WO2013183156A1 - 投写型表示装置 - Google Patents

投写型表示装置 Download PDF

Info

Publication number
WO2013183156A1
WO2013183156A1 PCT/JP2012/064740 JP2012064740W WO2013183156A1 WO 2013183156 A1 WO2013183156 A1 WO 2013183156A1 JP 2012064740 W JP2012064740 W JP 2012064740W WO 2013183156 A1 WO2013183156 A1 WO 2013183156A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
lens
laser light
projection display
projection
Prior art date
Application number
PCT/JP2012/064740
Other languages
English (en)
French (fr)
Inventor
正晃 松原
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to PCT/JP2012/064740 priority Critical patent/WO2013183156A1/ja
Priority to US14/405,713 priority patent/US20150177600A1/en
Publication of WO2013183156A1 publication Critical patent/WO2013183156A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3173Constructional details thereof wherein the projection device is specially adapted for enhanced portability
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources

Definitions

  • the present invention relates to a scanning projection display device.
  • Some projection display devices can project a two-dimensional image or video onto a projection surface by scanning a laser beam vertically and horizontally. Since such a scanning projection display device generally has a simple structure, it can be reduced in size and price.
  • Patent Document 1 discloses a scanning projection display device.
  • the scanning projection display device includes red (R), green (G), and blue (B) laser light sources, a cross prism, a scanning mirror, a light valve, and a projection lens. .
  • laser light sources of the respective colors are generated, and the laser light reflected by the cross prism is reflected by the scanning mirror to become rectangular two-dimensional scanning light.
  • This two-dimensional scanning light is incident on the light valve, modulated, and then enlarged and projected as an image or video by the projection lens.
  • the scanning projection display apparatus can project an image or a video on the projection surface.
  • an object of the present invention is to provide a small scanning projection display device.
  • the projection display device of the present invention is a projection display device in which laser light emitted from a light source, reflected by a scanning mirror, and two-dimensionally scanned is modulated by a light valve and then enlarged and projected by a projection lens.
  • the F mirror of the scanning mirror is smaller than the F number of the projection lens, and has a lens for reducing the irradiation area of the laser light reflected by the scanning mirror to the light valve.
  • FIG. 1 is a schematic configuration diagram of a projection display device according to a first embodiment of the present invention. It is explanatory drawing of the beam diameter of the laser beam which permeate
  • FIG. 2 is a perspective view of the projection display device shown in FIG. 1. It is a schematic block diagram of the projection type display apparatus which concerns on the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram of a projection display device 1 according to the present embodiment.
  • the projection display apparatus 1 first, laser light emitted from the laser light sources 101, 102, and 103 is incident on the condenser lens 110 via the collimator lenses 104, 105, and 106 and the dichroic prisms 107, 108, and 109.
  • the laser light transmitted through the condensing lens 110 is sequentially reflected by the vertical scanning mirror 111 and the horizontal scanning mirror 112 and enters the collimator lens 113 as rectangular two-dimensional scanning light.
  • the two-dimensional scanning light transmitted through the collimator lens 113 is reflected by the folding mirror 114 and enters a DMD (Digital Micromirror Device) 116 that is a light valve configured as an assembly of a large number of mirrors via the cover glass 115.
  • the two-dimensional scanning light modulated by the DMD 116 based on the image signal or the video signal is enlarged and projected on the projection surface via the projection lens 117.
  • the laser light sources 101, 102, and 103 generate laser beams of three primary colors of red (R), green (G), and blue (B), respectively, in a several watt class. That is, the laser light source 101 generates laser light having a wavelength in the red region (about 640 nm), the laser light source 102 generates laser light having a wavelength in the green region (about 530 nm), and the laser light source 103 has a wavelength in the blue region (440 nm). (About) laser beam is generated.
  • the laser light sources 101, 102, and 103 are arranged so that the laser beams generated by the laser light sources 101, 102, and 103 are translated.
  • the cross section of the light beam generated by each laser light source 101, 102, 103 is a circle or an ellipse having a predetermined diameter.
  • Each laser light source 101, 102, 103 oscillates laser light in pulses. That is, the laser light sources 101, 102, and 103 are repeatedly switched on and off at different timings. Therefore, in the projection display device 1 according to the present embodiment, it is not necessary to provide a member such as a color wheel for changing white light to each color, and thus the size can be reduced.
  • the collimator lenses 104, 105, and 106 adjust the laser beams generated by the laser light sources 101, 102, and 103 so as to be parallel beams and to have a desired beam diameter.
  • each laser light source 101, 102, 103 uses a laser beam that emits a laser beam whose cross section is not circular, such as a semiconductor laser
  • the collimator lenses 104, 105, 106 have a circular cross section of each laser beam. Also plays a role.
  • the dichroic prisms 108, 109, and 110 are members that reflect red, green, and blue laser beams and transmit light of other colors, respectively. That is, the red laser light that has passed through the collimator lens 104 is reflected by the dichroic prism 107, passes through the dichroic prisms 108 and 109, and enters the condenser lens 110. The green laser light that has passed through the collimator lens 105 is reflected by the dichroic prism 108, passes through the dichroic prism 109, and enters the condenser lens 110. The blue laser light transmitted through the collimator lens 106 is reflected by the dichroic dichroic prism 109 and enters the condenser lens 110. In the present embodiment, the dichroic prism 107 only needs to have a function of reflecting red laser light, and thus can be replaced with a normal mirror.
  • the condensing lens 110 is a lens for adjusting the beam diameter of the laser light incident on each lens of the DMD 116.
  • the laser light that has passed through the condenser lens 110 becomes a Gaussian beam.
  • the beam diameter ⁇ (X) of the laser beam that has passed through the condenser lens 110 is expressed by the following equation.
  • ⁇ 0 represents the beam diameter at the beam waist
  • X represents the distance from the beam waist
  • represents the wavelength of the laser beam.
  • the beam diameter ⁇ (X) increases as the distance from the position of the beam waist increases. Note that the position of the beam waist depends on the focal length f of the condenser lens 110.
  • the beam diameter ⁇ 0 at the beam waist is expressed by the following equation.
  • D represents the initial beam diameter incident on the condenser lens 110.
  • the beam diameter ⁇ 0 at the beam waist depends on the initial beam diameter D.
  • the size of the initial beam diameter D is determined by the collimator lenses 104, 105, and 106.
  • the beam diameter of the laser light incident on each mirror of the DMD 116 can be determined by adjusting the focal length of the condenser lens 110 according to the initial beam diameter D.
  • the vertical scanning mirror 111 and the horizontal scanning mirror 112 are formed using a MEMS (Micro Electro Mechanical Systems) technology.
  • the vertical scanning mirror 111 is driven such that the reflection surface that reflects the laser light reciprocates at a predetermined frequency in the vertical direction.
  • the horizontal scanning mirror 112 is driven such that the reflection surface that reflects the laser light performs reciprocal scanning of the reflected laser light at a predetermined frequency in the horizontal direction. In this manner, the laser light sequentially reflected by the vertical scanning mirror 111 and the horizontal scanning mirror 112 is reciprocally scanned in the vertical direction and the horizontal direction orthogonal to each other to become two-dimensional scanning light.
  • the scanning angle of the vertical scanning mirror 111 is ⁇ V
  • the scanning angle of the horizontal scanning mirror 112 is ⁇ H.
  • the laser beam reflected by the vertical scanning mirror 111 is reciprocally scanned in the vertical direction at a scanning angle ⁇ V, and enters the horizontal scanning mirror 112 while drawing a sine curve in the vertical direction.
  • the laser beam reflected by the horizontal scanning mirror 112 is reciprocally scanned in the horizontal direction at a scanning angle ⁇ H, and enters the collimator lens 113 while drawing a sine curve not only in the vertical direction but also in the horizontal direction.
  • the horizontal scanning mirror 112 is driven at a higher frequency than the vertical scanning mirror 111.
  • the driving frequency of the vertical scanning mirror 111 is 60 Hz
  • the driving frequency of the horizontal scanning mirror 112 is several kHz to several tens of kHz.
  • FIG. 4 shows an image of the laser light incident on the collimator lens 113 in the quarter period of the vertical scanning mirror 111.
  • the vertical direction is indicated by an arrow DV
  • the horizontal direction is indicated by an arrow DH.
  • the two-dimensional scanning light incident on the collimator lens 113 is scanned in the horizontal direction DH for a plurality of cycles while being scanned in the vertical direction DV for a quarter cycle.
  • the scanning speed of the laser light is slow at both ends of the vertical direction DV and the horizontal direction DH. Therefore, the two-dimensional scanning light reflected by the scanning mirrors 111 and 112 has high illuminance at both ends in the vertical direction DV and the horizontal direction DH. In the vertical direction DV, the scanning speed of the laser light is slow, so that an illuminance difference between the both ends of the vertical direction DV and the other portions hardly appears. However, in the horizontal direction DH, since the scanning speed of the laser beam is high, the illuminance difference between the both end portions in the vertical direction DV and the other portions appears remarkably.
  • the area surrounded by the broken line shown in FIG. 4 is called a blanking area.
  • the blanking region is a region with high illuminance generated because the scanning speed of the laser beam in the horizontal direction DH direction is low.
  • the projection display device 1 can be downsized.
  • two one-dimensional scanning mirrors 111 and 112 are used as scanning mirrors for obtaining two-dimensional scanning light.
  • a single two-dimensional scanning mirror may be used to obtain two-dimensional scanning light.
  • the collimator lens 113 is a lens for adjusting the F number of the scanning mirrors 111 and 112. Details thereof will be described below.
  • the F numbers of the scanning mirrors 111 and 112 are expressed as follows using ⁇ V and ⁇ H shown in FIG.
  • the F number of the scanning mirrors 111 and 112 needs to be equal to or greater than the F number of the projection lens 117. This is because, when the F number of the scanning mirrors 111 and 112 is smaller than the F number of the projection lens 117, the spread of the two-dimensional scanning light from the scanning mirrors 111 and 112 is large, and a part of the two-dimensional scanning light is projected to the projection lens. This is because 117 may not be transmitted. As a result, a part of the two-dimensional scanning light is lost.
  • the F number of the projection lens 117 is generally about 2.0.
  • the scanning angles ⁇ V and ⁇ H of the scanning mirrors 111 and 112 are 14.5 °. Therefore, when the F number of the projection lens 117 is 2.0, the scanning angles ⁇ V and ⁇ H of the scanning mirrors 111 and 112 must be 14.5 ° or less.
  • the scanning angles ⁇ V and ⁇ H of the scanning mirrors 111 and 112 need to be increased.
  • the F number of the scanning mirrors 111 and 112 becomes F of the projection lens 117. It will be smaller than the number of 2.0.
  • a collimator lens 113 is provided that makes the scanning angle of the laser light incident on the DMD 116 smaller than the scanning angles ⁇ V and ⁇ H of the scanning mirrors 111 and 112. That is, the collimator lens 113 makes the incident angle of the laser light to the DMD 116 smaller than the scanning angles ⁇ V and ⁇ H of the scanning mirrors 111 and 112. Thereby, the irradiation range with respect to DMD116 of the laser beam reflected by the scanning mirrors 111 and 112 is reduced.
  • the F number of the entire optical unit of the scanning mirrors 111 and 112 and the collimator lens 113 is changed to the F number of the projection lens 117. It can be 2.0 or more. In other words, all of the two-dimensional scanning light transmitted through the collimator lens 113 and modulated by the DMD 116 enters the projection lens 117. Thereby, the optical path between the scanning mirrors 111 and 112 and the DMD 116 can be shortened without reducing the two-dimensional scanning light, and the scanning projection display device 1 can be downsized.
  • the lens 113 only needs to be able to fit the two-dimensional scanning light reflected by the scanning mirrors 111 and 112 into a diameter that the projection lens 117 can capture.
  • a collimator lens is used as the lens 113, but the lens 113 may be any lens that can reduce the overall F number of the scanning mirrors 111 and 112 and the lens 113.
  • the lens 113 may be any lens that can make the scanning angle of at least one of the vertical direction and the horizontal direction of the laser light incident on the DMD 116 smaller than the scanning angle of the scanning mirrors 111 and 112.
  • the folding mirror 114 is provided for adjusting the angle of the two-dimensional scanning light incident on the DMD 116.
  • the folding mirror 114 can be corrected, for example, from an irradiation area indicated by a broken line to an irradiation area indicated by a solid line in accordance with the position of the DMD 116.
  • the folding mirror 114 may or may not be installed depending on the optical path design in the projection display device 1. When the folding mirror 114 is not installed, the laser light transmitted through the lens 113 is directly incident on the DMD 116 from the DMD cover 115.
  • the DMD 116 is an optical element that modulates two-dimensional scanning light of laser light based on an image signal or a video signal.
  • the DMD 116 has a large number of mirrors arranged in a rectangular shape, and laser light is incident on individual mirrors.
  • Each mirror of the DMD 116 individually switches the direction of the reflecting surface, and is turned on or off. That is, each mirror causes the laser beam incident when it is in the on state to enter the projection lens 117, and does not allow the laser beam incident when it is in the off state to enter the projection lens 117. Thereby, the DMD 116 modulates the incident two-dimensional scanning light.
  • the modulation of the two-dimensional scanning light is performed by the DMD 116, but the modulation of the two-dimensional scanning light can also be performed by the laser light sources 101, 102, and 103. That is, it is possible to modulate the two-dimensional scanning light by changing the output of the laser light from each of the laser light sources 101, 102, 103 in accordance with the image signal or the video signal.
  • the modulation of the two-dimensional scanning light by the laser light sources 101, 102, 103 is more suitable than the modulation of the two-dimensional scanning light by the DMD 116.
  • the modulation of the two-dimensional scanning light by the DMD 116 and the modulation of the two-dimensional scanning light by the laser light sources 101, 102, 103 can be combined. Thereby, it is possible to display an image or video with higher contrast.
  • the projection lens 117 enlarges and projects the light incident from the DMD 116 onto the projection surface.
  • a lens having an F number of 1.8 to 2.4 is generally used, but not limited to this, various lenses can be used.
  • FIG. 6 is a perspective view of the projection display apparatus 1 according to the present embodiment.
  • the projection display apparatus 1 includes a housing 10 that covers the entire members illustrated in FIG. 1, and the housing 10 exposes only the projection lens 117 on the side surface.
  • the projection direction of an image or video by the projection display device 1 is changed by changing the direction of the projection lens 117 for each housing 110.
  • the laser light projected from the projection lens 117 may directly enter the human eye.
  • the laser light sources 101, 102, and 103 which are laser light generation sources, reach the projection lens 117 via various members, and the projection lens 117 further.
  • the laser light is diffused widely. Therefore, in the scanning projection display apparatus 1 according to the present embodiment, the laser light projected from the projection lens 117 is weakened, and damage to the eyes due to the laser light projected from the projection lens 117 is suppressed.
  • FIG. 7 is a schematic configuration diagram of the projection display device 6 according to the present embodiment.
  • laser light emitted from the laser light sources 601, 602, and 603 is incident on the condenser lens 610 via the collimator lenses 604, 605, and 606 and the dichroic prisms 607, 608, and 609.
  • the laser light transmitted through the condensing lens 610 is sequentially reflected by the vertical scanning mirror 611 and the horizontal scanning mirror 612 and enters the lens 613 as rectangular two-dimensional scanning light.
  • the two-dimensional scanning light transmitted through the collimator lens 613 is reflected by the polarization beam splitter 614 and enters the reflective liquid crystal panel 615 that is a light valve.
  • the two-dimensional scanning light modulated by the reflective liquid crystal panel 615 based on the image signal or the video signal is transmitted through the polarization beam splitter 614 and enlarged and projected onto the projection surface via the projection lens 616.
  • the projection display apparatus differs from the projection display apparatus according to the first embodiment in that a reflective liquid crystal panel 615 is used instead of a DMD as a light valve, and other configurations are the same as those in the first embodiment. This is the same as the projection display device according to the embodiment.
  • a polarizing beam splitter 614 is provided between the lens 613 and the reflective liquid crystal panel 615.
  • the polarization beam splitter 614 reflects the laser light (S-polarized light) that has passed through the lens 613 toward the reflective liquid crystal panel 615, transmits the modulated laser light (P-polarized light) to the reflective liquid crystal panel 615, and projects it. It has a function of making it enter the lens 616.
  • the liquid crystal display panel 615 is an optical element that modulates two-dimensional scanning light based on an image signal or a video signal.
  • the liquid crystal display panel 615 has a liquid crystal layer. Each part of the liquid crystal layer of the liquid crystal display panel 615 can change the output of the P-polarized laser light emitted to the projection lens 616 by adjusting the electric field applied. Thereby, the liquid crystal display panel 615 modulates the incident two-dimensional scanning light.
  • the modulation of the two-dimensional scanning light can be performed not only by the liquid crystal display panel 615 but also by combining the laser light sources 601, 602, 603 and the polarization beam splitter 614.
  • the projection lens 616 enlarges and projects the light incident from the liquid crystal display panel 615 via the polarization beam splitter 614 onto the projection surface.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

 小型の走査式投写型表示装置を提供する。 投写型表示装置(1)は、光源(101,102,103)から発せられ、走査ミラー(111,112)に反射されて二次元走査させられたレーザ光が、DMD(116)によって変調された後に投写レンズ(117)によって拡大投写される。走査ミラー(111,112)のFナンバーは、投写レンズ(117)のFナンバーより小さい。走査ミラー(111,112)に反射されたレーザ光のDMD(116)に対する照射領域はコリメータレンズ(113)によって縮小される。

Description

投写型表示装置
 本発明は、走査式投写型表示装置に関する。
 投写型表示装置にはレーザ光を縦横に走査させることにより、二次元の画像や映像を投写面に投写可能なものがある。このような走査式投写型表示装置は、一般的に構造が簡略であるため、小型化や低価格化が可能である。
 特許文献1に走査式投写型表示装置が開示されている。この走査式投写型表示装置では、赤色(R)、緑色(G)、青色(B)の各色のレーザ光源と、クロスプリズムと、走査ミラーと、ライトバルブと、投写レンズと、を備えている。この走査式投写型表示装置では、各色のレーザ光源が発生させ、クロスプリズムに反射されたレーザ光が、走査ミラーに反射されて矩形の二次元走査光となる。この二次元走査光がライトバルブに入射して変調され、その後に投写レンズによって画像や映像として拡大投写される。このように、この走査式投写型表示装置は、画像や映像を投写面に投写することができる。
特開2003-186112号公報
 投写型表示装置は、小型であるほど手軽に持ち運ぶことができるようになる。このような小型の投写型表示装置を用いることによって、様々な場所で、映像や画像を投写することができるようになる。したがって、投写型表示装置にはさらなる小型化が望まれる。
 そこで、本願発明の目的は、小型の走査式投写型表示装置を提供することにある。
 本発明の投写型表示装置は、光源から発せられ、走査ミラーに反射されて二次元走査させられたレーザ光が、ライトバルブによって変調された後に投写レンズによって拡大投写される投写型表示装置であって、前記走査ミラーのFナンバーが前記投写レンズのFナンバーより小さく、前記走査ミラーに反射されたレーザ光の、前記ライトバルブに対する照射領域を縮小するレンズを有することを特徴とする。
本発明の第1の実施形態に係る投写型表示装置の概略構成図である。 集光レンズを透過したレーザ光のビーム径の説明図である。 走査レンズによるレーザ光の走査の説明図である。 走査レンズに反射されたレーザ光の描く像の説明図である。 折り返しミラーの位置調整の説明図である。 図1に示した投写型表示装置の斜視図である。 本発明の第2の実施形態に係る投写型表示装置の概略構成図である。
(第1の実施形態)
 まず、本発明の第1の実施形態に係る投写型表示装置の動作の概要について説明する。
 図1は本実施形態に係る投写型表示装置1の概略構成図である。投写型表示装置1では、まず、レーザ光源101,102,103が発したレーザ光が、コリメータレンズ104,105,106およびダイクロイックプリズム107,108,109を介して、集光レンズ110に入射する。集光レンズ110を透過したレーザ光は、垂直走査ミラー111および水平走査ミラー112に順次反射されて矩形の二次元走査光となってコリメータレンズ113に入射する。コリメータレンズ113を透過した二次元走査光は、折り返しミラー114に反射され、カバーガラス115を介して多数のミラーの集合体として構成されるライトバルブであるDMD(Digital Micromirror Device)116に入射する。画像信号や映像信号に基づいてDMD116に変調された二次元走査光は、投写レンズ117を介して投写面に拡大投写される。
 次に、本実施形態に係る投写型表示装置1の各部の詳細について説明する。
 レーザ光源101,102,103は、数ワットクラスでそれぞれ赤色(R)、緑色(G)、青色(B)の三原色のレーザ光を発生させる。すなわち、レーザ光源101は赤色領域の波長(640nm程度)のレーザ光を発生させ、レーザ光源102は緑色領域の波長(530nm程度)のレーザ光を発生させ、レーザ光源103は青色領域の波長(440nm程度)のレーザ光を発生させる。レーザ光源101,102,103は、該レーザ光源101,102,103が発生させる各レーザ光が並進するように配置されている。各レーザ光源101,102,103が発生させる光束の断面は、所定の径を有する円や楕円などである。
 各レーザ光源101,102,103はレーザ光をパルス発振する。すなわち、各レーザ光源101,102,103では、それぞれ互いに異なるタイミングでオンとオフとに繰り返し切り替えられる。したがって、本実施形態に係る投写型表示装置1では、白色光を各色に変化させるためのカラーホイールなどの部材を設ける必要がないため、小型化が可能である。
 コリメータレンズ104,105,106は、各レーザ光源101,102,103が発生させたレーザ光を、平行光とするとともに所望のビーム径になるように調整する。各レーザ光源101,102,103として、半導体レーザなどのように光束の断面が円形でないレーザ光を発するものを用いる場合、コリメータレンズ104,105,106は各レーザ光の光束の断面を円形にする役割も果たす。
 各ダイクロイックプリズム108,109,110は、それぞれ赤色、緑色、青色のレーザ光を反射し、他の色の光を透過させる部材である。すなわち、コリメータレンズ104を透過した赤色のレーザ光は、ダイクロイックプリズム107に反射され、ダイクロイックプリズム108,109を透過し、集光レンズ110に入射する。コリメータレンズ105を透過した緑色のレーザ光は、ダイクロイックプリズム108に反射され、ダイクロイックプリズム109を透過し、集光レンズ110に入射する。コリメータレンズ106を透過した青色のレーザ光は、ダイクロイックダイクロイックプリズム109に反射され、集光レンズ110に入射する。なお、本実施形態にでは、ダイクロイックプリズム107は、赤色のレーザ光を反射する機能のみを有していればよいため、通常のミラーで代用することが可能である。
 集光レンズ110は、DMD116の各レンズに入射するレーザ光のビーム径を調整するためのレンズである。集光レンズ110を透過したレーザ光はガウスビームとなる。集光レンズ110を透過したレーザ光のビーム径ω(X)は、以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、図2に示すように、ωはビームウエストにおけるビーム径を示し、Xはビームウエストからの距離を示し、λはレーザ光の波長を示している。この式が示すように、ビーム径ω(X)は、ビームウエストの位置から離れるほど大きくなる。なお、ビームウエストの位置は、集光レンズ110の焦点距離fに依存する。ビームウエストにおけるビーム径ωは、以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、Dは集光レンズ110に入射する初期ビーム径を示している。このように、ビームウエストにおけるビーム径ωは、初期ビーム径Dに依存する。初期ビーム径Dの大きさは、コリメータレンズ104,105,106により決定される。
 以上のように、DMD116の各ミラーに入射するレーザ光のビーム径は、初期ビーム径Dに応じて、集光レンズ110の焦点距離を調整することにより決定することができる。
 垂直走査ミラー111および水平走査ミラー112は、MEMS(Micro Electro Mechanical Systems)技術を用いて形成されている。垂直走査ミラー111は、レーザ光を反射する反射面が、反射したレーザ光が垂直方向に所定の周波数で往復走査するように駆動する。一方、水平走査ミラー112は、レーザ光を反射する反射面が、反射したレーザ光が水平方向に所定の周波数で往復走査するように駆動する。このように、垂直走査ミラー111および水平走査ミラー112に順次反射されたレーザ光は、互いに直交する垂直方向と水平方向とに往復走査されることにより二次元走査光となる。
 ここで、図3に示すように、垂直走査ミラー111の走査角をθVとし、水平走査ミラー112の走査角をθHとする。垂直走査ミラー111に反射されたレーザ光は、垂直方向に走査角θVで往復走査され、垂直方向にサインカーブを描きながら水平走査ミラー112に入射する。また、水平走査ミラー112に反射されたレーザ光は、水平方向に走査角θHで往復走査され、垂直方向のみならず水平方向にもサインカーブを描きながらコリメータレンズ113に入射する。
 水平走査ミラー112は、垂直走査ミラー111より高周波数で駆動する。本実施形態では、垂直走査ミラー111の駆動周波数を60Hzとし、水平走査ミラー112の駆動周波数を数kHzから十数kHzとしている。
 図4に垂直走査ミラー111の4分の1周期におけるコリメータレンズ113に入射するレーザ光の像を示している。図4では垂直方向を矢印DVと示し、水平方向を矢印DHと示している。図4に示すとおり、コリメータレンズ113に入射する二次元走査光は、垂直方向DVに4分の1周期走査させられている間に水平方向DHに複数周期走査させられている。
 上述したとおり、走査ミラー111,112に反射されたレーザ光は垂直方向DVおよび水平方向DH方向にサインカーブを描くため、レーザ光の走査速度は、垂直方向DVおよび水平方向DHの両端で遅い。そのため、走査ミラー111,112に反射された二次元走査光では、垂直方向DVおよび水平方向DHの両端部の照度が高い。垂直方向DVではレーザ光の走査速度が遅いため垂直方向DVの両端部とそれ以外の部分との照度差は現れにくい。しかし、水平方向DHでは、レーザ光の走査速度が速いため垂直方向DVの両端部とそれ以外の部分との照度差が顕著に表れる。
 図4に示した破線で囲んだ領域をブランキング領域という。ブランキング領域は、水平方向DH方向のレーザ光の走査速度が遅いために生じる照度の高い領域である。
 二次元走査光の像にブランキング領域が発生することを防止するために、ブランキング領域にレーザ光が入射しないようにすることが考えられる。このことは、破線で囲んだ領域に入射するレーザ光を遮断することや、ブランキング領域に入射することになるレーザ光をレーザ光源101,102,103が発生させないようにすることにより実現できる。
 また、二次元走査光の像のブランキング領域の照度を減少させることにより照度の高い部分の発生を防止することも考えられる。このことは、ブランキング領域に入射するレーザ光の出力をフィルタ等により弱めることや、レーザ光源101,102,103が発生させるレーザ光のうちブランキング領域に入射するレーザ光のみの出力を弱めることにより実現できる。
 これらの方法により、レーザ光の像における照度の高い領域の発生を防止すること、すなわち、均一な照度分布のレーザ光の矩形の光束を得ることができる。そのため、本実施形態に係る走査式投写型表示装置では、ライトトンネル(ロッドインテグレータ)などの光束の照度分布を均一化するための部材を設ける必要がない。したがって、本実施形態に係る投写型表示装置1では小型化が可能である。
 なお、本実施形態では、二次元走査光を得るための走査ミラーとして、二つの一次元走査ミラー111,112を用いている。しかし、二次元走査光を得るために、単一の二次元走査ミラーを用いてもよい。
 コリメータレンズ113は、走査ミラー111,112のFナンバーを調整するためのレンズである。その詳細について以下に説明する。
 走査ミラー111,112のFナンバーは、図3に示したθVおよびθHを用いると以下のように表される。
・垂直走査ミラー111:Fナンバー=1/2sin(θV)
・水平走査ミラー112:Fナンバー=1/2sin(θH)
 ここで、コリメータレンズ113を設けない場合を仮定する。この場合、走査ミラー111,112のFナンバーは、投写レンズ117のFナンバーと同等以上である必要がある。これは、走査ミラー111,112のFナンバーが投写レンズ117のFナンバーより小さい場合には、走査ミラー111,112からの二次元走査光の広がりが大きく、二次元走査光の一部が投写レンズ117を透過しない場合があるからである。これにより、二次元走査光の一部がロスされてしまう。
 投写レンズ117のFナンバーは一般的に2.0程度である。投写レンズ117のFナンバーを2.0とし、走査ミラー111,112のFナンバーも2.0とすると、走査ミラー111,112の走査角θV,θHは14.5°となる。そのため、投写レンズ117のFナンバーが2.0である場合、走査ミラー111,112の走査角θV,θHは14.5°以下としなければならない。
 一方、走査ミラー111,112とDMD116との間の光路が短いほど、走査式投写型表示装置1は小型化しやすくなる。そのためには、走査ミラー111,112の走査角θV,θHをより大きくする必要がある。しかし、上述したようにコリメータミラー113を設けない場合には、走査ミラー111,112の走査角θV,θHを14.5°より大きくすると、走査ミラー111,112のFナンバーが投写レンズ117のFナンバーである2.0より小さくなってしまう。
 そこで、本実施形態では、DMD116に入射するレーザ光の走査角を走査ミラー111,112の走査角θV,θHより小さくするコリメータレンズ113を設けている。すなわち、コリメータレンズ113は、レーザ光のDMD116への入射角を走査ミラー111,112の走査角θV,θHより小さくする。これにより、走査ミラー111,112に反射されたレーザ光のDMD116に対する照射範囲を縮小している。
 これにより、走査ミラー111,112の走査角θV,θHが14.5°より大きい場合にも、走査ミラー111,112およびコリメータレンズ113の光学ユニット全体としてのFナンバーを、投写レンズ117のFナンバー2.0以上とすることができる。換言すると、コリメータレンズ113を透過し、DMD116に変調された二次元走査光の全てが投写レンズ117に入射する。これにより、二次元走査光のロスなしに、走査ミラー111,112とDMD116との間の光路を短くして、走査式投写型表示装置1を小型化することができる。
 レンズ113は、走査ミラー111,112に反射された二次元走査光を投写レンズ117が取り込める径に収めることができればよい。本実施形態では、レンズ113としてコリメータレンズを用いているが、レンズ113は、走査ミラー111,112とレンズ113の全体のFナンバーを低減できるものであればよい。また、レンズ113は、DMD116に入射するレーザ光の垂直方向と水平方向との少なくとも一方の走査角を走査ミラー111,112の走査角より小さくできるものであればよい。
 折り返しミラー114は、DMD116に入射する二次元走査光の角度を調整するために設けられている。折り返しミラー114は、DMD116の位置に合わせて、たとえば、破線で示した照射領域から、実線で示した照射領域に修正することが可能である。
 なお、折り返しミラー114は、投写型表示装置1内の光路設計に応じて設置しても設置しなくてもよい。折り返しミラー114が設置されない場合には、レンズ113を透過したレーザ光が直接DMDカバー115からDMD116に入射する。
 DMD116は画像信号や映像信号に基づいてレーザ光の二次元走査光を変調する光学素子である。DMD116は矩形に並べられた多数のミラーを有しており、レーザ光は個々のミラーに入射する。DMD116の各ミラーは個別に反射面の向きを切り替え、オン状態またはオフ状態になる。すなわち、各ミラーは、オン状態のときに入射したレーザ光を投写レンズ117に入射させ、オフ状態のときに入射したレーザ光を投写レンズ117に入射させない。これにより、DMD116は入射した二次元走査光を変調する。
 なお、本実施形態では、二次元走査光の変調はDMD116によって行うが、二次元走査光の変調はレーザ光源101,102,103によって行うこともできる。すなわち、画像信号や映像信号に合わせて、各レーザ光源101,102,103によるレーザ光の出力を変更することによっても二次元走査光の変調を行うことが可能である。特に、暗い色の画像や映像の表示では、DMD116による二次元走査光の変調よりも、レーザ光源101,102,103による二次元走査光の変調の方が適している。
 また、DMD116による二次元走査光の変調と、レーザ光源101,102,103による二次元走査光の変調と、を組み合わせることもできる。これにより、より高いコントラストの画像や映像を表示することが可能となる。
 投写レンズ117は、DMD116から入射した光を投写面に拡大投写する。投写レンズ117としては、一般的に、Fナンバーが1.8~2.4のものが用いられるが、これらに限らず様々なものを用いられる。
 図6は本実施形態に係る投写型表示装置1の斜視図である。投写型表示装置1は、図1に示した各部材の全体を覆う筐体10を有し、筐体10は投写レンズ117のみを側面に露出させている。投写型表示装置1による画像や映像の投写方向の変更は、投写レンズ117の向きを筐体110ごと変更することにより行われる。
 なお、走査式投写型表示装置では、レーザ光を用いるため、投写レンズ117から投写されるレーザ光が直接人間の目に入ることがある。レーザ光が人間の目に入ると目に損傷が生ずることがある。しかし、本実施形態に係る走査式投写型表示装置1では、レーザ光の発生源であるレーザ光源101,102,103から様々な部材を介して投写レンズ117まで到達しており、さらに投写レンズ117によってレーザ光が広く拡散される。そのため、本実施形態に係る走査式投写型表示装置1では、投写レンズ117から投写されるレーザ光は弱められており、投写レンズ117から投写されるレーザ光により目に損傷を加わることが抑制される。
(第2の実施形態)
 まず、本発明の第2の実施形態に係る投写型表示装置の動作の概要について説明する。
 図7は本実施形態に係る投写型表示装置6の概略構成図である。投写型表示装置6では、まず、レーザ光源601,602,603が発したレーザ光が、コリメータレンズ604,605,606およびダイクロイックプリズム607,608,609を介して、集光レンズ610に入射する。集光レンズ610を透過したレーザ光は、垂直走査ミラー611および水平走査ミラー612に順次反射されて矩形の二次元走査光となってレンズ613に入射する。コリメータレンズ613を透過した二次元走査光は、偏光ビームスプリッタ614に反射され、ライトバルブである反射型液晶パネル615に入射する。画像信号や映像信号に基づいて反射型液晶パネル615に変調された二次元走査光は、偏光ビームスプリッタ614を透過し、投写レンズ616を介して投写面に拡大投写される。
 次に、本実施形態に係る投写型表示装置6の各部の詳細について説明する。
 本実施形態に係る投写型表示装置では、ライトバルブにDMDでなく反射型液晶パネル615を用いている点で第1の実施形態に係る投写型表示装置と異なり、他の構成は第1の実施形態に係る投写表示装置と同様である。
 本実施形態では、レンズ613と反射型液晶パネル615との間に偏光ビームスプリッタ614が設けられている。偏光ビームスプリッタ614は、レンズ613を透過したレーザ光(S偏光)を反射型液晶パネル615に向けて反射し、該反射型液晶パネル615に変調されたレーザ光(P偏光)を透過させ、投写レンズ616に入射させる機能を有する。
 液晶表示パネル615は画像信号や映像信号に基づいて二次元走査光を変調する光学素子である。液晶表示パネル615は液晶層を有している。液晶表示パネル615の液晶層の各部位は電界印加の加減により投写レンズ616へ出射するP偏光のレーザ光の出力を変更可能である。これにより、液晶表示パネル615は入射した二次元走査光を変調する。
 なお、二次元走査光の変調は、液晶表示パネル615のみによらず、レーザ光源601,602,603や、偏光ビームスプリッタ614を組み合わせて行うことも可能である。
 投写レンズ616は、液晶表示パネル615から偏光ビームスプリッタ614を介して入射した光を投写面に拡大投写する。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成には、本願発明の範囲内で当業者が理解し得る様々な変更をすることができる。
101,102,103 レーザ光源
104,105,106 コリメータレンズ
107,108,109 ダイクロイックプリズム
110 集光レンズ
111 垂直走査ミラー
112 水平走査ミラー
113 ミラー
114 折り返しミラー
115 DMDカバー
116 DMD
117 投写レンズ

Claims (4)

  1.  光源から発せられ、走査ミラーに反射されて二次元走査させられたレーザ光が、ライトバルブによって変調された後に投写レンズによって拡大投写される投写型表示装置であって、
     前記走査ミラーのFナンバーが前記投写レンズのFナンバーより小さく、
     前記走査ミラーに反射されたレーザ光の、前記ライトバルブに対する照射領域を縮小するレンズを有することを特徴とする投写型表示装置。
  2.  前記レンズはコリメータレンズである、請求項1に記載の投写型表示装置。
  3.  前記走査ミラーは、互いに異なる方向に駆動する2つの一次元走査ミラーからなる、請求項1または2に記載の投写型表示装置。
  4.  前記光源は、赤色、緑色、青色、の3種類の光源からなる、請求項1から3のいずれか1項に記載の投写型表示装置。
     
PCT/JP2012/064740 2012-06-08 2012-06-08 投写型表示装置 WO2013183156A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/064740 WO2013183156A1 (ja) 2012-06-08 2012-06-08 投写型表示装置
US14/405,713 US20150177600A1 (en) 2012-06-08 2012-06-08 Projection Display Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064740 WO2013183156A1 (ja) 2012-06-08 2012-06-08 投写型表示装置

Publications (1)

Publication Number Publication Date
WO2013183156A1 true WO2013183156A1 (ja) 2013-12-12

Family

ID=49711572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064740 WO2013183156A1 (ja) 2012-06-08 2012-06-08 投写型表示装置

Country Status (2)

Country Link
US (1) US20150177600A1 (ja)
WO (1) WO2013183156A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125942A (ja) * 2016-01-14 2017-07-20 ソニー株式会社 レンズモジュール、およびプロジェクタ
CN105974580B (zh) * 2016-07-13 2018-04-27 武汉理工大学 一种数字式快速轴向扫描模块
JP6964093B2 (ja) * 2016-12-12 2021-11-10 ソニーセミコンダクタソリューションズ株式会社 投影光学系、画像投影装置、および画像投影システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072966A (ja) * 2000-06-12 2002-03-12 Matsushita Electric Ind Co Ltd カラー画像表示装置
WO2006137326A1 (ja) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 2次元画像表示装置、照明光源及び露光照明装置
JP2008175869A (ja) * 2007-01-16 2008-07-31 Seiko Epson Corp 光源装置、照明装置、モニタ装置、画像表示装置及びプロジェクタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511184B2 (en) * 2000-04-05 2003-01-28 Matsushita Electric Industrial Co., Ltd. Color image display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072966A (ja) * 2000-06-12 2002-03-12 Matsushita Electric Ind Co Ltd カラー画像表示装置
WO2006137326A1 (ja) * 2005-06-20 2006-12-28 Matsushita Electric Industrial Co., Ltd. 2次元画像表示装置、照明光源及び露光照明装置
JP2008175869A (ja) * 2007-01-16 2008-07-31 Seiko Epson Corp 光源装置、照明装置、モニタ装置、画像表示装置及びプロジェクタ

Also Published As

Publication number Publication date
US20150177600A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
US6594090B2 (en) Laser projection display system
US8366281B2 (en) Out-of-plane motion of speckle reduction element
JP5350610B2 (ja) 投影器のための光学システム及び対応する投影器
JP5428885B2 (ja) プロジェクター
US20100296064A1 (en) Projection with lenslet arrangement on speckle reduction element
JP5363061B2 (ja) 単板投写型表示装置
KR101796973B1 (ko) 자유 형상 광학 리다이렉트 장치
JP2012230321A (ja) 走査型画像表示装置
JP4573573B2 (ja) 投映型画像表示装置
WO2013183156A1 (ja) 投写型表示装置
US8226242B2 (en) Projection display for displaying a color image by modulating a plurality of single beams according to image information
JP6323072B2 (ja) 照明装置およびプロジェクター
JP5515200B2 (ja) 照明光学系及びプロジェクタ装置
KR100828365B1 (ko) 레이저 디스플레이장치
US7443586B2 (en) Display device using single-panel diffractive light modulator
JP2010204280A (ja) 照明光学系及びそれを有する画像投射装置
US20100296063A1 (en) Projection with larger intermediate image
JP5321558B2 (ja) スペックル低減装置およびプロジェクタ
KR101315981B1 (ko) 프로젝터
KR100634001B1 (ko) 발광 다이오드를 구비한 프리즘
KR20080053792A (ko) 레이저 광원을 이용하는 프로젝터
US20120170005A1 (en) Projection type display device
KR100224903B1 (ko) 반사형 프로젝트 장치
JP2005250123A (ja) プロジェクタ
JP2006113194A (ja) 投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14405713

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP