WO2013183508A1 - パラレルフロー型熱交換器及びそれを搭載した空気調和機 - Google Patents

パラレルフロー型熱交換器及びそれを搭載した空気調和機 Download PDF

Info

Publication number
WO2013183508A1
WO2013183508A1 PCT/JP2013/064847 JP2013064847W WO2013183508A1 WO 2013183508 A1 WO2013183508 A1 WO 2013183508A1 JP 2013064847 W JP2013064847 W JP 2013064847W WO 2013183508 A1 WO2013183508 A1 WO 2013183508A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
water
receiving tank
water receiving
refrigerant
Prior art date
Application number
PCT/JP2013/064847
Other languages
English (en)
French (fr)
Inventor
達 永田
大西 竜太
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380011298.XA priority Critical patent/CN104136876B/zh
Publication of WO2013183508A1 publication Critical patent/WO2013183508A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D3/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits
    • F28D3/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium flows in a continuous film, or trickles freely, over the conduits with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/04Distributing or accumulator troughs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers

Definitions

  • the present invention relates to a parallel flow heat exchanger and an air conditioner equipped with the heat exchanger.
  • a parallel flow type heat in which a plurality of flat tubes are arranged between a plurality of header pipes so that a plurality of refrigerant passages in the flat tubes communicate with the inside of the header pipe, and fins such as corrugated fins are arranged between the flat tubes.
  • Exchangers are widely used in outdoor units of car air conditioners and building air conditioners.
  • Patent Document 1 describes a side flow parallel flow heat exchanger including two vertical header pipes and a plurality of horizontal flat tubes connecting the two header pipes.
  • corrugated fins are arranged between the flat tubes.
  • drain water generated in the indoor unit is stored in the bucket of the outdoor unit.
  • the bucket is changed from the storage posture to the discharge posture, and once the drain water is received by the housing, it is allowed to flow downward, and the outdoor unit-side heat exchanger takes air into the atmosphere. By dripping drain water along the surface, the operation energy is saved during cooling.
  • JP 2010-249388 A Japanese Patent No. 3861219
  • the present invention provides a side flow parallel flow heat exchanger having a structure in which water can be easily applied to the surface, and by taking advantage of the structure, drain water generated in the indoor unit is removed from the outdoor unit side. It is intended to improve the condensation performance of the heat exchanger.
  • a parallel flow heat exchanger has the following configuration: a parallel flow heat exchange of a side flow system including two vertical header pipes and a plurality of horizontal flat tubes connecting the two header pipes.
  • a water receiving tank parallel to the flat tube is formed in the upper part, and water dripped from a water introduction hole formed in the water receiving tank flows down along the surface of the heat exchanger.
  • a plurality of the water introduction holes are arranged at predetermined intervals along the length direction of the water receiving tank.
  • the water receiving tank has a length that covers the entire length of the flat tube.
  • a side sheet attached to the corrugated fin located at the top of the corrugated fins attached to the flat tube is formed as a water receiving tank.
  • An air conditioner according to the present invention has the following configuration: an outdoor unit and an indoor unit, the parallel flow type heat exchanger having the above structure is mounted on the outdoor unit, and the water receiving tank of the parallel flow type heat exchanger has the above structure. Drain water generated in the indoor unit is guided.
  • water can be poured evenly on the surface of the parallel flow heat exchanger by pouring water into the upper water receiving tank.
  • the parallel flow heat exchanger is mounted on an outdoor unit of an air conditioner, and drain water generated in the indoor unit is guided to the water receiving tank so that the parallel flow heat is used as a condenser during cooling operation.
  • the condensation performance of the exchanger can be improved.
  • FIG. 5 is a sectional view taken along line VV in FIG. 4. It is an expanded sectional view of a part of FIG. It is a top view which shows 1st Embodiment of the water conveyance hole formed in a water receiving tank.
  • FIG. 5 It is a top view which shows 14th Embodiment of the water conveyance hole formed in a water receiving tank. It is an expanded sectional view similar to FIG. 5, and shows the deformation
  • Fig. 4 shows the basic structure of a side flow parallel flow heat exchanger 50.
  • the upper side of the paper is the upper side of the heat exchanger
  • the lower side of the paper is the lower side of the heat exchanger.
  • the parallel flow heat exchanger 50 includes two vertical header pipes 51 and 52 and a plurality of horizontal flat tubes 53 disposed therebetween.
  • the header pipes 51 and 52 are arranged in parallel at intervals in the horizontal direction, and the flat tubes 53 are arranged at a predetermined pitch in the vertical direction. Since the heat exchanger 50 is installed at various angles according to design requirements at the stage of actually mounting on equipment, the “vertical direction” and “horizontal direction” in this specification should not be interpreted strictly. It should be understood as a mere measure of direction.
  • the flat tube 53 is an elongated molded product obtained by extruding a metal, and as shown in FIG. 5, a refrigerant passage 54 through which a refrigerant flows is formed. Since the flat tube 53 is arranged so that the extrusion molding direction, which is the longitudinal direction, is horizontal, the refrigerant flow direction of the refrigerant passage 54 is also horizontal. A plurality of refrigerant passages 44 having the same cross-sectional shape and cross-sectional area are arranged in the left-right direction in FIG. 5, and therefore the vertical cross-section of the flat tube 53 has a harmonica shape. Each refrigerant passage 54 communicates with the header pipes 51 and 52.
  • Corrugated fins 55 are attached to the flat surface of the flat tube 53. Of the corrugated fins 55 arranged vertically, side plates 56 are arranged outside the uppermost and lowermost ones. In addition, the code
  • the header pipes 51 and 52, the flat tubes 53, the corrugated fins 55, and the side plates 56 and 56a are all made of a metal having good heat conductivity such as aluminum.
  • the flat tubes 53 are flat with respect to the header pipes 51 and 52.
  • the side plates 56 and 56a are fixed to the corrugated fin 55 by brazing or welding to the tube 53, respectively.
  • the inside of the header pipe 51 is partitioned into two sections S1 and S2 by a single partition P1.
  • the partition part P1 divides the plurality of flat tubes 53 into a plurality of flat tube groups.
  • a flat tube group consisting of 12 out of a total of 24 flat tubes 53 is connected to the section S1, and a flat tube group consisting of 12 flat tubes 53 is connected to the section S2.
  • the interior of the header pipe 52 is partitioned into three sections S3, S4, and S5 by two partition portions P2 and P3.
  • the partition parts P2 and P3 divide the plurality of flat tubes 53 into a plurality of flat tube groups.
  • a flat tube group consisting of 4 of the 24 flat tubes 53 in total is connected to the section S3, a flat tube group consisting of 15 flat tubes 53 is connected to the section S4, and 5 pieces are connected to the section S5.
  • a flat tube group consisting of the flat tubes 53 is connected.
  • the total number of the flat tubes 53 described above, the number of partition portions inside each header pipe and the number of partitions partitioned thereby, and the number of flat tubes 53 for each flat tube group divided by the partition portions are merely examples. Yes, it does not limit the invention.
  • a refrigerant access pipe 57 is connected to the compartment S3.
  • a refrigerant inlet / outlet pipe 58 is connected to the section S5.
  • the function of the heat exchanger 50 is as follows.
  • the refrigerant is supplied to the compartment S3 through the refrigerant inlet / outlet pipe 57.
  • the refrigerant that has entered the compartment S3 travels through the four flat tubes 53 connecting the compartment S3 and the compartment S1 to the compartment S1.
  • the flat tube group formed by the four flat tubes 53 constitutes the refrigerant path A.
  • the refrigerant path A is symbolized by a block arrow. Other refrigerant paths are also symbolized by block arrows.
  • the refrigerant that has entered the compartment S1 turns back and passes through the eight flat tubes 53 that connect the compartment S1 and the compartment S4 to the compartment S4.
  • the flat tube group formed by the eight flat tubes 53 constitutes the refrigerant path B.
  • the refrigerant that has entered the compartment S4 is turned back and passes through the seven flat tubes 53 connecting the compartment S4 and the compartment S2 toward the compartment S2.
  • the flat tube group formed by the seven flat tubes 53 constitutes the refrigerant path C.
  • the refrigerant that has entered the compartment S2 is turned back there, and travels to the compartment S3 through the five flat tubes 53 that connect the compartment S2 and the compartment S5.
  • the flat tube group formed by the five flat tubes 53 constitutes the refrigerant path D.
  • the refrigerant entering the compartment S5 flows out from the refrigerant inlet / outlet pipe 58.
  • the refrigerant is supplied to the section S5 through the refrigerant inlet / outlet pipe 58. Subsequent refrigerant flows follow the refrigerant path when the heat exchanger 50 is used as a condenser. That is, the refrigerant enters the section S ⁇ b> 1 through the route of the refrigerant path D ⁇ refrigerant path C ⁇ refrigerant path B ⁇ refrigerant path A and flows out from the refrigerant inlet / outlet pipe 57.
  • FIG. 1 shows a schematic configuration of a separate air conditioner 1 using the heat exchanger 50 as a component of a heat pump cycle.
  • the air conditioner 1 includes an outdoor unit 10 and an indoor unit 30.
  • the outdoor unit 10 houses a compressor 12, a switching valve 13, an outdoor heat exchanger 14, an expansion valve 15, an outdoor blower 16, and the like in a housing 11 made of sheet metal parts and synthetic resin parts. is doing.
  • the switching valve 13 is a four-way valve.
  • a heat exchanger 50 is used as the outdoor heat exchanger 14.
  • the outdoor blower is a combination of a motor and a propeller fan.
  • the outdoor unit 10 is connected to the indoor unit 30 through two refrigerant pipes 17 and 18.
  • Liquid refrigerant flows through the refrigerant pipe 17 during the cooling operation, and a pipe that is thinner than the refrigerant pipe 18 is used. Therefore, the refrigerant pipe 17 may be referred to as “liquid pipe”, “narrow pipe”, or the like.
  • a gas refrigerant flows through the refrigerant pipe 18 during the cooling operation, and a pipe that is thicker than the refrigerant pipe 17 is used. Therefore, the refrigerant pipe 18 may be referred to as “gas pipe”, “thick pipe”, or the like.
  • HFC R410A or R32 is used as the refrigerant.
  • a two-way valve 19 is provided in the refrigerant pipe connected to the refrigerant pipe 17, and a three-way valve 20 is provided in the refrigerant pipe connected to the refrigerant pipe 18.
  • the two-way valve 19 and the three-way valve 20 are closed when the refrigerant pipes 17 and 18 are removed from the outdoor unit 10 to prevent the refrigerant from leaking from the outdoor unit 10 to the outside.
  • the recovery is performed through the three-way valve 20.
  • the indoor unit 30 houses an indoor heat exchanger 32, an indoor blower 33, and the like inside a casing 31 made of synthetic resin parts.
  • the indoor heat exchanger 32 is a combination of three heat exchangers 32 ⁇ / b> A, 32 ⁇ / b> B, and 32 ⁇ / b> C like a roof that covers the indoor blower 33. Any or all of the heat exchangers 32 ⁇ / b> A, 32 ⁇ / b> B, and 32 ⁇ / b> C can be configured by the heat exchanger 50.
  • the indoor blower 33 is a combination of a motor and a cross flow fan.
  • temperature detectors are arranged in the outdoor unit 10 and the indoor unit 30.
  • a temperature detector 21 is disposed in the outdoor heat exchanger 14, and a temperature detector 22 is disposed in the discharge pipe 12 a serving as the discharge unit of the compressor 12, and the suction serving as the suction unit of the compressor 12.
  • a temperature detector 23 is disposed in the pipe 12 b, a temperature detector 24 is disposed in the refrigerant pipe between the expansion valve 15 and the two-way valve 19, and a temperature detector for measuring the outside air temperature at a predetermined location inside the housing 11. 25 is arranged.
  • a temperature detector 34 is disposed in the indoor heat exchanger 32.
  • Each of the temperature detectors 21, 22, 23, 24, 25, and 34 is formed of a thermistor.
  • the control unit 40 shown in FIG. 3 controls the overall control of the air conditioner 1.
  • the control unit 40 performs control so that the room temperature reaches a target value set by the user.
  • the control unit 40 issues operation commands to the compressor 12, the switching valve 13, the expansion valve 15, the outdoor blower 16, and the indoor blower 33.
  • the control unit 40 receives output signals of the detected temperatures from the temperature detectors 21 to 25 and the temperature detector 34, respectively. While referring to the output signals from the temperature detectors 21 to 25 and the temperature detector 34, the control unit 40 issues an operation command to the compressor 12, the outdoor fan 16, and the indoor fan 33, and the switching valve 13 and the expansion valve are expanded. A command for switching the state is issued to the valve 15.
  • FIG. 1 shows a state where the air conditioner 1 is performing a cooling operation or a defrosting operation.
  • the compressor 12 circulates the refrigerant in a cooling mode, that is, a circulation mode in which the refrigerant discharged from the compressor 12 first enters the outdoor heat exchanger 14.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the outdoor heat exchanger 14 where heat exchange with outdoor air is performed.
  • the refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant that is condensed to become liquid enters the expansion valve 15 from the outdoor heat exchanger 14 and is decompressed there.
  • the decompressed refrigerant is sent to the indoor heat exchanger 32, expands to a low temperature and low pressure, and lowers the surface temperature of the indoor heat exchanger 32.
  • the indoor side heat exchanger 32 whose surface temperature has been lowered absorbs heat from the room air, thereby cooling the room air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12.
  • the air flow generated by the outdoor blower 16 promotes heat radiation from the outdoor heat exchanger 14, and the air flow generated by the indoor blower 33 promotes heat absorption of the indoor heat exchanger 32.
  • FIG. 2 shows a state where the air conditioner 1 is performing a heating operation.
  • the switching valve 13 is switched to reverse the refrigerant flow during the cooling operation.
  • the compressor 12 circulates the refrigerant in a circulation mode during heating, that is, in a circulation mode in which the refrigerant discharged from the compressor 12 first enters the indoor heat exchanger 32.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 12 enters the indoor heat exchanger 32 where heat exchange with the indoor air is performed.
  • the refrigerant dissipates heat to the room air, and the room air is warmed.
  • the refrigerant that has dissipated heat and has become liquid by condensing enters the expansion valve 15 from the indoor heat exchanger 32 and is decompressed there.
  • the decompressed refrigerant is sent to the outdoor heat exchanger 14 and expands to a low temperature and low pressure, thereby lowering the surface temperature of the outdoor heat exchanger 14.
  • the outdoor heat exchanger 14 whose surface temperature has dropped absorbs heat from outdoor air. After the heat absorption, the low-temperature gaseous refrigerant returns to the compressor 12.
  • the air flow generated by the indoor fan 33 promotes heat dissipation from the indoor heat exchanger 32, and the air flow generated by the outdoor fan 16 promotes heat absorption by the outdoor heat exchanger 14.
  • a water receiving tank 60 for receiving water supplied from the outside is provided on the upper part of the parallel flow heat exchanger 50 constituting the outdoor heat exchanger 14.
  • the water receiving tank 60 extends in parallel with the flat tube 53 and has a length that covers the entire length of the flat tube 53.
  • the water receiving tank 60 may be approximately the same length as the flat tube 53, and there is no particular problem even if it is a length that slightly protrudes from the flat tube 53 or a length that does not reach the flat tube 53 a little.
  • a water introduction hole 61 is formed at the bottom of the water receiving tank 60.
  • a plurality of water introduction holes 61 are arranged at predetermined intervals along the length direction of the water receiving tank 60.
  • the upper side plate 41 a has a square-shaped cross section, and the side plate 56 a constitutes the water receiving tank 60. Since the side plate is a member necessary for the parallel flow type heat exchanger for the reason of productivity, it is possible to save resources by integrating the side plate and the water receiving tank. Moreover, the strength is increased by making the side plate into a cross-sectional shape such as a bowl, and the reliability improvement effect of the heat exchanger itself can be expected.
  • drain water generated in the indoor heat exchanger 32 is poured into the water receiving tank 60 via the drain hose 35.
  • water is poured into a plurality of locations of the corrugated fins 55 directly below the water guiding holes 61.
  • the end of the corrugated fin 55 protrudes from the edge of the flat tube 53 on both the upstream side and the downstream side in the blowing direction, and the drain water falling from the edge of the uppermost corrugated fin 55 is blown in the blowing direction.
  • Both the end of the corrugated fin 55 on the upstream side and the end of the corrugated fin 55 on the downstream side in the air blowing direction are wetted.
  • the drain water sequentially flows down the corrugated fins 55 stacked vertically from the upper side to the lower side.
  • the drain water evaporates in the middle of the flow and cools the heat exchanger 50 with the heat of vaporization.
  • the condensation pressure of the heat exchanger 50 functioning as a condenser during the cooling operation is greatly reduced, and the condensation performance is greatly improved.
  • the water receiving tank 60 constituted by the side plate 56a has a length equal to the interval between the header pipes 51 and 52, water can be poured evenly on the surface of the heat exchanger 50.
  • a drain pan for receiving such drain water is disposed inside the housing 11 of the outdoor unit 10 so that the drain water received can be appropriately discarded to the outside.
  • an inclination may be provided on the inner bottom surface of the water receiving tank 60 so that drain water poured into the water receiving tank 60 via the drain hose 35 reaches the entire water receiving tank 60.
  • the bottom of the water receiving tank 60 may be changed to incline the inner bottom surface, and the header pipe 52 on the drain hose 35 side of the entire heat exchanger 50 may be higher than the other header pipe 51.
  • the entire outdoor unit 10 may be similarly inclined.
  • the inclination in any case is sufficient if drain water flows, and it is not necessary to incline so as to be visible.
  • the water guide hole 61 is in an elliptical shape in which the direction of the long axis coincides with the length direction of the water receiving tank 60, and the length of the water receiving tank 60 is plural. They are arranged at regular intervals along the direction.
  • the ellipse may be an oval (land track shape).
  • the oval shape may be an oval shape as well in the following embodiments.
  • the water guide hole 61 has an elliptical shape whose major axis is perpendicular to the length direction of the water receiving tank 60, and the length of the water receiving tank 60 is plural. They are arranged at regular intervals along the direction.
  • the water guide holes 61 are circular, and a plurality of the water guide holes 61 are arranged at regular intervals along the length direction of the water receiving tank 60.
  • the water guide holes 61 are triangular, and a plurality of the water guide holes 61 are arranged at regular intervals along the length direction of the water receiving tank 60.
  • the water guide holes 61 are square, and a plurality of the water guide holes 61 are arranged at regular intervals along the length direction of the water receiving tank 60.
  • the water guide holes 61 have an elliptical shape similar to that of the first embodiment, and a plurality of the water guide holes 61 are arranged in two rows along the length direction of the water receiving tank 60. Has been. The interval between the water guide holes 61 in each row is constant.
  • the water guide holes 61 are formed in the same elliptical shape as in the second embodiment, and a plurality of the water guide holes 61 are arranged in two rows along the length direction of the water receiving tank 60. Has been. The interval between the water guide holes 61 in each row is constant.
  • the water guide holes 61 have a circular shape similar to that of the third embodiment, and a plurality of the water guide holes 61 are arranged in two rows along the length direction of the water receiving tank 60. ing. The interval between the water guide holes 61 in each row is constant.
  • the water guide holes 61 are formed in the same triangle as in the fourth embodiment, and a plurality of water guide holes 61 are arranged in two rows along the length direction of the water receiving tank 60. ing. The interval between the water guide holes 61 in each row is constant.
  • the water guide holes 61 have the same square shape as the fifth embodiment, and a plurality of the water guide holes 61 are arranged in two rows along the length direction of the water receiving tank 60. ing. The interval between the water guide holes 61 in each row is constant.
  • the water guide hole 61 has an elliptical shape and a circular shape alternately in the length direction of the water receiving tank 60, the major axis of which coincides with the length direction of the water receiving tank 60. It is arranged at regular intervals along. The distance between the elliptical water guide hole 61 and the circular water guide hole 61 is constant.
  • the size of the water guiding hole 61 is the same at any position (in the eleventh embodiment, the elliptical water guiding holes 61 are compared in size, and the circular water guiding hole 61 is compared with each other. The sizes of the holes 61 are compared with each other). The intervals between the water guide holes 61 in the row are equal. However, an equal amount of water may be dripped regardless of the distance from the drain hose 35, for example, by enlarging the water guide holes 61 as the distance from the drain hose 35 or by narrowing the interval between the water guide holes 61.
  • circular water guide holes 61 are arranged in two rows on the side close to the drain hose 35, that is, on the right side of the figure, and on the side far from the drain hose 35, that is, on the left side of the figure. Are arranged in two rows. Since the elliptical water guide hole 61 has a larger area than the circular water guide hole 61, even this configuration alone compensates for the distance difference from the drain hose 35 and equalizes the amount of dripped water. In addition to this, the circular water conveyance holes 61 are between them, and the elliptical water conveyance holes 61 are between them. As the distance from the drain hose 35 is increased, the water conveyance holes 61 are increased, or the distance between the water conveyance holes 61 is decreased. For example, the amount of dripping water may be further equalized.
  • triangular water guide holes 61 are arranged in a row on the side close to the drain hose 35, that is, on the right side of the figure, and on the side far from the drain hose 35, that is, on the left side of the figure.
  • the water guide holes 61 are arranged in two rows. Even with this configuration alone, the distance difference from the drain hose 35 is compensated, and the amount of dripping water is equalized.
  • the water flow holes 61 may be enlarged as the distance from the drain hose 35 is increased, or the distance between the water flow holes 61 may be narrowed to further equalize the amount of dripped water.
  • a slit is provided as the water guide hole 61 along the length direction of the water receiving tank 60.
  • a capillary phenomenon occurs in the slit. That is, even if the amount of drain water flowing into the water receiving tank 60 is small, the drain water can reach a wide range by a thin tube phenomenon generated in the slit.
  • the number of slits is one in FIG. 20, a plurality of slits may be provided in parallel.
  • bridge-shaped portions may be provided in the slits.
  • the cross-sectional shape of the water receiving tank 60 is not limited to a square.
  • the semicircle shown in FIG. 21 may be sufficient. Even if it is the same square, as shown in FIG. 22, the height of the edge of one side may be low. It may be L-shaped as shown in FIG.
  • the water receiving tank 60 of FIG. 24 is a modification of the water receiving tank 60 of FIG. 23, and has a horizontal base that is slanted and a tip that is slightly lifted.
  • the water receiving tank 60 of FIG. 25 is a further modification of the water receiving tank 60 of FIG. 24, and the bottom that has been horizontal up to the middle is lifted obliquely from the middle.
  • the water receiving tank 60 in FIG. 26 is a modification of the water receiving tank 60 in FIG. 21 and has a shallow arc cross section.
  • the present invention is widely applicable to a side flow type parallel flow type heat exchanger and an air conditioner equipped with the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 パラレルフロー型熱交換器(50)は、間隔を置いて平行に配置された2本の垂直方向ヘッダパイプ(51)(52)と、ヘッダパイプを連結する複数の水平方向偏平チューブ(53)を備える。熱交換器の上部には偏平チューブと平行な受水槽(60)が形成され、受水槽に形成された導水孔(61)から滴下した水が熱交換器の表面伝いに流下する。導水孔は受水槽の長さ方向に沿って所定間隔で複数個配置されている。偏平チューブに取り付けられるコルゲートフィン(55)のうち、最上位に位置するコルゲートフィンに取り付けられるサイドシート(56a)が受水槽として形成される。

Description

パラレルフロー型熱交換器及びそれを搭載した空気調和機
 本発明はパラレルフロー型熱交換器及びそれを搭載した空気調和機に関する。
 複数のヘッダパイプの間に複数の偏平チューブを配置して偏平チューブ内部の複数の冷媒通路をヘッダパイプの内部に連通させるとともに、偏平チューブ間にコルゲートフィン等のフィンを配置したパラレルフロー型の熱交換器は、カーエアコンや建物用空気調和機の室外側ユニットなどに広く利用されている。
 特許文献1には、2本の垂直方向ヘッダパイプと、両ヘッダパイプを連結する複数の水平方向偏平チューブを備えるサイドフロー方式のパラレルフロー型熱交換器が記載されている。この熱交換器では偏平チューブの間にコルゲートフィンが配置されている。
 一方で家屋用の空気調和機では、ヒートポンプ方式を採用し、また室外機と室内機に分かれるセパレート型としたものが主流となっている。このような空気調和機で冷房運転を行うと、室内機の側でドレン水が発生する。通常の場合、ドレン水は単に屋外に排水されるのみであるが、このドレン水を室外機側熱交換器の凝縮性能の向上に役立てようとする提案もなされている。その例を特許文献2に見ることができる。
 特許文献2に記載された空気調和機では、室内機で発生したドレン水を室外機のバケットに溜める。所定量のドレン水が貯留された時点でバケットを貯留姿勢から放流姿勢に姿勢変更し、放流されたドレン水を一旦筐体に受けた後下方に流下させ、室外機側熱交換器の大気取り入れ面に沿ってドレン水を滴下させることにより、冷房時の運転エネルギー省力化を図っている。
特開2010-249388号公報 特許第3861219号公報
 本発明は、サイドフロー方式のパラレルフロー型熱交換器を、その表面への水かけが容易な構造とするとともに、その構造上の特徴を生かして、室内機で発生したドレン水を室外機側熱交換器の凝縮性能の向上に役立てようとするものである。
 本発明に係るパラレルフロー型熱交換器は以下の構成を備える:2本の垂直方向ヘッダパイプと、前記両ヘッダパイプを連結する複数の水平方向偏平チューブを備えるサイドフロー方式のパラレルフロー型熱交換器であって、上部に前記偏平チューブと平行な受水槽が形成され、前記受水槽に形成された導水孔から滴下した水が当該熱交換器の表面伝いに流下する。
 上記構成のパラレルフロー型熱交換器において、前記導水孔は前記受水槽の長さ方向に沿って所定間隔で複数個配置されていることが好ましい。
 上記構成のパラレルフロー型熱交換器において、前記受水槽は前記偏平チューブの全長をカバーする長さであることが好ましい。
 上記構成のパラレルフロー型熱交換器において、前記偏平チューブに取り付けられるコルゲートフィンのうち、最上位に位置するコルゲートフィンに取り付けられるサイドシートが受水槽として形成されることが好ましい。
 本発明に係る空気調和機は以下の構成を備える:室外機と室内機を備え、室外機に上記構造のパラレルフロー型熱交換器を搭載し、当該パラレルフロー型熱交換器の前記受水槽に前記室内機で発生したドレン水を導く。
 本発明によると、上部の受水槽に水を注ぐことにより、パラレルフロー型熱交換器の表面に偏り無く水をかけることができる。そしてこのパラレルフロー型熱交換器を空気調和機の室外機に搭載し、室内機で発生したドレン水を前記受水槽に導くことにより、冷房運転時に凝縮器として用いられている前記パラレルフロー型熱交換器の凝縮性能を向上させることができる。
本発明に係る空気調和機の概略構成図で、冷房運転時の状態を示すものである。 本発明に係る空気調和機の概略構成図で、暖房運転時の状態を示すものである。 本発明の実施形態に係る空気調和機の制御ブロック図である。 本発明に係るパラレルフロー型熱交換器の実施形態を示す概略構成図である。 図4のV-V線に沿った断面図である。 図5の一部分の拡大断面図である。 受水槽に形成される導水孔の第1実施形態を示す上面図である。 受水槽に形成される導水孔の第2実施形態を示す上面図である。 受水槽に形成される導水孔の第3実施形態を示す上面図である。 受水槽に形成される導水孔の第4実施形態を示す上面図である。 受水槽に形成される導水孔の第5実施形態を示す上面図である。 受水槽に形成される導水孔の第6実施形態を示す上面図である。 受水槽に形成される導水孔の第7実施形態を示す上面図である。 受水槽に形成される導水孔の第8実施形態を示す上面図である。 受水槽に形成される導水孔の第9実施形態を示す上面図である。 受水槽に形成される導水孔の第10実施形態を示す上面図である。 受水槽に形成される導水孔の第11実施形態を示す上面図である。 受水槽に形成される導水孔の第12実施形態を示す上面図である。 受水槽に形成される導水孔の第13実施形態を示す上面図である。 受水槽に形成される導水孔の第14実施形態を示す上面図である。 図5と同様の拡大断面図で、受水槽の断面の変形態様を示すものである。 受水槽の断面形状のさらなる変形態様を示す断面図である。 受水槽の断面形状のさらなる変形態様を示す断面図である。 受水槽の断面形状のさらなる変形態様を示す断面図である。 受水槽の断面形状のさらなる変形態様を示す断面図である。 受水槽の断面形状のさらなる変形態様を示す断面図である。
 図1から図7に基づき、本発明に係るパラレルフロー型熱交換器50、及びそれを室外機に搭載した空気調和機1についての説明を行う。
 サイドフロー方式のパラレルフロー型熱交換器50の基本構造を図4に示す。図4では紙面上側が熱交換器の上側、紙面下側が熱交換器の下側となる。パラレルフロー型熱交換器50は、2本の垂直方向ヘッダパイプ51、52と、その間に配置される複数の水平方向偏平チューブ53を備える。ヘッダパイプ51、52は水平方向に間隔を置いて平行に配置され、偏平チューブ53は垂直方向に所定ピッチで配置されている。実際に機器に搭載する段階では、熱交換器50は設計の要請に従って様々な角度に据え付けられるから、本明細書における「垂直方向」「水平方向」は厳格に解釈されるべきものではない。単なる方向の目安として理解されるべきである。
 偏平チューブ53は金属を押出成型した細長い成型品であり、図5に示す通り、内部には冷媒を流通させる冷媒通路54が形成されている。偏平チューブ53は長手方向である押出成型方向を水平にする形で配置されるので、冷媒通路54の冷媒流通方向も水平になる。冷媒通路44は断面形状及び断面面積の等しいものが図5の左右方向に複数個並び、そのため偏平チューブ53の垂直断面はハーモニカ状を呈している。各冷媒通路54はヘッダパイプ51、52の内部に連通する。
 偏平チューブ53の偏平面にはコルゲートフィン55が取り付けられる。上下に並ぶコルゲートフィン55のうち、最上段のものと最下段のものの外側にはサイドプレート56が配置される。なお上部のサイドプレートの符号は「56a」とされている。サイドプレート56aの構造は下部のサイドプレート56と異なっているが、それについては後で説明する。また、フィン55の形状はコルゲートに限られない。他の形状であってもよい。
 ヘッダパイプ51、52、偏平チューブ53、コルゲートフィン55、及びサイドプレート56、56aはいずれもアルミニウム等熱伝導の良い金属からなり、偏平チューブ53はヘッダパイプ51、52に対し、コルゲートフィン55は偏平チューブ53に対し、サイドプレート56、56aはコルゲートフィン55に対し、それぞれロウ付けまたは溶着で固定される。
 ヘッダパイプ51の内部は、1個の仕切部P1により2個の区画S1、S2に仕切られている。仕切部P1は複数の偏平チューブ53を複数の偏平チューブグループに区分する。区画S1には合計24本の偏平チューブ53のうち12本からなる偏平チューブグループが接続され、区画S2にも12本の偏平チューブ53からなる偏平チューブグループが接続される。
 ヘッダパイプ52の内部は、2個の仕切部P2、P3により3個の区画S3、S4、S5に仕切られている。仕切部P2、P3は複数の偏平チューブ53を複数の偏平チューブグループに区分する。区画S3には合計24本の偏平チューブ53のうち4本からなる偏平チューブグループが接続され、区画S4には15本の偏平チューブ53からなる偏平チューブグループが接続され、区画S5には5本の偏平チューブ53からなる偏平チューブグループが接続される。
 上記した偏平チューブ53の総数、各ヘッダパイプ内部の仕切部の数とそれによって仕切られる区画の数、及び仕切部によって区分される偏平チューブグループ毎の偏平チューブ53の数は、いずれも単なる例示であり、発明を限定するものではない。
 区画S3には冷媒出入パイプ57が接続される。区画S5には冷媒出入パイプ58が接続される。
 熱交換器50の機能は次の通りである。熱交換器50が凝縮器として用いられるとき、冷媒は冷媒出入パイプ57を通じて区画S3に供給される。区画S3に入った冷媒は区画S3と区画S1を連結する4本の偏平チューブ53を通って区画S1に向かう。この4本の偏平チューブ53で編成される偏平チューブグループが冷媒パスAを構成する。冷媒パスAはブロック矢印で象徴されている。それ以外の冷媒パスもブロック矢印で象徴させる。
 区画S1に入った冷媒はそこで折り返し、区画S1と区画S4を連結する8本の偏平チューブ53を通って区画S4に向かう。この8本の偏平チューブ53で編成される偏平チューブグループが冷媒パスBを構成する。
 区画S4に入った冷媒はそこで折り返し、区画S4と区画S2を連結する7本の偏平チューブ53を通って区画S2に向かう。この7本の偏平チューブ53で編成される偏平チューブグループが冷媒パスCを構成する。
 区画S2に入った冷媒はそこで折り返し、区画S2と区画S5を連結する5本の偏平チューブ53を通って区画S3に向かう。この5本の偏平チューブ53で編成される偏平チューブグループが冷媒パスDを構成する。区画S5に入った冷媒は冷媒出入パイプ58より流出する。
 熱交換器50が蒸発器として用いられるときは、冷媒は冷媒出入パイプ58を通じて区画S5に供給される。それ以後の冷媒の流れは、熱交換器50が凝縮器として用いられるときの冷媒パスを逆に辿る。すなわち冷媒パスD→冷媒パスC→冷媒パスB→冷媒パスAのルートで冷媒は区画S1に入り、冷媒出入パイプ57より流出する。
 上記熱交換器50をヒートポンプサイクルの構成要素として用いたセパレート型空気調和機1の概略構成を図1に示す。空気調和機1は室外機10と室内機30により構成される。
 室外機10は、板金製部品と合成樹脂製部品により構成される筐体11の内部に、圧縮機12、切替弁13、室外側熱交換器14、膨張弁15、室外側送風機16などを収納している。切替弁13は四方弁である。室外側熱交換器14として熱交換器50が用いられる。膨張弁15には開度制御の可能なものが用いられる。室外側送風機はモータにプロペラファンを組み合わせたものである。
 室外機10は2本の冷媒配管17、18で室内機30に接続される。冷媒配管17は冷房運転時には液体冷媒が流れ、冷媒配管18に比較して細い管が用いられている。そのため冷媒配管17は「液管」「細管」などと称されることがある。冷媒配管18には冷房運転時、気体冷媒が流れ、冷媒配管17に比較して太い管が用いられている。そのため冷媒配管18は「ガス管」「太管」などと称されることがある。冷媒には例えばHFC系のR410AやR32等が用いられる。
 室外機10の内部の冷媒配管で、冷媒配管17に接続される冷媒配管には二方弁19が設けられ、冷媒配管18に接続される冷媒配管には三方弁20が設けられる。二方弁19と三方弁20は、室外機10から冷媒配管17、18が取り外されるときに閉じられ、室外機10から外部に冷媒が漏れることを防ぐ。室外機10から、あるいは室内機30を含めた冷凍サイクル全体から、冷媒を回収する必要があるときは、三方弁20を通じて回収が行われる。
 室内機30は、合成樹脂製部品により構成される筐体31の内部に、室内側熱交換器32、室内側送風機33などを収納している。室内側熱交換器32は、3個の熱交換器32A、32B、32Cを、室内側送風機33を覆う屋根のように組み合わせたものである。熱交換器32A、32B、32Cのいずれかまたは全部を熱交換器50で構成することも可能である。室内側送風機33はモータにクロスフローファンを組み合わせたものである。
 空気調和機1の運転制御を行う上で、各所の温度を知ることが不可欠である。この目的のため、室外機10と室内機30に温度検出器が配置される。室外機10においては、室外側熱交換器14に温度検出器21が配置され、圧縮機12の吐出部となる吐出管12aに温度検出器22が配置され、圧縮機12の吸入部となる吸入管12bに温度検出器23が配置され、膨張弁15と二方弁19の間の冷媒配管に温度検出器24が配置され、筐体11の内部の所定箇所に外気温測定用の温度検出器25が配置される。室内機30においては、室内側熱交換器32に温度検出器34が配置される。温度検出器21、22、23、24、25、34はいずれもサーミスタにより構成される。
 空気調和機1の全体制御を司るのは図3に示す制御部40である。制御部40は室内温度が使用者によって設定された目標値に達するように制御を行う。
 制御部40は圧縮機12、切替弁13、膨張弁15、室外側送風機16、及び室内側送風機33に対し動作指令を発する。また制御部40は温度検出器21~25、及び温度検出器34からそれぞれの検出温度の出力信号を受け取る。制御部40は温度検出器21~25及び温度検出器34からの出力信号を参照しつつ、圧縮機12、室外側送風機16、及び室内側送風機33に対し運転指令を発し、切替弁13と膨張弁15に対しては状態切り替えの指令を発する。
 図1は空気調和機1が冷房運転あるいは除霜運転を行っている状態を示す。この時圧縮機12は冷房時循環、すなわち圧縮機12から吐出された冷媒が先に室外側熱交換器14に入る循環様式で冷媒を循環させる。
 圧縮機12から吐出された高温高圧の冷媒は室外側熱交換器14に入り、そこで室外空気との熱交換が行われる。冷媒は室外空気に対し放熱を行い、凝縮する。凝縮して液状となった冷媒は室外側熱交換器14から膨張弁15に入り、そこで減圧される。減圧後の冷媒は室内側熱交換器32に送られ、膨張して低温低圧となり、室内側熱交換器32の表面温度を下げる。表面温度の下がった室内側熱交換器32は室内空気から吸熱し、これにより室内空気は冷やされる。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室外側送風機16によって生成された気流が室外側熱交換器14からの放熱を促進し、室内側送風機33によって生成された気流が室内側熱交換器32の吸熱を促進する。
 図2は空気調和機1が暖房運転を行っている状態を示す。この時は切替弁13が切り替えられて冷房運転時と冷媒の流れが逆になる。圧縮機12は暖房時循環、すなわち圧縮機12から吐出された冷媒が先に室内側熱交換器32に入る循環様式で冷媒を循環させる。
 圧縮機12から吐出された高温高圧の冷媒は室内側熱交換器32に入り、そこで室内空気との熱交換が行われる。冷媒は室内空気に対し放熱を行い、室内空気は暖められる。放熱し、凝縮して液状となった冷媒は室内側熱交換器32から膨張弁15に入り、そこで減圧される。減圧後の冷媒は室外側熱交換器14に送られ、膨張して低温低圧となり、室外側熱交換器14の表面温度を下げる。表面温度の下がった室外側熱交換器14は室外空気から吸熱する。吸熱後、低温の気体状の冷媒は圧縮機12に戻る。室内側送風機33によって生成された気流が室内側熱交換器32からの放熱を促進し、室外側送風機16によって生成された気流が室外側熱交換器14による吸熱を促進する。
 室外側熱交換器14を構成するパラレルフロー型熱交換器50の上部には、外部から供給される水を受け止める受水槽60が設けられる。受水槽60は偏平チューブ53と平行に延び、偏平チューブ53の全長をカバーする長さとされる。受水槽60は偏平チューブ53と大体同じ長さであればよく、偏平チューブ53から多少はみ出す長さであっても、あるいは偏平チューブ53に少し届かない長さであっても、特に問題はない。
 受水槽60の底部には導水孔61が形成されている。導水孔61は受水槽60の長さ方向に沿って所定間隔で複数個配置される。図4から図6に示すパラレルフロー型熱交換器50では、上部のサイドプレート41aが角張った樋形の断面とされ、このサイドプレート56aが受水槽60を構成する。サイドプレートは生産性の理由からパラレルフロー型熱交換器に必要な部材であるため、サイドプレートと受水槽を一体化することで省資源化が可能である。また、サイドプレートを樋形などの断面形状にすることで強度が上がり、熱交換器自体の信頼性向上効果も期待できる。
 冷房運転時、室内側熱交換器32で発生したドレン水はドレンホース35を経由して受水槽60に注がれる。ドレン水を注がれた受水槽60からは、導水孔61を通じてその直下のコルゲートフィン55の複数の箇所に水が注がれる。水を注がれたコルゲートフィン55からは、その正面側の縁及び背面側の縁から水が流れ出す。その水は下方のコルゲートフィン55に向かって落下する。
 熱交換器50は、送風方向の上流側においても下流側においてもコルゲートフィン55の端が偏平チューブ53の縁より突き出しており、最上段のコルゲートフィン55の縁から落下したドレン水は、送風方向上流側のコルゲートフィン55の端と送風方向下流側のコルゲートフィン55の端の両方を濡らす。ドレン水は上下に積み重なったコルゲートフィン55を上段側より下段側へと順次流下する。ドレン水は流下途中で蒸発し、気化熱で熱交換器50を冷却する。これにより、冷房運転時に凝縮器として機能している熱交換器50の凝縮圧力が大幅に低下し、凝縮性能が大幅に向上する。
 サイドプレート56aにより構成される受水槽60はヘッダパイプ51、52の間隔に等しい長さとなっているから、熱交換器50の表面に偏り無く水をかけることができる。
 熱交換器50の表面を伝って流下するドレン水が、熱交換器50の下端に達する前に全部蒸発するのが望ましいが、熱交換器50の下端まで液体の形を保ち、熱交換器50の下端から滴下するドレン水も存在する。そのようなドレン水を受け止めるドレンパンを室外機10の筐体11の内部に配置し、受け止めたドレン水を適宜外部に廃棄できるようにしておくのがよい。
 また、ドレンホース35を経由して受水槽60に注がれたドレン水が、受水槽60全体に行き渡るように、受水槽60の内部底面に傾斜を設けてもよい。その際、受水槽60の底部の厚みを変えて内部底面に傾斜をつけてもよいし、熱交換器50全体をドレンホース35側のヘッダパイプ52が他方のヘッダパイプ51よりも高くなるように傾斜させてもよいし、さらには、室外機10全体を同様に傾斜させてもよい。ただしいずれの場合の傾斜具合もドレン水が流れる程度であればよく、目に見えるほど傾斜させる必要はない。
 図7から図19に導水孔61の様々な実施形態を示す。
 図7に示す第1実施形態では、導水孔61は長軸の方向が受水槽60の長さ方向に一致する楕円形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って一定間隔で配置されている。なお楕円形は長円形(陸上トラックの形状)であってもよい。楕円形が長円形であってもよいことは以後の実施形態についても同じである。
 図8に示す第2実施形態では、導水孔61は長軸の方向が受水槽60の長さ方向と直角な楕円形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って一定間隔で配置されている。
 図9に示す第3実施形態では、導水孔61は円形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って一定間隔で配置されている。
 図10に示す第4実施形態では、導水孔61は三角形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って一定間隔で配置されている。
 図11に示す第5実施形態では、導水孔61は正方形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って一定間隔で配置されている。
 図12に示す第6実施形態では、導水孔61は第1実施形態と同様の楕円形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って2列に配置されている。各列における導水孔61の間隔は一定である。
 図13に示す第7実施形態では、導水孔61は第2実施形態と同様の楕円形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って2列に配置されている。各列における導水孔61の間隔は一定である。
 図14に示す第8実施形態では、導水孔61は第3実施形態と同様の円形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って2列に配置されている。各列における導水孔61の間隔は一定である。
 図15に示す第9実施形態では、導水孔61は第4実施形態と同様の三角形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って2列に配置されている。各列における導水孔61の間隔は一定である。
 図16に示す第10実施形態では、導水孔61は第5実施形態と同様の正方形とされており、この導水孔61が複数個、受水槽60の長さ方向に沿って2列に配置されている。各列における導水孔61の間隔は一定である。
 図17に示す第11実施形態では、導水孔61は長軸の方向が受水槽60の長さ方向に一致する楕円形のものと円形のものとが交互に、受水槽60の長さ方向に沿って一定間隔で配置されている。楕円形の導水孔61と円形の導水孔61との間隔は一定である。
 第1から第11までの実施形態では、導水孔61の大きさはどの位置でも同じとされる(第11実施形態では楕円形の導水孔61はそれら同士で大きさが比較され、円形の導水孔61はそれら同士で大きさが比較される)。また列内における導水孔61の間隔は等間隔とされる。しかしながら、ドレンホース35から遠ざかるにつれ導水孔61を大きくし、あるいは導水孔61の間隔を狭くするなどして、ドレンホース35からの距離にかかわらず等量の水が滴下するようにしてもよい。
 図18に示す第12実施形態では、ドレンホース35に近い側、すなわち図の右側には円形の導水孔61が2列に配置され、ドレンホース35から遠い側、すなわち図の左側には楕円形の導水孔61が2列に配置される。楕円形の導水孔61の方が円形の導水孔61よりも面積が大きいので、この構成だけでもドレンホース35からの距離差を補償して、滴下水量の均等化が図られることになる。これに加えて、円形の導水孔61はそれら同士の間、楕円形の導水孔61はそれら同士の間で、ドレンホース35から遠ざかるにつれ導水孔61を大きくし、あるいは導水孔61の間隔を狭くするなどして、滴下水量の一層の均等化を図るようにしてもよい。
 図19に示す第13実施形態では、ドレンホース35に近い側、すなわち図の右側には三角形の導水孔61が1列に配置され、ドレンホース35から遠い側、すなわち図の左側には三角形の導水孔61が2列に配置される。この構成だけでもドレンホース35からの距離差を補償して、滴下水量の均等化が図られることになる。これに加えて、各列において、ドレンホース35から遠ざかるにつれ導水孔61を大きくし、あるいは導水孔61の間隔を狭くするなどして、滴下水量の一層の均等化を図るようにしてもよい。
 図20に示す第14実施形態では、導水孔61として、受水槽60の長さ方向に沿ってスリットが設けられる。この構成によると、スリット内で細管現象が発生する。すなわち、受水槽60に流入するドレン水量が少なくても、スリット内で発生する細管現象によって広範囲にドレン水を到達させることができる。図20ではスリットの数は1本とされているが、複数本のスリットを並列状態で設けてもよい。また受水槽60の強度を確保するため、スリットの所々にブリッジ状の部分を設けてもよい。
 受水槽60の断面形状は角形に限られない。図21に示す半円形であってもよい。同じ角形であっても、図22に示すように片側の縁の高さが低くなっていてもよい。図23に示すようにL字形であってもよい。図24の受水槽60は図23の受水槽60の変形であって、水平であった底辺が斜めになり、先端がやや持ち上がった形状になっている。図25の受水槽60は図24の受水槽60のさらに変形で、途中まで水平であった底辺が途中から斜めに持ち上がる形になっている。図26の受水槽60は図21の受水槽60の変形で、浅い円弧断面とされている。
 これまで、ドレン水を受水槽60に注ぐことのみ説明してきたが、水道水や雨水を受水槽60に注ぐこととしてもよい。また受水槽60を上部のサイドプレート56a以外の部材で構成することとしてもよい。
 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。
 本発明はサイドフロー方式のパラレルフロー型熱交換器及びそれを搭載する空気調和機に広く利用可能である。
   1  空気調和機
   10 室外機
   11 筐体
   12 圧縮機
   13 切替弁
   14 室外側熱交換器
   15 膨張弁
   16 室外側送風機
   30 室内機
   31 筐体
   32 室内側熱交換器
   33 室内側送風機
   35 ドレンホース
   40 制御部
   50 熱交換器
   51、52 ヘッダパイプ
   53 偏平チューブ
   55 コルゲートフィン
   56、56a サイドプレート
   60 受水槽
   61 導水孔

Claims (5)

  1.  パラレルフロー型熱交換器であって、以下の構成を備えるもの:
     当該パラレルフロー型熱交換器は、2本の垂直方向ヘッダパイプと、前記両ヘッダパイプを連結する複数の水平方向偏平チューブを備えるサイドフロー方式のものであり、
     上部に前記偏平チューブと平行な受水槽が形成され、前記受水槽に形成された導水孔から滴下した水が当該熱交換器の表面伝いに流下する。
  2.  請求項1のパラレルフロー型熱交換器であって、以下の構成を備えるもの:
     前記導水孔は前記受水槽の長さ方向に沿って所定間隔で複数個配置されている。
  3.  請求項1のパラレルフロー型熱交換器であって、以下の構成を備えるもの:
     前記受水槽は前記偏平チューブの全長をカバーする長さである。
  4.  請求項1のパラレルフロー型熱交換器であって、以下の構成を備えるもの:
     前記偏平チューブに取り付けられるコルゲートフィンのうち、最上位に位置するコルゲートフィンに取り付けられるサイドシートが受水槽として形成される。
  5.  空気調和機であって、以下の構成を備えるもの:
     室外機と室内機を備え、
     前記室外機に請求項1から4のいずれかのパラレルフロー型熱交換器を搭載し、当該パラレルフロー型熱交換器の前記受水槽に前記室内機で発生したドレン水を導く。
PCT/JP2013/064847 2012-06-04 2013-05-29 パラレルフロー型熱交換器及びそれを搭載した空気調和機 WO2013183508A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380011298.XA CN104136876B (zh) 2012-06-04 2013-05-29 并流式热交换器和安装有该并流式热交换器的空气调节机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-126740 2012-06-04
JP2012126740A JP5940895B2 (ja) 2012-06-04 2012-06-04 パラレルフロー型熱交換器及びそれを搭載した空気調和機

Publications (1)

Publication Number Publication Date
WO2013183508A1 true WO2013183508A1 (ja) 2013-12-12

Family

ID=49711900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064847 WO2013183508A1 (ja) 2012-06-04 2013-05-29 パラレルフロー型熱交換器及びそれを搭載した空気調和機

Country Status (4)

Country Link
JP (1) JP5940895B2 (ja)
CN (1) CN104136876B (ja)
MY (1) MY168586A (ja)
WO (1) WO2013183508A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224844A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 熱交換器
US11415371B2 (en) 2017-03-27 2022-08-16 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
US11428446B2 (en) 2017-03-27 2022-08-30 Daikin Industries, Ltd. Heat exchanger unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147076A (ja) * 1984-01-12 1985-08-02 サンデン株式会社 建物用空調システム
JPH04119206U (ja) * 1991-04-04 1992-10-26 三菱自動車工業株式会社 車両の空調装置
JPH0611210A (ja) * 1992-06-29 1994-01-21 Nippondenso Co Ltd 熱交換器及びそれを用いた空気調和機
JPH09310994A (ja) * 1996-05-24 1997-12-02 Calsonic Corp アルミニウム合金製熱交換器の取付ブラケット装着部
JP3056201U (ja) * 1998-05-01 1999-02-12 詮旭電機股▲ふん▼有限公司 高効率の蒸発式熱交換器
JP3057989U (ja) * 1998-09-25 1999-06-08 劉 富欽 蒸発式冷却機
JPH11347666A (ja) * 1998-06-09 1999-12-21 Nippon Light Metal Co Ltd 熱交換器及びその製造方法
JP3084460U (ja) * 2001-09-03 2002-03-22 和信 呉 冷凍或いは空調設備用の熱交換器
JP2002250543A (ja) * 2001-02-22 2002-09-06 Hitachi Ltd 空気調和機
JP2004197984A (ja) * 2002-12-17 2004-07-15 Toyo Radiator Co Ltd 一体型多板式熱交換器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556730B2 (ja) * 1995-04-28 2004-08-25 三菱電機株式会社 エレベータ空気調和機
JP3674129B2 (ja) * 1996-02-07 2005-07-20 株式会社デンソー 異種コア一体型熱交換器
JP3861219B2 (ja) * 2003-03-19 2006-12-20 勝 北野 冷房装置の運転エネルギー省力化装置
JP2008304168A (ja) * 2007-06-11 2008-12-18 Denso Corp 熱交換器
JP2010175171A (ja) * 2009-01-30 2010-08-12 Nippon Spindle Mfg Co Ltd 温度調整装置
JP5336914B2 (ja) * 2009-04-15 2013-11-06 シャープ株式会社 熱交換器及びそれを搭載した空気調和機
JP2011085368A (ja) * 2009-10-19 2011-04-28 Sharp Corp 熱交換器及びそれを搭載した空気調和機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60147076A (ja) * 1984-01-12 1985-08-02 サンデン株式会社 建物用空調システム
JPH04119206U (ja) * 1991-04-04 1992-10-26 三菱自動車工業株式会社 車両の空調装置
JPH0611210A (ja) * 1992-06-29 1994-01-21 Nippondenso Co Ltd 熱交換器及びそれを用いた空気調和機
JPH09310994A (ja) * 1996-05-24 1997-12-02 Calsonic Corp アルミニウム合金製熱交換器の取付ブラケット装着部
JP3056201U (ja) * 1998-05-01 1999-02-12 詮旭電機股▲ふん▼有限公司 高効率の蒸発式熱交換器
JPH11347666A (ja) * 1998-06-09 1999-12-21 Nippon Light Metal Co Ltd 熱交換器及びその製造方法
JP3057989U (ja) * 1998-09-25 1999-06-08 劉 富欽 蒸発式冷却機
JP2002250543A (ja) * 2001-02-22 2002-09-06 Hitachi Ltd 空気調和機
JP3084460U (ja) * 2001-09-03 2002-03-22 和信 呉 冷凍或いは空調設備用の熱交換器
JP2004197984A (ja) * 2002-12-17 2004-07-15 Toyo Radiator Co Ltd 一体型多板式熱交換器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224844A (ja) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 熱交換器
US11415371B2 (en) 2017-03-27 2022-08-16 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
US11428446B2 (en) 2017-03-27 2022-08-30 Daikin Industries, Ltd. Heat exchanger unit

Also Published As

Publication number Publication date
MY168586A (en) 2018-11-14
CN104136876B (zh) 2016-04-20
JP5940895B2 (ja) 2016-06-29
CN104136876A (zh) 2014-11-05
JP2013250033A (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
CN108139089B (zh) 空气调节机的室外机及室内机
JP5385589B2 (ja) 空気調和機の室外機
US20130220584A1 (en) Heat exchanger, and all-in-one air conditioner equipped therewith
JP5858478B2 (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP6625229B2 (ja) 熱交換器および空気調和装置
JP6120978B2 (ja) 熱交換器及びそれを用いた空気調和機
JP5940895B2 (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP2014137177A (ja) 熱交換器および冷凍装置
JP2014043985A (ja) パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP2010127510A (ja) 熱交換器
JP2018138826A (ja) 空気調和装置
AU2017444848B2 (en) Heat exchanger and refrigeration cycle device
JP3177302U (ja) 冷暖房空調装置
JP4995308B2 (ja) 空気調和機の室内機
JP2014137172A (ja) 熱交換器及び冷凍装置
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
JP6906101B2 (ja) 熱交換器および冷凍サイクル装置
JP2013234815A (ja) 空気調和機
JP2012067971A (ja) 熱交換器及び機器
JP2021076363A (ja) 熱交換器及び該熱交換器を用いた空気調和機
JP2015227754A (ja) 熱交換器
JP2015169358A (ja) 熱交換器
JP2012042128A (ja) 熱交換器及びそれを搭載した空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380011298.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801040

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201405249

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13801040

Country of ref document: EP

Kind code of ref document: A1