H  グラフェン積層体
2        グラフェン膜
3、3B、3C  粘着層
4        基材
5        幅狭のロール状
6        幅大のロール状
7        金属膜
8        2層のロール状シート
9        2層の矩形状シート
10       ラミネーター
11       粘着シート
12、21    水槽
13       エッチング液
14       中和液
15、15B   保護膜
16、16B   梱包袋
17、17B、22、24、75 対象物
18、27、74、81 ローラー
19       紫外線照射装置
20       加熱/冷却機能を有するローラー
26       押圧ローラー
28、36    剥離工程
29       巻取りローラー
30、37、41、45、57、65、91 成形部材
31、42、46、53、58、79    金型
32       所定位置
33、44、61 注入孔
34       部材
35       シリンダ
39、40    不活性ガス
43、47、54 原料
48       容器
49       処理
52A      上加圧板
52B      下加圧板
55       押圧
59       原料保持枠
60       タンク
63       加圧媒体
71       原料押出機
72       Tダイ
73       キャストロール
77       保持部
78       基材保持枠
80       冷却部
82       ベルト
83       混練機
84       カレンダーローラー
85       ホッパー
86、114A  上金型(パンチ)
87       粉体
89、114B  下金型
90       加圧処理
92       発信源
93       磁界またはレンズ
94、101、103、106、109、110、113、116、120 パターン化されたグラフェン膜を備えるグラフェン積層体
95       フォトレジスト
96       露光装置
97       レンズ
98       フォトマスク
99       交流電圧
100      反応性イオンエッチング(RIE)または誘導結合プラズマ(ICP)
102      オゾンガス
104      噴射機
105      ブラスト粒子
107A     平板スタンパー
107B     ローラスタンパー
108      加圧処理
111      放電加工装置
112      近接
115、119  プレス処理
117      基板
118      粘着剤
121      成膜処理
122A、B、C パターン化処理
130A~K、140 製造装置
1, 1A to 1E, 1F, 1G, 1G1, 1G2, 1H Graphene laminate 2 Graphene film 3, 3B, 3C Adhesive layer 4 Base material 5 Narrow roll shape 6 Wide roll shape 7 Metal film 8 Roll sheet 9 Two-layer rectangular sheet 10 Laminator 11 Adhesive sheet 12, 21 Water tank 13 Etching solution 14 Neutralizing solution 15, 15B Protective film 16, 16B Packaging bags 17, 17B, 22, 24, 75 Target objects 18, 27 , 74, 81 Roller 19 UV irradiation device 20 Roller 26 having heating / cooling function Pressing roller 28, 36 Peeling process 29 Winding roller 30, 37, 41, 45, 57, 65, 91 Molding member 31, 42, 46, 53, 58, 79 Mold 32 Predetermined positions 33, 44 61 Injection hole 34 Member 35 Cylinder 39, 40 Inert gas 43, 47, 54 Raw material 48 Container 49 Processing 52A Upper pressure plate 52B Lower pressure plate 55 Press 59 Material holding frame 60 Tank 63 Pressure medium 71 Material extruder 72 T die 73 Cast roll 77 Holding part 78 Base material holding frame 80 Cooling part 82 Belt 83 Kneading machine 84 Calendar roller 85 Hopper 86, 114A Upper die (punch)
87 Powder 89, 114B Lower mold 90 Pressurizing treatment 92 Transmission source 93 Magnetic field or lens 94, 101, 103, 106, 109, 110, 113, 116, 120 Graphene laminate 95 with patterned graphene film 95 Photo Resist 96 Exposure device 97 Lens 98 Photomask 99 AC voltage 100 Reactive ion etching (RIE) or inductively coupled plasma (ICP)
102 Ozone gas 104 Injector 105 Blast particle 107A Flat plate stamper 107B Roller stamper 108 Pressurization process 111 Electric discharge machining device 112 Proximity 115, 119 Press process 117 Substrate 118 Adhesive 121 Film formation process 122A, B, C Patterning process 130A-K 140 Production equipment

Claims (21)

  1.  炭素原子が共有結合された少なくとも一層のグラフェン膜と、
     物理的粘着力を備える粘着層と、
     所定の強度を備える基材と、
     を備え、
     前記グラフェン膜の一方面に、前記粘着層が粘着され、前記グラフェン膜の他方面側に前記基材を備えることを特徴とするグラフェン積層体。
    At least one graphene film in which carbon atoms are covalently bonded; and
    An adhesive layer with physical adhesive strength;
    A base material having a predetermined strength;
    With
    The graphene laminate, wherein the adhesive layer is adhered to one surface of the graphene film, and the base material is provided on the other surface side of the graphene film.
  2.  前記グラフェン膜の他方面と、前記基材との間に物理的粘着力を備える第2粘着層を備えることを特徴とする請求項1に記載のグラフェン積層体。 The graphene laminate according to claim 1, further comprising a second adhesive layer having a physical adhesive force between the other surface of the graphene film and the base material.
  3.  前記粘着層は、前記第2粘着層と異なる粘着剤で構成されていることを特徴とする請求項2に記載のグラフェン積層体。 The graphene laminate according to claim 2, wherein the adhesive layer is composed of an adhesive different from the second adhesive layer.
  4.  前記第2粘着層は、前記粘着力が消失または減少可能に構成されていることを特徴とする請求項2または3に記載のグラフェン積層体。 The graphene laminate according to claim 2 or 3, wherein the second adhesive layer is configured such that the adhesive force can be lost or reduced.
  5.  前記第2粘着層の前記粘着力は、光の照射により消失または減少されることを特徴とする請求項2ないし4のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 2 to 4, wherein the adhesive force of the second adhesive layer disappears or is reduced by light irradiation.
  6.  前記第2粘着層の前記粘着力は、紫外線の照射により消失または減少されることを特徴とする請求項2ないし5のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 2 to 5, wherein the adhesive force of the second adhesive layer is lost or reduced by irradiation with ultraviolet rays.
  7.  前記第2粘着層の前記粘着力は、熱または溶媒により消失または減少されることを特徴とする請求項2ないし6のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 2 to 6, wherein the adhesive force of the second adhesive layer is lost or reduced by heat or a solvent.
  8.  前記粘着層と、前記第2粘着層とは、同じ粘着剤で構成されていることを特徴とする請求項2に記載のグラフェン積層体。 The graphene laminate according to claim 2, wherein the adhesive layer and the second adhesive layer are made of the same adhesive.
  9.  前記粘着層は、前記粘着力が消失または減少しないように構成されていることを特徴とする請求項2または8に記載のグラフェン積層体。 The graphene laminate according to claim 2 or 8, wherein the adhesive layer is configured so that the adhesive force does not disappear or decrease.
  10.  前記基材は、可撓性または弾性を備えることを特徴とする請求項1ないし9のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 1 to 9, wherein the base material has flexibility or elasticity.
  11.  前記基材は、樹脂製のフィルムにより構成されていることを特徴とする請求項1ないし10のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 1 to 10, wherein the substrate is made of a resin film.
  12.  前記基材は、熱硬化性、熱可塑性、熱収縮性、生分解性、水溶性の少なくともいずれかの機能を備えることを特徴とする請求項1ないし11のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 1 to 11, wherein the base material has at least one of thermosetting, thermoplastic, heat-shrinkable, biodegradable, and water-soluble functions.
  13.  前記基材は、ガラス、金属、セラミックスの少なくともいずれかで構成されていることを特徴とする請求項1ないし12のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 1 to 12, wherein the substrate is made of at least one of glass, metal, and ceramics.
  14.  前記基材は、透光性を備えることを特徴とする請求項1ないし13のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 1 to 13, wherein the base material has translucency.
  15.  前記粘着層を保護する保護部材を備えることを特徴とする請求項1ないし14のいずれかに記載のグラフェン積層体。 The graphene laminate according to any one of claims 1 to 14, further comprising a protective member that protects the adhesive layer.
  16.  前記保護部材は、前記粘着層から剥離可能な加工が施されていることを特徴とする請求項15に記載のグラフェン積層体。 The graphene laminate according to claim 15, wherein the protective member is processed to be peelable from the adhesive layer.
  17.  前記グラフェン膜は、所定のパターンが形成されていることを特徴とする請求項1ないし16のいずれかに記載のグラフェン積層体。 The graphene laminate according to claim 1, wherein the graphene film has a predetermined pattern.
  18.  炭素原子が共有結合された少なくとも一層のグラフェン膜と、
     物理的粘着力を備える粘着層と、
     を備え、
     前記グラフェン膜の一方面に、前記粘着層が粘着されていることを特徴とするグラフェン積層体。
    At least one graphene film in which carbon atoms are covalently bonded; and
    An adhesive layer with physical adhesive strength;
    With
    The graphene laminate, wherein the adhesive layer is adhered to one surface of the graphene film.
  19.  物理的粘着力を備える第2粘着層を備え、
     前記グラフェン膜の他方面に、前記第2粘着層が粘着されていることを特徴とする請求項18に記載のグラフェン積層体。
    A second adhesive layer having physical adhesive strength;
    The graphene laminate according to claim 18, wherein the second adhesive layer is adhered to the other surface of the graphene film.
  20.  炭素原子が共有結合された少なくとも一層のグラフェン膜を部材に対して添付するグラフェン積層体の製造方法であって、
     前記部材に、物理的粘着力を備える粘着層を形成する粘着層形成工程と、
     前記部材の前記粘着層に対して、所定の強度を備える基材の一方面側に形成されたグラフェン膜を貼り付ける貼り付け工程と、
     を備えることを特徴とするグラフェン積層体の製造方法。
    A method for producing a graphene laminate comprising attaching at least one graphene film covalently bonded with carbon atoms to a member,
    An adhesive layer forming step of forming an adhesive layer having physical adhesive force on the member;
    An attaching step of attaching a graphene film formed on one side of a base material having a predetermined strength to the adhesive layer of the member;
    A method for producing a graphene laminate, comprising:
  21.  前記貼り付け工程後、前記基材を剥離する剥離工程を備えることを特徴とする請求項20に記載のグラフェン積層体の製造方法。 The method for producing a graphene laminate according to claim 20, further comprising a peeling step for peeling the base material after the attaching step.
PCT/JP2012/065036 2012-06-12 2012-06-12 Graphene laminate and method for manufacturing graphene laminate WO2013186858A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065036 WO2013186858A1 (en) 2012-06-12 2012-06-12 Graphene laminate and method for manufacturing graphene laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065036 WO2013186858A1 (en) 2012-06-12 2012-06-12 Graphene laminate and method for manufacturing graphene laminate

Publications (1)

Publication Number Publication Date
WO2013186858A1 true WO2013186858A1 (en) 2013-12-19

Family

ID=49757722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065036 WO2013186858A1 (en) 2012-06-12 2012-06-12 Graphene laminate and method for manufacturing graphene laminate

Country Status (1)

Country Link
WO (1) WO2013186858A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140146490A1 (en) * 2012-11-26 2014-05-29 Sony Corporation Laminated structure, method of manufacturing laminated structure, and electronic apparatus
EP3928977A4 (en) * 2019-02-19 2022-11-09 Nitto Denko Corporation Method for manufacturing laminate of two-dimensional material, and laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120660A (en) * 2006-11-16 2008-05-29 Toshio Sugita Graphene sheet for producing carbon tube and graphene sheet for graphene sheet formed article
JP2009062247A (en) * 2007-09-10 2009-03-26 Univ Of Fukui Method for producing graphene sheet
JP2010149509A (en) * 2008-11-28 2010-07-08 Fuji Polymer Industries Co Ltd Heat diffusion sheet and its mounting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120660A (en) * 2006-11-16 2008-05-29 Toshio Sugita Graphene sheet for producing carbon tube and graphene sheet for graphene sheet formed article
JP2009062247A (en) * 2007-09-10 2009-03-26 Univ Of Fukui Method for producing graphene sheet
JP2010149509A (en) * 2008-11-28 2010-07-08 Fuji Polymer Industries Co Ltd Heat diffusion sheet and its mounting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140146490A1 (en) * 2012-11-26 2014-05-29 Sony Corporation Laminated structure, method of manufacturing laminated structure, and electronic apparatus
US9137892B2 (en) * 2012-11-26 2015-09-15 Sony Corporation Laminated structure, method of manufacturing laminated structure, and electronic apparatus
EP3928977A4 (en) * 2019-02-19 2022-11-09 Nitto Denko Corporation Method for manufacturing laminate of two-dimensional material, and laminate

Similar Documents

Publication Publication Date Title
KR101716468B1 (en) Tranfering method for graphene using self-adhesive film
JP6501755B2 (en) Laminated sheet for electronic device sealing and method of manufacturing electronic device
KR101565835B1 (en) Fabrication method of replication mold, fine structures using the same and its applications thereof.
WO2013168297A1 (en) Method for producing graphene laminate, and graphene laminate
WO2013168296A1 (en) Production method for molding member that is provided with graphene film, molded member that is provided with graphene film, production apparatus for molding member that is provided with graphene film, and graphene laminate
TW201313452A (en) Method for connecting resin-made molds and roll-to-roll consecutive mold construct manufactured by the method
US20090183643A1 (en) Structure of roller imprinting apparatus
TW201408472A (en) Imprint method, and imprinting device
CN109188863B (en) Method for patterning film layer
JP2006501659A5 (en)
WO2013186858A1 (en) Graphene laminate and method for manufacturing graphene laminate
JP2006263685A (en) Mask forming method, material for mask, and pattern film forming system using the same
JP2007073696A (en) Pattern forming method, pattern forming apparatus and pattern-formed film
KR101704587B1 (en) How to implement a complex pattern and complex pattern implemented sheet
TW201533942A (en) Electronic device package and manufacturing method thereof
CN103507307A (en) Decorative film, composite material object decorated by using decorative film, and manufacturing method of composite material object
CN103725214B (en) Laminated body
WO2013164890A1 (en) Graphene laminate
JP5343682B2 (en) Imprint mold and manufacturing method thereof
KR20180004656A (en) Release film and method of manufacturing resin molded article
KR101895182B1 (en) Imprint mold
TW201718228A (en) Method for manufacturing mold for imprinting
CN107405824A (en) Relief pattern forms the manufacture method and imprinting apparatus of body
US9855703B2 (en) Method of forming aligned pattern in pattern formation region by using imprint process
JP5497467B2 (en) Fine etching mask manufacturing method and exposure processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879018

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP