WO2013171960A1 - 熱伝導性シート供給体及び熱伝導性シートの供給方法 - Google Patents

熱伝導性シート供給体及び熱伝導性シートの供給方法 Download PDF

Info

Publication number
WO2013171960A1
WO2013171960A1 PCT/JP2013/002186 JP2013002186W WO2013171960A1 WO 2013171960 A1 WO2013171960 A1 WO 2013171960A1 JP 2013002186 W JP2013002186 W JP 2013002186W WO 2013171960 A1 WO2013171960 A1 WO 2013171960A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
heat conductive
heat
supply body
carrier tape
Prior art date
Application number
PCT/JP2013/002186
Other languages
English (en)
French (fr)
Inventor
靖久 石原
晃洋 遠藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201380025248.7A priority Critical patent/CN104303290B/zh
Priority to EP13791319.0A priority patent/EP2851947B1/en
Priority to US14/390,669 priority patent/US9385063B2/en
Priority to KR1020147031225A priority patent/KR101998218B1/ko
Publication of WO2013171960A1 publication Critical patent/WO2013171960A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B15/00Attaching articles to cards, sheets, strings, webs, or other carriers
    • B65B15/04Attaching a series of articles, e.g. small electrical components, to a continuous web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D73/00Packages comprising articles attached to cards, sheets or webs
    • B65D73/02Articles, e.g. small electrical components, attached to webs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/0084Containers and magazines for components, e.g. tube-like magazines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a heat conductive sheet supply body and a method for supplying a heat conductive sheet.
  • LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more and more themselves as performance, speed, size, and integration increase. Heat is generated, and the temperature rise of the chip due to the heat causes a malfunction and destruction of the chip. Therefore, many heat dissipating methods for suppressing the temperature rise of the chip during operation and heat dissipating members used therefor have been proposed.
  • a heat sink using a metal plate having a high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of a chip during operation.
  • the heat sink conducts heat generated by the chip and releases the heat from the surface due to a temperature difference from the outside air.
  • the heat sink In order to efficiently transfer the heat generated from the chip to the heat sink, the heat sink needs to be in close contact with the chip, but because there is a difference in the height of each chip and tolerance due to assembly processing, a flexible sheet or grease is used. It is interposed between the chip and the heat sink, and heat conduction from the chip to the heat sink is realized through this sheet or grease.
  • a grease-like heat dissipation material can be thinned and is an excellent heat dissipation material, but it is difficult to manage.
  • the application process may be performed manually by screen printing, extruded from a syringe, or automatically using a dispensing device, but it is very time consuming and not easy to handle. It may be.
  • the thermal conductive sheet is only affixed at the time of mounting, no special equipment is required, and it is easier to handle and manage than grease, but the affixing work is mostly manual and very efficient. In some cases, the rate of the product assembly process is limited. Thus, the productivity can be dramatically improved by automatically mounting the thermally conductive sheet mounting process using a vacuum nozzle or the like, which is the mainstream in mounting semiconductor components.
  • a thermal conductive sheet cut into a predetermined size is arranged on a substrate such as a PET film or a resin tray, and the vacuum nozzle is used one by one. There is a way to pick up the sheet.
  • the heat conductive sheets are arranged in a flat shape, and it takes a lot of space, the vacuum nozzle sucks up the sheet, and the distance from the sheet to the mounting location is different one by one.
  • the number of conductive sheets is large, the distance to the mounting location becomes long, and there is a problem that the risk of the sheet falling from the nozzle increases.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a heat conductive sheet supply body using an embossed carrier tape and a method for supplying a heat conductive sheet.
  • an embossed carrier tape having a plurality of pockets each containing a thermal conductive sheet on its surface, and a cover film for protecting the surface of the embossed carrier tape are in the form of a reel.
  • a thermally conductive sheet supply body is provided which is wound around a sheet.
  • Such a heat conductive sheet supply body can prepare many heat conductive sheets without spreading in a plane. Furthermore, since the heat conductive sheet can be taken up in a fixed position by feeding the tape little by little while peeling the cover film, the vacuum nozzle only needs to move in a constant manner, and the movement of the nozzle is simplified and the mounting process is improved. The risk of failure is reduced, and the automatic mounting process can be simplified and more efficient.
  • the tack energy of at least one surface of the thermal conductive sheet is 70 ⁇ J or less.
  • Such a heat conductive sheet can be sucked and supplied with a vacuum nozzle without adhering to the cover film or adhering to the bottom surface of the pocket of the embossed carrier tape.
  • the heat conductive sheet is preferably a laminate of a reinforcing layer and a heat conductive resin layer.
  • the thickness of the heat conductive sheet is preferably 60 ⁇ m or more and 600 ⁇ m or less.
  • the stress between a heat generating member and a cooling member can be relieved, and it has further favorable sheet moldability.
  • the thermal conductivity of the thermally conductive resin layer is preferably 1.0 W / mK or more, more preferably 3.0 W / mK or more.
  • the thermal conductive sheet can be applied to a heat generating part having a large calorific value.
  • the thermally conductive resin layer contains 300 parts by mass or more of a thermally conductive filler with respect to 100 parts by mass of the silicone resin.
  • Such a heat conductive resin layer can sufficiently obtain the heat conductivity of the heat conductive resin layer.
  • the reinforcing layer is preferably an aluminum foil.
  • Such a reinforcing layer is relatively inexpensive and can maintain the stability of the product.
  • a thermal conductive sheet is automatically mounted by sucking and supplying the thermal conductive sheet stored in the pocket of the embossed carrier tape of the thermal conductive sheet supply body one by one from the pocket using a vacuum nozzle.
  • a sheet supply method is provided.
  • the heat conductive sheet supply body and the method for supplying a heat conductive sheet of the present invention a large number of heat conductive sheets can be prepared without spreading in a plane, and the tape is peeled off while removing the cover film. Since the heat conductive sheet can be picked up at a fixed position by feeding the nozzles little by little, the vacuum nozzle only needs to move constantly, simplifying the nozzle movement and reducing the risk of failure in the mounting process. In addition, simplification and efficiency improvement of the automatic mounting process can be realized.
  • FIG. 1 (A) shows an example of an automatic mounting process by the heat conductive sheet supply body and the method of supplying a heat conductive sheet of the present invention.
  • FIG. 1B shows an example of a mounting failure that does not depend on the thermal conductive sheet supplier and the thermal conductive sheet supply method of the present invention.
  • It is a top view which shows an example of the embossed carrier tape used by the Example and comparative example of this invention.
  • the present inventor as a result of sucking the thermally conductive sheet and carrying it to the mounting location, a supply method using an embossed carrier tape and a thermally conductive sheet in the pocket of the embossed carrier tape.
  • the sheet was stored one by one and protected from above with a cover film, and then the carrier tape was wound in a reel shape to find a heat conductive sheet supply body.
  • this method and the supply body many thermal conductive sheets can be prepared without spreading in a plane, and the tape is fed little by little while peeling the cover film, so that the thermal conductive sheet is taken up at a fixed position.
  • the vacuum nozzle only needs to move constantly, the movement of the nozzle is simplified, the risk of failure in the mounting process is reduced, and simplification and efficiency of the automatic mounting process can be realized.
  • the supply method using the embossed carrier tape has been known as a supply method for semiconductor components that are very small and weak in strength (Patent Documents 1 to 4), there has been no example as a supply method for a heat conductive sheet.
  • the present invention has been completed by finding that the thermal conductive sheet supply body and the thermal conductive sheet supply method of the present invention can simplify and improve the automatic mounting process of the thermal conductive sheet.
  • an embossed carrier tape having a plurality of pockets each containing one heat conductive sheet on its surface and a cover film protecting the surface of the embossed carrier tape are wound in a reel shape.
  • the heat conductive sheet supply body characterized by the above.
  • an embossed carrier tape 3 having a plurality of pockets 2 containing a heat conductive sheet 1 on its surface and a cover film 4 for protecting the surface of the embossed carrier tape 3 are a reel.
  • the embossed carrier tape can be replaced with one that is particularly small among semiconductor manufacturing parts and that is widely used when housing low-strength parts.
  • There are many inventions related to embossed carrier tapes for conveying semiconductor components for example, Documents 1 to 4 are exemplified.
  • the material is preferably polycarbonate from the viewpoint of heat resistance and weather resistance.
  • the embossed pocket size is preferably about 10 to 20% larger than the sheet size both vertically and horizontally. If it is this size, there is no risk of the thermal conductive sheet getting caught in the pocket when sucking with the nozzle, and the thermal conductive sheet will not be displaced in the pocket during transportation, so it can be sucked correctly. it can.
  • protrusions at the four corners of the bottom surface of the pocket or to provide convex portions at both ends of the bottom surface of the pocket so that the heat conductive sheet does not contact the bottom surface as much as possible.
  • a protrusion and a convex part a heat conductive sheet can be smoothly attracted
  • the protrusions and the protrusions have a shape that does not damage the heat conductive sheet.
  • the pocket depth preferably has a margin of about 3 to 5 mm at the top when the heat conductive sheet is stored. If there is enough margin, there is no risk of the thermal conductive sheet protruding from the pocket during the process of storing the thermal conductive sheet and protecting it with the cover film, and it will not hinder the suction of the thermal conductive sheet. .
  • the interval between the pockets is arbitrary, but is preferably about 5 mm.
  • the embossed carrier tape of the present invention can have a length of several tens of meters to several hundreds of meters, and can accommodate thousands of thermal conductive sheets of several tens of mm square.
  • cover film There are many inventions related to cover films for embossed carrier tapes for transporting semiconductor components (Patent Document 5).
  • the cover film used in the present invention is particularly small among semiconductor manufacturing components, and is used to protect low-strength components. Widely used ones can be substituted.
  • the material is preferably a polyester film.
  • the embossed carrier tape and the cover film need to be joined, and there are two methods, one is applying an adhesive to the end of the cover film and bonding the other, and the other is heat-compressing the carrier tape and the cover film. It is preferable that the bonding strength is resistant to vibration, heat, and thermal shock when the thermally conductive sheet supply body is transported, and is stable over time. If the bonding strength is too weak, it will be peeled off during transportation, and if it is too strong, an extra load will be applied when the tape is peeled off during mounting.
  • the tack energy of at least one surface of the thermal conductive sheet is 70 ⁇ J or less.
  • the tack energy of the surface of the conductive sheet is more preferably 40 ⁇ J or less. If the tack energy of the surface of at least one surface of the heat conductive sheet is 70 ⁇ J or less, the cover film side is the lower side when the heat conductive sheet is stored in the pocket of the embossed carrier tape, protected with a cover film, and reeled. Even if it becomes, since there is little possibility that a heat conductive sheet adheres to a cover film and there is little possibility of being judged as an error in computer control of an automatic mounting process, a process can be advanced smoothly.
  • the heat conductive sheet is preferably a laminate of a reinforcing layer and a heat conductive resin layer.
  • the reinforcing layer is preferably a metal foil, a glass cloth, or a polyimide film from the viewpoint of heat dissipation performance and reinforcing capability. More preferably, the metal foil has a thickness of 20 ⁇ m or more.
  • the metal foil reinforcing layer having this thickness has high thermal conductivity (for example, 237 W / mK for aluminum foil) and has little influence on heat dissipation performance. More preferred is a metal foil having a thickness of 20 ⁇ m to 150 ⁇ m. If it is this thickness, workability is favorable, a softness
  • the metal foil include gold foil, silver foil, copper foil, and aluminum foil. Aluminum foil is preferable in consideration of price, workability, ductility, malleability, and product stability.
  • Thermal conductive resin layer examples of the matrix of the thermally conductive resin include rubbers such as organic rubber, silicone rubber, polyurethane gel, synthetic rubber, and natural rubber, thermosetting resins such as epoxy resins and urethane resins, and thermoplastic elastomers.
  • the matrix may be used alone or in combination of two or more. In consideration of heat resistance, cold resistance, weather resistance, electrical characteristics, and importance of the heat conductive sheet in the electronic component, the matrix is preferably silicone rubber.
  • the thickness of the said heat conductive sheet is 60 micrometers or more and 600 micrometers or less.
  • the thermal resistance when mounted can be reduced, while the stress between the heat generating member and the cooling member can be relieved, and the sheet moldability is improved. Can keep.
  • the thermal resistance can be measured under the conditions of 30 psi / 100 ° C./30 minutes using the ASTM D-5470 test method.
  • the thermal conductivity of the thermally conductive resin layer is preferably 1.0 W / mK or more, More preferably, it is 3.0 W / mK or more.
  • the heat conductive sheet can be applied to a heat generating portion having a large heat generation amount.
  • Two samples obtained by molding a thermally conductive silicone cured product to a size of 60 ⁇ 60 ⁇ 6 mm are prepared as measurement samples, and a probe is sandwiched between the molded products, and the thermal conductivity can be measured using a hot disk method.
  • the thermally conductive resin layer preferably contains 300 parts by mass or more of a thermally conductive filler with respect to 100 parts by mass of the silicone resin.
  • the filling amount of the thermally conductive filler is 200 parts by mass or more and 1300 parts by mass or less with respect to 100 parts by mass of the thermally conductive resin, sufficient thermal conductivity of the thermally conductive resin layer can be obtained, and heat generation While adaptable to a large amount of heat generating member, the moldability of the heat conductive sheet is also good, and the flexibility of the molded heat conductive sheet is excellent, being 300 parts by mass or more and 1300 parts by mass or less. Is more preferable.
  • thermally conductive filler examples include nonmagnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania, zirconia, and metal nitrides such as aluminum nitride, silicon nitride, and boron nitride.
  • a material generally used as a heat conductive filler such as metal hydroxide such as magnesium hydroxide, artificial diamond or silicon carbide can be used.
  • a heat conductive filler having a center particle diameter of 0.1 to 200 ⁇ m can be used, and one kind may be used alone, or two or more kinds may be used in combination.
  • the present invention is characterized in that the thermal conductive sheet accommodated in the pocket of the embossed carrier tape of the thermal conductive sheet supply body is automatically mounted by sucking and supplying one by one from the pocket using a vacuum nozzle. This is a method for supplying a thermally conductive sheet.
  • the heat conductive sheets 1 are stored in the pockets 2 of the embossed carrier tape 3 one by one. Since many heat conductive sheets can be prepared and the embossed carrier tape 3 is fed little by little while peeling the cover film 4, the heat conductive sheet can be taken up at a fixed position. Since it only needs to move, in the automatic mounting of the heat conductive sheet, the heat conductive sheet 1 can be correctly sucked by the vacuum nozzle 7 and mounted in a predetermined place, for example, the semiconductor chip 8 (FIG. 1A )), Simplification and efficiency of the automatic mounting process can be realized.
  • the heat conductive sheets are arranged in a plane, and a very large space is taken up.
  • the vacuum nozzle sucks the heat conductive sheet and the distance until it is carried to the mounting location is different one by one, so if the number of heat conductive sheets spread on the plane is large, the distance to the mounting location becomes long, The risk of the sheet falling from the nozzle is increased.
  • FIG. 1 (B) the heat conductive sheet cannot be correctly sucked by the vacuum nozzle 7, and the automatic mounting process is simplified and made more efficient. It cannot be realized.
  • Components of thermal conductive sheet Component (A-1): X is a vinyl group, organopolysiloxane viscosity: 600 mm 2 / s (A-2) Component Methylvinylpolysiloxane comprising 99.85 mol% of dimethylsiloxane units and 0.15 mol% of methylvinylsiloxane units and having an average degree of polymerization of 8,000. (A-3) Component Poly-2-butyl acrylate
  • C component Aluminum hydroxide (C-1) as a heat conductive filler having an average particle size as follows Average particle size: 1 ⁇ m: Aluminum powder (C-2) Average particle size: 10 ⁇ m: Aluminum powder (C-3) Average particle diameter: 1 ⁇ m: Alumina (C-4) Average particle diameter: 10 ⁇ m: Alumina
  • (D) component 5% chloroplatinic acid 2-ethylhexanol solution as an addition reaction accelerator
  • E component: Ethynylmethylidenecarbinol as an addition reaction control agent.
  • (F) component A dimethylpolysiloxane having an average degree of polymerization of 30 and having one end blocked with a trimethoxysilyl group.
  • compositions A to toluene was added to prepare a 20% toluene solution.
  • This solution is coated on the reinforcing layer using a spacer, and toluene is volatilized at 80 ° C., followed by curing at 120 ° C.
  • the other surface is coated with a toluene solution of the composition.
  • One side of the reinforcing layer is the front side, and the back side is the back side.
  • the composition applied to the front surface and the composition applied to the back surface may be different.
  • coating was performed on the reinforcing layer without adding toluene.
  • the curing temperature was 190 ° C.
  • the sealing material may be the same as the material to be coated.
  • Thermal conductive sheet supplier The thermal resistance (K-cm 2 / W) and tack energy ( ⁇ J) of the obtained heat conductive sheet were measured. Furthermore, it cut out to 10x10 mm size. Regarding Examples 1 to 5, 1000 heat conductive sheets were accommodated in the pockets of the polycarbonate embossed carrier tape described in FIG. At this time, the cover film side was stored so that the surface with a small tack energy of the heat conductive sheet came. The embossed carrier tape was protected from above with a polyester film, and the tape was reeled to produce a thermally conductive sheet supply body (Examples 1 to 5).
  • Comparative Example 1 the obtained thermal conductive sheets are arranged one by one on a polycarbonate tray, and in Comparative Example 2, the obtained thermal conductive sheets are arranged one by one on a PET film. It is a thing.
  • the vacuum nozzle When an embossed carrier tape is used as in the embodiment, the area required for storing the heat conductive sheet can be reduced, and the heat conductive sheet can be efficiently stored. Also, by using the embossed carrier tape at the time of mounting, the vacuum nozzle moves in a constant manner, and the distance to the mounting location is also constant, so that it can be mounted efficiently and less time is required.
  • the vacuum nozzle can correctly suck the heat conductive sheet and supply it without error when mounting the heat conductive sheet.
  • the vacuum nozzle cannot suck the heat conductive sheet correctly, and a supply error occurs.
  • the heat conductive sheet is stored in the pocket of the embossed carrier tape of the present invention one by one, protected with a cover film, and the reel-like supply form is optimal for the supply form of the automatic mounting process of the heat conductive sheet. Yes, it greatly contributes to improving the efficiency of the mounting process.
  • the heat conductive sheet preferably has a reinforcing layer, and the tack energy of the surface on the cover film side is preferably 70 microJ or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Packages (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Packaging Frangible Articles (AREA)

Abstract

 本発明は、エンボスキャリアテープを用いた熱伝導性シート供給体及び熱伝導性シートの供給方法であって、各々一つの熱伝導性シートを収納したポケットを表面に複数備えたエンボスキャリアテープと、該エンボスキャリアテープの表面を保護するカバーフィルムとが、リール状に巻かれてなることを特徴とする熱伝導性シート供給体及びその熱伝導性シートの供給方法を提供する。

Description

熱伝導性シート供給体及び熱伝導性シートの供給方法
 本発明は、熱伝導性シート供給体及び熱伝導性シートの供給方法に関する。
 パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇は、チップの動作不良、破壊を引き起こす原因になる。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。
 従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。
 チップから発生する熱をヒートシンクに効率良く伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシートまたはグリースを介してチップからヒートシンクへの熱伝導を実現している。
 グリース状の放熱材料は薄膜化可能で優れた放熱材料ではあるが、管理が難しいという点が挙げられる。また塗布工程は手作業でスクリーンプリントを行なったり、シリンジから押し出したりする場合とディスペンス装置を用いて自動で行なう場合があるが非常に時間がかかり、取扱いが容易ではなく、製品の組み立て工程の律速となっている場合がある。
 一方、熱伝導性シートに関しては、実装時は貼り付けるだけで、特別な装置は必要なく、グリースに比べて取扱い性や管理が容易であるが、貼り付け作業は手作業がほとんどで非常に効率が悪く、製品の組み立て工程の律速となっている場合がある。そこで、熱伝導性シートの実装工程を半導体部品の実装において主流となっているバキュームノズルなどを用いた自動実装にすることで、飛躍的な生産性の向上が見込める。
 バキュームノズルなどによる自動実装装置への熱伝導性シートの供給方法としては、PETフィルムなどの基材や樹脂トレー上に所定のサイズにカットされた熱伝導性シートを並べておき、一枚ずつバキュームノズルでシートを取り上げていく方法がある。しかし、この供給方法は平面状に熱伝導性シートが並ぶことになり、非常にスペースをとり、バキュームノズルがシートを吸い上げ、実装箇所に運ぶまでの距離が一枚ずつ異なるし、平面に広げる熱伝導性シートの数が多いと実装箇所までの距離が長くなり、ノズルからシートが落ちてしまう危険性が高まる問題点があった。
特開2008-120445号公報 特開2011-225257号公報 特開平11-292188号公報 特開2003-26280号公報 特開2012-12033号公報
 本発明は、上記事情に鑑みなされたもので、エンボスキャリアテープを用いた熱伝導性シート供給体及び熱伝導性シートの供給方法を提供することを目的とする。
 上記課題を解決するために、本発明では、各々一つの熱伝導性シートを収納したポケットを表面に複数備えたエンボスキャリアテープと、該エンボスキャリアテープの表面を保護するカバーフィルムとが、リール状に巻かれてなることを特徴とする熱伝導性シート供給体を提供する。
 このような熱伝導性シート供給体であれば、平面状に広がることなく、多くの熱伝導性シートを準備できる。さらにカバーフィルムを剥がしながらテープを少しずつ送ることで、定位置で熱伝導性シートを取り上げることができるため、バキュームノズルは一定の動きをすればよく、ノズルの動きが単純化され実装工程上の失敗の危険性が少なくなり、自動実装工程の簡略化や効率化を実現することができる。
 また、本発明では、前記熱伝導性シートの少なくとも片面の表面のタックエネルギーが、70μJ以下であることが好ましい。
 このような熱伝導性シートであれば、カバーフィルムに付着又はエンボスキャリアテープのポケットの底面に付着することなく、バキュームノズルで吸引し、供給することができる。
 また、本発明では、前記熱伝導性シートが、補強層と熱伝導性樹脂層とを積層させたものであることが好ましい。
 このような熱伝導性シートであれば、補強層の働きにより熱伝導性シートが、ポケットの中で端に寄ったり、折れ曲がったりすることを回避することができ、一方、熱伝導性樹脂層の働きにより発熱部と冷却部との密着性が良好となるので放熱効果を有する。
 また、前記熱伝導性シートの厚みが、60μm以上600μm以下であることが好ましい。
 上記の厚みであれば、発熱部材と冷却部材の間の応力を緩和することができ、さらに良好なシート成型性を有する。
 また、前記熱伝導性樹脂層の熱伝導率は、1.0W/mK以上であることが好ましく、より好ましくは3.0W/mK以上である。
 上記の熱伝導率であれば、熱伝導性シートを発熱量の大きい発熱部に適用することが可能となる。
 前記熱伝導性樹脂層が、シリコーン樹脂100質量部に対し、熱伝導性充填材を300質量部以上含有することが好ましい。
 このような熱伝導性樹脂層であれば、熱伝導性樹脂層の熱伝導率を十分に得ることができる。
 前記補強層は、アルミ箔であることが好ましい。
 このような補強層は、比較的低価格であり、製品の安定性を維持することができる。
 熱伝導性シート供給体のエンボスキャリアテープのポケットに収納された熱伝導性シートを、バキュームノズルを用いて前記ポケットから1つずつ吸引し供給することで自動実装することを特徴とする熱伝導性シートの供給方法を提供する。
 本発明の熱伝導性シートの供給方法によれば、熱伝導性シートの自動実装工程の簡略化及び効率化を実現することができる。
 以上説明したように、本発明の熱伝導性シート供給体及び熱伝導性シートの供給方法によれば、平面状に広がることなく、多くの熱伝導性シートを準備でき、カバーフィルムを剥がしながらテープを少しずつ送ることで、定位置で熱伝導性シートを取り上げることができるため、バキュームノズルは一定の動きをすればよく、ノズルの動きが単純化され実装工程上の失敗の危険性が少なくなり、自動実装工程の簡略化や効率化を実現することができる。
図1(A)は、本発明の熱伝導性シート供給体及び熱伝導性シートの供給方法による自動実装工程の一例を示したものである。図1(B)は、本発明の熱伝導性シート供給体及び熱伝導性シートの供給方法によらない実装の失敗例を示したものである。 本発明の熱伝導性シート供給体の構成部品である、ポケットを備えるエンボスキャリアテープ、熱伝導性シート、及びカバーフィルムの一例である。 本発明のリール状に巻かれた熱伝導性シート供給体の一例である。 本発明の実施例及び比較例で使用したエンボスキャリアテープの一例を示す平面図である。
 本発明者は、上記目的を達成するため鋭意検討を行った結果、熱伝導性シートを吸引し実装箇所まで運ぶにあたり、エンボスキャリアテープを用いる供給方法及びエンボスキャリアテープのポケットに熱伝導性シートを一枚ずつ収納し、カバーフィルムで上から保護した後このキャリアテープをリール状に巻いたものである熱伝導性シート供給体を見出した。
 この方法及び供給体によれば、平面状に広がることなく、多くの熱伝導性シートを準備でき、さらにカバーフィルムを剥がしながらテープを少しずつ送ることで、定位置で熱伝導性シートを取り上げることができるため、バキュームノズルは一定の動きをすればよく、ノズルの動きが単純化され実装工程上の失敗の危険性が少なくなり、自動実装工程の簡略化や効率化を実現することができる。
 エンボスキャリアテープを用いた供給方法は、非常に小さく強度の弱い半導体部品の供給方法としては知られていた(特許文献1~4)ものの、熱伝導性シートの供給方法としては例がなかった。
 このように、本発明の熱伝導性シート供給体及び熱伝導性シートの供給方法であれば、熱伝導性シートの自動実装工程を簡略化及び効率化できることを見出し、本発明を完成させた。
 すなわち、本発明は、各々一つの熱伝導性シートを収納したポケットを表面に複数備えたエンボスキャリアテープと、該エンボスキャリアテープの表面を保護するカバーフィルムとが、リール状に巻かれてなることを特徴とする熱伝導性シート供給体である。
 図1~図3に示したように、熱伝導性シート1を収納したポケット2を表面に複数備えたエンボスキャリアテープ3と、このエンボスキャリアテープ3の表面を保護するカバーフィルム4とが、リール5状に巻かれてなることを特徴とする本発明の熱伝導性シート供給体6及びこれを用いた熱伝導性シートの供給方法であれば、熱伝導性シート1をバキュームノズル7で正しく吸引し、例えば半導体チップ8などに実装することができるので、熱伝導性シート1の自動実装工程を簡略化及び効率化することができる。
 以下、本発明について詳細に説明する。
[エンボスキャリアテープ]
 エンボスキャリアテープは、半導体製造用部品の中でも特に非常に小さく、強度の弱いものを収納する際に広く用いられているものを代用することができる。半導体用部品搬送用のエンボスキャリアテープに関する発明は数多くあり、例えば、文献1~4等が例示される。素材は耐熱性、耐候性の点から、ポリカーボネートが好ましい。
 エンボスポケットのサイズは、シートサイズより縦横ともに10~20%程度大きいものが好ましい。このサイズであれば、ノズルで吸引する時に熱伝導性シートがポケットに引っ掛かる危険性はなく、さらに輸送中にポケットの中で熱伝導性シートがずれてしまうこともないので、正しく吸引することができる。
 熱伝導性シートが底面に出来るだけ接触しないように、ポケットの底面の四隅に突起を設けたり、またはポケットの底面の両端に凸部を設けることが好ましい。このように突起や凸部を設けることにより、熱伝導性シートをスムーズにバキュームノズルで吸引することができる。
 この場合、突起や凸部が、熱伝導性シートを傷つけない形状であることが好ましい。
 ポケットの深さは、熱伝導性シートを収納した際に上部に3~5mm程度の余裕があることが好ましい。この程度余裕があれば、熱伝導性シートを収納し、カバーフィルムで保護する際の工程中に熱伝導性シートがポケットからはみ出す危険がなく、熱伝導性シートを吸引する際の障害にもならない。
 ポケット同士の間隔は、任意であるが、5mm程度間隔をあけることが好ましい。
 本発明のエンボスキャリアテープは数十メートルから数百メートルの長さとすることができ、数十mm角の熱伝導性シートであれば数千個を収納することができる。
[カバーフィルム]
 半導体部品搬送用エンボスキャリアテープのカバーフィルムに関する発明は数多くある(特許文献5)が、本発明に用いるカバーフィルムは、半導体製造用部品の中でも特に非常に小さく、強度の弱いものを保護する際に広く用いられているものを代用することができる。素材はポリエステルフィルムなどが好ましい。
 エンボスキャリアテープとカバーフィルムを接合させる必要があるが、その方法は、カバーフィルムの端部に接着剤を塗布し接着させる方法とキャリアテープとカバーフィルムを熱圧着させる方法とがある。
 接合強度は、熱伝導性シート供給体を輸送する際の振動や熱、熱衝撃に耐え、経時でも安定していることが好ましい。接合強度が弱すぎると輸送中に剥がれてしまい、強すぎると実装時にテープを剥がす際に余分な負荷がかかることになる。
[タックエネルギー]
 本発明では、前記熱伝導性シートの少なくとも片面の表面のタックエネルギーが、70μJ以下であることが好ましい。
 伝導性シートの表面のタックエネルギーは、より好ましくは40μJ以下である。熱伝導性シートの少なくとも片面の表面のタックエネルギーが、70μJ以下であれば、熱伝導性シートをエンボスキャリアテープのポケットに収納し、カバーフィルムで保護しリール化した際に、カバーフィルム側が下側になっても、カバーフィルムに熱伝導性シートが付着するおそれが少なく、自動実装工程のコンピューター制御においてエラーと判断されるおそれが少ないため、工程をスムーズに進めることができる。ポケットの底面側に関しても上記のタックエネルギーであれば、ポケットの底面に熱伝導性シートが付着するおそれが少ないので、バキュームノズルで上手く吸引することができ、さらにポケットの底面に熱伝導性シートの表層が一部取られてしまう危険もない。
 また、熱伝導性シートをポケットに収納する際には、カバーフィルム側に熱伝導性シートのタックエネルギーの小さい面がくるように収納するのが好ましい。
 タックエネルギーの測定方法としては、マルコム社製タッキネステスターTK-1を用いることができる。測定条件はIPC規格に準拠した。
 前記熱伝導性シートは、補強層と熱伝導性樹脂層とを積層させたものであることが好ましい。
[補強層]
 補強層を有していれば、熱伝導性シートの厚みが600μm以下の場合でも、リール化した後、輸送の際にエンボスキャリアテープのポケットが上下逆さまになったとしても、ポケットの中で、熱伝導性シートが、端に寄ったり折れ曲がったり、裏返ってしまうおそれがない。そのため実装時にバキュームノズルで正しく熱伝導性シートを吸引することが可能となる。
 補強層は、放熱性能や補強能力から、金属箔やガラスクロス、ポリイミドフィルムが好ましい。より好ましくは20μm以上の厚みを有する金属箔である。この厚みを有する金属箔の補強層であれば、十分な補強性能を有することに加え、熱伝導率が高く(例えばアルミ箔は237W/mK)、放熱性能への影響も少ない。さらに好ましいのは、20μ~150μmの厚みを有する金属箔である。この厚みであれば、加工性が良好で、柔軟性も失われず、圧縮性能も富む。
 金属箔の種類は、例えば、金箔、銀箔、銅箔、アルミ箔などが挙げられる。価格、加工性、延性、展性、製品安定性を考慮するとアルミ箔が好ましい。
 また、補強層の上に熱伝導性樹脂層を積層させる場合は、補強層の片側だけに積層させてもよいが、両側に積層させるのが好ましい。補強層の両側に熱伝導性樹脂層を積層させた方が、実装させたときに発熱部と冷却部との密着性が向上しより高い放熱効果が期待できる。
[熱伝導性樹脂層]
 熱伝導性樹脂のマトリックスとしては、有機ゴム、シリコーンゴム、ポリウレタンゲル、合成ゴム、天然ゴムなどのゴムや、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂、熱可塑性エラストマーが挙げられる。マトリックスは一種類を単独で又は二種以上組み合わせても使用してもよい。
 マトリックスは、耐熱性、耐寒、耐候性、電気特性、及び熱伝導性シートの電子部品における重要性を考慮すると、シリコーンゴムが好ましい。
[熱伝導性シートの厚み]
 また、前記熱伝導性シートの厚みは、60μm以上600μm以下であることが好ましい。
 さらに好ましくは200μm以上400μm以下である。熱伝導性シートが、60μm以上600μm以下の厚さであれば、実装した際の熱抵抗を下げることができる一方、発熱部材と冷却部材との間の応力を緩和でき、シート成型性を良好に保つことができる。
 熱抵抗は、ASTM D-5470試験法を用い、30psi/100℃/30分の条件で熱抵抗を測定できる。
[熱伝導性樹脂の熱伝導率]
 また、前記熱伝導性樹脂層の熱伝導率は、1.0W/mK以上であることが好ましく、
さらに好ましくは3.0W/mK以上である。
 熱伝導性樹脂の熱伝導率が、1.0W/mK以上の場合は、熱伝導性シートを発熱量の大きい発熱部へ適用することができる。
 測定用サンプルとして熱伝導性シリコーン硬化物を60×60×6mmのサイズに成型したものを2つ準備し、成型体でプローブを挟み、ホットディスク法を用いて熱伝導率を測定できる。
[熱伝導性充填材]
 前記熱伝導性樹脂層が、シリコーン樹脂100質量部に対し、熱伝導性充填材を300質量部以上含有することが好ましい。
 熱伝導性充填材の充填量は、熱伝導性樹脂100質量部に対して、200質量部以上1300質量部以下であれば、熱伝導性樹脂層の熱伝導率を十分得ることができ、発熱量の大きい発熱部材に適応が可能である一方、熱伝導性シートの成型性も良好であり、成型した熱伝導性シートの柔軟性も優れており、300質量部以上1300質量部以下であることがさらに好ましい。
 熱伝導性充填材としては、非磁性の銅やアルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化硼素等の金属窒化物、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化珪素等、一般に熱伝導充填材とされる物質を用いることができる。また中心粒径が、0.1~200μmの熱伝導性充填材を用いることができ、1種単独で又は2種以上複合して用いてもよい。
 本発明は、熱伝導性シート供給体のエンボスキャリアテープのポケットに収納された熱伝導性シートを、バキュームノズルを用いて前記ポケットから1つずつ吸引し供給することで自動実装することを特徴とする熱伝導性シートの供給方法である。
 図1に示すように、本発明の熱伝導性シートの供給方法によれば、エンボスキャリアテープ3のポケット2に一つ一つ熱伝導性シート1が収納されているので、平面状に広がることなく、多くの熱伝導性シートを準備でき、さらにカバーフィルム4を剥がしながらエンボスキャリアテープ3を少しずつ送ることで、定位置で熱伝導性シートを取り上げることができるため、バキュームノズル7は一定の動きをすればよいので、熱伝導性シートの自動実装において、バキュームノズル7で熱伝導性シート1を正しく吸引して、所定の場所、例えば半導体チップ8に実装することができ(図1(A))、自動実装工程の簡略化や効率化を実現することができる。これに対し、本発明の供給方法によらない熱伝導性シートの供給方法では、平面状に熱伝導性シートが並ぶことになり、非常にスペースをとってしまう。このとき、バキュームノズルが熱伝導性シートを吸引して、実装箇所に運ぶまでの距離が一つずつ異なるので、平面に広げる熱伝導性シートの数が多いと実装箇所までの距離が長くなり、ノズルからシートが落ちてしまう危険性が高まり、例えば図1(B)に示すように、正しくバキュームノズル7で熱伝導性シートを吸引することができず、自動実装工程の簡略化や効率化を実現することができない。
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 実施例および比較例を行なうにあたり、熱伝導性シートの成分及び成型方法を以下に記載する。
[熱伝導性シートの成分]
(A-1)成分:
Figure JPOXMLDOC01-appb-C000001
Xがビニル基である、オルガノポリシロキサン
粘度:600mm/s
 
(A-2)成分
ジメチルシロキサン単位99.85モル%及びメチルビニルシロキサン単位0.15モル%からなる、平均重合度が8,000のメチルビニルポリシロキサン
 
(A-3)成分
 ポリ2-ブチルアクリレート
(B-1)成分:
Figure JPOXMLDOC01-appb-C000002
ハイドロジェンポリシロキサン
平均重合度が下記の通りである、両末端が炭化水素で封鎖されたハイドロジェンポリシロキサン
平均重合度:o=28、p=2
 
(B-2)成分
 デナコールEX83D(ナガセケムテックス(株))
(C成分):
 平均粒径が下記の通りである熱伝導性充填材としての水酸化アルミニウム
(C-1)平均粒径:1μm:アルミニウム粉
(C-2)平均粒径:10μm:アルミニウム粉
(C-3)平均粒径:1μm:アルミナ
(C-4)平均粒径:10μm:アルミナ
(D)成分:
 付加反応促進剤として、5%塩化白金酸2-エチルヘキサノール溶液
 
(E)成分:
 付加反応制御剤として、エチニルメチリデンカルビノール。
(F)成分: 
Figure JPOXMLDOC01-appb-C000003
平均重合度30である片末端がトリメトキシシリル基で封鎖されたジメチルポリシロキサン。
(G)成分:
可塑剤としてジメチルポリシロキサン。
Figure JPOXMLDOC01-appb-C000004
r=80のジメチルポリシロキサン。
 
(H)成分
 加硫剤C-24(信越化学工業製)
[補強層]
 アルミ箔 厚み50μm
 ガラスクロス 厚み64μm、
密度たて60本、よこ47本/25mm
[熱伝導性シートの成型方法]
 (A-1)、(A-3)成分をベースポリマーとして用いる際にはプラネタリーミキサーを用いて混練し、(A-2)成分をベースポリマーとして用いる際にはバンバリミキサーを用いて混練し、熱伝導性シートの組成物イ~トを得た。
 得られた組成物イ~トの構成成分とその配分、及び伝導率を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 得られた組成物イ~へに対して、トルエンを添加し、20%のトルエン溶液を調製した。この溶液を補強層上にスペーサーを用いコーティングし、80℃でトルエンを揮発させ、続いて120℃で硬化させる。補強層の両側に積層させる場合には、もう片方の面にも当該組成物のトルエン溶液の塗工を行なう。補強層の片側を表面とし、その裏側を裏面とする。表面に塗工する組成物と裏面に塗工する組成物は異なっていてよい。
組成物トに関しては、トルエンを添加せずに補強層上に塗工を行なった。硬化温度は190℃とした。
 補強層としてガラスクロスを用いる際には、ガラスクロスに予め目止めを施しておく必要がある。目止め材料はコーティングする材料と同一のものでよい。
[熱伝導性シート供給体]
 得られた熱伝導性シートの熱抵抗(K-cm/W)、タックエネルギー(μJ)を測定した。さらに10×10mmサイズに切り出した。実施例1から5に関しては、図4に記載のポリカーボネート製エンボスキャリアテープのポケットに熱伝導性シートを1000個収納した。この時、カバーフィルム側に熱伝導性シートのタックエネルギーの小さい面がくるように収納した。エンボスキャリアテープの上からポリエステルフィルムで保護し、さらにテープをリール化して熱伝導性シート供給体を作製した(実施例1~5)。
 比較例1は、得られた熱伝導性シートをポリカーボネート製のトレーに一つ一つ並べたものであり、比較例2は、得られた熱伝導性シートをPETフィルム上に一つ一つ並べたものである。
 熱伝導性シート供給体及び熱伝導性シートの供給方法に対する評価方法として、実際にバキュームノズルによる自動実装装置に使用し、1000個の熱伝導性シートを準備するのに必要な面積、実装するのに掛かる時間を測定し評価した。
 これらの結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 実施例のように、エンボスキャリアテープを用いると、熱伝導性シートを収納するために掛かる面積が少なくすることができ、効率的に熱伝導性シートを保管することが出来る。また実装時にもエンボスキャリアテープを用いることによりバキュームノズルは一定の動きをし、実装箇所までの距離も一定で、効率的に実装することができ、掛かる時間が少なくて済む。
 また、本発明の熱伝導性シート供給体及び熱伝導性シートの供給方法によれば、熱伝導性シートの実装時において、バキュームノズルが、熱伝導性シートを正しく吸引してミスなく供給できるのに対し、本発明の熱伝導性シート供給体及び熱伝導性シートの供給方法によらない比較例では、バキュームノズルが熱伝導性シートを正しく吸引できず、供給ミスが生じる。
 本発明のエンボスキャリアテープのポケットに熱伝導性シートを一つ一つ収納し、カバーフィルムで保護し、さらにリール状にした供給形態は、熱伝導性シートの自動実装工程の供給形態に最適であり、実装工程を効率化することに大きく貢献する。本発明の熱伝導性シートの供給形態に対応するためには、熱伝導性シートは補強層を有し、カバーフィルム側にくる表面のタックエネルギーが70マイクロJ以下であるのが好ましい。

Claims (9)

  1.  各々一つの熱伝導性シートを収納したポケットを表面に複数備えたエンボスキャリアテープと、該エンボスキャリアテープの表面を保護するカバーフィルムとが、リール状に巻かれてなることを特徴とする熱伝導性シート供給体。
  2.  前記熱伝導性シートの少なくとも片面の表面のタックエネルギーが、70μJ以下であることを特徴とする請求項1に記載の熱伝導性シート供給体。
  3.  前記熱伝導性シートが、補強層と熱伝導性樹脂層とを積層させたものであることを特徴とする請求項1又は2に記載の熱伝導性シート供給体。
  4.  前記熱伝導性シートの厚みが、60μm以上600μm以下であることを特徴とする請求項1から3のいずれか1項に記載の熱伝導性シート供給体。
  5.  前記熱伝導性樹脂層の熱伝導率が、1.0W/mK以上であることを特徴とする請求項3又は4に記載の熱伝導性シート供給体。
  6.  前記熱伝導性樹脂層の熱伝導率が、3.0W/mK以上であることを特徴とする請求項3から5のいずれか1項に記載の熱伝導性シート供給体。
  7.  前記熱伝導性樹脂層が、シリコーン樹脂100質量部に対し、熱伝導性充填材を300質量部以上含有するものであることを特徴とする請求項3から6のいずれか1項に記載の熱伝導性シート供給体。
  8.  前記補強層が、アルミ箔であることを特徴とする請求項3から7のいずれか1項に記載の熱伝導性シート供給体。
  9.  請求項1から8のいずれか1項に記載の熱伝導性シート供給体のエンボスキャリアテープのポケットに収納された熱伝導性シートを、バキュームノズルを用いて前記ポケットから1つずつ吸引して供給することで自動実装することを特徴とする熱伝導性シートの供給方法。
PCT/JP2013/002186 2012-05-14 2013-03-29 熱伝導性シート供給体及び熱伝導性シートの供給方法 WO2013171960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380025248.7A CN104303290B (zh) 2012-05-14 2013-03-29 热传导性片材供给体及热传导性片材的供给方法
EP13791319.0A EP2851947B1 (en) 2012-05-14 2013-03-29 Thermally conductive sheet feeder and method for feeding thermally conductive sheet
US14/390,669 US9385063B2 (en) 2012-05-14 2013-03-29 Thermally conductive sheet feeder and method for feeding thermally conductive sheet
KR1020147031225A KR101998218B1 (ko) 2012-05-14 2013-03-29 열전도성 시트 공급체 및 열전도성 시트의 공급방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-110662 2012-05-14
JP2012110662A JP6087518B2 (ja) 2012-05-14 2012-05-14 熱伝導性シート供給体及び熱伝導性シートの供給方法

Publications (1)

Publication Number Publication Date
WO2013171960A1 true WO2013171960A1 (ja) 2013-11-21

Family

ID=49583393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002186 WO2013171960A1 (ja) 2012-05-14 2013-03-29 熱伝導性シート供給体及び熱伝導性シートの供給方法

Country Status (7)

Country Link
US (1) US9385063B2 (ja)
EP (1) EP2851947B1 (ja)
JP (1) JP6087518B2 (ja)
KR (1) KR101998218B1 (ja)
CN (1) CN104303290B (ja)
TW (1) TWI590747B (ja)
WO (1) WO2013171960A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095023A (ja) * 2011-10-31 2013-05-20 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン複合シート
KR20170016864A (ko) * 2014-06-10 2017-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 시트
CN106414569A (zh) * 2014-05-30 2017-02-15 保力马科技(日本)株式会社 导热片及导热片的制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201573A (ja) * 2014-04-09 2015-11-12 富士高分子工業株式会社 放熱シート
US10355239B2 (en) * 2015-02-04 2019-07-16 Lg Chem, Ltd. Encapsulation film
KR102384193B1 (ko) * 2016-10-18 2022-04-07 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 실리콘 조성물
KR101979926B1 (ko) * 2017-12-26 2019-05-21 조인셋 주식회사 열 전도 부재
KR20210016037A (ko) * 2018-07-12 2021-02-10 데쿠세리아루즈 가부시키가이샤 픽업 장치, 실장 장치, 픽업 방법, 실장 방법
WO2022079914A1 (ja) * 2020-10-16 2022-04-21 昭和電工マテリアルズ株式会社 熱伝導シート保持体及び放熱装置の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292188A (ja) 1998-04-06 1999-10-26 Nippon Foundry Inc 半導体装置を包装したエンボス・キャリアテープ及びエンボス・キャリアテープでの半導体装置包装方法
JP2003026280A (ja) 2001-07-12 2003-01-29 Sumitomo Bakelite Co Ltd 電子部品収納用エンボスキャリアテープ
JP2005228955A (ja) * 2004-02-13 2005-08-25 Denki Kagaku Kogyo Kk 放熱部材、その製造方法及び用途
JP2008120445A (ja) 2006-11-16 2008-05-29 Matsushita Electric Ind Co Ltd エンボスキャリアテープ
JP2009123766A (ja) * 2007-11-12 2009-06-04 Kitagawa Ind Co Ltd サーマルインターフェース材、およびサーマルインターフェース材の製造方法
WO2010104010A1 (ja) * 2009-03-13 2010-09-16 電気化学工業株式会社 カバーフィルム
JP2011225257A (ja) 2010-04-21 2011-11-10 Shin Etsu Polymer Co Ltd エンボスキャリアテープ及びその製造方法ならびに包装部品巻回体
JP2012012033A (ja) 2010-06-29 2012-01-19 Asahi Kasei Chemicals Corp カバーテープ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310264A (ja) * 1992-04-28 1993-11-22 Matsushita Electric Ind Co Ltd 電子部品包装テープ
JPH07149365A (ja) * 1993-11-26 1995-06-13 Denki Kagaku Kogyo Kk 絶縁放熱シート包装体、及び基板又は放熱フィン
JP2002080617A (ja) 2000-09-06 2002-03-19 Polymatech Co Ltd 熱伝導性シート
JP2002194306A (ja) * 2000-12-26 2002-07-10 Sekisui Chem Co Ltd 熱伝導性シート
JP4796704B2 (ja) 2001-03-30 2011-10-19 株式会社タイカ 押出可能な架橋済グリース状放熱材を充填・封入した容器の製法
JP3928943B2 (ja) * 2002-07-03 2007-06-13 信越化学工業株式会社 放熱部材、その製造方法及びその敷設方法
TWI224384B (en) 2002-01-22 2004-11-21 Shinetsu Chemical Co Heat-dissipating member, manufacturing method and installation method
JP2010010599A (ja) * 2008-06-30 2010-01-14 Fuji Polymer Industries Co Ltd 熱拡散シート
JP2010158113A (ja) * 2008-12-26 2010-07-15 Toshiba Corp 電気絶縁部材、回転電機用固定子コイルおよび回転電機
US8205766B2 (en) 2009-05-20 2012-06-26 The Bergquist Company Method for packaging thermal interface materials
JP5755855B2 (ja) * 2010-08-30 2015-07-29 電気化学工業株式会社 粘着性アクリル系熱伝導シート

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292188A (ja) 1998-04-06 1999-10-26 Nippon Foundry Inc 半導体装置を包装したエンボス・キャリアテープ及びエンボス・キャリアテープでの半導体装置包装方法
JP2003026280A (ja) 2001-07-12 2003-01-29 Sumitomo Bakelite Co Ltd 電子部品収納用エンボスキャリアテープ
JP2005228955A (ja) * 2004-02-13 2005-08-25 Denki Kagaku Kogyo Kk 放熱部材、その製造方法及び用途
JP2008120445A (ja) 2006-11-16 2008-05-29 Matsushita Electric Ind Co Ltd エンボスキャリアテープ
JP2009123766A (ja) * 2007-11-12 2009-06-04 Kitagawa Ind Co Ltd サーマルインターフェース材、およびサーマルインターフェース材の製造方法
WO2010104010A1 (ja) * 2009-03-13 2010-09-16 電気化学工業株式会社 カバーフィルム
JP2011225257A (ja) 2010-04-21 2011-11-10 Shin Etsu Polymer Co Ltd エンボスキャリアテープ及びその製造方法ならびに包装部品巻回体
JP2012012033A (ja) 2010-06-29 2012-01-19 Asahi Kasei Chemicals Corp カバーテープ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095023A (ja) * 2011-10-31 2013-05-20 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン複合シート
CN106414569A (zh) * 2014-05-30 2017-02-15 保力马科技(日本)株式会社 导热片及导热片的制造方法
CN106414569B (zh) * 2014-05-30 2020-06-05 积水保力马科技株式会社 导热片及导热片的制造方法
KR20170016864A (ko) * 2014-06-10 2017-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 시트
US10370575B2 (en) * 2014-06-10 2019-08-06 Shin-Etsu Chemical Co., Ltd. Thermally conductive sheet
KR102408879B1 (ko) 2014-06-10 2022-06-13 신에쓰 가가꾸 고교 가부시끼가이샤 열전도성 시트

Also Published As

Publication number Publication date
TWI590747B (zh) 2017-07-01
CN104303290A (zh) 2015-01-21
JP2013239525A (ja) 2013-11-28
CN104303290B (zh) 2017-06-23
KR101998218B1 (ko) 2019-07-09
US9385063B2 (en) 2016-07-05
EP2851947A4 (en) 2016-01-27
KR20150010724A (ko) 2015-01-28
EP2851947A1 (en) 2015-03-25
EP2851947B1 (en) 2018-06-06
TW201406275A (zh) 2014-02-01
US20150093219A1 (en) 2015-04-02
JP6087518B2 (ja) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6087518B2 (ja) 熱伝導性シート供給体及び熱伝導性シートの供給方法
US9961809B1 (en) Heat radiation sheet and method for manufacturing of the same
KR102207101B1 (ko) 필름상 접착제, 필름상 접착제를 사용한 반도체 패키지의 제조 방법
KR101181573B1 (ko) 방열 시트
JP5096010B2 (ja) 熱拡散シート及び熱拡散シートの位置決め方法
JP5183947B2 (ja) 熱伝導性シート積層体
KR101936449B1 (ko) 다층 수지 시트, 수지 시트 적층체, 다층 수지 시트 경화물 및 그 제조 방법, 금속박이 형성된 다층 수지 시트, 그리고 반도체 장치
KR101136599B1 (ko) 접착제 조성물, 회로 부재 접속용 접착제 시트 및 반도체 장치의 제조 방법
JP2006522491A (ja) 熱相互接続および界面システム、製造方法、およびその使用方法
JP6313165B2 (ja) 熱硬化性の封止用樹脂シート、セパレータ付き封止用シート、半導体装置、及び、半導体装置の製造方法
KR101419426B1 (ko) 방열시트
TW201832330A (zh) 散熱片
KR20140142676A (ko) 열경화형 다이 본딩 필름, 다이싱 시트 부착 다이 본딩 필름, 및 반도체 장치의 제조 방법
JP7240432B2 (ja) 半導体モジュール及び半導体モジュールの製造方法
JP5742667B2 (ja) 熱伝導性シリコーン複合シート
CN112805825B (zh) 带剥离片的绝缘散热片
US20230108567A1 (en) Adhesive composition and film-like adhesive, and semiconductor package using film-like adhesive and producing method thereof
KR20140142675A (ko) 열경화형 다이 본딩 필름, 다이싱 시트 부착 다이 본딩 필름, 및 반도체 장치의 제조 방법
JP7033099B2 (ja) 熱伝導性シリコーンシート及びこれを用いた実装方法
TWI774360B (zh) 散熱結構與電子裝置
CN115315132A (zh) 散热结构与电子装置
JP2000265147A (ja) 電子部品接着テープ
JP2022119196A (ja) 熱伝導性シート積層体及びこれを用いた電子機器
CN113122003A (zh) 一种柔性导热绝缘材料及其制备方法和应用
JP2005032884A (ja) 半導体装置用ダイシング・ダイボンディングシート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791319

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14390669

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013791319

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147031225

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE