WO2013176141A1 - 電圧均等化装置 - Google Patents

電圧均等化装置 Download PDF

Info

Publication number
WO2013176141A1
WO2013176141A1 PCT/JP2013/064108 JP2013064108W WO2013176141A1 WO 2013176141 A1 WO2013176141 A1 WO 2013176141A1 JP 2013064108 W JP2013064108 W JP 2013064108W WO 2013176141 A1 WO2013176141 A1 WO 2013176141A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
batteries
block
battery block
Prior art date
Application number
PCT/JP2013/064108
Other languages
English (en)
French (fr)
Inventor
慎司 広瀬
守 倉石
正彰 鈴木
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2013176141A1 publication Critical patent/WO2013176141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a voltage equalizing device for equalizing the voltages of batteries constituting an assembled battery, and more particularly to an active type voltage equalizing device.
  • Hybrid vehicles and electric vehicles are equipped with assembled batteries in which a plurality of batteries such as lithium ion batteries are connected in series in order to obtain a high voltage.
  • the voltage equalization control device having a balance circuit for equalizing the voltage of the battery forming the assembled battery is used to equalize the voltage of the battery forming the assembled battery (hereinafter referred to as voltage equalization). ) Is proposed.
  • the cell equalization circuit of Patent Document 1 operates the discharge circuit based on the magnitude relationship between the voltages of a plurality of batteries in the block. Thereby, the voltages of the plurality of batteries in the block are equalized. On the other hand, a high voltage block is extracted by the voltage detection circuit. And the adjustment apparatus of the assembled battery which can accelerate
  • the voltage equalization apparatus of Patent Document 2 divides batteries connected in series into modules of a certain size, performs charge equalization in the module and charge equalization between modules at the same time, improves charge equalization performance, It has been proposed to reduce the size.
  • the secondary battery pack of Patent Document 4 performs voltage balance adjustment for each unit block or composite block during charging, and performs voltage balance adjustment between the secondary batteries in the unit block after stopping charging due to full charge. It has been proposed to obtain voltage balance in unit blocks and composite block units, voltage balance in secondary battery units, and voltage balance in the entire secondary battery block.
  • each of the plurality of module batteries equalizes the energy between the battery cells, and the inter-cell balance circuit that equalizes the energy between the batteries. Equipped with a balance circuit between modules. Thereby, as a battery system, it has been proposed to shorten the discharge time for balancing energy.
  • the power supply device of Patent Document 6 includes a plurality of power supply blocks having an equalization circuit that eliminates the unbalance of each battery in the series battery group, and solves the battery imbalance of each power supply block with the equalization circuit.
  • the power supply device further includes a block discharge circuit connected in parallel with the series battery group of each power supply block, and a block control circuit for controlling the block discharge circuit.
  • a block control circuit equalizes the voltage of a series battery group by discharging a series battery group with the block discharge circuit connected to the series battery group with a high voltage. It has been proposed to eliminate the unbalance of all the batteries by forming the power supply device in this way.
  • the charge control device of Patent Document 7 detects a minimum voltage from a plurality of batteries, a voltage difference from the minimum voltage is equal to or greater than a predetermined reference voltage difference Vth, and the voltage is a predetermined bypass operation start voltage. A bypass operation is performed for a battery of Vref or higher. Further, when the voltage difference between the voltage and the minimum voltage becomes equal to or less than the reference voltage difference Vth after the bypass operation is started, the bypass operation for the battery is stopped. Accordingly, it has been proposed to reduce the power loss associated with the bypass operation.
  • the present invention aims to shorten the balance time of the balance circuit using the active method.
  • an assembled battery in which b (b is a natural number of 2 or more) battery blocks in which a (a is a natural number of 2 or more) batteries are connected in series is connected in series.
  • the nth (n is a natural number from 1 to a-1) battery, the (n + 1) th battery, the 2n-1 switch element and the 2n switch element connected in series are connected in parallel.
  • a first balance circuit an m-th battery block (m is a natural number from 1 to b-1) and an m + 1-th battery block of the assembled battery; a second m-1 switch element connected in series; Switch elements are connected in parallel, and the m-th battery block and the (m + 1) -th battery Forming the battery block with b-1 second balance circuits in which the mth coil is connected between the lock and between the 2m-1 switch element and the 2m switch element
  • a first switching control unit that switches the switch elements of the first balance circuit so that the voltages of the adjacent batteries of the a batteries are equalized, and the adjacent batteries of the b battery blocks
  • a second switching control unit that switches the switching elements of the second balance circuit so that the voltages between the blocks are equalized.
  • the balance time of the balance circuit using the active method can be shortened.
  • an active balance circuit In an active balance circuit, the voltages of a plurality of batteries forming an assembled battery are equalized by exchanging electric charges between adjacent batteries. Therefore, when exchanging electric charges (energy) between distant batteries, the electric charges must be transferred through several circuits. As described above, in the balance circuit of the active method as described above, when charges are exchanged between distant batteries, the charge is moved through a number of circuits, so that the balance time is long and the charge is moved. There is a problem that efficiency decreases.
  • the voltage equalizing apparatus uses the first balance circuit of the active method for equalizing the voltages of the plurality of batteries forming each battery block, and the voltages of the plurality of battery blocks forming the assembled battery. And an active second balance circuit for equalization. And when equalizing the voltage of all the batteries which form an assembled battery, a voltage equalization apparatus operates a 1st balance circuit and a 2nd balance circuit simultaneously.
  • the voltage equalization apparatus can reduce the number of circuits through which charges pass by moving charges through the second balance circuit even when charges are exchanged between distant batteries. Can be reduced. Therefore, the voltage equalization apparatus according to the embodiment can shorten the balance time, which is the time until the voltages of the plurality of batteries are equalized, and can improve the energy efficiency of the voltage equalization control.
  • FIG. 1 is a configuration diagram showing a voltage equalizing apparatus.
  • the circuit configuration of FIG. 1 shows the minimum unit of an active balance circuit.
  • the voltage equalization apparatus 100 includes batteries 101 and 102, switch elements 103 and 104, a coil 105, voltage measurement units 106 and 107, a main control unit 108, and a storage unit 111, and has an active balance. A circuit is formed. Further, the main control unit 108 includes a variation determination unit 109 and a switching control unit 110. The switch elements 103 and 104 and the coil 105 are collectively referred to as a balance circuit 112.
  • the batteries 101 and 102 are secondary batteries such as a lithium ion secondary battery and a nickel hydride secondary battery.
  • the batteries 101 and 102 are connected in series.
  • the switch elements 103 and 104 are, for example, semiconductor switches such as field effect transistors or electromagnetic relays.
  • the switch elements 103 and 104 are connected in series and connected in parallel with the batteries 101 and 102.
  • the coil 105 is configured by, for example, winding an electric wire such as a copper wire.
  • the coil 105 is connected between the battery 101 and the battery 102 and between the switch element 103 and the switch element 104.
  • the voltage measuring units 106 and 107 are, for example, voltmeters.
  • the voltage measuring units 106 and 107 are connected in parallel to the batteries 101 and 102, respectively, and measure the voltages of the batteries 101 and 102.
  • the voltage measuring units 106 and 107 transmit the measured voltage values (hereinafter referred to as measured values) to the variation determining unit 109 and the switching control unit 110.
  • the main control unit 108 is a computer in which a memory is mounted as a work space such as an ECU (Electronic Control Unit), and controls the operation of each component of the voltage equalization apparatus 100. Then, the computer is caused to function as the variation determination unit 109 and the switching control unit 110.
  • the variation determination unit 109 and the switching control unit 110 may be realized by circuits having respective functions.
  • the variation determination unit 109 outputs a signal (hereinafter referred to as a variation signal) indicating that the voltage difference between the batteries 101 and 102 is larger than a specified value to the switching control unit 110.
  • the variation signal may include the voltage values of the batteries 101 and 102, respectively. Note that when the variation determination unit 109 is realized by a circuit, for example, a comparator may be used.
  • the switching control unit 110 is realized as a partial function of the main control unit 108.
  • the switching control unit 110 acquires a measurement value from the voltage measurement units 106 and 107.
  • the switching control unit 110 refers to the acquired measurement value and compares the voltage of the battery 101 with the voltage of the battery 102. Then, for example, when the switching control unit 110 determines that the voltage of the battery 101 is larger than the voltage of the battery 102, the switching control unit 110 outputs a first pulse signal to the switch element 103.
  • the switching control unit 110 outputs the second pulse signal to the switch element 104 after the rising time of the first pulse signal.
  • the switch element 103 is turned on when the first pulse signal is at a high level, and is turned off when the first pulse signal is at a low level.
  • the switch element 104 is turned on when the second pulse signal is at a high level, and is turned off when the second pulse signal is at a low level.
  • the switching control part 110 switches the switch elements 103 and 104 alternately.
  • the switching control unit 110 is realized by a circuit, for example, a comparator and an oscillator may be used.
  • the storage unit 111 is, for example, a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory), or an HD (Hard Disk).
  • the storage unit 111 stores at least a specified value that is a threshold value of a voltage difference between the batteries 101 and 102. This specified value is read to the variation determination unit 109 when the variation determination unit 109 determines the voltage variation of the batteries 101 and 102.
  • ⁇ Default value> The specified value specifies the voltage difference of the batteries that are subject to voltage equalization, and when the voltage difference becomes larger than the voltage value set in the specified value, the battery voltage varies. judge.
  • setting of a prescribed value of the voltage difference and other setting values handled in the voltage equalization control will be described.
  • FIG. 2 is an explanatory diagram showing the stored contents of the specified value table.
  • the specified value table 201 only needs to store at least the specified value.
  • OCV Open circuit voltage
  • SOC State of Charge
  • the specified value and the operation start voltage are values arbitrarily set by the user.
  • the OCV and SOC values stored in the specified value table 201 indicate the characteristics of the batteries used for the batteries 101 and 102, for example. Based on this characteristic, the user arbitrarily sets a specified value. In the specified value table 201, 100 [mV] is set as the specified value. As the specified value, for example, several tens to several hundreds mV is set, although it varies depending on the characteristics of the battery used and the accuracy required for the voltage equalization of the battery.
  • the OCV-SOC graph 202 in FIG. 2 shows the relationship with the OCV-SOC in the specified value table 201.
  • the change amount of the SOC with respect to the change in the OCV is smaller than when the OCV is 3.5 [V] or more.
  • Another specified value may be set.
  • an operation start voltage for determining whether or not to perform a balance operation of moving charges by switching the balance circuit 112 is determined, and the OCV is 3.5 [ If the battery voltage is less than V], the balance operation may not be performed. That is, with respect to a battery whose voltage is equal to or lower than the operation start voltage, even if variation in the battery voltage is confirmed by the variation determination unit 109, the balance operation is not performed, and charge exchange with other batteries is not performed.
  • an operation start voltage for performing the battery balance operation and an operation end voltage for ending the balance operation may be determined.
  • the battery voltage is lower than the operation start voltage and higher than the operation end voltage, the corresponding battery is not balanced.
  • the balance operation movement in the voltage equalization control of a voltage equalization apparatus is demonstrated in detail.
  • the voltage of the battery 101 is higher than the voltage of the battery 102.
  • the balance operation refers to an operation of switching the switch element to move the charge between adjacent batteries in the voltage equalization control of the battery.
  • the voltage values of the batteries 101 and 102 are included in the variation signal. And when the operation start voltage is set, the voltage of the batteries 101 and 102 shall be more than an operation start voltage.
  • FIG. 3 is an explanatory diagram showing changes in battery voltage during the operation of the balance circuit.
  • the balance operation graph 300 shows the relationship between changes in the voltages of the batteries 101 and 102 during the balance operation, the first pulse signal, and the second pulse signal.
  • the voltage equalization apparatus 100 determines whether or not the voltage difference between the batteries 101 and 102 is greater than a specified value by the variation determination unit 109. When it is determined that the voltage difference between the batteries 101 and 102 is larger than the specified value, a variation signal is input from the variation determination unit 109 to the switching control unit 110. Then, the switching control unit 110 acquires the voltage values of the batteries 101 and 102 included in the variation signal, and determines that the voltage of the battery 101 is higher than the voltage of the battery 102.
  • the switching control unit 110 outputs the first pulse signal to the switch element 103. Then, the switching control unit 110 outputs the second pulse signal to the switch element 104 when the on / off operation of the switch element 103 by the first pulse signal ends. Note that rise times t [s] of the first pulse signal and the second pulse signal are set so that charge can be transferred from the battery 101 to the battery 102 with maximum efficiency.
  • the switching control unit 110 outputs the first pulse signal to the switch element 103 again. Further, the switching control unit 110 outputs the second pulse signal to the switch element 104 when the on / off operation of the switch element 103 by the first pulse signal is completed.
  • the switching elements 103 and 104 are switched, and the charge is transferred from the battery 101 to the battery 102.
  • the switching control unit 110 repeats switching of the switch elements 103 and 104 until the voltage difference between the batteries 101 and 102 becomes equal to or less than a specified value stored in the specified value table 201. Specifically, the switching control unit 110 reads a specified value from the specified value table 201 when starting switching of the switch elements 103 and 104. In addition, the switching control unit 110 acquires measurement values from the voltage measurement units 106 and 107 and monitors the voltages of the batteries 101 and 102 during the balance operation. Then, the switching control unit 110 determines whether or not the voltage difference between the batteries 101 and 102 is within a specified value. When the voltage difference between the batteries 101 and 102 becomes less than the specified value, the switching control unit 110 switches the switching elements 103 and 104.
  • the specified value used for the end of switching of the switch elements 103 and 104 and the specified value used for the start of switching of the switch elements 103 and 104 may be set separately. For example, in balance operation, power is consumed based on efficiency. Therefore, the specified value used for switching start determination is set to be large so as not to perform balance operation as much as possible. In addition, by setting the specified value used in the switching end determination smaller than the specified value used in the switching start determination, the battery voltage difference is made smaller than the specified value used in the switching start determination. Increase the interval until the balance operation starts.
  • ⁇ Configuration of voltage equalization device> A configuration of the voltage equalizing apparatus according to the embodiment will be described.
  • FIG. 4 is a configuration diagram showing an example of the voltage equalization apparatus according to the embodiment.
  • the voltage equalization apparatus 400 includes battery blocks 401 to 403, first balance circuits 404 to 406, a second balance circuit 407, a main control unit 408, and a storage unit 111.
  • the main control unit 408 includes a first variation determination unit 409, a first switching control unit 410, a block voltage calculation unit 411, a second variation determination unit 412, and a second switching control unit 413.
  • the battery blocks 401 to 403 have a configuration in which four batteries are connected in series, and each is connected to a separate first balance circuit.
  • the battery blocks 401 to 403 are connected in series to form an assembled battery.
  • the batteries included in the battery blocks 401 to 403 are connected to voltage measuring units (not shown) for measuring voltages.
  • Each voltage measurement unit outputs a measured value of the voltage of the battery connected to each of the first variation determination unit 109 and the first switching control unit 110.
  • three battery blocks are connected in series to form an assembled battery, but this is an example, and the number of battery blocks is not particularly limited as long as it is two or more. Further, in FIG.
  • the configuration of the voltage measurement unit of the voltage equalization apparatus 400 is the same as that of the voltage measurement units 106 and 107 of the voltage equalization apparatus 100 described with reference to FIG. In the following description, for the sake of simplification of description, the case where the number of battery blocks forming the assembled battery is three and the number of batteries constituting each battery block is four will be described as an example.
  • the first balance circuit 404 has a configuration in which the balance circuits 112 described in FIG. 1 are connected to each other so that charges can be transferred between adjacent batteries included in the battery block 401. Specifically, if the battery cells included in the battery block 401 are arranged in the order of the batteries a to d, the balance circuit is provided between the batteries a and b, the batteries b and c, and the batteries c and d. 112 is connected to form a first balance circuit.
  • the configurations of the first balance circuit 405 and the first balance circuit 406 are the same as the configuration of the first balance circuit 404. Note that the first balance circuits 404 to 406 in FIG. 4 do not include the battery blocks 401 to 403.
  • the second balance circuit 407 has a configuration in which the balance circuit 112 described in FIG. 1 is connected to each other so that charges can be transferred between adjacent battery blocks 401 to 403 included in the assembled battery. Specifically, the second balance circuit 407 is formed by connecting the balance circuit 112 between the battery blocks 401 and 402 and the battery blocks 402 and 403, respectively.
  • the main control unit 408 is a computer in which a memory is mounted as a work space such as an ECU (Electronic Control Unit), and controls the operation of each component of the voltage equalization apparatus 400. Then, the computer is caused to function as the first variation determination unit 409, the first switching control unit 410, the block voltage calculation unit 411, the second variation determination unit 412, and the second switching control unit 413.
  • the first variation determination unit 409, the first switching control unit 410, the block voltage calculation unit 411, the second variation determination unit 412, and the second switching control unit 413 May be realized by circuits having respective functions.
  • the first variation determination unit 409 is realized as a partial function of the main control unit 408. Then, the voltage measured by the voltage measuring unit connected to the battery block 401 is acquired, and the minimum voltage (hereinafter referred to as the minimum cell voltage) and the maximum voltage (hereinafter referred to as the minimum cell voltage) among the acquired four battery voltages. , Maximum cell voltage). Then, using the extracted minimum cell voltage and the maximum cell voltage, a voltage difference between the minimum cell voltage and the maximum cell voltage (hereinafter referred to as a cell voltage difference) is calculated by the following formula (3). According to 4), it is determined whether or not the voltage difference between the minimum cell voltage and the maximum cell voltage is within a first specified value that is a threshold value of battery voltage variation in the battery block 401.
  • the first variation determination unit 409 causes the battery voltage of the battery block 401 to vary when the cell voltage difference of the battery block 401 is greater than the first specified value. It is determined that Then, the first variation determination unit 409 outputs a signal (hereinafter referred to as a first variation signal) indicating that the cell voltage difference of the battery block 401 is larger than a specified value to the first switching control unit 410. . Further, the first variation signal includes block identification information for identifying the battery block. The first variation signal may further include the voltage values of the four batteries.
  • the first variation determination unit 409 also calculates a cell voltage difference for the battery blocks 402 and 403 using Equation (3), and whether or not the cell voltage difference is greater than the first specified value using Equation (4). Determine whether. Then, the first variation determination unit 409 transmits a first variation signal indicating whether or not the cell voltage difference between the battery blocks 402 and 403 is larger than a specified value to the first switching control unit 410. Output to the unit 410. Note that when the first variation determination unit 409 is realized by a circuit, for example, a comparator or the like may be used.
  • the first switching control unit 410 is realized as a partial function of the main control unit 408.
  • the first switching control unit 410 receives all the voltages of the battery block corresponding to the block identification information included in the first variation signal.
  • a measurement value is acquired from the measurement unit. For example, when the block identification information indicates the battery block 401, the first switching control unit 410 acquires the measurement value of each voltage measurement unit connected to the battery block 401, and the four battery modules 401 have. Compare voltages. Then, the first switching control unit 410 controls the three balance circuits 112 included in the first balance circuit 404 so as to move the charge from the battery having a high voltage to the battery having a low voltage.
  • each balance circuit 112 included in the first balance circuit 404 the same control as the balance operation described with reference to FIG. 3 is performed on each balance circuit 112 included in the first balance circuit 404.
  • the block identification information indicates the battery block 401
  • the voltage of the corresponding battery may be acquired and the same control may be performed.
  • the first switching control unit 410 is realized by a circuit, for example, a comparator and an oscillator may be used.
  • the block voltage calculation unit 411 is realized as a partial function of the main control unit 408. And the block voltage calculation part 411 acquires the voltage value of all the batteries which an assembled battery has from each voltage measurement part which is not shown in figure. Further, the voltage of the battery block 401 is calculated by adding all the voltages of the batteries included in the battery block 401. Similarly, the voltage of the battery block 402 and the voltage of the battery block 403 are calculated. Then, the calculated voltages of the battery blocks 401 to 403 are output to the second variation determination unit 412.
  • the block voltage calculation unit 411 is realized by a circuit, for example, an adder or the like may be used.
  • the block voltage calculation unit 411 is connected to all voltage measurement units connected in parallel to each battery by signal lines.
  • the second variation determination unit 412 is realized as a partial function of the main control unit 408. Then, the voltages of the battery blocks 401 to 403 calculated by the block voltage calculation unit 411 are acquired, respectively. Among the acquired voltages of the battery blocks 401 to 403, the minimum voltage (hereinafter referred to as the minimum block voltage) and the maximum voltage are acquired. The voltage (hereinafter referred to as the maximum block voltage) is extracted. Then, using the extracted minimum block voltage and maximum block voltage, a voltage difference between the minimum block voltage and the maximum block voltage (hereinafter referred to as a block voltage difference) is calculated by the following formula (5).
  • the second variation determination unit 412 determines that the voltage of the battery blocks 401 to 403 included in the assembled battery when the block voltage difference of the assembled battery is greater than the second specified value. Judge that it is scattered.
  • the second variation determination unit 412 outputs a signal (hereinafter referred to as a second variation signal) indicating that the block voltage difference of the assembled battery is larger than the specified value to the second variation determination unit 412.
  • the second variation signal may include the voltage values of the battery blocks 401 to 403.
  • a comparator may be used.
  • the second switching control unit 413 is realized as a partial function of the main control unit 408. Then, when the second variation signal is input from the second variation determination unit 412, the second switching control unit 413 acquires the voltages of the battery blocks 401 to 403 from the block voltage calculation unit 411. The second switching control unit 413 compares the acquired voltages of the battery blocks 401 to 403. Then, the second switching control unit 413 controls the two balance circuits 112 included in the second balance circuit 407 so that the charges are moved from the battery block having a high voltage to the battery block having a low voltage.
  • a specific control method is the same as the control in which the battery voltage in the balance operation described with reference to FIG. 3 is replaced with the voltage of the battery block.
  • control is performed such that a battery block having a high voltage is switched and then a battery block having a low voltage is switched.
  • the second switching control unit 413 is realized by a circuit, for example, a comparator and an oscillator may be used.
  • the storage unit 111 has the same configuration as the storage unit 111 illustrated in FIG. Then, the first specified value used in the first variation determination unit 409 and the second specified value used in the second variation determination unit 412 are stored. Similar to the specified values described with reference to FIG. 2, the first specified value and the second specified value are appropriately determined according to the characteristics of the battery used by the user. As an example, the first specified value and the second specified value differ depending on the characteristics of the battery used and the accuracy required for the voltage equalization of the battery, but for example, several tens to several hundred mV are set.
  • the ⁇ Operation of voltage equalization control> Next, the voltage equalization control operation of the embodiment will be described.
  • FIG. 4 there are four batteries forming each battery block, and three battery blocks forming the assembled battery are described as an example.
  • FIG. 5 is an activity diagram showing a voltage equalization processing procedure according to the embodiment.
  • the voltage equalization apparatus 400 is configured to perform voltage equalization control when a signal for turning on voltage equalization control is input by a user or an input unit (not shown) of the main control unit 408 or when an ignition switch is turned off. To start.
  • the main control unit 408 equalizes the voltages of the four batteries included in each battery block (S501), equalizes the voltages of the three battery blocks included in the assembled battery (S502), and the first balance circuit 404. ⁇ 406 and determination of stopping the balance operation of the second balance circuit 407 (S503) are executed simultaneously. In S503, as long as any one or more of the first balance circuit and the second balance circuit are in operation, the determination in S503 is repeated (in operation in S503).
  • the main control unit 408 finishes the voltage equalization of the battery in S501 and the voltage equalization of the battery block in S502, and stops the balance operation of the first balance circuit and the second balance circuit in S503. If it is determined that the battery blocks 401 to 403 are equalized, it is determined whether or not the voltages of the batteries forming the battery blocks 401 to 403 are equalized (S504).
  • the main control unit 408 equalizes the voltages of the battery blocks 401 to 403. It is determined whether it has been performed (S505).
  • the main control unit 408 performs the process of S502. Execute.
  • the main control unit 408 ends the voltage equalization control. .
  • the voltage equalization apparatus 400 by operating the voltage equalization apparatus 400, the voltages of all the batteries can be equalized. Further, although it has been described that the processing of S501 to S503 is performed simultaneously, the processing of S501 and the processing of S502 may be performed in order. In that case, the process of S502 may be performed after the process of S501 is completed, or the process of S501 may be performed after the process of S502 is completed. Further, the processing of S503 may be performed after the processing of S501 and the processing of S502 are completed. S503 to S505 are referred to as voltage equalization determination processing. ⁇ Battery voltage equalization processing procedure> Next, the battery voltage equalization process in S501 will be described in detail.
  • FIG. 6 is a flowchart showing a battery voltage equalization processing procedure according to the embodiment.
  • FIG. 9 is explanatory drawing which shows the change of the voltage of the battery at the time of the voltage equalization process which concerns on embodiment.
  • the cells forming the battery block 401 shown in FIG. 4 are formed as the cells 1 to 4
  • the batteries forming the battery block 402 are formed as the cells 5 to 8
  • the battery block 403 is formed.
  • the batteries are designated as cell 9 to cell 12.
  • the main control unit 408 of the voltage equalization apparatus 400 receives a signal for turning on voltage equalization control by a user using an input unit (not shown) of the main control unit 408, or when an ignition switch is turned off. Then, the voltage equalization process is started. Note that the charge amount (voltage) of each battery in the battery blocks 401 to 403 at this time varies as shown in [1] of FIG.
  • the main control unit 408 causes the voltage measurement unit connected to each battery to measure the voltages of all the batteries constituting the assembled battery (S601).
  • the first variation determination unit 409 of the main control unit 408 obtains the measurement value from each voltage measurement unit and substitutes it into the equation (3), thereby calculating the cell voltage difference for each of the battery blocks 401 to 403. (S602).
  • the first variation determination unit 409 uses the equation (4) for each of the battery blocks 401 to 403 to calculate the cell voltage difference calculated in S602 and the first specified value stored in the storage unit 111. Compare. Then, the first variation determination unit 409 determines whether there is a battery block having a cell voltage difference larger than the first specified value (S603).
  • the first variation determination unit 409 includes the first variation including the identifier of the battery block.
  • the signal is output to the first switching control unit 410.
  • the first switching control unit 410 acquires an identifier, and is connected to a battery block having a cell voltage difference larger than the first specified value based on the identifier.
  • the balance operation is performed on the first balance circuit (S604).
  • the main control unit 408 controls the plurality of voltage measurement units to measure the voltage of the battery forming each battery block in which the first balance circuit is performing the balancing operation (S605). Further, the first variation determination unit 409 acquires the battery voltage measured in S605, and uses the equation (3), the cell voltage difference that forms each battery block in which the first balance circuit is performing the balancing operation. Is calculated (S606).
  • the first variation determination unit 409 uses the equation (4) to determine the battery block in which the cell voltage difference is equal to or less than the first specified value among the battery blocks in which the first balance circuit is performing the balancing operation. It is determined whether or not there is (S607).
  • the first variation determination unit 409 determines whether or not the cell voltage difference has become equal to or less than the first specified value in all battery blocks (S609).
  • the first variation determination unit 409 includes the identification number of the corresponding battery block.
  • the first variation signal is output to the first switching control unit 410. And if the 1st variation signal is acquired, the 1st switching control part 410 will perform processing of S604.
  • the main control unit 408 ends the battery voltage equalization process. .
  • the charge amounts (voltages) of the batteries in the battery blocks 401 to 403 at this time are equalized as shown in [2] of FIG. However, the voltages of the battery blocks 401 to 403 vary. ⁇ Battery block voltage equalization processing procedure> Next, the battery block voltage equalization processing in S502 will be described in detail.
  • FIG. 7 is a flowchart showing the voltage equalization processing procedure of the battery block according to the embodiment.
  • the main control unit 408 of the voltage equalization apparatus 400 receives a signal for turning on voltage equalization control by a user using an input unit (not shown) of the main control unit 408, or when an ignition switch is turned off. Then, the voltage equalization processing of the battery blocks 401 to 403 is started. It is assumed that the charge amounts (voltages) of the battery blocks 401 to 403 at this time vary as shown in [2] of FIG. The reason why the control is started from the state [2] in FIG. 9 is for simplification of the description, and the control is normally started from the state [1] in FIG.
  • the main control unit 408 of the voltage equalization apparatus 400 causes the voltage measurement unit connected to each battery to measure the voltages of all the batteries constituting the assembled battery (S701).
  • the block voltage calculation unit 411 of the main control unit 408 acquires the measured values of the voltages of all the batteries, and calculates the voltages of the battery blocks 401 to 403 (S702).
  • the second variation determination unit 412 obtains the voltages of the battery blocks 401 to 403 from the block voltage calculation unit 411, and calculates the block voltage difference of the assembled battery by substituting it into the equation (5) (S703). .
  • the second variation determination unit 412 compares the block voltage difference of the assembled battery calculated using Expression (6) with the second specified value stored in the storage unit 111, and the block voltage difference is calculated. It is determined whether it is larger than the second specified value (S704).
  • the main control unit 408 determines that it is not necessary to perform the voltage equalization process on the battery blocks 401 to 403, The voltage equalization process for the battery blocks 401 to 403 is completed.
  • the second variation determination unit 412 When it is determined in S704 that the block voltage difference is larger than the second specified value (Yes in S704), the second variation determination unit 412 outputs the second variation signal to the second switching control unit 413. To do. Then, when the second variation signal is input, the second switching control unit 413 causes the second balance circuit to perform a balancing operation (S705).
  • the main control unit 408 causes the voltage measurement unit connected to each battery to measure the voltages of all the batteries constituting the assembled battery (S706).
  • the block voltage calculation unit 411 acquires the measured values of the voltages of all the batteries, and calculates the voltages of the battery blocks 401 to 403 (S707).
  • the second variation determination unit 412 obtains the voltages of the battery blocks 401 to 403 from the block voltage calculation unit 411, and calculates the block voltage difference of the assembled battery by substituting into the equation (5) (S708). .
  • the second variation determination unit 412 compares the block voltage difference of the assembled battery calculated using Expression (6) with the second specified value, and the block voltage difference becomes equal to or less than the second specified value. It is determined whether or not (S709).
  • the second switching control unit 413 stops the balance operation of the second balance circuit 407 (S710). ). Then, the main control unit 408 ends the voltage equalization process of the battery block.
  • FIG. 8 is a flowchart showing a voltage equalization determination process according to the embodiment.
  • the main control unit 408 of the voltage equalization apparatus 400 receives a signal for turning on voltage equalization control by a user using an input unit (not shown) of the main control unit 408, or when an ignition switch is turned off. Then, the voltage equalization determination process for the battery and the battery blocks 401 to 403 is started.
  • the main control unit 408 inquires of the first switching control unit 410 whether or not the first balance circuits 404 to 406 are stopped (S801).
  • the main control unit 408 ends the operations of all the first balance circuits. The operation of S801 is repeated until
  • the main control unit 408 causes the second switching control unit 413 to stop the second balance circuit 407. An inquiry is made as to whether or not (S802).
  • the main control unit 408 repeats the operation in S802 until the operation of the second balance circuit is completed.
  • the main control unit 408 converts the voltages of all the batteries constituting the assembled battery to the voltages connected to the batteries.
  • the measurement unit is made to measure (S803).
  • the first variation determination unit 409 calculates the cell voltage difference for each of the battery blocks 401 to 403 by acquiring the measurement value from each voltage measurement unit and substituting it into the equation (3) (S804).
  • the first variation determination unit 409 uses the equation (4) for each of the battery blocks 401 to 403 to calculate the cell voltage difference calculated in S804 and the first specified value stored in the storage unit 111. Compare. Then, the first variation determination unit 409 determines whether or not the cell voltage difference is less than or equal to the first specified value in all battery blocks (S805).
  • the first variation determination unit 409 includes the first variation including the identifier of the battery block.
  • the signal is output to the first switching control unit 410. Then, when the first variation signal is input, the first switching control unit 410 executes the process of S604.
  • the first variation determination unit 409 completes the battery voltage equalization process normally. It is determined that
  • the block voltage calculation unit 411 of the main control unit 408 acquires the measured values of the voltages of all the batteries, and calculates the voltages of the battery blocks 401 to 403 (S806).
  • the second variation determination unit 412 obtains the voltages of the battery blocks 401 to 403 from the block voltage calculation unit 411 and substitutes them into the equation (5) to calculate the block voltage difference of the assembled battery (S807). .
  • the second variation determination unit 412 compares the block voltage difference of the assembled battery calculated using the equation (6) with the second specified value stored in the storage unit 111, and the block voltage difference is calculated. It is determined whether or not the value is equal to or less than the second specified value (S808).
  • the second variation determination unit 412 When it is determined in S808 that the block voltage difference is larger than the second specified value (No in S808), the second variation determination unit 412 outputs the second variation signal to the second switching control unit 413. To do. Then, when the second variation signal is input, the second switching control unit 413 performs the process of S705.
  • the second variation determination unit 412 performs normal voltage equalization processing on the battery blocks 401 to 403. It is determined that the process has ended.
  • the active type voltage equalization apparatus includes the first balance circuit for equalizing the voltages of the plurality of batteries forming each battery block and the plurality of batteries forming the assembled battery. And a second balance circuit for equalizing the block voltages. And when equalizing the voltage of all the batteries which form an assembled battery, a voltage equalization apparatus operates a 1st balance circuit and a 2nd balance circuit simultaneously. Thereby, the balance time of the balance circuit using the active method can be shortened, and the energy efficiency of the voltage equalization control can be improved.
  • the active type voltage equalization apparatus includes a plurality of battery voltages forming each battery block after the balance operation of the first balance circuit and the balance operation of the second balance circuit are completed. And whether or not the voltages of the plurality of battery blocks forming the assembled battery are equalized.
  • the balancing operation of the first balance circuit or the second balance is performed again. Performs circuit balancing. As a result, even when only one of the balance operation of the first balance circuit and the balance operation of the second balance circuit is operating, the voltage related to the balance circuit that is not operating varies. Variation can be detected and equalized.
  • a plurality of batteries forming each battery block by the balance operation of the second balance circuit May affect the voltage of the device, and the voltage may vary.
  • voltage variations of the plurality of batteries forming each battery block are detected, and the first balance circuit is again detected.
  • the balance operation is configured to be executed.
  • the first balance circuit and the second balance circuit are provided, but in addition to this, a plurality of assembled batteries in which a plurality of battery blocks are connected in series are connected in series.
  • a third balance circuit for equalizing the voltages may be provided.
  • the main control unit 408 includes a third switching control unit and a third variation determination unit.
  • the main control unit 408 includes a fourth switching control unit and a fourth variation determination unit.
  • the balance time can be shortened and the energy efficiency of the voltage equalization control can be improved.
  • the configurations and operations of the third variation determination unit, the third switching control unit, the fourth variation determination unit, and the fourth switching control unit are the first variation determination unit and the first variation determination unit, respectively. It is the same as the switching control unit. However, the target for voltage equalization control is changed between batteries, between assembled batteries, and between battery groups.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 電池ブロック401~403を形成する複数の電池の電圧を均等化するアクティブ方式の第1のバランス回路404~406と、組電池を形成する電池ブロック401~403の電圧を均等化するアクティブ方式の第2のバランス回路407とを備える。そして、組電池を形成する全ての電池の電圧を均等化するときに、電圧均等化装置は、第1のバランス回路404~406と第2のバランス回路407とを同時にバランス動作させる。

Description

電圧均等化装置
 本発明は、組電池を構成する電池の電圧を均等化する電圧均等化装置に関し、特には、アクティブ方式の電圧均等化装置に関する。
 ハイブリッド車や電気自動車などは、高電圧を得るために、リチウムイオン電池などの複数の電池を直列に接続した組電池を搭載している。
 このような組電池を形成する電池の電圧がばらつくと、電池の劣化が加速的に進行することや、利用可能なエネルギー量の低下が生じることがある。したがって、組電池を形成する電池の電圧は均等化されていることが望ましい。しかし、電池ごとに、容量、内部抵抗及び自己放電率などが不均一であるため、組電池を形成する電池の電圧にばらつきが発生することがある。そこで、従来から、組電池を形成する電池の電圧を均等化するためのバランス回路を有する電圧均等制御装置を用いて、組電池を形成する電池の電圧の均等化(以下、電圧均等化という。)をすることが提案されている。
 特許文献1のセル均等化回路は、ブロック内の複数の電池の電圧の大小関係に基づいて放電回路を操作する。これにより、ブロック内の複数の電池の電圧を均等化する。一方、電圧検出回路により、電圧の高いブロックを抽出する。そして、電圧の高いブロックを電源とするハードウェアをオン状態とすることで、電圧の高いブロックの放電を促進することができる組電池の調整装置が提案されている。
 特許文献2の電圧均等化装置は、直列で連結されたバッテリーを一定大きさのモジュールに分け、モジュール内電荷均等化とモジュール間電荷均等化を同時に行い、電荷均等化性能を向上させ、回路のサイズを減らすことが提案されている。
 特許文献3の電圧均等化回路は、隣り合う電池ブロックは、互いに隣接する二つのセルを共有する。これにより、高速かつ使い勝手のよい4セル用均等化ICにより、種々の総セル数をもつ組み電池の電圧均等化が可能とすることが提案されている。
 特許文献4の二次電池パックは、充電中に単位ブロックまたは複合ブロック単位での電圧バランス調整を行い、満充電による充電停止後に単位ブロック内の二次電池間の電圧バランス調整を行う。これにより、単位ブロックや複合ブロック単位での電圧バランス及び二次電池単位での電圧バランス、および二次電池ブロック全体での電圧バランスが得ることが提案されている
 特許文献5の各々が直列に接続された複数の電池を含む複数のモジュール電池が接続された電池システムは、複数のモジュール電池の各々は、電池間のエネルギーを均等化させるセル間バランス回路と、モジュール電池間のエネルギーを均等化させるモジュール間バランス回路を備える。これにより、電池システムとして、エネルギーをバランスさせるための放電時間を短縮することが提案されている。
 特許文献6の電源装置は、直列電池群の各電池のアンバランスを解消する均等化回路を有する複数の電源ブロックを備え、各々の電源ブロックの電池のアンバランスを均等化回路で解消する。さらに電源装置は、各々の電源ブロックの直列電池群と並列に接続しているブロック放電回路と、ブロック放電回路を制御するブロック制御回路を備える。ブロック制御回路は、電圧の高い直列電池群に接続しているブロック放電回路で直列電池群を放電することにより、直列電池群の電圧を均等化する。このように電源装置を形成することで、全ての電池のアンバランスを解消することが提案されている。
 特許文献7の充電制御装置は、複数の電池の中から、最小電圧を検出し、この最小電圧との電圧差が所定の基準電圧差Vth以上であり、かつ、電圧が所定のバイパス動作開始電圧Vref以上の電池に対して、バイパス動作を行う。また、バイパス動作の開始後に、電圧と最小電圧との電圧差が基準電圧差Vth以下になったときは、この電池に対するバイパス動作を停止する。これにより、バイパス動作に伴う電力損失を低減することが提案されている。
 以上のように、特許文献1~7では、電池ブロックを形成する電池の電圧の均等化と、組電池を形成する電池ブロックの電圧の均等化とを行なうことで、全ての電池の電圧の均等化を行なっている。
特開2009-278709号公報 特開2010-529817号公報 特開2005-312161号公報 特開2009-050085号公報 特開2010-029050号公報 特開2007-300701号公報 特開2011-078276号公報
 本発明は、アクティブ方式を用いたバランス回路のバランス時間を短くすることを目的とする。
 上述した課題を解決し、目的を達成するため、a個の(aは2以上の自然数)電池を直列に接続した電池ブロックを、b個(bは2以上の自然数)直列に接続した組電池と、前記各電池ブロックの第n(nは1~a-1の自然数)の電池と第n+1の電池と、直列に接続された第2n-1のスイッチ素子と第2nのスイッチ素子とが並列に接続され、第nの電池と第n+1の電池との間と、第2n-1のスイッチ素子と第2nのスイッチ素子との間とに第nのコイルが接続された、a-1個の第1のバランス回路と、前記組電池の第m(mは1~b-1の自然数)の電池ブロックと第m+1の電池ブロックと、直列に接続された第2m-1のスイッチ素子と第2mのスイッチ素子とが並列に接続され、第mの電池ブロックと第m+1の電池ブロックとの間と、第2m-1のスイッチ素子と第2mのスイッチ素子との間とに第mのコイルが接続された、b-1個の第2のバランス回路と、前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧が均等化するように、前記第1のバランス回路のスイッチ素子をスイッチングさせる第1のスイッチング制御部と、前記b個の電池ブロックの隣り合う電池ブロック同士の電圧が均等化するように、前記第2のバランス回路のスイッチ素子をスイッチングさせる第2のスイッチング制御部と、を備えることを特徴とする。
 本発明によれば、アクティブ方式を用いたバランス回路のバランス時間を短くすることができる。
電圧均等化装置を示す構成図である。 規定値テーブルの記憶内容を示す説明図である。 バランス回路の動作時の電池の電圧の変化を示す説明図である。 実施の形態に係る電圧均等化装置の一実施例を示す構成図である。 実施の形態に係る電圧均等化処理手順を示すアクティビティ図である。 実施の形態に係る電池の電圧均等化処理手順を示すフローチャートである。 実施の形態に係る電池ブロックの電圧均等化処理手順を示すフローチャートである。 実施の形態に係る電圧均等化判定処理を示すフローチャートである。 実施の形態に係る電圧均等化処理時の電池の電圧の変化を示す説明図である。
 以下に図面を参照して、この発明に係る電圧均等化装置の実施の形態を詳細に説明する。
(実施の形態)
 まず、実施の形態に係る電圧均等化装置の特徴について説明する。
 アクティブ方式のバランス回路では、隣り合う電池間で電荷をやり取りすることで、組電池を形成する複数の電池の電圧を均等化する。したがって、離れた電池間で電荷(エネルギー)のやり取りをする場合には、いくつもの回路を介して電荷を移動させなければならない。このように、上述のようなアクティブ方式のバランス回路では、離れた電池間で電荷のやり取りをする場合には、いくつもの回路を介して電荷を移動させるため、バランス時間が長く、かつ電荷の移動効率が低下するという問題がある。
 そこで、実施の形態に係る電圧均等化装置は、各電池ブロックを形成する複数の電池の電圧を均等化するアクティブ方式の第1のバランス回路と、組電池を形成する複数の電池ブロックの電圧を均等化するアクティブ方式の第2のバランス回路とを備える。そして、組電池を形成する全ての電池の電圧を均等化するときに、電圧均等化装置は、第1のバランス回路と第2のバランス回路とを同時に動作させる。
 これにより、実施の形態に係る電圧均等化装置は、離れた電池間で電荷のやり取りをする場合でも、第2のバランス回路を介して電荷を移動させることにより、電荷が経由する回路の数を少なくすることができる。したがって、実施の形態に係る電圧均等化装置は、複数の電池の電圧が均等化されるまでの時間であるバランス時間を短くし、かつ電圧均等化制御のエネルギー効率を向上させることができる。
<バランス回路の回路構成>
 まず、アクティブ方式のバランス回路の回路構成について説明する。
 図1は、電圧均等化装置を示す構成図である。なお、図1の回路構成は、アクティブ方式のバランス回路の最小単位を示したものである。
 電圧均等化装置100は、電池101、102と、スイッチ素子103、104と、コイル105と、電圧計測部106、107と、主制御部108と、記憶部111とを有し、アクティブ方式のバランス回路を形成している。また、主制御部108は、バラツキ判定部109と、スイッチング制御部110とを有する。そして、スイッチ素子103、104と、コイル105とを合わせてバランス回路112という。
 電池101、102は、例えば、リチウムイオン二次電池、ニッケル水素二次電池などの二次電池である。そして、電池101、102は、直列に接続されている。
 スイッチ素子103、104は、例えば、電界効果トランジスタなどの半導体スイッチや電磁リレーなどである。そして、スイッチ素子103、104は、直列に接続され、電池101、102と並列に接続されている。
 コイル105は、例えば、銅線等の電線を巻き回すことで構成される。そして、コイル105は、電池101と電池102との間と、スイッチ素子103とスイッチ素子104との間とに接続されている。
 電圧計測部106、107は、例えば、電圧計である。そして、電圧計測部106、107は、それぞれ電池101、102に並列に接続され、電池101、102の電圧を測定する。また、電圧計測部106、107は、測定した電圧値(以下、測定値という。)をバラツキ判定部109、およびスイッチング制御部110に送信する。
 主制御部108は、例えば、ECU(Electronic Control Unit)などのワークスペースとしてメモリを搭載するコンピュータであり、電圧均等化装置100の各構成要素の動作を制御する。そして、コンピュータをバラツキ判定部109と、スイッチング制御部110として機能させる。なお、主制御部108において、バラツキ判定部109と、スイッチング制御部110とを、それぞれの機能を有する回路により実現しても良い。
 バラツキ判定部109は、主制御部108の一部の機能として実現される。そして、電圧計測部106、107が測定した電圧をそれぞれ取得し、下記式(1)により、電池101、102の電圧差を算出し、下記式(2)により、電池101、102の電圧差が規定値以内であるか否かを判定する。
電池101の電圧-電池102の電圧=電圧差・・・(1)
電圧差≦規定値・・・(2)
 そして、バラツキ判定部109は、電池101、102の電圧差が規定値よりも大きい場合、電池101、102の電圧がばらついていると判定する。すると、バラツキ判定部109は、スイッチング制御部110に電池101、102の電圧差が規定値よりも大きいことを示す信号(以下、ばらつき信号という。)を出力する。なお、ばらつき信号に、電池101、102それぞれの電圧値を含んでも良い。なお、バラツキ判定部109を回路により実現する場合には、例えば、比較器などを用いても良い。
 スイッチング制御部110は、主制御部108の一部の機能として実現される。そして、スイッチング制御部110は、バラツキ判定部109からばらつき信号が入力されると、電圧計測部106、107から測定値を取得する。また、スイッチング制御部110は、取得した測定値を参照し、電池101の電圧と電池102の電圧とを比較する。そして、スイッチング制御部110は、例えば、電池101の電圧が電池102の電圧よりも大きいと判定した場合、スイッチ素子103に第1のパルス信号を出力する。また、スイッチング制御部110は、第1のパルス信号の立ち上がり時間の後、スイッチ素子104に第2のパルス信号を出力する。すると、スイッチ素子103は、第1のパルス信号がハイレベルのときオン状態となり、ローレベルのときオフ状態となる。また、スイッチ素子104は、第2のパルス信号がハイレベルのときオン状態となり、ローレベルのときオフ状態となる。これにより、スイッチング制御部110は、スイッチ素子103、104を交互にスイッチングさせる。なお、スイッチング制御部110を回路により実現する場合には、例えば、比較器と発振器などを用いても良い。
 記憶部111は、例えば、ROM(Read Only Memory)およびRAM(Random Access Memory)などのメモリや、HD(Hard Disk)である。そして、記憶部111には、少なくとも、電池101、102の電圧差の閾値である規定値が記憶されている。この規定値は、バラツキ判定部109が電池101、102の電圧のばらつき判定を行なうときに、バラツキ判定部109に読み出される。
<規定値>
 規定値とは、電圧均等化の対象となる電池の電圧差を規定するものであり、規定値に定めた電圧値よりも電圧差が大きくなったときに、電池の電圧がばらついているものと判定する。以下に、電圧差の規定値の設定、およびその他の電圧均等化制御で扱われる設定値について説明する。
 また、図2は、規定値テーブルの記憶内容を示す説明図である。
 規定値テーブル201には、少なくとも規定値が格納されていれば良い。ただし、図2の規定値テーブル201には、規定値とその他の電圧均等化制御で扱われる設定値を説明するために、電池の開放電圧であるOCV(Open circuit voltage)と、電池残量の割合を示すSOC(State of Charge)と、動作開始電圧を格納している例を示した。なお、OCVとSOCとは、電池の種類ごとに異なり、実験により取得される値である。また、規定値と動作開始電圧とは、ユーザにより任意に設定される値である。
 規定値テーブル201に格納されているOCVとSOCの値は、一例として、電池101、102に使用される電池の特性を示している。この特性に基づいて、ユーザが任意に規定値を設定する。規定値テーブル201では、規定値として100[mV]が設定されている。規定値としては、使用する電池の特性や電池の電圧均等化において要求される精度により異なるが、例えば、数十~数百mVが設定される。
 なお、図2のOCV-SOCグラフ202は、規定値テーブル201のOCV-SOCとの関係を示している。OCV-SOCグラフ202を参照すると、OCVが3.5[V]未満のときは、OCVが3.5[V]以上のときと比較して、OCVの変化に対するSOCの変化量が少ないので、別の規定値を設定しても良い。または、規定値テーブル201に示すように、バランス回路112のスイッチングを行なうことで電荷の移動をするバランス動作を行なうか否かを判定するための動作開始電圧を定めて、OCVが3.5[V]未満の電池は、バランス動作を行なわないようにしても良い。すなわち、電圧が動作開始電圧以下の電池に関しては、バラツキ判定部109で電池の電圧のばらつきが確認されても、バランス動作を行なわず、他の電池との電荷のやり取りを行なわないものとする。
 また、電池の過放電や過充電などを考慮して、電池のバランス動作を行なう動作開始電圧と、バランス動作を終了する動作終了電圧とを定めても良い。そして、電池の電圧が、動作開始電圧未満のとき、および動作終了電圧より高いときは、該当する電池のバランス動作を行なわないようにする。
<バランス動作>
 ここで、図3を参照して、電圧均等化装置の電圧均等化制御におけるバランス動作について詳細に説明する。また、以下の説明においては、電池101の電圧が電池102の電圧よりも高いものとする。なお、バランス動作とは、電池の電圧均等化制御において、スイッチ素子をスイッチングさせて、隣り合う電池間で電荷の移動をさせる動作のことを言う。また、ばらつき信号に電池101、102それぞれの電圧値が含まれているものとする。そして、動作開始電圧が設定されている場合には、電池101、102の電圧が動作開始電圧以上であるものとする。
 図3は、バランス回路の動作時の電池の電圧の変化を示す説明図である。
 図3のバランス動作グラフ300は、横軸が時間[ms]であり、縦軸が電圧[V]である。そして、バランス動作グラフ300は、バランス動作時の電池101、102の電圧の変化と、第1のパルス信号と、第2のパルス信号の関係を示している。
 まず、電圧均等化装置100は、バラツキ判定部109で、電池101、102の電圧差が規定値より大きいか否かを判定する。そして、電池101、102の電圧差が規定値より大きいと判定されると、バラツキ判定部109からばらつき信号がスイッチング制御部110に入力される。すると、スイッチング制御部110は、ばらつき信号に含まれる電池101、102それぞれの電圧値を取得して、電池101の電圧の方が、電池102の電圧よりも高いと判定する。
 スイッチング制御部110は、第1のパルス信号をスイッチ素子103に出力する。そして、スイッチング制御部110は、第1のパルス信号によるスイッチ素子103のオンオフ動作が終わると、第2のパルス信号をスイッチ素子104に出力する。なお、第1のパルス信号と第2のパルス信号の立ち上がり時間t[s]は、電池101から電池102へ、最大の効率で電荷の移動ができるように設定される。
 そして、スイッチング制御部110は、制御間隔T[s]が経過すると、再び第1のパルス信号をスイッチ素子103に出力する。また、スイッチング制御部110は、第1のパルス信号によるスイッチ素子103のオンオフ動作が終わると、第2のパルス信号をスイッチ素子104に出力する。
 上記の動作を繰り返すことにより、スイッチ素子103、104をスイッチングし、電池101から電池102へ電荷を移動する。
 そして、スイッチング制御部110は、電池101、102の電圧差が規定値テーブル201に格納されている規定値以下になるまで、スイッチ素子103、104のスイッチングを繰り返す。具体的には、スイッチング制御部110は、スイッチ素子103、104のスイッチングを開始する際に、規定値テーブル201から規定値を読み出す。また、スイッチング制御部110は、バランス動作を行なっている間、電圧計測部106、107から測定値を取得し、電池101、102の電圧を監視する。そして、スイッチング制御部110は、電池101、102の電圧差が規定値以内になったか否かを判定し、電池101、102の電圧差が規定値未満になった時にスイッチ素子103、104のスイッチングを停止してバランス動作を終了する。以上により、電池101、102の電圧は、図3のバランス動作グラフ300に示すように均等化されることになる。なお、スイッチ素子103、104のスイッチングの終了判定で用いる規定値と、スイッチ素子103、104のスイッチングの開始判定で用いる規定値とは、別々に設定しても良い。例えば、バランス動作では、効率に基づいて電力を消費することになるので、できる限りバランス動作を行なわないように、スイッチングの開始判定で用いる規定値は大きめに設定する。また、スイッチングの終了判定で用いる規定値を、スイッチングの開始判定で用いる規定値よりも小さく設定しておくことで、スイッチングの開始判定で用いる規定値よりも電池の電圧差を小さくし、次回のバランス動作が開始されるまでの間隔を長くする。
<電圧均等化装置の構成>
 実施の形態に係る電圧均等化装置の構成について説明する。
 図4は、実施の形態に係る電圧均等化装置の一実施例を示す構成図である。以下の説明では、図1に示した最小単位のアクティブ方式のバランス回路112を有する電圧均等化装置と同じ構成については同じ符号を付し、その説明を省略する。
 実施の形態に係る電圧均等化装置400は、電池ブロック401~403と、第1のバランス回路404~406と、第2のバランス回路407と、主制御部408と、記憶部111とを有する。また、主制御部408は、第1のバラツキ判定部409と、第1のスイッチング制御部410と、ブロック電圧算出部411と、第2のバラツキ判定部412と、第2のスイッチング制御部413とを有する。
 電池ブロック401~403は、4つの電池を直列に接続した構成であり、それぞれが別々の第1のバランス回路と接続されている。そして、電池ブロック401~403は、互いに直列に接続されて組電池を構成している。また、電池ブロック401~403が有する電池には、それぞれ電圧を測定するための図示しない電圧計測部が接続されている。各電圧計測部は、第1のバラツキ判定部109と、第1のスイッチング制御部110に、それぞれが接続された電池の電圧の測定値を出力する。なお、図4では、電池ブロックが3つ直列に接続されて組電池を形成しているが、一例であり、電池ブロックの数は2つ以上であれば特に限定されない。さらに、図4では電池が4つ直列に接続されて電池ブロックを形成しているが、一例であり、電池の数は2つ以上であれば特に限定されない。また、電圧均等化装置400の電圧計測部の構成は、図1で説明した電圧均等化装置100の電圧計測部106、107と同じ構成である。以下の説明においては、説明の簡単化のため、組電池を形成する電池ブロックの数は3つであり、各電池ブロックを構成する電池数は4つである場合を例として説明する。
 第1のバランス回路404は、電池ブロック401が有する隣り合う電池の間で電荷を移動することができるように、図1で説明した、バランス回路112を相互に接続した構成である。具体的には、電池ブロック401が有する電池セルが電池a~電池dの順で並んでいるとすると、電池a、bと、電池b、cと、電池c、dとの間にそれぞれバランス回路112を接続することで、第1のバランス回路を形成している。また、第1のバランス回路405、および第1のバランス回路406の構成は、第1のバランス回路404の構成と同じである。なお、図4の第1のバランス回路404~406は、電池ブロック401~403を含まないものとする。
 第2のバランス回路407は、組電池が有する隣り合う電池ブロック401~403の間で、電荷を移動することができるように、図1で説明したバランス回路112を相互に接続した構成である。具体的には、電池ブロック401、402と、電池ブロック402、403との間にそれぞれバランス回路112を接続することで第2のバランス回路407を形成している。
 主制御部408は、例えば、ECU(Electronic Control Unit)などのワークスペースとしてメモリを搭載するコンピュータであり、電圧均等化装置400の各構成要素の動作を制御する。そして、コンピュータを第1のバラツキ判定部409と、第1のスイッチング制御部410と、ブロック電圧算出部411と、第2のバラツキ判定部412と、第2のスイッチング制御部413として機能させる。なお、主制御部108において、第1のバラツキ判定部409と、第1のスイッチング制御部410と、ブロック電圧算出部411と、第2のバラツキ判定部412と、第2のスイッチング制御部413とを、それぞれの機能を有する回路により実現しても良い。
 第1のバラツキ判定部409は、主制御部408の一部の機能として実現される。そして、電池ブロック401に接続される電圧計測部が測定した電圧をそれぞれ取得し、取得した4つの電池の電圧の中で最小の電圧(以下、最小セル電圧という。)と、最大の電圧(以下、最大セル電圧)とを抽出する。そして、抽出した最小セル電圧と、最大セル電圧を用いて、下記式(3)により最小セル電圧と、最大セル電圧との電圧差(以下、セル電圧差という。)を算出し、下記式(4)により、最小セル電圧と、最大セル電圧の電圧差が、電池ブロック401内の電池の電圧のばらつきの閾値である第1の規定値以内であるか否かを判定する。
最大セル電圧-最小セル電圧=セル電圧差・・・(3)
セル電圧差≦第1の規定値・・・(4)
 そして、第1のバラツキ判定部409は、式(4)を用いた判定の結果、電池ブロック401のセル電圧差が第1の規定値よりも大きい場合、電池ブロック401が有する電池の電圧がばらついていると判定する。すると、第1のバラツキ判定部409は、第1のスイッチング制御部410に電池ブロック401のセル電圧差が規定値よりも大きいことを示す信号(以下、第1のばらつき信号という。)を出力する。また、第1のばらつき信号には、電池ブロックを識別するブロック識別情報を含む。なお、第1のばらつき信号には、さらに、4つの電池それぞれの電圧値を含んでも良い。また、第1のバラツキ判定部409は、電池ブロック402、403についても、式(3)によりセル電圧差を算出し、式(4)によりセル電圧差が第1の規定値よりも大きいか否かを判定する。そして、第1のバラツキ判定部409は、第1のスイッチング制御部410に電池ブロック402、403のセル電圧差が規定値よりも大きいか否かを示す第1のばらつき信号を第1のスイッチング制御部410に出力する。なお、第1のバラツキ判定部409を回路により実現する場合には、例えば、比較器などを用いても良い。
 第1のスイッチング制御部410は、主制御部408の一部の機能として実現される。そして、第1のスイッチング制御部410は、第1のバラツキ判定部409から第1のばらつき信号が入力されると、第1のばらつき信号が含むブロック識別情報に対応する電池ブロックが有する全ての電圧計測部から測定値を取得する。例えば、ブロック識別情報が電池ブロック401を示す場合、第1のスイッチング制御部410は、電池ブロック401に接続されている各電圧計測部の測定値を取得し、電池ブロック401が有する4つの電池の電圧を比較する。そして、第1のスイッチング制御部410は、第1のバランス回路404が有する3つのバランス回路112を、それぞれが電圧の高い電池から電圧の低い電池に電荷を移動させるように制御する。具体的には、第1のバランス回路404が有するバランス回路112それぞれに対して、図3を用いて説明したバランス動作と同じ制御をする。なお、ブロック識別情報が電池ブロック401を示す場合について説明したが、ブロック識別情報が電池ブロック402、403を示す場合でも、それぞれ対応する電池の電圧を取得して、同様の制御を行なえば良い。また、第1のスイッチング制御部410を回路により実現する場合には、例えば、比較器と発振器などを用いても良い。
 ブロック電圧算出部411は、主制御部408の一部の機能として実現される。そして、ブロック電圧算出部411は、組電池が有する全ての電池の電圧値を、図示しない各電圧計測部から取得する。また、電池ブロック401が有する電池の電圧を全て加算して、電池ブロック401の電圧を算出する。同様に、電池ブロック402の電圧と、電池ブロック403の電圧を算出する。そして、算出した電池ブロック401~403の電圧を第2のバラツキ判定部412に出力する。なお、ブロック電圧算出部411を回路により実現する場合には、例えば、加算器などを用いれば良い。また、ブロック電圧算出部411は、電池それぞれに並列に接続されている全ての電圧計測部と信号線でつながれている。
 第2のバラツキ判定部412は、主制御部408の一部の機能として実現される。そして、ブロック電圧算出部411で算出した電池ブロック401~403の電圧をそれぞれ取得し、取得した電池ブロック401~403の電圧の中で最小の電圧(以下、最小ブロック電圧という。)と、最大の電圧(以下、最大ブロック電圧)とを抽出する。そして、抽出した最小ブロック電圧と、最大ブロック電圧を用いて、下記式(5)により最小ブロック電圧と、最大ブロック電圧との電圧差(以下、ブロック電圧差という。)を算出し、下記式(6)により、最小ブロック電圧と、最大ブロック電圧の電圧差が、組電池が有する電池ブロック401~403の電圧のばらつきの閾値である第2の規定値以内であるか否かを判定する。
最大ブロック電圧-最小ブロック電圧=ブロック電圧差・・・(5)
ブロック電圧差≦第2の規定値・・・(6)
 そして、第2のバラツキ判定部412は、式(6)を用いた判定の結果、組電池のブロック電圧差が第2の規定値よりも大きい場合、組電池が有する電池ブロック401~403の電圧がばらついていると判定する。すると、第2のバラツキ判定部412は、第2のバラツキ判定部412に組電池のブロック電圧差が規定値よりも大きいことを示す信号(以下、第2のばらつき信号という。)を出力する。なお、第2のばらつき信号には、電池ブロック401~403それぞれの電圧値を含んでも良い。なお、第2のバラツキ判定部412を回路により実現する場合には、例えば、比較器などを用いても良い。
 第2のスイッチング制御部413は、主制御部408の一部の機能として実現される。そして、第2のスイッチング制御部413は、第2のバラツキ判定部412から第2のばらつき信号が入力されると、ブロック電圧算出部411から電池ブロック401~403の電圧を取得する。また、第2のスイッチング制御部413は、取得した電池ブロック401~403の電圧を比較する。そして、第2のスイッチング制御部413は、第2のバランス回路407が有する2つのバランス回路112を、それぞれが電圧の高い電池ブロックから電圧の低い電池ブロックに電荷を移動させるように制御する。具体的な制御方法は、図3を用いて説明したバランス動作の電池の電圧を電池ブロックの電圧に置き換えた制御と同じである。すなわち、電圧が高い電池ブロックをスイッチングさせて、その後に電圧の低い電池ブロックをスイッチングさせるように制御する。なお、第2のスイッチング制御部413を回路により実現する場合には、例えば、比較器と発振器などを用いても良い。
 記憶部111は、図1で示した記憶部111と同じ構成である。そして、第1のバラツキ判定部409で用いる第1の規定値と、第2のバラツキ判定部412で用いる第2の規定値とを格納する。図2を用いて説明した規定値と同じように、第1の規定値と、第2の規定値とは、それぞれユーザにより使用する電池の特性に合わせて適宜決定されるものである。なお、一例としては、第1の規定値と第2の規定値として、使用する電池の特性や電池の電圧均等化において要求される精度により異なるが、例えば、数十~数百mVが設定される。
<電圧均等化制御の動作>
 次に、実施の形態の電圧均等化制御の動作を説明する。
 なお、以下の説明では、図4に示したように、各電池ブロックを形成する電池は4つであり、組電池を形成する電池ブロックは、3つであることを例として説明する。
 図5は、実施の形態に係る電圧均等化処理手順を示すアクティビティ図である。
 電圧均等化装置400は、主制御部408の図示しない入力部などにより、ユーザにより電圧均等化制御をオンする信号を入力されたとき、またはイグニッションスイッチがオフされたときなどに、電圧均等化制御を開始する。
 すると、主制御部408は、各電池ブロックが有する4つの電池の電圧の均等化(S501)と、組電池が有する3つの電池ブロックの電圧の均等化(S502)と、第1のバランス回路404~406と第2のバランス回路407のバランス動作の停止判定(S503)とを同時に実行する。また、S503では、第1のバランス回路、および第2のバランス回路のいずれか一つ以上が動作中である限り、S503の判定を繰り返す(S503にて動作中)。
 そして、主制御部408は、S501の電池の電圧均等化と、S502の電池ブロックの電圧均等化が終了し、かつ、S503において第1のバランス回路、および第2のバランス回路のバランス動作が停止したと判定する(S503にて停止)と、電池ブロック401~403を形成する電池の電圧が均等化したか否かを判定する(S504)。
 S504において、電池ブロック401~403の中で、電池の電圧が均等化されていない電池ブロックがあると判定した場合(S504にて、電池の電圧がばらついている。)、S501の処理を実行する。
 S504において、電池ブロック401~403それぞれが有する電池の電圧が均等化されている場合(S504にて、電池の電圧が均等化。)、主制御部408は電池ブロック401~403の電圧が均等化されているか否かを判定する(S505)。
 S505において、組電池を形成する電池ブロック401~403の電圧が均等化されていないと判定した場合(S505にて、電池ブロックの電圧がばらついている。)、主制御部408はS502の処理を実行する。
 S505において、組電池を形成する電池ブロック401~403の電圧が均等化されたと判定した場合(S505にて、電池ブロックの電圧が均等化。)、主制御部408は電圧均等化制御を終了する。
 以上のように、電圧均等化装置400が動作することで、全ての電池の電圧を均等化することができる。また、S501~S503の処理を同時に行なうと説明したが、S501の処理と、S502の処理とを順番に行なっても良い。その場合には、S501処理が終了した後にS502の処理を行なっても良いし、S502処理が終了した後にS501の処理を行なっても良い。また、S503の処理に関しては、S501の処理とS502の処理とが終了した後に行うようにしても良い。なお、S503~S505を電圧均等化判定処理という。
<電池の電圧均等化処理手順>
 次に、S501の電池の電圧均等化処理について詳細に説明する。
 図6は、実施の形態に係る電池の電圧均等化処理手順を示すフローチャートである。また、図9は、実施の形態に係る電圧均等化処理時の電池の電圧の変化を示す説明図である。なお、図9においては、図4に示した電池ブロック401を形成している電池をセル1~セル4、電池ブロック402を形成している電池をセル5~セル8、電池ブロック403を形成している電池をセル9~セル12としている。
 電圧均等化装置400の主制御部408は、主制御部408の図示しない入力部などを用いてユーザにより電圧均等化制御をオンする信号を入力されたとき、またはイグニッションスイッチがオフされたときなどに、電圧均等化処理を開始する。なお、このときの電池ブロック401~403の各電池の充電量(電圧)は、図9の[1]に示すように、それぞればらついているものとする。
 まず、主制御部408は、組電池を構成する全ての電池の電圧を、各電池に接続されている電圧計測部に測定させる(S601)。
 そして、主制御部408の第1のバラツキ判定部409は、各電圧計測部から測定値を取得し、式(3)に代入することで、電池ブロック401~403それぞれについてセル電圧差を算出する(S602)。
 また、第1のバラツキ判定部409は、電池ブロック401~403それぞれについて、式(4)を用いて、S602で算出したセル電圧差と記憶部111に記憶されている第1の規定値とを比較する。そして、第1のバラツキ判定部409は、セル電圧差が第1の規定値よりも大きい電池ブロックがあるか否かを判定する(S603)。
 S603において、セル電圧差が第1の規定値よりも大きい電池ブロックがないと判定された場合(S603にてNo)、主制御部408は、電池の電圧均等化処理をする必要がないと判定し、電池の電圧均等化処理を終了する。
 S603において、セル電圧差が第2の規定値よりも大きい電池ブロックがあると判定した場合(S603にてYes)、第1のバラツキ判定部409は、その電池ブロックの識別子を含む第1のばらつき信号を第1のスイッチング制御部410に出力する。そして、第1のスイッチング制御部410は、第1のばらつき信号が入力されると、識別子を取得し、その識別子に基づいてセル電圧差が第1の規定値よりも大きい電池ブロックに接続された第1のバランス回路をバランス動作させる(S604)。
 そして、主制御部408は、複数の電圧計測部を制御して、第1のバランス回路がバランス動作中の各電池ブロックを形成する電池の電圧を測定する(S605)。また、第1のバラツキ判定部409は、S605で測定された電池の電圧を取得し、式(3)を用いて、第1のバランス回路がバランス動作中の各電池ブロックを形成するセル電圧差を算出する(S606)。
 そして、第1のバラツキ判定部409は、式(4)を用いて、第1のバランス回路がバランス動作中の電池ブロックの中で、セル電圧差が第1の規定値以下になった電池ブロックがあるか否かを判定する(S607)。
 S607において、セル電圧差が第1の規定値以下になった電池ブロックがないと判定した場合(S607にてNo)、第1のバラツキ判定部409は、S609の処理を実行する。
 S607において、セル電圧差が第1の規定値以下になった電池ブロックがあると判定された場合(S607にてYes)、第1のスイッチング制御部410は、セル電圧差が第1の規定値以下になった電池ブロックに接続された第1のバランス回路のバランス動作を停止させる(S608)。
 すると、第1のバラツキ判定部409は、全ての電池ブロックでセル電圧差が第1の規定値以下になったか否かを判定する(S609)。
 S609の判定の結果、セル電圧差が第1の規定値以下になっていない電池ブロックがある場合(S609にてNo)、第1のバラツキ判定部409は、該当する電池ブロックの識別番号を含む第1のばらつき信号を第1のスイッチング制御部410に出力する。そして、第1のばらつき信号を取得すると第1のスイッチング制御部410は、S604の処理を実行する。
 S609の判定の結果、全ての電池ブロックでセル電圧差が第1の規定値以下になったと判定された場合(S609にてYes)、主制御部408は、電池の電圧均等化処理を終了する。
 なお、このときの電池ブロック401~403の各電池の充電量(電圧)は、図9の[2]に示すように、それぞれ均等化されている。ただし、電池ブロック401~403の電圧はばらついている。
<電池ブロックの電圧均等化処理手順>
 次に、S502の電池ブロックの電圧均等化処理について詳細に説明する。
 図7は、実施の形態に係る電池ブロックの電圧均等化処理手順を示すフローチャートである。
 電圧均等化装置400の主制御部408は、主制御部408の図示しない入力部などを用いてユーザにより電圧均等化制御をオンする信号を入力されたとき、またはイグニッションスイッチがオフされたときなどに、電池ブロック401~403の電圧均等化処理を開始する。なお、このときの電池ブロック401~403の充電量(電圧)は、図9の[2]に示すように、それぞればらついているものとする。なお、図9の[2]の状態から制御を開始することにしたのは説明の簡単化のためであり、通常は、図9の[1]の状態から制御が開始される。
 電圧均等化装置400の主制御部408は、組電池を構成する全ての電池の電圧を、各電池に接続されている電圧計測部に測定させる(S701)。
 そして、主制御部408のブロック電圧算出部411は、全ての電池の電圧の測定値を取得し、電池ブロック401~403の電圧を算出する(S702)。
 そして、第2のバラツキ判定部412は、ブロック電圧算出部411から電池ブロック401~403の電圧を取得し、式(5)に代入することで、組電池のブロック電圧差を算出する(S703)。
 また、第2のバラツキ判定部412は、式(6)を用いて算出した組電池のブロック電圧差と記憶部111に記憶されている第2の規定値とを比較して、ブロック電圧差が第2の規定値よりも大きいか否かを判定する(S704)。
 S704において、ブロック電圧差が第2の規定値以下と判定された場合(S704にてNo)、主制御部408は、電池ブロック401~403の電圧均等化処理をする必要がないと判定し、電池ブロック401~403の電圧均等化処理を終了する。
 S704において、ブロック電圧差が第2の規定値よりも大きいと判定した場合(S704にてYes)、第2のバラツキ判定部412は、第2のばらつき信号を第2のスイッチング制御部413に出力する。そして、第2のスイッチング制御部413は、第2のばらつき信号が入力されると、第2のバランス回路をバランス動作させる(S705)。
 そして、主制御部408は、組電池を構成する全ての電池の電圧を、各電池に接続されている電圧計測部に測定させる(S706)。
 また、ブロック電圧算出部411は、全ての電池の電圧の測定値を取得し、電池ブロック401~403の電圧を算出する(S707)。
 すると、第2のバラツキ判定部412は、ブロック電圧算出部411から電池ブロック401~403の電圧を取得し、式(5)に代入することで、組電池のブロック電圧差を算出する(S708)。
 さらに、第2のバラツキ判定部412は、式(6)を用いて算出した組電池のブロック電圧差と第2の規定値とを比較して、ブロック電圧差が第2の規定値以下になったか否かを判定する(S709)。
 S709において、ロック電圧差が第2の規定値以下になっていないと判定された場合(S709にてNo)、主制御部108は、S706の処理を実行する。
 S709において、ブロック電圧差が第2の規定値以下であると判定された場合(S709にてYes)、第2のスイッチング制御部413は、第2のバランス回路407のバランス動作を停止させる(S710)。そして、主制御部408は、電池ブロックの電圧均等化処理を終了する。
 なお、このときの電池ブロック401~403の各電池、および電池ブロック401~403の充電量(電圧)は、図9の[3]に示すように、それぞれ均等化されている。
<電圧均等化判定処理>
 次に、S503~505の電圧均等化判定処理について詳細に説明する。
 図8は、実施の形態に係る電圧均等化判定処理を示すフローチャートである。
 電圧均等化装置400の主制御部408は、主制御部408の図示しない入力部などを用いてユーザにより電圧均等化制御をオンする信号を入力されたとき、またはイグニッションスイッチがオフされたときなどに、電池、および電池ブロック401~403の電圧均等化判定処理を開始する。
 主制御部408は、第1のスイッチング制御部410に第1のバランス回路404~406が停止したか否かを問合せる(S801)。
 そして、第1のバランス回路404~406の中で、バランス動作中の第1のバランス回路がある場合(S801にてNo)、主制御部408は、全ての第1のバランス回路の動作が終了するまでS801の動作を繰り返す。
 また、第1のバランス回路404~406のバランス動作が停止している場合(S801にてYes)、主制御部408は、第2のスイッチング制御部413に第2のバランス回路407が停止したか否かを問合せる(S802)。
 そして、第2のバランス回路407がバランス動作中の場合(S802にてNo)、主制御部408は、第2のバランス回路の動作が終了するまでS802の動作を繰り返す。
 また、第2のバランス回路407のバランス動作が停止している場合(S802にてYes)、主制御部408は、組電池を構成する全ての電池の電圧を、各電池に接続されている電圧計測部に測定させる(S803)。
 そして、第1のバラツキ判定部409は、各電圧計測部から測定値を取得し、式(3)に代入することで、電池ブロック401~403それぞれについてセル電圧差を算出する(S804)。
 また、第1のバラツキ判定部409は、電池ブロック401~403それぞれについて、式(4)を用いて、S804で算出したセル電圧差と記憶部111に記憶されている第1の規定値とを比較する。そして、第1のバラツキ判定部409は、全ての電池ブロックでセル電圧差が第1の規定値以下となっているか否かを判定する(S805)。
 S805において、セル電圧差が第2の規定値よりも大きい電池ブロックがあると判定した場合(S805にてNo)、第1のバラツキ判定部409は、その電池ブロックの識別子を含む第1のばらつき信号を第1のスイッチング制御部410に出力する。そして、第1のスイッチング制御部410は、第1のばらつき信号が入力されると、S604の処理を実行する。
 S805において、全ての電池ブロックでセル電圧差が第1の規定値以下であると判定した場合(S805にてYes)、第1のバラツキ判定部409は、電池の電圧均等化処理が正常に終了したと判定する。
 すると、主制御部408のブロック電圧算出部411は、全ての電池の電圧の測定値を取得し、電池ブロック401~403の電圧を算出する(S806)。
 そして、第2のバラツキ判定部412は、ブロック電圧算出部411から電池ブロック401~403の電圧を取得し、式(5)に代入することで、組電池のブロック電圧差を算出する(S807)。
 さらに、第2のバラツキ判定部412は、式(6)を用いて算出した組電池のブロック電圧差と記憶部111に記憶されている第2の規定値とを比較して、ブロック電圧差が第2の規定値以下になっているか否かを判定する(S808)。
 S808において、ブロック電圧差が第2の規定値よりも大きいと判定した場合(S808にてNo)、第2のバラツキ判定部412は、第2のばらつき信号を第2のスイッチング制御部413に出力する。そして、第2のスイッチング制御部413は、第2のばらつき信号が入力されると、S705の処理を実行する。
 S808の判定の結果、ブロック電圧差が第2の規定値以下であると判定した場合(S704にてYes)、第2のバラツキ判定部412は、電池ブロック401~403の電圧均等化処理が正常に終了したと判定する。
 以上に説明したように、実施の形態のアクティブ方式の電圧均等化装置は、各電池ブロックを形成する複数の電池の電圧を均等化する第1のバランス回路と、組電池を形成する複数の電池ブロックの電圧を均等化する第2のバランス回路とを備える。そして、組電池を形成する全ての電池の電圧を均等化するときに、電圧均等化装置は、第1のバランス回路と第2のバランス回路とを同時に動作させる。これにより、アクティブ方式を用いたバランス回路のバランス時間を短くし、かつ電圧均等化制御のエネルギー効率を向上させることができる。
 また、実施の形態のアクティブ方式の電圧均等化装置は、第1のバランス回路のバランス動作と、第2のバランス回路のバランス動作がともに終了した後に、各電池ブロックを形成する複数の電池の電圧と、組電池を形成する複数の電池ブロックの電圧とが均等化しているか否かを判定する。そして、各電池ブロックを形成する複数の電池の電圧、または組電池を形成する複数の電池ブロックの電圧が均等化していない場合には、再び第1のバランス回路のバランス動作、または第2のバランス回路のバランス動作を実行する。これにより、第1のバランス回路のバランス動作、および第2のバランス回路のバランス動作のどちらか片方だけが動作しているときに、動作していないバランス回路に関わる電圧がばらついても、その電圧のばらつきを検出して均等化することができる。より具体的には、第1のバランス回路のバランス動作終了後に、第2のバランス回路のバランス動作が続いていた場合、第2のバランス回路のバランス動作により、各電池ブロックを形成する複数の電池の電圧に影響を与え、その電圧がばらつくことがある。この場合、第1のバランス回路のバランス動作と、第2のバランス回路のバランス動作とが終了した後に、各電池ブロックを形成する複数の電池の電圧のばらつきを検出し、再び第1のバランス回路のバランス動作を実行するように構成した。これにより、各電池ブロックを形成する複数の電池の電圧のばらつきを再度均等化するので、電圧均等化の精度の低下を抑制することができる。
 また、上記の説明では、第1のバランス回路と第2のバランス回路とを設けたが、これに加えて、複数の電池ブロックを直列に接続した組電池を複数直列に接続し、その組電池の電圧の均等化をする第3のバランス回路を備えても良い。この場合には、主制御部408に、第3のスイッチング制御部と、第3のバラツキ判定部とを備える。さらに、複数の組電池を直列に接続した電池群を複数直列に接続し、その電池群の電圧の均等化をする第4のバランス回路を備えても良い。この場合には、主制御部408に、第4のスイッチング制御部と、第4のバラツキ判定部とを備える。このように、適宜複数段のバランス回路を構成することで、組電池を形成する電池の数が増えた場合にも、バランス動作において離れた電池間で電荷を移動するときの電荷が経由する回路の数を少なくすることができる。よって、バランス時間を短くし、かつ電圧均等化制御のエネルギー効率を向上させることができる。なお、第3のバラツキ判定部と、第3のスイッチング制御部と、第4のバラツキ判定部と、第4のスイッチング制御部の構成および動作は、それぞれ第1のバラツキ判定部と、第1のスイッチング制御部と同じである。ただし、電圧均等化制御をする対象は、電池間から、それぞれ組電池間、および電池群間に変更したものである。

Claims (16)

  1.  a個の(aは2以上の自然数)電池を直列に接続した電池ブロックを、b個(bは2以上の自然数)直列に接続した組電池と、
     前記各電池ブロックの第n(nは1~a-1の自然数)の電池と第n+1の電池と、直列に接続された第2n-1のスイッチ素子と第2nのスイッチ素子とが並列に接続され、第nの電池と第n+1の電池との間と、第2n-1のスイッチ素子と第2nのスイッチ素子との間とに第nのコイルが接続された、a-1個の第1のバランス回路と、
     前記組電池の第m(mは1~b-1の自然数)の電池ブロックと第m+1の電池ブロックと、直列に接続された第2m-1のスイッチ素子と第2mのスイッチ素子とが並列に接続され、第mの電池ブロックと第m+1の電池ブロックとの間と、第2m-1のスイッチ素子と第2mのスイッチ素子との間とに第mのコイルが接続された、b-1個の第2のバランス回路と、
     前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧が均等化するように、前記第1のバランス回路のスイッチ素子をスイッチングさせる第1のスイッチング制御部と、
     前記組電池を形成する前記b個の電池ブロックの隣り合う電池ブロック同士の電圧が均等化するように、前記第2のバランス回路のスイッチ素子をスイッチングさせる第2のスイッチング制御部と、
     を備えることを特徴とする電圧均等化装置。
  2.  前記a×b個の電池それぞれの電圧を測定する電圧計測部と、
     前記電圧計測部で測定した前記a×b個の電池の電圧値を取得し、前記電池ブロックごとに、前記電池ブロックを形成する前記a個の電池の電圧が、前記電池ブロックを形成する電池の電圧のばらつきの閾値である第1の規定値よりばらついているか否かを判定する第1のバラツキ判定部と、
     を備え、
     前記第1のスイッチング制御部は、
     前記第1のバラツキ判定部で判定した結果、前記電池ブロックを形成する前記a個の電池の電圧が前記第1の規定値よりばらついている電池ブロックがある場合、該電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧が均等化するように、前記第1のバランス回路のスイッチ素子をスイッチングさせることを特徴とする請求項1に記載の電圧均等化装置。
  3.  前記a×b個の電池それぞれの電圧を測定する電圧計測部と、
     前記電圧計測部で測定した前記a×b個の電池の電圧値を取得し、前記電池ブロックごとに、前記電池ブロックを形成する前記a個の電池の電圧を加算した電池ブロックの電圧を算出するブロック電圧算出部と、
     前記ブロック電圧算出部で算出した前記電池ブロックの電圧を取得し、前記b個の電池ブロックの電圧が前記組電池を形成する電池ブロックの電圧のばらつきの閾値である第2の規定値よりばらついているか否かを判定する第2のバラツキ判定部と、
     を備え、
     前記第2のスイッチング制御部は、
     前記第2のバラツキ判定部で判定した結果、前記b個の電池ブロックの電圧が前記第2の規定値以上にばらついている場合、該b個の電池ブロックの隣り合う電池ブロック同士の電圧が均等化するように、前記第2のバランス回路のスイッチ素子をスイッチングさせることを特徴とする請求項1に記載の電圧均等化装置。
  4.  前記a×b個の電池それぞれの電圧を測定する電圧計測部と、
     前記電圧計測部で測定した前記a×b個の電池の電圧値を取得し、前記電池ブロックごとに、前記電池ブロックを形成する前記a個の電池の電圧が、前記電池ブロックを形成する電池の電圧のばらつきの閾値である第1の規定値よりばらついているか否かを判定する第1のバラツキ判定部と、
     前記電圧計測部で測定した前記a×b個の電池の電圧値を取得し、前記電池ブロックごとに、前記電池ブロックを形成する前記a個の電池の電圧を加算した電池ブロックの電圧を算出するブロック電圧算出部と、
     前記ブロック電圧算出部で算出した前記電池ブロックの電圧を取得し、前記b個の電池ブロックの電圧が前記組電池を形成する電池ブロックの電圧のばらつきの閾値である第2の規定値よりばらついているか否かを判定する第2のバラツキ判定部と、
     を備え、
     前記第1のスイッチング制御部は、
     前記第1のバラツキ判定部で判定した結果、前記電池ブロックを形成する前記a個の電池の電圧が前記第1の規定値よりばらついている電池ブロックがある場合、前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧が均等化するように、前記第1のバランス回路のスイッチ素子をスイッチングさせ、
     前記第2のスイッチング制御部は、
     前記第2のバラツキ判定部で判定した結果、前記b個の電池ブロックの電圧が前記第2の規定値よりばらついている場合、前記b個の電池ブロックの隣り合う電池ブロック同士の電圧が均等化するように、前記第2のバランス回路のスイッチ素子をスイッチングさせることを特徴とする請求項1に記載の電圧均等化装置。
  5.  前記第1の規定値は、前記電池ブロックを形成するa個の電池の中で、最大の電圧を示す電池と、最小の電圧を示す電池との電圧の差の上限値を規定していることを特徴とする請求項2または4に記載の電圧均等化装置。
  6.  前記第1のバラツキ判定部は、前記第1のバランス回路のスイッチ素子がスイッチングしているときに、前記電池ブロックを形成するa個の電池の中で、最大の電圧を示す電池と、最小の電圧を示す電池との電圧の差が、前記第1の規定値以内になったか否かを判定し、
     前記第1のバラツキ判定部において、前記電池ブロックを形成するa個の電池の中で、最大の電圧を示す電池と、最小の電圧を示す電池との電圧の差が、前記第1の規定値以内になったと判定されたときに、前記第1のスイッチング制御部は、前記第1のバランス回路のスイッチ素子のスイッチングを停止することを特徴とする請求項5に記載の電圧均等化装置。
  7.  前記第2の規定値は、前記b個の電池ブロックの中で、最大の電圧を示す電池ブロックと、最小の電圧を示す電池ブロックとの電圧の差の上限値を規定していることを特徴とする請求項3または4に記載の電圧均等化装置。
  8.  前記第2のバラツキ判定部は、前記第2のバランス回路のスイッチ素子がスイッチングしているときに、前記b個の電池ブロックの中で、最大の電圧を示す電池ブロックと、最小の電圧を示す電池ブロックとの電圧の差が、前記第2の規定値以内になったか否かを判定し、
     前記第2のバラツキ判定部において、前記b個の電池ブロックの中で、最大の電圧を示す電池ブロックと、最小の電圧を示す電池ブロックとの電圧の差が、前記第2の規定値以内になったと判定されたときに、前記第2のスイッチング制御部は、前記第2のバランス回路のスイッチ素子のスイッチングを停止することを特徴とする請求項7に記載の電圧均等化装置。
  9.  前記第1のスイッチング制御部は、前記電池ブロックを形成するa個の電池の隣り合う電池の間で、電圧の高い電池から電圧の低い電池へ電荷を移動させるように、前記隣り合う電池と並列に接続されている前記スイッチ素子を、交互にスイッチングさせることを特徴とする請求項1~8のいずれか一つに記載の電圧均等化装置。
  10.  前記第2のスイッチング制御部は、隣り合う電池ブロックの間で、電圧の高い電池ブロックから電圧の低い電池ブロックへ電荷を移動させるように、前記隣り合う電池ブロックと並列に接続されている前記スイッチ素子を、交互にスイッチングさせることを特徴とする請求項1~9のいずれか一つに記載の電圧均等化装置。
  11.  前記第1のスイッチング制御部の前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧を均等化する制御と、前記第2のスイッチング制御部の前記b個の電池ブロックの隣り合う電池ブロック同士の電圧を均等化する制御とは、同時に行なわれることを特徴とする請求項1~10のいずれか一つに記載の電圧均等化装置。
  12.  前記第2のスイッチング制御部は、前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧を均等化した後に、前記b個の電池ブロックの隣り合う電池ブロック同士の電圧を均等化する制御をすることを特徴とする請求項1~10のいずれか一つに記載の電圧均等化装置。
  13.  前記第1のスイッチング制御部は、前記b個の電池ブロックの隣り合う電池ブロック同士の電圧を均等化した後に、前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧を均等化する制御をすることを特徴とする請求項1~10のいずれか一つに記載の電圧均等化装置。
  14.  前記第1のスイッチング制御部の前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧を均等化する制御と、前記第2のスイッチング制御部の前記b個の電池ブロックの隣り合う電池ブロック同士の電圧を均等化する制御とが終了し、前記第1のバランス回路と前記第2のバランス回路が停止したときに、
     前記電圧計測部は、前記a×b個の電池それぞれの電圧を測定し、
     前記第1のバラツキ判定部は、前記電圧計測部で測定した前記a×b個の電池の電圧値を取得し、前記電池ブロックごとに、前記電池ブロックを形成する前記a個の電池の電圧が、前記第1の規定値よりばらついているか否かを判定し、
     前記第1のスイッチング制御部は、前記第1のバラツキ判定部で判定した結果、前記電池ブロックを形成する前記a個の電池の電圧が前記第1の規定値よりばらついている電池ブロックがある場合、該電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧が均等化するように、前記第1のバランス回路のスイッチ素子をスイッチングさせることを特徴とする請求項1~13のいずれか一つに記載の電圧均等化装置。
  15.  前記第1のスイッチング制御部の前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧を均等化する制御と、前記第2のスイッチング制御部の前記b個の電池ブロックの隣り合う電池ブロック同士の電圧を均等化する制御とが終了し、前記第1のバランス回路と前記第2のバランス回路が停止したときに、
     前記電圧計測部は、前記a×b個の電池それぞれの電圧を測定し、
     前記ブロック電圧算出部は、前記電圧計測部で測定した前記a×b個の電池の電圧値を取得し、前記電池ブロックごとに、前記電池ブロックを形成する前記a個の電池の電圧を加算した電池ブロックの電圧を算出し、
     前記第2のバラツキ判定部は、前記ブロック電圧算出部で算出した前記電池ブロックの電圧を取得し、前記b個の電池ブロックの電圧が前記組電池を形成する電池ブロックの電圧のばらつきの閾値である前記第2の規定値よりばらついているか否かを判定し、
     前記第2のスイッチング制御部は、前記第2のバラツキ判定部で判定した結果、前記b個の電池ブロックの電圧が前記第2の規定値以上にばらついている場合、該b個の電池ブロックの隣り合う電池ブロック同士の電圧が均等化するように、前記第2のバランス回路のスイッチ素子をスイッチングさせることを特徴とする請求項1~14のいずれか一つに記載の電圧均等化装置。
  16.  a個の(aは2以上の自然数)電池を直列に接続した電池ブロックを、b個(bは2以上の自然数)直列に接続した組電池を、c個(cは2以上の自然数)直列に接続した電池群と、
     前記各電池ブロックの第n(nは1~a-1の自然数)の電池と第n+1の電池と、直列に接続された第2n-1のスイッチ素子と第2nのスイッチ素子とが並列に接続され、第nの電池と第n+1の電池との間と、第2n-1のスイッチ素子と第2nのスイッチ素子との間とに第nのコイルが接続された、a-1個の第1のバランス回路と、
     前記組電池の第m(mは1~b-1の自然数)の電池ブロックと第m+1の電池ブロックと、直列に接続された第2m-1のスイッチ素子と第2mのスイッチ素子とが並列に接続され、第mの電池ブロックと第m+1の電池ブロックとの間と、第2m-1のスイッチ素子と第2mのスイッチ素子との間とに第mのコイルが接続された、b-1個の第2のバランス回路と、
     前記電池群の第k(kは1~c-1の自然数)の組電池と第k+1の組電池と、直列に接続された第2k-1のスイッチ素子と第2kのスイッチ素子とが並列に接続され、第kの組電池と第k+1の組電池との間と、第2k-1のスイッチ素子と第2kのスイッチ素子との間とに第kのコイルが接続された、c-1個の第3のバランス回路と、
     前記電池ブロックを形成する前記a個の電池の隣り合う電池同士の電圧が均等化するように、前記第1のバランス回路のスイッチ素子をスイッチングさせる第1のスイッチング制御部と、
     前記組電池を形成する前記b個の電池ブロックの隣り合う電池ブロック同士の電圧が均等化するように、前記第2のバランス回路のスイッチ素子をスイッチングさせる第2のスイッチング制御部と、
     前記電池群を形成する前記c個の組電池の隣り合う組電池同士の電圧が均等化するように、前記第3のバランス回路のスイッチ素子をスイッチングさせる第3のスイッチング制御部と、
     を備えることを特徴とする電圧均等化装置。
PCT/JP2013/064108 2012-05-23 2013-05-21 電圧均等化装置 WO2013176141A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012117288A JP2013247690A (ja) 2012-05-23 2012-05-23 電圧均等化装置
JP2012-117288 2012-05-23

Publications (1)

Publication Number Publication Date
WO2013176141A1 true WO2013176141A1 (ja) 2013-11-28

Family

ID=49623829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064108 WO2013176141A1 (ja) 2012-05-23 2013-05-21 電圧均等化装置

Country Status (2)

Country Link
JP (1) JP2013247690A (ja)
WO (1) WO2013176141A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449295A (zh) * 2015-11-17 2016-03-30 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路
CN110015179A (zh) * 2017-08-31 2019-07-16 比亚迪股份有限公司 电池均衡方法、***、车辆、存储介质及电子设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102374744B1 (ko) * 2018-10-16 2022-03-14 주식회사 엘지에너지솔루션 배터리 모듈 밸런싱 장치 및 방법
JP7224973B2 (ja) * 2019-03-08 2023-02-20 マレリ株式会社 電源システム
JP7323745B2 (ja) * 2019-04-02 2023-08-09 株式会社今仙電機製作所 二次電池システム
DE112020004731T5 (de) 2019-10-03 2022-06-15 Denso Corporation Leistungswandler
JP7465754B2 (ja) 2020-08-07 2024-04-11 本田技研工業株式会社 蓄電装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (ja) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk 電池の充電制御装置及び方法
JP2006050716A (ja) * 2004-08-02 2006-02-16 Denso Corp 組電池充電状態制御装置
JP2007060792A (ja) * 2005-08-24 2007-03-08 Yazaki Corp 組電池の充電状態調整装置
JP2008035680A (ja) * 2006-07-31 2008-02-14 Fdk Corp 多直列蓄電セル
JP2009050085A (ja) * 2007-08-20 2009-03-05 Nec Tokin Corp 二次電池パック
JP2009278709A (ja) * 2008-05-12 2009-11-26 Denso Corp 組電池の調整装置
JP2010029050A (ja) * 2008-07-24 2010-02-04 Toshiba Corp 電池システム
JP2010166721A (ja) * 2009-01-16 2010-07-29 Nec Tokin Corp 二次電池パック
JP2010529817A (ja) * 2007-02-09 2010-08-26 エスケー エナジー 株式会社 電荷均等化装置
WO2010114806A1 (en) * 2009-04-03 2010-10-07 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack
JP2010263703A (ja) * 2009-05-08 2010-11-18 Denso Corp 組電池の容量調整装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07322516A (ja) * 1994-05-25 1995-12-08 Okamura Kenkyusho:Kk 電池の充電制御装置及び方法
JP2006050716A (ja) * 2004-08-02 2006-02-16 Denso Corp 組電池充電状態制御装置
JP2007060792A (ja) * 2005-08-24 2007-03-08 Yazaki Corp 組電池の充電状態調整装置
JP2008035680A (ja) * 2006-07-31 2008-02-14 Fdk Corp 多直列蓄電セル
JP2010529817A (ja) * 2007-02-09 2010-08-26 エスケー エナジー 株式会社 電荷均等化装置
JP2009050085A (ja) * 2007-08-20 2009-03-05 Nec Tokin Corp 二次電池パック
JP2009278709A (ja) * 2008-05-12 2009-11-26 Denso Corp 組電池の調整装置
JP2010029050A (ja) * 2008-07-24 2010-02-04 Toshiba Corp 電池システム
JP2010166721A (ja) * 2009-01-16 2010-07-29 Nec Tokin Corp 二次電池パック
WO2010114806A1 (en) * 2009-04-03 2010-10-07 Marvell World Trade Ltd. Power management circuit for rechargeable battery stack
JP2010263703A (ja) * 2009-05-08 2010-11-18 Denso Corp 組電池の容量調整装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449295A (zh) * 2015-11-17 2016-03-30 北京新能源汽车股份有限公司 动力电池均衡控制方法、装置和电路
CN110015179A (zh) * 2017-08-31 2019-07-16 比亚迪股份有限公司 电池均衡方法、***、车辆、存储介质及电子设备
CN110015179B (zh) * 2017-08-31 2023-01-06 比亚迪股份有限公司 电池均衡方法、***、车辆、存储介质及电子设备

Also Published As

Publication number Publication date
JP2013247690A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
WO2013176141A1 (ja) 電圧均等化装置
JP6840525B2 (ja) バッテリ制御方法、バッテリ制御装置、及びバッテリパック
US10003106B2 (en) Apparatus and method for managing battery
EP2418751B1 (en) Battery charger and battery charging method
CN102074766B (zh) 电池组和感测电池组的电压的方法
KR102508322B1 (ko) 멀티-셀 배터리 밸런싱
KR20090130406A (ko) 충전상태를 이용한 전지 평활화 시스템 및 방법
KR101241532B1 (ko) 충전 전압을 적응적으로 가변시키는 배터리 충전 장치 및 그의 배터리 충전 제어방법
US10559860B2 (en) Power storage device, power storage control device, and power storage control method
WO2014157449A1 (ja) 充放電装置、充放電制御方法、及びプログラム
JP2009081981A (ja) 充電状態最適化装置及びこれを具えた組電池システム
WO2012157747A1 (ja) 組電池の制御方法及び制御装置
WO2014167855A1 (ja) バランス補正装置および蓄電システム
Sun et al. Development of an optimized algorithm for bidirectional equalization in lithium-ion batteries
JP2022521589A (ja) バッテリーバンク制御装置及び方法
JP5851514B2 (ja) 電池制御装置、二次電池システム
KR20180060428A (ko) 배터리 밸런싱 방법 및 장치
WO2021192382A1 (ja) 蓄電池システムにおけるセルバランス方法
JP2013116007A (ja) 電圧均等化制御装置及び電圧均等化制御方法
JP2017162721A (ja) セルバランス回路制御装置、及び、セルバランス回路制御方法
WO2015133401A1 (ja) 制御ユニット、蓄電池システム、電池セルバランス方法およびプログラム
US11336100B2 (en) System and method for balancing state of charge of battery
CN108432085B (zh) 平衡电池充电***
JP2015208169A (ja) セルバランス制御装置及びセルバランス制御方法
JP6234049B2 (ja) バランス補正装置および蓄電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13793685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13793685

Country of ref document: EP

Kind code of ref document: A1