WO2013183656A1 - Gタンパク質共役受容体結合リガンドと核酸分子とのコンジュゲート - Google Patents

Gタンパク質共役受容体結合リガンドと核酸分子とのコンジュゲート Download PDF

Info

Publication number
WO2013183656A1
WO2013183656A1 PCT/JP2013/065512 JP2013065512W WO2013183656A1 WO 2013183656 A1 WO2013183656 A1 WO 2013183656A1 JP 2013065512 W JP2013065512 W JP 2013065512W WO 2013183656 A1 WO2013183656 A1 WO 2013183656A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
nucleic acid
alkyl
Prior art date
Application number
PCT/JP2013/065512
Other languages
English (en)
French (fr)
Inventor
龍 永田
雅則 戸邊
拓士 中川
慶介 柿口
Original Assignee
大日本住友製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本住友製薬株式会社 filed Critical 大日本住友製薬株式会社
Publication of WO2013183656A1 publication Critical patent/WO2013183656A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70571Receptors; Cell surface antigens; Cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes

Definitions

  • the present invention relates to a conjugate of a G protein coupled receptor (GPCR) ligand and a nucleic acid molecule.
  • GPCR G protein coupled receptor
  • the present invention provides a novel compound containing a conjugate of a GPCR ligand and a nucleic acid molecule, and a pharmaceutical composition containing the novel compound as an active ingredient.
  • the present invention provides methods for making these compounds and methods for introducing nucleic acid molecules into cells using these compounds for the treatment of various diseases associated with cells with GPCRs. .
  • Nucleic acid drugs use nucleic acid molecules such as antisense oligonucleotides, siRNAs, and micro RNAs (miRNAs) as drugs, and are attracting attention as next-generation drugs next to low-molecular drugs and antibody drugs.
  • An antisense oligonucleotide is an oligonucleotide having a structure complementary to a partial sequence region of mRNA encoding a target protein. Antisense oligonucleotides can inhibit translation into proteins by binding to the corresponding mRNA, and in addition, the activation of RNase H degrades the corresponding mRNA and suppresses mRNA expression.
  • Non-patent Document 1 Potential control of gene expression using oligonucleotides and application to therapy is expected.
  • siRNA is a double-stranded RNA that is converted into a single strand in the process of RNA interference, and then incorporated into RISC (RNA-induced silencing complex) to target RNA that has at least one highly complementary binding site. Recognize sequence-specifically. As a result, the target RNA is cleaved / degraded by the nuclease in RISC. Therefore, siRNA is expected as a new type of pharmaceutical that can suppress the expression of genes that cause diseases (Non-patent Document 2).
  • RISC RNA-induced silencing complex
  • miRNA is single-stranded RNA, and is incorporated into RISC in the process of RNA interference like siRNA, and shows specific gene expression suppression. miRNA has been reported to be associated with various diseases including cancer, such as involvement in suppression or promotion of cancer, and the possibility of treatment using miRNA is expected (Non-patent Documents 3 and 4). .
  • An antisense oligonucleotide having a complementary structure to a partial sequence region of miRNA has been reported to inhibit the function of endogenous miRNA upon intravenous administration to mice, and an antisense oligonucleotide targeting miRNA is a nucleic acid. Expected to be a pharmaceutical product (Non-Patent Document 5).
  • nucleic acid molecules as described above are considered to provide solutions to diseases that have been considered difficult so far, and more disease-related gene sequences are being identified.
  • Clinical trials of therapeutic methods using nucleic acid molecules for are currently underway.
  • nucleic acid molecules as therapeutic agents, pharmacology has solved problems such as stability in serum, delivery to appropriate organs or cells, and uptake into cells. There is still a need for nucleic acid molecules with properties.
  • Non-Patent Document 6 Endocytosis via receptors expressed on cell membranes is known as one of the methods for taking up nucleic acid molecules into cells.
  • Non-patent Document 7 A specific ligand for a membrane receptor expressed on the cell membrane is conjugated to the nucleic acid molecule.
  • conjugates reported so far are limited to liver diseases because sugar chain receptors are highly expressed in the liver, and folate receptors are limited to cancer because they are expressed in cancer cells.
  • Deliverying nucleic acid molecules for limited diseases Accordingly, development of a technique for incorporating intracellular nucleic acid molecules with great versatility is strongly desired.
  • GPCRs are a member of the cell membrane receptor superfamily. These receptors are biologically important and various GPCRs are involved in many diseases.
  • Non-patent Documents 8 and 9 For example, hypertension, myocardial infarction, arrhythmia, atherosclerosis, renal failure, diabetes, asthma, chronic obstructive pulmonary disease, rhinitis, inflammatory disease, rheumatoid arthritis, chronic inflammatory bowel disease, glaucoma, pain, depression It is involved in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, multiple sclerosis, and cancer, but it is also considered to be involved in other than these diseases (Non-patent Documents 8 and 9).
  • Non-Patent Documents 10 and 11 Most GPCRs are stimulated by binding to GPCR-specific agonists, then phosphorylated by GPCR kinase, undergo endocytosis with GPCR-specific agonists through binding of arrestins, and are taken up into cells.
  • the present invention provides a transporter for effectively incorporating a nucleic acid drug into a diseased cell, more specifically, a novel compound (conjugate) of a nucleic acid molecule and a transporter (hereinafter referred to as “the compound of the present invention”).
  • the present inventors have focused on GPCRs that are specifically expressed in diseases. Therefore, when a compound in which a compound capable of becoming a GPCR ligand and a nucleic acid molecule are bound with a linker is produced and allowed to act on a cell, the target nucleic acid molecule is introduced into the target cell, and the present invention is achieved. It came to be completed. It was also confirmed that the nucleic acid molecule portion in the compound functions. Furthermore, it was confirmed that GPCR agonists function effectively in GPCR ligands.
  • the linker is represented by the following formula (I):
  • L is from a phosphate group, a phosphorothioate group, a boranophosphate group, a phosphoroselenate group, a boranophosphate ester group, a hydrogen phosphonate group, a phosphoramidate group, an alkylphosphonate group, an arylphosphonate group, and a phosphotriester group.
  • R 1 is — (CH 2 ) n1 —, — (CH 2 ) n2 —O— (CH 2 ) n3 —, — (CH 2 CH 2 O) n4 —CH 2 CH 2 —, —CH 2 CH 2 — S—S—CH 2 CH 2 —C (O) —NH— (CH 2 ) 6 — and —CH 2 CH 2 —O—C (O) —NH— (CH 2 ) 6 — are selected from the group consisting of Divalent groups (wherein — (CH 2 ) n1 —, — (CH 2 ) n2 —O— (CH 2 ) n3 — and — (CH 2 CH 2 O) n4 —CH 2 CH 2 — are substitutable.
  • R 3 is (represents C1-C6) alkyl or (C3-C8) cycloalkyl group
  • R 4 is a hydrogen atom, (C1-C6) alkyl or (C3-C8) cycloalkyl group
  • R 3 and R 4 may be bonded to each other to form a (C3-C8) member ring
  • W 1 represents —NH—, —O—, —NH—C (O) — (CH 2 ) m1 — and —NH—C (O) — (CH 2 ) m2 —O— represents a divalent group selected from the group consisting of m1 and m2, each independently representing an integer of 1 to 20 )
  • R 5 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 2 represents — (CH 2 ) m3 —, — (CH 2 ) m4 —NH —
  • — (CH 2 ) m5 —O— represents a divalent group selected from the group consisting of m3, m4 and m5 each independently represents an integer of 1 to 20
  • R 6 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 3 represents — (CH 2 ) m6 —, — (CH 2 ) m7 —NH -And- (CH 2 ) m8- represents a divalent group selected from the group consisting of -O-, and m6, m7 and m8 each independently represents an integer of 1 to 20)
  • R 5 ′ represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 4 represents — (CH 2 ) m9 —, — (CH 2 ) m10 — NH— and — (CH 2 ) m11 —O— represents a divalent group selected from the group consisting of m9, m10 and m11 each independently represents an integer of 1 to 20, and formula (IIe) :
  • R 6 ′ represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 5 represents — (CH 2 ) m12 —, — (CH 2 ) m13 — NH— and — (CH 2 ) m14 —O— represents a divalent group selected from the group consisting of m12, m13 and m14 each independently represents an integer of 1 to 20)
  • W 6 is a divalent group selected from the group consisting of — (CH 2 ) m15 — and —CH 2 CH 2 — (OCH 2 CH 2 ) m16 — (the divalent group is a substitutable position)
  • W 8 is, - (CH 2) m20 - and -CH 2 CH 2 - (OCH 2 CH 2) m21 - divalent group (the bivalent group selected from the group consisting of the substitutable position Each independently represents a (C1-C6) alkyl group, a hydroxyl group and an amino group, which may be substituted with the same or different 1 to 10 substituents selected from the group consisting of an alkyl group, m20 and m21 Each independently represents an integer of 1 to 20, R 7 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group, and R 8 and R 9 are each independently (C1-C6) alkyl group or (C3-C8) cycloalkyl group, or R 7 and R 8 may be bonded to each other to form a (C3-C8) member ring), and IIh):
  • W 9 is a divalent group selected from the group consisting of — (CH 2 ) m22 — and —CH 2 CH 2 — (OCH 2 CH 2 ) m23 — (the divalent group is a substitutable position)
  • R 10 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group, and
  • R 11 and R 12 are each independently (C1-C6) alkyl group or (C3-C8) cycloalkyl group, or R 10 and R 11 may be bonded to each other to form a (C3-C8) member ring)
  • a 1 represents (C3-C8) cycloalkylene, (C6-C10) arylene, —O— (C6-C10) arylene, (C6-C10) arylene-O—, (C1-C9) heteroarylene, —O—. (C1-C9) heteroarylene, (C1-C9) heteroarylene-O-, (C3-C7) heterocyclylene, formula (IVa):
  • cycloalkylene may be substituted with 1 to 10 identical or different (C1-C6) alkyl groups, and (C6-C10) arylene. , -O- (C6-C10) arylene, (C6-C10) arylene-O-, (C1-C9) heteroarylene, -O- (C1-C9) heteroarylene, (C1-C9) heteroarylene-O- , (C3-C7) heterocyclylene, the arylene, heteroarylene and heterocyclylene moieties in formula (IVa), formula (IVb), formula (IVc) and formula (IVd) are halogen atoms, (C1-C6) alkyl Group, (C1-C6) alkoxy group, (C1-C6) alkoxycarbonyl group, carboxyl group, cyano group, hydroxyl group, trifluoromethyl group And it may be substituted with 1-6 substituents selected from the group consisting of a trifluoromethoxy group
  • L is from a phosphate group, a phosphorothioate group, a boranophosphate group, a phosphoroselenate group, a boranophosphate ester group, a hydrogen phosphonate group, a phosphoramidate group, an alkylphosphonate group, an arylphosphonate group, and a phosphotriester group.
  • R 1 is — (CH 2 ) n1 —, — (CH 2 ) n2 —O— (CH 2 ) n3 —, — (CH 2 CH A divalent group selected from the group consisting of 2 O) n4 —CH 2 CH 2 — and —CH 2 CH 2 —O—C (O) —NH— (CH 2 ) 6 —, where — (CH 2 ) n1 —, — (CH 2 ) n2 —O— (CH 2 ) n3 — and — (CH 2 CH 2 O) n4 —CH 2 CH 2 — are each independently a substitutable position of 1 to 3 N1 and n2 (which may be substituted with the same or different 1 to 5 substituents selected from the group consisting of (C1-C6) alkyl groups and hydroxyl groups
  • N3 and n4 each independently represents an integer of 3 to 20,
  • R 2 represents — (CH 2 ) n5 —, — (CH 2 ) n6 —O— (CH 2 ) n7 —, —CH 2 CH 2 — (OCH 2 CH 2 ) n8 —, —C (O) —CH 2 CH 2 — (OCH 2 CH 2 ) n9 —, —CH 2 CH 2 — (OCH 2 CH 2 ) n10 —C (O) —, —C (O) —CH 2 CH 2 — (OCH 2 CH 2 ) n11 —NH—C (O) —, —C (O) — (CH 2 ) n12 —, —O— (CH 2 ) n13 — and — (CH 2 ) n14 — (OCH 2 CH 2 ) n15 —O—
  • R 3 is (represents C1-C6) alkyl or (C3-C8) cycloalkyl group
  • R 4 is a hydrogen atom, (C1-C6) alkyl or (C3-C8) cycloalkyl group
  • R 3 and R 4 may be bonded to each other to form a (C3-C8) member ring
  • W 1 represents —NH—, —O—, —NH—C (O) — (CH 2 ) m1 — and —NH—C (O) — (CH 2 ) m2 —O— represents a divalent group selected from the group consisting of m1 and m2, each independently representing an integer of 1 to 20 )
  • R 5 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 2 represents — (CH 2 ) m3 —, — (CH 2 ) m4 —NH —
  • — (CH 2 ) m5 —O— represents a divalent group selected from the group consisting of m3, m4 and m5 each independently represents an integer of 1 to 20
  • R 6 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 3 represents — (CH 2 ) m6 —, — (CH 2 ) m7 —NH -And- (CH 2 ) m8- represents a divalent group selected from the group consisting of -O-, and m6, m7 and m8 each independently represents an integer of 1 to 20)
  • R 5 ′ represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 4 represents — (CH 2 ) m9 —, — (CH 2 ) m10 — NH— and — (CH 2 ) m11 —O— represents a divalent group selected from the group consisting of m9, m10 and m11 each independently represents an integer of 1 to 20, and formula (IIe) :
  • R 6 ′ represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 5 represents — (CH 2 ) m12 —, — (CH 2 ) m13 — NH— and — (CH 2 ) m14 —O— represents a divalent group selected from the group consisting of m12, m13 and m14 each independently represents an integer of 1 to 20)
  • W 6 is a divalent group selected from the group consisting of — (CH 2 ) m15 — and —CH 2 CH 2 — (OCH 2 CH 2 ) m16 — (the divalent group is a substitutable position)
  • W 8 is, - (CH 2) m20 - and -CH 2 CH 2 - (OCH 2 CH 2) m21 - divalent group (the bivalent group selected from the group consisting of the substitutable position Each independently represents a (C1-C6) alkyl group, a hydroxyl group and an amino group, which may be substituted with the same or different 1 to 10 substituents selected from the group consisting of an alkyl group, m20 and m21 Each independently represents an integer of 1 to 20, R 7 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group, and R 8 and R 9 are each independently (C1-C6) alkyl group or (C3-C8) cycloalkyl group, or R 7 and R 8 may be bonded to each other to form a (C3-C8) member ring), and IIh):
  • W 9 is a divalent group selected from the group consisting of — (CH 2 ) m22 — and —CH 2 CH 2 — (OCH 2 CH 2 ) m23 — (the divalent group is a substitutable position)
  • R 10 represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group, and
  • R 11 and R 12 are each independently (C1-C6) alkyl group or (C3-C8) cycloalkyl group, or R 10 and R 11 may be bonded to each other to form a (C3-C8) member ring)
  • a 1 represents (C3-C8) cycloalkylene, (C6-C10) arylene, —O— (C6-C10) arylene, (C6-C10) arylene-O—, (C1-C9) heteroarylene, —O—. (C1-C9) heteroarylene, (C1-C9) heteroarylene-O-, (C3-C7) heterocyclylene, formula (IVa):
  • cycloalkylene may be substituted with 1 to 10 identical or different (C1-C6) alkyl groups, and (C6-C10) arylene. , -O- (C6-C10) arylene, (C6-C10) arylene-O-, (C1-C9) heteroarylene, -O- (C1-C9) heteroarylene, (C1-C9) heteroarylene-O- , (C3-C7) heterocyclylene, the arylene, heteroarylene and heterocyclylene moieties in formula (IVa), formula (IVb), formula (IVc) and formula (IVd) are halogen atoms, (C1-C6) alkyl Group, (C1-C6) alkoxy group, (C1-C6) alkoxycarbonyl group, carboxyl group, cyano group, hydroxyl group, trifluoromethyl group And it may be substituted with 1-6 substituents selected from the group consisting of a trifluoromethoxy group
  • Z 1 and Z 2 each independently represents an oxygen atom or a sulfur atom
  • [5] The conjugate according to any one of [1] to [4], wherein the nucleic acid molecule is a single-stranded or double-stranded nucleic acid molecule.
  • [6] The conjugate according to any one of [1] to [5], wherein the nucleic acid molecule is a nucleic acid molecule having 7 to 100 bases.
  • nucleic acid molecule is a nucleic acid molecule that interacts with mRNA or a nucleic acid molecule that induces RNA interference.
  • nucleic acid molecule is selected from the group consisting of siRNA, miRNA, antisense oligonucleotide, and antagonistMir.
  • GPCR ligand is a non-peptide ligand structure that binds to GPCR.
  • the GPCR ligand is a non-peptide ligand structure that binds to a ⁇ 2 receptor or a 5-HT 4 receptor.
  • the GPCR ligand is of formula (VIa):
  • the GPCR ligand is of formula (VIa):
  • the GPCR ligand is of formula (VIIa):
  • the GPCR ligand is of formula (VIIa):
  • a novel compound comprising a conjugate of a GPCR ligand and a nucleic acid molecule that has an ability to efficiently incorporate into cells by binding to the GPCR is provided.
  • GPCR ligand G protein-coupled receptor binding ligand
  • GPCR G protein coupled receptor
  • Preferred GPCR ligands in the present invention include non-peptide small molecule agonists.
  • GPCR ligands include non-peptide ligand structures for GPCRs that are known to be internalized by agonists.
  • Preferred examples include non-peptidic ligand structures that bind to ⁇ 2 receptor or 5-HT 4 receptor, and more preferably formula (VIa):
  • a non-peptidic ligand structure that binds to the ⁇ 2 receptor represented by formula (VIIa):
  • non-peptidic ligand structure that binds to the 5-HT 4 receptor represented by the formula (VIa), (VIb), (VIe) or (VIf) described above is particularly preferred.
  • Most preferred are non-peptide ligand structures that bind to the ⁇ 2 receptor represented by the formula (VIa), formula (VIb) or formula (VIf) described above.
  • a non-peptidic ligand structure that binds to the ⁇ 2 receptor represented by formula (VIIa):
  • Non-peptidic ligand structures that bind to the ⁇ 2 receptor are particularly preferable.
  • nucleic acid molecule means a molecule (oligonucleotide) obtained by polymerizing a nucleotide structure composed of a nucleobase, a pentose group and a phosphate group as a basic unit. This includes modified nucleic acid molecules, and any of the nucleobases, pentose groups or phosphate groups may be modified.
  • the nucleic acid molecule may be DNA, RNA, or a chimera (a nucleic acid containing DNA and RNA in a single-stranded nucleic acid), and may be single-stranded or double-stranded. Examples of the length of the nucleic acid molecule include about 7 to 100 bases, preferably about 15 to 100 bases.
  • a double strand it may be a double-stranded DNA, a double-stranded RNA, a double-stranded chimera, an RNA / DNA hybrid, an RNA / chimeric hybrid, a DNA / chimeric hybrid, or a chimeric / chimeric hybrid.
  • nucleic acid molecules include nucleic acid molecules that interact with mRNA (eg, antisense oligonucleotides, antigomir (or antiMir) or exon skip nucleic acid molecules), or nucleic acid molecules that induce RNA interference (eg, siRNA). , MiRNA or shRNA).
  • Examples of the “antisense oligonucleotide” include a nucleic acid molecule of about 7 to 100 bases having a direct or indirect interaction with a partial sequence region of mRNA encoding a target protein, preferably 7 to 30 bases. A nucleic acid molecule of about 15 to 20 bases is more preferable. In another embodiment, the “antisense oligonucleotide” includes a nucleic acid molecule of about 15 to 100 bases having a complementary structure to the partial sequence region of mRNA encoding the target protein, preferably 15 to 30 bases. A nucleic acid molecule of about 15 to 20 bases is more preferable.
  • RNA includes a double-stranded nucleic acid molecule (eg, RNA) of about 15 to 100 bases involved in RNA interference that suppresses gene expression specifically for the target mRNA sequence, and preferably 15 to 30.
  • RNA double-stranded nucleic acid molecule having about a base
  • a double-stranded nucleic acid molecule having about 21 to 23 bases is more preferable.
  • RNA includes a single-stranded nucleic acid molecule (eg, RNA) of about 15 to 100 bases having a function of regulating the expression of other genes, preferably a single-stranded nucleic acid molecule of about 15 to 30 bases. A nucleic acid molecule, and more preferably a single-stranded nucleic acid molecule of about 21 to 25 bases. Further, the miRNA may be pri-miRNA or pre-miRNA which is a precursor of miRNA.
  • “AntagMir (or antiMir)” includes a single-stranded nucleic acid molecule (eg, RNA) of about 7 to 100 bases having a complementary structure to the partial sequence region of miRNA, and preferably about 7 to 30 bases.
  • RNA single-stranded nucleic acid molecule
  • a single-stranded nucleic acid molecule is mentioned, More preferably, a single-stranded nucleic acid molecule of about 21 to 25 bases is mentioned.
  • “antagoMir (or antiMir)” includes a single-stranded nucleic acid molecule (eg, RNA) of about 15 to 100 bases having a complementary structure to a partial sequence region of miRNA, preferably 15 Examples thereof include single-stranded nucleic acid molecules of about 30 to 30 bases, and more preferably single-stranded nucleic acid molecules of about 21 to 25 bases.
  • RNA single-stranded nucleic acid molecule
  • the “complementary structure” may not be a structure that maintains perfect complementarity, but may be a structure that partially maintains complementarity.
  • the nucleic acid molecule may have 5 bases or less at the 5 'or 3' end, preferably 2 bases, and have an additional base that does not form a base pair.
  • the additional base may be DNA or RNA.
  • Such additional base sequences include, for example, ug-3 ′, uu-3 ′, tg-3 ′, tt-3 ′, ggg-3 ′, guuu-3 ′, gttt-3 ′, tttt- Examples of the sequence include 3 ′ and uuu-3 ′, but are not limited thereto.
  • Nucleic acid base includes, for example, a purine base or a pyrimidine base. Specific examples thereof include adenine, guanine, thymine, cytosine, uracil and the like.
  • Modified nucleobases include, for example, modified purine bases and modified pyrimidine bases.
  • modified purine base include hypoxanthine, xanthine, isoguanine, 2-position substituted adenine derivative and 2-position substituted purine derivative, 2-position substituted with amino group, alkylamino, mercapto group, alkylthio group, etc.
  • 2-substituted alkyladenine derivatives substituted with alkyl groups such as methyl groups and 2-position alkyl-substituted hypoxanthine derivatives 2-position modified guanine derivatives modified with 2-position nitrogen with alkyl groups such as methyl groups
  • 6-positions such as methyl 6-position alkyl-substituted purine derivatives and 2-position amino 6-position alkyl-substituted purine derivatives modified with an alkyl group
  • the 6-position oxygen with an alkyl such as a methyl group 6-modified guanine derivative and 6-position modified hypoxanthine derivative modified with a group
  • 7-position modified guanine derivative modified in position 7 with methyl group 8-position alkyl group, halogen, amino group
  • modified pyrimidine base examples include, for example, 2-thiocytosine derivatives and 2-thiouracil derivatives, 3-position alkyl-substituted uracil derivatives substituted with an alkyl group such as a methyl group, 3-position alkyl-substituted cytosine derivatives, 4-thiouracil Derivatives: 4-position modified cytosine derivative in which 4-position nitrogen is modified with a substituent such as acetyl group, 5-position is halogen, trifluoromethyl group, alkyl group, amino group, alkylamino group, alkylaminomethyl group, arylamino group, 5-substituted uracil derivatives, 5-substituted 2-thiouracil derivatives, 5-substituted cytosine derivatives, 5-substituted pyrimidine derivatives, 5-uracil modified with substituents such as alkoxy, propynyl, methoxycarbonylmethyl, and acetic acid oxy
  • Further modified pyrimidine bases include, for example, dihydrouracil derivatives, 3-deaza-5-aza-cytosine derivatives, 6-azauracil derivatives, 6-azacytosine derivatives, 6-azothymine derivatives, 6-azapyrimidine derivatives, triazole derivatives, 3-azole derivatives, Also included are pyrrole derivatives such as nitropyrrole, 2-pyridinone derivatives and the like.
  • Other modified nucleobases include J. et al. Org. Chem. , 2011, 76, 7295, Angew. Chem. Int. Ed. , 1991, 30, 613.
  • pentose group examples include a ribose group and a 2-deoxyribose group.
  • modified pentose group examples include modification and conversion of the hydroxyl group at the 2-position of the ribose group, that is, modification of the 2-position of the 2-deoxyribose group.
  • substituent are selected from the group consisting of a hydrogen atom; a hydroxyl group; a halogen atom; a cyano group, an amino group optionally substituted with a (C1-C6) alkyl group, and a (C1-C6) alkoxy group.
  • (C1-C6) alkoxy group optionally substituted by one or two or more groups which are the same or different; cyano group; azido group; mercapto group; (C1-C6) thioalkoxy group; (C1-C6) An amino group optionally substituted with an alkyl group; (C1-C6) an aminooxy group optionally substituted with an alkyl group; an aminooxy group; a (C1-C6) alkyl group; a (C1-C6) alkenyl group; (C1-C6) alkynyl group; (C1-C6) alkylcarbonylamino group and the like.
  • Preferred examples of the substituent at the 2-position include a hydrogen atom, a hydroxyl group, a fluorine atom, a (C1-C6) alkoxy group, a 2-cyanoethoxy group, and a 2-methoxyethoxy group.
  • a locked nucleic acid (LNA) in which a hydroxyl group at the 2-position of the ribose group, an amino group, a mercapto group, and the like are bonded to the carbon at the 4-position of the ribose group by a methylene bridge, a hydroxyl group at the 2-position of the ribose group
  • a locked nucleic acid (ENA) in which an amino group, a mercapto group, etc.
  • BNA bridged nucleic acids
  • nucleic acid in which the pentose group is substituted with a morpholinyl group morpholino nucleic acid (PMO)
  • PMO morpholino nucleic acid
  • PNA peptide nucleic acid
  • PNA pentose group and a phosphate group are substituted with units such as N- (2-aminoethyl) glycine, and a chain structure in which the pentose group is opened
  • substituted nucleic acids unlocked nucleic acids (UNA)).
  • modified phosphate group examples include phosphorothioate group, phosphorodithioate group, boranophosphate group, phosphoroselenate group, boranophosphate ester group, hydrogen phosphonate group, phosphoramidate group, alkylphosphonate group Arylphosphonate groups and phosphotriester groups. Also included herein are compounds in which the linking oxygen of the phosphate group is replaced with sulfur (bridged phosphorothioate), nitrogen (bridged phosphoramidate) or carbon (bridged methylenephosphonate).
  • the linker in the present invention is not particularly limited as long as it is a part connecting the GPCR ligand and the nucleic acid molecule and has a structure having biocompatibility.
  • it contains triazolylene and an optionally substituted polyalkylene glycol chain or an optionally substituted alkylene chain, and the alkylene chain further comprises one or more —O—, —S—, —NH.
  • conjugate which is the compound of the present invention means a compound in which the GPCR ligand and the nucleic acid molecule are bound, and specifically includes the linker between them.
  • polyalkylene glycol chain means a polyether chain having a structure in which alkylene glycol is polymerized. Specific examples thereof include a polyethylene glycol chain and a polypropylene glycol chain.
  • alkylene chain means a linear alkylene chain, preferably a linear alkylene chain having 1 to 20 carbon atoms. Specific examples thereof include methylene chain, ethylene chain, propylene chain, butylene chain, pentylene chain, hexylene chain, heptylene chain, octylene chain, nonylene chain, decanylene chain, dodecanylene chain, tetradecanylene chain, hexadecanylene chain, icosylene chain, and the like. Can be mentioned.
  • substituent in the “optionally substituted polyalkylene glycol chain and optionally substituted alkylene chain” include a (C1-C6) alkyl group or hydroxyl group optionally substituted with 1 to 3 hydroxyl groups. Can be mentioned. Preferably, a (C1-C6) alkyl group is used.
  • “may be blocked by a divalent group or inserted at the end” means a structure in which a divalent group is inserted at any position or at the end of a polyalkylene glycol chain or an alkylene chain. .
  • L is covalently bonded to the pentose group of a nucleic acid molecule
  • B 6 represents a nucleobase
  • Y 2 represents a substituent at the 2-position of the ribose group
  • N 2 represents a single-stranded or double-stranded oligonucleotide
  • (C1-C6) alkyl means a linear or branched alkyl group having 1 to 6 carbon atoms. Specific examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl and the like.
  • (C3-C8) cycloalkyl means a saturated monocyclic cycloalkyl having 3 to 8 carbon atoms. Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • (C1-C6) alkoxy means straight or branched alkoxy having 1 to 6 carbon atoms. Specific examples thereof include methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy and the like.
  • (C1-C6) alkoxy” in “(C1-C6) alkoxycarbonyl” has the same meaning.
  • (C3-C8) cycloalkylene means a divalent saturated monocyclic cycloalkylene having 3 to 8 carbon atoms. Specific examples thereof include cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene and the like.
  • (C6-C10) arylene means a bivalent monocyclic or bicyclic aromatic ring having 6 to 10 carbon atoms. Specific examples thereof include phenylene, 1-naphthylene, 2-naphthylene and the like.
  • (C6-C10) arylene is a bicyclic aromatic ring, one in which one ring is saturated or partially saturated is also included. Specific examples thereof include 1,2,3,4-tetrahydronaphthylene or 2,3-dihydro-1H-indenylene.
  • (C1-C9) heteroarylene is a monocyclic or bicyclic ring having 1 to 9 carbon atoms and containing 1 to 4 nitrogen atoms, oxygen atoms and / or sulfur atoms.
  • pyridylene pyridazylene
  • pyrazinylene pyrimidinylene
  • triazinylene pyrrolylene
  • pyrazolylene triazolylene
  • tetrazolylene imidazolylene, furylene, thienylene, thiazolylene, isothiazolylene, oxazolylene, isoxazolylene, thiadiazolylene, oxadiazolylene, etc.
  • Preferred heteroarylenes include pyridylene, pyridazylene, pyrazinylene, pyrimidinylene, pyrrolylene, pyrazolylene, furylene, thienylene, indolenylene, indazolylene, quinolylene, isoquinolylene.
  • (C3-C7) heterocyclylene is a monocyclic 5 having 3 to 7 carbon atoms and containing 1 to 3 nitrogen atoms, oxygen atoms and / or sulfur atoms.
  • a monovalent 6-membered divalent ring containing 1 to 3 nitrogen, oxygen and / or sulfur atoms such as a valent heterocyclo ring, piperidinylene, morpholinylene, thiomorpholinylene, piperazinylene, tetrahydropyranylene or dioxanylene
  • a monocyclic 7-membered divalent heterocyclo ring containing 1 to 3 nitrogen atoms, oxygen atoms and / or sulfur atoms such as azepanylene, homopiperazinylene or oxepanylene.
  • Preferable heterocyclylene includes pyrrolidinylene, piperidinylene and the like.
  • triazolylene means a monocyclic 5-membered divalent heterocyclo ring containing three nitrogen atoms, and specific examples thereof include 1,2,3-triazolylene or 1,2 , 4-triazolylene. Preferred triazolylene includes 1,2,3-triazolylene.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • (C3-C8) membered ring means a divalent saturated monocyclic cycloalkane having 3 to 8 carbon atoms. Specific examples thereof include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane and the like.
  • the compound of the present invention is a conjugate comprising a linker between a GPCR ligand and a nucleic acid molecule, wherein the linker is triazolylene and an optionally substituted polyalkylene glycol chain or an optionally substituted alkylene chain.
  • the alkylene chain is one or more —O—, —S—, —NH—, ⁇ N—, —N ⁇ , —SO 2 —, —C ( ⁇ O) —, (C6-C10
  • the linker is represented by the following formula (I):
  • R 1 is preferably — (CH 2 ) n1 —, —CH 2 CH 2 —SS—CH 2 CH 2 —C (O) —NH— (CH 2 ) 6 — and —CH 2 CH 2
  • R 30 R 31 N—C (O) — and R 32 OC (O) — is a substitutable position from the group consisting of R 30 R 31 N—C (O) — and R 32 OC (O) —. It may be substituted with 1 to 3 identical or different substituents selected.
  • R 30, R 31 and R 32 each independently represent a hydrogen atom or a (C1-C6) alkyl group.) Can be mentioned.
  • R 1 is preferably a divalent group selected from the group consisting of — (CH 2 ) n1 — and —CH 2 CH 2 —O—C (O) —NH— (CH 2 ) 6 —.
  • a group (wherein n1 represents an integer of 3 to 10, and — (CH 2 ) n1 — represents a substitutable position selected from the group consisting of a (C1-C4) alkyl group, a hydroxyl group and a hydroxymethyl group. Or may be substituted with 1 to 5 different substituents). More preferred is a divalent group represented by — (CH 2 ) n1 — (where n1 represents an integer of 3 to 10).
  • R 2 is preferably — (CH 2 ) n5 —, — (CH 2 ) n6 —O— (CH 2 ) n7 —, — (CH 2 ) n14 — (OCH 2 CH 2 ) n15 —O— ( CH 2) n16 - and - (CH 2) n17 -NH- C (O) - (CH 2 CH 2 O) n18 -CH 2 CH 2 -NH-C (O) - (CH 2) n19 - group consisting of (Wherein n5, n6, n7, n14, n15, n16, n17, n18 and n19 each independently represents an integer of 0 to 20, and the divalent group can be substituted) Each independently at 1 to 3 (C1-C6) alkyl group optionally substituted with 1 to 3 hydroxyl groups and 1 to 10 substituents selected from the group consisting of hydroxyl groups.
  • a valent group here, n5, n6, n7, n14, n15, n16, n17, n18 and n19 each independently represents an integer of 0 to 20, and the divalent group is a substitutable position; Each independently may be substituted with 1 to 3 (C1-C4) alkyl groups).
  • R 2 is preferably — (CH 2 ) n5 —, — (CH 2 ) n6 —O— (CH 2 ) n7 — and — (CH 2 ) n14 — (OCH 2 CH 2 ).
  • a divalent group selected from the group consisting of n15 —O— (CH 2 ) n16 — (wherein n5, n6, n7, n14, n15 and n16 each independently represents an integer of 0 to 12, The divalent group is independently substituted with 1 to 5 identical or different substituents selected from the group consisting of a (C1-C4) alkyl group, a hydroxyl group and a hydroxymethyl group at substitutable positions. May be included).
  • R 3 is preferably a (C1-C6) alkyl group.
  • R 4 is preferably a hydrogen atom or a (C1-C6) alkyl group.
  • a (C3-C8) member ring formed by combining R 3 and R 4 with each other can be mentioned.
  • R 5 , R 5 ′ , R 6 , R 6 ′ , R 9 and R 12 are preferably each independently a hydrogen atom or a (C1-C6) alkyl group.
  • R 7 and R 10 are preferably each independently a hydrogen atom or a (C1-C6) alkyl group.
  • R 8 and R 11 are preferably each independently a (C1-C6) alkyl group.
  • Q 1 is preferably a divalent group selected from the group consisting of the formula (IIa), formula (IIb), formula (IIc), formula (IIe) and formula (IIf) described above. More preferably, a divalent group selected from the group consisting of the formula (IIb), the formula (IIc) and the formula (IIe) described above can be used, and more preferably the formula (IIc) and the formula (IIe) described above.
  • (CH 2 ) p1 and (CH 2 ) p3 described above may preferably be blocked or inserted at one end with one or more —O— or —SO 2 —NH—.
  • examples thereof include a divalent group selected from the group consisting of the above-described formula (IIIa) and formula (IIIb).
  • Q 2 preferably, (CH 2 ) p1 and (CH 2 ) p3 described above may be blocked or inserted at one end with one or more —O—.
  • a 1 is preferably (C3-C7) cycloalkylene, (C6-C10) arylene, —O— (C6-C10) arylene, (C6-C10) arylene-O—, and (C3-C7) heterogene.
  • Cyclylene a divalent group selected from the group consisting of formula (IVa), formula (IVb), formula (IVc) and formula (IVd) as described above (wherein (C3-C7) cycloalkylene and (C3-C7) ) Heterocyclylene may be substituted with 1 to 4 identical or different (C1-C4) alkyl groups, (C6-C10) arylene, —O— (C6-C10) arylene and (C6-C10) The arylene moiety in) arylene-O— is a halogen atom, a (C1-C4) alkyl group, a (C1-C4) alkoxy group, or a (C1-C4) alkoxy group.
  • sulfonyl group may be substituted with 1 to 4 substituents selected from the group consisting of a sulfonyl group, a carboxyl group, a cyano group, a hydroxyl group, a trifluoromethyl group, and a trifluoromethoxy group.
  • (C6-C10) arylene, -O- (C6-C10) arylene and (C6-C10) arylene-O- the above-described formula (IVa), formula (IVb), formula (IVc) and formula A divalent group selected from the group consisting of (IVd) (wherein (C6-C10) arylene, -O- (C6-C10) arylene and (C6-C10) arylene-O-, the arylene moiety is a halogen atom, 1 to 4 selected from the group consisting of (C1-C4) alkyl group, (C1-C4) alkoxy group, (C1-C4) alkoxycarbonyl group, carboxyl group, cyano group, hydroxyl group, trifluoromethyl group and trifluoromethoxy group.
  • a divalent group selected from the group consisting of (C6-C10) arylene (preferably phenylene), —O— (C6-C10) arylene (preferably —O-phenylene) and the above-described formula (IVc).
  • (C6-C10) arylene and -O- (C6-C10) arylene are halogen atoms, (C1-C4) alkyl groups, (C1-C4) alkoxy groups, (C1-C4)) And may be substituted with 1 to 4 substituents selected from the group consisting of an alkoxycarbonyl group, a carboxyl group, a cyano group, a hydroxyl group, a trifluoromethyl group, and a trifluoromethoxy group.
  • W 1 examples include —NH—C (O) — (CH 2 ) m1 —, —NH—C (O) — (CH 2 ) m2 —O—, —NH—, or —O—.
  • W 2 , W 3 , W 4 and W 5 are preferably each independently, — (CH 2 ) m3 —, — (CH 2 ) m6 —, — (CH 2 ) m9 — or — (CH 2 ) M12- .
  • W 6 , W 8 and W 9 are preferably each independently, — (CH 2 ) m15 —, — (CH 2 ) m20 — or — (CH 2 ) m22 — (wherein the divalent group Each independently may be substituted at the substitutable position with the same or different 1 to 10 substituents selected from the group consisting of (C1-C6) alkyl groups, hydroxyl groups and amino groups. Can be mentioned.
  • W 7 is preferably a single bond or a divalent group selected from the group consisting of —C (O) —NH— (CH 2 ) m17 — and —O— (CH 2 ) m19 — (wherein The divalent group is independently selected from the group consisting of C (O) —NH— (C1-C6) alkyl group and NH—C (O) — (C1-C6) alkyl at substitutable positions. And may be substituted with 1 to 10 substituents which may be the same or different.
  • Z 1 and Z 2 are preferably oxygen atoms.
  • N1 to n4 are each independently and preferably an integer of 3 to 10
  • n5 to n16 are each independently and preferably an integer of 0 to 10.
  • M1 to m23 are each independently preferably an integer of 1 to 10.
  • P1 to p4 are preferably each independently an integer of 1 to 10.
  • A is 0 or 1, and b is preferably 1.
  • R 1 , R 2 , Q 1 , Q 2 , A 1 , L, a and b and the GPCR ligand in formula (I) respectively represent:
  • R 1 is — (CH 2 ) n1 — (where n1 represents an integer of 3 to 10) or —CH 2 CH 2 —O—C (O) —NH— (CH 2 ) 6 —.
  • R 2 represents — (CH 2 ) n5 —, — (CH 2 ) n6 —O— (CH 2 ) n7 — or — (CH 2 ) n14 — (OCH 2 CH 2 ) n15 —O— (CH 2 ) n16 -(Wherein n5, n6, n7, n14, n15 and n16 each independently represents an integer of 0 to 10);
  • Q 1 is represented by formula (IIa):
  • R 3 is (represents C1-C6) alkyl or (C3-C8) cycloalkyl group
  • R 4 is a hydrogen atom, (C1-C6) alkyl or (C3-C8) cycloalkyl group
  • R 3 and R 4 may be bonded to each other to form a (C3-C8) member ring
  • W 1 represents —NH—, —O—, —NH—C (O) — (CH 2 ) m1 — and —NH—C (O) — (CH 2 ) m2 —O— represents a divalent group selected from the group consisting of m1 and m2, each independently representing an integer of 1 to 20 )
  • R 5 represents a hydrogen atom or a (C1-C4) alkyl group
  • W 2 represents a divalent group represented by — (CH 2 ) m3 —
  • m3 represents an integer of 1 to 10.
  • R 6 represents a hydrogen atom or a (C1-C4) alkyl group
  • W 3 represents a divalent group represented by — (CH 2 ) m6 —
  • m6 represents an integer of 1 to 10.
  • R 6 ′ represents a hydrogen atom, a (C1-C6) alkyl group or a (C3-C8) cycloalkyl group
  • W 5 represents — (CH 2 ) m12 —, — (CH 2 ) m13 — NH— and — (CH 2 ) m14 —O— represents a divalent group selected from the group consisting of m12, m13 and m14 each independently represents an integer of 1 to 20) or formula (IIf) :
  • W 6 is a divalent group selected from the group consisting of — (CH 2 ) m15 — and —CH 2 CH 2 — (OCH 2 CH 2 ) m16 — (the divalent group is a substitutable position)
  • Q 2 represents a divalent group represented by the above formula (IIIa) or (IIIb);
  • a 1 is (C6-C10) arylene, —O— (C6-C10) arylene and (C6-C10) arylene-O—, the above-mentioned formula (IVa), formula (IVb), formula (IVc) and formula A divalent group selected from the group consisting of (IVd) (wherein (C6-C10) arylene, -O- (C6-C10) arylene and (C6-C10) arylene-O-, the arylene moiety is a halogen atom, 1 to 4 selected from the group consisting of (C1-C4) alkyl
  • L represents the above-described formula (V) (wherein Z 1 and Z 2 each independently represents an oxygen atom or a sulfur atom); a represents 0 or 1; b represents 0 or 1;
  • the GPCR ligand represents formula (VIa), formula (VIb), formula (VIc) or formula (VId) as described above.
  • R 1 , R 2 , Q 2 , A 1 , L, a and b and the GPCR ligand in formula (I) each represent:
  • R 1 is — (CH 2 ) n1 — (where n1 represents an integer of 3 to 10) or —CH 2 CH 2 —O—C (O) —NH— (CH 2 ) 6 —.
  • R 2 represents — (CH 2 ) n5 —, — (CH 2 ) n6 —O— (CH 2 ) n7 — or — (CH 2 ) n14 — (OCH 2 CH 2 ) n15 —O— (CH 2 ) n16 -In which n5, n6, n7, n14, n15 and n16 each independently represents an integer of 3 to 10;
  • Q 2 represents a divalent group represented by the above formula (IIIa) or (IIIb);
  • a 1 is a divalent group selected from the group consisting of phenylene, —O-phenylene, phenylene-O—, formula (IVa), formula (IVb), formula (IVc) and formula (IVd) described above (herein , Phenylene, —O-phenylene and (phenylene in —O— include a halogen atom, a (C1-C4) alkyl group, a (C1-C4) al
  • R 1 is — (CH 2 ) n1 —, —CH 2 CH 2 —S—S—CH 2 CH 2 —C (O) —NH— (CH 2 ) 6 — or —CH 2 CH 2 —O—C
  • R 1 is — (CH 2 ) n1 —, —CH 2 CH 2 —S—S—CH 2 CH 2 —C (O) —NH— (CH 2 ) 6 — or —CH 2 CH 2 —O—C
  • a divalent group which is (O) —NH— (CH 2 ) 6 — (where n1 represents an integer of 3 to 10, and —CH 2 CH 2 —S—S—CH 2 CH 2 —C (O) —NH— (CH 2 ) 6 — is a substitutable position and 1 to 3
  • R 30 R 31 N—C (O) — wherein R 30 , R 31 and R 32 are each independently Represents a hydrogen atom or a (C1-C6) alkyl
  • Q 1 represents a divalent group of formula (IIb), formula (IIc) or formula (IIe) as described above;
  • Q 2 represents the above-described formula (IIIa) or (IIIb) (wherein p1, p2, p3 and p4 each independently represents an integer of 1 to 20, and (CH 2 ) p1 and ( CH 2 ) p3 represents a divalent group that may be blocked or inserted at the end with a divalent group selected from the group consisting of one or more —O— and —SO 2 —NH—;
  • a 1 is a divalent group selected from the group consisting of phenylene, —O-phenylene, phenylene-O— and the above-described formula (IVc) (wherein phenylene, —O-phenylene and phenylene in (phenylene-O—) The moiety consists of a halogen atom, (C1-C4) alkyl group, (C1-C4) alkoxy group
  • L represents the above-described formula (V) (wherein Z 1 and Z 2 represent an oxygen atom); a represents 0 or 1; b represents 0 or 1;
  • the GPCR ligand represents a structure represented by the above formula (VIa), formula (VIb), formula (VIe), formula (VIf), formula (VIIa), formula (VIIb) or formula (VIIc).
  • Each of the above compound groups limited by one or a combination of any of these exemplifications is also an embodiment of a preferred compound of the present invention.
  • the number of substituents in the group defined as “optionally substituted” is not particularly limited as long as it is substitutable unless otherwise defined, and is one or more.
  • the description of each group also applies when the group is a part of another group or a substituent.
  • the compounds of the present invention may form pharmaceutically acceptable salts, such as salts with mineral acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid; formic acid, Salts with organic carboxylic acids such as acetic acid, fumaric acid, maleic acid, oxalic acid, citric acid, malic acid, tartaric acid, aspartic acid, glutamic acid; methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, hydroxybenzenesulfonic acid , Salts with sulfonic acids such as dihydroxybenzene sulfonic acid; alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt; ammonium salt; triethylamine salt, pyridine salt, picoline salt, Ethanolamine salt, dicyclohexylamine salt, N, N'-dibenzylethylenediamine and Salt
  • the compound of the present invention and a pharmaceutically acceptable salt thereof may be a hydrate or a solvate such as an ethanolate, and these hydrates and / or solvates are also compounds according to the present invention. And pharmaceutically acceptable salts thereof.
  • the compound of the present invention when the compound of the present invention has a stereoisomer, a tautomer and / or an optical isomer, the compound of the present invention includes a mixture of these isomers and an isolated isomer.
  • the compound of the present invention and a pharmaceutically acceptable salt thereof may be a crystal, and may be a single crystal form or a crystal form mixture.
  • compound (I) may be a deuterium converter.
  • the production method of the compound of the present invention is not particularly limited.
  • the compound of the present invention in which the linker is represented by the formula (I) can be produced by the following production methods 1 and 2 and the like.
  • the raw material compound can be produced by the production method shown below and the like, and can be easily obtained as a commercial product unless otherwise specified, or can be produced according to a method known per se or a method analogous thereto.
  • the compound obtained at each step in the following reaction formula can be used in the next reaction as a reaction solution or as a crude product.
  • the compound used by the following manufacturing method may form a salt in the range which does not interfere with reaction.
  • the compound can be isolated from the reaction mixture according to a conventional method, and can be easily purified by usual separation means such as recrystallization, distillation, chromatography and the like.
  • the compound of the present invention or a pharmaceutically acceptable salt thereof is a novel compound, and can be produced, for example, by the method described below, the examples described later and a method analogous thereto.
  • R 1 , R 2 , Q 1 , A 1 , L, p 1 , p 2, a, b, *, and ** have the same meanings as [2] or [3] above).
  • Step 1 Compound (I-1) is produced by reacting compound (1-1) with compound (1-2).
  • the reaction can be carried out according to the reaction conditions of a conventional Huisgen azide-alkene cyclization reaction using a catalytic amount of a copper salt (Lallana et al., Angew. Chem. Int. Ed. (2011) 50: 8794-8804).
  • a copper salt include divalent copper salts such as copper sulfate, and monovalent copper salts such as copper bromide, copper iodide, and copper trifluoromethylsulfonate. Additives and ligands may be used.
  • Examples of the additive include reducing agents such as sodium ascorbate and tris (2-carboxyethyl) phosphine (TCEP).
  • Examples of the ligand include tris (benzyltriazolylmethyl) amine (TBTA), Examples include tris (hydroxypropyltriazolylmethyl) amine (THPTA), bathophenanthroline disulfonate (BPDS), and the like.
  • Examples of the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic solvents (toluene, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents.
  • the reaction temperature can usually be selected from the range of ⁇ 20 to 100 ° C., preferably 0 ° C. to room temperature.
  • R 1 , R 2 , Q 1 , A 1 , L, p3, p4, a, b, *, and ** have the same meanings as [2] or [3] above).
  • Step 1 Compound (I-2) is produced from compound (2-1) and compound (2-2) by the same method as in Step 1 described in Production Method 1.
  • the starting compound (1-2) used in Production Method 1 can be produced, for example, according to the following method.
  • R 1 , Q 1 , L, p2, a and ** have the same meanings as the above [2] or [3], and X 1 is, for example, a chlorine atom, a bromine atom, alkoxycarbonyloxy, phenoxy, Activating group or hydroxyl group of a carboxylic acid derivative such as p-nitrophenoxy or succinimidyloxy)
  • Step 1 Compound (1-2) is synthesized by reacting compound (3-1) with compound (3-2).
  • X 1 is an activating group of a carboxylic acid such as chlorine atom, bromine atom, alkoxycarbonyloxy, phenoxy, p-nitrophenoxy or succinimidyloxy
  • the reaction can be carried out in the presence or absence of a base.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide).
  • DMSO diisopropylethylamine
  • acetonitrile acetonitrile
  • ketone solvents acetone, etc.
  • water including buffer solution
  • alcohol solvents methanol, ethanol, etc.
  • the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), alkali hydroxides Metal (potassium hydroxide, sodium hydroxide, etc.), organic base (N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5- Diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine, etc.), preferably potassium carbonate, diiso
  • the amount of the base used is usually selected from the range of 1 to 5 equivalents relative to compound (3-2).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C., preferably in the range of ⁇ 78 to 50 ° C.
  • the reaction is performed in the presence of a condensing agent.
  • a condensing agent examples include carbodiimide (dicyclohexylcarbodiimide, 1-ethyl-3- (dimethylaminopropyl) carbodiimide, etc.), phosphonium salt (BOP, etc.), guanidinium salt (HBTU, etc.), etc.
  • the solvent examples include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide). , DMSO, acetonitrile, etc.), ketone solvents (acetone, etc.), or mixed solvents thereof.
  • the reaction temperature is usually selected from the range of 0 to 100 ° C., preferably 0 to 50 ° C.
  • X 1 is a hydroxyl group
  • the hydroxyl group is converted into an activating group such as a chlorine atom, a bromine atom, alkoxycarbonyloxy or succinimidyloxy, and then compound (3-2) Compound (1-2) is produced by reacting with.
  • X 1 is converted from a hydroxyl group to a chlorine atom or a bromine atom
  • thionyl chloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, dichlorotriphenylphosphorane, carbon tetrachloride-triphenylphosphine, odor Thionyl chloride, dibromotriphenylphosphorane and the like are used.
  • the solvent include an aprotic solvent (such as toluene), a halogen-based solvent (such as methylene chloride and chloroform), or a mixed solvent thereof.
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 100 ° C.
  • X 1 When X 1 is converted from a hydroxyl group to alkoxycarbonyloxy, it is carried out by reacting, for example, an alkyl halide formate such as ethyl chloroformate, isopropyl chloroformate, or isobutyl chloroformate in the presence of a base.
  • an alkyl halide formate such as ethyl chloroformate, isopropyl chloroformate, or isobutyl chloroformate
  • the amount of the halogenated alkyl formate used is usually selected from the range of 1 to 5 equivalents relative to the carboxylic acid.
  • solvent examples include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic solvents (toluene, etc.), halogen solvents (methylene chloride, chloroform, etc.), or a mixed solvent thereof. Is mentioned.
  • Examples of the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), alkali hydroxides Metal (potassium hydroxide, sodium hydroxide, etc.), organic base (N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5- And diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine and the like, preferably N-methylmorpholine, triethylamine, diisopropyl Ethylamine is mentioned.
  • the amount of the base used is usually selected from the range of 1 to 10 equivalents relative to the carboxylic acid.
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 100 ° C., preferably in the range of ⁇ 78 ° C. to room temperature.
  • X 1 is converted from a hydroxyl group to succinimidyloxy by reacting N-hydroxysuccinimide in the presence of a condensing agent.
  • the condensing agent include carbodiimide (dicyclohexylcarbodiimide, 1-ethyl-3- (dimethylaminopropyl) carbodiimide, etc.), phosphonium salt (BOP, etc.), guanidinium salt (HBTU, etc.), etc.
  • N-hydroxybenzotriazole, etc. and bases (N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4] .3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine and the like.
  • the amount of N-hydroxysuccinimide and condensing agent used is usually selected from the range of 1 to 5 equivalents relative to the carboxylic acid.
  • the solvent examples include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide). , DMSO, acetonitrile, etc.), ketone solvents (acetone, etc.), or mixed solvents thereof.
  • the reaction temperature is usually selected from the range of 0 to 100 ° C., preferably 0 to 50 ° C.
  • the compound (3-2) is synthesized according to an ordinary nucleic acid synthesis method such as a phosphoramidite method using amidite reagent (Current Protocols in Nucleic Acid Chemistry, John Wiley & Sons, New York (2000)).
  • the starting compound (2-2) used in Production Method 2 can be produced, for example, according to the following method.
  • R 1 , Q 1 , L, p4, a and ** are as defined in [2] or [3] above, P 11 is a protecting group for carboxylic acid, and X 2 is a chlorine atom.
  • OMs methanesulfonyloxy group
  • OTs p-toluenesulfonyloxy group
  • Tf trifluoromethanesulfonyloxy group
  • OTf trifluoromethanesulfonyloxy group
  • Step 1 Compound (4-2) is synthesized by reacting compound (4-1) with an azidation reagent in the presence or absence of a base.
  • examples of the azide reagent include metal azide compounds such as sodium azide, organic azide compounds such as trimethylsilyl azide, tetrabutylammonium azide And quaternary ammonium azide compounds.
  • the amount of the azidation reagent used is usually selected from the range of 1 to 10 equivalents relative to the compound (4-1).
  • the solvent examples include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide, DMSO, NMP, acetonitrile, HMPT, etc.), Water, alcohol solvents (methanol, ethanol, etc.), or a mixed solvent thereof can be used. If necessary, for example, a phase transfer catalyst such as tetrabutylammonium chloride may be added as an additive.
  • the reaction temperature can usually be selected from the range of 0 ° C. to 150 ° C., and preferably in the range of room temperature to 100 ° C.
  • examples of the azidation reagent include diphenyl phosphate azide, and the amount used is usually selected from the range of 1 to 10 equivalents relative to compound (4-1).
  • examples of the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic solvents (toluene, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide, DMSO). , NMP, acetonitrile, HMPT, etc.), ketone solvents (acetone, etc.) or mixed solvents thereof.
  • Examples of the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), organic bases ( N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1 , 4-diazabicyclo [5.4.0] undec-7-ene, pyridine, etc.), preferably 1,4-diazabicyclo [5.4.0] undec-7-ene.
  • the amount of the base used is usually selected from the range of 1 to 10 equivalents relative to compound (4-1).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C., preferably 0 to 100 ° C.
  • X 2 is a hydroxyl group
  • X 2 When X 2 is converted from a hydroxyl group to a chlorine atom, a bromine atom or an iodine atom, it is carried out by reacting a halogenating agent in the presence or absence of an acid.
  • a halogenating agent include chlorinating agents such as thionyl chloride, oxalyl chloride, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride, carbon tetrachloride-triphenylphosphine, N-chlorosuccinimide-triphenylphosphine, Brominating agents such as thionyl, hydrobromic acid, phosphorus tribromide, carbon tetrabromide-triphenylphosphine, N-bromosuccinimide-triphenylphosphine, bromine-triphenylphosphine, hydroiodic acid, potassium iodide, And an iodinating agent
  • Examples of the acid used include hydrochloric acid, sulfuric acid, phosphoric acid and the like.
  • Examples of the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic solvents (toluene, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents. (DMF, N, N-dimethylacetamide, DMSO, NMP, acetonitrile, HMPT, etc.), water, or a mixed solvent thereof may be mentioned, and no solvent may be used. Moreover, you may add a base as needed.
  • the base used include organic bases (imidazole, N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine and the like).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 100 ° C., preferably 0 to 100 ° C.
  • the reaction is performed by reacting a sulfonylating agent in the presence of a base.
  • a sulfonylating agent include methanesulfonyl chloride, tosyl chloride, trifluorosulfonic acid anhydride, and the like.
  • the amount of the sulfonylating agent used is usually selected from the range of 1 to 5 equivalents relative to the compound wherein X 2 is a hydroxyl group.
  • solvent examples include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), ketone solvents (acetone, etc.) or a mixed solvent thereof. It is done.
  • ether solvents diethyl ether, DME, 1,4-dioxane, etc.
  • halogen solvents methylene chloride, chloroform, etc.
  • ketone solvents acetone, etc.
  • Examples of the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), organic bases ( N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1 , 4-diazabicyclo [5.4.0] undec-7-ene, pyridine, etc.), preferably N-methylmorpholine, triethylamine, diisopropylethylamine.
  • the amount of the base used is usually selected from the range of 1 to 10 equivalents relative to compound (4-1).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 100 ° C., preferably in the range of ⁇ 78 ° C. to
  • Step 2 For example, by using the general deprotection conditions for protecting groups of carboxylic acids shown in the literature (Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)), compound (4-2) can be used. Compound (4-3) is produced.
  • Step 3 Compound (2-2) is produced from compound (4-3) and compound (3-2) by the same method as in the case where X 1 in Step 1 of the production method described in (1-2) is a hydroxyl group. Is done. Specifically, a method using a condensing agent or a hydroxyl group of the carboxylic acid of the compound (4-3) is converted into an activating group such as a chlorine atom, a bromine atom, alkoxycarbonyloxy or succinimidyloxy. Thereafter, compound (2-2) is produced by a method of reacting with compound (3-2).
  • the compound of the following formula (3-1a) in which a is 1 can be produced, for example, according to the following method.
  • R 3 , R 4 and p2 have the same meanings as [2] above, W 11 has the same meaning as W 1 in [2] above, and P 12 represents a hydrogen atom or a general amino group or hydroxyl group.
  • X 3 is a protecting group, for example, a chlorine atom, a bromine atom, an activation group of a carboxylic acid such as alkoxycarbonyloxy or succinimidyloxy, or a hydroxyl group
  • X 4 is phenoxy, p-nitrophenoxy or Activating group such as alkoxy.
  • Step 1 Compound (5-3) is produced from compound (5-1) and compound (5-2) by the same method as in Step 1 described in the production method for (1-2).
  • P 12 is a protecting group, for example, the literature (Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)) By using the general deprotection conditions shown in, once the P 12, Convert to hydrogen atom. Subsequently, in the presence of a base, for example, an aryl halide formate such as phenyl chloroformate or chloroformate (p-nitrophenyl), an alkyl formate such as ethyl chloroformate, isopropyl chloroformate or isobutyl chloroformate is reacted. To produce compound (3-1a).
  • a base for example, an aryl halide formate such as phenyl chloroformate or chloroformate (p-nitrophenyl)
  • an alkyl formate such as ethyl chloroformate, isopropyl chloroformate or isobutyl chloroformate is reacted.
  • a base for example, an
  • the amount of aryl halide formate or alkyl halide formate to be used is usually selected from the range of 1 to 5 equivalents relative to compound (5-3).
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic solvents (toluene, etc.), halogen solvents (methylene chloride, chloroform, etc.), or a mixed solvent thereof. Is mentioned.
  • Examples of the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), alkali hydroxides Metal (potassium hydroxide, sodium hydroxide, etc.), organic base (N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5- And diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine and the like, preferably N-methylmorpholine, triethylamine, diisopropyl Ethylamine is mentioned.
  • the amount of the base used is usually selected from the range of 1 to 10 equivalents relative to the carboxylic acid.
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 100 ° C., preferably in the range of ⁇ 78 ° C. to room temperature.
  • the compound of the following formula (3-1b) in which a is 1 can be produced, for example, according to the following method.
  • X 1 is synonymous with the description of the production method of (1-2)
  • X 3 is synonymous with the description of the production method of (3-1a)
  • R 22 is a carboxylic acid or a protected carboxylic acid, a hydrogen atom Or a protective group for a hydroxyl group or an amine
  • X 5 is a chlorine atom, a bromine atom, an iodine atom, OMs, OTs, OTf, or a hydroxyl group.
  • Step 1 Compound (6-1) is produced from compound (5-2) and hydrazine by the same method as in Step 1 described in the production method of (1-2).
  • Step 2 Compound (6-4) is synthesized by reacting compound (6-2) with compound (6-3).
  • X 5 is, for example, a chlorine atom, a bromine atom, an iodine atom, OMs, OTs, or OTf
  • the reaction is performed in the presence of a base.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide).
  • Examples of the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), alkali hydroxides Metal (potassium hydroxide, sodium hydroxide, etc.), organic base (N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5- Diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine, etc.), preferably cesium carbonate, potassium carbonate, hydrogenated Sodium is mentioned.
  • the amount of the base used is usually selected from the range of 1 to 5 equivalents relative to compound (6-2).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C., preferably in the range of room temperature to 100 ° C.
  • an azo compound such as diethyl azodicarboxylate or diisopropyl azodicarboxylate and a phosphorus reagent such as triphenylphosphine are used according to the Mitsunobu method (eg Synthesis, 1 (1981)).
  • the compound (6-4) can be produced.
  • the reaction solvent include an inert solvent such as THF, and examples of the reaction temperature include a range of 0 ° C. to the boiling point of the solvent.
  • Step 3 Compound (6-5) is synthesized by reacting compound (6-4) with compound (6-1) in the presence or absence of an acid.
  • the acid used include acetic acid, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid and the like, and preferably acetic acid.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide).
  • reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C., preferably 0 to 100 ° C.
  • R 22 is a protecting group, for example, by using general deprotection conditions shown in the literature (Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.)), R 22 is once Convert to carboxylic acid or hydrogen atom. Subsequently, W 21 is — (CH 2 ) m3 — or — (CH 2 ) m6 — (wherein m3 and m6 each independently represents an integer of 1 to 20), and R 22 is In the case of a carboxylic acid, the compound (6-5) is converted to the compound (3-1b) by converting the hydroxyl group by the method described in Step 1 of the production of the raw material compound (1-2) as necessary. can do.
  • W 21 is — (CH 2 ) m4 —NH—, — (CH 2 ) m5 —O—, — (CH 2 ) m7 —NH— or — (CH 2 ) m8 —O— (where m4, m5 and m7 each independently represents an integer of 1 to 20, and when R 22 is a hydrogen atom, the compound (3-1) is produced by the same method as in Step 2 of the production method of (3-1a). 6-5) is converted to compound (3-1b).
  • the compound of the following formula (3-1c) in which a is 1 can be produced, for example, according to the following method.
  • X 1 has the same meaning as described in the production method of (1-2), R 24 is a carboxylic acid or a protected carboxylic acid, a hydrogen atom, a hydroxyl group or an amine protecting group, and X 6 is Chlorine atom, bromine atom, iodine atom, OMs, OTs or OTf.
  • Step 1 Compound (7-1) is synthesized by reacting compound (6-4) ′ with hydroxylamine.
  • the amount of hydroxylamine to be used is usually selected from the range of 1 to 10 equivalents relative to compound (6-4) ′.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide, DMSO, NMP, acetonitrile, HMPT, etc.), Water, alcohol solvents (methanol, ethanol, etc.), or a mixed solvent thereof can be used. If necessary, for example, sodium acetate may be added as an additive.
  • the reaction temperature can usually be selected from the range of 0 ° C. to 150 ° C., and preferably in the range of room temperature to 100 ° C.
  • Compound (7-3) is synthesized by reacting compound (7-1) with compound (7-2) in the presence of a base.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide). , DMSO, NMP, acetonitrile, etc.), ketone solvents (acetone, etc.) or a mixed solvent thereof.
  • Examples of the base used include alkali metal carbonates (cesium carbonate, potassium carbonate, sodium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc.), alkali metal hydrides (sodium hydride, potassium hydride, etc.), alkali hydroxides Metal (potassium hydroxide, sodium hydroxide, etc.), organic base (N-methylmorpholine, triethylamine, diisopropylethylamine, tributylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5- Diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [5.4.0] undec-7-ene, pyridine, etc.), preferably cesium carbonate, potassium carbonate, hydrogenated Sodium is mentioned.
  • the amount of the base to be used is usually selected from the range of 1 to 5 equivalents relative to compound (7-1).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C.,
  • the compound of the following formula (3-1d) in which a is 1 can be produced, for example, according to the following method.
  • Compound (8-3) is synthesized by reacting compound (8-1) with compound (8-2) in the presence or absence of an acid.
  • the acid used include acetic acid, hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, boron trifluoride diethyl ether complex and the like, and preferably acetic acid.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide).
  • reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C., preferably 0 to 50 ° C.
  • Step 2 Compound (8-4) is produced from compound (8-3) and compound (3-2) in the same manner as in the case where X 1 in Step 1 of the production method of (1-2) is a hydroxyl group. Is done. Specifically, the method using a condensing agent or the hydroxyl group of the carboxylic acid of the compound (8-3) is converted into an activating group such as a chlorine atom, a bromine atom, alkoxycarbonyloxy or succinimidyloxy. Thereafter, compound (8-4) is produced by a method of reacting with compound (3-2).
  • Step 3 Compound (1-3d) is produced by reacting compound (8-4) with compound (8-5).
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, acetonitrile, etc.), water ( Buffer solution), alcohol solvents (methanol, ethanol, etc.), or a mixed solvent thereof.
  • the reaction temperature can usually be selected from the range of 0 to 100 ° C., preferably in the range of room temperature to 80 ° C.
  • R 2 represents —C (CH 3 ) 2 —CH 2 —NH—C (O) — (CH 2 CH 2 O) 4 —CH 2 CH 2 —NH—C (O) — ( A compound that is CH 2 ) 5 — is synthesized by the methods of published patent (Yamazaki et al., WO2010 / 053115), Reference Example 35 and Example 34.
  • Step 1 Compound (9-3) is produced by reacting compound (9-1), which can be synthesized by a known method, with compound (9-2).
  • the reaction is synthesized by reacting compound (9-1) with compound (9-2) in the presence or absence of a buffer solution.
  • the buffer solution used include borate buffer solution, phosphate buffer solution, acetate buffer solution, citrate buffer solution, and preferably borate buffer solution.
  • the solvent include ether solvents (THF, diethyl ether, DME, 1,4-dioxane, etc.), halogen solvents (methylene chloride, chloroform, etc.), aprotic polar solvents (DMF, N, N-dimethylacetamide).
  • the reaction temperature can usually be selected from the range of ⁇ 78 to 150 ° C., preferably 0 ° C. to room temperature (see Reference Example 37, Reference Example 53, and Example 44).
  • raw material compounds of the compound of the present invention are known compounds or can be synthesized from known compounds by combining known synthesis methods.
  • a protection or deprotection technique can be used as necessary. Suitable protecting groups, protecting methods, and deprotecting methods are described in detail in the aforementioned Protective Groups in Organic Synthesis 3rd Edition (John Wiley & Sons, Inc.) and the like.
  • the compound of the present invention or an intermediate for producing the compound can be purified by methods known to those skilled in the art.
  • it can be purified by column chromatography (for example, silica gel column chromatography or ion exchange column chromatography) or recrystallization.
  • recrystallization solvent alcohol solvents such as methanol, ethanol or 2-propanol, ether solvents such as diethyl ether, ester solvents such as ethyl acetate, aromatic hydrocarbon solvents such as benzene or toluene, acetone, etc.
  • a ketone solvent such as hexane, a hydrocarbon solvent such as hexane, an aprotic solvent such as dimethylformamide or acetonitrile, water, or a mixed solvent thereof can be used.
  • the methods described in Experimental Chemistry Course (edited by the Chemical Society of Japan, Maruzen) Vol. 1 etc. can be used.
  • the administration route of the compound of the present invention is roughly classified into oral administration and parenteral administration.
  • the dose of the compound varies depending on the type of compound, administration form, administration method, patient symptom / age, etc., but is usually 0.005 to 150 mg / kg / day, preferably 0.05 to 20 mg / kg / day. And can be administered in one or several divided doses.
  • the compound of the present invention is usually administered as a pharmaceutical in the form of a pharmaceutical composition prepared by mixing with a pharmaceutical carrier.
  • a pharmaceutical carrier include oral preparations such as tablets and capsules, ointments, intravesical injections and the like.
  • External preparations such as liquid preparations for external use, patches, inhalants, nasal drops, injections such as intradermal injections, subcutaneous injections or intracavitary injections such as intraperitoneal and intraarticular cavity.
  • These pharmaceutical compositions are prepared according to conventional methods.
  • the pharmaceutical carrier a substance that is commonly used in the pharmaceutical field and does not react with the compound according to the present invention is used.
  • Specific examples of pharmaceutical carriers used for tablet and capsule production include lactose, corn starch, sucrose, mannitol, calcium sulfate, excipients such as crystalline cellulose, croscarmellose sodium, modified starch, carmellose calcium, Crospovidone, disintegrants such as low substituted hydroxypropylcellulose, binders such as methylcellulose, gelatin, gum arabic, ethylcellulose, hydroxypropylcellulose, povidone, light anhydrous silicic acid, magnesium stearate, talc, sucrose fatty acid ester And lubricants such as hydrogenated oil.
  • the tablet may be coated by a well-known method using a coating agent such as carnauba wax, hydroxypropylmethylcellulose, macrogol, cellulose acetate phthalate, hydroxypropylmethylcellulose acetate phthalate, sucrose, titanium oxide, sorbitan fatty acid ester, calcium phosphate.
  • a coating agent such as carnauba wax, hydroxypropylmethylcellulose, macrogol, cellulose acetate phthalate, hydroxypropylmethylcellulose acetate phthalate, sucrose, titanium oxide, sorbitan fatty acid ester, calcium phosphate.
  • the base of the patch include polymer bases such as polyvinyl pyrrolidone, polyisobutylene, vinyl acetate copolymer, acrylic copolymer, glycerin, propylene glycol, polyethylene glycol, triethyl citrate, citric acid Plasticizers such as acetyltriethyl, diethyl phthalate, diethyl sebacate, dibutyl sebacate, and acetylated monoglycerides.
  • polymer bases such as polyvinyl pyrrolidone, polyisobutylene, vinyl acetate copolymer, acrylic copolymer, glycerin, propylene glycol, polyethylene glycol, triethyl citrate, citric acid Plasticizers such as acetyltriethyl, diethyl phthalate, diethyl sebacate, dibutyl sebacate, and acetylated monoglycerides.
  • the dermal absorption enhancer may be any pharmacologically acceptable one, for example, alcohols such as ethanol and diethylene glycol; polar solvents such as dodecylpyrrolidone; urea; ethyl laurate; azone; olive oil Etc.
  • alcohols such as ethanol and diethylene glycol
  • polar solvents such as dodecylpyrrolidone
  • urea urea
  • ethyl laurate azone
  • olive oil Etc olive oil
  • inorganic fillers such as kaolin, bentonite, zinc oxide, titanium oxide; agarose, carrageenan, alginic acid or salts thereof, tragacanth, acacia gum, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, carboxyvinyl polymer, gelatin, corn starch
  • Viscosity modifiers such as polymers such as xanthan gum, dextrin and polyvinyl alcohol; anti-aging agents; pH regulators; humectants such as glycerin and propylene glycol may be added. Further, a surfactant may be added.
  • fatty acid alkali salts such as potassium laurate, potassium palmitate and potassium myristate; sodium lauryl sulfate, sodium cetyl sulfate, castor oil sulfate (funnel oil) Ionic surfactants such as sulfate esters such as sorbitan stearate, sorbitan monooleate, sorbitan sesquioleate, sorbitan trioleate (so-called Span); polysorbate 20, polysorbate 40, polysorbate 60, Polysorbate 65, polysorbate 80, polysorbate 85, polyoxyethylene sorbitan fatty acid ester (so-called Tween); polyoxyethylene hydrogenated castor oil (so-called HCO); polyoxyethylene lauryl ester Polyoxyethylene alkyl ethers such as tellurium, polyoxyethylene cetyl ether and polyoxyethylene oleyl ether; polyethylene glycol fatty acid esters such as polyethylene glycol monolaurate and polyethylene glycol
  • An inhalant can be produced by converting the compound of the present invention into a powder or liquid form and blending it into an inhalation spray or carrier and filling the inhalation container such as a metered dose inhaler or a dry powder inhaler. it can. It may be a spray, an aerosol, or a spray.
  • the inhalable propellant conventionally known ones can be widely used.
  • CFCs such as 1,1,1,2-tetrafluoroethane
  • CFC alternatives such as HFA-227 and HFA-134a
  • examples thereof include hydrocarbon gas, diethyl ether, nitrogen gas, carbon dioxide gas and the like.
  • the carrier conventionally known ones can be widely used, and examples thereof include sugars, sugar alcohols, amino acids and the like.
  • preservatives benzalkonium chloride, parabens, etc.
  • coloring agents buffering agents (sodium phosphate, sodium acetate, etc.), isotonic agents (sodium chloride, concentrated glycerin, etc.)
  • buffering agents sodium phosphate, sodium acetate, etc.
  • isotonic agents sodium chloride, concentrated glycerin, etc.
  • a sticking agent such as carboxyvinyl polymer
  • an antiseptic such as benzalkonium chloride, paraben
  • an absorption accelerator and the like as necessary.
  • lubricants stearic acid and its salts, etc.
  • binders starch, dextrin, etc.
  • excipients lactose, cellulose, etc.
  • coloring agents absorption enhancers, etc.
  • the nasal drops can take various forms such as a drop type, a coating type, and a spray type.
  • a spray type manual pump type nasal drops with a mechanism for ejecting liquid by manually moving the pump attached to the container, compressed gas (air or oxygen, nitrogen, carbonic acid, or mixed gas), etc.
  • compressed gas air or oxygen, nitrogen, carbonic acid, or mixed gas
  • an aerosol type nasal spray having a mechanism in which a liquid agent is automatically ejected by moving a valve attached to the container and filling the container with the propellant is automatically included.
  • the compound of the present invention is dissolved in distilled water for injection and, if necessary, a solution to which a solubilizing agent, buffer, pH adjuster, tonicity agent, soothing agent, preservative and the like are added.
  • a solubilizing agent, buffer, pH adjuster, tonicity agent, soothing agent, preservative and the like May be prepared by suspending the compound in distilled water for injection or vegetable oil, and in this case, a base, a suspending agent, a thickening agent, etc. may be added as necessary.
  • a base, a suspending agent, a thickening agent, etc. may be added as necessary.
  • dissolves a powder or a lyophilized product at the time of use may be sufficient, and an excipient
  • the content of the compound according to the present invention in the pharmaceutical composition varies depending on the dosage form, but is usually 0.0025 to 20% by weight in the total composition. These pharmaceutical compositions may also contain other therapeutically effective substances.
  • the administration timing of the compound of the present invention and the concomitant drug is not particularly limited, and the compounding ratio of the compound of the present invention and the concomitant drug can be appropriately set depending on the administration subject, administration method, disease, combination and the like.
  • the content of the concomitant drug in the concomitant drug of the present invention varies depending on the form of the preparation, but is usually 0.0025 to 20% by weight in the total composition.
  • Compound identification includes elemental analysis values, mass spectrum, high performance liquid chromatography / mass spectrometer (LCMS), time-of-flight mass spectrometer (TOF-MS), IR spectrum, NMR spectrum, high performance liquid chromatography (HPLC), etc. It went by.
  • LCMS high performance liquid chromatography / mass spectrometer
  • TOF-MS time-of-flight mass spectrometer
  • IR spectrum IR spectrum
  • NMR spectrum high performance liquid chromatography
  • HPLC high performance liquid chromatography
  • nucleic acid sequences include 3′- for the 3 ′ end, 5′- for the 5 ′ end, A, G, C, U, and T for adenine, guanine, cytosine, uracil, and thymine, respectively, as nucleobases.
  • the ribonucleotides a, g, c and t are deoxyribonucleotides having adenine, guanine, cytosine and thymine as nucleobases, respectively.
  • a (M), G (M), C (M), and U (M) represent 2′-O-methylated adenine, guanine, cytosine, and uracil, respectively, and A (F), G (F ), C (F) and U (F) mean ribonucleotides having a nucleobase of adenine, guanine, cytosine and uracil fluorinated at the 2 ′ position, respectively. Furthermore, ⁇ means a phosphorothioate group. “Room temperature” in the following examples usually indicates about 10 ° C. to about 35 ° C. The ratio shown in the mixed solvent is a volume ratio unless otherwise specified. Unless otherwise indicated, “%” indicates “% by weight”.
  • the title compound was obtained from 10-undecylic acid by reacting and treating in the same manner as described in Reference Example 1.
  • the reaction mixture was cooled to 0 ° C., diluted with water (205 mL), and neutralized with 1N aqueous hydrochloric acid (201 mL). Further, water (205 mL) and ethyl acetate (774 mL) were added for liquid separation. The organic layer was washed with saturated brine (194 mL), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was crystallized by adding a mixed solution of diethyl ether / hexane to give the title compound (29.7 g) as a white solid.
  • Reference Example 15 Nucleic acid sequence: 3′-ttCGUGUCCUCUCUUCUCGUA-5 ′ (SEQ ID NO: 1) (1) Synthesis of oligonucleotides All oligonucleotides were synthesized by an AKTA oligopilot synthesizer.
  • RNA phosphoramidite with standard protecting group (5'-O-dimethoxytrityl-N 6 -benzoyl-2'- Triisopropylsilyloxymethyl-adenosine-3′-ON, N′-diisopropyl-2-cyanoethyl phosphoramidite, 5′-O-dimethoxytrityl-N 4 -acetyl-2′-triisopropylsilyloxymethyl-cytidine -3'-ON, N'-diisopropyl-2-cyanoethyl phosphoramidite, 5'-O-dimethoxytrityl-N 2 -isobutyryl-2'-triisopropylsilyloxymethyl-guanosine-3'-ON , N'-Diisopropyl-2-cyanoethyl phosphoro
  • phosphoramidites were used at a concentration of 0.1M in acetonitrile. A 15 minute ligation / reuse time was used for RNA and a 5 minute ligation / reuse time was used for DNA.
  • phosphoramidite activator 5-benzylmercaptotetrazole (0.25M, manufactured by Wako Pure Chemical Industries, Ltd.) was used, and iodine / water / pyridine was used for the oxidation of phosphorous acid to phosphoric acid.
  • polystyrene solid carrier an aminated nonporous polystyrene solid carrier (Custom Primer Support C6 amino 80 manufactured by GE Healthcare) was used.
  • RNA phosphoramidite namely 5′-O-dimethoxytrityl-N 6 -benzoyl-2′-triisopropylsilyloxymethyladenosine-3′-ON, N′-diisopropyl -2-cyanoethyl phosphoramidite, 5′-O-dimethoxytrityl-N 4 -acetyl-2′-triisopropylsilyloxymethylcytidine-3′-ON, N′-diisopropyl-2-cyanoethyl phosphoramidite, 5′-O-dimethoxytrityl-N 2 -isobutyryl-2′-triisopropylsilyloxymethylguanosine-3′-ON, N′-diisopropyl-2-cyanoethyl phosphoramidite, 5′-O-dimethoxytrityl- 2'-
  • RNA DNA
  • DNA DNA
  • 5 ′ end modification 5 ′ end modification.
  • phosphoramidite activator 5-benzylmercaptotetrazole (0.25M, manufactured by Wako Pure Chemical Industries, Ltd.) was used, and iodine / water / pyridine was used for the oxidation of phosphorous acid to phosphoric acid.
  • Aqueous solution (0.47 mM, 560 ⁇ L) was mixed in order.
  • An aqueous solution (10 mM, 888 ⁇ L) of the compound of Reference Example 18 was added to the well mixed solution, and the reaction was performed at 25 ° C. for 2 hours. After the reaction was completed, HPLC analysis was performed using a C18 reverse phase column (X-bridge Nippon Waters) to confirm the reaction.
  • the mixture was prepared to be a 10 mM Tris-HCl buffer (pH 8.0) solution of 20 mM sodium chloride at a final concentration.
  • the solution was heated at 70 ° C. for 10 minutes, and then the temperature was decreased by 1 ° C. per minute to 30 ° C. for annealing. Annealing was confirmed by 19% non-denaturing polyacrylamide gel electrophoresis, and the compound of Example 1 was obtained.
  • Example 2-17 In the same manner as in Example 1, using the corresponding starting material compound, the following formula (XXIII):
  • Example 18-21 In the same manner as in Example 1, using the corresponding starting material compound, the following formula (XXIV):
  • the compound of Reference Example 53 was dissolved in deionized RNase-free water so as to be 0.50 mM.
  • a DMF solution (70 ⁇ L) of the compound of Reference Example 37 prepared to 10 mM was added to a mixed solution of 560 ⁇ L of this aqueous solution and 770 ⁇ L of 0.5 M borate buffer (pH 8.0), and the mixture was stirred at 25 ° C. for 1 hour.
  • Test Example 1 cAMP Assay of ⁇ 2 Receptor Expressing HEK293 Cells
  • HEK293 cell line was seeded at 6 ⁇ well plate at 3 ⁇ 10 5 cells / 2 mL / well and cultured overnight.
  • antibiotic-free 10% FBS / DMEM was used as the medium.
  • the beta 2 receptor was inserted into the mammalian expression vector such as pcDNA3.1 and pCI, were transfected with LipofectamineLTX (overnight culture at 37 ° C.). The cells were detached with trypsin, suspended in 2 mL of FBS ( ⁇ ) / DMEM, and centrifuged at 1000 rpm for 2 minutes.
  • the supernatant was removed, and the cells were suspended in 1 ⁇ 10 6 cells / mL with assay buffer (0.5 mM IBMX / 0.1% BSA / DMEM). To 384-well Low Volume Black Round Bottom PS NBS Microplate (Corning, Cat # 3676), 5 ⁇ L / well of the evaluation compound prepared to twice the final concentration was added, and 5 ⁇ L / well of the cell suspension was further added. After standing at 37 ° C. for 0.5 hour, the cAMP concentration produced by the cells was quantified using cAMP HTRF Kit (Cisbio, Cat # 62AM6PEJ).
  • HTRF homogeneous time-resolved fluorescence
  • Test Example 2 Receptor internalization assay 6-well plate using the beta 2 receptor expressing HEK293 cells with GFP2 crowded seeded HEK293 cell lines 3x10 5 cells / 2 mL / well , and cultured overnight.
  • antibiotic-free 10% FBS (0.22 ⁇ m-filtered) / DMEM was used.
  • those that combines GFP2 the beta 2 receptor is a mammalian expression vector pcDNA3.1 and pCI or various viral expression vector pAxcwit2, pDON-5 DNA, pLVSIN -CMV Neo, inserted like pFastBacMam, virus created Infected (37 ° C., 4-6 hours).
  • Emax value the concentration of a beta 2 agonist Salmeterol is inherent to the maximum as 100%, was expressed at a ratio of concentrations indicating the maximum internalization of each compound thereto.
  • the EC 50 value was calculated as the concentration of the compound that resulted in internalization of 50% of the Emax value of each compound.
  • the EC 50 value of Salmeterol was 1.7 nM.
  • the compounds of the present invention showed internalization in beta 2 receptor expressing HEK293 cells with GFP2.
  • Test Example 3 Knockdown experiments method HEK293 cell line beta 2 receptor expression plasmid using beta 2 receptor expressing HEK293 cells are transfected with LipofectamineLTX (overnight culture at 37 ° C.). Cells are detached with trypsin and suspended in 10% FBS / DMEM. Cells are seeded on a 12-well plate at 1.5 ⁇ 10 5 cells / 2 mL / well and cultured for 6 hours. Add compound and incubate for 24 hours. The culture fluid of the cultured cells is removed, and total RNA is prepared using the QuickGene-800 automatic nucleic acid extraction system (FUJIFILM) and RNA cultured cell kit S (FUJIFILM) according to the instructions.
  • FUJIFILM QuickGene-800 automatic nucleic acid extraction system
  • FUJIFILM RNA cultured cell kit S
  • RNA is used as a template, and a reverse transcriptase (RT) reaction is carried out according to the instructions of the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
  • RT reverse transcriptase
  • Power SYBR Green PCR Master Mix Applied Biosystems
  • quantitative PCR is performed by the Applied Biosystems 7900HT real-time PCR system according to the instructions.
  • Step 1 50 ° C., 2 min
  • Step 2 95 ° C., 10 min
  • Step 3 95 ° C., 15 sec
  • Step 4 95 ° C., 15 sec
  • Step 5 60 ° C., 15 sec
  • Step 6 95 ° C., 15 sec.
  • PCR primers are peptidylprolylomerase B (cyclophilin B) (hereinafter referred to as PPIB), PPIB Forward Primer: 5'-gctagataggcaagcatgtgtgtgtt-3 ', PPIBrevert' Ribosomal protein, large, P0 (hereinafter referred to as RPLP0) is used as an internal standard gene, and PCR primers are RPLP0 Forward Primer: 5′-aggtgtcgacatggcatcatcact-3 ′, RPLP0 Reverse Primet 5 To do.
  • PPIB peptidylprolylomerase B
  • RPLP0 PPIB Revert' Ribosomal protein, large
  • PCR primers are RPLP0 Forward Primer: 5′-aggtgtcgacatggcatcatcact-3 ′, RPLP0 Reverse Primet 5 To do.
  • Test Example 4 Intracellular Uptake Assay Using Fluorescent Labeled Compound HEK293 cell line was seeded at 6 ⁇ well plate at 3 ⁇ 10 5 cells / 2 mL / well and cultured overnight at 37 ° C. in a 5% CO 2 incubator. As the medium, antibiotic-free 10% FBS / DMEM was used. Human beta 2 receptor was inserted into the mammalian expression vector, such as PTran3.1, were transfected with LipofectamineLTX (overnight culture at 37 ° C.).
  • Test Example 5 cAMP assay of 5-HT 4 receptor-expressing HEK293 cells
  • HEK293 cell line was seeded on a 6-well plate at 1.5 ⁇ 10 5 cells / 2 mL / well and cultured overnight.
  • antibiotic-free 10% FBS / DMEM was used as the medium.
  • 5-HT 4 receptor was inserted into the pcDNA3.1 mammalian expression vector, were transfected with Trans-IT LT1 reagent (cultured overnight at 37 ° C.). The cells were detached with trypsin, suspended in 2 mL of FBS ( ⁇ ) / DMEM, and centrifuged at 1000 rpm for 2 minutes.
  • HTRF homogeneous time-resolved fluorescence
  • the novel compound comprising a conjugate of an antisense oligonucleotide, siRNA, and miRNA represented by a miRNA and a ligand that binds to GPCR in the present invention has an efficient intracellular uptake ability via GPCR,
  • the functional expression of oligonucleotides can be shown and contributes greatly to the industrial fields such as research and medical fields.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 疾患細胞に効果的に核酸医薬品を取り込ませるために輸送体を提供する。より具体的には、核酸分子と輸送体の新規化合物(コンジュゲート)を提供する。 Gタンパク質共役受容体結合リガンドと核酸分子との間にリンカーを含むコンジュゲートであって、当該リンカーが、トリアゾリレン、及び置換されていてもよいポリアルキレングリコール鎖または置換されていてもよいアルキレン鎖(ここにおいて、該アルキレン鎖は、1または複数の-O-、-S-、-NH-、=N-、-N=、-SO-、-C(=O)-、(C6-C10)アリーレン、(C2-C9)ヘテロアリーレン、(C3-C8)シクロアルキレンおよび(C3-C7)ヘテロシクレンからなる群より選ばれる2価基で遮断または末端に挿入されていてもよい)を含む上記コンジュゲートを提供する。

Description

Gタンパク質共役受容体結合リガンドと核酸分子とのコンジュゲート
 本発明は、Gタンパク質共役受容体(GPCR)リガンドと核酸分子とのコンジュゲートに関する。特に、本発明は、GPCRリガンドと核酸分子とのコンジュゲートを含む新規化合物、および、該新規化合物を有効成分とする医薬組成物を提供する。さらに、本発明は、これらの化合物を作製する方法、および、GPCRを有する細胞が関連する様々な疾患に対する治療のために、これらの化合物を用いて核酸分子を細胞内に導入する方法を提供する。
 核酸医薬品は、アンチセンスオリゴヌクレオチド、siRNA、およびマイクロRNA(miRNA)などの核酸分子を医薬品として利用するものであり、低分子医薬品や抗体医薬品に次ぐ次世代医薬品として注目されている。
 アンチセンスオリゴヌクレオチドは標的タンパク質をコードしているmRNAの部分配列領域と相補構造を持つオリゴヌクレオチドである。アンチセンスオリゴヌクレオチドは対応するmRNAと結合することでタンパク質への翻訳を阻害することができ、加えてRNase Hの活性化により対応するmRNAを分解し、mRNAの発現を抑制することから、アンチセンスオリゴヌクレオチドを用いた遺伝子発現の制御と治療への応用の可能性が期待されている(非特許文献1)。
 siRNAは二本鎖RNAであり、RNA干渉の過程において一本鎖へと変換され、その後、RISC(RNA-induced silencing complex)に取り込まれ、相補性の高い結合部位を一つでも持つ標的RNAを配列特異的に認識する。その結果、標的RNAはRISC中のヌクレアーゼによって切断・分解される。従って、siRNAは疾患を引き起こす遺伝子の発現を抑制できる新しいタイプの医薬品として期待されている(非特許文献2)。
 miRNAは一本鎖RNAであり、siRNA同様にRNA干渉の過程においてRISCに取り込まれ、特異的な遺伝子発現抑制を示す。miRNAは、癌の抑制や促進への関与など癌を始めとするさまざまな疾患との関連が報告されており、miRNAを用いた治療の可能性が期待されている(非特許文献3、4)。
 miRNAの部分配列領域と相補構造を持つアンチセンスオリゴヌクレオチドは、マウスへの静脈内投与において内因性のmiRNAの機能を阻害することが報告されており、miRNAを標的とするアンチセンスオリゴヌクレオチドは核酸医薬品として期待されている(非特許文献5)。
 以上のような核酸分子を利用した治療法は、これまで困難とされてきた疾患に対する解決策を提供することが考えられ、さらに多くの疾患関連遺伝子の配列も同定されつつあるため、種々の疾患についての核酸分子を利用した治療法の臨床試験が、現在進行中である。一方、このような核酸分子の治療薬としての有用性にも関わらず、血清中での安定性、適切な臓器または細胞への送達、および細胞内への取込み等の課題を解決した薬理学的特性を有する核酸分子が今もなお必要とされている。
 核酸分子の細胞内への取込みを改善する技術は、タンパク質担体、抗体担体、リポソーム性送達系、エレクトロポレーション、直接注射、細胞融合、ウイルスベクター、およびリン酸カルシウムを介する形質転換があげられる。しかしながら、これらの技術の多くは、細胞内取込みを可能とする細胞の種類や取込みを達成するための条件が限定されている(非特許文献6)。
 これらの細胞内取込み技術とは異なり、細胞膜に発現する受容体を介するエンドサイトーシスは核酸分子の細胞内への取込み法の1つとして知られている(非特許文献7)。細胞膜に発現する膜受容体に対する特異的リガンドを核酸分子にコンジュゲートさせる。このコンジュゲートはその特異的リガンド部分が受容体と結合した後、膜受容体が活性化しエンドサイトーシスによって細胞内へ取り込まれる。この細胞内取込み機構は、細胞膜構造の陥入を介して膜受容体に結合したコンジュゲートが、膜で囲まれた領域の内側に移動することを伴う。これまでに受容体介在型エンドサイトーシスによる核酸分子の細胞内取込みはいくつか報告されている。例えば、糖鎖受容体や葉酸受容体を受容体として選定し、各々に特異的なリガンドを核酸分子にコンジュゲートした結果、核酸分子の細胞内への取り込みが達成できたことが報告されている(特許文献1、2)。
 しかしながら、これまで報告されたコンジュゲートは、糖鎖受容体は肝臓に多く発現していることから肝臓疾患に限定される、また葉酸受容体は癌細胞に発現することから癌に限定されるなど、限定された疾患に対して核酸分子を送達するものである。従って、汎用性のある核酸分子の細胞内取込み技術の開発が強く望まれている。
 GPCRは、細胞膜受容体スーパーファミリーの1つである。これらの受容体は、生物学的に重要であり、様々なGPCRが多数の疾患に関与している。例えば、高血圧、心筋梗塞、不整脈、アテローム性動脈硬化症、腎不全、糖尿病、喘息、慢性閉塞性肺疾患、鼻炎、炎症性疾患、慢性関節リウマチ、慢性炎症性腸疾患、緑内障、痛み、うつ病、アルツハイマー病やパーキンソン病などの神経変性疾患、多発性硬化症、ならびに癌に関与するが、これら疾患以外にも関与すると考えられる(非特許文献8、9)。
 大部分のGPCRはGPCR特異的なアゴニストとの結合により刺激を受けたのちに、GPCRキナーゼによりリン酸化され、アレスチンの結合を介してGPCR特異的なアゴニストとともにエンドサイトーシスを受け、細胞内に取り込まれることが知られている(非特許文献10、11)。
WO2009/082606 WO2009/073809
Aboul-Fadl、Curr.Med.Chem.(2005)12:2193-2214 Caplen、Gene Ther.(2004)11:1241-1248 Heら、Nature(2005)435:828-833 Luら、Nature(2005)435:834-838 Krutzfeldtら、Nature(2005)438:685-689 Lvら、J.Control.Release(2006)114:100-109 Julianoら、Nucleic Acids Res.(2008)36:4158-4171 Waldeck、Eur.J.Pharmacol.(2002)445:1-12 Bockaertら、Curr.Opin.Parmacol.(2011)11:87-93 Ferguson、Pharmacol.Rev.(2001)53:1-24 Mooreら、Annu.Rev.Physiol.(2007)69:451-482
 本発明は、疾患細胞に効果的に核酸医薬品を取り込ませるために輸送体を提供すること、より具体的には、核酸分子と輸送体の新規化合物(コンジュゲート)(以下、必要に応じて「本発明の化合物」と略称する場合がある。)を提供することを目的とする。
 本発明者らは、上記課題を解決するために、疾患に特異的に発現しているGPCRに着目した。そこで、GPCRリガンドとなりうる化合物と核酸分子をリンカーで結合させた化合物を製造し、細胞に作用させたところ、目的とする核酸分子が目的とする細胞内に導入されることを見出し、本発明を完成するに至った。また、該化合物中の核酸分子部分が、機能することも確認できた。更に、GPCRリガンドにおいて、GPCRアゴニストが効果的に機能することも確認できた。
 すなわち本発明は、以下の通りである。
[1] Gタンパク質共役受容体結合リガンド(以下、「GPCRリガンド」と称する場合がある。)と核酸分子との間にリンカーを含むコンジュゲートであって、当該リンカーが、トリアゾリレン、及び置換されていてもよいポリアルキレングリコール鎖または置換されていてもよいアルキレン鎖(ここにおいて、該アルキレン鎖は、1または複数の-O-、-S-、-NH-、=N-、-N=、-SO-、-C(=O)-、(C6-C10)アリーレン、(C1-C9)ヘテロアリーレン、(C3-C8)シクロアルキレンおよび(C3-C7)ヘテロシクリレンからなる群より選ばれる2価基で遮断または末端に挿入されていてもよい。)を含む上記コンジュゲート。
[2] リンカーが下記式(I):
Figure JPOXMLDOC01-appb-C000028
[式中、
は、GPCRリガンドとの結合部位を表し、
**は、核酸分子との結合部位を表し、
Lは、ホスフェート基、ホスホロチオエート基、ボラノホスフェート基、ホスホロセレネート基、ボラノホスフェートエステル基、水素ホスホネート基、ホスホロアミデート基、アルキルホスホネート基、アリールホスホネート基、およびホスホトリエステル基からなる群から選ばれる基を表し、核酸分子の五炭糖基に共有結合し、
は、-(CHn1-、-(CHn2-O-(CH)n3-、-(CHCHO)n4-CHCH-、-CHCH-S-S-CHCH-C(O)-NH-(CH-および-CHCH-O-C(O)-NH-(CH-からなる群から選ばれる二価基(ここにおいて、-(CHn1-、-(CHn2-O-(CHn3-および-(CHCHO)n4-CHCH-は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~5個の置換基で置換されていてもよく、-CHCH-S-S-CHCH-C(O)-NH-(CH-は、置換可能な位置で、R3031N-C(O)-およびR32OC(O)-からなる群から選ばれる同一または異なる1~3個の置換基で置換されていてもよい。ここにおいて、R30、R31およびR32は、それぞれ独立して、水素原子または(C1-C6)アルキル基を表す。)を表し、n1、n2、n3およびn4は、それぞれ独立して、3~20の整数を表し、
は、-(CHn5-、-(CHn6-O-(CHn7-、-CHCH-(OCHCHn8-、-C(O)-CHCH-(OCHCH)n9-、-CHCH-(OCHCH)n10-C(O)-、-C(O)-CHCH-(OCHCH)n11-NH-C(O)-、-C(O)-(CHn12-、-O-(CHn13-、-(CHn14-(OCHCH)n15-O-(CHn16-および-(CHn17-NH-C(O)-(CHCHO)n18-CHCH-NH-C(O)-(CHn19-からなる群から選ばれる二価基(ここにおいて、該二価基は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、n5、n6、n7、n8、n9、n10、n11、n12、n13、n14、n15、n16、n17、n18およびn19は、それぞれ独立して、0~20の整数を表し、
は、式(IIa):
Figure JPOXMLDOC01-appb-C000029
(式中、Rは、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよく、Wは、-NH-、-O-、-NH-C(O)-(CHm1-および-NH-C(O)-(CHm2-O-からなる群から選ばれる二価基を表し、m1およびm2は、それぞれ独立して、1~20の整数を表す。)、式(IIb):
Figure JPOXMLDOC01-appb-C000030
(式中、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm3-、-(CHm4-NH-および-(CHm5-O-からなる群から選ばれる二価基を表し、m3、m4およびm5は、それぞれ独立して、1~20の整数を表す。)、式(IIc):
Figure JPOXMLDOC01-appb-C000031
(式中、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm6-、-(CHm7-NH-および-(CHm8-O-からなる群から選ばれる二価基を表し、m6、m7およびm8は、それぞれ独立して、1~20の整数を表す。)、式(IId):
Figure JPOXMLDOC01-appb-C000032
(式中、R5’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm9-、-(CHm10-NH-および-(CHm11-O-からなる群から選ばれる二価基を表し、m9、m10およびm11は、それぞれ独立して、1~20の整数を表す。)、式(IIe):
Figure JPOXMLDOC01-appb-C000033
(式中、R6’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm12-、-(CHm13-NH-および-(CHm14-O-からなる群から選ばれる二価基を表し、m12、m13およびm14は、それぞれ独立して、1~20の整数を表す。)、式(IIf):
Figure JPOXMLDOC01-appb-C000034
(式中、Wは、-(CHm15-および-CHCH-(OCHCHm16-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m15およびm16は、それぞれ独立して、1~10の整数を表し、Wは、単結合または、-C(O)-NH-(CHm17-、-NH-C(O)-(CHm18-および-O-(CHm19-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、-C(O)-NH-(C1-C6)アルキルおよび-NH-C(O)-(C1-C6)アルキルからなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m17、m18、およびm19は、それぞれ独立して、1~20の整数を表す。)、式(IIg):
Figure JPOXMLDOC01-appb-C000035
(式中、Wは、-(CHm20-および-CHCH-(OCHCHm21-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m20およびm21は、それぞれ独立して、1~20の整数を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、RおよびRは、それぞれ独立して、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよい)、および
式(IIh):
Figure JPOXMLDOC01-appb-C000036
(式中、Wは、-(CHm22-および-CHCH-(OCHCHm23-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m22およびm23は、それぞれ独立して、1~20の整数を表し、R10は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、R11およびR12は、それぞれ独立して、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、R10とR11が互いに結合し(C3-C8)員環を形成してもよい)
からなる群から選ばれる二価基を表し、
aは、0または1の整数を表し、
は、式(IIIa): 
Figure JPOXMLDOC01-appb-C000037
または式(IIIb):
Figure JPOXMLDOC01-appb-C000038
(式中、p1、p2、p3、およびp4は、それぞれ独立して、1~20の整数を表し、(CHp1および(CHp3は、1または複数の-O-、-C(=O)-、-C(=O)-NH-、-C(=O)-N(Me)-、-C(=O)-O-および-SO-NH-からなる群より選ばれる2価基で遮断または末端に挿入されていてもよい)の二価基を表し、
は、(C3-C8)シクロアルキレン、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、(C1-C9)ヘテロアリーレン、-O-(C1-C9)ヘテロアリーレン、(C1-C9)ヘテロアリーレン-O-、(C3-C7)ヘテロシクリレン、式(IVa):
Figure JPOXMLDOC01-appb-C000039
、式(IVb):
Figure JPOXMLDOC01-appb-C000040
、式(IVc):
Figure JPOXMLDOC01-appb-C000041
および式(IVd):
Figure JPOXMLDOC01-appb-C000042
からなる群から選ばれる二価基を表し、(C3-C8)シクロアルキレンは、1~10個の同一または異なる(C1-C6)アルキル基で置換されていてもよく、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、(C1-C9)ヘテロアリーレン、-O-(C1-C9)ヘテロアリーレン、(C1-C9)ヘテロアリーレン-O-、(C3-C7)ヘテロシクリレン、式(IVa)、式(IVb)、式(IVc)および式(IVd)におけるアリーレン、ヘテロアリーレンおよびヘテロシクリレン部分は、ハロゲン原子、(C1-C6)アルキル基、(C1-C6)アルコキシ基、(C1-C6)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~6個の置換基で置換されていてもよく、
bは、0または1の整数を表す。]
で表される上記[1]に記載のコンジュゲート。
[3] リンカーが下記式(I):
Figure JPOXMLDOC01-appb-C000043
[式中、
は、GPCRリガンドとの結合部位を表し、
**は、核酸分子との結合部位を表し、
Lは、ホスフェート基、ホスホロチオエート基、ボラノホスフェート基、ホスホロセレネート基、ボラノホスフェートエステル基、水素ホスホネート基、ホスホロアミデート基、アルキルホスホネート基、アリールホスホネート基、およびホスホトリエステル基からなる群から選ばれる基を表し、核酸分子の五炭糖基に共有結合し、
は、-(CHn1-、-(CHn2-O-(CH)n3-、-(CHCH
O)n4-CHCH-および-CHCH-O-C(O)-NH-(CH-からなる群から選ばれる二価基(ここにおいて、-(CHn1-、-(CHn2-O-(CHn3-および-(CHCHO)n4-CHCH-は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~5個の置換基で置換されていてもよい。)を表し、n1、n2、n3およびn4は、それぞれ独立して、3~20の整数を表し、
は、-(CHn5-、-(CHn6-O-(CHn7-、-CHCH-(OCHCHn8-、-C(O)-CHCH-(OCHCH)n9-、-CHCH-(OCHCH)n10-C(O)-、-C(O)-CHCH-(OCHCH)n11-NH-C(O)-、-C(O)-(CHn12-、-O-(CHn13-および-(CHn14-(OCHCH)n15-O-(CHn16-からなる群から選ばれる二価基(ここにおいて、該二価基は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、n5、n6、n7、n8、n9、n10、n11、n12、n13、n14、n15およびn16は、それぞれ独立して、0~20の整数を表し、
は、式(IIa):
Figure JPOXMLDOC01-appb-C000044
(式中、Rは、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよく、Wは、-NH-、-O-、-NH-C(O)-(CHm1-および-NH-C(O)-(CHm2-O-からなる群から選ばれる二価基を表し、m1およびm2は、それぞれ独立して、1~20の整数を表す。)、式(IIb):
Figure JPOXMLDOC01-appb-C000045
(式中、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm3-、-(CHm4-NH-および-(CHm5-O-からなる群から選ばれる二価基を表し、m3、m4およびm5は、それぞれ独立して、1~20の整数を表す。)、式(IIc):
Figure JPOXMLDOC01-appb-C000046
(式中、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm6-、-(CHm7-NH-および-(CHm8-O-からなる群から選ばれる二価基を表し、m6、m7およびm8は、それぞれ独立して、1~20の整数を表す。)、式(IId):
Figure JPOXMLDOC01-appb-C000047
(式中、R5’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm9-、-(CHm10-NH-および-(CHm11-O-からなる群から選ばれる二価基を表し、m9、m10およびm11は、それぞれ独立して、1~20の整数を表す。)、式(IIe):
Figure JPOXMLDOC01-appb-C000048
(式中、R6’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm12-、-(CHm13-NH-および-(CHm14-O-からなる群から選ばれる二価基を表し、m12、m13およびm14は、それぞれ独立して、1~20の整数を表す。)、式(IIf):
Figure JPOXMLDOC01-appb-C000049
(式中、Wは、-(CHm15-および-CHCH-(OCHCHm16-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m15およびm16は、それぞれ独立して、1~10の整数を表し、Wは、単結合または、-C(O)-NH-(CHm17-、-NH-C(O)-(CHm18-および-O-(CHm19-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、-C(O)-NH-(C1-C6)アルキルおよび-NH-C(O)-(C1-C6)アルキルからなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m17、m18、およびm19は、それぞれ独立して、1~20の整数を表す。)、式(IIg):
Figure JPOXMLDOC01-appb-C000050
(式中、Wは、-(CHm20-および-CHCH-(OCHCHm21-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m20およびm21は、それぞれ独立して、1~20の整数を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、RおよびRは、それぞれ独立して、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよい)、および
式(IIh):
Figure JPOXMLDOC01-appb-C000051
(式中、Wは、-(CHm22-および-CHCH-(OCHCHm23-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m22およびm23は、それぞれ独立して、1~20の整数を表し、R10は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、R11およびR12は、それぞれ独立して、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、R10とR11が互いに結合し(C3-C8)員環を形成してもよい)
からなる群から選ばれる二価基を表し、
aは、0または1の整数を表し、
は、式(IIIa): 
Figure JPOXMLDOC01-appb-C000052
または式(IIIb):
Figure JPOXMLDOC01-appb-C000053
(式中、p1、p2、p3、およびp4は、それぞれ独立して、1~20の整数を表し、(CHp1および(CHp3は、1または複数の-O-、-C(=O)-、-C(=O)-NH-、-C(=O)-N(Me)-および-C(=O)-O-からなる群より選ばれる2価基で遮断または末端に挿入されていてもよい)の二価基を表し、
は、(C3-C8)シクロアルキレン、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、(C1-C9)ヘテロアリーレン、-O-(C1-C9)ヘテロアリーレン、(C1-C9)ヘテロアリーレン-O-、(C3-C7)ヘテロシクリレン、式(IVa):
Figure JPOXMLDOC01-appb-C000054
、式(IVb):
Figure JPOXMLDOC01-appb-C000055
、式(IVc):
Figure JPOXMLDOC01-appb-C000056
および式(IVd):
Figure JPOXMLDOC01-appb-C000057
からなる群から選ばれる二価基を表し、(C3-C8)シクロアルキレンは、1~10個の同一または異なる(C1-C6)アルキル基で置換されていてもよく、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、(C1-C9)ヘテロアリーレン、-O-(C1-C9)ヘテロアリーレン、(C1-C9)ヘテロアリーレン-O-、(C3-C7)ヘテロシクリレン、式(IVa)、式(IVb)、式(IVc)および式(IVd)におけるアリーレン、ヘテロアリーレンおよびヘテロシクリレン部分は、ハロゲン原子、(C1-C6)アルキル基、(C1-C6)アルコキシ基、(C1-C6)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~6個の置換基で置換されていてもよく、
bは、0または1の整数を表す。]
で表される上記[1]に記載のコンジュゲート。
[4] Lが式(V):
Figure JPOXMLDOC01-appb-C000058
(式中、ZおよびZは、それぞれ独立して、酸素原子または硫黄原子を表す。)を表す上記[2]または[3]のいずれかに記載のコンジュゲート。
[5] 核酸分子が、1本鎖又は2本鎖の核酸分子である上記[1]から[4]のいずれかに記載のコンジュゲート。
[6] 核酸分子が、7~100塩基の核酸分子である上記[1]から[5]のいずれかに記載のコンジュゲート。
[7] 核酸分子が、15~100塩基の核酸分子である上記[1]から[5]のいずれかに記載のコンジュゲート。
[8] 核酸分子がmRNAと相互作用する核酸分子またはRNA干渉を誘導する核酸分子である上記[1]から[7]のいずれかに記載のコンジュゲート。
[9] 核酸分子が、siRNA、miRNA、アンチセンスオリゴヌクレオチドおよびantagoMirからなる群から選ばれる、上記[1]から[8]のいずれかに記載のコンジュゲート。
[10] GPCRリガンドが、GPCRに結合する非ペプチド性リガンド構造である上記[1]から[9]のいずれかに記載のコンジュゲート。
[11] GPCRリガンドが、GPCRアゴニストの一部構造を有する上記[1]から[10]のいずれかに記載のコンジュゲート。
[12] GPCRリガンドが、β受容体または5-HT受容体に結合する非ペプチド性リガンド構造である上記[1]から[11]のいずれかに記載のコンジュゲート。
[13] GPCRリガンドが、式(VIa):
Figure JPOXMLDOC01-appb-C000059
(式中、Bは、-CHOH、-NHCHOまたは-(CHOHを表す。)、式(VIb):
Figure JPOXMLDOC01-appb-C000060
、式(VIc):
Figure JPOXMLDOC01-appb-C000061
(式中、Bは、水素原子、メチルまたはエチルを表す。)、式(VId):
Figure JPOXMLDOC01-appb-C000062
、式(VIe):
Figure JPOXMLDOC01-appb-C000063
、または式(VIf):
Figure JPOXMLDOC01-appb-C000064
で表される構造である上記[1]から[12]のいずれかに記載のコンジュゲート。
[14] GPCRリガンドが、式(VIa):
Figure JPOXMLDOC01-appb-C000065
(式中、Bは、-CHOH、-NHCHOまたは-(CHOHを表す。)、式(VIb):
Figure JPOXMLDOC01-appb-C000066
、式(VIc):
Figure JPOXMLDOC01-appb-C000067
(式中、Bは、水素原子、メチルまたはエチルを表す。)、または式(VId):
Figure JPOXMLDOC01-appb-C000068
で表される構造である上記[1]から[12]のいずれかに記載のコンジュゲート。
[15] GPCRリガンドが、式(VIIa):
Figure JPOXMLDOC01-appb-C000069
、式(VIIb):
Figure JPOXMLDOC01-appb-C000070
(式中、Bは、水素原子またはメトキシを表す。)、式(VIIc):
Figure JPOXMLDOC01-appb-C000071
(式中、Bは、メチルまたはエチルを表し、Bは、メチレンまたは酸素原子を表す。)、式(VIId):
Figure JPOXMLDOC01-appb-C000072
または式(VIIe):
Figure JPOXMLDOC01-appb-C000073
で表される構造である上記[1]から[12]のいずれかに記載のコンジュゲート。
[16] GPCRリガンドが、式(VIIa):
Figure JPOXMLDOC01-appb-C000074
、式(VIIb):
Figure JPOXMLDOC01-appb-C000075
(式中、Bは、水素原子またはメトキシを表す。)、式(VIIc):
Figure JPOXMLDOC01-appb-C000076
(式中、Bは、メチルまたはエチルを表す。)、式(VIId):
Figure JPOXMLDOC01-appb-C000077
または式(VIIe):
Figure JPOXMLDOC01-appb-C000078
で表される構造である上記[1]から[12]のいずれかに記載のコンジュゲート。
[17] 上記[1]から[16]のいずれかに記載のコンジュゲートを有効成分として含有する医薬組成物。
[18] 式(1-1):
Figure JPOXMLDOC01-appb-C000079
(式中、R、A、p1、b及び*は、上記[2]または[3]と同義である。)で表される化合物
と、式(1-2):
Figure JPOXMLDOC01-appb-C000080
(式中、R、Q、L、p2、aおよび**は、上記[2]または[3]と同義である。)で表される化合物を、触媒量の銅塩の存在下反応させることを含む、
式(I-1):
Figure JPOXMLDOC01-appb-C000081
(式中の各記号は、上記[2]または[3]と同義である。)で表される上記[2]または[3]に記載のコンジュゲートの製造方法。
[19] 式(2-1):
Figure JPOXMLDOC01-appb-C000082
(式中、R、A、p3、b及び*は、上記[2]または[3]と同義である。)で表される化合物
と、式(2-2):
Figure JPOXMLDOC01-appb-C000083
(式中、R、Q、L、p4、aおよび**は、上記[2]または[3]と同義である。)で表される化合物を、触媒量の銅塩の存在下反応させることを含む、
式(I-2):
Figure JPOXMLDOC01-appb-C000084
(式中の各記号は、上記[2]または[3]と同義である。)で表される上記[2]または[3]に記載のコンジュゲートの製造方法。
 本発明により、GPCRとの結合により細胞内への効率的な取込み能を有するGPCRリガンドと核酸分子とのコンジュゲートを含む新規化合物が提供される。
 以下に、本発明をさらに詳細に説明する。
(定義)
 本明細書中、「Gタンパク質共役受容体結合リガンド(以下、「GPCRリガンド」と称する場合がある。)」とは、GPCRに作用する化合物を意味する。GPCR(Gタンパク質共役受容体)とは、GPCRリガンドが結合するとGタンパク質と共役してシグナル伝達する受容体群のことを指す。本発明における好ましいGPCRリガンドとしては、非ペプチド性低分子アゴニストが挙げられる。
 具体的には、GPCRリガンドとしては、アゴニストにより内在化することが知られているGPCRに対する非ペプチド性リガンド構造が挙げられる。好ましくは、β受容体または5-HT受容体に結合する非ペプチド性リガンド構造が挙げられ、さらに好ましくは、式(VIa):
Figure JPOXMLDOC01-appb-C000085
(式中、Bは、-CHOH、-NHCHOまたは-(CHOHを表す。)、式(VIb):
Figure JPOXMLDOC01-appb-C000086
、式(VIc):
Figure JPOXMLDOC01-appb-C000087
(式中、Bは、水素原子、メチルまたはエチルを表す。)、式(VId):
Figure JPOXMLDOC01-appb-C000088
 
、または式(VIf):
Figure JPOXMLDOC01-appb-C000089
で表されるβ受容体に結合する非ペプチド性リガンド構造、式(VIIa):
Figure JPOXMLDOC01-appb-C000090
、式(VIIb):
Figure JPOXMLDOC01-appb-C000091
(式中、Bは、水素原子またはメトキシを表す。)、式(VIIc):
Figure JPOXMLDOC01-appb-C000092
(式中、Bは、メチルまたはエチルを表し、Bは、メチレンまたは酸素原子を表す。)、式(VIId):
Figure JPOXMLDOC01-appb-C000093
または式(VIIe):
Figure JPOXMLDOC01-appb-C000094
で表される5-HT受容体に結合する非ペプチド性リガンド構造が挙げられ、特に好ましくは、上記記載の式(VIa)、式(VIb)、式(VIe)または式(VIf)で表されるβ受容体に結合する非ペプチド性リガンド構造、式(VIIa)、式(VIIb)または式(VIIc)で表される5-HT受容体に結合する非ペプチド性リガンド構造が挙げられ、最も好ましくは上記記載の式(VIa)、式(VIb)または式(VIf)で表されるβ受容体に結合する非ペプチド性リガンド構造が挙げられる。
 別の態様として、さらに好ましくは、式(VIa):
Figure JPOXMLDOC01-appb-C000095
(式中、Bは、-CHOH、-NHCHOまたは-(CHOHを表す。)、式(VIb):
Figure JPOXMLDOC01-appb-C000096
、式(VIc):
(式中、Bは、水素原子、メチルまたはエチルを表す。)、または式(VId):
Figure JPOXMLDOC01-appb-C000098
で表されるβ受容体に結合する非ペプチド性リガンド構造、式(VIIa):
Figure JPOXMLDOC01-appb-C000099
、式(VIIb):
Figure JPOXMLDOC01-appb-C000100
(式中、Bは、水素原子またはメトキシを表す。)、式(VIIc):
Figure JPOXMLDOC01-appb-C000101
(式中、Bは、メチルまたはエチルを表す。)、式(VIId):
Figure JPOXMLDOC01-appb-C000102
または式(VIIe):
Figure JPOXMLDOC01-appb-C000103
で表される5-HT受容体に結合する非ペプチド性リガンド構造が挙げられ、特に好ましくは、上記記載の式(VIa)、式(VIb)、式(VIc)または式(VId)で表されるβ受容体に結合する非ペプチド性リガンド構造が挙げられる。
 本明細書中、「核酸分子」とは、核酸塩基、五炭糖基およびリン酸基からなるヌクレオチド構造を基本単位として、これが多数重合した分子(オリゴヌクレオチド)を意味する。ここには修飾核酸分子も含まれ、核酸塩基、五炭糖基あるいはリン酸基のいずれかが修飾されていてもよい。核酸分子は、DNA、RNA、又はキメラ(一本鎖の核酸の中にDNAとRNAを含む核酸)であってもよく、一本鎖又は二本鎖であってもよい。核酸分子の長さとしては、7~100塩基程度、好ましくは15~100塩基程度が例示できる。また、二本鎖の場合、二本鎖のDNA、二本鎖のRNA、二本鎖のキメラ、RNA/DNAハイブリッド、RNA/キメラハイブリッド、DNA/キメラハイブリッド、又はキメラ/キメラハイブリッドでもよい。核酸分子の具体例として、mRNAと相互作用する核酸分子(例えば、アンチセンスオリゴヌクレオチド、antagoMir(またはantiMir)またはエクソンスキップを誘導する核酸分子等)、またはRNA干渉を誘導する核酸分子(例えば、siRNA、miRNAまたはshRNA等)が挙げられる。さらに具体例として、アンチセンスオリゴヌクレオチド、siRNA、miRNA、antagoMir(またはantiMir)等が挙げられる。
 「アンチセンスオリゴヌクレオチド」としては、標的タンパク質をコードしているmRNAの部分配列領域と直接または間接的に相互作用を持つ7~100塩基程度の核酸分子が挙げられ、好ましくは、7~30塩基程度の核酸分子が挙げられ、より好ましくは、15~20塩基程度の核酸分子が挙げられる。
 別の態様として、「アンチセンスオリゴヌクレオチド」としては、標的タンパク質をコードしているmRNAの部分配列領域と相補構造を持つ15~100塩基程度の核酸分子が挙げられ、好ましくは、15~30塩基程度の核酸分子が挙げられ、より好ましくは、15~20塩基程度の核酸分子が挙げられる。
 「siRNA」としては、標的mRNA配列特異的に遺伝子の発現を抑制するRNA干渉に関与する15~100塩基程度の二本鎖の核酸分子(例えば、RNA)が挙げられ、好ましくは、15~30塩基程度の二本鎖の核酸分子が挙げられ、より好ましくは、21~23塩基程度の二本鎖の核酸分子が挙げられる。
 「miRNA」としては、他の遺伝子発現を調節する機能を持つ15~100塩基程度の一本鎖の核酸分子(例えば、RNA)が挙げられ、好ましくは、15~30塩基程度の一本鎖の核酸分子が挙げられ、より好ましくは、21~25塩基程度の一本鎖の核酸分子が挙げられる。また、miRNAとしては、miRNAの前駆体であるpri-miRNAやpre-miRNAであってもよい。
 「antagoMir(またはantiMir)」としては、miRNAの部分配列領域と相補構造を持つ7~100塩基程度の一本鎖の核酸分子(例えば、RNA)が挙げられ、好ましくは、7~30塩基程度の一本鎖の核酸分子が挙げられ、より好ましくは、21~25塩基程度の一本鎖の核酸分子が挙げられる。
 別の態様として、「antagoMir(またはantiMir)」としては、miRNAの部分配列領域と相補構造を持つ15~100塩基程度の一本鎖の核酸分子(例えば、RNA)が挙げられ、好ましくは、15~30塩基程度の一本鎖の核酸分子が挙げられ、より好ましくは、21~25塩基程度の一本鎖の核酸分子が挙げられる。
 「相補構造」とは、完全な相補を保持する構造でなくてもよく、一部分において相補性を保持している構造でもよい。
 核酸分子は、5’または3’末端に5塩基以下、好ましくは、2塩基からなる、塩基対を形成しない、付加的な塩基を有してもよい。該付加的塩基は、DNAでもRNAでもよい。このような付加的塩基の配列としては、例えば、ug-3’、uu-3’、tg-3’、tt-3’、ggg-3’、guuu-3’、gttt-3’、tttt-3’、uuuuu-3’などの配列が挙げられるが、これに限定されるものではない。
 「核酸塩基」としては、例えば、プリン塩基又はピリミジン塩基が挙げられる。その具体例として、アデニン、グアニン、チミン、シトシン、ウラシル等が挙げられる。
 「修飾核酸塩基」としては、例えば、修飾プリン塩基及び修飾ピリミジン塩基が挙げられる。修飾プリン塩基の具体例としては、例えば、ヒポキサンチン、キサンチン、イソグアニン、2位をアミノ基、アルキルアミノ、メルカプト基、アルキルチオ基等で置換した2位置換アデニン誘導体および2位置換プリン誘導体、2位をメチル基等のアルキル基で置換した2位アルキル置換アデニン誘導体および2位アルキル置換ヒポキサンチン誘導体、2位窒素をメチル基等のアルキル基で修飾した2位修飾グアニン誘導体、6位をメチル等のアルキル基で修飾した6位アルキル置換プリン誘導体および2位アミノ6位アルキル置換プリン誘導体、6位窒素をメチル基等のアルキル基で修飾した6位修飾アデニン誘導体、6位酸素をメチル基等のアルキル基で修飾した6位修飾グアニン誘導体および6位修飾ヒポキサンチン誘導体、2位窒素および6位酸素をメチル基等のアルキル基で修飾した2位修飾6位修飾グアニン誘導体、7位をメチル基等で修飾した7位修飾グアニン誘導体、8位をアルキル基、ハロゲン、アミノ基、メルカプト基、アルキルチオ基、水酸基等で置換した8位置換アデニン誘導体および8位置換グアニン誘導体等が挙げられる。さらに修飾プリン塩基には、例えば、7-デアザアデニン等のデアザ誘導体、5-ニトロインドール等のインドール誘導体等も含まれる。
 修飾ピリミジン塩基の具体例としては、例えば、2-チオシトシン誘導体および2-チオウラシル誘導体、3位をメチル基等のアルキル基で置換した3位アルキル置換ウラシル誘導体および3位アルキル置換シトシン誘導体、4-チオウラシル誘導体、4位窒素をアセチル基等の置換基で修飾した4位修飾シトシン誘導体、5位をハロゲン、トリフルオロメチル基、アルキル基、アミノ基、アルキルアミノ基、アルキルアミノメチル基、アリールアミノ基、アルコキシ基、プロピニル基、メトキシカルボニルメチル基、酢酸オキシ基等の置換基で修飾した5位置換ウラシル誘導体や5位置換2-チオウラシル誘導体や5位置換シトシン誘導体および5位置換ピリミジン誘導体、5-ウラシル誘導体(シュードウラシル誘導体)等が挙げられる。さらに修飾ピリミジン塩基には、例えば、ジヒドロウラシル誘導体、3-デアザ-5-アザ-シトシン誘導体、6-アザウラシル誘導体、6-アザシトシン誘導体、6-アゾチミン誘導体、6-アザピリミジン誘導体、トリアゾール誘導体、3-ニトロピロール等のピロール誘導体、2-ピリジノン誘導体等も含まれる。その他の修飾核酸塩基としては、J.Org.Chem.,2011,76,7295、Angew.Chem.Int.Ed.,1991,30,613に開示されているものが挙げられる。
 「五炭糖基」としては、リボース基と2-デオキシリボース基が挙げられる。
 「修飾五炭糖基」としては、リボース基の2位の水酸基の修飾および変換、すなわち2-デオキシリボース基の2位の修飾を挙げることができる。具体的な置換基としては、例えば、水素原子;水酸基;ハロゲン原子;シアノ基、(C1-C6)アルキル基で置換されていてもよいアミノ基および(C1-C6)アルコキシ基からなる群から選ばれる1つ又は同一もしくは異なる2つ以上の基で置換されていてもよい(C1-C6)アルコキシ基;シアノ基;アジド基;メルカプト基;(C1-C6)チオアルコキシ基;(C1-C6)アルキル基で置換されていてもよいアミノ基;(C1-C6)アルキル基で置換されていてもよいアミノオキシ基;アミノオキシ基;(C1-C6)アルキル基;(C1-C6)アルケニル基;(C1-C6)アルキニル基;(C1-C6)アルキルカルボニルアミノ基等が挙げられる。好ましい2位の置換基としては、水素原子、水酸基、フッ素原子、(C1-C6)アルコキシ基、2-シアノエトキシおよび2-メトキシエトキシ基が挙げられる。また、リボース基の2位のヒドロキシル基、アミノ基、メルカプト基等がメチレン架橋によってリボース基の4位の炭素と結合しているロックされた核酸(LNA)、リボース基の2位のヒドロキシル基、アミノ基、メルカプト基等がエチレン架橋によってリボース基の4位の炭素と結合しているロックされた核酸(ENA)、リボース基の2位とリボース基の4位が、エーテル基、アミノ基およびメチレン基からなる群から選ばれる1つ又は同一もしくは異なる2つ以上の置換基によって架橋されたブリッジ型核酸(BNA)もここに含まれる。さらに、五炭糖基がモルホリニル基で置換された核酸(モルホリノ核酸(PMO))、シクロブチル基で置換された核酸、ピロリジニル基で置換された核酸、テトラヒドロチオフェン基で置換された4’-チオ核酸、五炭糖基とリン酸基部分が、N-(2-アミノエチル)グリシン等のユニットで置換された核酸(ペプチド核酸(PNA))、五炭糖基が、開環した鎖状構造に置換された核酸(アンロック核酸(UNA))もここに含まれる。LNAの例としては、例えば、Chem.Rev.,2007,107,4672に、BNAの例としては、例えば、Nucleic Acids Res.,2009,37,1225およびBioorg.Med.Chem.,2008,16,9230に、PMOの例としては、例えば、J.Pharm.Sci.,2002,91,1009に、PNAの例としては、例えば、FASEB J.,2000,14,1041に、UNAの例としては、例えば、Bioorg.Med.Chem.,1995,3,19およびJ.Am.Chem.Soc.,2003,125,654に開示されている。
 「修飾リン酸基」としては、例えば、ホスホロチオエート基、ホスホロジチオエート基、ボラノホスフェート基、ホスホロセレネート基、ボラノホスフェートエステル基、水素ホスホネート基、ホスホロアミデート基、アルキルホスホネート基、アリールホスホネート基およびホスホトリエステル基が挙げられる。また、リン酸基の結合酸素が、硫黄(架橋ホスホロチオエート)、窒素(架橋ホスホロアミデート)または炭素(架橋メチレンホスホネート)で置換された化合物もここに含まれる。
 本発明におけるリンカーとしては、上記GPCRリガンドと核酸分子をつなげる部分であって、生体親和性を有する構造を有するものであれば、特に制限されない。
 好ましくは、トリアゾリレン、及び置換されていてもよいポリアルキレングリコール鎖または置換されていてもよいアルキレン鎖を含み、さらに、当該アルキレン鎖は、1またはそれ以上の-O-、-S-、-NH-、=N-、-N=、-SO-、-C(=O)-、アリーレン、ヘテロアリーレン、シクロアルキレン、ヘテロシクリレンからなる群より選ばれる2価基で遮断または末端で置換されていてもよい構造を有するものであり、より好ましくは、上記式(I)で表される構造を有するものである。
 本発明の化合物である「コンジュゲート」とは、上記GPCRリガンドと上記核酸分子が結合した化合物を意味し、具体的には、その間に上記リンカーを含むものである。
 本明細書中、「ポリアルキレングリコール鎖」とは、アルキレングリコールが重合した構造を持つポリエーテル鎖を意味する。その具体例としては、ポリエチレングリコール鎖、ポリプロピレングリコール鎖等が挙げられる。
 本明細書中、「アルキレン鎖」とは、直鎖のアルキレン鎖を意味し、好ましくは、炭素原子数が1~20の直鎖のアルキレン鎖が挙げられる。その具体例として、メチレン鎖、エチレン鎖、プロピレン鎖、ブチレン鎖、ペンチレン鎖、ヘキシレン鎖、ヘプチレン鎖、オクチレン鎖、ノニレン鎖、デカニレン鎖、ドデカニレン鎖、テトラデカニレン鎖、ヘキサデカニレン鎖、イコシレン鎖等が挙げられる。
 「置換されていてもよいポリアルキレングリコール鎖および置換されていてもよいアルキレン鎖」における置換基としては、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基または水酸基が挙げられる。好ましくは、(C1-C6)アルキル基が挙げられる。
 本明細書中、「2価基で遮断または末端に挿入されてもよい」とは、ポリアルキレングリコール鎖またはアルキレン鎖の任意の途中または末端の位置に2価基が挿入された構造を意味する。
 本明細書中、「Lは核酸分子の五炭糖基に共有結合し」とは、例えば、式(VIIIa):
Figure JPOXMLDOC01-appb-C000104
(式中、Bは、核酸塩基を表し、Yは、リボース基2位の置換基を表し、N1は、一本鎖または二本鎖のオリゴヌクレオチドを表す。)あるいは式(VIIIb):
Figure JPOXMLDOC01-appb-C000105
(式中、Bは、核酸塩基を表し、Y2は、リボース基2位の置換基を表し、N2は、一本鎖または二本鎖のオリゴヌクレオチドを表す。)のように、Lが核酸分子の糖部分に結合していることを意味する。
 本明細書中、「(C1-C6)アルキル」とは、炭素原子数が1~6の直鎖又は分枝鎖のアルキル基を意味する。その具体例として、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル等が挙げられる。
 本明細書中、「(C3-C8)シクロアルキル」とは、炭素原子数が3~8の飽和単環シクロアルキルを意味する。その具体例として、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられる。
 本明細書中、「(C1-C6)アルコキシ」とは、直鎖又は分枝鎖の炭素原子数が1~6のアルコキシを意味する。その具体例としては、メトキシ、エトキシ、プロポキシ、1-メチルエトキシ、ブトキシ、1-メチルプロポキシ、2-メチルプロポキシ等が挙げられる。
 また、「(C1-C6)アルコキシカルボニル」における「(C1-C6)アルコキシ」も同義である。
 本明細書中、「(C3-C8)シクロアルキレン」とは、炭素原子数が3~8の二価の飽和単環シクロアルキレンを意味する。その具体例として、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロヘプチレン等が挙げられる。
 本明細書中、「(C6-C10)アリーレン」とは、炭素原子数が6~10の二価の単環若しくは2環の芳香環を意味する。その具体例として、フェニレン、1-ナフチレン又は2-ナフチレン等が挙げられる。ここで「(C6-C10)アリーレン」が2環の芳香環の場合、一方の環が飽和あるいは部分的に飽和となったものも含まれる。その具体例として、例えば、1,2,3,4-テトラヒドロナフチレン又は2,3-ジヒドロ-1H-インデニレン等が挙げられる。
 本明細書中、「(C1-C9)ヘテロアリーレン」とは、炭素原子数が1~9であり、1~4個の窒素原子、酸素原子及び/又は硫黄原子を含有する単環若しくは2環の5~10員環の二価の芳香族複素環を意味する。その具体例として、ピリジレン、ピリダジレン、ピラジニレン、ピリミジニレン、トリアジニレン、ピロリレン、ピラゾリレン、トリアゾリレン、テトラゾリレン、イミダゾリレン、フリレン、チエニレン、チアゾリレン、イソチアゾリレン、オキサゾリレン、イソオキサゾリレン、チアジアゾリレン又はオキサジアゾリレン等の1~4個の窒素原子、酸素原子及び/又は硫黄原子を含有する単環の5~7員環の二価の芳香族複素環、インドリレン、インダゾリレン、キノリレン、イソキノリレン、クロメニレン、ベンゾフラニレン、ベンゾチエニレン、ベンゾオキサゾリレン、ベンゾチアゾリレン、ベンズイソオキサゾリレン、ベンズイソチアゾリレン、ベンゾトリアゾリレン又はベンズイミダゾリレン等の1~3個の窒素原子、酸素原子及び/又は硫黄原子を含有する2環の9~10員環の二価の芳香族複素環が挙げられる。好ましいヘテロアリーレンとしては、ピリジレン、ピリダジレン、ピラジニレン、ピリミジニレン、ピロリレン、ピラゾリレン、フリレン、チエニレン、インドリレン、インダゾリレン、キノリレン、イソキノリレンが挙げられる。
 本明細書中、「(C3-C7)ヘテロシクリレン」とは、炭素原子数が3~7であり、1~3個の窒素原子、酸素原子及び/又は硫黄原子を含有する単環の5~8員の二価のヘテロシクロ環を意味する。その具体例として、テトラヒドロフラニレン、ピロリジニレン、ピラゾリジニレン、イミダゾリジニレン、チアゾリジニレン又はオキサゾリジニレン等の1~3個の窒素原子、酸素原子及び/又は硫黄原子を含有する単環の5員環の二価のヘテロシクロ環、ピペリジニレン、モルホリニレン、チオモルホリニレン、ピペラジニレン、テトラヒドロピラニレン又はジオキサニレン等の1~3個の窒素原子、酸素原子及び/又は硫黄原子を含有する単環の6員環の二価のヘテロシクロ環、アゼパニレン、ホモピペラジニレン又はオキセパニレン等の1~3個の窒素原子、酸素原子及び/又は硫黄原子を含有する単環の7員の二価のヘテロシクロ環等が挙げられる。好ましいヘテロシクリレンとしては、ピロリジニレン、ピペリジニレン等が挙げられる。
 「シクロアルキレン」、「アリーレン」、「ヘテロアリーレン」および「ヘテロシクリレン」における2つの結合位置は、可能であれば、どこでもよい。
 本明細書中、「トリアゾリレン」とは、3個の窒素原子を含有する単環の5員の二価のヘテロシクロ環を意味し、その具体例として、1,2,3-トリアゾリレンまたは1,2,4-トリアゾリレンが挙げられる。好ましいトリアゾリレンとしては、1,2,3-トリアゾリレンが挙げられる。
 本明細書中、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 本明細書中、「(C3-C8)員環」とは、炭素原子数が3~8の二価の飽和単環シクロアルカンを意味する。その具体例として、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン等が挙げられる。
(本発明の化合物)
 本発明の化合物は、GPCRリガンドと核酸分子との間にリンカーを含むコンジュゲートであって、当該リンカーが、トリアゾリレン、及び置換されていてもよいポリアルキレングリコール鎖または置換されていてもよいアルキレン鎖(ここにおいて、該アルキレン鎖は、1または複数の-O-、-S-、-NH-、=N-、-N=、-SO-、-C(=O)-、(C6-C10)アリーレン、(C1-C9)ヘテロアリーレン、(C3-C8)シクロアルキレンおよび(C3-C7)ヘテロシクリレンからなる群より選ばれる2価基で遮断または末端に挿入されていてもよい)を含む上記コンジュゲートである。具体的には、上記リンカーが下記式(I):
Figure JPOXMLDOC01-appb-C000106
[式中の各記号は、前記と同義である。]
で表されるコンジュゲートである。
 以下、本発明の化合物の各基について説明する。
 Rとしては、好ましくは、-(CHn1-、-CHCH-S-S-CHCH-C(O)-NH-(CH-および-CHCH-O-C(O)-NH-(CH-からなる群から選ばれる二価基(ここにおいて、n1は3~10の整数を表し、-(CHn1-は、置換可能な位置で、(C1-C4)アルキル基、水酸基およびヒドロキシメチル基からなる群から選ばれる同一または異なる1~5個の置換基で置換されていてもよく、-CHCH-S-S-CHCH-C(O)-NH-(CH-は、置換可能な位置で、R3031N-C(O)-およびR32OC(O)-からなる群から選ばれる同一または異なる1~3個の置換基で置換されていてもよい。ここにおいて、R30、R31およびR32は、それぞれ独立して、水素原子または(C1-C6)アルキル基を表す。)が挙げられる。
 別の態様として、Rとしては、好ましくは、-(CHn1-および-CHCH-O-C(O)-NH-(CH-からなる群から選ばれる二価基(ここにおいて、n1は3~10の整数を表し、-(CHn1-は、置換可能な位置で、(C1-C4)アルキル基、水酸基およびヒドロキシメチル基からなる群から選ばれる同一または異なる1~5個の置換基で置換されていてもよい。)が挙げられる。
 さらに好ましくは、-(CHn1-(ここにおいて、n1は3~10の整数を表す。)で表される二価基が挙げられる。
 Rとしては、好ましくは、-(CHn5-、-(CHn6-O-(CHn7-、-(CHn14-(OCHCH)n15-O-(CHn16-および-(CHn17-NH-C(O)-(CHCHO)n18-CHCH-NH-C(O)-(CHn19-からなる群から選ばれる二価基(ここにおいて、n5、n6、n7、n14、n15、n16、n17、n18およびn19は、それぞれ独立して、0~20の整数を表し、該二価基は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)が挙げられる。さらに好ましくは、-(CHn5-、-(CHn6-O-(CHn7-、-(CHn14-(OCHCH)n15-O-(CHn16-および-(CHn17-NH-C(O)-(CHCHO)n18-CHCH-NH-C(O)-(CHn19-からなる群から選ばれる二価基(ここにおいて、n5、n6、n7、n14、n15、n16、n17、n18およびn19は、それぞれ独立して、0~20の整数を表し、該二価基は、置換可能な位置で、それぞれ独立して、1~3個の(C1-C4)アルキル基で置換されていてもよい)が挙げられる。
 別の態様として、Rとしては、好ましくは、-(CHn5-、-(CHn6-O-(CHn7-および-(CHn14-(OCHCH)n15-O-(CHn16-からなる群から選ばれる二価基(ここにおいて、n5、n6、n7、n14、n15およびn16は、それぞれ独立して、0~12の整数を表し、該二価基は、置換可能な位置で、それぞれ独立して、(C1-C4)アルキル基、水酸基およびヒドロキシメチル基からなる群から選ばれる同一または異なる1~5個の置換基で置換されていてもよい)が挙げられる。さらに好ましくは、-(CHn5-、-(CHn6-O-(CHn7-および-(CHn14-(OCHCH)n15-O-(CHn16-からなる群から選ばれる二価基(ここにおいて、n5、n6、n7、n14、n15およびn16は、それぞれ独立して、0~12の整数を表し、該二価基は、置換可能な位置で、それぞれ独立して、1~3個の(C1-C4)アルキル基で置換されていてもよい)が挙げられる。
 Rとしては、好ましくは、(C1-C6)アルキル基が挙げられる。Rとしては、好ましくは、水素原子または(C1-C6)アルキル基が挙げられる。或いは、好ましくは、RとRが互いに結合し形成する(C3-C8)員環が挙げられる。
 R、R5’、R、R6’、RおよびR12としては、好ましくは、それぞれ独立して、水素原子または(C1-C6)アルキル基が挙げられる。
 RおよびR10としては、好ましくは、それぞれ独立して、水素原子または(C1-C6)アルキル基が挙げられる。RおよびR11としては、好ましくは、それぞれ独立して、(C1-C6)アルキル基が挙げられる。
 Qとしては、好ましくは、上記記載の式(IIa)、式(IIb)、式(IIc)、式(IIe)および式(IIf)からなる群から選ばれる二価基が挙げられる。
 より好ましくは、上記記載の式(IIb)、式(IIc)および式(IIe)からなる群から選ばれる二価基が挙げられ、さらに好ましくは、上記記載の式(IIc)および式(IIe)からなる群から選ばれる二価基が挙げられる。
 別の態様として、Qとしては、好ましくは、上記記載の式(IIa)、式(IIb)、式(IIc)および式(IIf)からなる群から選ばれる二価基が挙げられる。
 さらに好ましくは、上記記載の式(IIb)および式(IIc)からなる群から選ばれる二価基が挙げられる。
 Q2としては、好ましくは、上記記載の(CHp1および(CHp3が、1または複数の-O-または-SO-NH-で遮断または末端に挿入されていてもよい、上記記載の式(IIIa)および式(IIIb)からなる群から選ばれる二価基が挙げられる。
 別の態様として、Q2としては、好ましくは、上記記載の(CHp1および(CHp3が、1または複数の-O-で遮断または末端に挿入されていてもよい、上記記載の式(IIIa)および式(IIIb)からなる群から選ばれる二価基が挙げられる。
 Aとしては、好ましくは、(C3-C7)シクロアルキレン、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、および(C3-C7)ヘテロシクリレン、上記記載の式(IVa)、式(IVb)、式(IVc)および式(IVd)からなる群から選ばれる二価基(ここにおいて、(C3-C7)シクロアルキレンおよび(C3-C7)ヘテロシクリレンは、1~4個の同一または異なる(C1-C4)アルキル基で置換されていてもよく、(C6-C10)アリーレン、-O-(C6-C10)アリーレンおよび(C6-C10)アリーレン-O-におけるアリーレン部分は、ハロゲン原子、(C1-C4)アルキル基、(C1-C4)アルコキシ基、(C1-C4)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~4個の置換基で置換されていてもよい)が挙げられる。
 さらに好ましくは、(C6-C10)アリーレン、-O-(C6-C10)アリーレンおよび(C6-C10)アリーレン-O-、上記記載の式(IVa)、式(IVb)、式(IVc)および式(IVd)からなる群から選ばれる二価基(ここにおいて、(C6-C10)アリーレン、-O-(C6-C10)アリーレンおよび(C6-C10)アリーレン-O-におけるアリーレン部分は、ハロゲン原子、(C1-C4)アルキル基、(C1-C4)アルコキシ基、(C1-C4)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~4個の置換基で置換されていてもよい)が挙げられる。特に好ましくは、(C6-C10)アリーレン(好ましくは、フェニレン)、-O-(C6-C10)アリーレン(好ましくは-O-フェニレン)および上記記載の式(IVc)からなる群から選ばれる二価基(ここにおいて、(C6-C10)アリーレンおよび-O-(C6-C10)アリーレンにおけるアリーレン部分は、ハロゲン原子、(C1-C4)アルキル基、(C1-C4)アルコキシ基、(C1-C4)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~4個の置換基で置換されていてもよい)が挙げられる。
 Wとしては、-NH-C(O)-(CHm1-、-NH-C(O)-(CHm2-O-、-NH-または-O-が挙げられる。
 W、W、WおよびWとしては、好ましくは、それぞれ独立して、-(CHm3-、-(CHm6-、-(CHm9-または-(CHm12-が挙げられる。
 W、WおよびWとしては、好ましくは、それぞれ独立して、-(CHm15-、-(CHm20-または-(CHm22-(ここにおいて、該二価基は、それぞれ独立して、置換可能な位置で、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)が挙げられる。
 Wとしては、好ましくは、単結合または、-C(O)-NH-(CHm17-および-O-(CHm19-からなる群から選ばれる二価基(ここにおいて、該二価基は、それぞれ独立して、置換可能な位置で、C(O)-NH-(C1-C6)アルキル基およびNH-C(O)-(C1-C6)アルキルからなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)が挙げられる。
 ZおよびZとしては、好ましくは、酸素原子である。
 n1~n4としては、それぞれ独立して、好ましくは、3~10の整数が挙げられ、n5~n16としては、それぞれ独立して、好ましくは、0~10の整数が挙げられる。
 m1~m23としては、それぞれ独立して、好ましくは、1~10の整数が挙げられる。
 p1~p4としては、それぞれ独立して、好ましくは、1~10の整数が挙げられる。
 aとしては、0または1であり、bとしては、好ましくは、1である。
 本発明の1つの態様は、式(I)におけるR、R、Q、Q、A、L、aおよびbならびにGPCRリガンドがそれぞれ以下を表すコンジュゲートである。
が、-(CHn1-(ここにおいて、n1は3~10の整数を表す。)または-CHCH-O-C(O)-NH-(CH-である二価基を表し;
が、-(CHn5-、-(CHn6-O-(CHn7-又は-(CHn14-(OCHCH)n15-O-(CHn16-(ここにおいて、n5、n6、n7、n14、n15およびn16は、それぞれ独立して、0~10の整数を表す。)である二価基を表し;
が、式(IIa):
Figure JPOXMLDOC01-appb-C000107
(式中、Rは、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよく、Wは、-NH-、-O-、-NH-C(O)-(CHm1-および-NH-C(O)-(CHm2-O-からなる群から選ばれる二価基を表し、m1およびm2は、それぞれ独立して、1~20の整数を表す。)、式(IIb’):
Figure JPOXMLDOC01-appb-C000108
(式中、Rは、水素原子または(C1-C4)アルキル基を表し、Wは、-(CHm3-で表される二価基を表し、m3は1~10の整数を表す。)、式(IIc’):
Figure JPOXMLDOC01-appb-C000109
(式中、Rは、水素原子または(C1-C4)アルキル基を表し、Wは、-(CHm6-で表される二価基を表し、m6は1~10の整数を表す。)、式(IIe):
Figure JPOXMLDOC01-appb-C000110
(式中、R6’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm12-、-(CHm13-NH-および-(CHm14-O-からなる群から選ばれる二価基を表し、m12、m13およびm14は、それぞれ独立して、1~20の整数を表す。)又は式(IIf):
Figure JPOXMLDOC01-appb-C000111
(式中、Wは、-(CHm15-および-CHCH-(OCHCHm16-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m15およびm16は、それぞれ独立して、1~10の整数を表し、Wは、単結合または、-C(O)-NH-(CHm17-、-NH-C(O)-(CHm18-および-O-(CHm19-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、-C(O)-NH-(C1-C6)アルキルおよび-NH-C(O)-(C1-C6)アルキルからなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m17、m18、およびm19は、それぞれ独立して、1~20の整数を表す。)で表される二価基を表し;
が、上記記載の式(IIIa)または式(IIIb)である二価基を表し;
が、(C6-C10)アリーレン、-O-(C6-C10)アリーレンおよび(C6-C10)アリーレン-O-、上記記載の式(IVa)、式(IVb)、式(IVc)および式(IVd)からなる群から選ばれる二価基(ここにおいて、(C6-C10)アリーレン、-O-(C6-C10)アリーレンおよび(C6-C10)アリーレン-O-におけるアリーレン部分は、ハロゲン原子、(C1-C4)アルキル基、(C1-C4)アルコキシ基、(C1-C4)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~4個の置換基で置換されていてもよい)を表し;
Lが、上記記載の式(V)を表し(ここにおいて、Z及びZが、それぞれ独立して、酸素原子又は硫黄原子を表す。);
aが、0又は1を表し;
bが、0又は1を表し;
GPCRリガンドが、上記記載の式(VIa)、式(VIb)、式(VIc)または式(VId)を表す。
 本発明の別の態様は、式(I)におけるR、R、Q、A、L、aおよびbならびにGPCRリガンドがそれぞれ以下を表すコンジュゲートである。
が、-(CHn1-(ここにおいて、n1は3~10の整数を表す。)または-CHCH-O-C(O)-NH-(CH-である二価基を表し;
が、-(CHn5-、-(CHn6-O-(CHn7-又は-(CHn14-(OCHCH)n15-O-(CHn16-(ここにおいて、n5、n6、n7、n14、n15およびn16は、それぞれ独立して、3~10の整数を表す。)である二価基を表し;
が、上記記載の式(IIIa)または式(IIIb)である二価基を表し;
が、フェニレン、-O-フェニレン、フェニレン-O-、上記記載の式(IVa)、式(IVb)、式(IVc)および式(IVd)からなる群から選ばれる二価基(ここにおいて、フェニレン、-O-フェニレンおよび(フェニレン-O-におけるフェニレン部分は、ハロゲン原子、(C1-C4)アルキル基、(C1-C4)アルコキシ基、(C1-C4)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~4個の置換基で置換されていてもよい)を表し;
Lが、上記記載の式(V)を表し(ここにおいて、Z及びZが、それぞれ独立して、酸素原子又は硫黄原子を表す。);
aが、0を表し;
bが、1を表し;
GPCRリガンドが、上記記載の式(VIa)を表す。
 本発明のさらに別の態様は、式(I)におけるR、R、Q、A、L、aおよびbならびにGPCRリガンドがそれぞれ以下を表すコンジュゲートである。
が、-(CHn1-、-CHCH-S-S-CHCH-C(O)-NH-(CH-または-CHCH-O-C(O)-NH-(CH-である二価基(ここにおいて、n1は3~10の整数を表し、-CHCH-S-S-CHCH-C(O)-NH-(CH-は、置換可能な位置で、1~3個のR3031N-C(O)-(ここにおいて、R30、R31およびR32は、それぞれ独立して、水素原子または(C1-C6)アルキル基を表す。)で置換されていてもよい)を表し;
が、-(CHn5-、-(CHn6-O-(CHn7-、-(CHn14-(OCHCH)n15-O-(CHn16-または-(CHn17-NH-C(O)-(CHCHO)n18-CHCH-NH-C(O)-(CHn19-(ここにおいて、n5、n6、n7、n14、n15、n16、n17、n18およびn19は、それぞれ独立して、3~10の整数を表す。)である二価基を表し;
が、上記記載の式(IIb)、式(IIc)または式(IIe)である二価基を表し;
が、上記記載の式(IIIa)または式(IIIb)(式中、p1、p2、p3、およびp4は、それぞれ独立して、1~20の整数を表し、(CHp1および(CHp3は、1または複数の-O-および-SO-NH-からなる群より選ばれる2価基で遮断または末端に挿入されていてもよい)である二価基を表し;
が、フェニレン、-O-フェニレン、フェニレン-O-および上記記載の式(IVc)からなる群から選ばれる二価基(ここにおいて、フェニレン、-O-フェニレンおよび(フェニレン-O-におけるフェニレン部分は、ハロゲン原子、(C1-C4)アルキル基、(C1-C4)アルコキシ基、(C1-C4)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~4個の置換基で置換されていてもよい)を表し;
Lが、上記記載の式(V)を表し(ここにおいて、Z及びZが酸素原子を表す。);
aが、0または1を表し;
bが、0または1を表し;
GPCRリガンドが、上記記載の式(VIa)、式(VIb)、式(VIe)、式(VIf)、式(VIIa)、式(VIIb)または式(VIIc)で表される構造を表す。
 これらの例示の一つまたは任意の複数の組み合わせで限定された前記の各化合物群も、好ましい本発明の化合物の一つの態様になる。
 なお、本明細書中、「置換されていてもよい」で定義される基における置換基の数は、特に定義がなければ、置換可能であれば特に制限はなく、1または複数である。また、特に指示した場合を除き、各々の基の説明はその基が他の基の一部分または置換基である場合にも該当する。
 本発明の化合物は、医薬上許容される塩を形成してもよく、医薬上許容される塩としては、たとえば塩酸、臭化水素酸、硫酸、リン酸などの鉱酸との塩;ギ酸、酢酸、フマル酸、マレイン酸、シュウ酸、クエン酸、リンゴ酸、酒石酸、アスパラギン酸、グルタミン酸などの有機カルボン酸との塩;メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ヒドロキシベンゼンスルホン酸、ジヒドロキシベンゼンスルホン酸などのスルホン酸との塩;たとえばナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;アンモニウム塩;トリエチルアミン塩、ピリジン塩、ピコリン塩、エタノールアミン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミンとの塩等が挙げられる。
 本発明の化合物及びその医薬上許容される塩は、水和物、またはエタノール和物等の溶媒和物であってもよく、これらの水和物および/又は溶媒和物も本発明に係る化合物及びその医薬上許容される塩に包含される。
 本発明の化合物に立体異性体、互変異性体および/または光学異性体が存在する場合、本発明の化合物は、これらの異性体の混合物および単離された異性体を含む。
 本発明の化合物及びその医薬上許容される塩は、結晶であってもよく、結晶形が単一であっても結晶形混合物であってもよい。
 同位元素(例、H、H、14C)などで標識された化合物も、本発明の化合物に包含される。さらに、化合物(I)は、重水素変換体であってもよい。
(本発明化合物の製造方法)
 本発明の化合物の製造方法としては、特に限定されないが、例えば、リンカーが式(I)で表される本発明の化合物は、下記に示す製造法1~2等により製造することができる。
 原料化合物は、下記に示す製造法等により製造することができ、特に述べない限り、市販品として容易に入手できるか、あるいは、自体公知の方法またはこれらに準ずる方法に従って製造することができる。
 また、リンカーが式(I)以外の本発明の化合物は、公知の方法を用い、同様にして製造することができる。
 なお、以下の反応式中の各工程で得られた化合物は、反応液のままか粗生成物として次の反応に用いることもできる。また、下記の製造法で用いられる化合物は、反応に支障を来たさない範囲において、塩を形成してもよい。あるいは、該化合物は常法に従って反応混合物から単離することもでき、再結晶、蒸留、クロマトグラフィーなどの通常の分離手段により容易に精製することができる。
 本発明の化合物又はその医薬上許容される塩は、新規化合物であり、例えば、以下に述べる方法、後述する実施例及びそれに準じた方法によって製造することができる。
 [製造法1]
  式(I)中、Qが、下記式(IIIa):
Figure JPOXMLDOC01-appb-C000112
である化合物[下記式(I-1)の化合物]は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000113
(式中、R、R、Q、A、L、p1、p2、a、b、及び**は上記[2]または[3]と同義である。)
[工程1]
 化合物(1-1)と化合物(1-2)を反応させることにより、化合物(I-1)が製造される。反応は、触媒量の銅塩を用いた通常のHuisgenアジド-アルケン環化反応の反応条件に従って実施することができる(Lallanaら、Angew.Chem.Int.Ed.(2011)50:8794-8804)。具体的には、銅塩としては、例えば、硫酸銅等の2価の銅塩、臭化銅、ヨウ化銅、トリフルオロメチルスルホン酸銅等の1価の銅塩が挙げられ、必要に応じ添加剤やリガンドを用いてもよい。添加剤としては、例えば、アスコルビン酸ナトリウム、トリス(2-カルボキシエチル)ホスフィン(TCEP)等の還元剤等が挙げられ、リガンドとしては、例えば、トリス(ベンジルトリアゾリルメチル)アミン(TBTA)、トリス(ヒドロキシプロピルトリアゾリルメチル)アミン(THPTA)、バソフェナントロリンジスルホネート(BPDS)等が挙げられる。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性溶媒(トルエン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル等)、ケトン系溶媒(アセトン等)、水(緩衝液を含む)、アルコール系溶媒(メタノール、エタノール、t-ブタノール等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常-20~100℃の範囲から選択することができ、好ましくは、0℃~室温の範囲で行われる。
 [製造法2]
  式(I)中、Qが、下記式(IIIb):
Figure JPOXMLDOC01-appb-C000114
である化合物[下記式(I-2)の化合物]は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000115
(式中、R、R、Q、A、L、p3、p4、a、b、及び**は上記[2]または[3]と同義である。)
[工程1]
 製造法1記載の工程1と同様の方法によって、化合物(2-1)と化合物(2-2)から、化合物(I-2)は製造される。
 [(1-2)の製造法]
 製造法1で用いられる原料化合物(1-2)は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000116
(式中、R、Q、L、p2、a及び**は上記[2]または[3]と同義であり、Xは、例えば、塩素原子、臭素原子、アルコキシカルボニルオキシ、フェノキシ、p-ニトロフェノキシ又はスクシンイミジルオキシ等のカルボン酸誘導体の活性化基、あるいは水酸基である。)
[工程1]
 化合物(1-2)は、化合物(3-1)と化合物(3-2)を反応させることにより合成される。Xが、例えば、塩素原子、臭素原子、アルコキシカルボニルオキシ、フェノキシ、p-ニトロフェノキシ又はスクシンイミジルオキシ等のカルボン酸の活性化基の場合、反応は、塩基の存在あるいは非存在下にて行う。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル等)、ケトン系溶媒(アセトン等)、水(緩衝液を含む)、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、水酸化アルカリ金属(水酸化カリウム、水酸化ナトリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、炭酸カリウム、ジイソプロピルエチルアミン、トリエチルアミンが挙げられる。塩基の使用量としては、化合物(3-2)に対して通常1~5当量の範囲から選択される。反応温度としては、通常-78~150℃の範囲から選択でき、好ましくは、-78~50℃の範囲で行われる。
 Xが水酸基の場合、縮合剤の存在下反応を行う。縮合剤としては、例えば、カルボジイミド(ジシクロヘキシルカルボジイミド、1-エチル-3-(ジメチルアミノプロピル)カルボジイミド等)、ホスホニウム塩(BOP等)、グアニジウム塩(HBTU等)等が挙げられ、必要に応じ、添加剤(1-ヒドロキシベンゾトリアゾール等)や塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)を用いてもよい。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、アセトニトリル等)、ケトン系溶媒(アセトン等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常0~100℃の範囲から選択され、好ましくは、0~50℃の範囲で行われる。
 また、Xが水酸基の場合、必要に応じ、その水酸基を、例えば、塩素原子、臭素原子、アルコキシカルボニルオキシ又はスクシンイミジルオキシ等の活性化基に変換した後に、化合物(3-2)と反応させることにより、化合物(1-2)は製造される。
 Xを水酸基から塩素原子又は臭素原子に変換する場合、例えば、塩化チオニル、塩化オキサリル、三塩化リン、五塩化リン、オキシ塩化リン、ジクロロトリフェニルホスホラン、四塩化炭素-トリフェニルホスフィン、臭化チオニル、ジブロモトリフェニルホスホラン等が用いられる。溶媒としては、例えば、非プロトン性溶媒(トルエン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、又はこれらの混合溶媒が挙げられ、無溶媒でもよい。また、必要に応じて、DMF等の添加剤を用いてもよい。反応温度としては、通常-78~100℃の範囲から選択することができる。
 Xを水酸基からアルコキシカルボニルオキシに変換する場合、塩基の存在下、例えば、クロロギ酸エチル、クロロギ酸イソプロピル、クロロギ酸イソブチル等のハロゲン化ギ酸アルキル試薬を反応させることにより行う。ハロゲン化ギ酸アルキル試薬の使用量としては、カルボン酸に対して通常1~5当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性溶媒(トルエン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、水酸化アルカリ金属(水酸化カリウム、水酸化ナトリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミンが挙げられる。塩基の使用量としては、カルボン酸に対して通常1~10当量の範囲から選択される。反応温度としては、通常-78~100℃の範囲から選択することができ、好ましくは、-78℃~室温の範囲で行われる。
 Xを水酸基からスクシンイミジルオキシに変換する場合、縮合剤の存在下、N-ヒドロキシスクシンイミドを反応させることにより行う。縮合剤としては、例えば、カルボジイミド(ジシクロヘキシルカルボジイミド、1-エチル-3-(ジメチルアミノプロピル)カルボジイミド等)、ホスホニウム塩(BOP等)、グアニジウム塩(HBTU等)等が挙げられ、必要に応じ、添加剤(1-ヒドロキシベンゾトリアゾール等)や塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)を用いてもよい。N -ヒドロキシスクシンイミド及び縮合剤の使用量としては、カルボン酸に対して通常1~5当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、アセトニトリル等)、ケトン系溶媒(アセトン等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常0~100℃の範囲から選択され、好ましくは、0~50℃の範囲で行われる。
 なお、化合物(3-2)は、例えば、アミダイト試薬を用いたホスホロアミダイト法(Current Protocols in Nucleic Acid Chemistry,John Wiley&Sons,New York(2000))等、通常の核酸合成法に従い合成される。
 [(2-2)の製造法]
 製造法2で用いられる原料化合物(2-2)は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000117
(式中、R、Q、L、p4、a及び**は、上記[2]または[3]と同義であり、P11はカルボン酸の保護基であり、Xは、塩素原子、臭素原子、ヨウ素原子、メタンスルホニルオキシ基(以下、「OMs」と称する場合がある。)、p-トルエンスルホニルオキシ基(以下、「OTs」と称する場合がある。)、トリフルオロメタンスルホニルオキシ基(以下、「OTf」と称する場合がある。)又は水酸基である。)
[工程1]
 化合物(4-2)は、化合物(4-1)に塩基の存在下あるいは非存在下、アジド化試薬を反応させることにより合成される。
 Xが、塩素原子、臭素原子、ヨウ素原子、OMs、OTs又はOTfの場合、アジド化試薬としては、例えば、アジ化ナトリウム等の金属アジド化合物、トリメチルシリルアジド等の有機アジド化合物、テトラブチルアンモニウムアジド等の四級アンモニウムアジド化合物等が挙げられる。アジド化試薬の使用量としては、化合物(4-1)に対して通常1~10当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、水、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。必要に応じて、例えば、塩化テトラブチルアンモニウム等の相間移動触媒等を添加剤として加えてもよい。反応温度としては、通常0℃~150℃の範囲から選択でき、好ましくは、室温~100℃の範囲で行われる。
 Xが水酸基の場合、アジド化試薬としては、例えば、ジフェニルリン酸アジド等が挙げられ、使用量としては、化合物(4-1)に対して通常1~10当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性溶媒(トルエン等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、ケトン系溶媒(アセトン等)又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エンが挙げられる。塩基の使用量としては、化合物(4-1)に対して通常1~10当量の範囲から選択される。反応温度としては、通常-78~150℃の範囲から選択することができ、好ましくは、0~100℃の範囲で行われる。
 また、Xが水酸基の場合、一旦、Xを塩素原子、臭素原子、ヨウ素原子、OMs、OTs又はOTfに変換することも可能である。
 Xを水酸基から塩素原子、臭素原子又はヨウ素原子に変換する場合、酸の存在下あるいは非存在下、ハロゲン化剤を反応させることにより行う。ハロゲン化剤としては、例えば、塩化チオニル、塩化オキサリル、三塩化リン、五塩化リン、オキシ塩化リン、四塩化炭素-トリフェニルホスフィン、N-クロロスクシンイミド-トリフェニルホスフィン等の塩素化剤、臭化チオニル、臭化水素酸、三臭化リン、四臭化炭素-トリフェニルホスフィン、N-ブロモスクシンイミド-トリフェニルホスフィン、臭素-トリフェニルホスフィン等の臭素化剤、ヨウ化水素酸、ヨウ化カリウム、ヨウ素-トリフェニルホスフィン等のヨウ素化剤が挙げられる。使用される酸としては、例えば、塩酸、硫酸、リン酸等が挙げられる。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性溶媒(トルエン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、水、又はこれらの混合溶媒が挙げられ、無溶媒でもよい。また、必要に応じ、塩基を加えてもよい。使用される塩基としては、例えば、有機塩基(イミダゾール、N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられる。反応温度としては、通常-78~100℃の範囲から選択することができ、好ましくは、0~100℃の範囲で行われる。
 Xを水酸基からOMs、OTs又はOTfに変換する場合、塩基の存在下、スルホニル化剤を反応させることにより行う。スルホニル化剤としては、例えば、メタンスルホニルクロリド、トシルクロリド、トリフルオロスルホン酸無水物等が挙げられる。スルホニル化剤の使用量としては、Xが水酸基の化合物に対して通常1~5当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、ケトン系溶媒(アセトン等)又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミンが挙げられる。塩基の使用量としては、化合物(4-1)に対して通常1~10当量の範囲から選択される。反応温度としては、通常-78~100℃の範囲から選択することができ、好ましくは、-78℃~室温の範囲で行われる。
[工程2]
 例えば、文献(Protective Groups in Organic Synthesis 3rd Edition(John Wiley & Sons,Inc.))に示されている一般的なカルボン酸の保護基の脱保護条件を用いることにより、化合物(4-2)から、化合物(4-3)は製造される。
[工程3]
 (1-2)の製造法記載の工程1に記載のXが水酸基の場合と同様の方法によって、化合物(4-3)と化合物(3-2)から、化合物(2-2)は製造される。具体的には、縮合剤を用いる方法や、化合物(4-3)のカルボン酸の水酸基を、例えば、塩素原子、臭素原子、アルコキシカルボニルオキシ又はスクシンイミジルオキシ等の活性化基に変換した後に、化合物(3-2)と反応させる方法により、化合物(2-2)は製造される。
 [(3-1a)の製造法]
 化合物(3-1)中、Qが、
Figure JPOXMLDOC01-appb-C000118
であり、aが1である下記式(3-1a)の化合物は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000119
(式中、R、R及びp2は上記[2]と同義であり、W11は上記[2]のWと同義であり、P12は水素原子又は一般的なアミノ基もしくは水酸基の保護基であり、Xは、例えば、塩素原子、臭素原子、アルコキシカルボニルオキシ又はスクシンイミジルオキシ等のカルボン酸の活性化基、あるいは水酸基であり、Xはフェノキシ、p-ニトロフェノキシ又はアルコキシ等の活性化基である。)
[工程1]
 (1-2)の製造法記載の工程1と同様の方法によって、化合物(5-1)と化合物(5-2)から、化合物(5-3)は製造される。
[工程2]
 P12が保護基の場合、例えば、文献(Protective Groups in Organic Synthesis 3rd Edition(John Wiley & Sons,Inc.))に示されている一般的な脱保護条件を用いることにより、P12を一旦、水素原子に変換する。続いて、塩基の存在下、例えば、クロロギ酸フェニル、クロロギ酸(p-ニトロフェニル)等のハロゲン化ギ酸アリール試薬、クロロギ酸エチル、クロロギ酸イソプロピル、クロロギ酸イソブチル等のハロゲン化ギ酸アルキル試薬を反応させることにより、化合物(3-1a)は製造される。ハロゲン化ギ酸アリール又はハロゲン化ギ酸アルキルの使用量としては、化合物(5-3)に対して通常1~5当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性溶媒(トルエン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、水酸化アルカリ金属(水酸化カリウム、水酸化ナトリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミンが挙げられる。塩基の使用量としては、カルボン酸に対して通常1~10当量の範囲から選択される。反応温度としては、通常-78~100℃の範囲から選択することができ、好ましくは、-78℃~室温の範囲で行われる。
 [(3-1b)の製造法]
 化合物(3-1)中、Qが、下記式(IIb):
Figure JPOXMLDOC01-appb-C000120
あるいは式(IIc):
Figure JPOXMLDOC01-appb-C000121
であり、aが1である下記式(3-1b)の化合物は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000122
(式中、p2は上記[2]と同義であり、R21は上記[2]のRあるいはRと同義であり、W21は上記[2]のWあるいはWと同義であり、Xは(1-2)の製造法記載と同義であり、Xは(3-1a)の製造法記載と同義であり、R22は、カルボン酸又は保護されたカルボン酸、水素原子、あるいは水酸基又はアミンの保護基であり、Xは、塩素原子、臭素原子、ヨウ素原子、OMs、OTs、OTf又は水酸基である。)
[工程1]
 (1-2)の製造法記載の工程1と同様の方法によって、化合物(5-2)とヒドラジンから、化合物(6-1)は製造される。
[工程2]
 化合物(6-4)は、化合物(6-2)と化合物(6-3)を反応させることにより合成される。Xが、例えば、塩素原子、臭素原子、ヨウ素原子、OMs、OTs又はOTfの場合、塩基の存在下にて反応を行う。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル等)、ケトン系溶媒(アセトン等)又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、水酸化アルカリ金属(水酸化カリウム、水酸化ナトリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、炭酸セシウム、炭酸カリウム、水素化ナトリウムが挙げられる。塩基の使用量としては、化合物(6-2)に対して通常1~5当量の範囲から選択される。反応温度としては、通常-78~150℃の範囲から選択でき、好ましくは、室温~100℃の範囲で行われる。
 Xが水酸基の場合、光延の方法(例えば、Synthesis,1(1981)等)に従って、例えば、アゾジカルボン酸ジエチルまたはアゾジカルボン酸ジイソプロピル等のアゾ化合物と、例えば、トリフェニルホスフィン等のリン試薬を用いて、化合物(6-4)を製造することができる。反応溶媒としては、例えば、THF等の不活性溶媒が挙げられ、反応温度としては、例えば、0℃~溶媒の沸点の範囲が挙げられる。
[工程3]
 化合物(6-5)は、酸の存在下あるいは非存在下、化合物(6-4)と化合物(6-1)を反応させることにより合成される。使用される酸としては、例えば、酢酸、塩酸、硫酸、p-トルエンスルホン酸等が挙げられ、好ましくは、酢酸が挙げられる。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、水(緩衝液を含む)、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常-78~150℃の範囲から選択することができ、好ましくは、0~100℃の範囲で行われる。
[工程4]
 R22が保護基の場合、例えば、文献(Protective Groups in Organic Synthesis 3rd Edition(John Wiley & Sons,Inc.))に示されている一般的な脱保護条件を用いることにより、R22を一旦、カルボン酸又は水素原子に変換する。続いて、W21が-(CHm3-あるいは-(CHm6-(ここにおいて、m3およびm6は、それぞれ独立して、1~20の整数を表す。)であり、R22がカルボン酸である場合、必要に応じて上記原料化合物(1-2)の製造の工程1に記載の方法により、水酸基を変換することによって化合物(6-5)を化合物(3-1b)に変換することができる。また、W21が-(CHm4-NH-、-(CHm5-O-、-(CHm7-NH-あるいは-(CHm8-O-(ここにおいて、m4、m5およびm7は、それぞれ独立して、1~20の整数を表す。)であり、R22が水素原子である場合、(3-1a)の製造法の工程2と同様の方法によって、化合物(6-5)は化合物(3-1b)に変換される。
 [(3-1c)の製造法]
  化合物(3-1)中、Qが、下記式(IId):
Figure JPOXMLDOC01-appb-C000123
あるいは式(IIe):
Figure JPOXMLDOC01-appb-C000124
であり、aが1である下記式(3-1c)の化合物は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000125
(式中、p2は上記[2]と同義であり、R23は上記[2]のR5’あるいはR6’と同義であり、W22は上記[2]のWあるいはWと同義であり、Xは(1-2)の製造法記載と同義であり、R24は、カルボン酸又は保護されたカルボン酸、水素原子、あるいは水酸基又はアミンの保護基であり、Xは、塩素原子、臭素原子、ヨウ素原子、OMs、OTs又はOTfである。)
[工程1]
 化合物(6-4)’とヒドロキシルアミンを反応させることにより、化合物(7-1)は合成される。ヒドロキシルアミンの使用量としては、化合物(6-4)’に対して通常1~10当量の範囲から選択される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、水、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。必要に応じて、例えば、酢酸ナトリウム等を添加剤として加えてもよい。反応温度としては、通常0℃~150℃の範囲から選択でき、好ましくは、室温~100℃の範囲で行われる。
[工程2]
 化合物(7-3)は、塩基の存在下、化合物(7-1)と化合物(7-2)を反応させることにより合成される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル等)、ケトン系溶媒(アセトン等)又はこれらの混合溶媒が挙げられる。使用される塩基としては、例えば、炭酸アルカリ金属(炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等)、水素化アルカリ金属(水素化ナトリウム、水素化カリウム等)、水酸化アルカリ金属(水酸化カリウム、水酸化ナトリウム等)、有機塩基(N-メチルモルホリン、トリエチルアミン、ジイソプロピルエチルアミン、トリブチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[5.4.0]ウンデカ-7-エン、ピリジン等)が挙げられ、好ましくは、炭酸セシウム、炭酸カリウム、水素化ナトリウムが挙げられる。塩基の使用量としては、化合物(7-1)に対して通常1~5当量の範囲から選択される。反応温度としては、通常-78~150℃の範囲から選択でき、好ましくは、室温~100℃の範囲で行われる。
[工程3]
 (3-1b)の製造法記載の工程4と同様の方法によって、化合物(7-3)から化合物(3-1c)は製造される。
[(3-1d)の製造法]
 化合物(3-1)中、Qが、下記式(IIf):
Figure JPOXMLDOC01-appb-C000126
であり、aが1である下記式(3-1d)の化合物は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000127
(式中、R、W、W、p2、L及び**は上記[2]または[3]と同義である。)
[工程1]
 化合物(8-3)は、酸の存在下あるいは非存在下、化合物(8-1)と化合物(8-2)を反応させることにより合成される。使用される酸としては、例えば、酢酸、塩酸、硫酸、p-トルエンスルホン酸、三フッ化ホウ素ジエチルエーテル錯体等が挙げられ、好ましくは、酢酸が挙げられる。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、ケトン系溶媒(アセトン等)、水(緩衝液を含む)、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常-78~150℃の範囲から選択することができ、好ましくは、0~50℃の範囲で行われる。
[工程2]
 (1-2)の製造法記載の工程1に記載のXが水酸基の場合と同様の方法によって、化合物(8-3)と化合物(3-2)から、化合物(8-4)は製造される。具体的には、縮合剤を用いる方法や、化合物(8-3)のカルボン酸の水酸基を、例えば、塩素原子、臭素原子、アルコキシカルボニルオキシ又はスクシンイミジルオキシ等の活性化基に変換した後に、化合物(3-2)と反応させる方法により、化合物(8-4)は製造される。
[工程3]
 化合物(8-4)と化合物(8-5)を反応させることにより、化合物(1-3d)は製造される。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、アセトニトリル等)、水(緩衝液を含む)、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常0~100℃の範囲から選択することができ、好ましくは、室温~80℃の範囲で行われる。
 [製造法4]
 式(I)中、Rが、-C(CH-CH-NH-C(O)-(CHCHO)-CHCH-NH-C(O)-(CH)-である化合物は、公開特許(Yamazakiら、WO2010/053115)、参考例35および実施例34の方法により合成される。
 [製造法5]
 式(I)中、Rが、-CHCH-S-S-CHCH-C(O)-NH-(CH-である化合物[下記式(9-3)の化合物]は、例えば、下記の方法に従って製造することができる。
Figure JPOXMLDOC01-appb-C000128
(式中、R、Q、Q、A、L、a、b、及び**は上記[2]または[3]と同義である。)
[工程1]
 公知の方法で合成できる化合物(9-1)と化合物(9-2)を反応させることにより、化合物(9-3)が製造される。反応は、緩衝液の存在下あるいは非存在下、化合物(9-1)と化合物(9-2)を反応させることにより合成される。使用される緩衝液としては、例えば、ホウ酸緩衝液、リン酸緩衝液、酢酸緩衝液、クエン酸緩衝液等が挙げられ、好ましくは、ホウ酸緩衝液が挙げられる。溶媒としては、例えば、エーテル系溶媒(THF、ジエチルエーテル、DME、1,4-ジオキサン等)、ハロゲン系溶媒(塩化メチレン、クロロホルム等)、非プロトン性極性溶媒(DMF、N,N-ジメチルアセトアミド、DMSO、NMP、アセトニトリル、HMPT等)、ケトン系溶媒(アセトン等)、水(緩衝液を含む)、アルコール系溶媒(メタノール、エタノール等)、又はこれらの混合溶媒が挙げられる。反応温度としては、通常-78~150℃の範囲から選択することができ、好ましくは、0℃~室温の範囲で行われる(参考例37、参考例53、実施例44参照)。
 本発明の化合物の他の原料化合物は、公知化合物であるか、公知化合物から公知の合成方法を組み合わせることにより合成することができる。
 本発明の化合物、又はその中間体がアミノ基、カルボキシ基、水酸基、又はオキソ基等の官能基を有している場合、必要に応じて保護、脱保護の技術を用いることができる。好適な保護基、保護する方法、及び脱保護する方法としては、前述のProtective Groups in Organic Synthesis 3rd Edition(John Wiley & Sons,Inc.)等に詳細に記載されている。
 本発明の化合物、又はそれを製造するための中間体は当業者に公知の方法で精製することができる。例えば、カラムクロマトグラフィー(例えば、シリカゲルカラムクロマトグラフィー、もしくはイオン交換カラムクロマトグラフィー)、又は再結晶等で精製することができる。例えば、再結晶溶媒としては、メタノール、エタノールもしくは2-プロパノール等のアルコール系溶媒、ジエチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、ベンゼンもしくはトルエン等の芳香族炭化水素系溶媒、アセトン等のケトン系溶媒、ヘキサン等の炭化水素系溶媒、ジメチルホルムアミドもしくはアセトニトリル等の非プロトン系溶媒、水、又はこれらの混合溶媒等を用いることができる。その他精製方法としては、実験化学講座(日本化学会編、丸善)1巻等に記載された方法等を用いることができる。
 本発明の化合物の投与経路としては、大きく分けて経口投与および非経口投与がある。該化合物の投与量は、化合物の種類、投与形態、投与方法、患者の症状・年齢等により異なるが、通常0.005~150mg/kg/日、好ましくは、0.05~20mg/kg/日であり、1回または数回に分けて投与することができる。
 本発明の化合物は通常、医薬用担体と混合して調製した医薬組成物の形で医薬として投与され、具体例としては、錠剤、カプセル剤等の経口剤、軟膏剤、膀胱内注入剤等の外用液剤、貼付剤、吸入剤、点鼻剤等の外用剤、皮内注射剤、皮下注射剤または腹腔内、関節腔内等の体腔内注射剤等の注射剤が挙げられる。これらの医薬組成物は常法に従って調製される。
 医薬用担体としては、医薬分野において常用され、かつ本発明に係る化合物と反応しない物質が用いられる。錠剤、カプセル剤製造に用いられる医薬用担体の具体例としては、乳糖、トウモロコシデンプン、白糖、マンニトール、硫酸カルシウム、結晶セルロースのような賦形剤、クロスカルメロースナトリウム、変性デンプン、カルメロースカルシウム、クロスポビドン、低置換度ヒドロキシプロピルセルロースのような崩壊剤、メチルセルロース、ゼラチン、アラビアゴム、エチルセルロース、ヒドロキシプロピルセルロース、ポビドンのような結合剤、軽質無水ケイ酸、ステアリン酸マグネシウム、タルク、ショ糖脂肪酸エステル、硬化油のような滑沢剤が挙げられる。錠剤は、カルナウバロウ、ヒドロキシプロピルメチルセルロース、マクロゴール、セルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースアセテートフタレート、白糖、酸化チタン、ソルビタン脂肪酸エステル、リン酸カルシウムのようなコーティング剤を用い、周知の方法でコーティングしてもよい。
 貼付剤の基剤の具体例としては、ポリビニルピロリドン、ポリイソブチレン、酢酸ビニル共重合体、アクリル系共重合体のような高分子基剤、グリセリン、プロピレングリコール、ポリエチレングリコール、クエン酸トリエチル、クエン酸アセチルトリエチル、フタル酸ジエチル、セバシン酸ジエチル、セバシン酸ジブチル、アセチル化モノグリセリドのような可塑剤が挙げられる。上記経皮吸収促進剤としては、薬理学的に許容しうるものであればいずれでもよく、例えば、エタノール、ジエチレングリコールなどのアルコール類;ドデシルピロリドンなどの極性溶剤;尿素;ラウリル酸エチル;エイゾン;オリーブ油などがあげられる。
 さらに必要に応じて、カオリン、ベントナイト、酸化亜鉛、酸化チタンなどの無機充填剤;アガロース、カラギーナン、アルギン酸またはその塩、トラガント、アカシアゴム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシビニルポリマー、ゼラチン、コーンスターチ、キサンタンガム、デキストリン、ポリビニルアルコールなどのポリマーなどの粘度調節剤;老化防止剤;pH調節剤;グリセリン、プロピレングリコールなどの保湿剤を添加してもよい。また、界面活性剤を添加しても良く、その例としては、ラウリン酸カリウム、パルミチン酸カリウム、ミリスチン酸カリウム等の脂肪酸アルカリ塩;ラウリル硫酸ナトリウム、セチル硫酸ナトリウム、ヒマシ油硫酸化物(ロート油)等の硫酸エステル等のイオン性界面活性剤や、ステアリン酸ソルビタン、モノオレイン酸ソルビタン、セスキオレイン酸ソルビタン、トリオレイン酸ソルビタン等のソルビタン脂肪酸エステル(いわゆるSpan);ポリソルベート20、ポリソルベート40、ポリソルベート60、ポリソルベート65、ポリソルベート80、ポリソルベート85、ポリオキシエチレンソルビタン脂肪酸エステル(いわゆるTween);ポリオキシエチレン硬化ヒマシ油(いわゆるHCO);ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル;モノラウリン酸ポリエチレングリコール、モノステアリン酸ポリエチレングリコール等のポリエチレングリコール脂肪酸エステル;ポロキサマー(いわゆるプルロニック)等の非イオン性界面活性剤が挙げられる。さらにレシチン(ホスファチジルコリン、ホスファチジルセリンなどレシチンから単離された精製リン脂質をも含む)またはその水素添加物をはじめとする誘導体などを添加してもよい。
 吸入剤は、本発明の化合物を粉末または液状にして、吸入噴霧剤または担体中に配合し、例えば、定量噴霧式吸入器、ドライパウダー吸入器などの吸入容器に充填することにより製造することができる。噴霧剤、エアロゾル剤、スプレー剤であってもよい。吸入噴射剤としては、従来公知のものを広く使用することができ、例えば、フロン-11、フロン-12、フロン-21、フロン-22、フロン-113、フロン-114、フロン-123、フロン-142c、フロン-134a、フロン-227、フロン-C318、1,1,1,2-テトラフルオロエタンなどのフロン系ガス、HFA-227、HFA-134aなどの代替フロンガス、プロパン、イソブタン、ブタンなどの炭化水素系ガス、ジエチルエーテル、窒素ガス、炭酸ガスなどがあげられる。担体としては、従来公知のものを広く使用でき、例えば、糖類、糖アルコール類、アミノ酸類などがあげられる。
 吸入用液剤の場合には、防腐剤(塩化ベンザルコニウム、パラベン等)、着色剤、緩衝化剤(リン酸ナトリウム、酢酸ナトリウム等)、等張化剤(塩化ナトリウム、濃グリセリン等)、増粘剤(カルボキシビニルポリマー等)、防腐剤(塩化ベンザルコニウム、パラベン等)、吸収促進剤などを必要に応じて適宜選択して調製される。
 吸入用粉末剤の場合には、滑沢剤(ステアリン酸およびその塩等)、結合剤(デンプン、デキストリン等)、賦形剤(乳糖、セルロース等)、着色剤、吸収促進剤などを必要に応じて適宜選択して調製される。
 点鼻剤は、滴下式、塗布式、スプレー式等の種々の形態をとることができる。また、スプレー式の場合には、容器に付属されたポンプを手動で動かして液剤を噴出する機構のある手動ポンプ式点鼻剤、圧縮ガス(空気または酸素、窒素、炭酸または、混合ガス)等の噴射剤を容器内に充填しておいて容器に付属して設けた弁を動かして液剤を自動噴出する機構のあるエアゾール式点鼻剤なども含む。
 注射剤は、本発明の化合物を注射用蒸留水、更に、必要に応じて溶解補助剤、緩衝剤、pH調整剤、等張化剤、無痛化剤、保存剤等を添加した溶液に溶解させて調製したものや、該化合物を注射用蒸留水または植物油に懸濁して調製したものであってもよく、この場合、必要に応じて基剤,懸濁化剤,粘調剤等を添加することができる。また、粉末または凍結乾燥品を用時溶解する形であってもよく、必要に応じて賦形剤等を添加することができる。
 医薬組成物中における本発明に係る化合物の含有量はその剤形に応じて異なるが、通常、全組成物中0.0025~20重量%である。これらの医薬組成物はまた、治療上有効な他の物質を含有していてもよい。併用に際しては、本発明の化合物と併用薬剤の投与時期は特に限定されず、本発明の化合物と併用薬剤の配合比は、投与対象、投与方法、疾患、組合せ等により適宜設定することができる。例えば、本発明の併用剤における併用薬剤の含有量は、製剤の形態によって異なるが、通常、全組成物中0.0025~20重量%である。
 以下に参考例、実施例及び試験例を挙げて本発明をさらに具体的に説明するが、これらは本発明を限定するものではない。なお、化合物の同定は元素分析値、マス・スペクトル、高速液体クロマト質量分析計(LCMS)、飛行時間型質量分析計(TOF-MS)、IRスペクトル、NMRスペクトル、高速液体クロマトグラフィー(HPLC)等により行った。
 明細書の記載を簡略化するために実施例及び実施例中の表において以下に示すような略号を用いることもある。核酸配列に用いられる記号としては、3’-は3’末端、5’-は5’末端、A、G、C、UおよびTはそれぞれ、アデニン、グアニン、シトシン、ウラシルおよびチミンを核酸塩基とするリボヌクレオチド、a、g、cおよびtはそれぞれ、アデニン、グアニン、シトシンおよびチミンを核酸塩基とするデオキシリボヌクレオチドを意味する。また、A(M)、G(M)、C(M)、U(M)はそれぞれ、2’-O-メチル化されたアデニン、グアニン、シトシンおよびウラシルを、A(F)、G(F)、C(F)およびU(F)はそれぞれ、2’位の位置がフッ素化されたアデニン、グアニン、シトシンおよびウラシルを核酸塩基とするリボヌクレオチドを意味する。さらに、^はホスホロチオエート基を意味する。
 以下の実施例中の「室温」は通常約10℃ないし約35℃を示す。混合溶媒において示した比は、特に断らない限り容量比を示す。%は、特に断らない限り重量%を示す。
参考例1
4-ペンチン酸スクシンイミジルエステル
Figure JPOXMLDOC01-appb-C000129
 窒素雰囲気下、4-ペンチン酸(8.00g)とN-ヒドロキシこはく酸イミド(9.85g)のジオキサン溶液(100mL)に、ジシクロヘキシルカルボジイミド(17.6g)を加え、室温で24時間攪拌した。析出物をろ過で除き、ろ液を減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=70/30~30/70)で精製し、標題化合物を白色固体として得た。
1H-NMR (300MHz, CDCl3) δ: 2.82-2.88 (m, 6H), 2.57-2.62 (m, 2H), 2.03 (t, J = 2.7 Hz, 1H).
参考例2
5-ヘキシン酸スクシンイミジルエステル
Figure JPOXMLDOC01-appb-C000130
 参考例1に記載の方法と同様に反応、処理して、5-ヘキシン酸から標題化合物を得た。
参考例3
10-ウンデシン酸スクシンイミジルエステル
Figure JPOXMLDOC01-appb-C000131
 参考例1に記載の方法と同様に反応、処理して、10-ウンデシン酸から標題化合物を得た。
参考例4
5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
Figure JPOXMLDOC01-appb-C000132
(1)5-ブロモアセチル-2-ヒドロキシベンズアルデヒド
 窒素雰囲気下、塩化アルミニウム(1.10kg)の塩化メチレン懸濁液(3990mL)にブロモ酢酸ブロミド(500g)の塩化メチレン懸濁液(556mL)を室温で滴下した。滴下終了後、30℃まで昇温し、同温度で1時間攪拌した。この混合物にサリチルアルデヒド(248g)の塩化メチレン溶液(551mL)を滴下し、36時間加熱還流した。混合物を冷却後、氷水(10.6L)にゆっくりと注ぎ、有機層を分液した。水層をクロロホルムで抽出し、合わせた有機層を水、飽和食塩水の順に洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をヘキサン/クロロホルム=1:1の混合溶液で洗浄して、標題化合物(165g)を薄茶色の固形物として得た。
(2)2-ブロモ-1-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エタノン
 窒素雰囲気下、上記で得られた5-ブロモアセチル-2-ヒドロキシベンズアルデヒド(165g)の酢酸溶液(3384mL)に10~20℃に冷却しながら水素化ホウ素ナトリウム(25.7g)を8回に分けて加えた。混合物を室温まで昇温し、1時間攪拌した。混合物を減圧濃縮し、残渣に水を加え、飽和炭酸水素ナトリウム溶液で中和した。混合物を酢酸エチルで2回抽出し、合わせた有機層を水、飽和食塩水の順に洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮して標題化合物(157g)を茶褐色の固形物として得た。
(3)2-ブロモ-1-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)エタノン
 窒素雰囲気下、上記で得られた2-ブロモ-1-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エタノン(155g)とp-トルエンスルホン酸・1水和物(1.2g)の塩化メチレン懸濁液(3160mL)に2,2-ジメトキシプロパン(78.8g)の塩化メチレン溶液(1220mL)を30分かけて滴下し、室温で3時間攪拌した。反応混合物を飽和炭酸水素ナトリウム溶液(1L)で洗浄し、有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し、標題化合物(73.5g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.82 (dd, J = 8.7, 2.1 Hz, 1H), 7.70 (d, J = 2.1 Hz, 1H), 6.88 (d, J = 8.7 Hz, 1H), 4.90 (s, 2H), 4.38 (s, 2H), 1.57 (s, 6H).
MS (ESI) m/z 285 (M + H)+.
(4)ジ-tert-ブチル [2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソエチル]イミドジカルボネート
 窒素雰囲気下、上記で得られた2-ブロモ-1-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)エタノン(73.5g)とジ-tert-ブチル イミノカルボキシレート(55.9g)のアセトニトリル懸濁液(756mL)に炭酸セシウム(83.8g)を加え、室温で24時間攪拌した。反応混合物に水(1260mL)を加え、ジエチルエーテル(1260mL)で抽出した。有機層を飽和食塩水(630mL)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製し、標題化合物(86.9g)を白色の固形物として得た。
(5)tert-ブチル [2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソエチル]カルバメート
 窒素雰囲気下、上記で得られたジ-tert-ブチル [2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソエチル]イミドジカルボネート(86.9g)の塩化メチレン溶液(938mL)にトリフルオロ酢酸(19.3mL)を加え、室温で4時間攪拌した。反応混合物に0.5N水酸化ナトリウム水溶液(750mL)を加え、分液した。有機層を水(938mL)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し、標題化合物(53.0g)を白色の固形物として得た。
(6)tert-ブチル [2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-ヒドロキシエチル]カルバメート
 窒素雰囲気下、上記で得られたtert-ブチル [2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソエチル]カルバメート(50.4g)のメタノール溶液(984mL)に-20℃に冷却しながら、水素化ホウ素ナトリウム(11.8g)を加えた。-20℃で2時間攪拌後、水(394mL)を加え、メタノールを減圧留去した。残渣に酢酸エチル(1270mL)を加えて抽出し、水層をさらに酢酸エチル(830mL)で抽出した。あわせた有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮して標題化合物(49.8g)を白色の固形物として得た。
(7)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 窒素雰囲気下、0~5℃に冷却した55%水素化ナトリウム(8.79g)のDMF懸濁液(152mL)に、上記で得られたtert-ブチル [2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-ヒドロキシエチル]カルバメート(49.8g)のDMF溶液(455mL)を97分かけて滴下した。滴下終了後、室温で3時間攪拌した。反応混合物を0℃まで冷却し、水(205mL)で希釈した後、1N塩酸水溶液(201mL)を加えて中和した。さらに水(205mL)および酢酸エチル(774mL)を加えて分液した。有機層を飽和食塩水(194mL)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣にジエチルエーテル/ヘキサンの混合溶液を加えて結晶化させて標題化合物(29.7g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.16 (dd, J = 8.4, 2.0 Hz, 1H), 7.04 (d, J = 2.0 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.54 (t, J = 8.1 Hz, 1H), 5.38 (s, 1H), 4.85 (s, 2H), 3.93 (t, J = 8.6 Hz, 1H), 3.56-3.53 (m, 1H), 1.55 (s, 6H).
MS (ESI) m/z 272 (M + Na)+.
参考例5
(4-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール
Figure JPOXMLDOC01-appb-C000133
(1)tert-ブチル4-ブロモベンゾエート
 窒素雰囲気下、-40~-30℃に冷却したtert-ブトキシカリウム(31.2g)の脱水THF溶液(240mL)にp-ブロモベンゾイルクロリド(50.8g)の脱水THF溶液(240mL)を3時間かけて滴下した。反応混合物を室温まで昇温し、1時間攪拌した。反応混合物をtert-ブチルメチルエーテルで希釈し、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=19/1)で精製し、標題化合物(55.4g)を薄黄色の油状物として得た。
(2)tert-ブチル 4-(4-ヒドロキシブト-1-イン-1-イル)ベンゾエート
 窒素雰囲気下、上記で得られたtert-ブチル 4-ブロモベンゾエート(55.4g)、3-ブチン-1-オール(19.6g)のトリエチルアミン(450mL)溶液にビストリフェニルフォスフィンパラジウム ジクロリド(7.71g)とヨウ化銅(832mg)を加え、室温で18時間攪拌した。反応混合物を減圧濃縮して得られた残渣を、クロロホルムで希釈し、1N塩酸水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=4/1)で精製し、標題化合物(49.0g)を薄茶色の油状物として得た。
(3)tert-ブチル 4-(4-ヒドロキシブチル)ベンゾエート
 上記で得られたtert-ブチル 4-(4-ヒドロキシブト-1-イン-1-イル)ベンゾエート(49.0g)のエタノール溶液(2500mL)に10%パラジウム/炭素(16.0g,50%wet)を加え、水素雰囲気下、24時間攪拌した。反応混合物をセライト濾過し、減圧濃縮し、標題化合物(47.2g)を薄黄色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.90 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 8.3 Hz, 2H), 3.71-3.58 (m, 2H), 2.76-2.51 (m, 2H), 1.80-1.51 (m, 13H).
(4)tert-ブチル 4-{4-[(6-ブロモヘキシル)オキシ]ブチル}ベンゾエート
 上記で得られたtert-ブチル 4-(4-ヒドロキシブチル)ベンゾエート(46.0g)と1,6-ジブロモへキサン(135g)の混合物に、硫酸水素テトラブチルアンモニウム(189mg)と50%水酸化ナトリウム水溶液(276mL)を加え、5時間攪拌した。反応混合物に、硫酸水素テトラブチルアンモニウム(189mg)を加え、さらに43時間攪拌した。反応混合物をtert-ブチルメチルエーテルで抽出した。有機層を水、飽和食塩水の順に洗浄し、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/tert-ブチルメチルエーテル=20/1)で精製し、標題化合物(55.3g)を薄黄色の油状物として得た。
(5)4-{4-[(6-ブロモヘキシル)オキシ]ブチル}安息香酸
 上記で得られたtert-ブチル 4-{4-[(6-ブロモヘキシル)オキシ]ブチル}ベンゾエート(55.3g)にトリフルオロ酢酸(300mL)を加え、15時間攪拌した。反応混合物を減圧濃縮し、1,4-ジオキサン(500mL)を加え、減圧濃縮する操作を3回繰り返し、標題化合物(45.8g)を白色の固形物として得た。
(6)(4-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール
 窒素雰囲気下、5~8℃に冷却した上記で得られた4-{4-[(6-ブロモヘキシル)オキシ]ブチル}安息香酸(45.8g)の脱水THF溶液(730mL)に、ボラン-THF(145mL,1.06M THF溶液)を加えた。反応混合物を室温まで昇温し、4時間攪拌した。反応混合物に、飽和塩化アンモニウム水溶液(730mL)をゆっくり加え、分液した。水層を酢酸エチル(500mL)で抽出した。有機層を合わせ、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製し、標題化合物(41.1g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.28 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 4.66 (d, J = 5.3 Hz, 2H), 3.49-3.34 (m, 6H), 2.63 (t, J = 7.3 Hz, 2H), 1.92-1.80 (m, 2H), 1.75-1.52 (m ,6H), 1.51-1.30 (m, 4H).
MS (ESI) m/z 365 (M + Na)+.
参考例6
({4-[(5-ブロモペンチル)オキシ]ベンジル}オキシ)(tert-ブチル)ジメチルシラン
Figure JPOXMLDOC01-appb-C000134
(1)tert-ブチル[(4-{[tert-ブチル(ジメチル)シリル]オキシ}ベンジル)オキシ]ジメチルシラン
 窒素雰囲気下、p-ヒドロキシベンジルアルコール(23.0g)のDMF溶液(580mL)にイミダゾール(50.4g)とtert-ブチルジメチルシリルクロリド(69.8g)を加え、50℃で4時間加熱攪拌した。反応混合物を室温に冷却した後、水(2300mL)を加えて、水層をtert-ブチルメチルエーテルで3回抽出した。あわせた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮して、標題化合物の粗生成物(74.9g)を黄色の油状物として得た。
(2)4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノール
 窒素雰囲気下、水酸化カリウム(15.6g)のエタノール溶液(185mL)に上記で得られたtert-ブチル[(4-{[tert-ブチル(ジメチル)シリル]オキシ}ベンジル)オキシ]ジメチルシランの粗生成物(74.9g)を加え、室温で2時間攪拌した。反応混合物を減圧濃縮し、得られた残渣に3N塩酸水溶液と飽和塩化アンモニウム水溶液を加え、pH=5に調整した。反応混合物にtert-ブチルメチルエーテルを加えて3回抽出した後、あわせた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後の有機層を減圧濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=10/1)で精製し、標題化合物(43.4g)を黄色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.19 (d, J = 8.3 Hz, 2H), 6.79 (d, J = 8.3 Hz, 2H), 4.66 (s, 2H), 0.93 (s, 9H), 0.09 (s, 6H).
(3)(4-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール
 窒素雰囲気下、上記で得られた4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノール(43.4g)、1,5‐ジブロモペンタン(63.4g)、炭酸カリウム(33.0g)とヨウ化テトラブチルアンモニウム(10.2g)のアセトン懸濁液(305mL)を2時間加熱還流した。反応混合物を室温に冷却した後、減圧濃縮した。残渣に酢酸エチルと水を加え、さらに飽和塩化アンモニウム水溶液を加えて、pH=7~8に調整後、酢酸エチルで2回抽出し、あわせた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後の有機層を減圧濃縮して得られた残渣を、シリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=20/1)で精製し、標題化合物(34.0g)を白色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.18-7.10 (m, 2H), 6.83-6.71 (m, 2H), 4.58 (s, 2H), 3.92-3.82 (m ,2H), 3.41-3.30 (m, 2H), 1.92-1.67 (m, 4H), 1.62-1.43 (m ,2H), 0.84 (s, 9H), 0.00 (s, 6H).
参考例7
4-{2-[(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000135
(1)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-(6-{4-[4-(ヒドロキシメチル)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン
 窒素雰囲気下、氷冷した60%水素化ナトリウム(1.54g)のDMF懸濁液(100mL)に、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(参考例4、8.0g)のDMF溶液(30mL)を加え、室温まで昇温し、30分攪拌した。反応混合物を氷冷し、(4-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール(参考例5、16.5g)のDMF溶液(30mL)を加え、室温まで昇温し、14時間攪拌した。反応混合物に、トルエン(300mL)と水(150mL)を加え、分液した。有機層を水で洗浄し、減圧濃縮後、残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、標題化合物(13.4g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.28 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 7.12 (dd, J = 8.4, 2.2 Hz, 1H), 7.00 (d, J = 2.2 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 5.39 (t, J = 8.1 Hz, 1H), 4.84 (s, 2H), 4.65 (d, J = 5.1 Hz, 2H), 3.84 (t, J = 8.7 Hz, 1H), 3.48-3.17 (m, 7H), 2.63 (t, J = 7.3 Hz, 2H), 1.75-1.49 (m, 8H), 1.54 (s, 6H), 1.44-1.28 (m, 4H).
MS (ESI) m/z 534 (M + Na)+.
(2)3-(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 窒素雰囲気下、上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-(6-{4-[4-(ヒドロキシメチル)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン(1.0g)、トリエチルアミン(407μL)のTHF溶液(30mL)に、氷冷下、メタンスルフォニルクロリド(181μL)を滴下した。反応混合物を、室温まで昇温し、2時間攪拌した。反応混合物に酢酸エチルと飽和炭酸水素ナトリウム水溶液を加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣のDMF(6.5mL)溶液にアジ化ナトリウム(191mg)を加え、80℃で3時間攪拌した。反応混合物を室温に冷却した後、酢酸エチルと水を加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=1/1)で精製し、標題化合物(942mg)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.25-7.16 (m, 4H), 7.12 (dd, J = 8.4, 2.0 Hz, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 5.39 (t, J = 8.1 Hz, 1H), 4.84 (s, 2H), 4.30 (s, 2H), 3.85 (t, J = 8.7 Hz, 1H), 3.47-3.18 (m, 7H), 2.64 (t, J = 7.4 Hz, 2H), 1.73-1.50 (m, 8H), 1.54 (s, 6H), 1.46-1.29 (m, 4H).
MS (ESI) m/z 559 (M + Na)+.
(3)4-{2-[(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール
 上記で得られた3-(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(942mg)のTHF溶液(8.8mL)に、カリウムトリメチルシラノエート(1.13g)を加え、1時間加熱還流した。反応混合物を室温に冷却し、酢酸エチルと水を加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(クロロホルム/メタノール=10/1)で精製した化合物に酢酸(6.0mL)と水(2.0mL)を加え、80℃で1時間攪拌した。反応混合物をシリカゲルクロマトグラフィー(アミノシリカゲル、クロロホルム/メタノール=10/1)で精製し、標題化合物(942mg)を薄黄色の固形物として得た。
1H-NMR (300MHz, d6-DMSO) δ: 7.31-7.14 (m, 5H), 6.96 (dd, J = 8.2, 2.0 Hz, 1H), 6.67 (d, J = 8.2 Hz, 1H), 5.00 (brs, 2H), 4.52-4.41 (m, 3H), 4.37 (s, 2H), 3.40-3.25 (m, 4H), 2.63-2.43 (m, 6H), 1.64-1.31 (m, 8H), 1.31-1.19 (m, 4H).
MS (ESI) m/z 471 (M + H)+.
参考例8
4-[2-({5-[4-(アジドメチル)フェノキシ]ペンチル}アミノ)-1-ヒドロキシエチル]-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000136
(1)3-{5-[4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノキシ]ペンチル}-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 ({4-[(5-ブロモペンチル)オキシ]ベンジル}オキシ)(tert-ブチル)ジメチルシラン(参考例6、34.0g)と、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(参考例4、19.7g)を用いて、参考例7-(1)に記載の方法と同様に反応、処理して標題化合物(38.3g)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.18-7.10 (m, 2H), 7.08-7.00 (m, 1H), 6.92 (s, 1H), 6.80-6.71 (m, 3H), 5.37-5.27 (m ,1H), 4.75 (s, 2H), 4.58 (s, 2H), 3.91-3.73 (m, 3H), 3.38-3.13 (m, 3H), 1.80-1.37 (m, 12H), 0.84 (s, 9H), 0.00 (s, 6H).
(2)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン
 窒素雰囲気下、上記で得られた3-{5-[4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノキシ]ペンチル}-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(38.3g)のTHF溶液(383mL)に1Mフッ化テトラn-ブチルアンモニウム/THF溶液(69.0mL)を滴下した。反応混合物を室温で1時間攪拌後、減圧濃縮した。得られた残渣に酢酸エチル(778mL)と水(156mL)を加え分液した。有機層を飽和食塩水(156mL)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2)で精製し、標題化合物(27.9g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.28 (d, J = 9.0 Hz, 2H), 7.11 (dd, J = 8.4, 2.2 Hz, 1H), 6.99 (d, J = 2.2 Hz, 1H), 6.86 (d, J = 9.0 Hz, 2H), 6.82 (d, J = 8.4 Hz, 1H), 5.40 (t, J = 8.4 Hz, 1H), 4.82 (s, 2H), 4.61 (d, J = 5.7 Hz, 2H), 3.96 (t, J = 6.2 Hz, 2H), 3.86 (t, J = 8.4 Hz, 1H), 3.49-3.23 (m, 3H), 1.90-1.73 (m, 2H), 1.69-1.48 (m ,4H), 1.54 (s, 6H).
MS (ESI) m/z 464 (M + Na)+.
(3)3-{5-[4-(アジドメチル)フェノキシ]ペンチル}-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(441mg)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(383mg)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ:7.23 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 7.00 (s, 1H), 6.89-6.83 (m, 3H), 5.40 (t, J = 8.0 Hz, 1H), 4.84 (s, 1H), 4.26 (s, 2H), 3.96 (t, J = 8.0 Hz, 2H), 3.87 (t, J = 8.0 Hz, 1H), 3.44-3.26 (m, 3H), 1.87-1.08 (m, 2H), 1.67-1.62 (m, 4H), 1.56-1.51 (m, 2H), 1.54 (s, 6H).
MS (ESI) m/z 489 (M + Na)+.
(4)4-[2-({5-[4-(アジドメチル)フェノキシ]ペンチル}アミノ)-1-ヒドロキシエチル]-2-(ヒドロキシメチル)フェノール
 上記で得られた3-{5-[4-(アジドメチル)フェノキシ]ペンチル}-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(206mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(75mg)を白色のアモルファスとして得た。
1H-NMR (400MHz, CDCl3) δ: 7.23 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.89 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 1H), 4.77 (s, 2H), 4.55 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 4.26 (s, 2H), 3.96 (t, J = 8.0 Hz, 2H), 3.26 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 2.71-2.58 (m, 3H), 1.83-1.76 (m, 2H), 1.60-1.46 (m, 4H).
MS (ESI) m/z 401 (M + H)+.
参考例9
4-(2-{[5-(4-{[4-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000137
(1)tert-ブチル[4-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノキシ]ジメチルシラン
 窒素雰囲気下、2-(4-ヒドロキシフェニル)エタノール(23.0g)とイミダゾール(68.0g)のDMF溶液(250mL)にtert‐ブチルジメチルシリルクロリド(70.1g)を加え、室温で3時間攪拌した。反応混合物に水と酢酸エチルを加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濃縮した。得られた残渣をシリカゲルクロマトグラフィー(溶出溶液はヘキサン/酢酸エチル)で精製し、標題化合物(61.1g)を無色の油状物として得た。
(2)4-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノール
 窒素雰囲気下、上記で得られたtert-ブチル[4-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノキシ]ジメチルシラン(61.1g)のTHF溶液(800mL)に、氷冷下、1Mフッ化テトラn-ブチルアンモニウム/THF溶液(166mL)を滴下した。反応混合物を氷浴にて20分攪拌後、飽和塩化アンモニウム水溶液(500mL)を加え、tert-ブチルメチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2)で精製し、標題化合物(24.8g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.09 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 3.77 (t, J = 7.1 Hz, 2H), 2.76 (t, J = 7.1 Hz, 2H), 0.89 (s, 9H), 0.00 (s, 6H).
(3)3-[5-(4-{[4-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 窒素雰囲気下、上記で得られた4-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノール(1.26g)、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(参考例8-(2)、2.0g)とトリフェニルホスフィン(1.54g)のTHF溶液(23mL)に、氷冷下、アゾジカルボン酸ジイソプロピル(1.23mL)を滴下し、2時間撹拌した。反応液に水と酢酸エチルを加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル=2/1)で精製し、標題化合物(1.88g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ 7.33 (d, J = 8.6 Hz, 2H), 7.16-7.07 (m, 3H), 7.00 (d, J = 2.0 Hz, 1H), 6.93-6.79 (m, 5H), 5.40 (t, J = 8.1 Hz, 1H), 4.96 (s, 2H), 4.84 (s, 2H), 3.96 (t, J = 6.3 Hz, 2H), 3.87 (t, J = 8.7 Hz, 1H), 3.76 (t, J = 7.2 Hz, 2H), 3.47-3.22 (m, 3H), 2.76 (t, J = 7.2 Hz, 2H), 1.90-1.74 (m, 2H), 1.71-1.46 (m, 4H), 1.54 (s, 6H), 0.87 (s, 9H), -0.01(s, 6H).
MS (ESI) m/z 698 (M + Na)+.
(4)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[4-(2-ヒドロキシエチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[5-(4-{[4-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(1.88g)を用いて、参考例8-(2)に記載の方法と同様に反応、処理して標題化合物(1.64g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.34 (d, J = 8.4 Hz, 2H), 7.19-7.09 (m, 3H), 7.00 (d, J = 1.8 Hz, 1H), 6.98-6.79 (m, 5H), 5.40 (t, J = 8.2 Hz, 1H), 4.97 (s, 2H), 4.84 (s, 2H), 3.97 (t, J = 6.2 Hz, 2H), 3.90-3.77 (m, 3H), 3.48-3.22 (m, 3H), 2.81 (t, J = 6.6 Hz, 2H), 1.90-1.74 (m, 2H), 1.72-1.46 (m, 4H), 1.54 (s, 6H).
MS (ESI) m/z 584 (M + Na)+.
(5)3-[5-(4-{[4-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[4-(2-ヒドロキシエチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン(1.64g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(1.49g)を白色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.34 (d, J = 8.8 Hz, 2H), 7.17-7.09 (m, 3H), 7.00 (d, J = 1.8 Hz, 1H), 6.96-6.81 (m, 5H), 5.41 (t, J = 8.1 Hz, 1H), 4.96 (s, 2H), 4.84 (s, 2H), 3.97 (t, J = 6.3 Hz, 2H), 3.87 (t, J = 8.7 Hz, 1H), 3.52-3.22 (m, 5H), 2.84 (t, J = 7.2 Hz, 2H), 1.90-1.77 (m, 2H), 1.71-1.47 (m, 4H), 1.54 (s, 6H).
MS (ESI) m/z 609 (M + Na)+.
(6)4-(2-{[5-(4-{[4-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
 上記で得られた3-[5-(4-{[4-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(1.49g)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(370mg)を白色の固形物として得た。
1H-NMR (300MHz, d6-DMSO) δ: 7.33 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 2.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 6.98 (dd, J = 8.0, 2.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 4H), 6.68 (d, J = 8.0 Hz, 1H), 4.96 (s, 2H), 4.52 (t, J = 6.2 Hz, 1H), 4.45 (s, 2H), 3.94 (t, J = 6.4 Hz, 2H), 3.49 (d, J = 7.1 Hz, 2H), 2.76 (d, J = 7.1 Hz, 2H), 2.69-2.55 (m, 4H), 1.79-1.63 (m, 2H), 1.57-1.35 (m, 4H).
MS (ESI) m/z 521 (M + H)+.
参考例10
4-(2-{[5-(4-{[3-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000138
(1)3-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノール
 3-(ヒドロキシメチル)フェノール(10.0g)を用いて、参考例9-(1)および9-(2)に記載の方法と同様に反応、処理して標題化合物(11.5g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.19 (t, J = 7.9 Hz, 1H), 6.91-6.80 (m, 2H), 6.70 (dd, J = 7.9, 2.7 Hz, 1H), 4.70 (s, 2H), 0.94 (s, 9H), 0.10 (s, 6H).
(2)3-[5-(4-{[3-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた3-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノール(1.78g)と、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(参考例8-(2)、3.0g)を用いて、参考例9-(3)に記載の方法と同様に反応、処理して標題化合物(3.58g)を白色の固形物として得た。
(3)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[3-(ヒドロキシメチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[5-(4-{[3-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(3.58g)を用いて、参考例8-(2)に記載の方法と同様に反応、処理して標題化合物(1.46g)を白色のアモルファスとして得た。
(4)3-[5-(4-{[3-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[3-(ヒドロキシメチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン(1.46g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(1.29g)を無色の油状物として得た。
(5)4-(2-{[5-(4-{[3-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
 上記で得られた3-[5-(4-{[3-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(343mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(97mg)を白色の固体として得た。
1H-NMR (400MHz, CDCl3) δ: 7.34 (d, J = 8.0 Hz, 2H), 7.29 (t, J = 8.0 Hz, 1H), 7.12 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 6.98 (s, 1H), 6.94-6.89 (m, 5H), 6.81 (d, J = 8.0 Hz, 1H), 4.99 (s, 2H), 4.78 (s, 2H), 4.56 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 4.30 (s, 2H), 3.96 (t, J = 8.0 Hz, 2H), 2.78 (dd, J = 12.0 Hz, J = 4.0 Hz, 1H), 2.71-2.59 (m, 3H), 1.82-1.75 (m, 2H), 1.59-1.45 (m, 4H).
MS (ESI) m/z 507 (M + H)+.
参考例11
4-(2-{[5-(4-{[4-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000139
(1)4-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノール
 4-(3-ヒドロキシプロピル)フェノール(10.5g)を用いて、参考例9-(1)および9-(2)に記載の方法と同様に反応、処理して標題化合物(11.5g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.05 (d, J = 8.5 Hz, 2H), 6.74 (d, J = 8.5 Hz, 2H), 4.61 (s, 1H), 3.62 (t, J = 6.3 Hz, 2H), 2.60 (t, J = 7.8 Hz, 2H), 1.86-1.72 (m, 2H), 0.90 (s, 9H), 0.05 (s, 6H).
MS (ESI) m/z 267 (M + H)+.
(2)3-[5-(4-{[4-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた4-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノール(2.06g)と、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(参考例8-(2)、3.0g)を用いて、参考例9-(3)に記載の方法と同様に反応、処理して標題化合物(4.5g)を白色の固形物として得た。
(3)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[4-(3-ヒドロキシプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[5-(4-{[4-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(4.5g)を用いて、参考例8-(2)に記載の方法と同様に反応、処理して標題化合物(1.9g)を白色の固形物として得た。
(4)3-[5-(4-{[4-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[4-(3-ヒドロキシプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン(1.9g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(1.07g)を白色の固形物として得た。
(5)4-(2-{[5-(4-{[4-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
 上記で得られた3-[5-(4-{[4-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(360mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(132mg)を白色のアモルファスとして得た。
1H-NMR (400MHz, CDCl3) δ: 7.30 (d, J = 8.0 Hz, 2H),7.07 (d, J = 8.0 Hz, 2H), 6.95-6.76 (m, 6H), 6.72 (d, J = 8.0 Hz, 1H), 4.91 (s, 2H), 4.78-4.71 (m, 1H), 4.52 (s, 2H), 3.88 (t, J = 8.0 Hz, 2H), 3.25 (t, J = 8.0 Hz, 2H), 2.90-2.76 (m, 4H), 2.68-2.54 (m, 2H), 1.89-1.82 (m, 2H), 1.78-1.64 (m, 4H), 1.50-1.41 (m, 2H).
MS (ESI) m/z 535 (M + H)+.
参考例12
4-(2-{[5-(4-{[3-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000140
(1)3-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノール
 3-(2-ヒドロキシエチル)フェノール(17.5g)を用いて、参考例9-(1)および9-(2)に記載の方法と同様に反応、処理して標題化合物(31.2g)を薄黄色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.16 (t, J = 7.9 Hz, 1H), 6.79 (d, J = 7.3 Hz, 1H), 6.76-6.64 (m, 2H), 4.67 (s, 1H), 3.81 (t, J = 7.2 Hz, 2H), 2.79 (t, J = 7.2 Hz, 2H), 0.89 (s, 9H), 0.01 (s, 6H).
(2)3-[5-(4-{[3-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた3-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノール(2.18g)と、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(参考例8-(2)、2.95g)を用いて、参考例9-(3)に記載の方法と同様に反応、処理して標題化合物(4.31g)を白色の固形物として得た。
(3)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[3-(2-ヒドロキシエチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[5-(4-{[3-(2-{[tert-ブチル(ジメチル)シリル]オキシ}エチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(4.31g)を用いて、参考例8-(2)に記載の方法と同様に反応、処理して標題化合物(1.75g)を白色の固形物として得た。
(4)3-[5-(4-{[3-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[3-(2-ヒドロキシエチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン(1.75g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(1.16g)を白色の固形物として得た。
(5)4-(2-{[5-(4-{[3-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
 上記で得られた3-[5-(4-{[3-(2-アジドエチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(352mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(47mg)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.34 (d, J = 8.0 Hz, 2H), 7.23 (t, J = 8.0 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 7.02 (s, 1H), 6.90 (d, J = 8.0 Hz, 2H), 6.87-6.81 (m, 4H), 4.97 (s, 2H), 4.81 (s, 2H), 4.61 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 3.96 (t, J = 8.0 Hz, 2H), 3.50 (t, J = 8.0 Hz, 2H), 2.88-2.81 (m, 3H), 2.73-2.64 (m, 3H), 1.83-1.76 (m, 2H), 1.61-1.48 (m, 4H).
MS (ESI) m/z 521 (M + H)+.
参考例13
4-(2-{[5-(4-{[4-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000141
(1)3-[5-(4-{[4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノール(参考例6-(2)、1.78g)と、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(参考例8-(2)、3.0g)を用いて、参考例9-(3)に記載の方法と同様に反応、処理して標題化合物(4.03g)を白色の固形物として得た。
(2)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[4-(ヒドロキシメチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[5-(4-{[4-({[tert-ブチル(ジメチル)シリル]オキシ}メチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(4.03g)を用いて、参考例8-(2)に記載の方法と同様に反応、処理して標題化合物(1.68g)を白色の固形物として得た。
(3)3-[5-(4-{[4-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[4-(ヒドロキシメチル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン(1.68g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(1.17g)を白色の固形物として得た。
(4)4-(2-{[5-(4-{[4-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
 上記で得られた3-[5-(4-{[4-(アジドメチル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(343mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(82mg)を白色のアモルファスとして得た。
1H-NMR (400MHz, CDCl3) δ: 7.34 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.0 Hz, 1H), 7.00 (s, 1H), 6.97 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0Hz, 2H), 6.83 (d, J = 8.0 Hz, 1H), 4.98 (s, 2H), 4.80 (s, 2H), 4.57 (dd, J = 8.0 Hz, 4.0 Hz, 1H), 4.27 (s, 2H), 3.96 (t, J = 8.0 Hz, 2H), 2.80 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 2.72-2.59 (m, 3H), 1.83-1.75 (m, 2H), 1.59-1.47 (m, 4H).
MS (ESI) m/z 507 (M + H)+.
参考例14
4-(2-{[5-(4-{[3-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000142
(1)3-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノール
 3-(3-ヒドロキシプロピル)フェノール(10.0g)を用いて、参考例9-(1)および9-(2)に記載の方法と同様に反応、処理して標題化合物(12.0g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.14 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 7.5 Hz, 1H), 6.70-6.61 (m, 2H), 4.65 (s, 1H), 3.63 (t, J = 6.3 Hz, 2H), 2.63 (t, J = 7.8 Hz, 2H), 1.91-1.76 (m, 2H), 0.91 (s, 9H), 0.05 (s, 6H).
MS (ESI) m/z 267 (M + H)+.
(2)3-[5-(4-{[3-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた3-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノール(1.88g)と、5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-{5-[4-(ヒドロキシメチル)フェノキシ]ペンチル}-1,3-オキサゾリジン-2-オン(参考例8-(2)、3.0g)を用いて、参考例9-(3)に記載の方法と同様に反応、処理して標題化合物(3.84g)を白色の固形物として得た。
(3)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[3-(3-ヒドロキシプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[5-(4-{[3-(3-{[tert-ブチル(ジメチル)シリル]オキシ}プロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(3.84g)を用いて、参考例8-(2)に記載の方法と同様に反応、処理して標題化合物(2.04g)を白色の固形物として得た。
(4)3-[5-(4-{[3-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[5-(4-{[3-(3-ヒドロキシプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-1,3-オキサゾリジン-2-オン(2.04g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(1.76g)を無色の油状物として得た。
(5)4-(2-{[5-(4-{[3-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]アミノ}-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール
 上記で得られた3-[5-(4-{[3-(3-アジドプロピル)フェノキシ]メチル}フェノキシ)ペンチル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(360mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(128mg)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.33(d, J = 8.0 Hz, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.06 (d, J = 8.0 Hz, 1H), 6.96 (s, 1H), 6.89 (d, J = 8.0 Hz, 2H), 6.84-6.77 (m, 4H), 4.96 (s, 2H), 4.70 (s, 2H), 4.59 (dd, J = 8.0 Hz, J = 4.0 Hz, 1H), 3.94 (t, J = 8.0 Hz, 2H), 3.27 (t, J = 8.0 Hz, 2H), 2.80-2.58 (m, 6H), 1.95-1.86 (m, 2H), 1.81-1.73 (m, 2H), 1.61-1.52 (m, 2H), 1.52-1.44 (m, 2H).
MS (ESI) m/z 535 (M + H)+.
参考例15
核酸配列:3’-ttCGUGUCCUCCUUUCUCGUA-5’(配列番号1)
(1)オリゴヌクレオチドの合成
 オリゴヌクレオチドは全て、AKTAoligopilot合成機で合成された。市販のアミノ化ノンポーラスポリスチレン固体担体(Primer Support 200 dT Synth GEヘルスケア社製)、標準的な保護基を有するRNAホスホロアミダイト(5’-O-ジメトキシトリチル-N-ベンゾイル-2’-トリイソプロピルシリルオキシメチル-アデノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-アセチル-2’-トリイソプロピルシリルオキシメチル-シチジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-イソブチリル-2’-トリイソプロピルシリルオキシメチル-グアノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、および5’-O-ジメトキシトリチル-2’-トリイソプロピルシリルオキシメチル-ウリジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、シグマアルドリッチ社製)、および標準的な保護基を有するDNAホスホロアミダイト(5’-O-ジメトキシトリチル-チミジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、シグマアルドリッチ社製)を使用した。ホスホロアミダイトは全て、アセトニトリル中、0.1Mの濃度で使用した。RNAについては15分の連結/再利用時間を、DNAについては5分の連結/再利用時間を使用した。ホスホロアミダイトの活性剤としては、5-ベンジルメルカプトテトラゾール(0.25M、和光純薬社製)を使用し、亜リン酸のリン酸への酸化には、ヨウ素/水/ピリジンを使用した。
(2)脱保護I(担体からの切断)
 (1)で得られたポリスチレン担体(1g)に対して、40%メチルアミン水溶液と33%メチルアミンエタノール溶液の等量混合物(15mL)を45℃で13時間作用させ、核酸塩基部分とリン酸基部分の脱保護を行いながら、オリゴヌクレオチドを担体から切断した。混合物を濾過して、ポリスチレン担体をエタノール/水(1:1 v/v、40mL)で2回洗浄した。濾液をロータリーエバポレーター(roto-vap)で留去し、乾固した。
(3)脱保護II(2’-トリイソプロピルシリルオキシメチル(2’-TOM)基の除去)
 (2)で得られた乾燥残渣を、脱保護溶液、即ち1Mフッ化テトラ-n-ブチルアンモニウム/テトラヒドロフラン溶液(0.25mL/合成オリゴヌクレオチド1μmol)に懸濁し、50℃で10分間、その後35℃で14時間加熱した。反応物を、脱保護溶液と同量の1Mトリス-塩酸バッファー(pH7.5)でクエンチし、次の精製工程に使用するまでフリーザーで保存した。
(4)HPLCによる精製
 (3)で得られた粗オリゴヌクレオチドを、Source 15 RPCゲルカラムを用いた逆相イオン交換HPLCで精製し、標題化合物の5’-ジメトキシトリチル体を含む画分を得た。0.6%のトリフルオロ酢酸を用い、ジメトキシトリチル基を脱離させた後、完全長のオリゴヌクレオチドを含む画分を逆相イオン交換HPLCで精製した。脱塩後、凍結乾燥して標題化合物を得た。
参考例16
Figure JPOXMLDOC01-appb-C000143
 参考例15と同様の方法で、対応する原料から合成した。但し、ポリスチレン固体担体としては、アミノ化ノンポーラスポリスチレン固体担体(Custom Primer Support C6 amino 80 GEヘルスケア社製)を用いた。
参考例17
Figure JPOXMLDOC01-appb-C000144
 参考例15と同様の方法で、対応する原料から合成した。但し、5’末端アミノ化ホスホロアミダイトとして、1-N-[2’-(モノメトキシトリチル)アミノエトキシカルボニル]アミノ-6-ヘキシル-6-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト(シグマアルドリッチ社製)を使用した。
参考例18
Figure JPOXMLDOC01-appb-C000145
 炭酸ナトリウム緩衝液(pH9.0、終濃度0.1M)下、参考例16の化合物(30.8mg)の2mM水溶液(2.2mL)と4-ペンチン酸スクシンイミジルエステル(参考例1)(1.72mg)のジメチルスルホオキシド/アセトニトリル混合溶液(4/1、1.76mL)を混合し、室温で1時間撹拌した。反応溶液を、Source 15 RPCゲルカラムでの逆相イオン交換HPLCで精製した。移動相として、アセトニトリル/0.1Mトリエチルアミン酢酸緩衝液(pH7.0)(5/95~90/10)を用いた。標題化合物を含む画分を集め、脱塩後、凍結乾燥し、標題化合物(22.7mg)を得た。
参考例19
Figure JPOXMLDOC01-appb-C000146
 参考例18と同様の方法で、参考例16の化合物(19.6mg)と5-ヘキシン酸スクシンイミジルエステル(参考例2)から標題化合物(7.0mg)を得た。
MALDI-TOF/MS: m/z=7089.79(M-H)-(理論値7090.51).
参考例20
Figure JPOXMLDOC01-appb-C000147
 参考例18と同様の方法で、参考例16の化合物(30mg)と10-ウンデシン酸スクシンイミジルエステル(参考例3)から標題化合物(25.4mg)を得た。
MALDI-TOF/MS: m/z=7157.90(M-H)-(理論値7161.64).
参考例21
Figure JPOXMLDOC01-appb-C000148
 参考例18と同様の方法で、参考例17の化合物(7.5mg)と4-ペンチン酸スクシンイミジルエステル(参考例1)から標題化合物(3.6mg)を得た。
MALDI-TOF/MS: m/z=7161.49(M-H)-(理論値7164.43).
参考例22
Figure JPOXMLDOC01-appb-C000149
 参考例18と同様の方法で、参考例17の化合物(7.5mg)と5-ヘキシン酸スクシンイミジルエステル(参考例2)から標題化合物(3.6mg)を得た。
MALDI-TOF/MS: m/z=7175.15(M-H)-(理論値7178.46).
参考例23
2-プロピニル-4-ペンチン酸スクシンイミジルエステル
Figure JPOXMLDOC01-appb-C000150
 文献(Journal of the Chemical Society, Perkin Transactions 1, 1986, 7, 1215-24)に記載の方法で合成した2-プロピニル-4-ペンチン酸(300mg)を用いて、参考例1に記載の方法と同様に反応、処理して標題化合物(354mg)を無色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 3.10 (m, 1H), 2.82 (s, 4H), 2.79-2.76 (m, 4H), 2.09 (t, J = 2.7 Hz, 2H).
参考例24
N’-[(1E)-1-(4-{4-[(2,5-ジオキソピロリジン-1-イル)オキシ]-4-オキソブトキシ}フェニル)エチリデン]ペント-4-インヒドラジド
Figure JPOXMLDOC01-appb-C000151
(1)4-(4-{(1E)-1-[2-(ペント-4-イノイル)ヒドラジニリデン]エチル}フェノキシ)酪酸
 文献(Journal of the Chemical Society, Perkin Transactions 1, 1987, 11, 2511-16)に記載の方法で合成したペント-4-インヒドラジド(580mg)と4-(4-アセチルフェノキシ)酪酸のメタノール溶液(19.4mL)に、酢酸(1.94mL)を加え、45℃で5時間攪拌した。反応混合物を室温に冷却した後、析出した固形物をメタノールで洗浄し、標題化合物(1.18g)を無色の固形物として得た。
1H-NMR (400MHz, DMSO) δ: 10.4 (s, 0.5H), 10.3 (s, 0.5H), 7.73-7.65 (m, 2H), 6.95-6.90 (m, 2H), 4.04-3.99 (m, 2H), 2.88-2.74 (m, 2H), 2.46-2.34 (m, 5H), 2.23-2.15 (m, 3H), 2.00-1.91 (m, 2H).
(2)N’-[(1E)-1-(4-{4-[(2,5-ジオキソピロリジン-1-イル)オキシ]-4-オキソブトキシ}フェニル)エチリデン]ペント-4-インヒドラジド
 上記で得られた4-(4-{(1E)-1-[2-(ペント-4-イノイル)ヒドラジニリデン]エチル}フェノキシ)酪酸(1.18g)と、N-ヒドロキシスクシンイミド(518mg)を用いて、参考例1に記載の方法と同様に反応、処理して標題化合物(1.20g)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 8.44 (brs, 1H), 7.69 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 4.12-4.05 (m, 2H), 3.06-3.00 (m, 2H), 2.91-2.77 (m, 6H), 2.68-2.58 (m, 2H), 2.30-2.21 (m, 2H), 2.17 (s, 3H), 2.02-1.98 (m, 1H).
参考例25
N’-[(E)-(4-{4-[(2,5-ジオキソピロリジン-1-イル)オキシ]-4-オキソブトキシ}フェニル)メチリデン]ペント-4-インヒドラジド
Figure JPOXMLDOC01-appb-C000152
(1)4-(4-{(E)-[2-(ペント-4-イノイル)ヒドラジニリデン]メチル}フェノキシ)酪酸
 文献(Tetrahedron, 2003, 59, 6121-6130)に記載の方法で合成したペント-4-インヒドラジド(452mg)と4-(4-ホルミルフェノキシ)酪酸(700mg)を用いて、参考例24-(1)に記載の方法と同様に反応、処理して標題化合物(885mg)を無色の固形物として得た。
1H-NMR (400MHz, DMSO) δ: 11.3 (s, 0.5H), 11.2 (s, 0.5H), 8.09 (s, 0.5H), 7.92 (s, 0.5H), 7.62-7.57 (m, 2H), 7.00-6.97 (m, 2H), 4.04-4.00 (m, 2H), 2.82-2.77 (m, 2H), 2.51-2.37 (m, 6H), 1.96-1.93 (m, 2H).
(2)N’-[(E)-(4-{4-[(2,5-ジオキソピロリジン-1-イル)オキシ]-4-オキソブトキシ}フェニル)メチリデン]ペント-4-インヒドラジド
 上記で得られた4-(4-{(E)-[2-(ペント-4-イノイル)ヒドラジニリデン]メチル}フェノキシ)酪酸(885mg)を用いて、参考例1に記載の方法と同様に反応、処理して標題化合物(844mg)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 8.62 (brs, 1H), 7.65 (s, 1H), 7.59 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 4.15-4.06 (m, 2H), 3.06-2.99 (m, 2H), 2.93-2.80 (m, 7H), 2.66-2.58 (m, 2H), 2.29-2.20 (m, 2H), 2.00 (s, 1H).
参考例26
N’-[1-(3-{4-[(2,5-ジオキソピロリジン-1-イル)オキシ]-4-オキソブトキシ}フェニル)エチリデン]ペント-4-インヒドラジン
Figure JPOXMLDOC01-appb-C000153
(1)4-(3-{1-[2-(ペント-4-イノイル)ヒドラジニリデン]エチル}フェノキシ)酪酸
 文献(Journal of the Chemical Society, Perkin Transactions 1, 1987), 11, 2511-16)に記載の方法で合成したペント-4-インヒドラジド(580mg)とエチル 4-(3-アセチルフェノキシ)ブタノエート(970mg)を用いて、参考例24-(1)に記載の方法と同様に反応、処理して標題化合物(1.08g)を無色の固形物として得た。
1H-NMR (400MHz, DMSO) δ: 10.5 (s, 0.5H), 10.4 (s, 0.5H), 7.40-7.22 (m, 3H), 6.98-6.94 (m, 1H), 4.09-3.95 (m, 2H), 2.92-2.74 (m, 3H), 2.60-2.2.34 (m, 4H), 2.31-2.18 (m, 3H), 2.02-1.90 (m, 2H).
(2)N’-[1-(3-{4-[(2,5-ジオキソピロリジン-1-イル)オキシ]-4-オキソブトキシ}フェニル)エチリデン]ペント-4-インヒドラジン
 上記で得られた4-(3-{1-[2-(ペント-4-イノイル)ヒドラジニリデン]エチル}フェノキシ)酪酸(1.08g)を用いて、参考例1に記載の方法と同様に反応、処理して標題化合物(903mg)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.33-7.28 (m, 3H), 6.97-6.93 (m, 1H), 4.14-4.08 (m, 2H), 3.11-3.02 (m, 2H), 2.90-2.79 (m, 6H), 2.67-2.60 (m, 2H), 2.28-2.21 (m, 2H), 2.19 (s, 3H), 2.00-1.98 (m, 1H).
参考例27
1-{[4-(4-{(E)-[(プロプ-2-イン-1-イルオキシ)イミノ]メチル}フェノキシ)ブタノイル]オキシ}ピロリジン-2,5-ジオン
Figure JPOXMLDOC01-appb-C000154
(1)エチル 4-{4-[(E)-(ヒドロキシイミノ)メチル]フェノキシ}ブタノエート
 エチル 4-(4-ホルミルフェノキシ)ブタノエート(5.0g)のエタノール溶液(30mL)に、ヒドロキシルアミン塩酸塩(1.77g)と酢酸ナトリウム(2.09g)を加え、70℃で3時間攪拌した。反応混合物を室温に冷却した後、酢酸エチルと水を加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(3.71g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 8.06 (s, 1H), 7.48 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.16-3.99 (m, 4H), 2.50 (t, J = 5.8 Hz, 2H), 2.12-2.08 (m, 2H), 1.24 (t, J = 7.5 Hz, 3H).
(2)エチル 4-(4-{(E)-[(プロプ-2-イン-1-イルオキシ)イミノ]メチル}フェノキシ)ブタノエート
 上記で得られたエチル 4-{4-[(E)-(ヒドロキシイミノ)メチル]フェノキシ}ブタノエート(1.5g)のDMF溶液(30mL)に、プロパルギルブロミド(515μL)と炭酸セシウム(2.90g)を加え、60℃で2時間攪拌した。反応混合物を室温に冷却した後、酢酸エチルと水を加え、分液した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮し、残渣をシリカゲルクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(1.28g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 8.05 (s, 1H), 7.51 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 4.72 (s, 2H), 4.13 (q, J = 7.6 Hz, 2H), 4.01 (t, J = 6.0 Hz, 2H), 2.52-2.47 (m, 2H), 2.12-2.02 (m, 2H), 1.24 (t, J = 7.6 Hz, 3H).
(3)4-(4-{(E)-[(プロプ-2-イン-1-イルオキシ)イミノ]メチル}フェノキシ)酪酸
 上記で得られたエチル 4-(4-{(E)-[(プロプ-2-イン-1-イルオキシ)イミノ]メチル}フェノキシ)ブタノエート(1.0g)のTHF(18mL)、メタノール(6mL)の混合溶液に、水酸化リチウム(290mg)の水溶液(6mL)を加え、室温で2時間攪拌した。反応混合物を減圧濃縮し、残渣を水に溶かし1N塩酸を用いて中和した。析出した結晶をろ取し、標題化合物(717mg)を無色の固形物として得た。
1H-NMR (300MHz, DMSO) δ: 12.2 (brs, 1H), 8.21 (s, 1H), 7.55 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 4.71 (d, J = 1.8 Hz, 2H), 4.01 (d, J = 6.0 Hz, 2H), 3.48 (t, J = 1.8 Hz, 1H), 2.37 (t, J = 6.7 Hz, 1H), 1.98-1.89 (m, 2H).
(4)1-{[4-(4-{(E)-[(プロプ-2-イン-1-イルオキシ)イミノ]メチル}フェノキシ)ブタノイル]オキシ}ピロリジン-2,5-ジオン
 上記で得られた4-(4-{(E)-[(プロプ-2-イン-1-イルオキシ)イミノ]メチル}フェノキシ)酪酸(245mg)を用いて、参考例1に記載の方法と同様に反応、処理して標題化合物(305mg)を無色の固形物として得た。
1H-NMR (300MHz, CDCl3) δ: 8.05 (s, 1H), 7.52 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 4.73 (d, J = 1.7 Hz, 2H), 4.06 (t, J = 6.3 Hz, 2H), 2.86-2.83 (m, 7H), 2.48 (t, J = 1.7 Hz, 1H), 2.38-2.15 (m, 2H).
参考例28
tert-ブチル (1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-3-イル)メチルカルバメート
Figure JPOXMLDOC01-appb-C000155
(1){4-[4-(6-アジドヘキシルオキシ)ブチル]フェニル}メタノール
 参考例5で得られた(4-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール(3.0g)のDMF溶液(20mL)にアジ化ナトリウム(684mg)を加え、80℃にて5時間攪拌した。反応混合物に水と酢酸エチルを加え、有機層を分離した。有機層を水、飽和食塩水の順に洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(2.66g)を薄黄色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.26 (d, J = 7.9 Hz, 2H), 7.16 (d, J = 7.9 Hz, 2H), 4.63 (s, 2H), 3.41-3.21 (m, 6H), 2.64-2.59 (m, 2H), 1.64-1.24 (m, 12H).
(2)4-{4-[(6-アジドヘキシルオキシ]ブチル}ベンズアルデヒド
 上記で得られた4-{4-[(6-アジドヘキシルオキシ)ブチル]フェニル}メタノール(2.66g)の塩化メチレン溶液(20mL)にN-メチル-モルホリン N-オキシド(1.22g)、過ルテニウム酸テトラプロピルアンモニウム(152mg)及びモレキュラーシーブス4A(800mg)を加え、窒素雰囲気下室温にて5時間攪拌した。反応混合物をろ過後、ろ液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(2.26g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 9.95 (s, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 3.42-3.21 (m, 6H), 2.72-2.67 (m, 2H), 1.71-1.35 (m, 12H).
 MS EM303.19 測定値304.4
(3)tert-ブチル (1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-3-イル)メチルカルバメート
 上記で得られた4-{4-[(6-アジドヘキシルオキシ]ブチル}ベンズアルデヒド(368mg)のメタノール溶液(3mL)にtert-ブチル ピペリジン-3-イルメチルカルバメート(259mg)、硫酸マグネシウム(291mg)及びトリエチルアミン(0.1mL)を加え、室温にて7時間攪拌した。反応混合物にテトラヒドロホウ酸ナトリウム(229mg)を加え、室温にて15時間攪拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(292mg)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.18 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 4.61 (brs, 1H), 3.47-3.21 (m, 10H), 3.0-2.57 (m, 6H), 1.96-0.99 (m, 26H).
MS EM501.37 測定値502.5
参考例29
tert-ブチル (1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)モルホリン-2-イル)メチルカルバメート
Figure JPOXMLDOC01-appb-C000156
 参考例28-(2)で得られた4-{4-[(6-アジドヘキシルオキシ]ブチル}ベンズアルデヒド(368mg)のTHF溶液(3mL)にtert-ブチル モルホリン-2-イルメチルカルバメート(259mg)、酢酸(0.14mL)及び水素化トリアセトキシホウ素ナトリウム(513mg)を加え、室温にて15時間攪拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(228mg)を無色の油状物として得た。
MS EM503.35 測定値504.5
参考例30
tert-ブチル 1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-4-イル)カルバメート
Figure JPOXMLDOC01-appb-C000157
 参考例28-(2)で得られた4-{4-[(6-アジドヘキシルオキシ]ブチル}ベンズアルデヒド(808mg)のメタノール溶液(5mL)にtert-ブチル ピペリジン-4-イルカルバメート(533mg)、硫酸マグネシウム(642mg)及びトリエチルアミン(0.22mL)を加え、室温にて7時間攪拌した。反応混合物にテトラヒドロホウ酸ナトリウム(503mg)を加え、室温にて15時間攪拌した。反応混合物に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(641mg)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.18 (d, J = 8.0Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 4.39 (brs, 1H), 3.42-3.21 (m, 9H), 2.79-2.57 (m, 4H), 2.08-1.21 (m, 27H).
MS EM487.35 測定値488.6
参考例31
4-{2-[(6-{4-[3-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000158
(1)tert-ブチル 3-(4-ヒドロキシブト-1-イン-1-イル)ベンゾエート
 tert-ブチル 3-ヨードベンゾエート(31.13g)と3-ブチン-1-オール(9.33g)を用いて、参考例5-(2)に記載の方法と同様に反応、処理して標題化合物(23.7g)を白色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 8.01 (s, 1H), 7.95-7.92 (m, 1H), 7.56-7.51 (m, 1H), 7.39-7.33 (m, 1H), 3.88-3.79 (m, 2H), 2.75-2.65 (m, 2H), 1.59 (s, 9H).
(2)tert-ブチル 3-(4-ヒドロキシブチル)ベンゾエート
 上記で得られたtert-ブチル 3-(4-ヒドロキシブト-1-イン-1-イル)ベンゾエート(27.6g)を用いて、参考例5-(3)に記載の方法と同様に反応、処理して標題化合物(27.4g)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.82-7.98 (m, 2H), 7.39-7.25 (m, 2H), 3.68-3.65 (m, 2H), 2.70-2.63 (m, 2H), 1.77-1.64 (m, 2H), 1.61-1.57 (m, 11H).
(3)tert-ブチル 3-{4-[(6-ブロモヘキシル)オキシ]ブチル}ベンゾエート
 上記で得られたtert-ブチル 3-(4-ヒドロキシブチル)ベンゾエート(27.4g)を用いて、参考例5-(4)に記載の方法と同様に反応、処理して標題化合物(33.1g)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.83-7.75 (m, 2H), 7.38-7.23 (m, 2H), 3.42-3.39 (m, 6H), 2.70-2.61 (m, 2H), 1.91-1.82 (m, 2H), 1.78-1.49 (m, 15H), 1.45-1.30 (m, 4H).
(4)3-{4-[(6ブロモヘキシル)オキシ]ブチル}安息香酸
 上記で得られたtert-ブチル 3-{4-[(6-ブロモヘキシル)オキシ]ブチル}ベンゾエート(33.0g)を用いて、参考例5-(5)に記載の方法と同様に反応、処理して標題化合物(28.7g)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.94-7.90 (m, 2H), 7.43-7.31 (m, 2H), 3.43-3.35 (m, 6H), 2.72-2.63 (m, 2H), 1.85-1.32 (m, 12H).
(5)(3-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール
 上記で得られた3-{4-[(6ブロモヘキシル)オキシ]ブチル}安息香酸(28.7g)を用いて、参考例5-(6)に記載の方法と同様に反応、処理して標題化合物(23.6g)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.30-7.26 (m, 1H), 7.20-7.16 (m, 2H), 7.13-7.09 (m, 1H), 4.67 (s, 2H), 3.43-3.38 (m, 6H), 2.66-2.62 (m, 2H), 1.92-1.83 (m, 2H), 1.73-1.52 (m, 6H), 1.50-1.28 (m, 4H).
(6)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-(6-{4-[3-(ヒドロキシメチル)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン
 参考例4の化合物(2.67g)と上記で得られた(3-{4-[(6-ブロモヘキシル)オキシ]ブチル}フェニル)メタノール(3.72g)を用いて、参考例7-(1)に記載の方法と同様に反応、処理して標題化合物(4.39g)を白色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.30-7.08 (m, 5H), 6.99 (s, 1H), 6.85-6.82 (m, 1H), 5.45-5.37 (m, 1H), 4.84 (s, 2H), 4.73-4.64 (m, 2H), 3.90-3.80 (m, 1H), 3.49-3.20 (m, 7H), 2.70-2.61 (m, 2H), 1.94-1.88 (m, 1H), 1.72-1.45 (m, 14H), 1.43-1.29 (m, 4H).
(7)3-(6-{4-[3-(アジドメチル)フェニル]ブトキシ}ヘキシル)-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた4-{2-[(6-{4-[3-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール(4.39g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(3.78g)を無色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.33-7.25 (m, 3H), 7.18-7.09 (m, 2H), 7.02 (s 1H), 6.86-6.81 (m, 1H), 5.43-5.35 (m, 1H), 4.84 (s, 2H), 4.31 (s, 2H), 3.89-3.81 (m, 1H), 3.45-3.18 (m, 7H), 2.68-2.61 (m, 2H), 1.74-1.49 (m, 14H), 1.42-1.30 (m, 4H).
(8)2-[(6-{4-[3-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)エタノール
 上記で得られた3-(6-{4-[3-(アジドメチル)フェニル]ブトキシ}ヘキシル)-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(2.0g)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(281mg)を白色の固形物として得た。
MS (ESI) m/z 472 (M + H)+.
参考例32
4-{2-[(6-{4-[4-(2-アジドエトキシ)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール
Figure JPOXMLDOC01-appb-C000159
(1)3-[6-(ブト-3-イン-1-イロキシ)ヘキシル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 1-ブロモ-6-(ブト-3-イン-1-イロキシ)ヘキサン(33.0g)と参考例4の化合物(22.3g)を用いて、参考例7-(1)に記載の方法と同様に反応、処理して標題化合物(33.6g)を白色の固形物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.13-7.11 (m, 1H), 7.00 (d, J = 2.0 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 5.41-5.38 (m, 1H), 4.84 (s, 2H), 3.86 (t, J = 8.9 Hz, 1H), 3.55 (t, J = 7.0 Hz, 2H), 3.47-3.27 (m, 5H), 2.48-2.44 (m, 2H), 1.99-1.98 (m, 1H), 1.58-1.54 (m, 10H), 1.38-1.36 (m, 4H).
(2)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[6-({4-[4-(2-ヒドロキシエトキシ)フェニル]ブト-3-イン-1-イル}オキシ)ヘキシル]-1,3-オキサゾリジン-2-オン
 上記で得られた3-[6-(ブト-3-イン-1-イロキシ)ヘキシル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(4.20g)、2-(3-ブロモフェノキシ)エタノール(3.17g)、トリエチルアミン(89mL)のアセトニトリル溶液(49mL)を窒素置換し、ヨウ化第一銅(200mg)とビストリフェニルホスフィンパラジウム(II)ジクロリド(444mg)を加え、室温で12時間撹拌した。反応混合物を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)で精製し、標題化合物(4.81g)を褐色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.22-7.16 (m, 1H), 7.13-7.09 (m, 1H), 7.02-6.97 (m, 2H), 6.94 (s, 1H), 6.86-6.80 (m, 2H), 5.41-5.34 (m, 1H), 4.84 (s, 2H), 4.08-4.02 (m, 2H), 4.00-3.91 (m, 2H), 3.86-3.80 (m, 1H), 3.65-3.58 (m, 2H), 3.51-3.45 (m, 2H), 3.40-3.16 (m, 3H), 2.70-2.64 (m, 2H), 2.13-2.07 (m, 1H), 1.66-1.49 (m, 9H), 1.48-1.29 (m, 4H).
(3)5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-(6-{4-[3-(2-ヒドロキシエトキシ)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-[6-({4-[4-(2-ヒドロキシエトキシ)フェニル]ブト-3-イン-1-イル}オキシ)ヘキシル]-1,3-オキサゾリジン-2-オン(4.81g)のエタノール(66mL)と酢酸エチル(13mL)の混合溶液に、二酸化白金(681mg)を加え水素置換し、室温で2時間半撹拌した。反応混合物を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(3.66g)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.22-7.16 (m, 1H), 7.11-7.07 (m, 1H), 7.00 (s, 1H), 6.88-6.70 (m, 4H), 5.42-5.35 (m, 1H), 4.84 (s, 2H), 4.10-4.03 (m, 2H), 3.98-3.92 (m, 2H), 3.88-3.80 (m, 1H), 3.45-3.19 (m, 7H), 2.65-2.57 (m, 2H), 2.15-2.05 (m, 1H), 1.72-1.45 (m, 13H), 1.43-1.28 (m, 4H).
(3)3-(6-{4-[4-(2-アジドエトキシ)フェニル]ブトキシ}ヘキシル)-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-3-(6-{4-[3-(2-ヒドロキシエトキシ)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン(1.91g)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(3.25g)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.21-7.14 (m, 1H), 7.12-7.08 (m, 1H), 6.99 (s, 1H), 6.83-6.77 (m, 2H), 6.77-6.59 (m, 2H), 5.42-5.35 (m, 1H), 4.84 (s, 2H), 4.16-4.10 (m, 2H), 3.86-3.81 (m, 1H), 3.60-3.55 (m, 2H), 3.44-3.20 (m, 6H), 2.64-2.57 (m, 2H), 1.71-1.47 (m, 14H), 1.41-1.28 (m, 4H).
(4)4-{2-[(6-{4-[4-(2-アジドエトキシ)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール
 上記で得られた3-(6-{4-[4-(2-アジドエトキシ)フェニル]ブトキシ}ヘキシル)-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(1.91g)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(428mg)を無色の油状物として得た。
MS (ESI) m/z 501 (M + H)+.
参考例33
N-(2-アジドエチル)-3-(4-{[6-({2-ヒドロキシ-2-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エチル}アミノ)ヘキシル]オキシ}ブチル)ベンゼンスルホンアミド
Figure JPOXMLDOC01-appb-C000160
(1)3-[4-({6-[5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソ-1,3-オキサゾリジン-3-イル]ヘキシル}オキシ)ブト-1-イン-1-イル]-N-(2-ヒドロキシエチル)ベンゼンスルホンアミド
 参考例28-(1)で得られた3-[6-(ブト-3-イン-1-イロキシ)ヘキシル]-5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-1,3-オキサゾリジン-2-オン(7.61g)と3-ブロモ-N-(2-ヒドロキシエチル)ベンゼンスルホンアミド(5.58g)を用いて、参考例7-(1)に記載の方法と同様に反応、処理して標題化合物(8.92g)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.89 (s, 1H), 7.79-7.73 (m, 1H), 7.58-7.55 (m, 1H), 7.46-7.43 (m, 1H), 7.15-7.10 (m, 1H), 7.02 (s, 1H), 6.85-6.83 (m, 1H), 5.49-5.41 (m, 1H), 5.31 (brs, 1H), 4.85 (s, 2H), 3.85-3.90 (m, 1H), 3.70-3.67 (m, 2H), 3.65-3.58 (m, 2H), 3.55-3.47 (m, 2H), 3.46-3.40 (m, 1H), 3.39-3.20 (m, 2H), 3.12-3.08 (m, 2H), 2.71-2.67 (m, 2H), 1.60-1.30 (m, 13H).
(2)3-[4-({6-[5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソ-1,3-オキサゾリジン-3-イル]ヘキシル}オキシ)ブチル]-N-(2-ヒドロキシエチル)ベンゼンスルホンアミド
 上記で得られた3-[4-({6-[5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソ-1,3-オキサゾリジン-3-イル]ヘキシル}オキシ)ブト-1-イン-1-イル]-N-(2-ヒドロキシエチル)ベンゼンスルホンアミド(8.92g)を用いて、参考例32-(2)に記載の方法と同様に反応、処理して標題化合物(8.95g)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.70-7.68 (m, 2H), 7.41-7.39 (m, 2H), 7.15-7.11 (m, 1H), 7.01 (s, 1H), 6.85-6.81 (m, 1H), 5.43-5.39 (m, 1H), 4.85 (s, 2H), 3.91-3.85 (m, 1H), 3.75-3.70 (m, 2H), 3.63-3.61 (m, 2H), 3.43-3.23 (m, 6H), 3.11-3.08 (m, 2H), 2.73-2.69 (m, 2H), 1.73-1.65 (m, 2H), 1.61-1.25 (m, 15H).
(3)N-(2-アジドエチル)-3-[4-({6-[5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソ-1,3-オキサゾリジン-3-イル]ヘキシル}オキシ)ブチル]ベンゼンスルホンアミド
 上記で得られた3-[4-({6-[5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソ-1,3-オキサゾリジン-3-イル]ヘキシル}オキシ)ブチル]-N-(2-ヒドロキシエチル)ベンゼンスルホンアミド(8.15g)のジクロロメタン溶液(16mL)に、0℃でピリジン(3.34mL)と塩化パラトルエンスルホニル(7.71g)を加え、室温に昇温し27時間半撹拌した。反応混合物に水を加え、目的物をクロロホルムで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣のジメチルスルホキシド溶液(135mL)にアジ化ナトリウム(1.75g)を加え、35℃で12時間撹拌した。反応混合物に水を加え、目的物を酢酸エチルで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(7.51g)を無色の油状物として得た。
1H-NMR (400MHz, CDCl3) δ: 7.71-7.68 (m, 2H), 7.42-7.40 (m, 2H), 7.14-7.10 (m, 1H), 6.84-6.81 (m, 1H), 6.85-6.82 (m, 1H), 5.41-5.36 (m, 1H), 5.02-4.97 (m, 1H), 4.84 (s, 2H), 3.46-3.21 (m, 8H), 3.15-3.08 (m, 2H), 2.79-2.72 (m, 2H), 1.75-1.65 (m, 2H), 1.73-1.22 (m, 13H), 1.43-1.28 (m, 4H).
(4)N-(2-アジドエチル)-3-{4-[(6-{[2-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-ヒドロキシエチル]アミノ}ヘキシル)オキシ]ブチル}ベンゼンスルホンアミド
 上記で得られたN-(2-アジドエチル)-3-[4-({6-[5-(2,2-ジメチル-4H-1,3-ベンゾジオキシン-6-イル)-2-オキソ-1,3-オキサゾリジン-3-イル]ヘキシル}オキシ)ブチル]ベンゼンスルホンアミド(2.30g)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(408mg)を無色の固形物として得た。
MS (ESI) m/z 565 (M + H)+.
参考例34
2-[(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-(2-クロロフェニル)エタノール
Figure JPOXMLDOC01-appb-C000161
(1)5-(2-クロロフェニル)-1,3-オキサゾリジン-2-オン
 2-アミノ-1-(2-クロロフェニル)エタノール塩酸塩(300mg)のジクロロメタン溶液(10mL)に、0℃でトリエチルアミン(536μL)とトリホスゲン(259mg)を加え、室温に昇温し2時間撹拌した。反応混合物に水を加え、目的物を塩化メチレンで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(301mg)を無色の油状物として得た。
MS EM197.02 測定値198.0
(2)5-(2-クロロフェニル)-3-(6-{4-[4-(ヒドロキシメチル)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2-クロロフェニル)-1,3-オキサゾリジン-2-オン(301mg)を用いて、参考例7-(1)に記載の方法と同様に反応、処理して標題化合物(657mg)を無色の固形物として得た。
MS EM459.22 測定値460.7
(3)3-(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)-5-(2-クロロフェニル)-1,3-オキサゾリジン-2-オン
 上記で得られた5-(2-クロロフェニル)-3-(6-{4-[4-(ヒドロキシメチル)フェニル]ブトキシ}ヘキシル)-1,3-オキサゾリジン-2-オン(657mg)を用いて、参考例7-(2)に記載の方法と同様に反応、処理して標題化合物(447mg)を無色の固形物として得た。
MS EM484.22 測定値485.9
(4)2-[(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-(2-クロロフェニル)エタノール
 上記で得られた3-(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)-5-(2-クロロフェニル)-1,3-オキサゾリジン-2-オン(447mg)を用いて、参考例7-(3)に記載の方法と同様に反応、処理して標題化合物(73mg)を無色の油状物として得た。
MS EM458.24 測定値459.8
参考例35
22-アジド-N-(2-{[3-(9H-カルバゾール-4-イロキシ)-2-ヒドロキシプロピル]アミノ}-2-メチルプロピル)-17-オキソ-4,7,10,13-テトラオキサ-16-アザドコサン-1-アミド
Figure JPOXMLDOC01-appb-C000162
(1)tert-ブチル (2-{[3-(9H-カルバゾール-4-イロキシ)-2-ヒドロキシプロピル]アミノ}-2-メチルプロピル)カルバメート
 4-グリシジルオキシカルバゾール(976mg)と(2-アミノ-2-メチルプロピル)-カルバミックアシッド tert-ブチルエステル(852mg)を1-ブタノール(2mL)に加え、90℃にて5時間加熱還流した。反応混合物を減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製することで、標題化合物(1.26g)を無色の油状物として得た。
HRMS-ESI(m/z): [M+H]+calcd.for C24H33N3O4, 428.2544; found, 428.2541.
(2)1-[(1-アミノ-2-メチルプロパン-2-イル)アミノ]-3-(9H-カルバゾール-4-イロキシ)プロパン-2-オール 2塩酸塩
 上記(1)で得られた化合物(1.12g)をクロロホルム(30mL)に溶かし、4N塩化水素酢酸エチル溶液(5mL)を加え、室温にて6時間攪拌した。反応混合物を減圧濃縮し、クロロホルム(30mL)を加え、再び減圧濃縮し、標題化合物(840mg)を無色の油状物として得た。
HRMS-ESI(m/z):[M+H]+calcd.for C19H25N3O2, 328.2020; found, 328.2018.
(3)tert-ブチル [22-(9H-カルバゾール-4-イロキシ)-21-ヒドロキシ-18,18-ジメチル-15-オキソ-3,6,9,12-テトラオキサ-16,19-ジアザドコス-1-イル]カルバメート
 上記(2)で得られた化合物(548mg)と15-tert-ブチルオキシカルボニルアミノ-4,7,10,13-テトラオキサ-ペンタドデカノイック アシッド(500mg)のDMF(3mL)溶液に、HATU(572mg)、ジイソプロピルエチルアミン(107μL)を加え、窒素雰囲気下、4℃で1時間攪拌した。反応混合物にクロロホルム(100mL)を加え、水(50mL)、飽和食塩水(50mL)にて有機層を洗浄した。無水硫酸マグネシウムにて有機層を乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィーにて精製し、標題化合物(359mg)を無色の油状物として得た。
HRMS-ESI(m/z): [M+H]+calcd.for C35H54N4O9, 675.3964; found, 675.3960.
(4)1-アミノ-N-(2-{[3-(9H-カルバゾール-4-イロキシ)-2-ヒドロキシプロピル]アミノ}-2-メチルプロピル)-3,6,9,12-テトラオキサペンタデカン-15-アミド 3塩酸塩
 上記(3)で得られた化合物(302mg)のクロロホルム(30mL)溶液に、4N塩化水素酢酸エチル溶液(5mL)を加え、室温で6時間攪拌した。溶媒を減圧濃縮し、クロロホルム(30mL)を加え、再び減圧濃縮し、標題化合物(298mg)を無色の固形物として得た。
HRMS-ESI(m/z): [M+H]+calcd.for C30H46N4O7, 575.3439; found, 575.3440.
(5)22-アジド-N-(2-{[3-(9H-カルバゾール-4-イロキシ)-2-ヒドロキシプロピル]アミノ}-2-メチルプロピル)-17-オキソ-4,7,10,13-テトラオキサ-16-アザドコサン-1-アミド
 上記(4)で得られた化合物(54mg)のTHF(1.4mL)とDMF(0.2mL)および塩化メチレン(1.0mL)混合溶液に、トリエチルアミン(11.6mL)と文献(Vasilyevaら、Bioorganic & Medicinal Chemistry,(2013)21:703-711)の方法に従い合成した1-[(6-アジド-1-オキソヘキシル)オキシ]-2,5-ピロリジンジオン(21mg)を加え、室温で12時間撹拌した。反応混合物を減圧濃縮し、残渣を逆相カラムクロマトグラフィー(0.1%TFAアセトニトリル溶液/0.1%TFA水)で精製することで、標題化合物(32mg)を無色の油状物として得た。
MS (ESI) m/z 714 (M + H)+.
参考例36
N-(2-{2-[2-(2-アジドエトキシ)エトキシ]エトキシ}エチル)-1-(2-メトキシフェニル)プロパン-2-アミン
Figure JPOXMLDOC01-appb-C000163
 2-メトキシフェニルアセトン(100mg)と11-アジド-3,6,9-トリオキサウンデカン-1-アミン(146mg)のテトラヒドロフラン(5mL)溶液に、酢酸(70μL)と水素化トリアセトキシホウ素ナトリウム(258mg)を加え、室温にて4時間撹拌した。反応混合物を減圧濃縮し、シリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製することで、表題化合物(101mg)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.19-7.09 (s, 2H), 6.88-6.81 (m, 2H), 3.79 (s, 3H), 3.66-3.53 (m, 12H), 3.38-3.34 (m, 2H), 2.94-2.75 (m, 4H), 2.55-2.49 (m, 1H), 1.01 (d, J = 6.0 Hz, 3H).
参考例37
-(3-{1-[4-(4-{[6-({2-ヒドロキシ-2-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エチル}アミノ)ヘキシル]オキシ}ブチル)ベンジル]-1H-1,2,3-トリアゾール-4-イル}プロパノイル)-N-メチルシステインアミド
Figure JPOXMLDOC01-appb-C000164
(1)S-パラ-トリルペント-4-インチオエート
 4-ペンチノイックアシッド(1.2g)と4-メチルベンゼンチオール(1.5g)の塩化メチレン(40mL)溶液に、室温でジシクロヘキシルカルボジイミド(2.8g)を加え、12時間撹拌した。反応混合物をろ過し、ろ液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(2.00g)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 7.29-7.19 (m, 4H), 2.86 (t, J = 9.0 Hz, 2H), 2.57-2.52 (m, 2H), 2.36 (s, 3H), 2.00-1.98 (m, 1H).
(2)S-(4-メチルフェニル) 3-{1-[4-(4-{[6-({2-ヒドロキシ-2-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エチル}アミノ)ヘキシル]オキシ}ブチル)ベンジル]-1H-1,2,3-トリアゾール-4-イル}プロパンチオエート
 上記で得られたたS-パラ-トリルペント-4-インチオエート(160mg)と4-{2-[(6-{4-[4-(アジドメチル)フェニル]ブトキシ}ヘキシル)アミノ]-1-ヒドロキシエチル}-2-(ヒドロキシメチル)フェノール(342mg)のTHF(4mL)とエタノール(4mL)の混合溶液に、室温で0.533Mアスコルビン酸ナトリウム水溶液(850μL)と0.263M硫酸銅5水和物水溶液(850μL)を加え、12時間撹拌した。反応混合物をろ過し、ろ液を減圧濃縮した。残渣を逆相カラムクロマトグラフィー(アセトニトリル/水)で精製し、標題化合物(214mg)を無色の油状物として得た。
MS EM674.35 測定値675.6
(3)N-(3-{1-[4-(4-{[6-({2-ヒドロキシ-2-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エチル}アミノ)ヘキシル]オキシ}ブチル)ベンジル]-1H-1,2,3-トリアゾール-4-イル}プロパノイル)-N-メチルシステインアミド
 上記で得られたS-(4-メチルフェニル) 3-{1-[4-(4-{[6-({2-ヒドロキシ-2-[4-ヒドロキシ-3-(ヒドロキシメチル)フェニル]エチル}アミノ)ヘキシル]オキシ}ブチル)ベンジル]-1H-1,2,3-トリアゾール-4-イル}プロパンチオエート(214mg)と文献(Journal of the American Chemical Society,1982,104,15,4283-4285)記載の方法に従って合成した2-アミノ-3-メルカプト-N-メチルプロパンアミド塩酸塩(70mg)のグアニジン緩衝液(10mL)とアセトニトリル(5mL)の混合溶液に、室温でトリス(2-カルボキシエチル)ホスフィン塩酸塩(380mg)を加え、12時間撹拌した。反応混合物をろ過し、ろ液を減圧濃縮した。残渣を逆相カラムクロマトグラフィー(0.1%TFAアセトニトリル溶液/0.1%TFA水)で精製し、標題化合物(84mg)を無色の油状物として得た。
MS EM684.37 測定値685.8
参考例38
4-アミノ-N-((1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-3-イル)メチル)-5-クロロ-2-エトキシベンズアミド
Figure JPOXMLDOC01-appb-C000165
 参考例28で得られたtert-ブチル (1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-3-イル)メチルカルバメート(292mg)のジオキサン溶液(3mL)に、4N塩化水素ジオキサン溶液(5mL)を加え、室温にて3時間攪拌した。反応混合物を減圧濃縮し、得られた残渣に塩化メチレン(5mL)を加えた。さらに、トリエチルアミン(0.16mL)、4-アミノ-5-クロロ-2-エトキシ安息香酸(125mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(111mg)及び1-ヒドロキシベンゾトリアゾール(72mg)を加え、室温にて15時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(251mg)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 8.08 (s, 1H), 7.78 (m, 1H), 7.17 (d, J = 7.9Hz, 2H), 7.07 (d, J = 7.9 Hz, 2H), 6.23 (s, 1H), 4.33 (s, 2H), 4.06-3.97 (m, 2H), 3.21-3.1 (m, 11H), 2.83-2.55 (m, 4H), 2.02-1.02 (m, 21H).
MS EM598.34 測定値600.5
参考例39
4-アミノ-N-((1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)モルホリン-2-イル)メチル)-5-クロロ-2-エトキシベンズアミド
Figure JPOXMLDOC01-appb-C000166
 参考例29で得られたtert-ブチル (1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)モルホリン-2-イル)メチルカルバメート(228mg)のジオキサン溶液(3mL)に、4N塩化水素ジオキサン溶液(5mL)を加え、室温にて3時間攪拌した。反応混合物を減圧濃縮し、得られた残渣に塩化メチレン(5mL)を加えた。さらに、トリエチルアミン(0.13mL)、4-アミノ-5-クロロ-2-エトキシ安息香酸(98mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(87mg)及び1-ヒドロキシベンゾトリアゾール(61mg)を加え、室温にて15時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(251mg)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 8.19 (brs, 1H), 8.08 (s, 1H), 7.20-7.09 (m, 4H), 6.24 (s, 1H), 4.33 (s, 2H), 4.04 (q, J = 7.0 Hz, 2H), 3.86-3.21 (m, 15H), 2.78-2.57 (m, 5H), 2.15-1.97 (m, 2H), 1.62-1.34 (m, 12H).
MS EM600.32 測定値602.1
参考例40
4-アミノ-N-(1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-4―イル)-5-クロロ-2,3-ジヒドロベンソフラン-7-ベンズアミド
Figure JPOXMLDOC01-appb-C000167
 参考例30で得られたtert-ブチル 1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-4-イル)カルバメート(250mg)のジオキサン溶液(3mL)に、4N塩化水素ジオキサン溶液(5mL)を加え、室温にて3時間攪拌した。反応混合物を減圧濃縮し、得られた残渣に塩化メチレン(5mL)を加えた。さらに、トリエチルアミン(0.19mL)、4-アミノ-5-クロロ-2,3-ジヒドロベンゾフラン-7-カルボン酸(156mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(99mg)及び1-ヒドロキシベンゾトリアゾール(140mg)を加え、室温にて15時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(273mg)を無色の油状物として得た。
 1H-NMR (300MHz, CDCl3) δ: 7.83 (s, 1H), 7.24 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 4.76-4.70 (m, 2H), 4.13 (s, 2H), 3.96 (m,1H), 3.45-3.34 (m, 6H), 3.25-2.57 (m, 8H), 2.18-1.93 (m, 4H), 1.72-1.33 (m, 14H).
MS EM582.31 測定値583.5
参考例41
4-アミノ-N-(1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-4―イル)-5-クロロ-2-メトキシベンズアミド
Figure JPOXMLDOC01-appb-C000168
 参考例30で得られたtert-ブチル 1-(4-(4-(6-アジドヘキシルオキシ)ブチル)ベンジル)ピペリジン-4-イル)カルバメート(250mg)のジオキサン溶液(3mL)に、4N塩化水素ジオキサン溶液(5mL)を加え、室温にて3時間攪拌した。反応混合物を減圧濃縮し、得られた残渣に塩化メチレン(5mL)を加えた。さらに、トリエチルアミン(0.19mL)、4-アミノ-5-クロロ-2-メトキシ安息香酸(148mg)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(99mg)及び1-ヒドロキシベンゾトリアゾール(140mg)を加え、室温にて15時間攪拌した。反応混合物に水を加え、クロロホルムで抽出した。分離した有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)で精製し、標題化合物(273mg)を無色の油状物として得た。
1H-NMR (300MHz, CDCl3) δ: 8.07 (s, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.20 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 6.25 (s, 1H), 4.34 (s, 2H), 3.99 (m,1H), 3.83 (s, 3H), 3.46-3.21 (m, 10H), 2.74-2.57 (m, 4H), 2.21-1.95 (m, 4H), 1.66-1.33 (m, 12H).
MS EM570.15 測定値572.2
参考例42-44、46,47
 参考例16と同様の方法で、RNAホスホロアミダイト、すなわち、5’-O-ジメトキシトリチル-N-ベンゾイル-2’-トリイソプロピルシリルオキシメチルアデノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-アセチル-2’-トリイソプロピルシリルオキシメチルシチジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-イソブチリル-2’-トリイソプロピルシリルオキシメチルグアノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-2’-トリイソプロピルシリルオキシメチルウリジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト(シグマアルドリッチ社製)、2’-O-メチルホスホロアミダイト、すなわち、5’-O-ジメトキシトリチル-N-ベンゾイル-2’-メトキシアデノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-アセチル-2’-メトキシシチジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-イソブチリル-2’-メトキシグアノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-2’-メトキシチミジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、及び5’-O-ジメトキシトリチル-2’-メトキシウリジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト(ケムジーン社製)、2’-F-ホスホロアミダイト、すなわち、5’-O-ジメトキシトリチル-N-アセチル-2’-フルオロシチジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、及び5’-O-ジメトキシトリチル-2’-フルオロウリジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、(シグマアルドリッチ社製)、及びDNAホスホロアミダイト、5’-O-ジメトキシトリチル-N-ベンゾイルアデノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-アセチルシチジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、5’-O-ジメトキシトリチル-N-イソブチリルグアノシン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト、及び5’-O-ジメトキシトリチルチミジン-3’-O-N,N’-ジイソプロピル-2-シアノエチルホスホロアミダイト(シグマアルドリッチ社製)から対応する原料化合物を用いて、下記式(XX):
Figure JPOXMLDOC01-appb-C000169
で示される表1に示す化合物を得た。ただし、亜リン酸のホスホロチオエート基への変換については、3-((N,N-ジメチルアミノメチリデン)アミノ)-3H-1,2,4-ジチアゾール-5-チオン(DDTT)/ピリジン/アセトニトリル溶液を使用した。
Figure JPOXMLDOC01-appb-T000170
参考例48-52
 参考例18と同様の方法で、対応する原料化合物を用いて、下記式(XXI):
Figure JPOXMLDOC01-appb-C000171
で示される表2に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000172
参考例53
Figure JPOXMLDOC01-appb-C000173
 ホウ酸緩衝液(pH8.0、終濃度0.5M)下、参考例16の化合物の1.0mM水溶液(180μL)とN-スクシンイミジル 3-(2-ピリジルジチオ)プロピオネートの10.0mMジメチルスルホキシド/アセトニトリル混合溶液(4/1、70μL)を混合し、室温で4時間撹拌した。反応溶液を、限外ろ過、遠心濃縮し、標題化合物(2.0mg)を得た。
MALDI-TOF/MS: m/z=7194.30(理論値7194.68)
参考例54、56および58
 参考例53と同様の方法で、対応する原料化合物を用いて、下記式(XXII):
Figure JPOXMLDOC01-appb-C000174
で示される表3に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000175
参考例59-65
 参考例15と同様の方法で、対応する原料化合物を用いて、表4に示すオリゴヌクレオチドを得た。
Figure JPOXMLDOC01-appb-T000176
参考例66
Figure JPOXMLDOC01-appb-C000177
(1)オリゴヌクレオチドの合成
 参考例15と同様の方法で、対応する原料から合成した。但し、ポリスチレン固体担体としては、市販のアミノ化固相担体(Phthalamido Amino C6 lcaa CPG Chem Genes社製)と、5’末端修飾には1-O-ジメトキシトリチルヘキシルジスルフィド,1’-2-シアノエチル-N,N-ジイソプロピルホスホロアミダイト(Glen Research社製)をオリゴヌクレオチド合成に使用した。ホスホロアミダイトは全て、アセトニトリル中、0.1Mの濃度で使用した。RNAについては10分の連結時間を、DNAについては3分の連結時間を、5’末端修飾については15分の連結時間を要した。ホスホロアミダイトの活性剤としては、5-ベンジルメルカプトテトラゾール(0.25M、和光純薬社製)を使用し、亜リン酸のリン酸への酸化には、ヨウ素/水/ピリジンを使用した。
(2)脱保護I(担体からの切断)
 上記で得られたCPG担体をガラスボトルに移した。オリゴヌクレオチドを、担体1μmolに対して1.0mLの、28%アンモニア水溶液と40%メチルアミン水溶液の混合溶液を用いて、25℃で3時間、塩基とリン酸基を同時に脱保護しながら担体から切断した。その後、限外ろ過デバイスで溶媒留去し、濃縮遠心機(IWAKI社製)で乾固した。
(3)脱保護II(2’-トリイソプロピルシリルオキシメチル(2’-TOM)基の除去)
 (2)で得られた乾燥残渣を、1Mフッ化テトラ-n-ブチルアンモニウム/テトラヒドロフラン溶液(0.25mL/合成オリゴヌクレオチド1μmol)に懸濁させ、65℃で3時間加熱した。反応物を、脱保護溶液と同量の1Mトリス-塩酸バッファー(pH7.5)でクエンチ後、エタノール沈殿し、乾固した。
(4)ジスルフィド基の除去
 (3)で得られた乾燥残渣を、1Mトリス-塩酸バッファー(pH7.5、0.5mL/合成オリゴヌクレオチド1μmol)に溶解し、0.12Mジチオトレイトール溶液と0.5Mリン酸バッファー(pH8.0)溶液の混合溶液を同量加え、25℃で6時間反応した。反応物を限外ろ過で溶媒留去し、フリーザーで保存した。
(5)HPLCによる精製
 (4)で得られた粗オリゴヌクレオチドを、C18逆相カラム(X-bridge Waters社製)を用いた逆相HPLCで精製した。緩衝液は、100.0mMヘキサフルオロイソプロパノールと8.0mMトリエチルアミン混合水溶液(pH8.0)(緩衝液A)とメタノール(緩衝液B)であった。完全長のオリゴヌクレオチドを含む画分を集め、限外ろ過、凍結乾燥して、標題化合物を得た。
MALDI-TOF/MS: m/z=7191.70(理論分子量7193.59)
参考例67
Figure JPOXMLDOC01-appb-C000178
 参考例66の化合物の1.0mM脱イオン化RNaseフリー水溶液(1.9mL)と0.5Mのホウ酸バッファー(pH8.0)4.9mLを混合した。参考例3の化合物の10.0mM溶液(ジメチルスルホキシド/アセトニトリル = 4/1、0.7mL)を加え、25℃で4時間撹拌した。遠心限外ろ過デバイスに反応溶液を加え、20℃、4000rpmにて遠心濃縮を行った。上部に脱イオン化RNaseフリーの水を10mL加え、再度遠心濃縮を行い、標題化合物(7.5mg)を得た。
MALDI-TOF/MS: m/z=7354.45(理論値7357.84)
参考例68
Figure JPOXMLDOC01-appb-C000179
 参考例67で得られた化合物の6.0mMの脱イオン化RNaseフリー水溶液134μLと0.5Mのホウ酸バッファー(pH8.0)134μLとを混合した。撹拌した溶液の中に、18.0mM Alexa Fluor(登録商標) 594 C5 マレイミド溶液(ジメチルスルホキシド/アセトニトリル= 4/1、134μL)を加え、20℃で12時間撹拌した。遠心限外ろ過デバイスに反応溶液を加え、20℃、4000rpmにて遠心濃縮を行った。上部に脱イオン化RNaseフリーの水を10mL加え、再度遠心濃縮を行い、標題化合物(4.0mg)を得た。
MALDI-TOF/MS: m/z=8245.08(理論値8243.82)
参考例69
Figure JPOXMLDOC01-appb-C000180
(1)クリック反応
 硫酸銅を2mMの水溶液、L-アスコルビン酸を10mM水溶液及び参考例68の化合物を0.47mM水溶液となるようにそれぞれ脱イオン化RNaseフリー水に溶解した。また、参考例18の化合物を10mMの溶液及びトリス[(1-ベンジル-1H-1,2,3-トリアゾール-4-イル)メチル]アミン(以下、TBTAと省略する)を3.5mMの溶液になるようにDMF:アセトニトリル(4:1)を用いて溶解した。調整した溶液を2mM硫酸銅水溶液(888μL)、3.5mMTBTA溶液(1332μL)、10mMアスコルビン酸水溶液(888μL)、0.1Mのリン酸バッファー(pH=7.0、666μL)及び参考例62の化合物の水溶液(0.47mM、560μL)を順に混合した。よく混ぜ合わせた溶液の中に、参考例18の化合物の水溶液(10mM、888μL)を加え、25℃で2時間反応を行った。反応終了後C18逆相カラム(X-bridge 日本ウォーターズ社製)を用いてHPLC分析を行い、反応を確認した。
(2)HPLC精製
 (1)で得られた反応溶液を、X-bridgeゲルカラム(日本ウォーターズ社製)を用いた逆相イオン交換HPLCで精製した。移動相として、アセトニトリル/0.1Mトリエチルアミン酢酸緩衝液(pH7.0)(5/95~90/10)を用いた。脱塩した後に、凍結乾燥し、クリック反応成績体を得た。
MALDI-TOF/MS: m/z=8714.03(M-H)- (理論値8714.42).
(3)アニーリング
 (2)で得られたクリック成績体と参考例15の化合物を、それぞれ200μMになるようにRNaseフリー水に溶解し、等量を混合した。混合液を、終濃度で20mM塩化ナトリウムの10mMトリス塩酸緩衝液(pH8.0)溶液となるように調製した。溶液を70℃で10分間加熱後、1分間に1℃ずつ温度を下降させ、30℃にしてアニーリングを行った。アニーリングは19%非変性ポリアクリルアミドゲル電気泳動により確認し、標題化合物の化合物を得た。
参考例70
Figure JPOXMLDOC01-appb-C000181
 参考例18と同様の方法で、参考例46の化合物から標題化合物を得た。
MALDI-TOF/MS: m/z=7085.40(M-H) (理論値7085.48).
参考例71
Figure JPOXMLDOC01-appb-C000182
 参考例18と同様の方法で、参考例43の化合物から表題化合物を得た。
MALDI-TOF/MS: m/z=6651.71(M-H) (理論値6649.47).
参考例72
Figure JPOXMLDOC01-appb-C000183
 参考例16と同様の方法で、対応する原料化合物から標題化合物(6.9mg)を得た。
MALDI-TOF/MS: m/z=6887.74(M-H) (理論値6883.16).
参考例73
Figure JPOXMLDOC01-appb-C000184
 参考例53と同様の方法で、参考例72の化合物から標題化合物(2.6mg)を得た。
MALDI-TOF/MS: m/z=6972.00[M-pyridylthio]- (理論値7085.03).
実施例1
Figure JPOXMLDOC01-appb-C000185
(1)クリック反応
 参考例18の化合物(3.5mg)を水溶液として調製し、反応に使用した。反応溶液は、いずれも終濃度で、0.2mM硫酸銅、0.7Mトリス-(ベンジルトリアゾールメチル)アミン、1.33mMアスコルビン酸、10mMリン酸バッファー(pH7.0)、0.14mM参考例18の化合物及び1.33mM4-(2-(5-(4-((3-(アジドメチル)フェノキシ)メチル)フェノキシ)ペンチルアミノ)-1-ヒドロキシエチル)-2-(ヒドロキシメチル)フェノール(参考例10)となるように調製し、25℃で3時間攪拌した。
(2)HPLC精製
 (1)で得られた反応溶液を、X-bridgeゲルカラム(日本ウォーターズ社製)を用いた逆相イオン交換HPLCで精製した。移動相として、アセトニトリル/0.1Mトリエチルアミン酢酸緩衝液(pH7.0)(5/95~90/10)を用いた。脱塩した後に、凍結乾燥し、クリック反応成績体(1.8mg)を得た。
MALDI-TOF/MS: m/z=7579.68(M-H)-(理論値7584.27).
(3)アニーリング
 (2)で得られたクリック成績体と参考例15の化合物を、それぞれ200μMになるようにRNaseフリー水に溶解し、等量を混合した。混合液を、終濃度で20mM塩化ナトリウムの10mMトリス塩酸緩衝液(pH8.0)溶液となるように調製した。溶液を70℃で10分間加熱後、1分間に1℃ずつ温度を下降させ、30℃にしてアニーリングを行った。アニーリングは19%非変性ポリアクリルアミドゲル電気泳動により確認し、実施例1の化合物を得た。
実施例2-17
 実施例1と同様の方法で、対応する原料化合物を用いて、下記式(XXIII):
Figure JPOXMLDOC01-appb-C000186
で示される表5-1および表5-2に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000187
Figure JPOXMLDOC01-appb-T000188
実施例18-21
 実施例1と同様の方法で、対応する原料化合物を用いて、下記式(XXIV):
Figure JPOXMLDOC01-appb-C000189
で示される表6に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000190
実施例22-34
 実施例1と同様の方法で、対応する原料化合物を用いて、下記式(XXV):
Figure JPOXMLDOC01-appb-C000191
で示される表7に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000192
実施例35-41
 実施例1と同様の方法で、対応する原料化合物を用いて、下記式(XXVI):
Figure JPOXMLDOC01-appb-C000193
で示される表8に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000194
実施例42-43
 実施例1と同様の方法で、対応する原料化合物を用いて、下記式(XXVII):
Figure JPOXMLDOC01-appb-C000195
で示される表9に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000196
実施例44
Figure JPOXMLDOC01-appb-C000197
(1)参考例53の化合物を0.50mMになるように脱イオン化RNaseフリー水に溶解した。この水溶液560μLと0.5Mホウ酸緩衝液(pH8.0)770μLの混合液に、10mMに調製した参考例37の化合物のDMF溶液(70μL)を加え、25℃で1時間撹拌した。
(2)HPLC精製
 反応溶液を、C18逆相カラムを用いた逆相HPLCにて精製した。緩衝液は、100mMヘキサフルオロイソプロパノールと8mMトリエチルアミン混合水溶液(pH8.0)(緩衝液A)とメタノール(緩衝液B)を用いた。修飾されたオリゴヌクレオチドを含むフラクションを集め、限外ろ過、凍結乾燥を行うことでジスルフィド体(1.2mg)得た。
(3)アニーリング
 実施例1と同様の方法で、(2)で得られたジスルフィド体と参考例15の化合物をアニーリングし、標題化合物を得た。
実施例45-49
 実施例44と同様の方法で、対応する原料化合物を用いて、下記式(XXVIII):
Figure JPOXMLDOC01-appb-C000198
で示される表10に示す化合物を得た。
Figure JPOXMLDOC01-appb-T000199
実施例50
Figure JPOXMLDOC01-appb-C000200
 実施例44と同様の方法で、参考例37と参考例73の化合物から標題化合物(1.4mg)を得た。なおアニリーングせず1本鎖の誘導体として得た。
MALDI-TOF/MS: m/z=7655.61 (理論値7658.75).
 本発明化合物の薬理活性は、以下の試験により確認した。
試験例1:β受容体発現HEK293細胞のcAMPアッセイ
 6-well plateにHEK293細胞株を3x10cells/2mL/wellで播きこみ、一晩培養した。培地は抗生物質不含10%FBS/DMEMを用いた。pcDNA3.1やpCIなどの哺乳類発現ベクターに挿入したβ受容体を、LipofectamineLTXを用いてトランスフェクトした(37℃で一晩培養)。トリプシンで細胞を剥がし、2mLのFBS(-)/DMEMに懸濁し、1000rpmで2分間遠心した。上清を除去し、アッセイバッファー(0.5mM IBMX/0.1%BSA/DMEM)で細胞を1x10cells/mLに懸濁した。384-Well Low Volume Black Round Bottom PS NBS Microplate (Corning, Cat#3676)に最終濃度の2倍濃度に調製した評価化合物を5μL/well添加し、さらに細胞懸濁液を5μL/well添加した。37℃にて0.5時間静置後、cAMP HTRF Kit (Cisbio, Cat# 62AM6PEJ)を用いて細胞が産生したcAMP濃度を定量した。ホモジニアス時間分解蛍光測定(HTRF)の測定はRUBYstarで行った(Ex337 nm, Em665 nm/Em620 nm)。
 被験化合物の評価結果を表11に示す。Emax値は、βアゴニストであるSalmeterolが最大に増加させるcAMP濃度を100%とし、それに対する各化合物の最大に増加させるcAMP濃度の割合で表記した。また、EC50値は、各化合物のEmax値の50%のcAMP増加量となる化合物の濃度として算出した。SalmeterolのEC50値は0.1nMであった。本発明の化合物はβ受容体発現HEK293細胞においてcAMPの上昇を示した。
Figure JPOXMLDOC01-appb-T000201
試験例2:GFP2付β受容体発現HEK293細胞を用いた受容体内在化アッセイ
 6-well plateにHEK293細胞株を3x10cells/2 mL/wellで播きこみ、一晩培養した。培地は抗生物質不含10%FBS(0.22μm-filtrated)/DMEMを用いた。β受容体にGFP2を融合させたものを哺乳類発現ベクターであるpcDNA3.1やpCIもしくは種々のウイルス発現ベクターpAxcwit2、pDON-5 DNA、pLVSIN-CMV Neo、pFastBacMamなどに挿入し、作成したウイルスを感染させた(37℃、4~6時間)。トリプシンで細胞を剥がし、Poly-D-Lysine-coated 96-well plate (Black/Clear Bottom)(BD, BIOCOAT, Cat# 356640)に2x10cells/0.1 mL/wellで播きこみ、一晩培養した。最終濃度の11倍濃度の評価化合物を10μL/well添加し、37℃にて5時間静置した。Hoechst33342(1μg/mL)を含む4%パラホルムアルデヒド溶液を0.1mL/well添加し、室温で1時間静置した。上清を捨て、D-PBS(-)を0.2 mL/well添加した。イメージングサイトメーターIN Cell Analyzer 1000で核とβ-GFP2の画像を取り込んだ。測定条件は表12の通りである。核あたりの内在化β-GFP2量を算出した。
Figure JPOXMLDOC01-appb-T000202
 被験化合物の評価結果を表13に示す。Emax値は、βアゴニストであるSalmeterolが最大に内在化する濃度を100%とし、それに対する各化合物の内在化の最大を示す濃度の割合で表記した。また、EC50値は、各化合物のEmax値の50%の内在化となる化合物の濃度として算出した。SalmeterolのEC50値は1.7nMであった。本発明の化合物は、GFP2付β受容体発現HEK293細胞において内在化を示した。
Figure JPOXMLDOC01-appb-T000203
試験例3:β受容体発現HEK293細胞を用いたノックダウン実験方法
 HEK293細胞株にβ受容体発現プラスミドを、LipofectamineLTXを用いてトランスフェクトする(37℃で一晩培養)。トリプシンで細胞を剥がし、10%FBS/DMEMに懸濁する。細胞を12-well plateに1.5x10cells/2mL/wellで播種し、6時間培養する。化合物を添加し24時間培養する。培養細胞の培養液を除去し、QuickGene-800自動核酸抽出システム(FUJIFILM)およびRNA培養細胞キットS(FUJIFILM)を用いて、説明書に従い、total RNAを調製する。total RNAをテンプレートに用い、High Capacity cDNA Reverse Transcription Kit(Applied Biosystems)の説明書に従い、Reverse Transcriptase(RT)反応を行う。PCR反応にはPower SYBR Green PCR Master Mix(Applied Biosystems)を用い、説明書に従い、Applied Biosystems 7900HTリアルタイムPCRシステムにより定量的PCRを実施する。詳細には、RT反応済み溶液5μL、下記の20μM Forward Primer 0.5μL、下記の20μM Reverse Primer 0.5μL、DW 6.5μLおよびPower SYBR溶液12.5μLを混合し、Step1:50℃、2min、Step2:95℃、10min、Step3:95℃、15sec、60℃、1minを40サイクル、Step4:95℃、15sec、Step5:60℃、15sec、Step6:95℃、15secで反応する。PCRプライマーは、peptidylprolyl isomerase B(cyclophilin B)(以下、PPIBとする)に対して、PPIB Forward Primer:5’-gctagatggcaagcatgtggtgttt-3’、PPIBReverse Primer:5’-tcaaagaaagatgtccctgtgccc-3’を使用する。内部標準遺伝子にはribosomal protein, large, P0 (以下、RPLP0とする)を使用し、PCRプライマーは、RPLP0Forward Primer:5’-aggtgttcgacaatggcagcatctac-3’、RPLP0 Reverse Primer:5’-tcgtttgtacccgttgatgataga-3’を使用する。
試験例4:蛍光標識化合物を用いた細胞内取込みアッセイ
 6-well plateにHEK293細胞株を3x10cells/2mL/wellで播きこみ、37℃、5%COインキュベータで一晩培養した。培地は抗生物質不含10%FBS/DMEMを用いた。pTran3.1などの哺乳類発現ベクターに挿入したヒトβ受容体を、LipofectamineLTXを用いてトランスフェクトした(37℃で一晩培養)。トリプシンで細胞を剥がし10%FBS/DMEMで懸濁後、Poly-D-Lysine-coated Glass Bottom Culture Dishes (MatTek, Cat# P35GC-1.5-10-C)に3x105cells/0.1 mL/wellで播きこみ、一晩培養した。培養上清を除去し、GDX-117を最終濃度1μMになるように添加し、37℃にて所定時間培養した。Hoechst34580(最終濃度2.5μg/mL、10-20分間、室温)を添加した後、培養上清を除去し、4%パラホルムアルデヒドにより固定化を行った(室温、20分間)。0.3%TritonX-100/PBS処理(室温、3分間)の後、β2受容体特異的抗体により免疫染色を行い、共焦点レーザー顕微鏡システム(LEICA DMIRE2)で核と参考例69の化合物、およびβ2受容体の画像を取込み、化合物の細胞内への取込みを確認した。
試験例5:5-HT受容体発現HEK293細胞のcAMPアッセイ
 6-well plateにHEK293細胞株を1.5x10cells/2mL/wellで播きこみ、一晩培養した。培地は抗生物質不含10%FBS/DMEMを用いた。pcDNA3.1哺乳類発現ベクターに挿入した5-HT受容体を、Trans-IT LT1試薬を用いてトランスフェクトした(37℃で一晩培養)。トリプシンで細胞を剥がし、2mLのFBS(-)/DMEMに懸濁し、1000rpmで2分間遠心した。上清を除去し、アッセイバッファー(0.5mM IBMX/0.1%BSA/DMEM)で細胞を5x10cells/mLに懸濁した。384-Well Low Volume Black Round Bottom PS NBS Microplate (Corning, Cat#3676)に最終濃度の2倍濃度に調製した実施例30の化合物を5μL/well添加し、さらに細胞懸濁液を5μL/well添加した。37℃にて0.5時間静置後、cAMP HTRF Kit (Cisbio, Cat# 62AM6PEJ)を用いて細胞が産生したcAMP濃度を定量した。ホモジニアス時間分解蛍光測定(HTRF)の測定はRUBYstarで行った(Ex337 nm, Em665 nm/Em620 nm)。5-HTが最大に増加させるcAMP濃度を100%としたときに、30μMの実施例30の化合物が増加させたcAMP濃度の割合は52%であった。
 本発明におけるアンチセンスオリゴヌクレオチド、siRNA、およびmiRNAに代表されるオリゴヌクレオチドとGPCRに結合するリガンドとのコンジュゲートを含む新規化合物は、GPCRを介する効率的な細胞内取り込み能を有し、細胞内におけるオリゴヌクレオチドの機能発現を示すことができ、研究分野、医療分野等の産業界に大きく貢献する。
 本出願は、日本で出願された特願2012-126788を基礎としており、その内容は本明細書にすべて包括される。

Claims (13)

  1.  Gタンパク質共役受容体結合リガンド(以下、「GPCRリガンド」と称する場合がある。)と核酸分子との間にリンカーを含むコンジュゲートであって、当該リンカーが、トリアゾリレン、及び置換されていてもよいポリアルキレングリコール鎖または置換されていてもよいアルキレン鎖(ここにおいて、該アルキレン鎖は、1または複数の-O-、-S-、-NH-、=N-、-N=、-SO-、-C(=O)-、(C6-C10)アリーレン、(C1-C9)ヘテロアリーレン、(C3-C8)シクロアルキレンおよび(C3-C7)ヘテロシクリレンからなる群より選ばれる2価基で遮断または末端に挿入されていてもよい。)を含む上記コンジュゲート。
  2.  リンカーが下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    *は、GPCRリガンドとの結合部位を表し、
    **は、核酸分子との結合部位を表し、
    Lは、ホスフェート基、ホスホロチオエート基、ボラノホスフェート基、ホスホロセレネート基、ボラノホスフェートエステル基、水素ホスホネート基、ホスホロアミデート基、アルキルホスホネート基、アリールホスホネート基、およびホスホトリエステル基からなる群から選ばれる基を表し、核酸分子の五炭糖基に共有結合し、
    は、-(CHn1-、-(CHn2-O-(CH)n3-、-(CHCHO)n4-CHCH-、-CHCH-S-S-CHCH-C(O)-NH-(CH-および-CHCH-O-C(O)-NH-(CH-からなる群から選ばれる二価基(ここにおいて、-(CHn1-、-(CHn2-O-(CHn3-および-(CHCHO)n4-CHCH-は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~5個の置換基で置換されていてもよく、-CHCH-S-S-CHCH-C(O)-NH-(CH-は、置換可能な位置で、R3031N-C(O)-およびR32OC(O)-からなる群から選ばれる同一または異なる1~3個の置換基で置換されていてもよい。ここにおいてR30、R31およびR32は、それぞれ独立して、水素原子または(C1-C6)アルキル基を表す。)を表し、n1、n2、n3およびn4は、それぞれ独立して、3~20の整数を表し、
    は、-(CHn5-、-(CHn6-O-(CHn7-、-CHCH-(OCHCHn8-、-C(O)-CHCH-(OCHCH)n9-、-CHCH-(OCHCH)n10-C(O)-、-C(O)-CHCH-(OCHCH)n11-NH-C(O)-、-C(O)-(CHn12-、-O-(CHn13-、-(CHn14-(OCHCH)n15-O-(CHn16-および-(CHn17-NH-C(O)-(CHCHO)n18-CHCH-NH-C(O)-(CHn19-からなる群から選ばれる二価基(ここにおいて、該二価基は、置換可能な位置で、それぞれ独立して、1ないし3個の水酸基で置換されていてもよい(C1-C6)アルキル基および水酸基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい。)を表し、n5、n6、n7、n8、n9、n10、n11、n12、n13、n14、n15、n16、n17、n18およびn19は、それぞれ独立して、0~20の整数を表し、
    は、式(IIa):
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよく、Wは、-NH-、-O-、-NH-C(O)-(CHm1-および-NH-C(O)-(CHm2-O-からなる群から選ばれる二価基を表し、m1およびm2は、それぞれ独立して、1~20の整数を表す。)、式(IIb):
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm3-、-(CHm4-NH-および-(CHm5-O-からなる群から選ばれる二価基を表し、m3、m4およびm5は、それぞれ独立して、1~20の整数を表す。)、式(IIc):
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm6-、-(CHm7-NH-および-(CHm8-O-からなる群から選ばれる二価基を表し、m6、m7およびm8は、それぞれ独立して、1~20の整数を表す。)、式(IId):
    Figure JPOXMLDOC01-appb-C000005
    (式中、R5’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm9-、-(CHm10-NH-および-(CHm11-O-からなる群から選ばれる二価基を表し、m9、m10およびm11は、それぞれ独立して、1~20の整数を表す。)、式(IIe):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R6’は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、Wは、-(CHm12-、-(CHm13-NH-および-(CHm14-O-からなる群から選ばれる二価基を表し、m12、m13およびm14は、それぞれ独立して、1~20の整数を表す。)、式(IIf):
    Figure JPOXMLDOC01-appb-C000007
    (式中、Wは、-(CHm15-および-CHCH-(OCHCHm16-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m15およびm16は、それぞれ独立して、1~10の整数を表し、Wは、単結合または、-C(O)-NH-(CHm17-、-NH-C(O)-(CHm18-および-O-(CHm19-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、-C(O)-NH-(C1-C6)アルキルおよび-NH-C(O)-(C1-C6)アルキルからなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m17、m18、およびm19は、それぞれ独立して、1~20の整数を表す。)、式(IIg):
    Figure JPOXMLDOC01-appb-C000008
    (式中、Wは、-(CHm20-および-CHCH-(OCHCHm21-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m20およびm21は、それぞれ独立して、1~20の整数を表し、Rは、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、RおよびRは、それぞれ独立して、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、RとRが互いに結合し(C3-C8)員環を形成してもよい)、および式(IIh):
    Figure JPOXMLDOC01-appb-C000009
    (式中、Wは、-(CHm22-および-CHCH-(OCHCHm23-からなる群から選ばれる二価基(該二価基は、置換可能な位置で、それぞれ独立して、(C1-C6)アルキル基、水酸基およびアミノ基からなる群から選ばれる同一または異なる1~10個の置換基で置換されていてもよい)を表し、m22およびm23は、それぞれ独立して、1~20の整数を表し、R10は、水素原子、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、R11およびR12は、それぞれ独立して、(C1-C6)アルキル基または(C3-C8)シクロアルキル基を表し、或いは、R10とR11が互いに結合し(C3-C8)員環を形成してもよい)
    からなる群から選ばれる二価基を表し、
    aは、0または1の整数を表し、
    は、式(IIIa):
    Figure JPOXMLDOC01-appb-C000010
    、または式(IIIb):
    Figure JPOXMLDOC01-appb-C000011
    (式中、p1、p2、p3、およびp4は、それぞれ独立して、1~20の整数を表し、(CHp1および(CHp3は、1または複数の-O-、-C(=O)-、-C(=O)-NH-、-C(=O)-N(Me)-、-C(=O)-O-および-SO-NH-からなる群より選ばれる2価基で遮断または末端に挿入されていてもよい)の二価基を表し、
    は、(C3-C8)シクロアルキレン、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、(C1-C9)ヘテロアリーレン、-O-(C1-C9)ヘテロアリーレン、(C1-C9)ヘテロアリーレン-O-、(C3-C7)ヘテロシクリレン、式(IVa):
    Figure JPOXMLDOC01-appb-C000012
    、式(IVb):
    Figure JPOXMLDOC01-appb-C000013
    、式(IVc):
    Figure JPOXMLDOC01-appb-C000014
    および式(IVd):
    Figure JPOXMLDOC01-appb-C000015
    からなる群から選ばれる二価基を表し、(C3-C8)シクロアルキレンは、1~10個の同一または異なる(C1-C6)アルキル基で置換されていてもよく、(C6-C10)アリーレン、-O-(C6-C10)アリーレン、(C6-C10)アリーレン-O-、(C1-C9)ヘテロアリーレン、-O-(C1-C9)ヘテロアリーレン、(C1-C9)ヘテロアリーレン-O-、(C3-C7)ヘテロシクリレン、式(IVa)、式(IVb)、式(IVc)および式(IVd)におけるアリーレン、ヘテロアリーレンおよびヘテロシクリレン部分は、ハロゲン原子、(C1-C6)アルキル基、(C1-C6)アルコキシ基、(C1-C6)アルコキシカルボニル基、カルボキシル基、シアノ基、水酸基、トリフルオロメチル基およびトリフルオロメトキシ基からなる群から選ばれる1~6個の置換基で置換されていてもよく、bは、0または1の整数を表す。]で表される請求項1に記載のコンジュゲート。
  3.  Lが式(V):
    Figure JPOXMLDOC01-appb-C000016
    (式中、ZおよびZは、それぞれ独立して、酸素原子または硫黄原子を表す。)を表す請求項2に記載のコンジュゲート。
  4.  核酸分子が、1本鎖又は2本鎖の核酸分子である請求項1~3のいずれか1項に記載のコンジュゲート。
  5.  核酸分子が、7~100塩基の核酸分子である請求項1~4のいずれか1項に記載のコンジュゲート。
  6.  核酸分子がmRNAと相互作用する核酸分子またはRNA干渉を誘導する核酸分子である請求項1~5のいずれか1項に記載のコンジュゲート。
  7.  核酸分子が、siRNA、miRNA、アンチセンスオリゴヌクレオチドおよびantagoMirからなる群から選ばれる、請求項1~6のいずれか1項に記載のコンジュゲート。
  8.  GPCRリガンドが、GPCRに結合する非ペプチド性リガンド構造である請求項1から7のいずれか1項に記載のコンジュゲート。
  9.  GPCRリガンドが、GPCRアゴニストの一部構造を有する請求項1から8のいずれか1項に記載のコンジュゲート。
  10.  GPCRリガンドが、β受容体または5-HT受容体に結合する非ペプチド性リガンド構造である請求項1から9のいずれか1項に記載のコンジュゲート。
  11.  GPCRリガンドが、式(VIa):
    Figure JPOXMLDOC01-appb-C000017
    (式中、Bは、-CHOH、-NHCHOまたは-(CHOHを表す。)
    、式(VIb):
    Figure JPOXMLDOC01-appb-C000018
    、式(VIc):
    Figure JPOXMLDOC01-appb-C000019
    (式中、Bは、水素原子、メチルまたはエチルを表す。)
    、式(VId):
    Figure JPOXMLDOC01-appb-C000020
    、式(VIe):
    Figure JPOXMLDOC01-appb-C000021
    、または式(VIf):
    Figure JPOXMLDOC01-appb-C000022
    で表される構造である請求項1から10のいずれか1項に記載のコンジュゲート。
  12.  GPCRリガンドが、式(VIIa):
    Figure JPOXMLDOC01-appb-C000023
    、式(VIIb):
    Figure JPOXMLDOC01-appb-C000024
    (式中、Bは、水素原子またはメトキシを表す。)
    、式(VIIc):
    Figure JPOXMLDOC01-appb-C000025
    (式中、Bは、メチルまたはエチルを表す。また、Bは、メチレンまたは酸素原子を表す。)
    、式(VIId):
    Figure JPOXMLDOC01-appb-C000026
    または式(VIIe):
    Figure JPOXMLDOC01-appb-C000027
    で表される構造である請求項1から10のいずれか1項に記載のコンジュゲート。
  13.  請求項1から12のいずれか1項に記載のコンジュゲートを有効成分として含有する医薬組成物。
PCT/JP2013/065512 2012-06-04 2013-06-04 Gタンパク質共役受容体結合リガンドと核酸分子とのコンジュゲート WO2013183656A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012126788 2012-06-04
JP2012-126788 2012-06-04

Publications (1)

Publication Number Publication Date
WO2013183656A1 true WO2013183656A1 (ja) 2013-12-12

Family

ID=49712045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065512 WO2013183656A1 (ja) 2012-06-04 2013-06-04 Gタンパク質共役受容体結合リガンドと核酸分子とのコンジュゲート

Country Status (1)

Country Link
WO (1) WO2013183656A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503394A (ja) * 2012-10-26 2016-02-04 エヌライフ、セラピューティックス、ソシエダッド、リミターダNlife Therapeutics, S.L. 細胞型へのオリゴヌクレオチド分子の選択的送達のための組成物および方法
CN105646285A (zh) * 2014-12-02 2016-06-08 上海医药工业研究院 一种维兰特罗中间体及其制备方法和应用
EP3136099A1 (en) * 2015-08-31 2017-03-01 Sysmex Corporation Blood analyzing method as well as stain solution and blood analyzer used for the same
CN106699576A (zh) * 2016-12-23 2017-05-24 常州瑞明药业有限公司 盐酸甲氧那明的合成方法
CN108976216A (zh) * 2018-09-07 2018-12-11 江苏工程职业技术学院 一种普卡必利的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082606A2 (en) * 2007-12-04 2009-07-02 Alnylam Pharmaceuticals, Inc. Folate conjugates
JP2011505425A (ja) * 2007-12-04 2011-02-24 アルニラム ファーマスーティカルズ インコーポレイテッド オリゴヌクレオチドの送達剤としての糖質コンジュゲート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082606A2 (en) * 2007-12-04 2009-07-02 Alnylam Pharmaceuticals, Inc. Folate conjugates
JP2011505425A (ja) * 2007-12-04 2011-02-24 アルニラム ファーマスーティカルズ インコーポレイテッド オリゴヌクレオチドの送達剤としての糖質コンジュゲート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JULIANO,R. ET AL.: "Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides", NUCLEIC ACIDS RESEARCH, vol. 36, no. 12, 2008, pages 4158 - 4171 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016503394A (ja) * 2012-10-26 2016-02-04 エヌライフ、セラピューティックス、ソシエダッド、リミターダNlife Therapeutics, S.L. 細胞型へのオリゴヌクレオチド分子の選択的送達のための組成物および方法
CN105646285A (zh) * 2014-12-02 2016-06-08 上海医药工业研究院 一种维兰特罗中间体及其制备方法和应用
CN105646285B (zh) * 2014-12-02 2017-11-24 上海医药工业研究院 一种维兰特罗中间体及其制备方法和应用
EP3136099A1 (en) * 2015-08-31 2017-03-01 Sysmex Corporation Blood analyzing method as well as stain solution and blood analyzer used for the same
US10295553B2 (en) 2015-08-31 2019-05-21 Sysmex Corporation Blood analyzing method as well as stain solution and blood analyzer used for the same
CN106699576A (zh) * 2016-12-23 2017-05-24 常州瑞明药业有限公司 盐酸甲氧那明的合成方法
CN108976216A (zh) * 2018-09-07 2018-12-11 江苏工程职业技术学院 一种普卡必利的制备方法
CN108976216B (zh) * 2018-09-07 2021-02-12 江苏工程职业技术学院 一种普卡必利的制备方法

Similar Documents

Publication Publication Date Title
JP5620282B2 (ja) 優れた細胞透過性と強い核酸親和性を有するペプチド核酸誘導体
US10766890B2 (en) Hepatitis B core protein modulators
JP2021185206A (ja) チエノピリミジンジオンacc阻害剤の固体形態およびその生成のための方法
NL1031741C2 (nl) Purinederivaten.
JP6616688B2 (ja) 甲状腺ホルモンアナログ及びその多形体の合成方法
CA2995036A1 (en) Tunable endogenous protein degradation
WO2013183656A1 (ja) Gタンパク質共役受容体結合リガンドと核酸分子とのコンジュゲート
KR20220004978A (ko) 단백질 분해 표적 키메라 리간드로서 사용하기 위한 안드로겐 수용체 조절제 및 방법
EP2785707B1 (en) Novel 2h-indazoles as ep2 receptor antagonists
KR20060037442A (ko) Hiv 감염 치료용 피페라진 유도체
TW201245144A (en) Novel compounds useful for the treatment of metabolic and inflammatory diseases
US11096931B2 (en) Amide derivatives useful in the treatment of HBV infection or HBV-induced diseases
WO2017173999A1 (zh) 抗乙肝病毒的吡唑-噁唑烷酮类化合物
CA2731897C (en) Diazepine and diazocane compounds as mc4 agonists
US20230056135A1 (en) Monomer and multimeric anti-hbv agents
TW202017570A (zh) 整合素配體及其用途
CA3198096A1 (en) Aryl derivatives for treating trpm3 mediated disorders
CA3178172A1 (en) Protein tag to induce ligand dependent degradation of protein/protein-fusions
KR20220148851A (ko) 신규한 매크로사이클릭 화합물, 이들의 제조 방법 및 이들을 함유하는 약학적 조성물
AU2013367084B2 (en) Novel benzazepine derivative and pharmaceutical use thereof
EP4289842A1 (en) Phenyldihydropyrimidine compound and use thereof
WO2018092916A1 (ja) 含窒素多環式ヘテロ環誘導体
CA3037222C (en) Compositions for the treatment of hypertension and/or fibrosis
US20200308144A1 (en) Multimeric piperidine derivatives
JP7076845B2 (ja) 3,4-ジヒドロチエノ[3,2-d]ピリミジン系化合物の結晶形およびその調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP