WO2013168786A1 - リチウムイオン二次電池用負極 - Google Patents

リチウムイオン二次電池用負極 Download PDF

Info

Publication number
WO2013168786A1
WO2013168786A1 PCT/JP2013/063145 JP2013063145W WO2013168786A1 WO 2013168786 A1 WO2013168786 A1 WO 2013168786A1 JP 2013063145 W JP2013063145 W JP 2013063145W WO 2013168786 A1 WO2013168786 A1 WO 2013168786A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
ion secondary
Prior art date
Application number
PCT/JP2013/063145
Other languages
English (en)
French (fr)
Inventor
裕樹 坂口
洋行 薄井
忠俊 室田
将年 草津
Original Assignee
国立大学法人鳥取大学
株式会社三徳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人鳥取大学, 株式会社三徳 filed Critical 国立大学法人鳥取大学
Priority to JP2014514757A priority Critical patent/JP6116068B2/ja
Priority to KR1020147034559A priority patent/KR20150020188A/ko
Priority to CN201380037190.8A priority patent/CN104471758B/zh
Priority to EP13788468.0A priority patent/EP2854205B1/en
Priority to US14/400,002 priority patent/US9947925B2/en
Publication of WO2013168786A1 publication Critical patent/WO2013168786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, a method for producing the same, and a lithium ion secondary battery.
  • Lithium ion secondary batteries that have higher electromotive force and higher energy density than alkaline storage batteries such as nickel / cadmium storage batteries and nickel / hydrogen storage batteries are used in portable small electric / electronic devices that are widely used. Yes. In recent years, as the performance and functionality of these devices have increased, there has been a demand for higher battery capacity, and secondary batteries have been actively developed. Many studies have been made so far regarding negative electrode active materials for lithium ion secondary batteries. Among them, metallic lithium has attracted attention as a material for the negative electrode active material due to its abundant battery capacity. However, many dendritic lithium deposits on the surface of lithium during charging, causing a decrease in charge / discharge efficiency, resulting in a short circuit with the positive electrode, handling of lithium instability and high reactivity.
  • a carbon-based material has been put to practical use as a negative electrode active material that can replace metallic lithium.
  • the carbon-based material has a smaller expansion / contraction ratio due to charge / discharge than metal lithium or lithium alloy.
  • the battery capacity is smaller than that of metallic lithium (theoretical capacity is about 372 mAh / g). Therefore, silicon and tin are expected as high capacity materials. These materials are characterized by a large battery capacity compared to carbon-based materials, and have been actively studied in recent years.
  • the material has a large expansion / contraction ratio due to charge / discharge, and when this material is used as a negative electrode active material, there is a problem that it falls off from the current collector and the life is shortened or the irreversible capacity is large.
  • attempts have been made to suppress expansion and contraction by alloying silicon or tin with other elements or composite with carbon, thereby reducing the life and irreversible capacity. .
  • Patent Document 1 proposes a negative electrode active material containing Li, Si, and C. Although this negative electrode active material is excellent in cycle characteristics, its capacity is as low as 1/2 or less of that of a carbon-based material.
  • An object of the present invention is to provide a lithium ion secondary battery that can exhibit excellent charge / discharge capacity and cycle characteristics, and can also exhibit excellent rate characteristics.
  • the object is to provide a negative electrode active material for a secondary battery and a negative electrode.
  • Another object of the present invention is to provide a lithium ion secondary battery having a large charge / discharge capacity for inserting and extracting Li and excellent cycle characteristics.
  • Another object of the present invention is to provide a lithium ion secondary battery having a large charge / discharge capacity for inserting and extracting Li, excellent cycle characteristics, and excellent rate characteristics that enable high-speed charge / discharge. is there.
  • RAx (wherein R represents at least one selected from the group consisting of rare earth elements including Sc and Y, excluding La, A represents Si and / or Ge.
  • X represents 1) 0.0 ⁇ x ⁇ 2.0) and a negative electrode active material for a lithium ion secondary battery (hereinafter referred to as the negative electrode active material of the present invention), which includes particles having a crystal phase represented by A and a crystal phase composed of A. May be omitted).
  • the negative electrode active material of the present invention a negative electrode active material for a lithium ion secondary battery (hereinafter sometimes abbreviated as the negative electrode of the present invention) comprising a current collector and an active material layer containing the negative electrode active material of the present invention.
  • the method for producing a negative electrode of the present invention wherein the negative electrode active material of the present invention is adhered to the surface of the current collector by a gas deposition method to form an active material layer. Is done.
  • a lithium ion secondary battery (hereinafter sometimes abbreviated as the secondary battery of the present invention) comprising the negative electrode of the present invention, a positive electrode, a separator, and an electrolyte.
  • the negative electrode active material of the present invention has the above specific composition and crystal phase, by using a negative electrode using the same for a lithium ion secondary battery, the secondary battery has excellent charge / discharge capacity and cycle characteristics. In addition, excellent rate characteristics that enable high-speed charge / discharge can be imparted.
  • the negative electrode active material of the present invention has a crystal phase represented by RAx (hereinafter sometimes abbreviated as RAx phase) and a crystal phase composed of A (hereinafter sometimes abbreviated as A phase) / Composite particles containing phase A are included.
  • RAx means a compound phase of an R element and an A element.
  • R represents at least one selected from the group consisting of rare earth elements including Sc and Y and excluding La.
  • R is an element having a large electron donating property and a relatively high density.
  • R preferably includes at least one selected from the group consisting of Ce, Pr, Nd, Sm, Gd, Dy or Y, and in particular, at least one selected from the group consisting of Sm, Gd or Dy. It is preferable to contain.
  • A is Si and / or Ge, and is an element that is excellent in the storage amount of Li.
  • x is 1.0 ⁇ x ⁇ 2.0, its lower limit is preferably 1.4, and its upper limit is preferably 1.9, more preferably 1.85, and even more preferably 1.75. It is.
  • the amount of R is increased in RAx, the resulting negative electrode active material is biased, and a strong polarity is generated between the lattices, so that the anti-dusting characteristics are remarkably improved, and the cycle characteristics when a lithium ion secondary battery is obtained. Improvement can be expected.
  • increasing the amount of R decreases the amount of A that is easily alloyed with lithium, so that the discharge capacity of the lithium ion secondary battery may be reduced. Therefore, in order to achieve both excellent cycle characteristics and discharge capacity, it is preferable to set x in the above range.
  • the RAx phase acts as a matrix for the A phase, and can further relieve the stress caused by the volume change accompanying charge / discharge. Accordingly, there is an advantage that the ratio of the element A in the active material can be increased while improving the cycle characteristics while having a large capacity but a large volume change during charge / discharge.
  • the A phase is a phase that contributes to the charge / discharge capacity in the lithium ion secondary battery, and an increase in the charge / discharge capacity can be expected by increasing the content of the A phase in the particles.
  • the content of the A phase is excessively increased, the above-mentioned particles are promoted to be finely divided, and the cycle life may be shortened.
  • the amount of raw materials charged when RA 2 : A is preferably 20:80 to 80:20 by mass ratio
  • 30:70 to 70:30 is particularly preferable from the balance between charge / discharge capacity and improvement of cycle characteristics or suppression of expansion / contraction of the negative electrode active material, and 20:80 to 40: 60 is most preferred.
  • the composition notation here is a notation when it is assumed that the R element and the A element contained in the particles constitute RA 2 and A.
  • the phase diagram of Gd and Si the above composition is located on the Si side further than GdSi 2 , that is, a composition containing excessive Si.
  • GdSi 2 in the particles is obtained by forming composite particles.
  • the phase and the Si phase act efficiently, and it is possible to have high characteristics in cycle characteristics and charge / discharge capacity.
  • the RAx phase and the A phase can be confirmed by powder X-ray diffraction (XRD), and the alloy composition can be confirmed by quantitative analysis by ICP (Inductively Coupled Plasma) emission spectroscopy.
  • XRD powder X-ray diffraction
  • ICP Inductively Coupled Plasma
  • the crystallite size of the RAx phase present in the particles contained in the negative electrode active material of the present invention is usually 60 nm or less, preferably 1 to 60 nm. When the crystallite diameter exceeds 60 nm, there is a possibility that the effect of relaxing the volume expansion accompanying the insertion and release of Li may be reduced.
  • the negative electrode active material of the present invention includes, for example, a strip casting method such as a single roll method, a twin roll method or a disk method, a melt span method, a die casting method, various atomizing methods, a mechanical alloying method (mechanical milling method), and arc melting. It can be manufactured by the method. An arc melting method is preferable, but it is not particularly limited as long as particles having a desired phase are obtained.
  • the negative electrode active material of the present invention can be heat-treated as necessary. The heat treatment can be carried out under an inert atmosphere, usually at 300 to 1200 ° C. for 0.5 to 30 hours.
  • the obtained negative electrode active material can be pulverized as necessary.
  • the pulverization method can be performed by appropriately changing the pulverization conditions using a known pulverizer such as a feather mill, a hammer mill, a ball mill, a stamp mill, or an attritor mill.
  • a known pulverizer such as a feather mill, a hammer mill, a ball mill, a stamp mill, or an attritor mill.
  • pulverization using a mortar or the like is possible, it is not particularly limited to these means.
  • a powder having a desired particle size can be obtained.
  • the negative electrode of the present invention includes a current collector and an active material layer containing the negative electrode active material of the present invention.
  • the active material layer is usually formed on at least one surface of the current collector, and it is preferable that the negative electrode active material of the present invention is present in a substantially uniformly dispersed state throughout the active material layer.
  • the thickness of the active material layer is usually 0.5 to 40 ⁇ m, preferably 0.5 to 30 ⁇ m, more preferably 0.5 to 25 ⁇ m. By setting the thickness of the active material layer in this range, the energy density of the battery can be sufficiently improved, the strength of the negative electrode can be sufficient, and the particles can be effectively removed from the active material layer. Can be prevented.
  • the current collector may be the same as that conventionally used as a current collector for a negative electrode for a lithium ion secondary battery.
  • the current collector is preferably composed of a metal material having a low ability to form a lithium compound.
  • “low ability to form a lithium compound” means that lithium does not form an intermetallic compound or solid solution, or even if formed, the amount of lithium is very small or very unstable.
  • Preferred examples of such a metal material include copper, nickel, and stainless steel.
  • the thickness of the current collector is preferably 9 to 35 ⁇ m in consideration of the balance between maintaining the strength of the negative electrode and improving the energy density.
  • a negative electrode active material, a binder and a conductive agent are dispersed in a solvent to prepare a negative electrode mixture, and the mixture is applied to at least one surface of a current collector and dried. And can be manufactured by a method of forming an active material layer.
  • the binder include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, polyvinyl acetate, polymethyl methacrylate, ethylene-propylene-diene copolymer, styrene-butadiene copolymer, and acrylonitrile butadiene copolymer. A polymer, carboxymethylcellulose, etc. are mentioned.
  • the conductive agent include carbonaceous materials such as natural graphite such as flake graphite, artificial graphite, ketjen black, and acetylene black.
  • the negative electrode manufacturing method of the present invention is characterized in that a negative electrode active material is attached to a current collector by a gas deposition method instead of the coating.
  • a gas deposition method instead of the coating.
  • the gas deposition method is a method in which a raw material powder containing a negative electrode active material is attached to a current collector, and has an advantage that the adhesion between the particles of the negative electrode active material and the current collector is high and the adhesion between the particles is also high. Have Therefore, even if charging / discharging is repeated, the particles constituting the active material layer are difficult to drop off, thereby improving the cycle characteristics of the battery.
  • the electron conductivity of the negative electrode active material layer can be increased even when an element A, which is a material with low electron conductivity, is used.
  • the density in the thickness direction and the surface direction of the active material layer becomes non-uniform, so the stress due to volume change caused by the insertion and extraction of Li by element A is alleviated. Easy to be. This also improves the cycle characteristics of the battery. Furthermore, there is an advantage that the film forming speed is high.
  • the gas deposition method is a method of forming an active material layer by generating an aerosol by using a powder raw material containing a negative electrode active material of particles and a carrier gas, and injecting the aerosol onto the surface of a current collector. At this time, a conductive metal material can be mixed with the powder raw material, if necessary.
  • a carrier gas 1 having a predetermined initial pressure is aerosolized in a conduit 3 together with a powder raw material 2 containing a negative electrode active material.
  • This aerosol is carried out by ejecting the aerosol from the nozzle 7 attached to the tip of the conduit 3 toward the surface of the current collector 6 installed in the chamber 5 in which the vacuum state is maintained by the decompression device 4. .
  • the powder raw material 2 deform transforms by the collision with the electrical power collector 6, it does not keep the original shape in many cases.
  • the gas deposition method itself can be carried out according to a known method (apparatus). In the present invention, the gas deposition method is preferably performed under the following conditions.
  • an inert gas such as argon gas or nitrogen gas is preferably used as the carrier gas.
  • the difference between the apparatus internal pressure and the gas gauge pressure is preferably about 3 ⁇ 10 5 to 1 ⁇ 10 6 Pa.
  • the distance between the current collector and the nozzle is preferably about 5 to 30 mm.
  • the target active material layer may be formed by one injection, but the active material layer may be formed by performing injection a plurality of times.
  • an active material layer having a multilayer structure is formed.
  • the powder raw material containing the negative electrode active material at the time of spraying usually has an average particle diameter D50 of 1 to 50 ⁇ m, preferably 5 to 30 ⁇ m.
  • the shape of the negative electrode active material particles is not particularly limited.
  • the average particle diameter D50 can be measured by a laser diffraction / scattering particle size distribution analyzer (product name “MICROTRAC HRA”, model number 9320-X100, manufactured by Nikkiso Co., Ltd.).
  • the negative electrode obtained by the gas deposition method will be described below with reference to the schematic cross-sectional structure of the negative electrode shown in FIG.
  • 11 is a current collector
  • 12 is an active material layer
  • the active material layer 12 is composed of a negative electrode active material 12a and the above-described metal material 12b sprayed by a gas deposition method.
  • these particles are schematically shown in the drawing, the surface of the negative electrode active material 12a is usually coated continuously or discontinuously with the metal material 12b, and the negative electrode active material coated with the metal material 12b.
  • a structure in which voids are formed between the particles of 12a may be used.
  • This void serves as a flow path for the non-aqueous electrolyte containing lithium ions, and further serves as a space for relieving stress caused by the volume change of the negative electrode active material 12a due to charge / discharge. Also have.
  • the volume increase of the negative electrode active material 12a whose volume has been increased by charging is absorbed by the voids.
  • FIG. 2 shows a state in which the active material layer 12 is formed only on one surface of the current collector 11 for convenience, the active material layer 12 may be formed on both surfaces of the current collector 11.
  • the metal material 12b has conductivity, and examples thereof include materials having low lithium compound forming ability, such as copper, nickel, iron, cobalt, and alloys of these metals. In particular, it is preferable to use copper, which is a highly ductile material, as the metal material 12b.
  • the metal material 12b is preferably present on the surface of the negative electrode active material 12a over the entire thickness direction of the active material layer 12. The presence of the metal material 12b on the surface of the negative electrode active material 12a over the entire thickness direction of the active material layer 12 can be confirmed by electron microscope mapping using the metal material 12b as a measurement target.
  • the average thickness of the metal material 12b covering the surface of the negative electrode active material 12a is usually as thin as 0.05 to 2 ⁇ m, preferably 0.1 to 0.25 ⁇ m.
  • the “average thickness” is a value calculated based on a portion of the surface of the negative electrode active material 12a that is actually covered with the metal material 12b. Therefore, the portion of the surface of the negative electrode active material 12a that is not covered with the metal material 12b is not used as the basis for calculating the average value.
  • the formation of the active material layer can also be performed by an electrolytic plating method using a plating bath. Specifically, for example, a slurry containing a negative electrode active material and a binder is applied and dried on a current collector to form a coating film, and electrolytic coating using a predetermined plating bath is applied to the coating film. Then, the active material layer can be formed by depositing a conductive material by plating between the particles of the negative electrode active material. The degree of voids between the particles of the negative electrode active material and the degree of coating of the conductive material on the particle surface can be controlled by the degree of precipitation of the conductive material by electrolytic plating.
  • the conditions for electrolytic plating can be appropriately determined depending on the composition of the plating bath, the pH of the plating bath, the current density of electrolysis, and the like.
  • the pH of the plating bath is usually preferably adjusted to 7 or more and 11 or less, particularly 7.1 or more and 11 or less. By setting the pH within this range, dissolution of the A phase is suppressed, the particle surface of the negative electrode active material is cleaned, and plating on the particle surface is promoted. At the same time, moderate voids are formed between the particles.
  • the pH value is a value measured at the temperature during plating.
  • the bath composition, electrolysis conditions and pH are preferably as follows.
  • the bath composition is preferably in the range of 85 to 120 g / l copper pyrophosphate trihydrate, 300 to 600 g / l potassium pyrophosphate and 15 to 65 g / l potassium nitrate, the bath temperature is 45 to 60 ° C., and the current density is , 1 ⁇ 7A / dm 2, pH is preferably adjusted with ammonia water and polyphosphoric acid is added to 7.1 to 9.5.
  • the secondary battery of the present invention includes the negative electrode of the present invention, a positive electrode, a separator, and an electrolyte.
  • the positive electrode is not particularly limited as long as it can be used for a positive electrode of a lithium ion secondary battery, and can be appropriately selected from, for example, known positive electrodes.
  • As the separator it is preferable to use a microporous thin film having high ion permeability, predetermined mechanical strength, and electronic insulation.
  • a microporous thin film made of a material such as polyethylene, polypropylene, polyphenylene sulfide, polyethylene terephthalate, polyamide, polyimide, etc. Alternatively, a plurality of them may be used in combination. From the viewpoint of manufacturing cost, it is advantageous to use inexpensive polypropylene or the like.
  • Examples of the electrolyte include a nonaqueous electrolytic solution composed of an organic solvent and a solute dissolved in the organic solvent, and a solid electrolyte.
  • Known electrolytes can be used without particular limitation.
  • Examples of the organic solvent used for the non-aqueous electrolyte include N-methylpyrrolidone, tetrahydrofuran, ethylene oxide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, dimethylformamide, dimethylacetamide, ethylene carbonate, propylene carbonate, and butylene carbonate.
  • solute dissolved in the organic solvent examples include LiClO 4 , LiPF 6 , LiBF 4 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6. , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, lithium tetrachloroborate, lithium tetraphenylborate, and imides. These may be used alone or in combination.
  • solid electrolyte examples include polymer electrolytes such as polyethylene oxide and sulfide electrolytes such as Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , and Li 2 S—B 2 S 3 .
  • polymer electrolytes such as polyethylene oxide
  • sulfide electrolytes such as Li 2 S—SiS 2 , Li 2 S—P 2 S 5 , and Li 2 S—B 2 S 3 .
  • macromolecule can also be used.
  • the shape of the secondary battery of the present invention includes various shapes such as a cylindrical shape, a stacked shape, and a coin shape.
  • the secondary battery of the present invention is housed in the battery case in any shape and connected between the positive electrode and the negative electrode to the positive electrode terminal and the negative electrode terminal using a current collecting lead or the like. And it can manufacture by sealing a battery case.
  • Example 1 Manufacture of negative electrode active material
  • Gd and Rx / A so that the raw material composition is GdSi 2 / Si, and RAx: A is 30:70 by mass, and R: A is 22.1: 77.9 by mass.
  • Si was weighed and melted in an Ar gas atmosphere in an arc melting furnace to obtain an alloy melt. Thereafter, it was allowed to cool to obtain a button-like alloy having a diameter of 20 mm and a thickness of 10 mm.
  • the obtained alloy was pulverized with a stamp mill, and the pulverized powder was classified to obtain particles of a negative electrode active material of 400 mesh or less.
  • the RAx phase of RAx / A was GdSix, x was 1.4, and the A phase was Si.
  • the crystallite diameter of GdSi 1.4 (RAx) was calculated from the diffraction peak of (103) plane by powder X-ray diffraction (XRD), and it was 39 nm.
  • the alloy composition was quantitatively analyzed by ICP emission spectroscopic analysis.
  • D50 of the negative electrode active material particles was measured by a laser diffraction / scattering particle size distribution analyzer (product name “MICROTRAC HRA”, model number 9320-X100, manufactured by Nikkiso Co., Ltd.).
  • Electrode evaluation Using the negative electrode obtained above, a tripolar cell was constructed and charged / discharged to obtain a charge / discharge curve. Metallic lithium was used for the reference electrode and the counter electrode in the triode cell. As the electrolytic solution, a lithium perchlorate propylene carbonate solution (concentration: 1M) was used. In addition, a cycle characteristic and a rate characteristic were tested using a triode cell. The results are shown in FIG. 3, FIG. 4, FIG. The conditions for the charge / discharge test were a current density of 3.0 A / g, a potential width of 0.005 to 2.000 V vs. Li / Li + , a temperature of 30 ° C., and an atmosphere of argon gas.
  • the rate characteristics are 1C (3.0 A / g), 2C (6.0 A / g), 3C (9.0 A / g), 4C (12.0 A / g), 1C (3.0 A / g). Were carried out 50 cycles of 10 cycles each.
  • Negative electrode active material particles were obtained in the same manner as in Example 1 except that the composition of the raw materials was changed to the composition shown in Table 1. About the obtained negative electrode active material particle, the same measurement and test as Example 1 were performed. The results are shown in Table 1. Moreover, the negative electrode was produced similarly to Example 1 and electrode evaluation was performed. The results of charge / discharge curves of Examples 3 and 5 are shown in FIG. 3, and the results of cycle characteristics are shown in FIG. In addition, FIG. 5 shows the results of the charge / discharge curves of Examples 2 and 4, and FIG. Further, the results of the charge / discharge curves of Comparative Examples 1 and 2 are shown in FIG. 7, and the results of the cycle characteristics are shown in FIG.
  • Example 6 Comparative Example 3
  • the negative electrode active was changed in the same manner as in Example 1 except that the composition of the raw materials was changed to the composition shown in Table 1 and the mechanical alloying (MA) method was used instead of producing the alloy melt in an arc melting furnace. Material particles were obtained.
  • the MA method was performed using a zirconia container and a ball having a diameter of 15 mm, a mass ratio of the sample to the ball of 1:15, and a revolution speed of 380 rpm for 5 hours.
  • the results are shown in Table 1.
  • the negative electrode was produced similarly to Example 1 and electrode evaluation was performed.
  • the results of the charge / discharge curve of Example 6 are shown in FIG.
  • FIG. 5 shows the results of the charge / discharge curve of Example 7
  • FIG. 6 and Table 1 show the results of the cycle characteristics of Example 7.
  • the results of the charge / discharge curve of Comparative Example 3 are shown in FIG. 7, and the results of the cycle characteristics are shown in FIG.
  • Negative electrode active material particles were obtained in the same manner as in Example 1 except that Si alone was simply pulverized by the same pulverization method as in Example 1. About the obtained negative electrode active material particle, the same measurement and test as Example 1 were performed. The results are shown in Table 1. Moreover, the negative electrode was produced similarly to Example 1 and electrode evaluation was performed. The results of the cycle characteristics are shown in FIGS.
  • Example 8 Negative electrode active material particles were obtained by the same method as in Example 1 except that the value of x was 1.85. About the obtained negative electrode active material particle, the same measurement and test as Example 1 were performed. The results are shown in Table 1. Moreover, the negative electrode was produced similarly to Example 1 and electrode evaluation was performed. FIG. 10 shows the results of the charge / discharge curve, and FIG. 11 and Table 1 show the results of the cycle characteristics.

Abstract

 リチウムイオン二次電池に用いることにより、優れた充放電容量及びサイクル特性を発揮させることが可能であり、更には優れたレート特性も得ることが可能なリチウムイオン二次電池用負極活物質、負極並びにこれらを用いたリチウムイオン二次電池を提供する。本発明の負極活物質は、RAx(Rは、Sc、Yを含み、Laを除く希土類元素からなる群から選ばれる少なくとも1種、Aは、Si及び/又はGe。xは1.0≦x≦2.0)で表される結晶相と、Aからなる結晶相とを有する粒子を含む。従って、リチウムイオン二次電池用の負極材料として有用である。

Description

リチウムイオン二次電池用負極
 本発明は、リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極、その製造方法及びリチウムイオン二次電池に関する。
 広く普及している携帯用の小型電気・電子機器には、ニッケル・カドミウム蓄電池、ニッケル・水素蓄電池等のアルカリ蓄電池に比べて起電力が大きく、エネルギー密度が高いリチウムイオン二次電池が用いられている。近年、こうした機器の高性能・多機能化が進むにつれ、更なる電池の高容量化が求められており、二次電池の開発が盛んに行われている。
 これまでにリチウムイオン二次電池用負極活物質に関して多くの研究がなされてきた。そのうち、金属リチウムは、豊富な電池容量により負極活物質の材料として注目されてきた。しかしながら、充電時にリチウム表面に多くの樹枝状リチウムが析出して充放電効率の低下を引き起こし、正極との短絡が生じるといった電池上の問題や、リチウム自体の不安定性並びに高い反応性などの取扱い上の問題があるため実用化には至っていない。
 金属リチウムに代わる負極活物質の材料として、実用化されたのが炭素系材料である。該炭素系材料は充放電による膨張・収縮割合が金属リチウムやリチウム合金に比べて少ない。しかし、金属リチウムと比べて電池容量が小さい(理論容量約372mAh/g)。
 そこで、高容量材料として期待されているのがケイ素やスズである。これらの材料は炭素系材料と比べて、電池容量が大きいという特長があり、近年盛んに研究が行われている。しかしながら、該材料は充放電による膨張・収縮割合が大きく、該材料を負極活物質に用いた場合、集電体から脱落して寿命の低下や、不可逆容量が大きいといった問題がある。このような問題を解決するために、ケイ素やスズを、他元素と合金化し、または炭素と複合化することで膨張・収縮を抑制し、寿命の低下や不可逆容量を低減する試みがなされている。
 例えば、特許文献1には、Li、Si及びCを含有する負極活物質が提案されている。該負極活物質は、サイクル特性に優れるものの容量が炭素系材料の1/2以下と低い。
 特許文献2には、M100-xSix(M=Ni,Fe,Co,Mn)で表される負極活物質が提案されている。該負極活物質は、可燃性でない特定の遷移金属元素とケイ素を用いた金属との間で形成したケイ化物を使用するので安全性が向上する。しかし、容量が、ケイ素単体の理論容量4200mAh/gの約1/6である672mAh/gまで低下する。
特開平7-302588号公報 特開平10-294112号公報
 本発明の課題は、リチウムイオン二次電池に用いることにより、優れた充放電容量及びサイクル特性を発揮させることが可能であり、更には優れたレート特性をも発揮させることが可能なリチウムイオン二次電池用負極活物質及び負極を提供することにある。
 本発明の別の課題は、Liを吸蔵・放出する充放電容量が大きく、かつサイクル特性に優れたリチウムイオン二次電池を提供することにある。
 本発明の他の課題は、Liを吸蔵・放出する充放電容量が大きく、サイクル特性に優れ、更には高速充放電が可能となるレート特性にも優れたリチウムイオン二次電池を提供することにある。
 本発明者は、前記課題を解決するべく種々の金属元素の組合せによるリチウムイオン二次電池用負極活物質を用いた電極を、電極組成、電極容量、サイクル特性の観点から詳細に検討した結果、希土類元素とSi及び/又はGeとを特定量含み、かつ特定な結晶相を有する合金が、前記課題を解決できることを知見し、本発明を完成するに至った。
 本発明によれば、RAx(式中Rは、Sc、Yを含み、Laを除く希土類元素からなる群から選ばれる少なくとも1種を示し、Aは、Si及び/又はGeを示す。xは1.0≦x≦2.0である。)で表される結晶相と、Aからなる結晶相とを有する粒子を含むリチウムイオン二次電池用負極活物質(以下、本発明の負極活物質と略すことがある)が提供される。
 また本発明によれば、集電体と、本発明の負極活物質を含む活物質層とを備えたリチウムイオン二次電池用負極(以下、本発明の負極と略すことがある)が提供される。
 更に本発明によれば、集電体の表面に、本発明の負極活物質をガスデポジション法により付着させて、活物質層を形成することを特徴とする本発明の負極の製造方法が提供される。
 更にまた本発明によれば、本発明の負極と、正極と、セパレータと、電解質とを備えたリチウムイオン二次電池(以下、本発明の二次電池と略すことがある)が提供される。
 本発明の負極活物質は、上記特定の組成及び結晶相を有するので、これを用いた負極をリチウムイオン二次電池に使用することにより、該二次電池に優れた充放電容量及びサイクル特性を発揮させることができ、更には、高速充放電を可能とする優れたレート特性を付与することができる。
ガスデポジション法を説明するための装置の模式図である。 本発明の負極の一実施態様を説明するための負極断面構造の模式図である。 実施例1、3、5及び6で得られた負極の充放電曲線を示すグラフである。 実施例1、3、5、6及び比較例4で得られた負極のサイクル特性を示すグラフである。 実施例2、4及び7で得られた負極の充放電曲線を示すグラフである。 実施例2、4、7及び比較例4で得られた負極のサイクル特性を示すグラフである。 比較例1~3で得られた負極の充放電曲線を示すグラフである。 比較例1~3で得られた負極のサイクル特性を示すグラフである。 実施例1で得られた負極のレート特性を示すグラフである。 実施例8で得られた負極の充放電曲線を示すグラフである。 実施例8で得られた負極のサイクル特性を示すグラフである。
 以下、本発明を更に詳細に説明する。
 本発明の負極活物質は、RAxで表される結晶相(以下、RAx相と略すことがある)と、Aからなる結晶相(以下、A相と略すことがある)とを有するRAx相/A相を含有するコンポジット粒子を含む。
 RAxは、R元素とA元素との化合物相を意味し、式中Rは、Sc、Yを含み、Laを除く希土類元素からなる群から選ばれる少なくとも1種を示す。Rは、電子供与性が大きく、比較的密度の高い元素である。Rとしては、Ce、Pr、Nd、Sm、Gd、Dy又はYからなる群より選択される少なくとも1種を含むことが好ましく、特に、Sm、Gd又はDyからなる群より選択される少なくとも1種を含むことが好ましい。
 Aは、Si及び/又はGeであり、Liの吸蔵量に優れる元素である。
 RAxにおいてxは、1.0≦x≦2.0であり、その下限値は好ましくは1.4、その上限値は好ましくは1.9、より好ましくは1.85、さらに好ましくは1.75である。RAxにおいてR量を多くすると、得られる負極活物質に電荷の偏りが生じ、格子間に強い極性が発現することにより耐微粉化特性が著しく向上し、リチウムイオン二次電池とした際のサイクル特性の向上が期待できる。一方、R量を多くすることは、リチウムと合金化し易いA量が減少するので、リチウムイオン二次電池の放電容量が低下するおそれがある。従って、優れたサイクル特性と放電容量とを両立させるためには、xを上記範囲とすることが好ましい。
 本発明の負極活物質においてRAx相は、A相のマトリックスとして働き、充放電に伴う体積変化で生じる応力を一層緩和させることができる。それに伴い、サイクル特性を向上させつつ、高容量であるものの充放電時の体積変化が大きいA元素の活物質中における比率を高めることができるという利点がある。
 上記A相は、リチウムイオン二次電池における充放電容量に寄与する相であり、上記粒子中におけるA相の含有量を多くすることで充放電容量の増加が期待できる。一方、A相の含有量を多くしすぎると、上記粒子の微粉化が促進され、サイクル寿命が低下する恐れがある。
 本発明の負極活物質において、RAx相とA相との比率を好適な範囲とするために、RA2:Aとした場合の原料仕込み量は、質量比で20:80~80:20が好ましく、充放電容量とサイクル特性の向上又は負極活物質の膨張・収縮の抑制とのバランスから30:70~70:30が特に好ましく、更に充放電容量を高くする観点からは20:80~40:60が最も好ましい。ここでの組成表記は、該粒子中に含まれるR元素とA元素とが、RA2とAを構成すると仮定した場合の表記である。単純にR元素をGd元素、A元素をSi元素と仮定し、2つの比率の表記とした場合、GdSi2:Si=20:80(質量比)を例に挙げて説明すると、Gd元素とSi元素の2つの比率の表記は質量比でGd:Si=14.73:85.27となる。GdとSiの状態図で確認した場合、上記組成はGdSi2よりもさらにSi側に位置、つまりSiを過剰に含む組成となっており、この組成においてコンポジット粒子とすることで粒子内のGdSi2相とSi相とが効率よく作用し、かつサイクル特性及び充放電容量において高い特性を持つことが可能となる。
 RAx相とA相との確認は、粉末X線回折(XRD)により行うことができ、合金組成はICP(Inductively Coupled Plasma)発光分光分析による定量分析で確認することができる。
 本発明の負極活物質に含まれる粒子中に存在するRAx相の結晶子径は、通常60nm以下、好ましくは1~60nmである。該結晶子径が60nmを超える場合には、Liの吸蔵・放出に伴う体積膨張を緩和する効果が低下する恐れがある。該結晶子径の算出方法は、X線回折装置(株式会社リガク製、UltimaIV)のCuKα線を使用したX線回折スペクトルの2θ=29~31°付近に発生する(103)面の回折ピークについてScherrer式より算出することができる。
 本発明の負極活物質は、例えば、単ロール法、双ロール法又はディスク法等のストリップキャスト法、メルトスパン法、金型鋳造法、各種アトマイズ法、メカニカルアロイング法(メカニカルミリング法)、アーク溶解法により製造することができる。好ましくはアーク溶解法が挙げられるが、所望の相を有する粒子が得られれば特に限定されない。
 本発明の負極活物質は、必要に応じて熱処理を行うことができる。熱処理は、不活性雰囲気下、通常300~1200℃、0.5~30時間の条件で行うことができる。
 上記得られた負極活物質は、必要に応じて粉砕することができる。粉砕方法は、フェザミル、ハンマーミル、ボールミル、スタンプミル、アトライターミル等の公知の粉砕機を用い、粉砕条件を適宜変更することで行うことができる。また、乳鉢等を用いた粉砕も可能であるが、特にこれらの手段に限定されない。必要に応じて粉砕後に篩い分けることで、所望の粒度の粉末を得ることができる。
 本発明の負極は、集電体と、本発明の負極活物質を含む活物質層とを備える。該活物質層は、通常、集電体の少なくとも一方の面に形成され、該活物質層には本発明の負極活物質が全体にわたりほぼ均一に分散した状態で存在しているのが好ましい。
 活物質層の厚みは、通常0.5~40μm、好ましくは0.5~30μm、さらに好ましくは0.5~25μmである。活物質層の厚みをこの範囲に設定することで、電池のエネルギー密度を十分に向上させつつ、負極の強度を十分なものとすることができ、また活物質層での粒子の脱落を効果的に防止できる。
 集電体は、リチウムイオン二次電池用負極の集電体として従来用いられているものと同様のものを用いることができる。集電体は、リチウム化合物の形成能の低い金属材料から構成されることが好ましい。ここで、「リチウム化合物の形成能の低い」とは、リチウムと金属間化合物もしくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるかもしくは非常に不安定であることを意味する。そのような金属材料としては、例えば、銅、ニッケル、ステンレスが好ましく挙げられる。またコルソン合金箔に代表されるような銅合金箔の使用も可能である。集電体の厚みは、負極の強度維持と、エネルギー密度向上とのバランスを考慮すると、9~35μmが好ましい。なお、集電体として銅箔を使用する場合には、クロメート処理や、トリアゾール系化合物及びイミダゾール系化合物等の有機化合物を用いた防錆処理を施しておくことが好ましい。
 本発明の負極は、例えば、負極活物質、結着剤及び導電剤を溶剤に分散させて負極合剤を調整し、該合剤を集電体の少なくとも一方の表面に塗工し、乾燥させて活物質層を形成する方法により製造することができる。
 上記結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系樹脂、ポリ酢酸ビニル、ポリメチルメタクリレート、エチレン-プロピレン-ジエン共重合体、スチレン-ブタジエン共重合体、アクリロニトリルブタジエン共重合体、カルボキシメチルセルロース等が挙げられる。
 上記導電剤として、例えば、鱗片状黒鉛のような天然黒鉛、人造黒鉛、ケッチェンブラック、アセチレンブラック等の炭素質材が挙げられる。
 本発明の負極の製造方法は、前記塗工の代わりに、負極活物質をガスデポジション法で集電体に付着させることを特徴とする。以下に、ガスデポジション法による負極の製造方法を説明するが、製造方法は所望の電池特性を得ることができれば特に限定されない。
 ガスデポジション法は、負極活物質を含む原料粉末を集電体へ付着させる方法であり、負極活物質の粒子と集電体との密着性が高く、かつ粒子同士の密着性も高いという利点を有する。したがって、充放電を繰り返しても、活物質層を構成する粒子が脱落しづらく、それによって電池のサイクル特性が向上する。また、粒子同士の密着性が高いことによって、電子伝導性の低い材料であるA元素を用いても、該負極活物質層の電子伝導性を高めることができる。ガスデポジション法を採用することで、該活物質層の厚み方向及び面方向の密度が不均一になるので、元素AがLiを吸蔵・放出することに起因して生じる体積変化による応力が緩和されやすい。このことによっても、電池のサイクル特性が向上する。更には、成膜速度が高いといった利点もある。
 ガスデポジション法は、粒子の負極活物質を含む粉末原料とキャリアガスとを用いることによりエアロゾルを発生させ、これを集電体の表面に噴射することにより活物質層を形成する方法である。この際、粉末原料には、必要により導電性の金属材料を混合することもできる。以下に、図1に示す装置の模式図を参照してその方法を説明する。
 所定の初期圧力を有するキャリアガス1を、負極活物質を含む粉末原料2とともに導管3中でエアロゾル化する。このエアロゾルを、減圧装置4によって真空状態が維持されているチャンバ5中に設置された集電体6の表面に向けて、導管3の先端に取り付けられたノズル7から噴出させることにより実施される。なお、粉末原料2は、集電体6への衝突によって変形するので、元の形状をとどめていない場合が多い。ガスデポジション法自体は、公知の方法(装置)に従って実施することができる。本発明においては、以下の条件でガスデポジション法を行うことが好ましい。
 キャリアガスとしては、例えば、アルゴンガス、窒素ガス等の不活性ガスを用いることが好ましい。装置内圧力とガスのゲージ圧との差は、3×105~1×106Pa程度とすることが好ましい。集電体とノズルとの距離は5~30mm程度が好ましい。
 ガスデポジション法を実施する場合、1回の噴射によって目的とする活物質層を形成してもよいが、複数回にわたり噴射を行って活物質層を形成してもよい。複数回の噴射を行う場合は、多層構造を有する活物質層が形成される。
 前記噴射の際の負極活物質を含む粉末原料は、通常、平均粒子径D50が1~50μm、好ましくは5~30μmである。負極活物質の粒子の形状は特に制限はない。平均粒子径D50は、レーザー回折散乱式粒度分布測定装置(製品名「MICROTRAC HRA」、型番9320-X100、日機装株式会社製)によって測定することができる。
 上記ガスデポジション法により得られる負極を、図2に示す負極の断面構造模式図により以下に説明する。
 図2において、11は集電体、12は活物質層であり、該活物質層12は、ガスデポジション法により噴霧された、負極活物質12a及び上述の金属材料12bにより構成される。図面にはこれら粒子を模式的に示しているが、通常、負極活物質12aの表面は金属材料12bにより連続に又は不連続に被覆されているとともに、該金属材料12bで被覆された負極活物質12aの粒子同士の間に空隙が形成されている構造であってもよい。この空隙は、リチウムイオンを含む非水電解液の流通の経路としての働きを有し、更に、充放電で負極活物質12aが体積変化することに起因する応力を緩和するための空間としての働きも有する。充電によって体積が増加した負極活物質12aの体積増加分は、この空隙に吸収される。
 図2においては、便宜的に集電体11の片面にのみ活物質層12を形成した状態を示すが、活物質層12は集電体11の両面に形成してもよい。
 金属材料12bは、導電性を有するものであり、上述のリチウム化合物の形成能の低い材料、例えば、銅、ニッケル、鉄、コバルト又はこれら金属の合金が挙げられる。特に金属材料12bとしては、延性の高い材料である銅を用いることが好ましい。金属材料12bは、通常、活物質層12の厚み方向全域にわたって負極活物質12aの表面に存在していることが好ましい。金属材料12bが活物質層12の厚み方向全域にわたって負極活物質12aの表面に存在していることは、該金属材料12bを測定対象とした電子顕微鏡マッピングによって確認できる。
 負極活物質12aの表面を被覆している金属材料12bの厚みの平均は、通常0.05~2μm、好ましくは0.1~0.25μmという薄いものである。ここで「厚みの平均」とは、負極活物質12aの表面のうち、実際に金属材料12bが被覆している部分に基づき計算された値である。したがって、負極活物質12aの表面のうち金属材料12bで被覆されていない部分は、平均値の算出の基礎にはされない。
 上記活物質層の形成は、めっき浴を用いた電解めっき法によっても実施することができる。具体的には例えば、負極活物質及び結着剤を含むスラリーを、集電体上に塗布・乾燥し、塗膜を形成し、該塗膜に対し、所定のめっき浴を用いた電解めっきを行って、負極活物質の粒子同士の間にめっきによる導電材料を析出させることで活物質層を形成することができる。負極活物質の粒子間の空隙の程度や、該粒子表面における導電材料の被覆の程度は、電解めっきによる導電材料の析出の程度によって制御することができる。
 電解めっきの条件は、めっき浴の組成、めっき浴のpH、電解の電流密度等により適宜決定することができる。めっき浴のpHは、通常、7以上11以下、特に7.1以上11以下に調整することが好ましい。pHをこの範囲内とすることで、A相の溶解が抑制され、負極活物質の粒子表面が清浄化され、粒子表面へのめっきが促進される。これと同時に、該粒子同士の間に適度な空隙が形成される。pHの値は、めっき時の温度において測定された値である。
 めっきの導電材料として、例えば銅を用いる場合には、ピロリン酸銅浴の使用が好ましい。ピロリン酸銅浴を用いると、活物質層を厚くした場合であっても、該層の厚み方向全域にわたって、前記空隙を容易に形成し得るので好ましい。また、負極活物質の粒子表面には導電材料が析出するが、該粒子同士の間では導電材料の析出が起こりづらくなり、上記空隙が形成され易くなる。ピロリン酸銅浴を用いる場合、その浴組成、電解条件及びpHは次のとおりが好ましい。
 浴組成は、ピロリン酸銅三水和物85~120g/l、ピロリン酸カリウム300~600g/l及び硝酸カリウム:15~65g/lの範囲が好ましく、浴温度は、45~60℃、電流密度は、1~7A/dm2、pHは、アンモニア水とポリリン酸を添加して7.1~9.5に調整することが好ましい。
 本発明の二次電池は、本発明の負極と、正極と、セパレータと、電解質とを備える。
 正極としては、リチウムイオン二次電池の正極に利用可能なものであれば特に限定されず、例えば、公知の正極から適宜選択することができる。
 セパレータとしては、大きなイオン透過度、所定の機械的強度、および電子絶縁性を有する微多孔性薄膜の使用が好ましい。電解質に対する耐性と疎水性に優れていることから、例えば、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリアミド、ポリイミド等の材質からなる微多孔性薄膜の使用が好ましく、これらの材質は、単独で用いても、複数を組み合わせて用いても良い。製造コストの観点からは、安価なポリプロピレン等を用いることが有利である。
 電解質としては、有機溶媒及び該有機溶媒に溶解させる溶質からなる非水電解液や、固体電解質が挙げられ、公知のものを特に制限無く用いることができる。
 非水電解液に用いる有機溶媒としては、例えば、N-メチルピロリドン、テトラヒドロフラン、エチレンオキシド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、ジメチルホルムアミド、ジメチルアセトアミド、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ギ酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1,3-プロパンサルトン等の非プロトン性有機溶媒が挙げられ、使用に際しては単独もしくは2種以上の混合溶媒として用いることができる。
 上記有機溶媒に溶解させる溶質としては、例えば、LiClO4、LiPF6、LiBF4、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、テトラクロロホウ素酸リチウム、テトラフェニルホウ素酸リチウム、イミド類が挙げられる。これらは単独で用いても、複数を組み合わせて用いても良い。
 固体電解質としては、例えば、ポリエチレンオキサイド系等の高分子電解質、Li2S-SiS2、Li2S-P25、Li2S-B23等の硫化物系電解質が挙げられる。また、高分子に非水電解質溶液を保持させた、いわゆるゲルタイプのものを用いることもできる。
 本発明の二次電池の形状は、円筒型、積層型、コイン型等、種々の形状が挙げられる。本発明の二次電池は、いずれの形状であっても、上述の構成要素を電池ケースに収納し、正極及び負極から正極端子及び負極端子までの間を、集電用リード等を用いて接続し、電池ケースを密閉することにより製造することができる。
 以下、実施例及び比較例により本発明を詳細に説明するが、本発明はこれらに限定されない。
 実施例1
 (負極活物質の製造)
 RAx/Aの原料組成がGdSi2/Siとなるように、また、RAx:Aが質量比で30:70、R:Aが質量比で22.1:77.9となるように、Gd及びSiを秤量し、アーク溶解炉にてArガス雰囲気中で溶解して合金溶融物とした。その後、放冷してφ20mm、厚み10mmのボタン状合金を得た。得られた合金をスタンプミルにて粉砕を行い、粉砕した粉末を分級することにより、400メッシュ以下の負極活物質の粒子を得た。得られた負極活物質粒子を粉末X線回折した結果、RAx/AのRAx相はGdSixであり、xは1.4で、A相はSiであった。また粉末X線回折(XRD)による(103)面の回折ピークよりGdSi1.4(RAx)の結晶子径を算出したところ39nmであった。合金組成はICP発光分光分析による定量分析を行った。更に、負極活物質粒子のD50を、レーザー回折散乱式粒度分布測定装置(製品名「MICROTRAC HRA」、型番9320-X100、日機装株式会社製)によって測定した。これらの結果を表1に示す。
 (負極の製造)
 上述の図1に示すガスデポジション法を実施するための装置を用いて、集電体として厚み20μmの電解銅箔(ニラコ社製)を、負極活物質の粒子として上記で得られた負極活物質粒子を用い、以下の条件で負極を作製した。得られた負極の活物質層の厚みは2μmであった。
 キャリアガス:アルゴン(4N)、圧力差:7.0×105Pa、ノズル径:0.8mm、ノズル-集電体間距離:10mm、雰囲気:室温下アルゴン。
 (電極評価)
 上記で得られた負極を用いて三極式セルを構成し、充放電を行い、充放電曲線を得た。三極式セルにおける参照極及び対極には金属リチウムを用いた。電解液として、過塩素酸リチウムのプロピレンカーボネート溶液(濃度1M)を用いた。また、三極式セルを用いてサイクル特性及びレート特性の試験を行った。結果を図3、図4、図9及び表1に示す。充放電試験の条件は、電流密度3.0A/g、電位幅0.005-2.000V vs. Li/Li+、温度30℃、雰囲気はアルゴンガス雰囲気とした。また、レート特性は、1C(3.0A/g)、2C(6.0A/g)、3C(9.0A/g)、4C(12.0A/g)、1C(3.0A/g)を各10サイクルずつ50サイクル行った。
 実施例2~5、比較例1~2
 原料の配合を表1に示す組成に変更した以外は、実施例1と同様に負極活物質粒子を得た。得られた負極活物質粒子について、実施例1と同様な測定及び試験を行った。結果を表1に示す。また実施例1と同様に負極を作製し、電極評価を行った。実施例3及び5の充放電曲線の結果を図3に、サイクル特性の結果を図4及び表1に示す。また、実施例2及び4の充放電曲線の結果を図5に、サイクル特性の結果を図6及び表1に示す。更に、比較例1~2の充放電曲線の結果を図7に、サイクル特性の結果を図8及び表1に示す。
 実施例6及び7、比較例3
 原料の配合を表1に示す組成に変更し、また、合金溶融物をアーク溶解炉にて作製する代わりに、メカニカルアロイング(MA)法を用いた以外は、実施例1と同様に負極活物質粒子を得た。なお、MA法の条件は、ジルコニア製の容器及び直径15mmのボールを用い、試料とボールの比率を質量比で1:15とし、公転速度380rpmで5時間行った。
 得られた負極活物質粒子について、実施例1と同様な測定及び試験を行った。結果を表1に示す。また実施例1と同様に負極を作製し、電極評価を行った。実施例6の充放電曲線の結果を図3に、実施例6のサイクル特性の結果を図4及び表1に示す。また、実施例7の充放電曲線の結果を図5に、実施例7のサイクル特性の結果を図6及び表1に示す。更に、比較例3の充放電曲線の結果を図7に、サイクル特性の結果を図8及び表1に示す。
 比較例4
 Si単体を、実施例1と同様の粉砕方法で単に粉砕した以外は実施例1と同様に負極活物質粒子を得た。得られた負極活物質粒子について、実施例1と同様な測定及び試験を行った。結果を表1に示す。また実施例1と同様に負極を作製し、電極評価を行った。サイクル特性の結果を図4,6及び表1に示す。
 実施例8
 xの値が1.85である以外は、実施例1と同様の方法によって負極活物質粒子を得た。得られた負極活物質粒子について、実施例1と同様な測定及び試験を行った。結果を表1に示す。また実施例1と同様に負極を作製し、電極評価を行った。充放電曲線の結果を図10に、サイクル特性の結果を図11及び表1に示す。
Figure JPOXMLDOC01-appb-T000001
 1 キャリアガス
 2 粉末原料
 3 導管
 4 減圧装置
 5 チャンバ
 6 集電体
 7 ノズル
 10 負極
 11 集電体
 12 活物質層
 12a 負極活物質
 12b 金属材料

Claims (9)

  1.  RAx(式中Rは、Sc、Yを含み、Laを除く希土類元素からなる群から選ばれる少なくとも1種を示し、Aは、Si及び/又はGeを示す。xは1.0≦x≦2.0である。)で表される結晶相と、Aからなる結晶相とを有する粒子を含むリチウムイオン二次電池用負極活物質。
  2.  Rが、Ce、Pr、Nd、Sm、Gd、Dy又はYからなる群から選ばれる少なくとも1種を含む請求項1記載の負極活物質。
  3.  xが、1.4≦x≦1.9である請求項1又は2記載の負極活物質。
  4.  xが、1.4≦x≦1.75である請求項3記載の負極活物質。
  5.  RAxで表される結晶相の結晶子径が60nm以下である請求項1~4のいずれかに記載の負極活物質。
  6.  上記粒子におけるRAx:Aの組成が、RA2とAで構成されると仮定した場合の原料仕込み量として質量比で、20:80~80:20である請求項1~5のいずれかに記載の負極活物質。
  7.  集電体と、請求項1~6のいずれかに記載の負極活物質を含む活物質層とを備えたリチウムイオン二次電池用負極。
  8.  集電体の表面に、請求項1~6のいずれかに記載の負極活物質をガスデポジション法により付着させて、活物質層を形成することを特徴とする請求項7記載の負極の製造方法。
  9.  請求項7記載の負極と、正極と、セパレータと、電解質とを備えたリチウムイオン二次電池。
PCT/JP2013/063145 2012-05-11 2013-05-10 リチウムイオン二次電池用負極 WO2013168786A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014514757A JP6116068B2 (ja) 2012-05-11 2013-05-10 リチウムイオン二次電池用負極
KR1020147034559A KR20150020188A (ko) 2012-05-11 2013-05-10 리튬-이온 이차 배터리용 음 전극
CN201380037190.8A CN104471758B (zh) 2012-05-11 2013-05-10 锂离子二次电池的负极
EP13788468.0A EP2854205B1 (en) 2012-05-11 2013-05-10 Negative electrode for lithium-ion secondary battery
US14/400,002 US9947925B2 (en) 2012-05-11 2013-05-10 Negative electrode for lithium-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109774 2012-05-11
JP2012109774 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168786A1 true WO2013168786A1 (ja) 2013-11-14

Family

ID=49550818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063145 WO2013168786A1 (ja) 2012-05-11 2013-05-10 リチウムイオン二次電池用負極

Country Status (6)

Country Link
US (1) US9947925B2 (ja)
EP (1) EP2854205B1 (ja)
JP (1) JP6116068B2 (ja)
KR (1) KR20150020188A (ja)
CN (1) CN104471758B (ja)
WO (1) WO2013168786A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225143A (ja) 2015-05-29 2016-12-28 エルジー・ケム・リミテッド 二次電池用負極材料及びそれを用いた非水電解質二次電池
WO2019041341A1 (zh) * 2017-09-04 2019-03-07 超能高新材料股份有限公司 锂离子电池负极材料
CN112310345A (zh) * 2019-07-29 2021-02-02 通用汽车环球科技运作有限责任公司 具有增强的荷电状态估计的电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302588A (ja) 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびその製造方法
JPH10294112A (ja) 1997-02-24 1998-11-04 Hitachi Metals Ltd リチウム二次電池
JP2000003731A (ja) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd 非水二次電池
JP2007165300A (ja) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池、および非水電解質二次電池用負極材料の製造方法
JP2007294423A (ja) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd 珪素−珪素酸化物−リチウム系複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2012178344A (ja) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd 複合材料、その製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2013125743A (ja) * 2011-12-13 2013-06-24 Samsung Sdi Co Ltd 負極活物質及びそれを含む二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240201A (ja) * 1994-02-25 1995-09-12 Mitsubishi Cable Ind Ltd 負極及びLi二次電池
JPH07240021A (ja) * 1994-02-25 1995-09-12 Toray Ind Inc 二軸配向ポリエステルフイルム
US6235427B1 (en) * 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP4344121B2 (ja) * 2002-09-06 2009-10-14 パナソニック株式会社 非水電解質二次電池用負極材料と非水電解質二次電池
US7781102B2 (en) * 2004-04-22 2010-08-24 California Institute Of Technology High-capacity nanostructured germanium-containing materials and lithium alloys thereof
US7662514B2 (en) 2005-11-17 2010-02-16 Panasonic Corporation Non-aqueous electrolyte secondary battery and method for producing negative electrode material for non-aqueous electrolyte secondary battery
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
CN101471439A (zh) * 2007-12-04 2009-07-01 法拉赛斯能源公司 用于锂离子电池负极的复合材料及制备方法和负极及电池
KR101073013B1 (ko) * 2009-02-19 2011-10-12 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
US8287772B2 (en) * 2009-05-14 2012-10-16 3M Innovative Properties Company Low energy milling method, low crystallinity alloy, and negative electrode composition
JP6049611B2 (ja) * 2011-03-31 2016-12-21 三洋電機株式会社 リチウム二次電池及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302588A (ja) 1994-05-10 1995-11-14 Mitsubishi Cable Ind Ltd リチウム二次電池用負極およびその製造方法
JPH10294112A (ja) 1997-02-24 1998-11-04 Hitachi Metals Ltd リチウム二次電池
JP2000003731A (ja) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd 非水二次電池
JP2007165300A (ja) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池、および非水電解質二次電池用負極材料の製造方法
JP2007294423A (ja) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd 珪素−珪素酸化物−リチウム系複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2012178344A (ja) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd 複合材料、その製造方法、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2013125743A (ja) * 2011-12-13 2013-06-24 Samsung Sdi Co Ltd 負極活物質及びそれを含む二次電池

Also Published As

Publication number Publication date
EP2854205A1 (en) 2015-04-01
US9947925B2 (en) 2018-04-17
JP6116068B2 (ja) 2017-04-19
CN104471758B (zh) 2017-09-12
CN104471758A (zh) 2015-03-25
KR20150020188A (ko) 2015-02-25
EP2854205B1 (en) 2017-03-15
US20150111103A1 (en) 2015-04-23
EP2854205A4 (en) 2015-12-30
JPWO2013168786A1 (ja) 2016-01-07

Similar Documents

Publication Publication Date Title
JP5219339B2 (ja) リチウム二次電池
US7771876B2 (en) Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same
JP5219340B2 (ja) リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP5147170B2 (ja) リチウム二次電池
JP5210503B2 (ja) 非水電解質二次電池
WO2010100910A1 (ja) 非水電解質二次電池用正極活物質、その製造方法、および非水電解質二次電池
Liu et al. Preparation and electrochemical properties of Fe-Sn (C) nanocomposites as anode for lithium-ion batteries
EP2515365A1 (en) Anode active material, anode and lithium battery including the material, and method of preparing the material
JP2006120612A (ja) リチウム二次電池
JP6371504B2 (ja) 蓄電デバイス用Si系合金負極材料およびそれを用いた電極
JP4270894B2 (ja) リチウム二次電池用負極及びリチウム二次電池
JP7375569B2 (ja) リチウムイオン電池用負極活物質
JP2009176583A (ja) リチウム二次電池
JP2014500579A (ja) Si系負極材料
WO2016043061A1 (ja) 蓄電デバイス用Si系合金負極材料およびそれを用いた電極
JP2012014866A (ja) リチウム二次電池用負極活物質およびその製造方法
KR20180103507A (ko) 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
JP2015141897A (ja) 負極活物質、それを採用した負極及び該リチウム電池、並びに該負極活物質の製造方法
JP2010040279A (ja) 非水電解液二次電池
JP6116068B2 (ja) リチウムイオン二次電池用負極
JP6245954B2 (ja) リチウムイオン二次電池用負極活物質
JP4883894B2 (ja) リチウム二次電池用負極及びその製造方法
Song et al. Electrochemical Performance of Sn/SnO Nanoparticles with Core–Shell Structure as Anode Materials for Sodium-Ion and Lithium-Ion Batteries
CN111540894A (zh) 锂离子电池用负极活性材料、锂离子电池用负极和锂离子电池
JP6678446B2 (ja) 電池用活物質、電池用電極、非水電解質電池、電池パック及びこれを用いた車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13788468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514757

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14400002

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034559

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013788468

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013788468

Country of ref document: EP