WO2013183344A1 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2013183344A1
WO2013183344A1 PCT/JP2013/060129 JP2013060129W WO2013183344A1 WO 2013183344 A1 WO2013183344 A1 WO 2013183344A1 JP 2013060129 W JP2013060129 W JP 2013060129W WO 2013183344 A1 WO2013183344 A1 WO 2013183344A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
solar cell
cell module
temperature
module according
Prior art date
Application number
PCT/JP2013/060129
Other languages
English (en)
French (fr)
Inventor
谷口 浩一郎
福田 晋也
潤 西岡
道子 大塚
陽 宮下
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to KR1020147033688A priority Critical patent/KR102000811B1/ko
Priority to CN201380026699.2A priority patent/CN104321886B/zh
Priority to KR1020197019888A priority patent/KR102136637B1/ko
Priority to EP13800476.7A priority patent/EP2860766B1/en
Priority to US14/399,096 priority patent/US9923110B2/en
Publication of WO2013183344A1 publication Critical patent/WO2013183344A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/04Homopolymers or copolymers of ethene
    • C09D123/08Copolymers of ethene
    • C09D123/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C09D123/0815Copolymers of ethene with aliphatic 1-olefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell module, and more particularly to a solar cell module having a good appearance and a method for manufacturing the same.
  • the solar cell constitutes the central part of a photovoltaic power generation system that directly converts sunlight energy into electricity.
  • a plurality of solar cell elements are wired in series and in parallel as the structure, and various packaging is performed to protect the cells, thereby forming a unit.
  • the unit incorporated in this package is called a solar cell module, and the surface that is generally exposed to sunlight is covered with a transparent substrate (glass or resin sheet, hereinafter referred to as a front sheet) as an upper protective material,
  • a transparent substrate glass or resin sheet, hereinafter referred to as a front sheet
  • the back surface sealing sheet (hereinafter referred to as the back surface) is filled with a sealing material (sealing resin layer) made of thermoplastic plastic (for example, ethylene-vinyl acetate copolymer or polyethylene polymer) and the back surface as a lower protective material. It may be written as a sheet).
  • ethylene-vinyl acetate copolymer hereinafter sometimes referred to as EVA
  • PE polyethylene
  • IO ionomer
  • PVB polyvinyl butyral
  • the sealing material includes flexibility and impact resistance for protecting the solar cell element, heat resistance when the solar cell module generates heat, and transparency for efficiently reaching the solar cell element ( The total light transmittance, etc.), durability, dimensional stability, flame retardancy, water vapor barrier properties, etc. are mainly required. Furthermore, since the sealing material is generally used after being laminated, its processability and appearance after lamination are also important.
  • the lamination condition of the solar cell module is generally set by a trial and error method in consideration of various members to be used (sealing material, back sheet, glass, wiring, cell, flux, etc.). Therefore, it takes time to set the conditions, and the cost of various members to be used may be expensive.
  • a specific appearance problem in the condition setting includes a phenomenon in which convex protrusions are generated on the backsheet surface (hereinafter sometimes referred to as a convex phenomenon).
  • a convex phenomenon in Patent Document 1, when a solar cell module is manufactured using a back sheet (back surface protection sheet for solar cell module), the back sheet contracts when performing a vacuum laminating process. It is described that the solar cell element and the lead wire (tag) connecting the elements follow the contraction of the back sheet, the lead wire is deformed, and the interval between the solar cell elements is changed.
  • the heat shrinkage rate of the back sheet at 150 ° C. for 30 minutes is preferably 1.0% or less, more preferably 0.5% or less, particularly 0.3% to 0.1%. It is disclosed that it is preferable to be within the range (see Patent Document 1, Paragraph 0130).
  • the biaxially stretched PET film has a large thermal shrinkage rate.
  • the wiring (corresponding to the lead wire described in Patent Document 1) is bent or the battery (cell) is displaced in the large solar cell module process.
  • a heat fixing process for annealing the stretched film on the equipment leading to an increase in the cost of the film, It is disclosed that there is a problem in cost that an inexpensive back sheet cannot be obtained (see Patent Document 2, paragraph 0007).
  • a back sheet in which a polycarbonate film and a gas barrier transparent vapor deposition film are laminated has been proposed (see Patent Document 2 and Claim 1).
  • Patent Document 1 and Patent Document 2 with regard to the improvement of the convex phenomenon, the conventional technique focuses only on the thermal contraction characteristics of the backsheet among the members used when manufacturing the solar cell module. It was. However, even if a back sheet satisfying specific physical properties (for example, heat shrinkage characteristics) is used, the convex phenomenon is not necessarily suppressed, and the load of the trial and error method when setting the lamination condition is not reduced so much. It was. For these reasons, another countermeasure and improvement guidelines have been desired. Then, this invention aims at providing the manufacturing method of a solar cell module and a solar cell module with which the external appearance after lamination is favorable by pinpointing the combination guideline of the sealing material from which the external appearance after lamination becomes favorable. To do.
  • specific physical properties for example, heat shrinkage characteristics
  • this invention relates to the following solar cell module and its manufacturing method.
  • Condition (P-1) The flow start temperature (TB) (° C.) of the sealing material (B) and the flow start temperature (TD) (° C.) of the sealing material (D) measured at a load of 1 kgf / cm 2. It has the following relationship. 50 (°C) ⁇ TB-TD ⁇ 15 (°C) ⁇ 3> The solar cell module according to ⁇ 1>, wherein the condition (P) is the following condition (P-2).
  • a flow start temperature (TD) measured at a load of 1 kgf / cm 2 of the sealing material (D) is 110 ° C. or higher.
  • the sealing material (B) and the sealing material (D) are both sealing materials containing an olefin polymer as a main component, according to any one of the above items ⁇ 1> to ⁇ 5>.
  • ⁇ 8> The content of the monomer unit based on the ⁇ -olefin having 3 to 20 carbon atoms relative to all the monomer units in the copolymer of ethylene and the ⁇ -olefin having 3 to 20 carbon atoms is The solar cell module according to ⁇ 7>, which is 2 to 40 mol%.
  • the sealing material (B) is made of a resin composition containing an olefin polymer having a crystal melting peak temperature of less than 100 ° C and an olefin polymer having a crystal melting peak temperature of 100 ° C or higher.
  • sealing material (B) and the sealing material (D) are both a sealing material in which the xylene-soluble matter measured by ASTM 2765-95 is 70% by mass or more.
  • At least one of the sealing material (B) and the sealing material (D) includes at least one additive selected from a silane coupling agent, an antioxidant, an ultraviolet absorber, and a weather resistance stabilizer.
  • the sealing material (B) is at least a soft layer having a vibration frequency of 10 Hz and a storage elastic modulus (E ′) at a temperature of 20 ° C. of less than 100 MPa in dynamic viscoelasticity measurement, and in dynamic viscoelasticity measurement.
  • the sealing material (D) further contains a white pigment.
  • upper protective material (A) is a glass plate material
  • the solar cell element (C) is at least one selected from a single crystal silicon type and a polycrystalline silicon type.
  • the solar cell module in any one.
  • Upper protective material (A), sealing material (B) used on the upper protective material (A) side, solar cell element (C), sealing material (D) used on the back sheet (E) side, and back sheet (E) is a manufacturing method of a solar cell module that laminates a solar cell module, and includes a flow starting temperature (TB) (° C.) and a sealing material (D) measured at a load of 1 kgf / cm 2.
  • the manufacturing method of the solar cell module which has the favorable external appearance after a lamination, and a solar cell module can be provided by combining the sealing material which a flow start temperature has a specific relationship. Further, by measuring the basic physical property of the flow starting temperature of the sealing material, it is possible to predict the finished appearance before actually laminating the solar cell module. Furthermore, since the lamination conditions can be set efficiently, the time required for studying the conditions and the costs of various members are suppressed, and as a result, it can be expected that the manufacturing cost of the solar cell module will be greatly reduced.
  • main component is intended to allow other components to be included within a range that does not interfere with the action and effect of the resin constituting each member of the solar cell module of the present invention. is there. Further, this term does not limit the specific content, but it is 50% by mass or more, preferably 65% by mass or more, more preferably 80% by mass or more of the total components of the resin composition. It is a component that occupies a range of mass% or less.
  • the solar cell module of the present invention includes an upper protective material (A), a sealing material (B) used on the upper protective material (A) side, a solar cell element (C), and a sealing material used on the back sheet (E) side ( D) and the back sheet (E), and the flow start temperatures of the sealing material (B) and the sealing material (D) satisfy a specific relationship.
  • the upper protective material (A) used in the present invention is not particularly limited.
  • plate materials such as glass, acrylic resin, polycarbonate resin, polyester resin, and fluorine-containing resin, and single-layer or multilayer films are used.
  • the glass plate material include white plate glass, tempered glass, double tempered glass, heat ray reflective glass and white plate tempered glass.
  • white plate tempered glass having a thickness of about 3 to 5 mm is used.
  • a glass plate material is preferably used from the viewpoint of economy and mechanical strength, and a plate material having an acrylic resin or polycarbonate resin thickness of about 5 mm from the viewpoint of lightness and workability.
  • the sealing material (B) used for this invention will not be restrict
  • Specific examples include encapsulants mainly composed of ethylene-vinyl acetate copolymer (EVA), polyethylene (PE), polypropylene (PP), ionomer (IO), polyvinyl butyral (PVB), and the like.
  • EVA ethylene-vinyl acetate copolymer
  • PE polyethylene
  • PP polypropylene
  • IO ionomer
  • PVB polyvinyl butyral
  • an olefin polymer particularly a sealing material mainly composed of at least one of the olefin polymers shown in the following (b1) to (b4) is preferably used.
  • (b1) or (b) from the viewpoints of flexibility of the obtained sealing material, a small number of fish eyes (gel), a small number of corrosive substances (such as acetic acid) in the circuit, and economic efficiency. What is shown by b2) is preferable, and what is shown by (b1) is used especially especially at the point which is further excellent in a low-temperature characteristic.
  • (B1) is a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms. These copolymerization forms (random, block, etc.), branching, branching degree distribution and three-dimensional structure are not particularly limited, and a polymer having an isotactic, atactic, syndiotactic or mixed structure thereof can be obtained.
  • ⁇ -olefin copolymerized with ethylene includes propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 3-methyl- Examples include butene-1,4-methyl-pentene-1.
  • propylene, 1-butene, 1-hexene, and 1-octene are preferably used as the ⁇ -olefin copolymerized with ethylene from the viewpoints of industrial availability, various characteristics, and economical efficiency. It is done.
  • an ethylene- ⁇ -olefin random copolymer is preferably used from the viewpoint of transparency and flexibility.
  • the ⁇ -olefin copolymerized with ethylene can be used alone or in combination of two or more.
  • the content of ⁇ -olefin copolymerized with ethylene is not particularly limited, but all monomers in the copolymer (b1) of ethylene and ⁇ -olefin having 3 to 20 carbon atoms.
  • the amount of the monomer unit based on the ⁇ -olefin having 3 to 20 carbon atoms is usually 2 mol% or more, preferably 2 to 40 mol%, more preferably 3 to 30 mol%, still more preferably 5 to 5 units. ⁇ 25 mol%.
  • the crystallinity is reduced by the copolymerization component, so that the transparency is improved and problems such as blocking of raw material pellets are less likely to occur.
  • the kind and content of the monomer copolymerized with ethylene can be qualitatively quantitatively analyzed by a well-known method, for example, a nuclear magnetic resonance (NMR) measuring apparatus or other instrumental analyzers.
  • NMR nuclear magnetic resonance
  • the copolymer (b1) of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms may contain a monomer unit based on a monomer other than the ⁇ -olefin.
  • the monomer include cyclic olefins, vinyl aromatic compounds (such as styrene), polyene compounds, and the like.
  • the content of the monomer units is preferably 20 mol% or less when the total monomer units in the copolymer (b1) of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms is 100 mol%. More preferably, it is 15 mol% or less.
  • the three-dimensional structure, branching, branching degree distribution and molecular weight distribution of the copolymer of ethylene and ⁇ -olefin having 3 to 20 carbon atoms (b1) are not particularly limited.
  • the copolymer possessed generally has good mechanical properties, and has an advantage that the melt tension (melt tension) at the time of molding the sheet is increased and the calendar moldability is improved.
  • the melt flow rate (MFR) of the copolymer (b1) of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms used in the present invention is not particularly limited, but is usually MFR (JIS K7210, temperature). : 190 ° C., load: 21.18 N) is about 0.5 to 100 g / 10 min, preferably 1 to 50 g / 10 min, more preferably 2 to 50 g / 10 min, still more preferably 3 to 30 g / 10 min.
  • the MFR may be selected in consideration of molding processability when molding a sheet, adhesion when sealing a solar cell element (cell), a wraparound condition, and the like.
  • the MFR is preferably a relatively low value, specifically about 0.5 to 5 g / 10 min from the handling property when the sheet is peeled off from the molding roll.
  • the MFR is preferably 1 to 50 g / 10 min, more preferably 2 to 50 g / 10 min, still more preferably 3 to 30 g / 10 min from the viewpoint of reducing the extrusion load and increasing the extrusion amount. It is. Further, the MFR is preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min, from the viewpoint of adhesion and ease of wrapping when the solar cell element (cell) is sealed.
  • the production method of the copolymer (b1) of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst can be employed.
  • a bulk polymerization method using a radical initiator is not particularly limited, and a known polymerization method using a known olefin polymerization catalyst.
  • a polymerization method using a single-site catalyst capable of polymerizing a raw material having a low molecular weight component and a narrow molecular weight distribution is preferable from the viewpoints of easy granulation after pelletization and prevention of blocking of raw material pellets. is there.
  • the heat of crystal fusion measured at a heating rate of 10 ° C./min in the differential scanning calorimetry of the copolymer of ethylene and ⁇ -olefin having 3 to 20 carbon atoms used in the present invention is 0 to 70 J / g. It is preferable that Within such a range, flexibility and transparency (total light transmittance) of the obtained sealing material are secured, which is preferable.
  • the heat of crystal melting is preferably 5 to 70 J / g, more preferably 10 to 65 J / g.
  • the heat of crystal fusion can be measured at a heating rate of 10 ° C./min according to JIS K7122 using a differential scanning calorimeter.
  • copolymer (b1) of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms used in the present invention include trade names “Engage” and “affinity” manufactured by Dow Chemical Co., Ltd. “Affinity”, “Infuse”, trade name “Exact” manufactured by ExxonMobil Co., Ltd., trade names “Tuffmer H (TAFMER ⁇ H)”, “Tuffmer A” manufactured by Mitsui Chemicals, Inc. Examples thereof include “TAFMER A)”, “TAFMER P”, a trade name “LUCENE” of LG Chemical Co., Ltd., and a trade name “Kernel” manufactured by Nippon Polyethylene Co., Ltd.
  • (B2) (B2) is a copolymer of propylene and another monomer copolymerizable with the propylene, or a homopolymer of propylene.
  • these copolymerization forms random, block, etc.
  • branching, branching degree distribution and three-dimensional structure are not particularly limited, and can be a polymer having an isotactic, atactic, syndiotactic or mixed structure. .
  • ⁇ -olefins having 4 to 12 carbon atoms such as ethylene, 1-butene, 1-hexene, 4-methyl-pentene-1, 1-octene, and divinylbenzene
  • dienes such as 1,4-cyclohexadiene, dicyclopentadiene, cyclooctadiene, and ethylidene norbornene.
  • ethylene and 1-butene are preferably used as the ⁇ -olefin copolymerized with propylene from the viewpoints of industrial availability, various characteristics, and economical efficiency.
  • a propylene- ⁇ -olefin random copolymer is preferably used from the viewpoint of transparency and flexibility.
  • the monomer copolymerized with propylene can be used alone or in combination of two or more.
  • the content of other monomers copolymerizable with propylene is not particularly limited, but a copolymer of propylene and other monomers copolymerizable with the propylene (b2)
  • the monomer units based on other monomers copolymerizable with propylene are usually 2 mol% or more, preferably 2 to 40 mol%, more preferably 3 to 30 mol%, more preferably 5 to 25 mol%. Within such a range, the crystallinity is reduced by the copolymerization component, so that the transparency is improved and problems such as blocking of raw material pellets are less likely to occur.
  • the kind and content of the other monomer copolymerizable with propylene can be qualitatively quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
  • NMR nuclear magnetic resonance
  • the melt flow rate (MFR) of (b2) used in the present invention is not particularly limited, but usually MFR (JIS K7210, temperature: 230 ° C., load: 21.18 N) is 0.5 to The amount is about 100 g / 10 min, preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min.
  • the MFR may be selected in consideration of molding processability when molding a sheet, adhesion when sealing a solar cell element (cell), a wraparound condition, and the like.
  • the MFR is preferably relatively low, specifically about 0.5 to 5 g / 10 min from the handling property when the sheet is peeled off from the molding roll.
  • MFR is preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min, from the viewpoint of reducing the extrusion load and increasing the extrusion amount. Further, from the viewpoint of adhesion and ease of wraparound when sealing a solar cell element (cell), the MFR is preferably 2 to 50 g / 10 min, more preferably 3 to 30 g / 10 min.
  • the production method of (b2) which is a copolymer of propylene and another monomer copolymerizable with propylene, or a homopolymer of propylene used in the present invention is not particularly limited, and is publicly known.
  • a known polymerization method using the above olefin polymerization catalyst can be employed.
  • a slurry polymerization method, a solution polymerization method, a gas phase polymerization method, etc. using a multi-site catalyst typified by a Ziegler-Natta type catalyst, a single site catalyst typified by a metallocene catalyst or a post metallocene catalyst, Examples thereof include a bulk polymerization method using a radical initiator.
  • a polymerization method using a single-site catalyst capable of polymerizing a raw material having a low molecular weight component and a narrow molecular weight distribution is preferable from the viewpoints of easy granulation after pelletization and prevention of blocking of raw material pellets. is there.
  • (b2) used in the present invention include propylene-butene random copolymers, propylene-ethylene random copolymers, propylene-ethylene-butene-1 copolymers, and the like.
  • are trade names “Tafmer XM”, “NOTIO”, Sumitomo Chemical Co., Ltd. “TAFFCELLEN”, and Prime Polymer Co., Ltd. “Prime TPO”, trade name “VERSIFY” manufactured by Dow Chemical Co., Ltd., trade name “VistaMAXX” manufactured by ExxonMobil Co., Ltd. can be exemplified.
  • (B3) is a metal salt of a copolymer comprising an ⁇ -olefin such as ethylene or propylene and an aliphatic unsaturated carboxylic acid (preferred metals are Zn, Na, K, Li, Mg, etc.).
  • Specific products include, for example, a trade name “HIMILAN” manufactured by Mitsui Chemicals, Inc., and a product name “AMPLIFY IO” manufactured by Dow Chemical Co., Ltd.
  • (B4) is an ethylene-based copolymer composed of ethylene and at least one monomer selected from vinyl acetate, aliphatic unsaturated carboxylic acid, and aliphatic unsaturated monocarboxylic acid alkyl ester.
  • Specific examples include an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, an ethylene-acrylic acid ester copolymer, and an ethylene-methacrylic acid ester copolymer.
  • examples of the ester component include esters of alcohols having 1 to 8 carbon atoms such as methyl, ethyl, propyl, and butyl.
  • the copolymer is not limited to the above-mentioned two-component copolymer, but a three-component or more multi-component copolymer (for example, ethylene and an aliphatic unsaturated carboxylic acid and an aliphatic unsaturated copolymer) added with a third component. It may be a ternary or higher copolymer suitably selected from saturated carboxylic acid esters).
  • the content of the monomer copolymerized with ethylene is usually 5 to 35% by mass with respect to all monomer units in the copolymer.
  • the sealing material (B) used in the present invention is a single layer or a laminated structure, but a laminated structure is preferable in order to achieve the properties required for the sealing material in a balanced manner.
  • the properties generally required for the sealing material include flexibility and impact resistance for protecting the solar cell element, heat resistance when the solar cell module generates heat, and sunlight to the solar cell element.
  • Transparency for efficient delivery total light transmittance, etc.
  • adhesion to various adherends glass, backsheet, etc.
  • durability dimensional stability
  • flame resistance water vapor barrier properties
  • economics etc.
  • the sealing material (B) used in the present invention is preferably composed of a resin composition containing as a main component the olefin polymers (b1) to (b4) described above.
  • the crystal melting peak temperature (Tm) of the olefin polymer as the main component is preferably less than 100 ° C., but an amorphous polymer that does not express the crystal melting peak temperature, that is, an amorphous polymer is also applicable ( Hereinafter, the amorphous polymer and the olefin polymer having a crystal melting peak temperature of less than 100 ° C. are referred to).
  • the crystal melting peak temperature is preferably 30 to 95 ° C., more preferably 45 to 80 ° C., and further preferably 60 to 80 ° C.
  • an olefin polymer having a crystal melting peak temperature (Tm) of 100 ° C. or higher is mixed with an olefin polymer having a crystal melting peak temperature (Tm) of less than 100 ° C. It is preferable.
  • the upper limit of the crystal melting peak temperature (Tm) of the olefin polymer to be mixed is not particularly limited, but 150 is considered in consideration of the thermal deterioration of the solar cell element (cell) and the lamination temperature at the time of manufacturing the solar cell module.
  • the laminate set temperature when producing the solar cell module can be lowered, and the solar cell element (cell) is less likely to be thermally deteriorated. Therefore, the crystal melting peak temperature (Tm) of the olefin polymer to be mixed is reduced.
  • the upper limit is preferably 130 ° C, and more preferably 125 ° C.
  • general-purpose high-density polyethylene resin is about 130 to 145 ° C.
  • low-density polyethylene resin LDPE
  • linear low-density polyethylene LLDPE
  • general-purpose homopolypropylene resin is about 165 ° C.
  • general-purpose propylene-ethylene random copolymer is about 130-150 ° C.
  • the crystal melting peak temperature can be measured using a differential scanning calorimeter at a heating rate of 10 ° C./min according to JIS K7121.
  • the sealing material (B) used in the present invention is a resin composition containing an olefin polymer having a crystal melting peak temperature of less than 100 ° C. and an olefin polymer having a crystal melting peak temperature of 100 ° C. or higher. Preferably it consists of.
  • the content of both olefinic polymers in the resin composition is not particularly limited, but considering the flexibility, heat resistance, transparency, etc. of the resulting sealing material,
  • both olefin polymers is preferably 99 to 50/1 to 50, more preferably 98 to 60/2 to 40, more preferably 97 to 70/3 to 30, particularly preferably 97 to 80/3 to 20, and most preferably 97 to 90/3 to 10.
  • the total of both olefin polymers is 100 parts by mass.
  • a mixed (containing) mass ratio within the above range is preferable because a sealing material excellent in balance such as flexibility, heat resistance, and transparency can be easily obtained.
  • the olefin polymer having a crystal melting peak temperature of 100 ° C. or higher to be mixed with the sealing material (B) used in the present invention may be appropriately selected in consideration of desired characteristics.
  • the ethylene- ⁇ -olefin block copolymer can be most preferably used because of its excellent balance of properties and low temperature characteristics.
  • the block structure of the ethylene- ⁇ -olefin block copolymer is not particularly limited, but from the viewpoint of balancing flexibility, heat resistance, transparency, and the like, comonomer content, crystallinity, density, crystal
  • a multi-block structure containing two or more segments or blocks having different melting peak temperatures (Tm) or glass transition temperatures (Tg) is preferable. Specific examples include a completely symmetric block, an asymmetric block, and a tapered block structure (a structure in which the ratio of the block structure gradually increases in the main chain).
  • Tm melting peak temperatures
  • Tg glass transition temperatures
  • 2005/090425 (WO2005 / 090425), International Publication No. 2005/090426 (WO2005 / 090426), and International Publication No.2005. / 090427 pamphlet (WO2005 / 090427) or the like can be employed.
  • the ethylene- ⁇ -olefin block copolymer having the multi-block structure will be described in detail below.
  • the ethylene- ⁇ -olefin block copolymer having a multiblock structure can be suitably used in the present invention, and an ethylene-octene multiblock copolymer having 1-octene as a copolymerization component as an ⁇ -olefin is preferable.
  • As the block copolymer an almost non-crystalline soft segment copolymerized with a large amount of octene component (about 15 to 20 mol%) with respect to ethylene and a small amount of octene component (about 2 mol% with respect to ethylene).
  • a multiblock copolymer having two or more highly crystalline hard segments each having a copolymerized crystal melting peak temperature of 110 to 145 ° C. is preferred.
  • chain length and ratio of these soft segments and hard segments By controlling the chain length and ratio of these soft segments and hard segments, both flexibility and heat resistance can be achieved.
  • trade name “Infuse” manufactured by Dow Chemical Co., Ltd. may be mentioned.
  • the surface of the sealing material (B) used in the present invention is required to have functions in which the adhesion to various adherends (glass, backsheet, solar cell, etc.) is important as well as handling properties and ease of bleeding.
  • the sealing material (B) a resin composition in which the silane coupling agent described later is added to the above-mentioned (b1) to (b4) or the following silane-modified ethylene resin is mixed. A thing is used suitably.
  • silane-modified ethylene resin used in the present invention can be usually obtained by melt-mixing a polyethylene resin, a vinylsilane compound, and a radical generator at a high temperature (about 160 ° C. to 220 ° C.) and graft polymerization.
  • ⁇ Polyethylene resin> Although it does not restrict
  • a polyethylene resin having a low density is preferably used because of its excellent transparency and flexibility.
  • the polyethylene resin is preferably a density of 0.850 ⁇ 0.920g / cm 3, the density is more preferably a linear low density polyethylene 0.860 ⁇ 0.880g / cm 3.
  • a polyethylene resin having a low density and a polyethylene resin having a high density can be used in combination. Use in combination is preferred because the balance of transparency, flexibility and heat resistance can be adjusted relatively easily.
  • the vinyl silane compound is not particularly limited as long as it is graft-polymerized with the above polyethylene resin.
  • vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tripropoxy silane, vinyl triisopropoxy silane, vinyl tri Examples include butoxysilane, vinyltripentyloxysilane, vinyltriphenoxysilane, vinyltribenzyloxysilane, vinyltrimethylenedioxysilane, vinyltriethylenedioxysilane, vinylpropionyloxysilane, vinyltriacetoxysilane, and vinyltricarboxysilane It is done.
  • These vinyl silane compounds can be used alone or in combination of two or more.
  • vinyltrimethoxysilane is preferably used from the viewpoints of reactivity, adhesiveness and color tone.
  • the amount of the vinylsilane compound added is not particularly limited, but is usually about 0.01 to 10.0 parts by weight, preferably 0.3 to 100 parts by weight with respect to 100 parts by weight of the polyethylene resin used.
  • the amount is 8.0 parts by weight, and more preferably 1.0 to 5.0 parts by weight.
  • the radical generator is not particularly limited, and examples thereof include hydroperoxides such as diisopropylbenzene hydroperoxide and 2,5-dimethyl-2,5-di (hydroperoxy) hexane; -Butyl peroxide, t-butyl cumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t -Peroxy) dialkyl peroxides such as hexyne-3; bis-3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, benzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dichlorobenzoylper Diacyl peroxides such as oxides; t-butyl pero Cyacetate, t-butyl peroxy-2-e
  • the amount of the radical generator added is not particularly limited, but is usually about 0.01 to 5.0 parts by weight, preferably 0.02 to about 100 parts by weight of the polyethylene resin used. 1.0 part by mass, more preferably 0.03 to 0.5 part by mass. Furthermore, the residual amount of the radical generator is preferably 0.001% by mass or less in the resin composition constituting the sealing material (B) used in the present invention.
  • the gel fraction of the resin composition constituting the sealing material (B) used in the present invention is preferably 30% or less, more preferably 10% or less, and further preferably 5% or less.
  • 0% is particularly preferable.
  • a silanol condensation catalyst for promoting the condensation reaction between silanols is substantially contained. It is preferably not contained.
  • Specific examples of the silanol condensation catalyst include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, dioctyltin dilaurate and the like.
  • “substantially not contained” is usually 0 with respect to 100 parts by mass of the resin composition mainly composed of the silane-modified ethylene resin or the olefin polymers of (b1) to (b4) described above. 0.05 parts by mass or less, preferably 0.03 parts by mass or less, more preferably 0.00 parts by mass.
  • silanol condensation catalyst is that, in the present invention, the silanol crosslinking reaction is not allowed to proceed actively, and the polar group such as a silanol group grafted to the polyethylene resin to be used is attached. Bonded by interaction such as hydrogen bonding or covalent bonding with body (glass, various plastic sheets (appropriate surface treatment such as corona treatment, wetting index of 50 mN / m or more is preferably used), metal, etc.) This is because the purpose is to express sex.
  • silane-modified ethylene resin used in the present invention trade name “LINKLON” manufactured by Mitsubishi Chemical Corporation can be exemplified.
  • additives can be added to the resin composition constituting the sealing material (B) used in the present invention, if necessary.
  • the additive include a silane coupling agent, an antioxidant, an ultraviolet absorber, a weathering stabilizer, a light diffusing agent, a heat radiating agent, a nucleating agent, a pigment (for example, titanium oxide, carbon black), and a flame retardant. And discoloration inhibitors.
  • the sealing material (B) contains at least one additive selected from a silane coupling agent, an antioxidant, an ultraviolet absorber, and a weather resistance stabilizer for the reasons described later.
  • the sealing material (B) to be used is preferably a sealing material that does not substantially crosslink.
  • substantially not crosslinked means that the xylene solubles measured by ASTM 2765-95 is usually 70% by mass or more, preferably 85% by mass or more, and more preferably 95% by mass or more.
  • Silane coupling agents are useful for improving adhesion to protective materials for sealing materials (glass, resin front sheets, back sheets, etc.) and solar cell elements.
  • Examples include vinyl groups, Examples thereof include compounds having a hydrolyzable group such as an alkoxy group in addition to an unsaturated group such as an acryloxy group and a methacryloxy group, an amino group, and an epoxy group.
  • silane coupling agents include N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ Examples thereof include glycidoxypropyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane. These silane coupling agents can be used alone or in combination of two or more.
  • ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane are preferably used because of good adhesiveness and little discoloration such as yellowing.
  • the addition amount of the silane coupling agent is usually about 0.1 to 5 parts by mass, preferably 0.2 to 3 parts by mass with respect to 100 parts by mass of the resin composition constituting the sealing material (B). Part.
  • a coupling agent such as an organic titanate compound can be effectively used.
  • antioxidant As the antioxidant, various commercially available products can be applied, and various types such as monophenol type, bisphenol type, polymer type phenol type, sulfur type and phosphite type can be exemplified. Examples of monophenols include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, and the like.
  • bisphenols examples include 2,2v-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4 ′ -Thiobis- (3-methyl-6-tert-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [ ⁇ 1,1-dimethyl-2 Examples include- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl ⁇ 2,4,9,10-tetraoxaspiro] 5,5-undecane.
  • Examples of the high molecular phenolic compound include 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris ( 3,5-di-tert-butyl-4-bidoxybenzyl) benzene, tetrakis- ⁇ methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate ⁇ methane, bis ⁇ (3,3′-bis-4′-hydroxy-3′-tert-butylphenyl) butyric acid ⁇ glycol ester, 1,3,5-tris (3 ′, 5′-di-tert-butyl- Examples include 4′-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, tocopherol (vitamin E) and the like.
  • sulfur-based compounds examples include dilauryl thiodipropionate, dimyristyl thiodipropionate, and distearyl thiopropionate.
  • phosphites include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, Crick neopentanetetrayl bis (octadecyl phosphite), tris (mono and / or di) phenyl phosphite, diisodecyl pentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10 pho
  • monophenolic, bisphenolic, polymeric phenolic and other phenolic and phosphite antioxidants are preferably used in view of the effects of antioxidants, thermal stability, economy, etc. More preferably, they are used in combination.
  • the amount of the antioxidant added is usually about 0.1 to 1 part by weight, preferably 0.2 to 0.5 parts per 100 parts by weight of the resin composition constituting the sealing material (B). Part by mass.
  • UV absorber various commercially available products can be applied, and various types such as benzophenone, benzotriazole, triazine, and salicylic acid ester can be exemplified.
  • benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n-dodecyl.
  • Benzotriazole-based UV absorbers include hydroxyphenyl-substituted benzotriazole compounds including 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl) benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-tert-butylphenyl) And benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, and the like.
  • triazine ultraviolet absorbers examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- (4 , 6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol and the like.
  • salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate. The said ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the ultraviolet absorber added is usually about 0.01 to 2.0 parts by weight, preferably 0.05 to 0 parts per 100 parts by weight of the resin composition constituting the sealing material (B). .5 parts by mass.
  • a hindered amine light stabilizer is suitably used as a weather stabilizer that imparts weather resistance in addition to the above ultraviolet absorber.
  • a hindered amine light stabilizer does not absorb ultraviolet rays like an ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with an ultraviolet absorber.
  • the sealing material (B) used in the present invention are often colored and are not preferable for the sealing material (B) used in the present invention.
  • hindered amine light stabilizers include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1 , 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ 2, 2,6,6-tetramethyl-4-piperidyl ⁇ imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-Di-tert-4 Hydroxybenzyl) -2-
  • the addition amount of the hindered amine light stabilizer is usually about 0.01 to 0.5 parts by mass, preferably about 0.1 to 0.5 parts by mass with respect to 100 parts by mass of the resin composition constituting the encapsulant (B). 05 to 0.3 parts by mass.
  • the flexibility of the sealing material (B) used in the present invention is not particularly limited. It can be appropriately adjusted in consideration of the shape and thickness of the solar cell to be applied, the installation location, and the like.
  • the storage elastic modulus (E ′) at a vibration frequency of 10 Hz and a temperature of 20 ° C. in the dynamic viscoelasticity measurement of the sealing material (B) is preferably 1 to 2000 MPa.
  • the pressure is preferably 1 to 100 MPa, more preferably 5 to 50 MPa.
  • the storage elastic modulus (E ′) refers to the storage elastic modulus of the entire laminated structure.
  • the pressure is preferably 100 to 800 MPa, more preferably 200 to 600 MPa.
  • the storage elastic modulus (E ′) is obtained by measuring a predetermined temperature range at a vibration frequency of 10 Hz using a viscoelasticity measuring device and obtaining a value at a temperature of 20 ° C.
  • the heat resistance of the sealing material (B) used in the present invention is affected by various properties (crystal melting peak temperature, crystal melting heat, MFR, molecular weight, etc.) of the olefin polymer to be used, and is adjusted by appropriately selecting these.
  • the crystal melting peak temperature and molecular weight of the olefin polymer are strongly influenced.
  • a solar cell module is heated to about 85 ° C. by heat generated during power generation or radiant heat of sunlight, etc. If the crystal melting peak temperature is 100 ° C. or higher, the sealing material (B ) Is preferable because the heat resistance can be ensured.
  • the total light transmittance (JIS K7105) of the sealing material (B) used in the present invention is applied to the type of solar cell to be applied, for example, an amorphous thin-film silicon type or a portion that does not block sunlight reaching the solar electronic element.
  • it may not be considered as important, but considering the photoelectric conversion efficiency of the solar cell and the handling property when superposing various members, it is preferably 85% or more, and preferably 88% or more. More preferably, it is more preferably 90% or more.
  • the storage elastic modulus (E ′) is preferably 1 to 2000 MPa, the crystal melting peak temperature is 100 ° C. or higher, and the total light transmittance is 85% or higher.
  • the storage elastic modulus (E ′) is 5 to 800 MPa, More preferably, the peak temperature is 102 to 150 ° C., the total light transmittance is 85% or more, the storage elastic modulus (E ′) is 10 to 600 MPa, and the crystal melting peak temperature is 105 to 1. More preferably, it is 30 ° C. and the total light transmittance is 88% or more.
  • the shape of the sealing material is not limited and may be liquid or sheet-like, but is preferably sheet-like from the viewpoint of handleability.
  • a method for forming a sheet-like sealing material a known method, for example, an extrusion casting method using a T-die, a calendar having a melt mixing facility such as a single screw extruder, a multi-screw extruder, a Banbury mixer, a kneader, etc.
  • an extrusion casting method using a T die is preferably used from the viewpoints of handling properties and productivity.
  • the molding temperature in the extrusion casting method using a T die is appropriately adjusted depending on the flow characteristics and film forming properties of the resin composition used, but is generally 130 to 300 ° C, preferably 150 to 250 ° C.
  • the thickness of the sealing material is not particularly limited, but is usually 0.03 mm or more, preferably 0.05 mm or more, more preferably 0.1 mm or more, and usually 1 mm or less, preferably 0.7 mm or less. More preferably, it is 0.5 mm or less.
  • additives such as silane coupling agents, antioxidants, UV absorbers, weathering stabilizers, etc. may be dry blended with the resin in advance and then supplied to the hopper.
  • the master batch may be supplied after the additive is prepared, or a master batch in which only the additive is previously concentrated in the resin may be prepared and supplied.
  • the sheet on the surface and / or the back surface of the sealing material obtained in the form of a sheet, if necessary, the sheet can be used as a scroll to prevent blocking between sheets, and in the process of laminating solar cell elements, air handling properties and air Embossing and various unevenness (cone, pyramid shape, hemispherical shape, etc.) processing can be performed for the purpose of improving the ease of punching.
  • the surface can be subjected to various surface treatments such as corona treatment, plasma treatment and primer treatment.
  • the wet index is preferably 50 mN / m or more, and more preferably 52 mN / m or more.
  • the upper limit of the wetting index is generally about 70 mN / m.
  • the encapsulant (B) used in the present invention is a single layer or a laminated structure, but in order to achieve the properties required for the encapsulant as exemplified below in a well-balanced manner, a plurality of different composition contents and composition ratios are used.
  • the laminated structure which consists of these layers is preferable, Furthermore, it is preferable that it is the laminated structure co-extruded by a multilayer die using an extruder in that case.
  • Examples of the laminated structure composed of the plurality of layers include at least a laminated structure having a soft layer and a hard layer, which will be described later. For example, the following laminated structure is preferably used.
  • the notation A / B / C indicates that layers are stacked in the order of A, B, and C from the top (or from the bottom).
  • soft layer / hard layer / soft layer from the viewpoint of balance between flexibility, heat resistance, transparency, and economy, soft layer / hard layer / soft layer, hard layer / soft layer / hard layer, adhesive layer / intermediate layer / adhesive layer, soft layer (1)
  • Two types and three layers represented by layer / regeneration additive layer / soft layer are preferably used.
  • the soft layer / hard layer / soft layer is particularly preferable.
  • the intermediate layer is provided from the viewpoint of increasing the thickness of the sealing material (B) or improving desired performance.
  • the intermediate layer is a layer formed from a resin composition containing an olefin resin as a main component. It is.
  • the regenerated additive layer is provided from the viewpoint of economic rationality and effective utilization of resources, for example, a resin composition obtained by regenerating and adding trimmings (ears) generated during film formation of the sealing material (B) or slit processing.
  • a layer formed from The adhesive layer is provided from the viewpoint of improving adhesion to adjacent layers and adherends, such as carboxyl group, amino group, imide group, hydroxyl group, epoxy group, oxazoline group, thiol group and silanol group.
  • the soft layer is a layer having a storage elastic modulus (E ′) at a vibration frequency of 10 Hz and a temperature of 20 ° C. in dynamic viscoelasticity measurement, preferably less than 100 MPa, more preferably 5 to 50 MPa.
  • the handling property (elastic modulus at room temperature, etc.) as a whole stopping material can be achieved relatively easily, which is preferable.
  • a thin glass for example, 1.1 mm
  • a glassless configuration can be applied, and weight reduction can be expected.
  • the thickness of the soft layer in close contact with the solar cell element is not particularly limited, but is preferably 0.005 mm or more in consideration of the protection of the solar cell element, the wraparound property of the resin, and the like. More preferably, it is -0.2 mm.
  • the thickness of each soft layer may be the same or different.
  • the thickness of the hard layer is not particularly limited, but is preferably 0.025 mm or more and 0.05 to 0.8 mm from the viewpoint of handling properties as a whole sealing material. More preferred.
  • the sealing material used in the present invention is produced in a sheet shape
  • another base film for example, stretched polyester film (OPET), stretched polypropylene film (OPP) or ethylene-tetrafluoroethylene copolymer (ETFE) is used.
  • OPET stretched polyester film
  • OPP stretched polypropylene film
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PVDF Polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • various weathering films such as acrylic
  • the solar cell element (C) used in the present invention is not particularly limited, but generally, at least one surface is arranged in close contact with the sealing material and wired.
  • the solar cell element (C) used in the present invention is not particularly limited, but generally, at least one surface is arranged in close contact with the sealing material and wired.
  • III-V and II-VI compound semiconductors Type dye-sensitized type, and organic thin film type.
  • single crystal silicon type and polycrystalline silicon type solar cells are preferably used.
  • the sealing material (D) used for this invention will not be restrict
  • the thing similar to the sealing material (B) mentioned above is used ( That is, it is preferable that the sealing material (D) and the sealing material (B) have the same characteristics and other constituent resins in addition to the flow start temperature described later.
  • the sealing material (D) is, like the sealing material (B), an olefin polymer, in particular, (b1) a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms.
  • the main component is a main component, and it is more preferable that both the sealing material (B) and the sealing material (D) have an olefin polymer as a main component.
  • the sealing material (D) preferably contains 70% by mass or more of xylene solubles measured by ASTM 2765-95. It is preferable that both of the stopping materials (D) are 70% by mass or more of xylene solubles measured by ASTM 2765-95.
  • the sealing material (D) may contain at least one additive selected from a silane coupling agent, an antioxidant, an ultraviolet absorber, and a weathering stabilizer.
  • the sealing material (B) and the sealing material It is preferable that at least one of the materials (D) contains at least one additive selected from a silane coupling agent, an antioxidant, an ultraviolet absorber, and a weather resistance stabilizer.
  • the sealing material (D) used on the back sheet side is located on the back side of the solar cell element (C)
  • transparency (total light transmittance) is less important than the sealing material (B) used on the upper protective material side. May not be.
  • the encapsulant (D) contains a white pigment and the light incident from the upper protective material side of the solar cell module passes through the solar cell element for a part of the light, the light is reflected to It is also a preferred form to provide light reflectivity mainly for the purpose of re-entering the battery element and effectively utilizing light.
  • the designability and decorativeness of the solar cell module can be improved by imparting light-shielding properties by various colors such as blackening and bluening.
  • examples of the white pigment include metal oxides such as titanium oxide, zinc oxide, silicon oxide, and aluminum oxide, and inorganic compounds such as calcium carbonate and barium sulfate. These white pigments can be used alone or in combination of two or more.
  • titanium oxide, zinc oxide, and calcium carbonate can be suitably used.
  • titanium oxide is preferably used because it can efficiently impart light reflectivity with a small amount of addition.
  • the average value of the reflectance at 500 to 700 nm where the absorption intensity of a general solar cell is preferably 50% or more, more preferably 70% or more. Preferably, it is 80% or more, more preferably 90% or more.
  • the backsheet (E) used in the present invention is not particularly limited. Specifically, polyester resins (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), fluorine resins (polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA)). , Tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • FFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP Tetrafluoroethylene-hexafluoropropylene copolymer
  • Polyolefin resins polyethylene (PE), polypropylene (PP), various ⁇ -olefin copolymers, ethylene-vinyl acetate copolymer (EVA), ethylene-ethyl acrylate copolymer (EEA), Tylene-acrylic acid copolymer (EAA) and ethylene-methacrylic acid copolymer (EMAA), etc., cyclic olefin resins (COP, COC, etc.), polystyrene resins (acrylonitrile-styrene copolymer (AS), acrylonitrile) -Butadiene-styrene copolymer (ABS), acrylonitrile-styrene-acrylic rubber copolymer (ASA) and syndiotactic polystyrene (SPS)), polyamide (PA), polycarbonate (PC), polymethyl methacrylate (PMMA) , Modified polyphenylene ether (modified PPE), polyamide (PA
  • polyester-based resins, polyolefin-based resins, and fluorine-based resins are preferably used as the material for the base sheet from the viewpoints of adhesiveness to the sealing material, mechanical strength, durability, economy, and the like.
  • the production method of the base sheet or base film is not particularly limited, but representative examples include an extrusion casting method, a stretching method, an inflation method, and a casting method.
  • other resin and various additives can be mixed with a base material sheet as needed for the purpose of improvement, such as handling property, durability, and light reflectivity, or economical efficiency.
  • the additive include an antioxidant, an ultraviolet absorber, a weathering stabilizer, a light diffusing agent, a nucleating agent, a pigment (for example, titanium oxide, barium sulfate, and carbon black), a flame retardant, a discoloration inhibitor, Examples include decomposition inhibitors and heat radiation agents.
  • embossing various treatments (corona treatment, plasma treatment, etc.) and coating (fluorine) are performed as necessary in order to improve handling properties, adhesiveness and durability. Resin coating, hydrolysis prevention coating, hard coating, etc.).
  • the back sheet (E) used in the present invention has a single layer or a laminated structure including the base sheet, but preferably has a laminated structure in order to achieve the properties required for the back sheet in a well-balanced manner.
  • Properties that are generally required for backsheets include adhesion to sealing materials, mechanical strength, durability (such as weather resistance and hydrolysis resistance), light reflectivity, water vapor barrier properties, flame retardancy, Designability, economy, appearance after lamination, etc. are mentioned.
  • adhesion to a sealing material mechanical strength, durability, economy, and appearance after lamination It is important.
  • the adhesive layer to be described later is a layer mainly improving the adhesiveness between the respective layers of the backsheet (E), and is not particularly limited.
  • a polyurethane adhesive or a polyester adhesive is used.
  • a resin modified with a polar group can be suitably used.
  • the easy-adhesion layer described later is a layer mainly improving the adhesion to the sealing material, and is not particularly limited.
  • an ethylene-vinyl acetate copolymer, a polyethylene resin, or polypropylene is used.
  • a resin or the like can be preferably used.
  • Fluorine-based resin layer / adhesive layer / polyester resin layer / adhesive layer / easy-adhesive layer (sealing material side); specifically, PVF / adhesive layer / biaxially stretched PET / adhesive layer / EVA, PVF / Adhesive layer / biaxially stretched PET / adhesive layer / PE, PVF / adhesive layer / biaxially stretched PET / adhesive layer / PP, ETFE / adhesive layer / biaxially stretched PET / adhesive layer / EVA, ETFE / adhesive layer / biaxial Examples include stretched PET / adhesive layer / PE, ETFE / adhesive layer / biaxially stretched PET / adhesive layer / PP, and the like.
  • Polyester resin layer / adhesive layer / polyester resin layer / adhesive layer / easy-adhesive layer (sealing material side); specifically, biaxially stretched PET (hydrolysis resistant prescription) / adhesive layer / biaxially stretched PET / Adhesive layer / EVA, biaxially stretched PET (hydrolysis resistant formulation) / adhesive layer / biaxially stretched PET / adhesive layer / PE, biaxially stretched PET (hydrolysis resistant formulation) / adhesive layer / biaxially stretched PET / adhesive Layer / PP, (surface coating) biaxially stretched PET / adhesive layer / biaxially stretched PET / adhesive layer / easy-adhesive layer, and the like.
  • Polyester resin layer / adhesive layer / easy-adhesive layer (sealing material side); specifically, biaxially stretched PET (hydrolysis resistant formulation) / adhesive layer / EVA, biaxially stretched PET (hydrolysis resistant formulation) ) / Adhesive layer / PE, biaxially stretched PET (hydrolysis resistant formulation) / adhesive layer / PP, (surface coating) biaxially stretched PET / adhesive layer / easily adhesive layer, and the like.
  • the adhesive layers (1) to (3) are arranged as necessary, and may be configured without the adhesive layer. Further, when importance is attached to the water vapor barrier property, for example, in the above-described biaxially stretched PET (hydrolysis resistant formulation) / adhesive layer / biaxially stretched PET / adhesive layer / PE configuration, Decomposition prescription) / adhesion layer / various vapor deposition layers (SiOx, alumina, etc.) / Biaxially stretched PET / adhesive layer / biaxially stretched PET / adhesive layer / PE can be used.
  • the crystal melting peak temperature (Tm) of the easy adhesion layer is generally 80 ° C. or higher and 165 ° C. or lower.
  • the crystal melting peak temperature (Tm) of the easy-adhesion layer is from the viewpoints of adhesion with the sealing material (D) and economics, the appearance of the solar cell module, the heat resistance of the easy-adhesion layer itself, and the like.
  • the lower limit is preferably 95 ° C, more preferably 100 ° C.
  • the upper limit is preferably 140 ° C, more preferably 125 ° C.
  • the total thickness of the backsheet (E) used in the present invention is not particularly limited and may be appropriately selected in consideration of desired performance, but is generally 50 ⁇ m or more and 600 ⁇ m or less, preferably 150 ⁇ m or more and 400 ⁇ m or less. It is. Further, in order to satisfy the dielectric breakdown voltage of 1 kV or more, it is preferably 200 ⁇ m or more, and more preferably 250 ⁇ m or more.
  • the flow start temperature of each sealing material is measured under the following conditions. That is, using a high-flow type flow tester manufactured by Shimadzu Corporation, trade name “Flow Tester CFT-500C”, nozzle (inner diameter 1 mm, length 2 mm), temperature rising rate 3 ° C./min, load 1 kgf / cm 2 (9.8 ⁇ 10 4 Pa) was measured to determine the flow starting temperature (Tfb) of the sealing material. When the value of Tfb is not automatically displayed, the flow start temperature can be read from the stroke chart of the flow tester.
  • the sealing material (B) used on the upper protective material side and the sealing material (D) used on the back sheet side satisfy the above condition (P)
  • the back sheet surface is convex after laminating the solar cell module. This is preferable because the phenomenon is suppressed and the appearance is improved.
  • the mechanism by which the convex phenomenon of the backsheet surface appears is estimated as follows.
  • a typical solar cell module composed of an upper protective material (A) / encapsulant (B) / solar cell element (C) / encapsulant (D) / backsheet (E) is taken as an example. I will explain.
  • the upper protective material (A) / sealing material (B) / solar cell element (cell) (C) / sealing material (D) / backsheet (E) are first laid up from the bottom. Is done.
  • a vacuum process time: 1 to 15 while being heated by a heat source of a vacuum laminator located on the upper protective material (A) side (for example, a laminator having a heat source such as an electric heater or an oil heater is used on one side). Minutes) and a pressing step (time; about 3 to 20 minutes, pressure; about 10 to 100 kPa), the module is discharged and cooled.
  • a heat source of a vacuum laminator located on the upper protective material (A) side for example, a laminator having a heat source such as an electric heater or an oil heater is used on one side. Minutes
  • a pressing step time; about 3 to 20 minutes, pressure; about 10 to 100 kPa
  • the fluidity in the pressing process of the sealing material (B) used on the upper protective material (A) side and the sealing material (D) used on the back sheet (E) side will be considered. Since the heat source is usually located on the glass (upper protective material) side, the temperature of the sealing material (B) is raised faster than that of the sealing material (D). In the preliminary experiment of the present inventors, the temperature displayed by the thermocouple installed at the position of the sealing material (D) within 5 to 10 minutes from the start of temperature rise in the vacuum process at 130 ° C. It was confirmed that the temperature was about 15 ° C. lower than the temperature displayed by the thermocouple installed at the position (B).
  • the encapsulant (B) and the encapsulant (D) are made of encapsulants having the same flow characteristics, the encapsulant (B) that is heated up earlier is better than the encapsulant (D ).
  • the flow of the sealing material in the gap between the cells is considered to flow from the sealing material (B) toward the sealing material (D).
  • the wiring (lead wire) connecting the cells has a non-adhered portion (about 10 to 20 mm) with the cell, so that the sealing material (B) is directed to the sealing material (D).
  • the wiring connecting the cells rises to the back sheet side, and is easily deformed into a “he” shape, or is sealed between the unbonded portions of the wiring and the cells on the back sheet side. It is considered that the stopping material easily flows in, and these appear as a convex phenomenon of the back sheet surface.
  • the flow start temperature (TB) of the sealing material (B) used at least on the upper protective material (A) side is the flow start temperature (TD) of the sealing material (D) used on the back sheet (E) side. Higher than that (ie, TB> TD), it is considered that the flow of the sealing material can be suppressed.
  • the difference between the flow starting temperature (TB) (° C.) of the sealing material (B) and the flow starting temperature (TD) (° C.) of the sealing material (D) measured at a load of 1 kgf / cm 2 It is important that (TB ⁇ TD) (hereinafter sometimes referred to as a flow start temperature difference) exceeds 0 ° C. If the flow start temperature difference is 0 ° C. or less, it is impossible to control the convex phenomenon because the sealing material (B) cannot be suppressed from flowing to the sealing material (D) as described above.
  • the lower limit of the flow start temperature difference is preferably 15 ° C, more preferably 20 ° C, and even more preferably 25 ° C.
  • the upper limit is preferably 50 ° C, more preferably 40 ° C.
  • the flow start temperature difference is within the above-mentioned preferable range, adhesion is ensured after laminating the solar cell module, the convex phenomenon of the back sheet surface is suppressed, and there is almost no dent between cells, and the back sheet It is preferable because the flatness of the surface is also maintained and the appearance tends to be good.
  • the reason why the load at the time of measuring the flow start temperature is 1 kgf / cm 2 is that the maximum pressure in the press process of a general vacuum laminator is 100 kPa (about 1 kgf / cm 2 ).
  • condition (P) is preferably the following condition (P-1), more preferably the following condition (P-2).
  • Condition (P-1) The flow start temperature (TB) (° C.) of the sealing material (B) and the flow start temperature (TD) (° C.) of the sealing material (D) measured at a load of 1 kgf / cm 2. It has the following relationship. 50 (°C) ⁇ TB-TD ⁇ 15 (°C)
  • Condition (P-2) the flow start temperature (TB) (° C.) of the sealing material (B) measured at a load of 1 kgf / cm 2 and the flow start temperature (TD) (° C.) of the sealing material (D). It has the following relationship. 40 (°C) ⁇ TB-TD ⁇ 20 (°C)
  • the flow start temperature of each encapsulant is within the above range, since both the heat resistance and the appearance of the solar cell module obtained in the encapsulant that is not substantially crosslinked can be achieved.
  • the flow start temperature of the sealing material is mainly affected by the molecular weight, molecular weight distribution, thixotropy, degree of crosslinking, and the like of the resin composition constituting the sealing material. Usually, the higher the molecular weight, the higher the flow initiation temperature. When the molecular weight distribution is wide, it does not flow instantaneously and starts to flow partially from a component having a low molecular weight.
  • the flow start temperature used in the present invention is a value of Tfb measured by a Koka flow tester, and is the temperature at which flow starts through a rubbery plateau in the rheological behavior of the polymer.
  • the flow start temperature of the encapsulant it is preferable to control the flow start temperature of the encapsulant with a melt flow rate (MFR) in order to facilitate the material design of the resin composition constituting the encapsulant.
  • MFR melt flow rate
  • the flow start temperature (TB) (° C.) of the sealing material (B) and the flow start temperature (TD) of the sealing material (D) measured at a load of 1 kgf / cm 2 ( It is important to use a material having a different flow temperature and to arrange a sealing material having a high flow start temperature on the heat source side during lamination.
  • the back sheet is such that the sealing material located on the heat source side is heated quickly and the fluidity becomes stronger, so that it flows toward the other sealing material. It is thought that it appears as a convex phenomenon of the surface.
  • a sealing material having a high flow start temperature (° C.) measured with a load of 1 kgf / cm 2 is arranged on the heat source side, and one sealing material is the other sealing material. It suppresses the flow to the material side and controls the convex phenomenon.
  • the heat source of the laminator at the time of thermocompression bonding is located in the upper protective material (A) side on manufacture. Therefore, in the manufacturing method of the solar cell module of the present invention, the flow start temperature (TB) (° C.) of the sealing material (B) used on the upper protective material (A) side is the flow start of the sealing material (D).
  • the heat source may be on one side (for example, the upper protective material side) or on both sides (both the upper protective material side and the back sheet side), but the heat source is on the upper protective material and the back sheet side.
  • the heat source having a high temperature at the time of laminating is regarded as the “heat source” in the present invention, and the sealing material (B) having a high flow start temperature is disposed on the side of the heat source that is rapidly heated. Is preferred.
  • the laminate setting temperature when laminating each member is usually 100 to 170 ° C., and preferably in order to prevent thermal deterioration of the solar cell element (cell), 100-135 ° C.
  • “lamination set temperature” is used for the upper protective material (A), the sealing material (B) used on the upper protective material (A) side, the solar cell element (C), and the back sheet (E) side. It is the set temperature of the laminator when the sealing material (D) and the backsheet (E) are laminated and laminated, that is, the temperature of the heat source in the laminator device.
  • a laminate setting temperature of 100 ° C. or higher is preferable because adhesion to glass or a back sheet can be obtained.
  • the set temperature of a heat source having a high temperature (hereinafter sometimes referred to as “high temperature heat source”) is not particularly limited, Usually, it is about 100 to 170 ° C, preferably 100 to 135 ° C.
  • the setting temperature of the heat source having a low temperature when laminating is not particularly limited as long as it is lower than the setting temperature of the high temperature heat source.
  • a known manufacturing method can be applied except for the above-mentioned lamination set temperature, and is not particularly limited, but generally, an upper protective material (A) and a sealing material (B).
  • a solar cell element (C), a sealing material (D), and a back sheet (E) are laminated in this order to form a laminated body, and they are vacuum-sucked and subjected to thermocompression bonding at the above laminate setting temperature.
  • batch type manufacturing equipment, roll-to-roll type manufacturing equipment, and the like can be applied.
  • the solar cell module of the present invention includes an upper protective material (A), a sealing material (B) used on the upper protective material (A) side, a solar cell element (C), and a sealing material used on the back sheet (E) side ( D) and a solar cell module including a back sheet (E).
  • a solar cell module specifically, a solar cell such as upper protective material / sealing material (sealing resin layer) / solar cell element / sealing material (sealing resin layer) / lower protective material.
  • the structure is sandwiched between sealing elements from both sides of the element (see FIG. 1). As shown in FIG.
  • the upper protective material (A) 10 the sealing material (B) 12A, the solar cell elements (C) 14A and 14B, the sealing material (D) 12B, and the back sheet in this order from the sunlight receiving side.
  • (E) 16 is laminated, and a junction box 18 (a terminal box for connecting wiring for taking out electricity generated from the solar cell element) is adhered to the lower surface of the back sheet (E) 16. .
  • the solar cell elements (C) 14A and 14B are connected by a wiring 20 in order to conduct the generated current to the outside.
  • the wiring 20 is taken out through a through hole (not shown) provided in the backsheet (E) 16 and connected to the junction box 18.
  • the solar cell module of the present invention can be used in various applications regardless of indoors or outdoors, such as small solar cells represented by mobile devices and large solar cells installed on roofs and rooftops, depending on the type and module shape of the applied solar cells. Can be applied.
  • the occurrence of the convex phenomenon and the problem of poor appearance, which are problems in the present invention are difficult to occur in a small-sized module, and are particularly likely to occur in a large-sized module. Therefore, the present invention has a size of, for example, 90 cm ⁇ More effective in a module of 90 cm or more, particularly 90 cm ⁇ 100 cm or more.
  • the present invention will be described in more detail with reference to examples. However, the present invention is not limited by these examples.
  • Various measurements and evaluations described in this specification were performed as follows.
  • the flow direction of the sheet from the extruder is referred to as the longitudinal direction (MD)
  • the orthogonal direction is referred to as the transverse direction (TD).
  • the backsheet (E) to be used is cut into a size of 150 mm in the vertical direction and 150 mm in the horizontal direction, and a grid having a size of 100 mm in the vertical direction and 100 mm in the horizontal direction at the center of the side surface of the sealing material Three filled samples were prepared. Next, the sample was left in a hot air oven at 150 ° C. for 30 minutes, and the average value (%) of the ratio of shrinkage to the original size before shrinkage of the entered lattice was calculated in the longitudinal (MD) direction.
  • Encapsulant The material which comprises a sealing material is described below.
  • (Ethylene- ⁇ -olefin random copolymer) (X-1); ethylene-octene random copolymer (manufactured by Dow Chemical Co., Ltd., trade name: affinity EG8100G, density: 0.870 g / cm 3 , ethylene / 1-octene 68/32% by mass (89 / 11 mol%), Tm: 59 ° C., ⁇ Hm: 49 J / g, storage elastic modulus at 20 ° C. (E ′): 14 MPa, MFR (temperature: 190 ° C., load: 21.18 N): 1 g / 10 min)
  • Silane-modified ethylene resin (Silane-modified ethylene resin) (Q-1); Silane-modified ethylene-octene random copolymer (manufactured by Mitsubishi Chemical Corporation, trade name: Linkron SL800N, density: 0.868 g / cm 3 , Tm: 54 ° C. and 116 ° C., ⁇ Hm: 22J / G and 4 J / g, storage elastic modulus (E ′) at 20 ° C .: 15 MPa, MFR (temperature: 190 ° C., load: 21.18 N): 1.7 g / 10 min)
  • As the (II) layer resin compositions mixed in a ratio of 65 parts by weight of (X-1), 35 parts by weight of (X-2) and 5 parts by weight of (R-1) were used, respectively,
  • (II) layer / (I) layer is co-extruded at a resin temperature of 180 to 200 ° C. by a T-die method using the same-direction twin screw extruder, and then cast embossed at 25 ° C.
  • B-2 Resin mixed in B-1 as a layer (I) at a ratio of 85 parts by mass of (X-1), 15 parts by mass of (X-3) and 15 parts by mass of (Q-1)
  • the composition and the (II) layer except that the resin composition mixed at a ratio of 85 parts by weight of (X-1), 15 parts by weight of (X-3) and 5 parts by weight of (R-1) was used.
  • the (I) layer a resin composition in which 100 parts by mass of the above (X-2) and (Q-1) 15 parts by mass are mixed, and the (II) layer As in B-1, the total thickness is 0.50 mm except that the resin composition mixed at a ratio of 100 parts by weight of (X-2) and 5 parts by weight of (R-1) is used.
  • a sealing material having a thickness of (I) / (II) / (I) 0.05 mm / 0.40 mm / 0.05 mm was obtained.
  • the light reflectance of the sealing material was 90% or more.
  • the (I) layer a resin composition in which 100 parts by mass of the above (X-4) and 25 parts by mass of (Q-2) are mixed, and the (II) layer As in B-1, the total thickness is 0.50 mm except that the resin composition mixed at a ratio of 80 parts by mass of (X-4) and 20 parts by mass of (X-5) is used.
  • a sealing material having a thickness of (I) / (II) / (I) 0.05 mm / 0.40 mm / 0.05 mm was obtained.
  • E-1 Back sheet manufactured by Madico Co., Ltd., trade name Protekt HD (total thickness: 260 ⁇ m, laminated structure: (sealing material side) EVA / adhesive layer / PET / coat layer, thermal shrinkage (150 ° C. ⁇ 30 minutes) MD); 1.41%, Tm (EVA layer); 104 ° C.)
  • E-2 Back sheet manufactured by TAIFLEX, trade name Solmate TPE BTNE (total thickness: 280 ⁇ m, laminated structure; (sealing material side) EVA / adhesive layer / PET / adhesive layer / PVF (white; containing titanium oxide), Thermal shrinkage (150 ° C. ⁇ 30 minutes, MD); 1.12%, Tm (EVA layer); 103 ° C.)
  • E-3 Coveme back sheet, trade name dyMat PYE (total thickness: 295 ⁇ m, laminated structure; (encapsulant side) EVA / EVA (white; containing titanium oxide) / EVA / adhesive layer / PET / adhesive Layer / PET (white; containing barium sulfate), thermal shrinkage (150 ° C. ⁇ 30 minutes, MD); 1.40%, Tm (EVA layer); 103 ° C.)
  • Example 1 Using a vacuum laminator (trade name: SLM-240 ⁇ 460, manufactured by NPC Co., Ltd.) and using the members shown below and in Table 1, the laminates were laminated in the following order, and the laminate was then laminated under the following lamination conditions. Were laminated, three solar cell modules were produced, and the laminate appearance was evaluated. The results are shown in Table 1. ⁇ Constitution> Upper protective material (A) / sealing material (B) / solar cell element (C) / sealing material (D) / back sheet (E) ⁇ Each member> -Upper protective material (A); Nakajima Glass Industrial Co., Ltd.
  • SLM-240 ⁇ 460 manufactured by NPC Co., Ltd.
  • Example 2 In Example 1, except that the backsheet (E) to be used was changed from E-1 to E-2, three solar cell modules were produced and the laminate appearance was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 In Example 2, except that the laminate setting temperature was changed from 125 ° C. to 135 ° C., three solar cell modules were produced and the laminate appearance was evaluated in the same manner as in Example 2. The results are shown in Table 1.
  • Example 4 In Example 1, except that the sealing material (B) used on the upper protective material side was changed from B-1 to B-2, three solar cell modules were produced in the same manner as in Example 1, except that the appearance of the laminate was Evaluation was performed. The results are shown in Table 1.
  • Example 5 In Example 4, except that the backsheet (E) to be used was changed from E-1 to E-2, three solar cell modules were produced and the laminate appearance was evaluated in the same manner as in Example 4. The results are shown in Table 1.
  • Example 6 In Example 5, except that the laminate setting temperature was changed from 125 ° C. to 135 ° C., three solar cell modules were produced and the laminate appearance was evaluated in the same manner as in Example 5. The results are shown in Table 1.
  • Example 7 In Example 1, except that the sealing material (D) used on the back sheet side was changed from D-1 to D-2, three solar cell modules were produced and evaluated for the appearance of the laminate in the same manner as in Example 1. Went. The results are shown in Table 1.
  • Example 8 In Example 1, the sealing material (B) used on the upper protective material side is changed from B-1 to B-2, and the sealing material (D) used on the backsheet side is changed from D-1 to D-2. Except for the change, three solar cell modules were produced in the same manner as in Example 1, and the laminate appearance was evaluated. The results are shown in Table 1.
  • Example 9 In Example 1, the sealing material (D) used on the back sheet side was changed from D-1 to D-3, the laminate setting temperature was changed from 125 ° C. to 135 ° C., and the back sheet (E) was changed to E- Except for changing from 1 to E-3, in the same manner as in Example 1, three solar cell modules were produced and the laminate appearance was evaluated. The results are shown in Table 1.
  • Example 10 In Example 9, except that the laminate setting temperature was changed from 135 ° C. to 145 ° C., three solar cell modules were produced and the laminate appearance was evaluated in the same manner as in Example 9. The results are shown in Table 1.
  • Example 1 Comparative Example 1
  • the sealing material (B) used on the upper protective material side was changed from B-1 to D-1
  • the sealing material (D) used on the backsheet side was changed from D-1 to B-1.
  • three solar cell modules were produced and the laminate appearance was evaluated. The results are shown in Table 1.
  • Example 2 In Example 1, the sealing material (B) used on the upper protective material side was changed from B-1 to D-1, and the sealing material (D) used on the backsheet side was changed from D-1 to B-2. In the same manner as in Example 1, three solar cell modules were produced and the laminate appearance was evaluated. The results are shown in Table 1.
  • Example 3 (Comparative Example 3) In Example 1, except that the sealing material (B) used on the upper protective material side was changed from B-1 to D-1, three solar cell modules were produced and laminated appearance was the same as in Example 1. Evaluation was performed. The results are shown in Table 1.
  • Example 4 (Comparative Example 4)
  • the sealing material (B) used on the upper protective material side was changed from B-1 to D-3
  • the sealing material (D) used on the backsheet side was changed from D-3 to B-1.
  • three solar cell modules were produced and the laminate appearance was evaluated. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ラミネート後の外観が良好となる封止材の組合せ指針を特定することによって、ラミネート後の外観が良好である太陽電池モジュール及び太陽電池モジュールの製造方法を提供する。 上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含む太陽電池モジュールであり、封止材(B)と封止材(D)とが下記条件(P)を満足する太陽電池モジュール及び太陽電池モジュールの製造方法である。 条件(P):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。 TB-TD>0(℃)

Description

太陽電池モジュール及びその製造方法
 本発明は、太陽電池モジュールに関し、さらに詳細には、外観が良好な太陽電池モジュール及びその製造方法に関する。
 近年、地球温暖化などの環境問題に対する意識が高まる中、特に太陽光発電については、そのクリーン性や無公害性という点から期待が高まっている。太陽電池は太陽光のエネルギーを直接電気に換える太陽光発電システムの中心部を構成するものである。その構造としては一般的に、複数枚の太陽電池素子(セル)を直列、並列に配線し、セルを保護するために種々パッケージングが行われ、ユニット化されている。このパッケージに組み込まれたユニットを太陽電池モジュールと呼び、一般的に太陽光が当たる面を上部保護材として透明基材(ガラスや樹脂シート、以下、フロントシートと表記することがある)で覆い、熱可塑性プラスチック(例えば、エチレン-酢酸ビニル共重合体やポリエチレン系重合体)からなる封止材(封止樹脂層)で間隙を埋め、裏面を下部保護材として裏面封止用シート(以下、バックシートと表記することがある)で保護された構成になっている。
 ここで、封止材の主な材料としてはエチレン-酢酸ビニル共重合体(以下、EVAと表記することがある)、ポリエチレン(以下、PEと表記することがある)、アイオノマー(以下、IOと表記することがある)及びポリビニルブチラール(以下、PVBと表記することがある)などが用いられる。
 また、封止材には、太陽電池素子を保護するための柔軟性や耐衝撃性、太陽電池モジュールが発熱した際の耐熱性、太陽電池素子へ太陽光が効率的に届くための透明性(全光線透過率など)、耐久性、寸法安定性、難燃性、水蒸気バリア性などが主に要求される。さらに、封止材は一般的にラミネートして使用されるため、そのプロセス適性やラミネート後の外観も重要である。
 ここで、太陽電池モジュールのラミネート条件は一般的に、使用する各種部材(封止材、バックシート、ガラス、配線、セル、フラックスなど)を考慮し試行錯誤法により設定することが多く行われているため、条件設定に時間を要すると共に使用する各種部材の費用が高額となることがあり問題となっていた。
 条件設定における具体的な外観の課題として、バックシート面に凸状の突起が発生する現象(以下、凸現象と表記することがある)が挙げられる。この課題に対して、特許文献1には、バックシート(太陽電池モジュール用裏面保護シート)を用いて太陽電池モジュールを作製する場合、真空ラミネート処理を行う際に上記バックシートが収縮することにより、太陽電池素子及び素子を繋ぐリード線(タグ)が上記バックシートの収縮に追従してしまい、リード線が変形したり、太陽電池素子間の間隔が変化してしまうことが原因であることが記載されている。この対策として、バックシートの150℃、30分における熱収縮率が1.0%以下であることが好ましく、中でも0.5%以下であることが好ましく、特に0.3%~0.1%の範囲内であることが好ましいことが開示されている(特許文献1、段落0130参照)。
 また、特許文献2には、2軸延伸PETフィルムは熱収縮率が大きく、特に大型太陽電池モジュール工程で配線(特許文献1記載のリード線に相当)が曲がったり、電池(セル)のズレが生じる危惧があるが、この熱収縮率に起因するフィルムの収縮の問題を解決するために、延伸されたフィルムにアニール処理を施す熱固定化工程が設備上必要となり、フィルムのコスト上昇を招き、安価なバックシートが得られないというコスト面での問題があることが開示されている(特許文献2、段落0007参照)。この対策として、ポリカーボネートフィルムとガスバリア性透明蒸着フィルムとが積層されてなるバックシートが提案されている(特許文献2、請求項1参照)。
特開2007-150084号公報 特開2006-324556号公報
 特許文献1や特許文献2で開示されているように、凸現象の改良に関して従来の技術は太陽電池モジュールを作製する際に用いる部材の中でバックシートの熱収縮特性のみに着眼するものであった。しかしながら、特定の物性(例えば、熱収縮特性)を満足するバックシートを用いても凸現象は必ずしも抑制されるものではなく、ラミネート条件を設定する際の試行錯誤法の負荷はあまり低減されていなかった。これらのことから、別の対策や改良の指針が望まれていた。
 そこで本発明は、ラミネート後の外観が良好となる封止材の組み合わせ指針を特定することによって、ラミネート後の外観が良好である太陽電池モジュール及び太陽電池モジュールの製造方法を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、上部保護材側に用いる封止材(B)とバックシート側に用いる封止材(D)の流動開始温度が特定の定量的関係を満足するように組み合わせて用いることにより、ラミネート後の外観が良好である太陽電池モジュールが得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記の太陽電池モジュール及びその製造方法に関する。
<1>上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含む太陽電池モジュールであり、封止材(B)と封止材(D)とが下記条件(P)を満足する太陽電池モジュール。
 条件(P):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
             TB-TD>0(℃)
<2>前記条件(P)が、下記条件(P-1)である上記<1>に記載の太陽電池モジュール。
 条件(P-1):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
          50(℃)≧TB-TD≧15(℃)
<3>前記条件(P)が、下記条件(P-2)である上記<1>に記載の太陽電池モジュール。
 条件(P-2):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
          40(℃)≧TB-TD≧20(℃)
<4>前記封止材(D)の荷重1kgf/cm2で測定した流動開始温度(TD)が100℃以上である、上記<1>~<3>のいずれかに記載の太陽電池モジュール。
<5>前記封止材(D)の荷重1kgf/cm2で測定した流動開始温度(TD)が110℃以上である、上記<4>に記載の太陽電池モジュール。
<6>前記封止材(B)及び前記封止材(D)が、共に、オレフィン系重合体を主成分とする封止材である、上記<1>~<5>のいずれかに記載の太陽電池モジュール。
<7>前記封止材(B)及び前記封止材(D)が、共に、エチレンと炭素数3~20のα-オレフィンとの共重合体を主成分とする封止材である、上記<1>~<6>のいずれかに記載の太陽電池モジュール。
<8>前記エチレンと炭素数3~20のα-オレフィンとの共重合体中の全単量体単位に対して、炭素数3~20のα-オレフィンに基づく単量体単位の含有量が2~40モル%である、上記<7>に記載の太陽電池モジュール。
<9>前記封止材(B)が、結晶融解ピーク温度が100℃未満のオレフィン系重合体と、結晶融解ピーク温度が100℃以上のオレフィン系重合体とを含有する樹脂組成物からなる封止材である、上記<6>~<8>のいずれかに記載の太陽電池モジュール。
<10>前記結晶融解ピーク温度が100℃以上のオレフィン系重合体が、エチレン-α-オレフィンブロック共重合体である、上記<9>に記載の太陽電池モジュール。
<11>前記封止材(B)及び前記封止材(D)が、共に、ASTM 2765-95で測定したキシレン可溶物が70質量%以上となる封止材である、上記<1>~<10>のいずれかに記載の太陽電池モジュール。
<12>前記封止材(B)及び前記封止材(D)のうち少なくとも一方が、シランカップリング剤、酸化防止剤、紫外線吸収剤及び耐候安定剤から選ばれる少なくとも一種の添加剤を含む、上記<1>~<11>のいずれかに記載の太陽電池モジュール。
<13>前記封止材(B)が、少なくとも、動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)が100MPa未満である軟質層、及び動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)が100MPa以上である硬質層を有する積層構成である、上記<1>~<12>のいずれかに記載の太陽電池モジュール。
<14>前記封止材(D)が、白色顔料を更に含む、上記<1>~<13>のいずれかに記載の太陽電池モジュール。
<15>前記上部保護材(A)がガラス板材であり、前記太陽電池素子(C)が単結晶シリコン型及び多結晶シリコン型から選ばれる少なくとも一種である、上記<1>~<14>のいずれかに記載の太陽電池モジュール。
<16>上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含む太陽電池モジュールをラミネートする太陽電池モジュールの製造方法であり、荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが異なるものを用い、かつ、ラミネート時に、流動開始温度が高い封止材を熱源側に配置する太陽電池モジュールの製造方法。
<17>前記ラミネートする際のラミネート設定温度が100~135℃である、上記<16>記載の太陽電池モジュールの製造方法。
 本発明によれば、流動開始温度が特定の関係にある封止材を組み合わせることにより、ラミネート後の外観が良好である太陽電池モジュール及び太陽電池モジュールの製造方法が提供できる。
 また、封止材の流動開始温度という基礎的な物性を測定することにより、太陽電池モジュールを実際にラミネートする前に、仕上がり外観の予測が可能となる。さらに、効率的にラミネート条件を設定できることから、条件検討に要する時間と各種部材の費用が抑制され、結果、太陽電池モジュールの製造コストを大幅に低減させることが期待できる。
本発明の太陽電池モジュールの一例を示す概略断面図である。
 以下、本発明の太陽電池モジュールの実施形態の例について説明する。但し、本発明の範囲は以下に説明する実施形態に制限されるものではない。
 なお、本明細書において、「主成分とする」とは、本発明の太陽電池モジュールの各部材を構成する樹脂の作用・効果を妨げない範囲で、他の成分を含むことを許容する趣旨である。さらに、この用語は、具体的な含有率を制限するものではないが、樹脂組成物の構成成分全体の50質量%以上、好ましくは65質量%以上、さらに好ましくは80質量%以上であって100質量%以下の範囲を占める成分である。
 以下、本発明を詳しく説明する。
 本発明の太陽電池モジュールは、上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含み、封止材(B)と封止材(D)の流動開始温度が特定の関係を満足することを特徴とするものである。
[上部保護材(A)]
 本発明に用いられる上部保護材(A)としては、特に制限されるものではないが、例えば、ガラス、アクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂及びフッ素含有樹脂などの板材や、単層もしくは多層のフィルムが挙げられる。ガラス板材については、白板ガラス、強化ガラス、倍強化ガラス、熱線反射ガラス及び白板強化ガラスなどが挙げられるが、一般的には、厚み3~5mm程度の白板強化ガラスが用いられる。本発明においては、経済性や力学強度などからガラス板材、また、軽量性や加工性などからアクリル樹脂やポリカーボネート樹脂の厚みが5mm程度の板材が好適に用いられる。
[封止材(B)]
 本発明に用いられる封止材(B)は、後述する条件(P)を満足すれば特に制限されるものではない。具体的には、エチレン-酢酸ビニル共重合体(EVA)、ポリエチレン(PE)、ポリプロピレン(PP)、アイオノマー(IO)及びポリビニルブチラール(PVB)などを主成分とする封止材が挙げられるが、本発明においては、オレフィン系重合体、特に、下記の(b1)~(b4)の各々に示されるオレフィン系重合体の少なくとも一種を主成分とする封止材が好適に用いられる。ここで、主成分としては、得られる封止材の柔軟性、フィッシュアイ(ゲル)の少なさ、回路の腐食性物質(酢酸など)の少なさ及び経済性などの観点から(b1)又は(b2)に示されるものが好ましく、中でもさらに低温特性に優れる点で(b1)に示されるものが特に好適に用いられる。
(b1)
 (b1)は、エチレンと炭素数3~20のα-オレフィンとの共重合体である。これらの共重合形式(ランダム、ブロックなど)、分岐、分岐度分布や立体構造には特に制限がなく、イソタクチック、アタクチック、シンジオタクチックあるいはこれらの混在した構造の重合体とすることができる。ここで、エチレンと共重合するα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、1-ノネン、1-デセン、3-メチル-ブテン-1、4-メチル-ペンテン-1などが例示される。
 本発明においては、工業的な入手し易さや諸特性、経済性などの観点からエチレンと共重合するα-オレフィンとしては、プロピレン、1-ブテン、1-へキセン、1-オクテンが好適に用いられる。また、透明性や柔軟性などの観点からエチレン-α-オレフィンランダム共重合体が好適に用いられる。エチレンと共重合するα-オレフィンは1種のみを単独で又は2種以上を組み合わせて用いることができる。
 また、エチレンと共重合するα-オレフィンの含有量としては、特に制限されるものではないが、エチレンと炭素数3~20のα-オレフィンとの共重合体(b1)中の全単量体単位に対して、炭素数3~20のα-オレフィンに基づく単量体単位が、通常、2モル%以上、好ましくは2~40モル%、より好ましくは3~30モル%、さらに好ましくは5~25モル%である。該範囲内であれば、共重合成分により結晶性が低減されることにより透明性が向上し、また、原料ペレットのブロッキングなどの不具合も起こり難いため好ましい。なお、エチレンと共重合する単量体の種類と含有量は、周知の方法、例えば、核磁気共鳴(NMR)測定装置、その他の機器分析装置で定性定量分析することができる。
 エチレンと炭素数3~20のα-オレフィンとの共重合体(b1)は、α-オレフィン以外の単量体に基づく単量体単位を含有していてもよい。該単量体としては、例えば、環状オレフィン、ビニル芳香族化合物(スチレンなど)、ポリエン化合物などが挙げられる。該単量体単位の含有量は、エチレンと炭素数3~20のα-オレフィンとの共重合体(b1)中の全単量体単位を100モル%とした場合、好ましくは20モル%以下であり、より好ましくは15モル%以下である。
 また、エチレンと炭素数3~20のα-オレフィンとの共重合体(b1)の立体構造、分岐、分岐度分布や分子量分布は、特に制限されるものではないが、例えば、長鎖分岐を有する共重合体は、一般に機械物性が良好であり、また、シートを成形する際の溶融張力(メルトテンション)が高くなりカレンダー成形性が向上するなどの利点がある。
 本発明に用いられるエチレンと炭素数3~20のα-オレフィンとの共重合体(b1)のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:190℃、荷重:21.18N)が、0.5~100g/10min程度、好ましくは1~50g/10min、より好ましくは2~50g/10min、さらに好ましくは3~30g/10minである。
 ここで、MFRは、シートを成形する際の成形加工性や太陽電池素子(セル)を封止する時の密着性、回り込み具合などを考慮して選択すればよい。例えば、シートをカレンダー成形する場合には、シートを成形ロールから引き剥がす際のハンドリング性からMFRは、比較的低い値、具体的には0.5~5g/10min程度が好ましく、また、Tダイを用いて押出成形する場合には、押出負荷を低減させ押出量を増大させる観点からMFRは、好ましくは1~50g/10min、より好ましくは2~50g/10min、さらに好ましくは3~30g/10minである。さらに、太陽電池素子(セル)を封止する時の密着性や回り込み易さの観点からMFRは、好ましくは2~50g/10min、より好ましくは3~30g/10minである。
 エチレンと炭素数3~20のα-オレフィンとの共重合体(b1)の製造方法は、特に制限されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法が採用できる。例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒や、メタロセン系触媒やポストメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶液重合法、気相重合法など、また、ラジカル開始剤を用いた塊状重合法などが挙げられる。本発明においては、重合後の造粒(ペレタイズ)のし易さや原料ペレットのブロッキング防止などの観点から低分子量成分が少なく分子量分布の狭い原料が重合できるシングルサイト触媒を用いた重合方法が好適である。
 本発明に用いられるエチレンと炭素数3~20のα-オレフィンとの共重合体(b1)の示差走査熱量測定における加熱速度10℃/分で測定される結晶融解熱量は、0~70J/gであることが好ましい。該範囲内であれば、得られる封止材の柔軟性や透明性(全光線透過率)などが確保されるため好ましい。また、夏場など高温状態での原料ペレットのブロッキングの起こり難さを考慮すると、該結晶融解熱量は、好ましくは5~70J/gであり、より好ましくは10~65J/gである。
 上記の結晶融解熱量は、示差走査熱量計を用いて、JIS K7122に準じて加熱速度10℃/分で測定することができる。
 本発明に用いられるエチレンと炭素数3~20のα-オレフィンとの共重合体(b1)の具体例としては、ダウ・ケミカル(株)製の商品名「エンゲージ(Engage)」、「アフィニティー(Affinity)」、「インフューズ(Infuse)」、エクソンモービル(株)製の商品名「エグザクト(Exact)」、三井化学(株)製の商品名「タフマーH(TAFMER H)」、「タフマーA(TAFMER A)」、「タフマーP(TAFMER P)」、LG化学(株)の商品名「LUCENE」、日本ポリエチレン(株)製の商品名「カーネル(Karnel)」などを例示することができる。
(b2)
 (b2)は、プロピレンと該プロピレンと共重合可能な他の単量体との共重合体、あるいはプロピレンの単独重合体である。但し、これらの共重合形式(ランダム、ブロックなど)、分岐、分岐度分布や立体構造には特に制限がなく、イソタクチック、アタクチック、シンジオタクチックあるいはこれらの混在した構造の重合体とすることができる。
 プロピレンと共重合可能な他の単量体としては、エチレンや1-ブテン、1-ヘキセン、4-メチル-ペンテン-1、1-オクテンなどの炭素数4~12のα-オレフィン及びジビニルベンゼン、1,4-シクロヘキサジエン、ジシクロペンタジエン、シクロオクタジエン、エチリデンノルボルネンなどのジエン類などが例示される。
 本発明においては、工業的な入手し易さや諸特性、経済性などの観点からプロピレンと共重合するα-オレフィンとしては、エチレンや1-ブテンが好適に用いられる。また、透明性や柔軟性などの観点からプロピレン-α-オレフィンランダム共重合体が好適に用いられる。プロピレンと共重合する単量体は1種のみを単独で又は2種以上を組み合わせて用いることができる。
 また、プロピレンと共重合可能な他の単量体の含有量としては、特に制限されるものではないが、プロピレンと該プロピレンと共重合可能な他の単量体との共重合体(b2)中の全単量体単位に対して、プロピレンと共重合可能な他の単量体に基づく単量体単位が、通常、2モル%以上、好ましくは2~40モル%、より好ましくは3~30モル%、さらに好ましくは5~25モル%である。該範囲内であれば、共重合成分により結晶性が低減されることにより透明性が向上し、また、原料ペレットのブロッキングなどの不具合も起こり難いため好ましい。なお、プロピレンと共重合可能な他の単量体の種類と含有量は、周知の方法、例えば、核磁気共鳴(NMR)測定装置、その他の機器分析装置で定性定量分析することができる。
 本発明に用いられる(b2)のメルトフローレート(MFR)は、特に制限されるものではないが、通常、MFR(JIS K7210、温度:230℃、荷重:21.18N)は、0.5~100g/10min程度、好ましくは、2~50g/10min、より好ましくは3~30g/10minである。
 ここで、MFRは、シートを成形する際の成形加工性や太陽電池素子(セル)を封止する時の密着性、回り込み具合などを考慮して選択すればよい。例えば、シートをカレンダー成形する場合には、シートを成形ロールから引き剥がす際のハンドリング性から、MFRは比較的低い方、具体的には0.5~5g/10min程度が好ましく、また、Tダイを用いて押出成形する場合には、押出負荷を低減させ押出量を増大させる観点から、MFRは好ましくは2~50g/10min、より好ましくは3~30g/10minである。さらに、太陽電池素子(セル)を封止する時の密着性や回り込み易さの観点からは、MFRは、好ましくは2~50g/10min、より好ましくは3~30g/10minである。
 本発明に用いられるプロピレンと該プロピレンと共重合可能な他の単量体との共重合体、あるいはプロピレンの単独重合体である(b2)の製造方法は、特に制限されるものではなく、公知のオレフィン重合用触媒を用いた公知の重合方法が採用できる。例えば、チーグラー・ナッタ型触媒に代表されるマルチサイト触媒やメタロセン系触媒やポストメタロセン系触媒に代表されるシングルサイト触媒を用いた、スラリー重合法、溶液重合法、気相重合法など、また、ラジカル開始剤を用いた塊状重合法などが挙げられる。本発明においては、重合後の造粒(ペレタイズ)のし易さや原料ペレットのブロッキング防止などの観点から低分子量成分が少なく分子量分布の狭い原料が重合できるシングルサイト触媒を用いた重合方法が好適である。
 本発明に用いられる(b2)の具体例としては、プロピレン-ブテンランダム共重合体、プロピレン-エチレンランダム共重合体やプロピレン-エチレン-ブテン-1共重合体などが挙げられ、具体的な商品としては、三井化学(株)製の商品名「タフマーXM(TAFMER XM)」、「ノティオ(NOTIO)」、住友化学(株)商品名「タフセレン(TAFFCELLEN)」、(株)プライムポリマー製の商品名「プライムTPO(PRIME TPO)」、ダウ・ケミカル(株)製の商品名「バーシファイ(VERSIFY)」、エクソンモービル(株)製の商品名「ビスタマックス(VISTAMAXX)」などを例示することができる。
(b3)
 (b3)は、エチレン、プロピレンなどのα-オレフィンと脂肪族不飽和カルボン酸とからなる共重合体の金属塩(好ましい金属はZn、Na、K、Li、Mgなどである)である。
 具体的な商品としては、三井化学(株)製の商品名「ハイミラン(HIMILAN)」、ダウ・ケミカル(株)製の商品名「アンプリファイIO(AMPLIFY IO)」などを例示することができる。
(b4)
 (b4)は、エチレンと、酢酸ビニルエステル、脂肪族不飽和カルボン酸及び脂肪族不飽和モノカルボン酸アルキルエステルより選ばれる少なくとも1つの単量体とからなるエチレン系共重合体である。
 具体的には、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-アクリル酸エステル共重合体及びエチレン-メタクリル酸エステル共重合体などが挙げられる。ここで、該エステル成分としては、メチル、エチル、プロピル、ブチルなどの炭素数1~8のアルコールのエステルが挙げられる。本発明においては、上記2成分の共重合体に制限されることなく、さらに第3の成分を加えた3成分以上の多元共重合体(例えば、エチレンと脂肪族不飽和カルボン酸及び脂肪族不飽和カルボン酸エステルより適宜選ばれる3元以上の共重合体など)であってもよい。ここで、共重合体中の全単量体単位に対して、エチレンと共重合される単量体の含有量は、通常5~35質量%である。
 本発明に用いる封止材(B)は、単層あるいは積層構成であるが、封止材に要求される特性をバランス良く達成させるため、積層構成であることが好ましい。ここで、封止材に一般的に要求される特性としては、太陽電池素子を保護するための柔軟性や耐衝撃性、太陽電池モジュールが発熱した際の耐熱性、太陽電池素子へ太陽光が効率的に届くための透明性(全光線透過率など)、各種被着体(ガラスやバックシートなど)への接着性、耐久性、寸法安定性、難燃性、水蒸気バリア性、経済性などが挙げられる。中でも柔軟性と耐熱性及び透明性のバランスと経済性が重要視される。
(オレフィン系重合体の結晶融解ピーク温度)
 本発明に用いる封止材(B)は、上述した(b1)~(b4)のオレフィン系重合体を主成分とする樹脂組成物からなることが好ましい。
 上記主成分とするオレフィン系重合体の結晶融解ピーク温度(Tm)は、100℃未満であることが好ましいが、結晶融解ピーク温度を発現しない、すなわち非晶性の重合体も適用可能である(以下、非晶性の重合体を含めて、結晶融解ピーク温度が100℃未満のオレフィン系重合体と呼ぶ)。原料ペレットのブロッキングなどを考慮すると、該結晶融解ピーク温度が30~95℃であることが好ましく、45~80℃であることがより好ましく、60~80℃であることがさらに好ましい。
 また、封止材の柔軟性を重視すると、結晶融解ピーク温度(Tm)が100℃未満のオレフィン系重合体に結晶融解ピーク温度(Tm)が100℃以上のオレフィン系重合体を混合して用いることが好ましい。混合するオレフィン系重合体の結晶融解ピーク温度(Tm)の上限値は、特に制限されるものではないが、太陽電池素子(セル)の熱劣化や太陽電池モジュール作製時のラミネート温度を考慮すると150℃程度である。本発明においては、太陽電池モジュールを作製する際のラミネート設定温度を低温化でき、太陽電池素子(セル)を熱劣化させにくいことから、混合するオレフィン系重合体の結晶融解ピーク温度(Tm)の上限値は130℃であることが好ましく、125℃であることがより好ましい。
 ここで、該結晶融解ピーク温度の参考値としては、汎用の高密度ポリエチレン樹脂(HDPE)が130~145℃程度、低密度ポリエチレン樹脂(LDPE)や直鎖状低密度ポリエチレン(LLDPE)が100~125℃程度、汎用のホモポリプロピレン樹脂が165℃程度、汎用のプロピレン-エチレンランダム共重合体が130~150℃程度である。上記の結晶融解ピーク温度は、示差走査熱量計を用いて、JIS K7121に準じて加熱速度10℃/分で測定することができる。
 本発明に用いる封止材(B)は、上述したように結晶融解ピーク温度が100℃未満のオレフィン系重合体と、結晶融解ピーク温度が100℃以上のオレフィン系重合体を含有する樹脂組成物からなることが好ましい。
 上記樹脂組成物中における両オレフィン系重合体の含有量は、特に制限されるものではないが、得られる封止材の柔軟性、耐熱性、透明性などを考慮すると、両オレフィン系重合体の混合(含有)質量比(結晶融解ピーク温度が100℃未満のオレフィン系重合体/結晶融解ピーク温度が100℃以上のオレフィン系重合体)は、好ましくは99~50/1~50、より好ましくは98~60/2~40、さらに好ましくは97~70/3~30、特に好ましくは97~80/3~20、最も好ましくは97~90/3~10である。但し、両オレフィン系重合体の合計を100質量部とする。混合(含有)質量比が上記範囲内であれば、柔軟性、耐熱性、透明性などのバランスに優れた封止材が得られ易いため好ましい。
 本発明に用いる封止材(B)に混合する結晶融解ピーク温度が100℃以上のオレフィン系重合体は、所望の特性を考慮し適宜選択すれば良いが、本発明においては、耐熱性、柔軟性及び低温特性などのバランスに優れることから、エチレン-α-オレフィンブロック共重合体を最も好適に用いることができる。
〈エチレン-α-オレフィンブロック共重合体〉
 上記エチレン-α-オレフィンブロック共重合体のブロック構造は、特に制限されるものではないが、柔軟性、耐熱性、透明性などのバランス化の観点から、コモノマー含有率、結晶性、密度、結晶融解ピーク温度(Tm)、又はガラス転移温度(Tg)の異なる2つ以上のセグメント又はブロックを含有するマルチブロック構造であることが好ましい。具体的には、完全対称ブロック、非対称ブロック、テ-パ-ドブロック構造(ブロック構造の比率が主鎖内で漸増する構造)などが挙げられる。該マルチブロック構造を有する共重合体の構造や製造方法については、国際公開第2005/090425号パンフレット(WO2005/090425)、国際公開第2005/090426号パンフレット(WO2005/090426)、及び国際公開第2005/090427号パンフレット(WO2005/090427)などで詳細に開示されているものを採用することができる。
 次に、前記マルチブロック構造を有するエチレン-α-オレフィンブロック共重合体について、以下、詳細に説明する。
 該マルチブロック構造を有するエチレン-α-オレフィンブロック共重合体は、本発明において好適に使用でき、α-オレフィンとして1-オクテンを共重合成分とするエチレン-オクテンマルチブロック共重合体が好ましい。該ブロック共重合体としては、エチレンに対してオクテン成分が多く(約15~20モル%)共重合されたほぼ非晶性のソフトセグメントと、エチレンに対してオクテン成分が少なく(約2モル%未満)共重合された結晶融解ピーク温度が110~145℃である高結晶性のハードセグメントが、各々2つ以上存在するマルチブロック共重合体が好ましい。これらのソフトセグメントとハードセグメントの連鎖長や比率を制御することにより、柔軟性と耐熱性の両立を達成することができる。
 該マルチブロック構造を有する共重合体の具体例としては、ダウ・ケミカル(株)製の商品名「インフューズ(Infuse)」が挙げられる。
 本発明に用いる封止材(B)の表面には、ハンドリング性やエア抜きのし易さと共に各種被着体(ガラスやバックシート及び太陽電池など)への接着性が重要な機能が要求される。このため、本発明においては封止材(B)として、上述した(b1)~(b4)に、後述するシランカップリング剤を添加したものや、下記のシラン変性エチレン系樹脂を混合した樹脂組成物が好適に用いられる。
(シラン変性エチレン系樹脂)
 本発明において用いられるシラン変性エチレン系樹脂としては、通常、ポリエチレン系樹脂とビニルシラン化合物及びラジカル発生剤を高温(160℃~220℃程度)で溶融混合し、グラフト重合させることにより得ることができる。
〈ポリエチレン系樹脂〉
 上記ポリエチレン系樹脂としては、特に制限されるものではないが、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、又は直鎖状低密度ポリエチレンが挙げられる。これらは1種のみを単独で又は2種以上を組み合わせて用いることができ、特に、前記(b1)で挙げたポリエチレンを好ましく使用することができる。
 本発明においては、透明性や柔軟性が良好となることから密度が低いポリエチレン系樹脂が好適に用いられる。具体的には、密度が0.850~0.920g/cm3のポリエチレン系樹脂が好ましく、密度が0.860~0.880g/cm3の直鎖状低密度ポリエチレンがより好ましい。また、密度が低いポリエチレン系樹脂と密度が高いポリエチレン系樹脂を組み合わせて用いることができる。組み合わせて用いることで、透明性や柔軟性と耐熱性のバランスが比較的容易に調整できるため好ましい。
〈ビニルシラン化合物〉
 ビニルシラン化合物としては、上記ポリエチレン系樹脂とグラフト重合するものであれば特に制限されるものではないが、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリイソプロポキシシラン、ビニルトリブトキシシラン、ビニルトリペンチロキシシラン、ビニルトリフェノキシシラン、ビニルトリベンジルオキシシラン、ビニルトリメチレンジオキシシラン、ビニルトリエチレンジオキシシラン、ビニルプロピオニルオキシシラン、ビニルトリアセトキシシラン及びビニルトリカルボキシシランが挙げられる。これらビニルシラン化合物は、1種のみを単独で又は2種以上を組み合わせて用いることができる。本発明においては、反応性、接着性や色調などの観点からビニルトリメトキシシランが好適に用いられる。
 また、該ビニルシラン化合物の添加量は、特に制限されるものではないが、用いるポリエチレン系樹脂100質量部に対し、通常、0.01~10.0質量部程度であり、好ましくは0.3~8.0質量部であり、より好ましくは1.0~5.0質量部である。
〈ラジカル発生剤〉
 ラジカル発生剤としては、特に制限されるものではないが、例えば、ジイソプロピルベンゼンヒドロパーオキサイド、2,5-ジメチル-2,5-ジ(ヒドロパーオキシ)ヘキサンなどのヒドロパーオキサイド類;ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-パーオキシ)ヘキシン-3などのジアルキルパーオキサイド類;ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイドなどのジアシルパーオキサイド類;t-ブチルパーオキシアセテート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシオクトエート、t-ブチルパーオキシイソプロピルカーボネート、t-ブチルパーオキシベンゾエート、ジ-t-ブチルパーオキシフタレート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキシン-3などのパーオキシエステル類;メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイドなどのケトンパーオキサイド類などの有機過酸化物、又は、アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)などのアゾ化合物などが挙げられる。これらラジカル発生剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 また、ラジカル発生剤の添加量は、特に制限されるものではないが、用いるポリエチレン系樹脂100質量部に対し、通常、0.01~5.0質量部程度であり、好ましくは0.02~1.0質量部であり、より好ましくは0.03~0.5質量部である。さらに、ラジカル発生剤の残存量は、本発明に用いる封止材(B)を構成する樹脂組成物中に0.001質量%以下であることが好ましい。このようなラジカル発生剤が樹脂組成物中に残存することにより、加熱によりゲル化を起こすことがある。また、ゲル化は、封止材中のラジカル発生剤の存在ばかりでなく、封止材を製造する際にも一部ゲル化したものが混入することがあるが、ゲル化は、封止材の流動性を妨げ、太陽電池モジュールの信頼性を損なうものであることから、ゲル化は少ない方がよい。したがって、本発明に用いる封止材(B)を構成する樹脂組成物のゲル分率が30%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましく、0%であることが特に好ましい。
 本発明で用いられるシラン変性エチレン系樹脂や上述した(b1)~(b4)のオレフィン系重合体を主成分とする樹脂組成物中には、シラノール間の縮合反応を促進するシラノール縮合触媒を実質的に含有していないことが好ましい。該シラノール縮合触媒の具体例としては、例えば、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジオクチル錫ジラウレートなどが挙げられる。
 ここで、実質的に含有していないとは、シラン変性エチレン系樹脂又は上述した(b1)~(b4)のオレフィン系重合体を主成分とする樹脂組成物100質量部に対して、通常0.05質量部以下、好ましくは0.03質量部以下、より好ましくは0.00質量部である。
 シラノール縮合触媒を実質的に含有していないことが好ましい理由は、本発明においては、シラノール架橋反応を積極的に進行させず、用いるポリエチレン系樹脂にグラフトされたシラノール基などの極性基と被着体(ガラス、各種プラスチックシート(コロナ処理などの表面処理を適宜施し、濡れ指数が50mN/m以上のものが好適に用いられる)、金属など)との水素結合や共有結合などの相互作用により接着性を発現させることを目的としているためである。
 本発明に用いられるシラン変性エチレン系樹脂の具体例としては、三菱化学(株)製の商品名「リンクロン(LINKLON)」を例示することができる。
(添加剤)
 本発明に用いる封止材(B)を構成する樹脂組成物には、必要に応じて、種々の添加剤を添加することができる。該添加剤としては、例えば、シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤、光拡散剤、放熱剤、造核剤、顔料(例えば、酸化チタン、カーボンブラックなど)、難燃剤、変色防止剤などが挙げられる。本発明においては、封止材(B)が、シランカップリング剤、酸化防止剤、紫外線吸収剤及び耐候安定剤から選ばれる少なくとも一種の添加剤を含むことが、後述する理由などから好ましい。
 また、本発明においては、封止材を構成する樹脂組成物に架橋剤や架橋助剤を添加する必要はないが、添加することを排除するものではなく、例えば、高度の耐熱性を要求される場合は架橋剤及び/又は架橋助剤を配合することができる。本発明においては、用いる封止材(B)が実質的に架橋しない封止材であることが好ましい。
 ここで、実質的に架橋しないとは、ASTM 2765-95で測定したキシレン可溶物が、通常70質量%以上、好ましくは85質量%以上、より好ましくは95質量%以上であることとする。
〈シランカップリング剤〉
 シランカップリング剤は、封止材の保護材(ガラス、樹脂製のフロントシート、バックシートなど)や太陽電池素子などに対する接着性を向上させるのに有用であり、その例としては、ビニル基、アクリロキシ基、メタクリロキシ基のような不飽和基、アミノ基、エポキシ基などとともに、アルコキシ基のような加水分解可能な基を有する化合物を挙げることができる。
 シランカップリング剤としては、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシランなどが例示できる。これらシランカップリング剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。本発明においては、接着性が良好であり、黄変などの変色が少ないことなどから、γ-グリシドキシプロピルトリメトキシシラン及びγ-メタクリロキシプロピルトリメトキシシランが好ましく用いられる。
 該シランカップリング剤の添加量は、封止材(B)を構成する樹脂組成物100質量部に対し、通常、0.1~5質量部程度であり、好ましくは、0.2~3質量部である。また、シランカップリング剤と同様に、有機チタネート化合物などのカップリング剤も有効に活用できる。
(酸化防止剤)
 酸化防止剤としては、種々の市販品が適用でき、モノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、ホスファイト系など各種タイプのものを挙げることができる。
 モノフェノール系としては、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニゾール、2,6-ジ-tert-ブチル-4-エチルフェノールなどを挙げることができる。ビスフェノール系としては、2,2v-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-tert-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェノール)、3,9-ビス〔{1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル}2,4,9,10-テトラオキサスピロ〕5,5-ウンデカンなどが例示できる。
 高分子型フェノール系としては、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ビドロキシベンジル)ベンゼン、テトラキス-{メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3’-ビス-4’-ヒドロキシ-3’-tert-ブチルフェニル)ブチリックアシッド}グルコールエステル、1,3,5-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェロール(ビタミンE)などが例示できる。
 硫黄系としては、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネートなどが例示できる。
 ホスファイト系としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(モノ及び/又はジ)フェニルホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナスレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-tert-ブチルフェニル)オクチルホスファイトなどが例示できる。
 上記酸化防止剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 本発明においては、酸化防止剤の効果、熱安定性、経済性などからモノフェノール系、ビスフェノール系、高分子型フェノール系などのフェノール系及びホスファイト系の酸化防止剤が好ましく用いられ、両者を組み合わせて用いることがさらに好ましい。
 該酸化防止剤の添加量は、封止材(B)を構成する樹脂組成物100質量部に対し、通常、0.1~1質量部程度であり、好ましくは、0.2~0.5質量部である。
〈紫外線吸収剤〉
 紫外線吸収剤としては、種々の市販品が適用でき、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系など各種タイプのものを挙げることができる。
 ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5- クロロベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどが例示できる。
 ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾールなどが例示できる。
 トリアジン系紫外線吸収剤としては、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノールなどが例示できる。
 サリチル酸エステル系としては、フェニルサリチレート、p-オクチルフェニルサリチレートなどが例示できる。
 上記紫外線吸収剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 上記紫外線吸収剤の添加量は、封止材(B)を構成する樹脂組成物100質量部に対し、通常、0.01~2.0質量部程度であり、好ましくは、0.05~0.5質量部である。
〈耐候安定剤〉
 上記の紫外線吸収剤以外に耐候性を付与する耐候安定剤としては、ヒンダードアミン系光安定化剤が好適に用いられる。ヒンダードアミン系光安定化剤は、紫外線吸収剤のようには紫外線を吸収しないが、紫外線吸収剤と併用することによって著しい相乗効果を示す。ヒンダードアミン系以外にも光安定化剤として機能するものはあるが、着色している場合が多く本発明に用いる封止材(B)には好ましくない。
 ヒンダードアミン系光安定化剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{{2,2,6,6-テトラメチル-4-ピペリジル}イミノ}]、N,N’-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)などが例示できる。上記ヒンダードアミン系光安定化剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 該ヒンダードアミン系光安定化剤の添加量は、封止材(B)を構成する樹脂組成物100質量部に対し、通常、0.01~0.5質量部程度であり、好ましくは、0.05~0.3質量部である。
 本発明に用いる封止材(B)の柔軟性は、特に制限されるものではない。適用される太陽電池の形状や厚み、設置場所などを考慮して適宜調整することができる。
 例えば、封止材(B)の動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)が1~2000MPaであることが好ましい。太陽電池素子の保護や柔軟性を考慮すると、1~100MPaであることが好ましく、5~50MPaであることがより好ましい。なお、封止材(B)が積層構成の場合は、前記貯蔵弾性率(E’)は、積層構成全体の貯蔵弾性率をいう。また、シート形状などで封止材を採取した場合のハンドリング性やシート表面同士のブロッキング防止、あるいは太陽電池モジュールにおける軽量化(通常3mm程度に対して、薄膜ガラス(1.1mm程度)が適用可能、あるいはガラスレスの構成が適用可能)などを考慮すると、100~800MPaであることが好ましく、200~600MPaであることがより好ましい。該貯蔵弾性率(E’)は、粘弾性測定装置を用いて、振動周波数10Hzで所定温度範囲を測定し、温度20℃における値を求めることで得られる。
 本発明に用いる封止材(B)の耐熱性は、用いるオレフィン系重合体の諸特性(結晶融解ピーク温度、結晶融解熱量、MFR、分子量など)により影響され、これらを適宜選択することで調整することができるが、特に、オレフィン系重合体の結晶融解ピーク温度と分子量が強く影響する。一般的に、太陽電池モジュールは発電時の発熱や太陽光の輻射熱などで85℃程度まで昇温するが、該結晶融解ピーク温度が100℃以上であれば、本発明に用いる封止材(B)の耐熱性を確保することができるため好ましい。
 本発明に用いる封止材(B)の全光線透過率(JIS K7105)は、適用する太陽電池の種類、例えばアモルファスの薄膜系シリコン型などや太陽電子素子に届く太陽光を遮らない部位に適用する場合には、あまり重視されないこともあるが、太陽電池の光電変換効率や各種部材を重ね合わせる時のハンドリング性などを考慮し、85%以上であることが好ましく、88%以上であることがより好ましく、90%以上であることがさらに好ましい。
 本発明に用いる封止材(B)の柔軟性、耐熱性及び透明性については背反特性になり易い。具体的には、柔軟性を向上させるために用いる樹脂組成物の結晶性を低下させ過ぎると、耐熱性が低下し不十分となる。一方、耐熱性を向上させるために用いる樹脂組成物の結晶性を向上させ過ぎると、透明性が低下し不十分となる。
 これらのバランスを考慮すると、柔軟性の指標として動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)、耐熱性の指標としてオレフィン系重合体について示差走査熱量測定における加熱速度10℃/分で測定される結晶融解ピーク温度、及び透明性の指標として全光線透過率を用いた場合、柔軟性、耐熱性及び透明性のいずれも満足させるためには、上記3つの指標が、貯蔵弾性率(E’)が1~2000MPa、結晶融解ピーク温度が100℃以上、全光線透過率85%以上であることが好ましく、貯蔵弾性率(E’)が5~800MPa、結晶融解ピーク温度が102~150℃、全光線透過率85%以上であることがより好ましく、貯蔵弾性率(E’)が10~600MPa、結晶融解ピーク温度が105~130℃、全光線透過率88%以上であることがさらに好ましい。
(封止材(B)の製造方法)
 次に、本発明に用いる封止材(B)の製造方法について説明する。
 封止材の形状は、限定されるものではなく、液状であっても、シート状であってもよいが、取り扱い性の観点からシート状であるのが好ましい。
 シート状の封止材の製膜方法としては、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混合設備を有し、Tダイを用いる押出キャスト法、カレンダー法やインフレーション法などを採用することができ、特に制限されるものではないが、本発明においては、ハンドリング性や生産性などの面からTダイを用いる押出キャスト法が好適に用いられる。Tダイを用いる押出キャスト法での成形温度は、用いる樹脂組成物の流動特性や製膜性などによって適宜調整されるが、概ね130~300℃、好ましくは150~250℃である。
 封止材の厚みは特に限定されるものではないが、通常0.03mm以上、好ましくは0.05mm以上、より好ましくは0.1mm以上であり、かつ、通常1mm以下、好ましくは0.7mm以下、より好ましくは0.5mm以下である。
 シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤などの各種添加剤は、予め樹脂とともにドライブレンドしてからホッパーに供給しても良いし、予め全ての材料を溶融混合してペレットを作製してから供給しても良いし、添加剤のみを予め樹脂に濃縮したマスターバッチを作製し供給することもできる。また、シート状で得られた封止材の表面及び/又は裏面には、必要に応じて、シートを巻物とした場合のシート同士のブロッキング防止や太陽電池素子のラミネート工程でのハンドリング性やエア抜きのし易さ向上などの目的のためエンボス加工や種々の凹凸(円錐や角錐形状や半球形状など)加工を行うことができる。
 また、各種被着体への接着性を向上させる目的で、表面にコロナ処理やプラズマ処理及びプライマー処理などの各種表面処理を行うことができる。ここで、表面処理量の目安としては、濡れ指数で50mN/m以上であることが好ましく、52mN/m以上であることがより好ましい。濡れ指数の上限値は一般的に70mN/m程度である。
 本発明に用いる封止材(B)は、単層あるいは積層構成であるが、以下に例示するような封止材に要求される特性をバランス良く達成させるため、組成内容や組成比が異なる複数の層からなる積層構成が好ましく、さらには、その際に押出機を用いて多層ダイにより共押出する積層構成であることが好ましい。
 上記複数の層からなる積層構成としては、少なくとも、後述する軟質層及び硬質層を有する積層構成が挙げられ、例えば、次のような積層構成が好適に用いられる。
 なお、本明細書において、例えばA/B/Cの表記は、上から(又は下から)A、B、Cの順に積層していることを示す。
(1)2種3層構成;具体的には、軟質層/硬質層/軟質層、硬質層/軟質層/硬質層、接着層/中間層/接着層、軟質層/再生添加層/軟質層など、
(2)2種2層構成;具体的には、軟質層/硬質層、軟質層(I)/軟質層(II)、接着層/軟質層、接着層/硬質層、軟質層(添加剤含む)/軟質層(添加剤含まず)、軟質層(添加剤Aを含む)/軟質層(添加剤Bを含む)(添加剤処方が異なる)など、
(3)3種3層構成;具体的には、軟質層/接着層/硬質層、軟質層(I)/中間層/軟質層(II)、接着層(I)/中間層/接着層(II)など、
(4)3種5層構成;具体的には、軟質層/接着層/硬質層/接着層/軟質層、硬質層/接着層/軟質層/接着層/硬質層、軟質層/再生添加層/硬質層/再生添加層/軟質層及び軟質層/再生添加層/硬質層/再生添加層/硬質層などが挙げられる。
 本発明においては、柔軟性と耐熱性及び透明性のバランスと経済性の観点から、軟質層/硬質層/軟質層、硬質層/軟質層/硬質層、接着層/中間層/接着層、軟質層/再生添加層/軟質層などに代表される(1)2種3層構成が好適に用いられる。上記(1)の2種3層構成の中でも、特に、軟質層/硬質層/軟質層が好ましい。
 なお、中間層とは、封止材(B)の厚さを増すためや所望の性能を向上させるなどの観点から設けられ、例えばオレフィン系樹脂を主成分とする樹脂組成物から形成される層である。
 再生添加層とは、経済合理性や資源の有効活用などの観点から設けられ、例えば封止材(B)の製膜やスリット加工などの際に生じるトリミング(耳)を再生添加した樹脂組成物から形成される層である。
 接着層とは、隣接する層同士や被着体などへの接着性を向上させる観点から設けられ、例えばカルボキシル基、アミノ基、イミド基、水酸基、エポキシ基、オキサゾリン基、チオール基及びシラノール基などの極性基で変性された樹脂や粘着付与樹脂などを含有する樹脂組成物から形成される層であり、上記添加剤としては、シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤、光拡散剤、放熱剤、造核剤、顔料、難燃剤、変色防止剤、架橋剤及び架橋助剤などが挙げられる。
 ここで、軟質層とは、動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)が、好ましくは100MPa未満、より好ましくは5~50MPaの層であり、硬質層とは、貯蔵弾性率(E’)が、好ましくは100MPa以上、より好ましくは200~800MPaの層である。したがって、上記(1)の2種3層構成の中でも、特に、軟質層/硬質層/軟質層が好適に用いられ、このような積層構成を採用することにより、太陽電池素子の保護性と封止材全体としてのハンドリング性(常温での弾性率など)の両立が比較的容易に実現することができるため好ましい。また、常温での剛性と柔軟性を両立することにより、薄肉ガラス(例えば、1.1mmなど)、あるいはガラスレスなどの構成が適用できるようになり軽量化なども期待できる。
 太陽電池素子に密着する軟質層の厚みは、特に制限されるものではないが、太陽電池素子の保護性や樹脂の回り込み性などを考慮すると、0.005mm以上であることが好ましく、0.02~0.2mmであることがより好ましい。なお、上記軟質層の各々の厚みは、同一でも異なっていてもよい。また、硬質層の厚みは、特に制限されるものではないが、封止材全体としてのハンドリング性の点から、0.025mm以上であることが好ましく、0.05~0.8mmであることがより好ましい。
 本発明に用いられる封止材をシート状に作製する際に、さらに別の基材フィルム(例えば、延伸ポリエステルフィルム(OPET)、延伸ポリプロピレンフィルム(OPP)やエチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)及びアクリル系などの各種耐候性フィルムなど)と押出ラミ、共押出やサンドラミなどの方法で積層することができる。
 本発明に用いる封止材(B)と各種基材層を積層することによりハンドリング性の向上や積層比に応じて必要な特性や経済性などを比較的容易に調整することができる。
[太陽電池素子(C)]
 本発明に用いられる太陽電池素子(C)は、特に制限されるものではないが、一般的に少なくとも一面は封止材と密着して配置され配線されるものである。
 例えば、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、ガリウム-砒素、銅-インジウム-セレン、銅-インジウム-ガリウム-セレン、カドミウム-テルルなどのIII-V族やII-VI族化合物半導体型、色素増感型、有機薄膜型などが挙げられる。本発明においては、単結晶シリコン型及び多結晶シリコン型の太陽電池が好適に用いられる。
[封止材(D)]
 本発明に用いる封止材(D)は、後述する条件(P)を満足すれば、特に制限されるものではないが、好ましくは、上述した封止材(B)と同様のものを用いる(すなわち、封止材(D)と封止材(B)とは、後述する流動開始温度が異なる以外に、他の特性、構成する樹脂などが同様であることが好ましい)。具体的には、封止材(D)は、封止材(B)と同様に、オレフィン重合体、特に、前記(b1)エチレンと炭素数3~20のα-オレフィンとの共重合体を主成分とすることが好ましく、封止材(B)及び封止材(D)が、共に、オレフィン系重合体を主成分とすることがより好ましい。また、封止材(D)は、封止材(B)と同様に、ASTM 2765-95で測定したキシレン可溶物が70質量%以上であることが好ましく、封止材(B)及び封止材(D)が、共に、ASTM 2765-95で測定したキシレン可溶物が70質量%以上であることが好ましい。さらに、封止材(D)は、シランカップリング剤、酸化防止剤、紫外線吸収剤及び耐候安定剤から選ばれる少なくとも一種の添加剤を含んでいてもよく、封止材(B)及び封止材(D)のうち少なくとも一方が、シランカップリング剤、酸化防止剤、紫外線吸収剤及び耐候安定剤から選ばれる少なくとも一種の添加剤を含むことが好ましい。
 バックシート側に用いる封止材(D)は、太陽電池素子(C)の裏側に位置するため上部保護材側に用いる封止材(B)よりも透明性(全光線透過率)があまり重視されない場合がある。また、封止材(D)に白色顔料を含有させ、太陽電池モジュールの上部保護材側から入射した光が、その一部につき太陽電池素子を透過した場合にも、その光が反射されて太陽電池素子に再入射し、光を有効に利用することを主目的に、光反射性を付与することも好ましい形態である。さらに、黒色化、青色化を始めとする各種着色による遮光性付与により太陽電池モジュールの意匠性、装飾性を向上することができる。
 ここで、白色顔料としては、酸化チタン、酸化亜鉛、酸化珪素、酸化アルミニウムなどの金属酸化物、炭酸カルシウム、硫酸バリウムなどの無機化合物などを挙げることができる。これらの白色顔料は、1種のみを単独で又は2種以上を組み合わせて用いることができる。本発明においては、酸化チタン、酸化亜鉛、炭酸カルシウムが好適に用いることができ、特に、酸化チタンが少量の添加で効率よく光反射性を付与できることから好ましく用いられる。
 光反射によって発電効率を向上させるためには、一般的な太陽電池の吸収強度のある500~700nmにおける反射率の平均値が、50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることが特に好ましい。
[バックシート(E)]
 本発明に用いるバックシート(E)は、特に制限されるものではない。
 具体的には、ポリエステル系樹脂(ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)など)、フッ素系樹脂(ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)など)、ポリオレフィン系樹脂(ポリエチレン(PE)、ポリプロピレン(PP)、各種α-オレフィン共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-アクリル酸共重合体(EAA)及びエチレン-メタクリル酸共重合体(EMAA)など)、環状オレフィン系樹脂(COP、COCなど)、ポリスチレン系樹脂(アクリロニトリル-スチレン共重合体(AS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA)及びシンジオタクチックポリスチレン(SPS)など)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、変性ポリフェニレンエーテル(変性PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルサルフォン(PES) 、ポリフェニルサルフォン(PPSU)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリイミド(PI)及びバイオポリマー(ポリ乳酸、イソソルバイド系ポリマー、ポリアミド系ポリマー、ポリエステル系ポリマー及びポリオレフィン系ポリマーなど)などの電気絶縁性を有する材料によって基材シート(又は、基材フィルム)が形成される。
 本発明においては、封止材との接着性、機械的強度、耐久性、経済性などの観点からポリエステル系樹脂、ポリオレフィン系樹脂及びフッ素系樹脂が基材シートの材料として好適に用いられる。
 ここで、基材シート又は基材フィルムの製造方法は、特に制限されるものではないが、代表的には、押出キャスト法、延伸法、インフレーション法及び流延法などが挙げられる。
 また、基材シートには、ハンドリング性や耐久性及び光反射性などの向上あるいは経済性などを目的として、必要に応じて、他の樹脂や種々の添加剤を混合することができる。該添加剤としては、例えば、酸化防止剤、紫外線吸収剤、耐候安定剤、光拡散剤、造核剤、顔料(例えば酸化チタン、硫酸バリウム、カーボンブラックなど)、難燃剤、変色防止剤、加水分解防止剤、放熱剤などが挙げられる。
 さらに、基材シートの表面及び/又は裏面には、ハンドリング性や接着性及び耐久性などを向上させるため、必要に応じて、エンボス加工や各種処理(コロナ処理、プラズマ処理など)及びコーティング(フッ素系樹脂コーティング、加水分解防止コーティング、ハードコーティングなど)などを行うことができる。
 本発明に用いるバックシート(E)は、前記基材シートを含む単層あるいは積層構成であるが、バックシートに要求される特性をバランス良く達成させるため、積層構成であることが好ましい。
 バックシートに一般的に要求される特性としては、封止材との接着性、機械的強度、耐久性(耐候性、耐加水分解特性など)、光反射性、水蒸気バリア性、難燃性、意匠性、経済性及びラミネート後の外観などが挙げられ、中でも結晶シリコン系太陽電池モジュールの場合には、封止材との接着性、機械的強度、耐久性、経済性及びラミネート後の外観が重要視される。
 本発明に用いるバックシート(E)は、これらの特性をバランス良く達成させるため、次のような積層構成が好適に用いられる。ここで、後述する接着層とは、主にバックシート(E)の各層間の接着性を向上させる層であり、特に制限されるものではないが、例えば、ポリウレタン系接着剤やポリエステル系接着剤又は極性基で変性された樹脂などを好適に用いることができる。また、後述する易接着層とは、主に封止材との接着性を向上させる層であり、特に制限されるものではないが、例えば、エチレン-酢酸ビニル共重合体やポリエチレン系樹脂又はポリプロピレン系樹脂などを好適に用いることができる。
(1)フッ素系樹脂層/接着層/ポリエステル樹脂層/接着層/易接着層(封止材側);具体的には、PVF/接着層/二軸延伸PET/接着層/EVA、PVF/接着層/二軸延伸PET/接着層/PE、PVF/接着層/二軸延伸PET/接着層/PP、ETFE/接着層/二軸延伸PET/接着層/EVA、ETFE/接着層/二軸延伸PET/接着層/PE、ETFE/接着層/二軸延伸PET/接着層/PPなどが挙げられる。
(2)ポリエステル樹脂層/接着層/ポリエステル樹脂層/接着層/易接着層(封止材側);具体的には、二軸延伸PET(耐加水分解処方)/接着層/二軸延伸PET/接着層/EVA、二軸延伸PET(耐加水分解処方)/接着層/二軸延伸PET/接着層/PE、二軸延伸PET(耐加水分解処方)/接着層/二軸延伸PET/接着層/PP、(表面コーティング)二軸延伸PET/接着層/二軸延伸PET/接着層/易接着層などが挙げられる。
(3)ポリエステル樹脂層/接着層/易接着層(封止材側);具体的には、二軸延伸PET(耐加水分解処方)/接着層/EVA、二軸延伸PET(耐加水分解処方)/接着層/PE、二軸延伸PET(耐加水分解処方)/接着層/PP、(表面コーティング)二軸延伸PET/接着層/易接着層などが挙げられる。
 上記(1)~(3)の接着層は必要に応じて配置するものであり、接着層が無い構成とすることもできる。また、水蒸気バリア性を重要視する場合には、例えば、前記した二軸延伸PET(耐加水分解処方)/接着層/二軸延伸PET/接着層/PE構成において、二軸延伸PET(耐加水分解処方)/接着層/各種蒸着層(SiOx、アルミナなど)/二軸延伸PET/接着層/二軸延伸PET/接着層/PEなどの構成を用いることができる。
 易接着層の結晶融解ピーク温度(Tm)は、一般的に、80℃以上、165℃以下である。本発明においては、封止材(D)との接着性や経済性及び太陽電池モジュールの外観、易接着層自体の耐熱性などの観点から、易接着層の結晶融解ピーク温度(Tm)は、下限値は95℃が好ましく、100℃がより好ましい。一方、上限値は140℃が好ましく、125℃がより好ましい。
 本発明に用いるバックシート(E)の総厚みは、特に制限されるものではなく、所望する性能を考慮して適宜選択すれば良いが、概ね50μm以上、600μm以下、好ましくは150μm以上、400μm以下である。また、絶縁破壊電圧1kV以上を満足させるためには、200μm以上であることが好ましく、250μm以上であることがより好ましい。
[封止材(B)及び(D)の流動開始温度]
 本発明の太陽電池モジュールは、上部保護材側に用いる封止材(B)とバックシート側に用いる封止材(D)とが下記条件(P)を満足することが重要である。
条件(P):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
            TB-TD>0(℃)
 ここで、各封止材の流動開始温度は、次の条件で測定したものである。すなわち、(株)島津製作所製の高化式フローテスター、商品名「フローテスターCFT-500C」を用いて、ノズル(内径1mm 、長さ2mm)、昇温速度3℃/分、荷重1kgf/cm2(9.8×104Pa)の条件で測定し、封止材の流動開始温度(Tfb)を求めた。Tfbの値が自動表示されない場合は、フローテスターのストロークチャートから流動開始温度を読み取ることができる。
 本発明において、上部保護材側に用いる封止材(B)とバックシート側に用いる封止材(D)とが上記条件(P)を満足すると太陽電池モジュールをラミネートした後にバックシート面の凸現象が抑制され、外観が良好となるため好ましい。
 本発明においては、バックシート面の凸現象が発現するメカニズムは次のように推定している。なおここでは、上部保護材(A)/封止材(B)/太陽電池素子(C)/封止材(D)/バックシート(E)で構成される代表的な太陽電池モジュールを例にして説明する。
 代表的なラミネート工程では、まず下から上部保護材(A)/封止材(B)/太陽電池素子(セル)(C)/封止材(D)/バックシート(E)の順にレイアップされる。次いで上部保護材(A)側に位置する真空ラミネーターの熱源(一例として、電気ヒーターやオイルヒーターなどの熱源を片側に有するラミネーターを使用している)で加熱されながら真空工程(時間;1~15分程度)とプレス工程(時間;3~20分程度、圧力;10~100kPa程度)を経てモジュールが排出され冷却されることとなる。
 ここで、上部保護材(A)側に用いる封止材(B)とバックシート(E)側に用いる封止材(D)のプレス工程での流動性について考察する。熱源は通常ガラス(上部保護材)側に位置するため、封止材(B)の方が封止材(D)よりも早く昇温されることとなる。本発明者らの予備実験では、130℃設定で真空工程において昇温開始から5~10分間経過までに、封止材(D)の位置に設置した熱電対が表示する温度は、封止材(B)の位置に設置した熱電対が表示する温度よりも15℃程度低いことが確認できた。例えば、封止材(B)と封止材(D)を同一の流動特性を有する封止材とした場合には、早く昇温される封止材(B)の方が封止材(D)よりも低粘度となる。この状態で圧力を付与するとセルとセルの間隙における封止材の流れは封止材(B)から封止材(D)の方に向かって流れると考えられる。通常、セルとセルとを繋ぐ配線(リード線)には、セルとの未接着部分(10~20mm程度)が存在するため、封止材(B)から封止材(D)の方への流動性が強くなると、セルとセルとを繋ぐ配線がバックシート側に***し、『へ』の字状に変形し易くなったり、バックシート側の配線とセルとの未接着部分の間に封止材が流入しやすくなり、これらがバックシート面の凸現象となって現れるものと考えられる。このことから、少なくとも上部保護材(A)側に用いる封止材(B)の流動開始温度(TB)が、バックシート(E)側に用いる封止材(D)の流動開始温度(TD)よりも高いと(すなわち、TB>TD)上記の封止材の流れを抑制できると考えられる。
 従って、本発明において、荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)の差(TB-TD)(以下、流動開始温度差と表記することがある)が、0℃を超えることが重要である。流動開始温度差が0℃以下であると上述したように封止材(B)が封止材(D)へ流れることを抑制できないため凸現象を制御することができない。
 流動開始温度差の下限値は、好ましくは15℃であり、より好ましくは20℃であり、さらに好ましくは25℃である。また、上限値は好ましくは50℃であり、より好ましくは40℃である。
 流動開始温度差が上記好ましい範囲内であれば、太陽電池モジュールをラミネートした後に接着性が確保されるとともに、バックシート面の凸現象が抑制され、また、セル間の凹みがほとんどなく、バックシート面のフラット性も維持され、外観が良好となり易いため好ましい。本発明において、流動開始温度を測定する際の荷重を1kgf/cm2としている理由は、一般的な真空ラミネーターのプレス工程での最大圧力が100kPa(約1kgf/cm2)であるためである。
 上記から、条件(P)が、下記条件(P-1)であることが好ましく、下記条件(P-2)であることがより好ましい。
条件(P-1):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
          50(℃)≧TB-TD≧15(℃)
条件(P-2):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
          40(℃)≧TB-TD≧20(℃)
 次に、本発明においてバックシート側に用いる封止材(D)の流動開始温度(TD)は、100℃以上であることが好ましく、105℃以上であることがより好ましく、110℃以上であることがさらに好ましい。
 封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)との関係は、TB-TD>0℃であることから、それぞれ、TD=100℃の場合、TB>100℃であり、TD=105℃の場合、TB>105℃であり、TD=110℃の場合、TB>110℃となる。ここで、各封止材の流動開始温度が該範囲内であれば、特に、実質的に架橋しない封止材において得られる太陽電池モジュールの耐熱性と外観の両立が図れるため好ましい。
[封止材の流動開始温度の制御方法]
 次に、封止材の流動開始温度の制御方法について説明する。封止材の流動開始温度は、封止材を構成する樹脂組成物の分子量や分子量分布及びチクソ性や架橋度合いなどに主に影響される。通常、分子量が高くなるほど流動開始温度は高くなる。分子量分布が広い場合、瞬時に流動せず、分子量の低い成分から部分的に流動を開始する。本発明で用いる流動開始温度は、高化式フローテスターにより測定されるTfbの値であり、高分子のレオロジー的な挙動において、ゴム状平坦域を経て流動を開始する時の温度である。
 本発明においては、封止材を構成する樹脂組成物の材料設計を容易にするために封止材の流動開始温度をメルトフローレート(MFR)で制御することが好ましい。MFRの値が小さいほど流動開始温度は高くなり、MFRの値が大きいほど流動開始温度は低くなる。また、MFRの値が異なる樹脂を2種類以上混合することにより流動開始温度を調整、制御することも好ましい形態である。
[太陽電池モジュールの製造方法]
 本発明の太陽電池モジュールの製造方法において、荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが異なるものを用い、かつ、ラミネート時に、流動開始温度が高い封止材を熱源側に配置することが重要である。
 上述のとおり、太陽電池モジュールをラミネートする場合、熱源側に位置する封止材が早く昇温されて流動性が強くなることにより、もう一方の封止材の方へ流動することなどがバックシート面の凸現象となって現れるものと考えられる。
 そこで、本発明の太陽電池モジュールの製造方法は、熱源側に、荷重1kgf/cm2で測定した流動開始温度(℃)が高い封止材を配置し、一方の封止材が他方の封止材側へ流れることを抑制し、凸現象を制御するというものである。
 なお、加熱圧着する際のラミネーターの熱源は、製造上、上部保護材(A)側に位置することが好ましい。したがって、本発明の太陽電池モジュールの製造方法において、上部保護材(A)側に用いる封止材(B)の流動開始温度(TB)(℃)が、前記封止材(D)の流動開始温度(TD)(℃)より高いことが好ましく、前記封止材(B)が熱源側に配置されることが好ましい。
 本発明において、熱源が片側(例えば、上部保護材側)にあるものでも、両側(上部保護材側及びバックシート側の両方)にあるものでもよいが、熱源が上部保護材及びバックシート側の両方に配置する場合には、ラミネートする際に温度が高い熱源を本発明における「熱源」とみなし、早く昇温される熱源側に、流動開始温度の高い封止材(B)を配置するのが好ましい。
 本発明の太陽電池モジュールの製造方法において、各部材をラミネートする際のラミネート設定温度は、通常、100~170℃であり、太陽電池素子(セル)の熱劣化を防止するために、好ましくは、100~135℃である。
 本発明において、「ラミネート設定温度」とは、上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を重ね合わせ、ラミネートする際のラミネーターの設定温度であり、すなわち、ラミネーター装置内の熱源の温度である。ラミネート設定温度が100℃以上であればガラスやバックシートとの接着性が得られるので好ましい。一方、135℃以下であれば、セルの熱劣化を抑制でき、更にバックシート面の凸現象が抑制され、外観が良好となり易いため好ましい。また、ラミネートを他の特性を考慮してできるだけ短時間(例えば、真空引き時間3~5分、プレス保持時間5~10分など)で行うことも効果的である。
 なお、熱源を両側に有するラミネーターを使用する場合には、ラミネートする際に温度が高い熱源(以下、「高温熱源」と呼ぶことがある)の設定温度は、特に限定されるものではないが、通常100~170℃程度であり、好ましくは100~135℃である。また、ラミネートする際に温度が低い熱源の設定温度は、前記高温熱源の設定温度より低ければ、特に制限されるものではない。
 太陽電池モジュールの製造方法としては、上記ラミネート設定温度以外は公知の製造方法が適用でき、特に制限されるものではないが、一般的には、上部保護材(A)、封止材(B)、太陽電池素子(C)、封止材(D)、バックシート(E)の順に積層し積層体とする工程と、それらを真空吸引し上記ラミネート設定温度において加熱圧着する工程を有する。また、バッチ式の製造設備やロール・ツー・ロール式の製造設備なども適用することができる。
[太陽電池モジュール]
 本発明の太陽電池モジュールは、上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含む太陽電池モジュールである。
 このような太陽電池モジュールとしては、具体的には、上部保護材/封止材(封止樹脂層)/太陽電池素子/封止材(封止樹脂層)/下部保護材のように太陽電池素子の両側から封止材で挟むような構成のもの(図1参照)である。
 図1に示すように、太陽光受光側から順に、上部保護材(A)10、封止材(B)12A、太陽電池素子(C)14A,14B、封止材(D)12B、バックシート(E)16が積層されてなり、さらに、バックシート(E)16の下面にジャンクションボックス18(太陽電池素子から発電した電気を外部へ取り出すための配線を接続する端子ボックス)が接着されてなる。太陽電池素子(C)14A及び14Bは、発電電流を外部へ電導するために配線20により連結されている。配線20は、バックシート(E)16に設けられた貫通孔(不図示)を通じて外部へ取り出され、ジャンクションボックス18に接続されている。
 本発明の太陽電池モジュールは、適用される太陽電池のタイプとモジュール形状により、モバイル機器に代表される小型太陽電池、屋根や屋上に設置される大型太陽電池など屋内、屋外に関わらず各種用途に適用することができる。しかしながら、本発明において課題とする凸現象の発生や外観不良の問題は、小さいサイズのモジュールでは、起こりにくく、大きいサイズのモジュールで特に起こりやすい問題であるため、本発明は、例えばサイズが90cm×90cm以上、特に90cm×100cm以上のモジュールにおいて、より効果を奏する。
 以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に記載される種々の測定及び評価は次のようにして行った。ここで、シートの押出機からの流れ方向を縦方向(MD)、その直交方向を横方向(TD)とよぶ。
[測定及び評価方法]
(1)結晶融解ピーク温度(Tm)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で-40℃から200℃まで昇温し、200℃で1分間保持した後、冷却速度10℃/分で-40℃まで降温し、再度、加熱速度10℃/分で200℃まで昇温した時に測定されたサーモグラムから結晶融解ピーク温度(Tm)(℃)を求めた。
(2)結晶融解熱量(ΔHm)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7122に準じて、試料約10mgを加熱速度10℃/分で-40℃から200℃まで昇温し、200℃で1分間保持した後、冷却速度10℃/分で-40℃まで降温し、再度、加熱速度10℃/分で200℃まで昇温した時に測定されたサーモグラムから結晶融解熱量(ΔHm)(J/g)を求めた。
(3)熱収縮率
 用いるバックシート(E)から縦方向150mm、横方向150mmの大きさに切り取り、封止材側面の中央に縦方向100mm、横方向100mmの大きさの格子目を油性マジックで記入した試料を3枚作製した。次いで、150℃の熱風オーブンに30分間放置し、縦(MD)方向について、記入した格子目の収縮前の原寸に対する収縮量の比率の平均値(%)を算出した。
(4)貯蔵弾性率(E’)
 アイティ計測(株)製の粘弾性測定装置、商品名「粘弾性スペクトロメーターDVA-200」を用いて、試料(縦方向4mm、横方向60mm)を振動周波数10Hz、ひずみ0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-150℃から150℃まで測定し、得られたデータから20℃における貯蔵弾性率(E’)(MPa)を求めた。
(5)流動開始温度
 (株)島津製作所製の高化式フローテスター、商品名「フローテスターCFT-500C」を用いて、ノズル(内径1mm 、長さ2mm)、昇温速度3℃/分、荷重1kgf/cm2(9.8×104Pa)の条件で測定し、封止材の流動開始温度(Tfb)を求めた。
(6)ラミネート外観
 真空ラミネーター((株)エヌ・ピー・シー製、商品名:SLM-240×460)を用い、表1に示すラミネート設定温度、封止材(B)、封止材(D)及びバックシート(E)を使用し、上部保護材(A)/封止材(B)/太陽電池素子(C)/封止材(D)/バックシート(E)の構成として、下記条件により太陽電池モジュールを3枚作製し、ラミネート外観の評価((i)凸現象、(ii)フラット性、(iii)総合評価)を行った。
(i)凸現象
 3枚の太陽電池モジュールのバックシート面に発生した突起数をそれぞれ求め、平均値を算出し、下記基準で評価した。
  (A)凸現象がほとんど見られない(0~5箇所)
  (B)凸現象が微小であるが見られる(6~15箇所)
  (C)凸現象が多く見られ、また、突起も高い(16箇所以上)
(ii)フラット性
 3枚の太陽電池モジュールのバックシート面のセル間の外観の平均状況を下記基準で評価した。
  (A)セル間の凹みや配線スジがほとんどなく、バックシート面のフラット性が良好である。
  (B)セル間の凹みや配線スジが若干見られるが、バックシート面のフラット性は概ね良好である。
  (C)セル間の凹みが大きく、また、配線スジも目立ち、太陽電池モジュール全体が板チョコレート状の外観である。
(iii)総合評価
 また、ラミネート外観の総合評価を下記基準で行った。
  (A)凸現象及びフラット性がともにB評価あるいはA評価である
  (C)凸現象及び/又はフラット性にC評価がある
[封止材]
・封止材を構成する材料を下記する。
(エチレン-α-オレフィンランダム共重合体)
 (X-1); エチレン-オクテンランダム共重合体(ダウ・ケミカル(株)製、商品名:アフィニティーEG8100G、密度:0.870g/cm3、エチレン/1-オクテン=68/32質量%(89/11モル%)、Tm:59℃、ΔHm:49J/g、20℃における貯蔵弾性率(E’):14MPa、MFR(温度:190℃、荷重:21.18N):1g/10min)
 (X-2); エチレン-オクテンランダム共重合体(ダウ・ケミカル(株)製、商品名:アフィニティーEG8200G、密度:0.870g/cm3、エチレン/1-オクテン=68/32質量%(89/11モル%)、Tm:59℃、ΔHm:49J/g、20℃における貯蔵弾性率(E’):14MPa、MFR(温度:190℃、荷重:21.18N):5g/10min)
 (X-3); エチレン-オクテンランダム共重合体(ダウ・ケミカル(株)製、商品名:エンゲージ8130、密度:0.864g/cm3、エチレン/1-オクテン=65/35質量%(88/12モル%)、Tm:49℃、ΔHm:38J/g、20℃における貯蔵弾性率(E’):10MPa、MFR(温度:190℃、荷重:21.18N):13g/10min)
 (X-4); エチレン-オクテンランダム共重合体((株)プライムポリマー製、商品名:エボリューSP00108、密度:0.898g/cm3、エチレン/1-オクテン=82/18質量%(95/5モル%)、Tm:95℃、ΔHm:73J/g、20℃における貯蔵弾性率(E’):73MPa、MFR(温度:190℃、荷重:21.18N):10g/10min)
 (X-5);エチレン-ブテンランダム共重合体((株)プライムポリマー製、商品名:ネオゼックス0234N、密度:0.919g/cm3、エチレン/1-ブテン=93/7質量%(96/4モル%)、Tm:118℃、ΔHm:127J/g、20℃における貯蔵弾性率(E’):430MPa、MFR(温度:190℃、荷重:21.18N):2g/10min)
(シラン変性エチレン系樹脂)
 (Q-1);シラン変性エチレン-オクテンランダム共重合体(三菱化学(株)製、商品名:リンクロンSL800N、密度:0.868g/cm3、Tm:54℃と116℃、ΔHm:22J/gと4J/g、20℃における貯蔵弾性率(E’):15MPa、MFR(温度:190℃、荷重:21.18N):1.7g/10min)
 (Q-2);シラン変性エチレン-ヘキセンランダム共重合体(三菱化学(株)製、商品名:リンクロンXLE815N、密度:0.915g/cm3、Tm:122℃、ΔHm:100J/g、20℃における貯蔵弾性率(E’):282MPa、MFR(温度:190℃、荷重:21.18N):0.5g/10min)
(エチレン-α-オレフィンブロック共重合体)
 (R-1);エチレン-オクテンブロック共重合体(ダウ・ケミカル(株)製、商品名:インフューズ9000、密度:0.875g/cm3、エチレン/1-オクテン=65/35質量%(88/12モル%)、Tm:122℃、ΔHm:44J/g、20℃における貯蔵弾性率(E’):27MPa、MFR(温度:190℃、荷重:21.18N):0.5g/10min)
・実施例で使用した封止材を下記する。
 (B-1);(I)層として、上記(X-1)65質量部と(X-2)35質量部と(Q-1)15質量部の割合で混合した樹脂組成物、また、(II)層として、(X-1)65質量部と(X-2)35質量部と(R-1)5質量部の割合で混合した樹脂組成物をそれぞれ用いて、(I)層/(II)層/(I)層の積層構成となるように、同方向二軸押出機を用いたTダイ法にて樹脂温180~200℃にて共押出成形した後、25℃のキャストエンボスロールで急冷製膜し、総厚みが0.50mm、各層厚みが(I)/(II)/(I)=0.05mm/0.40mm/0.05mmである封止材を得た。
 (B-2);B-1において、(I)層として、上記(X-1)85質量部と(X-3)15質量部と(Q-1)15質量部の割合で混合した樹脂組成物、また、(II)層として、(X-1)85質量部と(X-3)15質量部と(R-1)5質量部の割合で混合した樹脂組成物をそれぞれ用いた以外は、B-1と同様にして、総厚みが0.50mm、各層厚みが(I)/(II)/(I)=0.05mm/0.40mm/0.05mmである封止材を得た。
 (D-1);B-1において、(I)層として、上記(X-2)100質量部と(Q-1)15質量部の割合で混合した樹脂組成物、また、(II)層として、(X-2)100質量部と(R-1)5質量部の割合で混合した樹脂組成物をそれぞれ用いた以外は、B-1と同様にして、総厚みが0.50mm、各層厚みが(I)/(II)/(I)=0.05mm/0.40mm/0.05mmである封止材を得た。
 (D-2);B-1において、(I)層として、上記(X-2)100質量部と(Q-1)15質量部の割合で混合した樹脂組成物、また、(II)層として、(X-2)100質量部と(R-1)5質量部と酸化チタン10質量部の割合で混合した樹脂組成物をそれぞれ用いた以外は、B-1と同様にして、総厚みが0.50mm、各層厚みが(I)/(II)/(I)=0.05mm/0.40mm/0.05mmである封止材を得た。該封止材の光反射率は90%以上であった。
 (D-3);B-1において、(I)層として、上記(X-4)100質量部と(Q-2)25質量部の割合で混合した樹脂組成物、また、(II)層として、(X-4)80質量部と(X-5)20質量部の割合で混合した樹脂組成物をそれぞれ用いた以外は、B-1と同様にして、総厚みが0.50mm、各層厚みが(I)/(II)/(I)=0.05mm/0.40mm/0.05mmである封止材を得た。
[バックシート]
・実施例で使用したバックシートを下記する。
 (E-1);Madico社製バックシート、商品名Protekt HD(総厚み;260μm、積層構成;(封止材側)EVA/接着層/PET/コート層、熱収縮率(150℃×30分、MD);1.41%、Tm(EVA層);104℃)
(E-2);TAIFLEX社製バックシート、商品名SolmateTPE BTNE(総厚み;280μm、積層構成;(封止材側)EVA/接着層/PET/接着層/PVF(白;酸化チタン含有)、熱収縮率(150℃×30分、MD);1.12%、Tm(EVA層);103℃)
(E-3);Coveme社製バックシート、商品名dyMat PYE(総厚み;295μm、積層構成;(封止材側)EVA/EVA(白;酸化チタン含有)/EVA/接着層/PET/接着層/PET(白;硫酸バリウム含有)、熱収縮率(150℃×30分、MD);1.40%、Tm(EVA層);103℃)
(実施例1)
 真空ラミネーター((株)エヌ・ピー・シー製、商品名:SLM-240×460)により、下記及び表1に示す各部材を用い、下記構成の順に積層したのち、該積層体を下記ラミネート条件によりラミネートし、太陽電池モジュールを3枚作製してラミネート外観の評価を行った。結果を表1に示す。
〈構成〉
 上部保護材(A)/封止材(B)/太陽電池素子(C)/封止材(D)/バックシート(E)
〈各部材〉
 ・上部保護材(A);
    中島硝子工業(株)製白板エンボス/太陽電池向けカバーガラス
    商品名ソレクト、サイズ996mm×1664mm、厚み3.2mm
 ・太陽電池素子(C);Qセルズジャパン(株)製太陽電池セル
    商品名Q6LTT3-G2-180(6インチ、3バスバータイプ)
    *セル数:60(6列×10セル)
    *セル数が60である場合、最大120箇所に凸現象が発生する可能性がある
 ・配線;日立電線ファインテック(株)製PVワイヤー
    商品名NoWarp、SSA-SPS 0.2×2.0
    (0.2%耐力;56~57MPa)
 ・封止材(B);B-1
 ・封止材(D);D-1
  *封止材(B)及び封止材(D)のサイズは前記ガラスと同一である(すなわち、サイズ996mm×1664mm)
 ・バックシート(E);E-1
〈ラミネート条件〉
 ・ラミネート設定温度;125℃
 ・真空引き時間;3分
 ・プレス保持時間;5分
 ・圧力条件;70kPa
 ・昇圧速度;0.5kPa/秒
 ・冷却ファン;使用せず
(実施例2)
 実施例1において、用いるバックシート(E)をE-1からE-2に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例3)
 実施例2において、ラミネート設定温度を125℃から135℃に変更した以外は、実施例2と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例4)
 実施例1において、上部保護材側に用いる封止材(B)をB-1からB-2に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例5)
 実施例4において、用いるバックシート(E)をE-1からE-2に変更した以外は、実施例4と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例6)
 実施例5において、ラミネート設定温度を125℃から135℃に変更した以外は、実施例5と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例7)
 実施例1において、バックシート側に用いる封止材(D)をD-1からD-2に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例8)
 実施例1において、上部保護材側に用いる封止材(B)をB-1からB-2に変更し、及びバックシート側に用いる封止材(D)をD-1からD-2に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例9)
 実施例1において、バックシート側に用いる封止材(D)をD-1からD-3に変更し、ラミネート設定温度を125℃から135℃に変更し、及びバックシート(E)をE-1からE-3に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(実施例10)
 実施例9において、ラミネート設定温度を135℃から145℃に変更した以外は、実施例9と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(比較例1)
 実施例1において、上部保護材側に用いる封止材(B)をB-1からD-1に、バックシート側に用いる封止材(D)をD-1からB-1に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(比較例2)
 実施例1において、上部保護材側に用いる封止材(B)をB-1からD-1に、バックシート側に用いる封止材(D)をD-1からB-2に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(比較例3)
 実施例1において、上部保護材側に用いる封止材(B)をB-1からD-1に変更した以外は、実施例1と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
(比較例4)
 実施例10において、上部保護材側に用いる封止材(B)をB-1からD-3に、バックシート側に用いる封止材(D)をD-3からB-1に変更した以外は、実施例10と同様にして、太陽電池モジュールを3枚作製しラミネート外観の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明で規定した特性を有する封止材を組み合わせるとラミネート後の外観が良好である太陽電池モジュールが得られることが確認できる(実施例1~10)。また、封止材と各部材との接着性も良好であった。これに対して、本発明で規定した特性を満足しない封止材を組み合わせるとラミネート後の外観評価として凸外観の評価が不良になることが確認できる(比較例1~4)。
 10・・・上部保護材(A)
 12A・・・封止材(B)
 12B・・・封止材(D)
 14A,14B・・・太陽電池素子(C)
 16・・・バックシート(E)
 18・・・ジャンクションボックス
 20・・・配線

Claims (17)

  1.  上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含む太陽電池モジュールであり、封止材(B)と封止材(D)とが下記条件(P)を満足する太陽電池モジュール。
     条件(P):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
                 TB-TD>0(℃)
  2.  前記条件(P)が、下記条件(P-1)である請求項1に記載の太陽電池モジュール。
     条件(P-1):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
              50(℃)≧TB-TD≧15(℃)
  3.  前記条件(P)が、下記条件(P-2)である請求項1に記載の太陽電池モジュール。
     条件(P-2):荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが次の関係を有する。
              40(℃)≧TB-TD≧20(℃)
  4.  前記封止材(D)の荷重1kgf/cm2で測定した流動開始温度(TD)が100℃以上である、請求項1~3のいずれか1項に記載の太陽電池モジュール。
  5.  前記封止材(D)の荷重1kgf/cm2で測定した流動開始温度(TD)が110℃以上である、請求項4に記載の太陽電池モジュール。
  6.  前記封止材(B)及び前記封止材(D)が、共に、オレフィン系重合体を主成分とする封止材である、請求項1~5のいずれか1項に記載の太陽電池モジュール。
  7.  前記封止材(B)及び前記封止材(D)が、共に、エチレンと炭素数3~20のα-オレフィンとの共重合体を主成分とする封止材である、請求項1~6のいずれか1項に記載の太陽電池モジュール。
  8.  前記エチレンと炭素数3~20のα-オレフィンとの共重合体中の全単量体単位に対して、炭素数3~20のα-オレフィンに基づく単量体単位の含有量が2~40モル%である、請求項7に記載の太陽電池モジュール。
  9.  前記封止材(B)が、結晶融解ピーク温度が100℃未満のオレフィン系重合体と、結晶融解ピーク温度が100℃以上のオレフィン系重合体とを含有する樹脂組成物からなる封止材である、請求項6~8のいずれか1項に記載の太陽電池モジュール。
  10.  前記結晶融解ピーク温度が100℃以上のオレフィン系重合体が、エチレン-α-オレフィンブロック共重合体である、請求項9に記載の太陽電池モジュール。
  11.  前記封止材(B)及び前記封止材(D)が、共に、ASTM 2765-95で測定したキシレン可溶物が70質量%以上となる封止材である、請求項1~10のいずれか1項に記載の太陽電池モジュール。
  12.  前記封止材(B)及び前記封止材(D)のうち少なくとも一方が、シランカップリング剤、酸化防止剤、紫外線吸収剤及び耐候安定剤から選ばれる少なくとも一種の添加剤を含む、請求項1~11のいずれか1項に記載の太陽電池モジュール。
  13.  前記封止材(B)が、少なくとも、動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)が100MPa未満である軟質層、及び動的粘弾性測定における振動周波数10Hz、温度20℃の貯蔵弾性率(E’)が100MPa以上である硬質層を有する積層構成である、請求項1~12のいずれか1項に記載の太陽電池モジュール。
  14.  前記封止材(D)が、白色顔料を更に含む、請求項1~13のいずれか1項に記載の太陽電池モジュール。
  15.  前記上部保護材(A)がガラス板材であり、前記太陽電池素子(C)が単結晶シリコン型及び多結晶シリコン型から選ばれる少なくとも一種である、請求項1~14のいずれか1項に記載の太陽電池モジュール。
  16.  上部保護材(A)、上部保護材(A)側に用いる封止材(B)、太陽電池素子(C)、バックシート(E)側に用いる封止材(D)及びバックシート(E)を含む太陽電池モジュールをラミネートする太陽電池モジュールの製造方法であり、荷重1kgf/cm2で測定した封止材(B)の流動開始温度(TB)(℃)と封止材(D)の流動開始温度(TD)(℃)とが異なるものを用い、かつ、ラミネート時に、流動開始温度が高い封止材を熱源側に配置する太陽電池モジュールの製造方法。
  17.  前記ラミネートする際のラミネート設定温度が100~135℃である、請求項16記載の太陽電池モジュールの製造方法。
PCT/JP2013/060129 2012-06-07 2013-04-02 太陽電池モジュール及びその製造方法 WO2013183344A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147033688A KR102000811B1 (ko) 2012-06-07 2013-04-02 태양 전지 모듈 및 그의 제조 방법
CN201380026699.2A CN104321886B (zh) 2012-06-07 2013-04-02 太阳能电池组件及其制造方法
KR1020197019888A KR102136637B1 (ko) 2012-06-07 2013-04-02 태양 전지 모듈 및 그의 제조 방법
EP13800476.7A EP2860766B1 (en) 2012-06-07 2013-04-02 Solar battery module and method of manufacture thereof
US14/399,096 US9923110B2 (en) 2012-06-07 2013-04-02 Solar battery module and method of manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012130067 2012-06-07
JP2012-130067 2012-06-07

Publications (1)

Publication Number Publication Date
WO2013183344A1 true WO2013183344A1 (ja) 2013-12-12

Family

ID=49711745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060129 WO2013183344A1 (ja) 2012-06-07 2013-04-02 太陽電池モジュール及びその製造方法

Country Status (8)

Country Link
US (1) US9923110B2 (ja)
EP (1) EP2860766B1 (ja)
JP (1) JP5396556B1 (ja)
KR (2) KR102136637B1 (ja)
CN (1) CN104321886B (ja)
MY (1) MY168804A (ja)
TW (1) TWI570948B (ja)
WO (1) WO2013183344A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160032064A1 (en) * 2014-07-31 2016-02-04 Sumitomo Chemical Company, Limited Encapsulant sheet for solar cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762260A (zh) * 2014-01-28 2014-04-30 常州安迪新材料有限公司 太阳能电池组件用封装胶膜
JP6296314B2 (ja) * 2014-02-26 2018-03-20 エルジー・ケム・リミテッド 光モジュール用封止材、その製造方法及び光モジュール
JP2016072391A (ja) * 2014-09-29 2016-05-09 大日本印刷株式会社 非受光面側用封止材シート及びそれを用いてなる太陽電池モジュール
CN108779965A (zh) * 2016-02-24 2018-11-09 三菱电机株式会社 换热器
CN106067491B (zh) * 2016-06-21 2017-09-15 张家港协鑫集成科技有限公司 光伏组件功率的优化方法及***
TWI657657B (zh) * 2017-12-05 2019-04-21 茂迪股份有限公司 太陽能電池模組
FR3074964B1 (fr) * 2017-12-07 2019-11-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Fabrication d'un sous-module a concentration utilisant les procedes d'assemblage du photovoltaique
KR102371577B1 (ko) * 2019-03-21 2022-03-04 주식회사 엘지화학 우수한 물성의 가교 폴리에틸렌 파이프
WO2020171625A1 (ko) * 2019-02-20 2020-08-27 주식회사 엘지화학 우수한 물성의 가교 폴리에틸렌 파이프

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153635A (ja) * 1995-09-29 1997-06-10 Bridgestone Corp 太陽電池用封止材膜及び太陽電池モジュール
WO2005090427A2 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
WO2005090426A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
WO2005090425A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
JP2006324556A (ja) 2005-05-20 2006-11-30 Toppan Printing Co Ltd 太陽電池用バックシートおよびそれを用いた太陽電池モジュール
JP2007150084A (ja) 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2008235603A (ja) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd 太陽電池モジュール
JP2009545185A (ja) * 2006-07-28 2009-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高い安定性及び接着性を有する太陽電池封入層
JP2010177282A (ja) * 2009-01-27 2010-08-12 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法
WO2012014965A1 (ja) * 2010-07-28 2012-02-02 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
WO2012105331A1 (ja) * 2011-01-31 2012-08-09 三洋電機株式会社 太陽電池モジュール及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100481524C (zh) * 2003-09-10 2009-04-22 大日本印刷株式会社 太阳能电池组件用填充材料层、太阳能电池组件
US8865835B2 (en) 2009-07-17 2014-10-21 Mitsubishi Plastics, Inc. Solar cell sealing material and solar cell module produced using the same
JP2011040654A (ja) 2009-08-17 2011-02-24 Sumitomo Chemical Co Ltd 太陽電池用バックシートおよび太陽電池モジュール
RU2592608C2 (ru) * 2010-08-30 2016-07-27 Дай Ниппон Принтинг Ко., Лтд. Материал для герметизации солнечных батарей и модуль солнечной батареи, изготовленный с его использованием
JP5654804B2 (ja) 2010-08-30 2015-01-14 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
KR20130143068A (ko) 2010-11-30 2013-12-30 미쓰비시 쥬시 가부시끼가이샤 태양 전지용 다층체 및 그것을 이용하여 제작된 태양 전지 모듈

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153635A (ja) * 1995-09-29 1997-06-10 Bridgestone Corp 太陽電池用封止材膜及び太陽電池モジュール
WO2005090427A2 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
WO2005090426A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation
WO2005090425A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
JP2006324556A (ja) 2005-05-20 2006-11-30 Toppan Printing Co Ltd 太陽電池用バックシートおよびそれを用いた太陽電池モジュール
JP2007150084A (ja) 2005-11-29 2007-06-14 Dainippon Printing Co Ltd 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
JP2009545185A (ja) * 2006-07-28 2009-12-17 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高い安定性及び接着性を有する太陽電池封入層
JP2008235603A (ja) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010177282A (ja) * 2009-01-27 2010-08-12 Sanyo Electric Co Ltd 太陽電池モジュールの製造方法
WO2012014965A1 (ja) * 2010-07-28 2012-02-02 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
WO2012105331A1 (ja) * 2011-01-31 2012-08-09 三洋電機株式会社 太陽電池モジュール及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860766A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160032064A1 (en) * 2014-07-31 2016-02-04 Sumitomo Chemical Company, Limited Encapsulant sheet for solar cell

Also Published As

Publication number Publication date
KR102136637B1 (ko) 2020-07-22
KR20150021926A (ko) 2015-03-03
CN104321886B (zh) 2016-10-05
EP2860766B1 (en) 2017-06-14
MY168804A (en) 2018-12-04
US20150155408A1 (en) 2015-06-04
EP2860766A1 (en) 2015-04-15
TW201401534A (zh) 2014-01-01
CN104321886A (zh) 2015-01-28
TWI570948B (zh) 2017-02-11
KR102000811B1 (ko) 2019-07-16
US9923110B2 (en) 2018-03-20
JP2014013881A (ja) 2014-01-23
EP2860766A4 (en) 2016-02-10
KR20190085174A (ko) 2019-07-17
JP5396556B1 (ja) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2013105616A1 (ja) 外観が良好な太陽電池モジュール及びその製造方法
JP5396556B1 (ja) 太陽電池モジュール及びその製造方法
JP5625060B2 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
US8865835B2 (en) Solar cell sealing material and solar cell module produced using the same
JP2013165263A (ja) 外観が良好な太陽電池モジュール及びその製造方法
WO2012029464A1 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP2011151388A (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP6364811B2 (ja) 太陽電池モジュール
JP5759875B2 (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP2014204090A (ja) 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
JP2013165264A (ja) 外観が良好な太陽電池モジュール及びその製造方法
JP6364714B2 (ja) 太陽電池用封止材及び太陽電池モジュール
JP6747474B2 (ja) 太陽電池モジュール
JP6155680B2 (ja) 太陽電池モジュールの製造方法及び該製造方法によって製造された太陽電池モジュール
JP6427871B2 (ja) 太陽電池モジュール
JP6107369B2 (ja) 太陽電池用積層体及びそれを用いて作製された太陽電池モジュール
JP6277839B2 (ja) 太陽電池封止材およびこれを用いた太陽電池モジュール
JP6314535B2 (ja) 太陽電池モジュール
JP2014204091A (ja) 太陽電池用封止材及びそれを用いた作製された太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14399096

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013800476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013800476

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147033688

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE