WO2013168681A1 - 誘導装置及びカプセル型医療装置誘導システム - Google Patents

誘導装置及びカプセル型医療装置誘導システム Download PDF

Info

Publication number
WO2013168681A1
WO2013168681A1 PCT/JP2013/062784 JP2013062784W WO2013168681A1 WO 2013168681 A1 WO2013168681 A1 WO 2013168681A1 JP 2013062784 W JP2013062784 W JP 2013062784W WO 2013168681 A1 WO2013168681 A1 WO 2013168681A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
unit
guidance
capsule endoscope
subject
Prior art date
Application number
PCT/JP2013/062784
Other languages
English (en)
French (fr)
Inventor
河野 宏尚
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to EP13787588.6A priority Critical patent/EP2848185B8/en
Priority to CN201380017380.3A priority patent/CN104203072B/zh
Priority to JP2013550430A priority patent/JP5475207B1/ja
Publication of WO2013168681A1 publication Critical patent/WO2013168681A1/ja
Priority to US14/090,324 priority patent/US9155450B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00055Operational features of endoscopes provided with output arrangements for alerting the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/704Tables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/0002Operational features of endoscopes provided with data storages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field

Definitions

  • the present invention relates to a guiding device for guiding a capsule medical device introduced into a subject and a capsule medical device guiding system.
  • a capsule endoscope has an imaging function and a wireless communication function inside a capsule-type housing. After being swallowed from the subject's mouth, the subject moves while moving in the digestive tract by peristalsis or the like. Sequentially acquire image data of an image inside the organ (hereinafter also referred to as an in-vivo image) and wirelessly transmit it to a receiving device outside the subject. Image data received by the receiving device is taken into the image display device and subjected to predetermined image processing. Thereby, the in-vivo image is displayed as a still image or a moving image on the display. A user such as a doctor or nurse observes the in-vivo image displayed on the image display device in this way, and diagnoses the state of the organ of the subject.
  • a guidance system including a guidance device that guides a capsule endoscope inside a subject by magnetic force (hereinafter referred to as magnetic guidance) has been proposed (for example, see Patent Document 1).
  • a permanent magnet hereinafter also referred to as an internal permanent magnet
  • the guidance device includes a magnetic field generator such as an electromagnet or a permanent magnet (hereinafter also referred to as an extracorporeal permanent magnet), applies a magnetic field to the capsule endoscope introduced into the subject, and applies the magnetic field from the applied magnetic field.
  • the capsule endoscope is magnetically guided to a desired position by the generated magnetic attractive force.
  • the guidance system is provided with a display unit that can receive the image data acquired by the capsule endoscope and display the in-vivo image in real time, and the user refers to the in-vivo image displayed on the display unit.
  • the magnetic guidance of the capsule endoscope can be operated using the operation input unit provided in the guidance system.
  • the present invention has been made in view of the above, and an object thereof is to provide a guidance device and a capsule medical device guidance system that can improve the operability of the guidance system by a user.
  • a guidance device introduces a capsule medical device in which a permanent magnet is arranged into a subject, and the capsule endoscope In the guidance device for guiding the capsule medical device in the subject by applying a magnetic field, a magnetic field generating unit, a translation mechanism that translates the magnetic field generating unit relative to the subject, Rotation mechanism for rotating the magnetic field generator relative to the subject, first information regarding an operation for changing the position of the capsule medical device, and an operation for changing the posture of the capsule medical device
  • An input unit that receives input of second information regarding the control unit, and controls the translation mechanism and the rotation mechanism based on the first information and the second information, so that the magnetic field generation unit is placed on the subject.
  • the change in the position of the capsule medical device caused by the correction is corrected by translating the magnetic field generator relative to the subject.
  • the rotation mechanism includes a mechanism that rotates the magnetic field generation unit relative to the subject within a vertical plane including a magnetization direction of the magnetic field generation unit
  • the control unit includes: Based on the second information, when the magnetic field generation unit is rotated by the mechanism, a change in the position of the capsule medical device caused by the rotation of the magnetic field generation unit, the magnetic field generation unit, The correction is performed by translating relative to the subject in a direction parallel to the line of intersection between the vertical plane and the horizontal plane.
  • the rotation mechanism rotates the magnetic field generation unit relative to the subject about the vertical axis in a state where the magnetization direction of the magnetic field generation unit is inclined with respect to the vertical axis.
  • the capsule has a second mechanism, and the control unit is caused by rotation of the magnetic field generation unit when the magnetic field generation unit is rotated by the second mechanism based on the second information.
  • the position change of the medical device is corrected by translating the magnetic field generator relative to the subject in a horizontal plane.
  • the guidance device further includes a mounting table on which the subject into which the capsule medical device is introduced, and the translation mechanism translates the first translation mechanism that translates the magnetic field generation unit and the mounting table.
  • a part of the translation is translated by the first translation mechanism, and the remaining part of the translation amount is translated by the second translation mechanism.
  • control unit changes the position of the capsule medical device caused by rotation of the magnetic field generation unit with respect to the subject when the input unit receives input of second information. Is corrected by translating only the first translation mechanism.
  • control unit distributes the total translation amount into a translation amount by the first translation mechanism and a translation amount by the second translation mechanism at a predetermined ratio. .
  • control unit determines the total translation amount based on the translation amount by the first translation mechanism and the second translation amount according to the upper limit speeds of the first translation mechanism and the second translation mechanism. It distributes to the amount of translation by the translation mechanism.
  • the guidance device further includes a position detection unit that detects the position of the capsule medical device, and the control unit is based on a detection result in the position detection unit and a rotation angle at which the magnetic field generation unit rotates. A translation amount for translating the magnetic field generator relative to the subject is calculated.
  • the guidance device includes a position detection unit that detects a position of the capsule medical device, a distance between the capsule medical device and the magnetic field generation unit, a rotation angle of the magnetic field generation unit, and the magnetic field generation unit.
  • the apparatus further includes a storage unit that stores a relationship with a translation amount that is translated relative to the subject, and the control unit calculates the capsule medical device and the magnetic field generated from the detection result of the position detection unit.
  • the translation amount is extracted from the storage unit based on a distance between the storage unit and a rotation angle of the magnetic field generation unit controlled according to the second information received by the input unit.
  • the guidance device further includes a storage unit that stores a relationship between a rotation angle of the magnetic field generation unit and a representative value of a translation amount that translates the magnetic field generation unit relative to the subject, and the control unit Is characterized in that the translation amount is extracted from the storage unit based on a rotation angle of the magnetic field generation unit controlled according to the second information received by the input unit.
  • the guidance device includes a distance between the capsule medical device and the magnetic field generation unit, a rotation angle of the magnetic field generation unit, and a translation amount that translates the magnetic field generation unit relative to the subject.
  • a storage unit for storing a relationship; the input unit further accepts input of information regarding a distance between the capsule medical device and the magnetic field generation unit; and the control unit receives the input received by the input unit
  • the translation amount is extracted from the storage unit based on information on the distance and a rotation angle of the magnetic field generation unit controlled according to the second information.
  • the input unit further accepts input of information related to the guidance mode of the capsule medical device, and the guidance mode, the rotation angle of the magnetic field generation unit, and the magnetic field generation unit with respect to the subject.
  • a storage unit that stores a relationship with a translation amount that is relatively translated; and the control unit extracts the translation amount from the storage unit based on information on the guidance mode received by the input unit.
  • the guidance device further includes a position detection unit that detects a position of the capsule medical device, and the control unit is configured to target the capsule medical device based on at least the second information received by the input unit. Position information is acquired, and the position of the capsule medical device is controlled based on the target position information and the detection result of the position detection unit.
  • the magnetic field generating unit is a permanent magnet.
  • the capsule medical device guidance system includes a capsule medical device in which a permanent magnet is disposed, and the guidance device.
  • the change in the position of the capsule medical device caused by the rotation of the magnetic field generation unit is detected with respect to the subject. Therefore, it is possible to improve the operability of the capsule medical device magnetic guidance system by the user.
  • FIG. 1 is a diagram showing a configuration example of a capsule medical device guidance system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the appearance of the guidance device illustrated in FIG. 1.
  • FIG. 3 is a schematic diagram for explaining an installation state of the extracorporeal permanent magnet shown in FIG.
  • FIG. 4 is a schematic cross-sectional view showing an example of the internal structure of the capsule endoscope shown in FIG.
  • FIG. 5 is a schematic diagram for explaining the relative positional relationship between the imaging element and the permanent magnet in the capsule endoscope.
  • FIG. 6 is a conceptual diagram for explaining the state of the capsule endoscope in a state where the liquid is introduced into the subject (a state where no magnetic field is applied).
  • FIG. 1 is a diagram showing a configuration example of a capsule medical device guidance system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the appearance of the guidance device illustrated in FIG. 1.
  • FIG. 7 is a conceptual diagram for explaining a state of the capsule endoscope (a state in which a magnetic field is applied) in a state where the liquid is introduced into the subject.
  • FIG. 8 is a diagram illustrating an example of an image displayed on the display screen of the display unit illustrated in FIG. 1.
  • FIG. 9 is a schematic diagram for explaining a position control method in the vertical direction of the capsule endoscope.
  • FIG. 10 is a schematic diagram illustrating a position control method in the horizontal direction of the capsule endoscope.
  • FIG. 11 is a diagram illustrating an example of the operation input unit illustrated in FIG. 1.
  • FIG. 12 is a diagram for explaining magnetic guidance of the capsule medical device that can be operated by the operation input unit illustrated in FIG. 1.
  • FIG. 13 is a diagram illustrating a menu screen displayed on the display unit.
  • FIG. 14 is a conceptual diagram for explaining the principle of correction of the constraint position of the capsule endoscope.
  • FIG. 15 is a schematic diagram for explaining evaluation items in a simulation for obtaining a relationship between the shape of the extracorporeal permanent magnet and the generated magnetic field.
  • FIG. 16 is a table showing the ratio of the lengths of the sides of the permanent magnet used in the simulation.
  • FIG. 17 is a graph showing the magnetic field strength of each permanent magnet shown in FIG.
  • FIG. 18 is a graph showing the magnetic gradient in the z-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 19 is a graph showing a magnetic gradient in the x-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 15 is a schematic diagram for explaining evaluation items in a simulation for obtaining a relationship between the shape of the extracorporeal permanent magnet and the generated magnetic field.
  • FIG. 16 is a table showing the ratio of the lengths of the sides of the permanent magnet used in the simulation.
  • FIG. 17 is
  • FIG. 20 is a graph showing a magnetic gradient in the y-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 21 is a table showing the ratio of the lengths of the sides of the permanent magnet used in another simulation.
  • FIG. 22 is a graph showing the magnetic field strength of each permanent magnet shown in FIG.
  • FIG. 23 is a graph showing the magnetic gradient in the z-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 24 is a graph showing the magnetic gradient in the x-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 25 is a graph showing a magnetic gradient in the y-axis direction generated by each permanent magnet shown in FIG. FIG.
  • FIG. 26 shows the ratio of the length in the y-axis direction to the length in the z-axis direction, and the ratio of the magnetic field strength of the permanent magnet having each dimension ratio to the magnetic field strength of the permanent magnet of type yxz (33). It is a graph which shows the relationship.
  • FIG. 27 is a diagram illustrating an example of an operation input unit according to Modification 1-5.
  • FIG. 28 is a diagram for explaining magnetic guidance of the capsule medical device that can be operated by the operation input unit shown in FIG.
  • FIG. 29 is a diagram showing a configuration example of a capsule medical device magnetic guidance system according to Embodiment 2 of the present invention.
  • FIG. 30 is a perspective view schematically showing the appearance of the guidance device shown in FIG.
  • FIG. 31 is a schematic diagram showing a configuration example of a capsule medical device guidance system according to Embodiment 3 of the present invention.
  • a capsule endoscope guidance system using a capsule endoscope that is orally introduced into a subject and drifts in a liquid stored in the stomach of the subject as a capsule medical device is not limited to this embodiment. That is, the present invention relates to various capsule medical devices such as a capsule endoscope that moves in the lumen from the esophagus of the subject to the anus and a capsule endoscope that is introduced from the anus together with an isotonic solution. It is possible to use.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule medical device guidance system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of the appearance of the guidance device illustrated in FIG. 1.
  • a capsule medical device guidance system 1 according to Embodiment 1 is a capsule medical device that is introduced into a body cavity of a subject, and is a capsule-type endoscope provided with a permanent magnet inside.
  • a mirror 10 and a guidance device 20 for magnetically guiding the capsule endoscope 10 introduced into the subject by generating a three-dimensional magnetic field 100 are provided.
  • the capsule endoscope 10 is introduced into the organ of the subject together with a predetermined liquid by oral ingestion or the like, then moves inside the digestive tract, and is finally discharged outside the subject. In the meantime, the capsule endoscope 10 floats in the liquid introduced into the organ of the subject (for example, inside the stomach), sequentially images the inside of the subject while being magnetically guided by the magnetic field 100, and the in-vivo image acquired by the imaging.
  • the image information (image data) corresponding to is sequentially wirelessly transmitted.
  • the detailed structure of the capsule endoscope 10 will be described later.
  • the guidance device 20 performs wireless communication with the capsule endoscope 10 and receives a wireless signal including image information acquired by the capsule endoscope 10 and receives from the capsule endoscope 10. Based on the obtained radio signal, the position detection unit 22 for detecting the position of the capsule endoscope 10 in the subject, and the image information is acquired from the radio signal received by the reception unit 21, and a predetermined signal is transmitted to the image information.
  • the in-vivo image is displayed on the screen by performing the processing, and the display unit 23 that displays the position of the capsule endoscope 10 in the subject on the screen, and the input of information for instructing various operations in the capsule medical device guidance system 1
  • An operation input unit 24 that receives the capsule endoscope 10, a guidance magnetic field generation unit 25 that generates a magnetic field for guiding the capsule endoscope 10, a control unit 26 that controls these units, and a capsule endoscope 0 and a storage unit 27 for storing an image information captured by.
  • FIG. 2 is a perspective view schematically showing the appearance of the guidance device 20.
  • the guidance device 20 is provided with a bed 20a as a mounting table on which the subject is mounted.
  • An induction magnetic field generation unit 25 that generates the magnetic field 100 is disposed at least below the bed 20a.
  • the receiving unit 21 includes a plurality of antennas 21a, and sequentially receives radio signals from the capsule endoscope 10 via the plurality of antennas 21a.
  • the receiving unit 21 selects the antenna having the highest received electric field strength from the plurality of antennas 21a, and performs a demodulation process or the like on the radio signal from the capsule endoscope 10 received via the selected antenna. Thereby, the receiving unit 21 extracts image data related to the inside of the subject from this wireless signal.
  • the receiving unit 21 outputs an image signal including the extracted image data to the display unit 23.
  • the position detection unit 22 performs a calculation for estimating the position of the capsule endoscope 10 in the subject based on the signal strength of the radio signal received by the reception unit 21.
  • the display unit 23 includes various displays such as a liquid crystal display, and generates a screen including an in-vivo image based on the image data input from the receiving unit 21 and other various information and displays the screen on the display.
  • the display unit 23 displays, for example, an in-vivo image group of the subject imaged by the capsule endoscope 10, and information on the position and posture of the capsule endoscope 10 and information on guidance operation. indicate.
  • the display unit 23 may display the position and posture of the capsule endoscope 10 estimated from the magnetic field generated by the guidance device 20, or display based on the position detection result of the position detection unit 22.
  • a position in the subject corresponding to the internal in-vivo image may be displayed on the screen.
  • the display unit 23 displays, for example, a reduced image of the in-vivo image selected under the control of the control unit 26, patient information, examination information, and the like of the subject.
  • the operation input unit 24 is realized by an input device such as a joystick, a console with various buttons and various switches, a keyboard, and the like, and provides guidance information for guiding the capsule endoscope 10 magnetically and the guidance device 20. And receiving various information such as setting information for setting a predetermined mode.
  • the guidance instruction information is information for controlling the posture and position of the capsule endoscope 10 that is the object of the magnetic guidance operation. Specifically, the guidance instruction information includes an operation for changing the position of the capsule endoscope 10 and a capsule type.
  • Information related to the operation of changing the tilt angle (angle with respect to the vertical axis) of the endoscope 10 and the azimuth angle (angle around the vertical axis) of the visual field (imaging units 11A and 11B described later) of the capsule endoscope 10 are changed.
  • Information on the operation to be performed is included.
  • the azimuth angle of the visual field is simply referred to as azimuth angle.
  • the operation input unit 24 inputs the received information to the control unit 26.
  • the guidance magnetic field generation unit 25 generates a magnetic field for changing the position, tilt angle, and azimuth angle of the capsule endoscope 10 introduced into the subject relative to the subject. More specifically, the induction magnetic field generation unit 25 includes an extracorporeal permanent magnet 25a as a magnetic field generation unit that generates a magnetic field, a first planar position changing unit 25b as a mechanism for translating and rotating the extracorporeal permanent magnet 25a, It has a position changing unit 25c, an elevation angle changing unit 25d, and a turning angle changing unit 25e.
  • FIG. 3 is a schematic diagram for explaining an installation state of the extracorporeal permanent magnet 25a.
  • the extracorporeal permanent magnet 25a is realized by, for example, a bar magnet having a rectangular parallelepiped shape, and is one of four surfaces parallel to its magnetization direction (hereinafter also referred to as a capsule facing surface PL).
  • the capsule endoscope 10 is constrained in a region opposite to.
  • the extracorporeal permanent magnet 25a is arranged so that the capsule facing surface PL is parallel to the horizontal plane in the initial state.
  • the arrangement of the extracorporeal permanent magnet 25a when the extracorporeal permanent magnet 25a is in the initial state is set as a reference arrangement, the magnetization direction at this time is the X axis direction, the direction in the horizontal plane perpendicular to the magnetization direction is the Y axis direction, and the vertical direction Is the Z-axis direction.
  • the extracorporeal permanent magnet 25a has a length in the horizontal plane direction (Y-axis direction in FIG. 3) perpendicular to the magnetization direction among the lengths of the three directions of the rectangular parallelepiped shape. , X-axis direction) and a direction (Z direction in FIG. 3) perpendicular to the capsule facing surface PL.
  • the extracorporeal permanent magnet 25a has a flat plate shape having the shortest length in the direction orthogonal to the capsule facing surface PL among the lengths of the three sides of the rectangular parallelepiped shape. The shape of the extracorporeal permanent magnet 25a will be described in detail later.
  • the first plane position changing unit 25b is a translation mechanism that translates the extracorporeal permanent magnet 25a in a horizontal plane. That is, the movement is performed in the horizontal plane while the relative position of the two magnetic poles magnetized in the extracorporeal permanent magnet 25a is secured.
  • the vertical position changing unit 25c is a translation mechanism that translates the extracorporeal permanent magnet 25a in the vertical direction.
  • the elevation angle changing unit 25d is a rotating mechanism that rotates the permanent magnet in the vertical plane including the extracorporeal permanent magnet 25a to change the angle of the magnetization direction with respect to the horizontal plane.
  • the elevation angle changing unit 25d preferably rotates the extracorporeal permanent magnet 25a with respect to an axis (hereinafter referred to as a rotation axis Y C ) parallel to the capsule facing surface PL and orthogonal to the magnetization direction and passing through the center of the extracorporeal permanent magnet 25a.
  • an elevation angle ⁇ the angle between the extracorporeal permanent magnet 25a and the horizontal plane.
  • the turning angle changing unit 25e rotates the extracorporeal permanent magnet 25a with respect to a vertical axis passing through the center of the extracorporeal permanent magnet 25a.
  • the rotational movement of the extracorporeal permanent magnet 25a with respect to the vertical axis is referred to as a turning movement.
  • an angle at which the extracorporeal permanent magnet 25a turns with respect to the reference arrangement is defined as a turning angle ⁇ .
  • the control unit 26 controls the operation of each unit of the guidance magnetic field generation unit 25 based on the detection result of the position detection unit 22 and the guidance instruction information received by the operation input unit 24, so that the capsule endoscope 10 is moved to the user. Guide to the desired position and posture. At this time, the control unit 26 calculates the correction direction and the correction amount in order to correct the position change of the capsule endoscope 10 which is not intended by the user due to the rotation of the extracorporeal permanent magnet 25a, and the calculated correction direction and correction amount. Based on the above, the operation of the first plane position changing unit 25b is controlled.
  • the storage unit 27 is realized by using a storage medium that stores information in a rewritable manner such as a flash memory or a hard disk.
  • the storage unit 27 stores information such as various programs and various parameters for the control unit 26 to control each unit of the guidance device 20 in addition to the image data of the in-vivo image group of the subject imaged by the capsule endoscope 10. To do.
  • FIG. 4 is a schematic cross-sectional view showing an example of the internal structure of the capsule endoscope 10.
  • the capsule endoscope 10 captures images of subjects in different imaging directions from the capsule-type casing 12 that is an exterior formed in a size that can be easily introduced into the organ of a subject.
  • Imaging units 11A and 11B that generate image information are provided.
  • the capsule endoscope 10 includes a wireless communication unit 16 that wirelessly transmits image information generated by the imaging units 11A and 11B to the outside, and a control unit 17 that controls each component of the capsule endoscope 10.
  • a power supply unit 18 that supplies power to each component of the capsule endoscope 10.
  • the capsule endoscope 10 includes a permanent magnet 19 for enabling magnetic guidance by the guidance device 20.
  • the capsule-type housing 12 is an outer case formed in a size that can be introduced into an organ of a subject, and is realized by closing both side opening ends of the cylindrical housing 12a with dome-shaped housings 12b and 12c.
  • the dome-shaped casings 12b and 12c are dome-shaped optical members that are transparent to light of a predetermined wavelength band such as visible light.
  • the cylindrical housing 12a is a colored housing that is substantially opaque to visible light.
  • the capsule housing 12 formed by the cylindrical housing 12a and the dome-shaped housings 12b and 12c includes an imaging unit 11A, 11B, a wireless communication unit 16, a control unit 17, and a power supply unit. 18 and the permanent magnet 19 are enclosed in a liquid-tight manner.
  • the imaging unit 11A includes an illumination unit 13A such as an LED, an optical system 14A such as a condenser lens, and an imaging element 15A such as a CMOS image sensor or a CCD.
  • the illuminating unit 13A emits illumination light such as white light to the imaging field of the image sensor 15A, and illuminates the subject in the imaging field through the dome-shaped housing 12b.
  • the optical system 14A condenses the reflected light from the imaging field of view on the imaging surface of the imaging element 15A to form a subject image in the imaging field of view.
  • the imaging element 15A receives reflected light from the imaging field focused on the imaging surface, performs photoelectric conversion processing on the received optical signal, and obtains image information representing the subject image in the imaging field, that is, the in-vivo image of the subject. Generate.
  • the imaging unit 11B includes an illumination unit 13B such as an LED, an optical system 14B such as a condenser lens, and an imaging element 15B such as a CMOS image sensor or a CCD.
  • an illumination unit 13B such as an LED
  • an optical system 14B such as a condenser lens
  • an imaging element 15B such as a CMOS image sensor or a CCD.
  • each of the imaging units 11A and 11B has an optical axis.
  • the capsule housing 12 is arranged so as to be substantially parallel or substantially coincident with the long axis La, which is the central axis in the longitudinal direction of the capsule housing 12, and the imaging fields of view are directed in opposite directions. That is, the imaging units 11A and 11B are mounted so that the imaging surfaces of the imaging elements 15A and 15B are orthogonal to the long axis La.
  • the wireless communication unit 16 includes an antenna 16a, and sequentially wirelessly transmits the image information acquired by the imaging units 11A and 11B described above to the outside via the antenna 16a. Specifically, the wireless communication unit 16 acquires an image signal based on the image information generated by the imaging unit 11A or the imaging unit 11B from the control unit 17, performs a modulation process on the image signal, and performs this image processing. A radio signal obtained by modulating the signal is generated. The wireless communication unit 16 transmits this wireless signal to the external receiving unit 21 via the antenna 16a.
  • the control unit 17 controls each operation of the imaging units 11A and 11B and the wireless communication unit 16, and controls input / output of signals between these components. Specifically, the control unit 17 causes the imaging device 15A to image the subject in the imaging field illuminated by the illumination unit 13A, and causes the imaging device 15B to image the subject in the imaging field illuminated by the illumination unit 13B.
  • the control unit 17 has a signal processing function for generating an image signal.
  • the control unit 17 acquires image information from the image sensors 15A and 15B, and performs predetermined signal processing on the image information each time to generate an image signal including image data. Further, the control unit 17 controls the wireless communication unit 16 so as to sequentially wirelessly transmit such image signals to the outside along a time series.
  • the power supply unit 18 is a power storage unit such as a button-type battery or a capacitor, and has a switch unit such as a magnetic switch or an optical switch.
  • the power supply unit 18 switches the on / off state of the power supply by a magnetic field applied from the outside.
  • the power of the power storage unit is transferred to each component of the capsule endoscope 10 (imaging units 11A and 11B, wireless communication unit 16 and the control unit 17). Further, the power supply unit 18 stops the power supply to each component of the capsule endoscope 10 when it is in the off state.
  • the permanent magnet 19 is for enabling the magnetic guidance of the capsule endoscope 10 by the magnetic field 100 generated by the induction magnetic field generation unit 25, and the magnetization direction has an inclination with respect to the long axis La. It is fixedly arranged inside the capsule-type housing 12. Specifically, the permanent magnet 19 is arranged so that the magnetization direction is orthogonal to the long axis La. The permanent magnet 19 operates following a magnetic field applied from the outside. As a result, magnetic guidance of the capsule endoscope 10 by the guidance magnetic field generation unit 25 is realized.
  • the permanent magnet 19 is fixedly arranged inside the capsule casing 12 in a state of being fixed relatively to the above-described imaging units 11A and 11B. More specifically, the permanent magnet 19 is arranged such that its magnetization direction is fixed relative to the vertical direction of the imaging surfaces of the imaging elements 15A and 15B. Specifically, as shown in FIG. 5, the permanent magnet 19 is arranged such that the magnetization direction Ym thereof is parallel to the vertical direction Yu of the imaging surfaces of the imaging elements 15A and 15B.
  • FIG. 6 is a conceptual diagram for explaining the state of the capsule endoscope 10 with the liquid W introduced into the subject. 6 shows a state in which the magnetic field from the induction magnetic field generation unit 25 for controlling the position and posture of the capsule endoscope 10 is not acting on the permanent magnet 19 in the capsule endoscope 10. FIG. Yes.
  • the capsule endoscope 10 illustrated in the first embodiment is designed to float in the liquid W.
  • the center of gravity G of the capsule endoscope 10 is from the geometric center C of the capsule endoscope 10 to the long axis La of the capsule endoscope 10 (the central axis in the longitudinal direction of the capsule endoscope 10: (See FIG. 4).
  • the center of gravity G of the capsule endoscope 10 is a position on the long axis La by adjusting the arrangement of the respective components such as the power supply unit 18 and the permanent magnet 19, and the capsule housing 12. Is set to a position deviated from the geometric center C of the image pickup unit 11B.
  • the capsule endoscope 10 floats in the liquid W in a state where its long axis La is substantially parallel to the vertical direction (that is, the gravity direction). In other words, the capsule endoscope 10 floats in the liquid W in a state where a straight line connecting the geometric center C and the center of gravity G is upright. In such an upright posture, the capsule endoscope 10 directs the imaging field of the imaging unit 11A vertically upward and the imaging field of the imaging unit 11B vertically downward.
  • the liquid W is a liquid that is harmless to the human body, such as water or physiological saline.
  • the permanent magnet 19 is arranged so that the magnetization direction Ym (see FIG. 5) is orthogonal to the long axis La. That is, the magnetization direction Ym of the permanent magnet 19 coincides with the radial direction of the capsule endoscope 10. Therefore, when the magnetic field for controlling the position and posture of the capsule endoscope 10 is not acting on the permanent magnet 19, the capsule endoscope 10 is in a state where the magnetization direction Ym coincides with the horizontal direction. Drift inside. At this time, a plane passing through the magnetization direction Ym and a line connecting the geometric center C and the center of gravity G of the capsule housing 12 is a vertical plane.
  • FIG. 7 is a conceptual diagram for explaining the state of the capsule endoscope 10 with the liquid W introduced into the subject.
  • a magnetic field for controlling the tilt angle of the capsule endoscope 10 is illustrated.
  • the state which is made to act on the permanent magnet 19 is shown.
  • the inclination of the long axis La of the capsule endoscope 10 with respect to the gravity direction Dg can be controlled by applying a magnetic field to the permanent magnet 19 of the capsule endoscope 10 from the outside.
  • a magnetic field having the direction of the magnetic force line to the horizontal plane on the permanent magnet 19
  • the capsule endoscope 10 is gravity-induced so that the magnetization direction Ym of the permanent magnet 19 is substantially parallel to the magnetic force line. It can be inclined with respect to the direction Dg.
  • the orientation of the capsule endoscope 10 changes while maintaining the state in which the magnetization direction Ym is included in the vertical plane.
  • the magnetic field for performing such control is realized by changing the elevation angle ⁇ of the extracorporeal permanent magnet 25a by the elevation angle changing unit 25d of the guidance device 20 (see FIGS. 1 and 3).
  • the capsule endoscope 10 is turned around the gravity direction Dg as shown by an arrow by applying a magnetic field that turns around the gravity direction Dg while the capsule endoscope 10 is tilted.
  • An in-vivo image around the mold endoscope 10 can be easily acquired.
  • the magnetic field for performing such control is realized by turning the extracorporeal permanent magnet 25a by the turning angle changing unit 25e of the guidance device 20 (see FIGS. 1 and 3).
  • the display unit 23 of the guidance device 20 displays the capsule endoscope in a display mode in which the vertical direction of the subject in the in-vivo image accompanying the magnetic guidance of the capsule endoscope 10 matches the vertical direction of the display screen. 10 shows the in-vivo image of the subject.
  • the liquid level Ws imaged by the element in the upper region Pu of the imaging device 15A of the capsule endoscope 10 corresponds to the imaging unit 11A. Displayed at the top of the image.
  • the direction parallel to the magnetization direction Ym of the permanent magnet 19 is on the display screen of the display unit 23. It coincides with the vertical direction.
  • the translational movement in the horizontal direction of the capsule endoscope 10 causes a magnetic field (see FIG. 9A) having a magnetic field strength peak in the capsule facing surface PL to be applied to the capsule endoscope 10. It can be controlled by acting on the permanent magnet 19 and attracting the permanent magnet 19 to the peak position of the magnetic field to restrain the capsule endoscope 10 (see FIG. 9B). Specifically, such a magnetic field is realized by moving the extracorporeal permanent magnet 25a in the horizontal plane by the first plane position changing unit 25b of the guidance device 20.
  • the translational motion in the vertical direction of the capsule endoscope 10 causes the magnetic field of the capsule endoscope 10 to change according to the distance in the direction perpendicular to the capsule facing surface PL. It can be controlled by acting on the permanent magnet 19. Specifically, such a magnetic field is realized by moving the extracorporeal permanent magnet 25 a in the vertical direction by the vertical position changing unit 25 c of the guidance device 20.
  • FIG. 10A when the capsule facing surface PL is made horizontal, a magnetic field whose magnetic gradient becomes weaker as the vertical position becomes higher is applied to the permanent magnet 19.
  • FIG. 10B when the extracorporeal permanent magnet 25a is moved upward to relatively lower the vertical position of the permanent magnet 19, the magnetic attractive force applied to the permanent magnet 19 becomes stronger, and the capsule The mold endoscope 10 is biased downward.
  • the position of the capsule endoscope 10 in the vertical direction is determined by the buoyancy of the capsule endoscope 10 with respect to the liquid W, the gravity applied to the capsule endoscope 10, and the magnetic attractive force applied by the extracorporeal permanent magnet 25a. It is almost maintained at a balanced position.
  • FIG. 11A is a front view of the operation input unit 24, and FIG. 11B is a right side view of the operation input unit 24.
  • FIG. 12 is a diagram illustrating the movement of the capsule endoscope 10 instructed by the operation of each component of the operation input unit 24.
  • the operation input unit 24 includes two joysticks 31 and 32 for three-dimensionally operating the magnetic guidance of the capsule endoscope 10 by the guidance magnetic field generation unit 25.
  • the joysticks 31 and 32 can be tilted in the vertical direction and the horizontal direction.
  • an up button 34U and a down button 34B are provided on the back of the joystick 31.
  • guidance instruction information that instructs the capsule endoscope 10 to be guided upward is input to the control unit 26, and when the down button 34B is pressed, the capsule endoscope 10 is moved.
  • Guidance instruction information for instructing downward guidance is input to the control unit 26.
  • a capture button 35 is provided on the joystick 31. When the capture button 35 is pressed, the in-vivo image displayed on the display unit 23 is captured.
  • an approach button 36 is provided on the upper part of the joystick 32. When the approach button 36 is pressed, it controls guidance instruction information for guiding the capsule endoscope 10 to bring the imaging unit 11A side of the capsule endoscope 10 closer to the imaging target of the imaging unit 11A. Input to the unit 26.
  • the vertical tilt direction of the joystick 31 indicated by the arrow Y11j is such that the tip of the capsule endoscope 10 passes through the vertical axis Az as indicated by the arrow Y11 in FIG. Corresponds to the tilting guidance direction to shake.
  • the control unit 26 moves in the tilt direction of the joystick 31 based on the guidance instruction information. Accordingly, the guide direction on the absolute coordinate system of the tip of the capsule endoscope 10 is calculated, and the guide amount is calculated according to the tilting operation of the joystick 31.
  • generation part 25 controls the elevation angle change part 25d so that the elevation angle (theta) of the extracorporeal permanent magnet 25a may be changed according to the calculated induction
  • the horizontal tilt direction indicated by the arrow Y12j of the joystick 31 is the rotation guiding direction in which the capsule endoscope 10 rotates about the vertical axis Az as indicated by the arrow Y12 in FIG.
  • the control unit 26 moves the joystick 31 in the tilting direction based on the guidance instruction information. Accordingly, the guidance direction on the absolute coordinate system of the tip of the capsule endoscope 10 is calculated, the guidance amount is calculated according to the tilting operation of the joystick 31, and further, for example, the calculated guidance amount is calculated in the calculated guidance direction. Accordingly, the turning angle changing unit 25e is controlled to turn the extracorporeal permanent magnet 25a.
  • the vertical tilt direction indicated by the arrow Y13j of the joystick 32 is the direction in which the major axis La of the capsule endoscope 10 is projected onto the horizontal plane Hp as indicated by the arrow Y13 in FIG. Corresponds to the forward backward guidance direction or the horizontal forward guidance direction.
  • guidance instruction information corresponding to the tilting operation of the arrow Y13j of the joystick 32 is input from the operation input unit 24 to the control unit 26, the control unit 26 moves the joystick 32 in the tilting direction based on the guidance instruction information.
  • the first planar position changing unit calculates the guidance direction and the guidance amount on the absolute coordinate system of the tip of the capsule endoscope 10 and translates the extracorporeal permanent magnet 25a in accordance with the computed guidance direction and guidance quantity. 25b is controlled.
  • the horizontal tilt direction indicated by the arrow Y14j of the joystick 32 is such that the capsule endoscope 10 is in the horizontal plane Hp and the long axis La is in the horizontal plane Hp as indicated by the arrow Y14 in FIG. Corresponds to a horizontal light guiding direction or a horizontal left guiding direction that runs perpendicular to the projected direction.
  • the control unit 26 moves the joystick 32 in the tilting direction based on the guidance instruction information.
  • the first planar position changing unit calculates the guidance direction and the guidance amount on the absolute coordinate system of the tip of the capsule endoscope 10 and translates the extracorporeal permanent magnet 25a in accordance with the computed guidance direction and guidance quantity. 25b is controlled.
  • an up button 34U and a down button 34B are provided on the back of the joystick 32.
  • an up operation is designated that proceeds upward as indicated by an arrow Y15 along the vertical axis Az shown in FIG.
  • an arrow Y16j in FIG. 11B when the down button 34B is pressed, a down operation is instructed to proceed downward as shown by an arrow Y16 along the vertical axis Az shown in FIG. .
  • the control unit 26 uses the guidance instruction information.
  • the guidance direction and the guidance amount on the absolute coordinate system of the tip of the capsule endoscope 10 are calculated according to the pressed button, and the extracorporeal permanent magnet 25a is translated in the vertical direction according to the calculated guidance direction and the guidance amount.
  • the vertical position changing unit 25c is controlled so as to make it. For example, when the up button 34U is pressed, the vertical position changing unit 25c translates the extracorporeal permanent magnet 25a downward in the vertical axis Az (in a direction away from the capsule endoscope 10).
  • the capsule endoscope 10 is raised as indicated by an arrow Y15.
  • the vertical position changing unit 25c translates the extracorporeal permanent magnet 25a in the upward direction of the vertical axis Az (direction approaching the capsule endoscope 10).
  • the capsule endoscope 10 is lowered as indicated by an arrow Y16.
  • the operation input unit 24 may further include an input device including various operation buttons, a keyboard, and the like in addition to the joysticks 31 and 32.
  • FIG. 13 is a schematic diagram showing a display example of the menu screen S displayed on the display unit 23.
  • each subject information such as the patient name, patient ID, date of birth, sex, age, etc. of the subject is displayed in the upper left region S1, and in the central region S2, the imaging unit 11A is displayed.
  • the captured biological image Sg1 is displayed on the left side
  • the biological image Sg2 captured by 11B is displayed on the right side
  • each image captured by the pressing operation of the capture button 35 is captured in the region S3 below the region S2.
  • the left side region S4 displays a posture diagram Sg3 in the vertical plane and a posture diagram Sg4 in the horizontal plane as posture diagrams of the capsule endoscope 10.
  • the posture of the capsule endoscope 10 displayed in the posture diagrams Sg3 and Sg4 is a posture corresponding to the guidance instruction information of the operation input unit 24.
  • the displayed posture of the capsule endoscope 10 is almost the same as the actual posture of the capsule endoscope 10. It can be considered the same, and the guidance instruction assistance for the operator is also improved.
  • directions in which the capsule endoscope 10 can be guided are indicated by arrows, and when there is an operation input in any one of the guidance directions, it corresponds to the input direction. The display color of the arrow is changed to assist the operator's operation.
  • the control unit 26 changes the amount of change caused by the rotation of the extracorporeal permanent magnet 25a. Control is performed to move the capsule endoscope 10 in a direction (correction direction) opposite to the direction of position change of the capsule endoscope 10 by an amount corresponding to (correction amount). Thereby, the change in the restraint position of the capsule endoscope 10 is canceled.
  • the correction direction is the opposite direction of the rotation direction of the extracorporeal permanent magnet 25a by the elevation angle changing unit 25d on the axis where the vertical plane including the magnetization direction of the extracorporeal permanent magnet 25a intersects the horizontal plane.
  • the correction amount D n is distributed to the correction amount in the X-axis direction and the correction amount in the Y-axis direction according to the turning angle ⁇ of the extracorporeal permanent magnet 25a that gives the azimuth angle of the capsule endoscope 10. .
  • the control unit 26 acquires the position in the vertical direction of the capsule endoscope 10 (corresponding to the distances H 1 and H 2 shown in FIG. 14) from the detection result output from the position detection unit 22. To do. Further, the control unit 26 uses the guidance instruction information input from the operation input unit 24, and the extracorporeal permanent magnet 25a necessary for realizing the change and movement of the azimuth angle and inclination angle of the capsule endoscope 10 desired by the user. , Turning angle ⁇ , elevation angle ⁇ , translation direction, and translation amount.
  • the correction amount is calculated using the elevation angle (theta).
  • the calculation formula used at this time is stored in the storage unit 27 in advance.
  • the control unit 26 corrects the translation direction and the translation amount of the extracorporeal permanent magnet 25a based on the guidance instruction information using the calculated correction direction and correction amount. Then, the control unit 26 changes the rotation and rotation of the extracorporeal permanent magnet 25a with the calculated turning angle ⁇ and elevation angle ⁇ , and generates an induced magnetic field so as to translate the extracorporeal permanent magnet 25a with the corrected translation direction and translation amount.
  • Each part of the part 25 is controlled.
  • control unit 26 does not calculate the correction direction and the correction amount but corrects the rotation angle ⁇ and the elevation angle ⁇ of the extracorporeal permanent magnet 25a and the position of the capsule endoscope 10 in the vertical direction.
  • the direction and the correction amount are stored in the storage unit 27 in advance, and when the guidance instruction information for rotating the capsule endoscope 10 is input from the operation input unit 24, the input guidance instruction information and the detection of the position detection unit 22 are performed.
  • a necessary correction direction and correction amount may be extracted from the storage unit 27 based on the result (the position of the capsule endoscope 10 in the vertical direction).
  • control unit 26 makes the extracorporeal permanent in accordance with the translation amount so that the movement of the capsule endoscope 10 is completed within a predetermined time. Control for adjusting the translation speed of the magnet 25a may be performed.
  • FIG. 15 is a schematic diagram for explaining evaluation items in this simulation. As shown in FIG. 15, in this simulation, the magnetization direction of the permanent magnet is the x-axis direction, the direction orthogonal to the magnetization direction of the surface PL ′ facing the simulation position is the y-axis direction, and the direction orthogonal to the surface PL ′.
  • the magnetic strength is involved in guidance when changing the azimuth angle and the tilt angle with respect to the capsule endoscope 10.
  • the magnetic gradient in the z-axis direction is involved in guidance in the z-axis direction with respect to the capsule endoscope 10.
  • the magnetic gradient in the x-axis direction is involved in guidance in the x-axis direction with respect to the capsule endoscope 10.
  • the magnetic gradient in the y-axis direction is involved in guidance in the y-axis direction with respect to the capsule endoscope 10.
  • FIG. 16 is a table showing the ratio of the lengths of the sides of the permanent magnet used in the simulation.
  • the “length in the x-axis direction” shown in FIG. 16 corresponds to the length of the side parallel to the x-axis
  • the “length in the y-axis direction” corresponds to the length of the side parallel to the y-axis.
  • “Axial length” corresponds to the length of the side parallel to the z-axis.
  • long sides of the sides of each permanent magnet are shown in order from the left.
  • the type “xyz” indicates a rectangular parallelepiped shape having the longest side parallel to the x-axis and the shortest side parallel to the z-axis. Note that the type “xyz” indicates a cube in which all sides have the same length.
  • FIG. 17 is a graph showing the magnetic field strength of each permanent magnet shown in FIG.
  • FIG. 18 is a graph showing the magnetic gradient in the z-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 19 is a graph showing a magnetic gradient in the x-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 20 is a graph showing a magnetic gradient in the y-axis direction generated by each permanent magnet shown in FIG.
  • the value of the magnetic field strength is normalized.
  • the magnetic gradient values are normalized through FIGS. 19 and 20, the horizontal axis indicates a value obtained by normalizing the distance from the axis (center axis) in the z-axis direction passing through the center of the permanent magnet.
  • the magnetic field intensity generated by the permanent magnet is strong.
  • the magnets that obtained a relatively large magnetic field strength were the type yz and the type xy. Therefore, it can be seen that the shape suitable for controlling the azimuth angle and the tilt angle of the capsule endoscope 10 is a shape in which the length in the z-axis direction is shorter than the length in the y-axis direction. Furthermore, it can be said that a flat shape in which the length in the z-axis direction is shorter than the length in the x-axis direction and the y-axis direction is more preferable.
  • the projected area on the zx plane orthogonal to the y axis is small because the moving area of the permanent magnet during rotation can be reduced. . Therefore, it is better to shorten the length in the x-axis direction.
  • the permanent magnet can be installed closer to the subject, a high-intensity magnetic field can be efficiently generated in the subject, and the induction magnetic field generation unit 25 can be reduced in size.
  • the magnetic gradient in the vertical direction is large.
  • the magnets that obtained a relatively large magnetic gradient in the z-axis direction were the type yz and the type xy. Therefore, it can be seen that the shape suitable for the position control in the vertical direction of the capsule endoscope 10 is a flat shape with a short length in the z-axis direction.
  • the magnetic gradient in the horizontal direction is large.
  • the magnets that obtained a relatively large magnetic gradient in the x-axis direction were of type yz and type yzx.
  • the magnets having a relatively large magnetic gradient in the y-axis direction were of type yxz and type xyz.
  • the shape suitable for the horizontal control of the capsule endoscope 10 is a shape having a longer length in the y-axis direction than in the x-axis direction and the z-axis direction. Further, it can be said that the length in the x-axis direction is preferably not so long as compared with the y-axis direction and the z-axis direction.
  • the shape of the extracorporeal permanent magnet 25a suitable for controlling the capsule endoscope 10 is a flat plate having the longest length in the y-axis direction and the shortest length in the z-axis direction. all right. Therefore, the inventors subsequently performed another simulation for obtaining a suitable ratio of the lengths of the sides of the extracorporeal permanent magnet 25a.
  • FIG. 21 is a table showing the ratio of the lengths of the sides of the permanent magnet used in another simulation.
  • the “length in the x-axis direction” shown in FIG. 21 corresponds to the length of the side parallel to the x-axis
  • the “length in the y-axis direction” corresponds to the length of the side parallel to the y-axis.
  • “Axial length” corresponds to the length of the side parallel to the z-axis.
  • the longer ones of the sides of each permanent magnet are shown in order from the left, and the numerical values in parentheses are the values in the z-axis direction with respect to the length in the x-axis direction.
  • the ratio of length is shown.
  • a cuboid permanent magnet having the longest side parallel to the y-axis direction and the shortest side parallel to the z-axis direction is used.
  • FIG. 22 is a graph showing the magnetic field strength of each permanent magnet shown in FIG.
  • FIG. 23 is a graph showing the magnetic gradient in the z-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 24 is a graph showing the magnetic gradient in the x-axis direction generated by each permanent magnet shown in FIG.
  • FIG. 25 is a graph showing a magnetic gradient in the y-axis direction generated by each permanent magnet shown in FIG.
  • the value of the magnetic field strength is normalized.
  • the magnetic gradient values are normalized through FIGS. 24 and 25, the horizontal axis indicates a value obtained by normalizing the distance from the axis (center axis) in the z-axis direction passing through the center of the permanent magnet.
  • FIG. 26 shows the ratio of the length in the y-axis direction to the length in the z-axis direction (the ratio of the length), and the permanent magnet having the above-described ratios to the magnetic field strength of the permanent magnet of type yxz (33). It is a graph which shows the relationship with the ratio of the magnetic field intensity of. As shown in FIG. 26, when the length in the y-axis direction is 1.5 times the length in the z-axis direction, the permanent magnet of type yxz (33), that is, the length in the z-axis direction A magnetic field strength of about 90% can be generated with respect to the magnetic field strength generated by a permanent magnet having a sufficiently long length in the y-axis direction.
  • the length in the y-axis direction with respect to the length in the z-axis direction is three times or more, the ratio of the magnetic field strength becomes 95%. Therefore, as a preferable shape of the permanent magnet, the length in the y-axis direction with respect to the length in the z-axis direction is preferably 1.5 times or more or 3 times or more.
  • the change in the restraint position of the capsule endoscope 10 caused by the rotation of the extracorporeal permanent magnet 25a is controlled under the control of the control unit 26. Since it correct
  • the capsule endoscope 10 since the capsule endoscope 10 is guided in a state where the capsule endoscope 10 is floated on the liquid into which the liquid is introduced into the subject, the capsule endoscope 10 is guided.
  • the induction magnetic field generating unit 25 for doing so can be disposed below the bed 20a on which the subject is placed, and the entire guidance device 20 can be downsized.
  • a compound eye capsule in which the imaging units 11A and 11B are provided at both ends of the capsule endoscope 10 is used.
  • an imaging unit is provided at one end of the capsule endoscope.
  • a provided monocular capsule may be used.
  • the capsule endoscope that captures only an image below the water surface (underwater) can be realized by bringing the center of gravity G of the capsule endoscope closer to the end on the side where the imaging unit is not provided.
  • the permanent magnet 19 is arranged so that the magnetization direction is orthogonal to the long axis La of the capsule endoscope 10, but the magnetization direction matches the direction of the long axis La.
  • the permanent magnet 19 may be arranged as described above.
  • the center of gravity G may be installed at a position shifted in the radial direction with respect to the geometric center C of the capsule endoscope 10. In this case, the posture of the capsule endoscope 10 can be uniquely controlled in the liquid W.
  • the center of gravity G when the magnetic field is not applied, the center of gravity G is placed on the long axis La so that the capsule endoscope 10 floats with the long axis La oriented in the vertical direction.
  • the position of the center of gravity G may be set to be shifted from the long axis La so that the capsule endoscope 10 floats with the long axis La inclined with respect to the vertical direction without applying a magnetic field.
  • the azimuth angle and tilt angle of the capsule endoscope 10 in the liquid W can be uniquely controlled.
  • the center of gravity G of the capsule endoscope may be set so as to be shifted from the geometric center C in a direction different from the magnetization direction of the permanent magnet 19. Also in this case, the azimuth angle and tilt angle of the capsule endoscope 10 in the liquid W can be uniquely controlled.
  • an electromagnet that generates a magnetic field similar to the above-described external permanent magnet 25a may be used.
  • the extracorporeal permanent magnet 25a has a rectangular parallelepiped shape.
  • the length in the horizontal direction perpendicular to the magnetization direction of the extracorporeal permanent magnet 25a is longer than the length in the magnetization direction and the length in the direction perpendicular to the magnetization direction and the horizontal direction perpendicular to the magnetization direction. If it has, you may make it a shape other than a rectangular parallelepiped.
  • the extracorporeal permanent magnet 25a may have a shape in which the length in the direction perpendicular to the magnetization direction and the horizontal direction perpendicular to the magnetization direction is the shortest of the three directions. In this case, a strong magnetic field can be generated.
  • the magnetization direction and the lengths in the first and second directions may be defined by the diameter, the length of the long axis, or the length of the short axis.
  • the control unit 26 indicates that the position detection unit 22 indicates the correction direction and the correction amount necessary for correcting the change in the restraint position of the capsule endoscope 10 due to the rotation of the extracorporeal permanent magnet 25a. Calculation was made based on the detected vertical position of the capsule endoscope 10 and the turning angle ⁇ and the elevation angle ⁇ of the extracorporeal permanent magnet 25a based on the guidance instruction information, or extracted from values stored in the storage unit 27 in advance. However, the control unit 26 may acquire the correction direction and the correction amount based only on the guidance instruction information.
  • the correction direction and the correction amount corresponding to the turning angle ⁇ and the elevation angle ⁇ of the internal permanent magnet 25a are stored in the storage unit 27 in advance.
  • the correction direction and correction amount stored in the storage unit 27 are representative values calculated in advance for each turning angle ⁇ and elevation angle ⁇ (for example, the average of correction amounts corresponding to the vertical positions of the capsule endoscope 10). Value and maximum value).
  • the control unit 26 calculates the turning angle ⁇ , the elevation angle ⁇ , the translation direction, and the translation amount of the extracorporeal permanent magnet 25a based on the guidance instruction information. Then, the correction direction and the correction amount are extracted from the storage unit 27 based on the calculated turning angle ⁇ and the elevation angle ⁇ , and the translation direction and the translation amount based on the guidance instruction information are corrected using the extracted correction direction and correction amount. . Further, the control unit 26 controls each unit of the induced magnetic field generation unit 25 so as to rotate and translate the extracorporeal permanent magnet 25a with the turning angle ⁇ and the elevation angle ⁇ based on the guidance instruction information, and the corrected translation direction and translation amount. To do.
  • the correction direction and the correction amount are obtained without using the detection result of the position detection unit 22, so that the induction magnetic field generation unit 25 can be controlled at high speed.
  • Modification 1-2 is characterized in that the vertical position H of the capsule endoscope 10 used for calculation of the correction amount is manually set in a stepwise manner.
  • the display unit 23 displays, on the screen, a plurality of options representing the vertical position H of the capsule endoscope 10 under the control of the control unit 26.
  • the operation input unit 24 receives an input of a selection signal for selecting one of a plurality of options by a user operation, and inputs the selection signal to the control unit 26.
  • the control unit 26 sets the vertical position H corresponding to the input selection signal as the current vertical position of the capsule endoscope 10.
  • the storage unit 27 stores in advance the correction direction and the correction amount corresponding to the turning angle ⁇ , the vertical position H, and the elevation angle ⁇ of the internal permanent magnet 25a.
  • the control unit 26 acquires the turning angle ⁇ , the elevation angle ⁇ , the translation direction, and the translation amount for controlling the extracorporeal permanent magnet 25a based on the guidance instruction information. To do. Then, based on the acquired turning angle ⁇ and elevation angle ⁇ and the currently set vertical position H of the capsule endoscope 10, the correction direction and the correction amount are extracted from the storage unit 27. Further, the control unit 26 corrects the translation direction and the translation amount based on the guidance instruction information using the extracted correction direction and correction amount, and makes the extracorporeal permanent with the turning angle ⁇ , the elevation angle ⁇ , the corrected correction direction and the correction amount. Each part of the induction magnetic field generation unit 25 is controlled to rotate and translate the magnet 25a.
  • the correction direction and the correction amount are acquired using the vertical position of the capsule endoscope 10 set in stages, so that the induction magnetic field generation unit 25 can be controlled at high speed. And the correction accuracy can be improved.
  • the guidance device 20 may be provided with at least two guidance modes for guiding the capsule endoscope 10 and selectable by the user.
  • the display unit 23 displays a plurality of options representing the guidance mode of the capsule endoscope 10 on the screen under the control of the control unit 26.
  • Examples of the guide mode that can be selected by the user include the following (a) to (c).
  • the operation input unit 24 receives an input of a selection signal for selecting one of a plurality of options by a user operation and inputs it to the control unit 26.
  • the control unit 26 sets the guidance mode corresponding to the input selection signal as the current guidance mode, and controls the guidance magnetic field generation unit 25 to guide the capsule endoscope 10 in the set guidance mode.
  • the control unit 26 calculates the turning angle ⁇ , the elevation angle ⁇ , the translation direction, and the translation amount for controlling the extracorporeal permanent magnet 25a, and the calculated turning angle.
  • the correction direction and the correction amount are acquired according to ⁇ , the elevation angle ⁇ , and the current guidance mode (see Embodiment 1 and Modifications 1-1 to 1-3).
  • the control unit 26 acquires the correction direction and the correction amount in consideration of the state of the capsule endoscope 10 or adjusts the acquired correction direction and correction amount.
  • Modification 1-4 of Embodiment 1 will be described.
  • the control unit 26 based on the guidance instruction information input from the operation input unit 24, the azimuth angle and inclination angle of the capsule endoscope 10 desired by the user (the inclination of the long axis La) And information on the target position (the coordinates in the XYZ axis directions).
  • the extracorporeal permanent magnet 25a is rotated (the turning angle ⁇ and the elevation angle ⁇ are changed) to change the field of view of the capsule endoscope 10, and based on the position detection result output from the position detection unit 22 at any time, the capsule Feedback control is performed so that the position of the mold endoscope 10 matches the target position.
  • FIG. 27A is a front view of the operation input unit 24 according to Modification 1-5
  • FIG. 27B is a right side view of the operation input unit 24, and
  • FIG. It is a figure which shows the other example of the operation
  • each operation of the operation input unit 24 and the guidance operation of the capsule endoscope 10 are not performed along the plane orthogonal to the long axis La of the capsule endoscope 10 instead of the horizontal plane Hp.
  • the endoscope 10 may be associated so that it can be guided.
  • the movement of the capsule endoscope 10 corresponding to the guiding operation when the capsule endoscope 10 is guided along a plane orthogonal to the long axis La of the capsule endoscope 10 will be described.
  • the vertical tilt direction indicated by the arrow Y23j of the joystick 32 is such that the capsule endoscope 10 has a plane perpendicular to the long axis La as indicated by the arrow Y23, as shown in FIG. A down guidance direction or an up guidance direction proceeding to is indicated.
  • operation information corresponding to the tilting operation of the arrow Y23j of the joystick 32 is input from the operation input unit 24 to the control unit 26, the induced magnetic field generation unit 25 moves in the tilting direction of the joystick 32 based on this operation information.
  • the guidance direction and the guidance amount on the absolute coordinate system of the distal end of the capsule endoscope 10 are calculated, and the first planar position changing unit 25b is translated so as to translate the extracorporeal permanent magnet 25a according to the calculated guidance direction and guidance amount. And the vertical position change part 25c is controlled.
  • the horizontal tilt direction indicated by the arrow Y24j of the joystick 32 is such that the capsule endoscope 10 has a plane perpendicular to the long axis La as indicated by the arrow Y24, as shown in FIG. A right guidance direction or a left guidance direction to go to is designated.
  • operation information corresponding to the tilting operation of the arrow Y24j of the joystick 32 is input from the operation input unit 24 to the control unit 26, the control unit 26 responds to the tilting direction of the joystick 32 based on the operation information.
  • the first planar position changing unit 25b is controlled so that the guidance direction and the guidance amount on the absolute coordinate system of the distal end of the capsule endoscope 10 are calculated, and the extracorporeal permanent magnet 25a is translated according to the calculated guidance direction and guidance amount. To do.
  • the guidance direction and the guidance amount on the absolute coordinate system of the distal end of the capsule endoscope 10 are calculated, and the first extracorporeal permanent magnet 25a is translated according to the calculated guidance direction and the calculation amount.
  • the plane position changing unit 25b and the vertical position changing unit 25c are controlled.
  • the vertical tilt direction of the joystick 31 indicated by the arrow Y21j is such that the tip of the capsule endoscope 10 passes through the vertical axis Az as indicated by the arrow Y21 in FIG.
  • the tilting direction of the joystick 31 in the left-right direction indicated by the arrow Y22j is the rotation guidance in which the capsule endoscope 10 rotates about the vertical axis Az as indicated by the arrow Y22 in FIG. Corresponds to the direction.
  • Modification 1-6 of Embodiment 1 will be described.
  • the position detection of the capsule endoscope 10 in the subject may be performed by various methods other than the method based on the strength of the radio signal received from the capsule endoscope 10 described in the first embodiment. good.
  • a method of detecting the position of the capsule endoscope 10 based on the acceleration applied to the capsule endoscope 10 may be used.
  • an acceleration sensor that three-dimensionally detects the acceleration applied to the capsule endoscope 10 is provided inside the capsule endoscope 10, and the detection result of the acceleration sensor is superimposed on a radio signal and transmitted as needed.
  • the guidance device 20 integrates the acceleration applied to the capsule endoscope 10 based on the detection result of the acceleration sensor superimposed on the received radio signal, and the relative change amount of the position of the capsule endoscope 10 is calculated. And the current position of the capsule endoscope 10 is calculated from the amount of change.
  • Modification 1-7 of Embodiment 1 will be described.
  • a method for detecting the position of the capsule endoscope 10 in the subject a method for detecting an alternating magnetic field may be used.
  • an AC magnetic field generator that generates an AC magnetic field is provided inside the capsule endoscope 10.
  • a plurality of magnetic field sensors for detecting an alternating magnetic field are provided on the induction device 20 side.
  • the guiding device 20 detects the AC magnetic field generated by the capsule endoscope 10 by a plurality of magnetic field sensors installed at a plurality of locations, and based on the detection results, the position and position of the capsule endoscope 10 are detected.
  • the direction can be calculated continuously.
  • Modification 1-8 of Embodiment 1 will be described.
  • a method for detecting the position of the capsule endoscope 10 in the subject another method for detecting an alternating magnetic field will be described.
  • an LC circuit that resonates by an alternating magnetic field is provided inside the capsule endoscope 10.
  • a plurality of magnetic field sensors for detecting an alternating magnetic field are provided on the induction device 20 side.
  • the guidance device 20 generates an LC circuit in the capsule endoscope 10 when the capsule endoscope 10 is not located in the measurement region of the subject (the magnetic field region generated by the guiding magnetic field generation unit 25).
  • the first resonance magnetic field to be detected is detected in advance.
  • the second resonance magnetic field generated by the LC circuit in the capsule endoscope 10 is detected, and the first resonance magnetic field is detected.
  • a difference value between the detected value of the second resonance magnetic field and the detected value of the second resonance magnetic field are continuously obtained. Further, based on these difference values, the position coordinates of the capsule endoscope 10 in the three-dimensional space are continuously calculated.
  • FIG. 29 is a diagram illustrating a configuration example of a capsule medical device magnetic guidance system according to the second embodiment.
  • the capsule medical device magnetic guidance system 2 according to the second embodiment includes a guidance device 40 having a guidance magnetic field generation unit 25-2 instead of the guidance device 20 shown in FIG.
  • the induced magnetic field generating unit 25-2 further includes a second plane position changing unit 25f with respect to the induced magnetic field generating unit 25 shown in FIG.
  • the configuration other than the second planar position changing unit 25f in the capsule medical device magnetic guidance system 2 is the same as that described in the first embodiment.
  • FIG. 30 is a perspective view schematically showing the appearance of the guidance device 40.
  • the guiding device 40 is provided with a bed 40a that can be translated in the horizontal direction as a mounting table on which the subject is mounted.
  • An induction magnetic field generation unit 25-2 that generates the magnetic field 100 is disposed below the bed 40a.
  • the second plane position changing unit 25f is a translation mechanism that translates the bed 40a in the horizontal direction.
  • the second plane position changing unit 25f moves the bed 40a with the subject placed thereon, whereby the subject position relative to the capsule endoscope 10 constrained by the magnetic field 100 generated by the extracorporeal permanent magnet 25a, in other words, The relative position of the capsule endoscope 10 with respect to the subject is changed.
  • the control unit 26 When the guidance instruction information for translating the capsule endoscope 10 is input from the operation input unit 24, the control unit 26 translates the bed 40a by the second plane position changing unit 25f based on the input guidance instruction information. The position of the capsule endoscope 10 relative to the subject is moved relatively.
  • the control unit 26 determines the turning angle ⁇ of the extracorporeal permanent magnet 25a based on the input guidance instruction information.
  • the elevation angle ⁇ is calculated, and the correction direction and the correction amount for correcting the change in the restraint position of the capsule endoscope 10 due to the rotation of the extracorporeal permanent magnet 25a are calculated.
  • the extracorporeal permanent magnet 25a is translated with respect to the first plane position changing unit 25b based on the calculated correction direction and correction amount.
  • the user grasps the change in the restraint position of the capsule endoscope 10 that occurs when the tilt angle of the capsule endoscope 10 is changed, and the correction direction and correction amount for correcting this change. I can't. Therefore, the correction operation that cannot be grasped by the user is realized by translation of the extracorporeal permanent magnet 25a installed at the lower part of the bed 40a, and the translation of the capsule endoscope 10 by the user's own operation is relative to the bed 40a. It is realized by dynamic movement. In this case, since the user can predict the movement of the bed 40a, the capsule endoscopy can be performed without a sense of incongruity. Further, since the extracorporeal permanent magnet 25a can be translated at a higher speed than the bed 40a on which the subject is placed, the inductivity of the capsule endoscope 10 can be improved.
  • the translation of the capsule endoscope 10 in the horizontal direction is realized by the translation of the extracorporeal permanent magnet 25a and the translation of the bed 40a, and therefore the translation amount of the extracorporeal permanent magnet 25a. Therefore, it is possible to suppress an increase in the size of the entire guiding device 40.
  • the translation of the capsule endoscope 10 based on the user's operation is realized by the translational movement of the bed 40a, and the correction of the capsule endoscope 10 that is not conscious of the user is performed by the extracorporeal permanent magnet 25a. Therefore, the user operability can be improved.
  • Modification 2-1 Next, Modification 2-1 of Embodiment 2 will be described.
  • the translational motion for correcting the restraint position of the capsule endoscope 10 and the translational motion of the capsule endoscope 10 based on the guidance instruction information are applied to the extracorporeal permanent magnet 25a and the bed 40a. Each was assigned. However, the total translational movement of the capsule endoscope 10 may be distributed to the extracorporeal permanent magnet 25a and the bed 40a at a predetermined ratio.
  • the control unit 26 determines the turning angle ⁇ , the elevation angle ⁇ , the translation direction, and the translation amount for controlling the extracorporeal permanent magnet 25a based on the guidance instruction information. get. Further, in the same manner as in the first embodiment and its modifications 1-1 to 1-3, the correction direction and the correction amount for correcting the change in the restraint position of the capsule endoscope 10 due to the rotation of the extracorporeal permanent magnet 25a. To get. And the control part 26 correct
  • This ratio is not particularly limited, and may be equally distributed between the extracorporeal permanent magnet 25a and the bed 40a, or may be given priority to translation by the extracorporeal permanent magnet 25a, or may be given priority to translation by the bed 40a. May be.
  • the translation speeds of the extracorporeal permanent magnet 25a and the bed 40a are respectively set according to the translation amounts of the extracorporeal permanent magnet 25a and the bed 40a so that the movement of the capsule endoscope 10 is completed within a predetermined time. You may adjust it.
  • the size of the guiding device 40 can be further suppressed.
  • the upper limit speed or the upper limit translation amount defined according to the speed is set in either the extracorporeal permanent magnet 25a or the bed 40a.
  • the translation amount on the side exceeding the upper limit speed for example, the bed 40a
  • the upper limit speed for example, the extracorporeal permanent magnet 25a
  • the upper limit speed of the extracorporeal permanent magnet 25a may be set larger than the upper limit speed of the bed 40a. This is because the external permanent magnet 25a can be translated at a higher speed than the bed 40a on which the subject is placed. By setting in this way, the translation amount on the side of the extracorporeal permanent magnet 25a can be increased to increase the speed, and the inductivity of the capsule endoscope 10 can be improved.
  • FIG. 31 is a schematic diagram illustrating a configuration example of a capsule medical device guidance system according to the third embodiment.
  • the capsule medical device magnetic guidance system 3 according to the third embodiment incorporates a permanent magnet 19, a capsule endoscope 10 introduced into the subject 101, and the subject 101.
  • Permanent magnets 51 and 52 arranged facing both sides, drive units 53 and 54 that drive the permanent magnets 51 and 52, respectively, and a control unit 55 that controls the operation of the drive units 53 and 54.
  • the capsule endoscope 10 is restrained by the magnetic field formed in the subject 101 by the permanent magnets 51 and 52, and the position and posture are controlled by the operation of the permanent magnets 51 and 52.
  • Permanent magnets 51 and 52 are permanent magnets having the same type and the same rectangular parallelepiped shape.
  • the permanent magnets 51 and 52 are parallel to each other so that one of four surfaces parallel to the respective magnetization directions (hereinafter referred to as capsule facing surfaces PL3 and PL4) faces the subject 101 and is mirror-symmetrical. Has been placed. Note that these permanent magnets 51 and 52 are arranged with the magnetization direction in the vertical direction (Z-axis direction) in the initial state.
  • the direction orthogonal to the capsule facing surfaces PL3 and PL4 is the X-axis direction
  • the direction parallel to the capsule facing surfaces PL3 and PL4 is The Y-axis direction
  • Each of the permanent magnets 51 and 52 has a length of a side in a direction (Y-axis direction in FIG. 31) in the capsule facing surfaces PL3 and PL4 orthogonal to the magnetization direction among the lengths of the three sides of the rectangular parallelepiped shape. However, it has a shape longer than the magnetization direction (Z-axis direction in FIG. 31) and the direction orthogonal to the capsule facing surfaces PL3 and PL4 (X-axis direction in FIG. 31).
  • each of the permanent magnets 51 and 52 has a flat plate shape having the shortest length in the direction orthogonal to the capsule facing surfaces PL3 and PL4 among the lengths of the three sides of the rectangular parallelepiped shape.
  • the permanent magnets 51 and 52 are configured to be able to translate along the horizontal direction and the vertical direction, and thereby the position of the capsule endoscope 10 in the subject 101 can be controlled.
  • the position of the capsule endoscope 10 in the vertical plane changes by translating the permanent magnets 51 and 52 in the vertical plane.
  • the position of the capsule endoscope 10 in the horizontal plane changes by translating the permanent magnets 51 and 52 in the horizontal plane.
  • the permanent magnets 51 and 52 are orthogonal to the capsule facing surfaces PL3 and PL4, and are directed to the axes R 0 passing through the centers of the permanent magnets 51 and 52 and the axes R 1 and R 2 in the capsule facing surfaces PL3 and PL4 orthogonal to the magnetization direction. It is configured to be rotatable. Thereby, the azimuth angle and the tilt angle of the capsule endoscope 10 in the subject 101 can be controlled. For example, when the permanent magnets 51 and 52 are rotated (turned) with respect to the axis R 0 while maintaining the mutual positional relationship, the capsule endoscope 10 follows and changes the azimuth angle. In addition, when the permanent magnets 51 and 52 are tilted with respect to the axes R 1 and R 2 while maintaining the mutual positional relationship, the capsule endoscope 10 also tilts following.
  • a capsule-type medical device in which a permanent magnet is arranged and introduced into a subject A guidance device for guiding the capsule medical device in the subject by applying a magnetic field to the capsule endoscope, A magnetic field generator, A translation mechanism that translates the magnetic field generator relative to the subject; A rotation mechanism for rotating the magnetic field generator relative to the subject;
  • An input unit that receives input of first information relating to an operation of changing the position of the capsule medical device and second information relating to an operation of changing the posture of the capsule medical device;
  • a control unit that controls the translation mechanism and the rotation mechanism based on the first information and the second information to translate and rotate the magnetic field generation unit relative to the subject; With When the input unit receives the input of the second information, the control unit changes the position of the capsule medical device caused by the rotation of the magnetic field generation unit with respect to the subject.
  • a guiding device that corrects the generating unit by translating the subject relative to the subject; and
  • a capsule medical device guidance system comprising:
  • Appendix 2 The capsule medical device guidance system according to appendix 1, wherein the permanent magnet of the capsule medical device is arranged such that its magnetization direction has an angle with the major axis direction of the capsule medical device. .
  • Capsule Type Medical Device Guidance System 10 Capsule Endoscope 11A, 11B Imaging Unit 12 Capsule Type Housing 12a Cylindrical Case 12b, 12c Dome Shaped Case 13A, 13B Illumination Unit 14A, 14B Optical System 15A, 15B Image sensor 16 Wireless communication unit 16a Antenna 17 Control unit 18 Power supply unit 19 Permanent magnet 20, 40 Guiding device 20a, 40a Bed 21 Reception unit 21a Antenna 22 Position detection unit 23 Display unit 24 Operation input unit 25 Induction magnetic field generation unit 25a, 25a -1 Extracorporeal permanent magnet 25a-2 Coil 25b First plane position change unit 25c Vertical position change unit 25d Elevation angle change unit 25e Turning angle change unit 25f Second plane position change unit 26, 55 Control unit 27 Storage unit 31, 32 Joystick 34U Up button 34B Down button 35 Cha button 36 approaches buttons 51, 52 the permanent magnets 53, 54 drive unit 100 magnetic field 101 subjects

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Robotics (AREA)
  • Endoscopes (AREA)

Abstract

 ユーザによるカプセル型医療装置磁気誘導システムの操作性を高めることができる誘導装置及びカプセル型医療装置誘導システムを提供する。誘導装置20は、体外永久磁石25aと、該体外永久磁石を並進及び回転させる第1平面位置変更部25b~旋回角変更部25eと、カプセル型内視鏡10の位置を変化させる動作に関する第1の情報及びカプセル型内視鏡10の姿勢を変化させる動作に関する第2の情報の入力を受け付ける操作入力部24と、第1の情報及び第2の情報に基づき第1平面位置変更部25b~旋回角変更部25eを制御して、体外永久磁石25aを並進及び回転させる制御部26とを備え、制御部26は、操作入力部24が第2の情報を受け付けた場合に、体外永久磁石25aの回転に起因して生じるカプセル型内視鏡10の位置の変化を、カプセル型内視鏡10を被検体に対して相対的に並進させることにより補正する。

Description

誘導装置及びカプセル型医療装置誘導システム
 本発明は、被検体内に導入されたカプセル型医療装置を誘導する誘導装置及びカプセル型医療装置誘導システムに関する。
 従来、内視鏡の分野においては、患者等の被検体の消化管内に導入可能な大きさに形成されたカプセル型内視鏡の開発が進められている。カプセル型内視鏡は、カプセル型筐体の内部に撮像機能及び無線通信機能を備えたものであり、被検体の口から飲み込まれた後、蠕動運動等によって消化管内を移動しながら、被検体の臓器内部の画像(以下、体内画像ともいう)の画像データを順次取得し、被検体外部の受信装置に無線送信する。受信装置において受信された画像データは画像表示装置に取り込まれ、所定の画像処理が施される。それにより、体内画像がディスプレイに静止画表示又は動画表示される。医師又は看護師等のユーザは、このようにして画像表示装置に表示された体内画像を観察して、被検体の臓器の状態を診断する。
 近年では、被検体内部のカプセル型内視鏡を磁力によって誘導(以下、磁気誘導という)する誘導装置を備えた誘導システムが提案されている(例えば、特許文献1参照)。一般に、このような誘導システムにおいては、カプセル型内視鏡の内部に永久磁石(以下、体内永久磁石ともいう)が設けられる。また、誘導装置は、電磁石や永久磁石(以下、体外永久磁石ともいう)等の磁界発生部を備え、被検体内部に導入されたカプセル型内視鏡に磁界を印加し、この印加した磁界から生じる磁気引力によってカプセル型内視鏡を所望の位置に磁気誘導する。この場合、誘導システムには、カプセル型内視鏡が取得した画像データを受信してリアルタイムに体内画像を表示可能な表示部が設けられ、ユーザは、表示部に表示された体内画像を参照しつつ、誘導システムに設けられた操作入力部を用いてカプセル型内視鏡の磁気誘導を操作することができる。
特表2008-503310号公報
 ところが、このような誘導システムにおいては、カプセル型内視鏡の姿勢を制御するために、体外永久磁石の傾きを変化させると、任意の平面内におけるカプセル型内視鏡の拘束位置も変化してしまう。そこで、カプセル型内視鏡の拘束位置を補正するために、体外永久磁石も併せて移動させなくてはならないが、この際の体外永久磁石の移動方向や移動量を操作者が予測できないため、操作性が低下するという問題もあった。
 本発明は、上記に鑑みてなされたものであって、ユーザによる誘導システムの操作性を高めることができる誘導装置及びカプセル型医療装置誘導システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る誘導装置は、永久磁石が内部に配置されたカプセル型医療装置を被検体内に導入し、該カプセル型内視鏡に対して磁界を印加することにより、前記被検体内において前記カプセル型医療装置を誘導する誘導装置において、磁界発生部と、前記磁界発生部を前記被検体に対して相対的に並進させる並進機構と、前記磁界発生部を前記被検体に対して相対的に回転させる回転機構と、前記カプセル型医療装置の位置を変化させる動作に関する第1の情報、及び、前記カプセル型医療装置の姿勢を変化させる動作に関する第2の情報の入力を受け付ける入力部と、前記第1の情報及び前記第2の情報に基づき前記並進機構及び前記回転機構を制御して、前記磁界発生部を前記被検体に対して相対的に並進及び回転させる制御部とを備え、前記制御部は、前記入力部が前記第2の情報の入力を受け付けた場合に、前記磁界発生部の前記被検体に対する回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を前記被検体に対して相対的に並進させることにより補正することを特徴とする。
 上記誘導装置において、前記回転機構は、前記磁界発生部を、前記磁界発生部の磁化方向を含む鉛直面内で前記被検体に対して相対的に回転させる機構を有し、前記制御部は、前記第2の情報に基づき、前記磁界発生部を前記機構により回転させる場合に、前記磁界発生部の回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を、前記鉛直面と水平面との交線に平行な方向に前記被検体に対して相対的に並進させることにより補正することを特徴とする。
 上記誘導装置において、前記回転機構は、前記磁界発生部を、前記磁界発生部の磁化方向を鉛直軸に対して傾けた状態で、鉛直軸を中心に前記被検体に対して相対的に回転させる第2の機構を有し、前記制御部は、前記第2の情報に基づき、前記磁界発生部を前記第2の機構により回転させる場合に、前記磁界発生部の回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を水平面内で前記被検体に対して相対的に並進させることにより補正することを特徴とする。
 上記誘導装置は、前記カプセル型医療装置が導入される前記被検体を載置する載置台をさらに備え、前記並進機構は、前記磁界発生部を並進させる第1の並進機構と前記載置台を並進させる第2の並進機構とを有し、前記制御部は、前記第1及び第2の情報に基づき前記並進機構が前記磁界発生部を前記被検体に対して相対的に並進させるトータルの並進量の一部を前記第1の並進機構により並進させ、前記並進量の残りの部分を前記第2の並進機構により並進させることを特徴とする。
 上記誘導装置において、前記制御部は、前記入力部が第2の情報の入力を受け付けた場合に、前記磁界発生部の前記被検体に対する回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記第1の並進機構のみを並進させることにより補正することを特徴とする。
 上記誘導装置において、前記制御部は、前記トータルの並進量を、前記第1の並進機構による並進量と前記第2の並進機構による並進量とに、所定の比率で分配することを特徴とする。
 上記誘導装置において、前記制御部は、前記トータルの並進量を、前記第1の並進機構と前記第2の並進機構の上限速度に応じて、前記第1の並進機構による並進量と前記第2の並進機構による並進量とに分配することを特徴とする。
 上記誘導装置は、前記カプセル型医療装置の位置を検出する位置検出部をさらに備え、前記制御部は、前記位置検出部における検出結果と、前記磁界発生部が回転する回転角とに基づいて、前記磁界発生部を前記被検体に対して相対的に並進させる並進量を算出することを特徴とする。
 上記誘導装置は、前記カプセル型医療装置の位置を検出する位置検出部と、前記カプセル型医療装置と前記磁界発生部との間の距離及び前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量との関係を記憶する記憶部をさらに備え、前記制御部は、前記位置検出部の検出結果から算出される前記カプセル型医療装置と前記磁界発生部との間の距離と、前記入力部が受け付けた前記第2の情報に従って制御される前記磁界発生部の回転角とに基づいて前記記憶部から前記並進量を抽出することを特徴とする。
 上記誘導装置は、前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量の代表値との関係を記憶する記憶部をさらに備え、前記制御部は、前記入力部が受け付けた前記第2の情報に従って制御される前記磁界発生部の回転角に基づいて前記記憶部から前記並進量を抽出することを特徴とする。
 上記誘導装置は、前記カプセル型医療装置と前記磁界発生部との間の距離及び前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量との関係を記憶する記憶部をさらに備え、前記入力部は、前記カプセル型医療装置と前記磁界発生部との間の距離に関する情報の入力をさらに受け付け、前記制御部は、前記入力部が受け付けた前記距離に関する情報と、前記第2の情報に従って制御される前記磁界発生部の回転角とに基づいて前記記憶部から前記並進量を抽出することを特徴とする。
 上記誘導装置において、前記入力部は、前記カプセル型医療装置の誘導モードに関する情報の入力をさらに受け付け、前記誘導モード及び前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量との関係を記憶する記憶部をさらに備え、前記制御部は、前記入力部が受け付けた前記誘導モードに関する情報に基づいて前記記憶部から前記並進量を抽出することを特徴とする。
 上記誘導装置において、前記カプセル型医療装置の位置を検出する位置検出部をさらに備え、前記制御部は、前記入力部が受け付けた少なくとも前記第2の情報に基づいて、前記カプセル型医療装置の目標位置情報を取得し、該目標位置情報と前記位置検出部の検出結果とに基づいて、前記カプセル型医療装置の位置を制御することを特徴とする。
 上記誘導装置において、前記磁界発生部は永久磁石であることを特徴とする。
 本発明に係るカプセル型医療装置誘導システムは、永久磁石が内部に配置されたカプセル型医療装置と、上記誘導装置とを備えることを特徴とする。
 本発明によれば、カプセル型医療装置の回転に関する情報が入力された場合に、磁界発生部の回転に起因して生じるカプセル型医療装置の位置の変化を、カプセル型医療装置を被検体に対して相対的に並進させることにより補正するので、ユーザによるカプセル型医療装置磁気誘導システムの操作性を高めることが可能になる。
図1は、本発明の実施の形態1に係るカプセル型医療装置誘導システムの一構成例を示す図である。 図2は、図1に示す誘導装置の外観の一構成例を示す模式図である。 図3は、図2に示す体外永久磁石の設置状態を説明するための模式図である。 図4は、図1に示すカプセル型内視鏡の内部構造の一例を示す断面模式図である。 図5は、カプセル型内視鏡の内部における撮像素子と永久磁石との相対的な位置関係を説明するための模式図である。 図6は、被検体内に液体を導入した状態でのカプセル型内視鏡の様子(磁界を作用させていない状態)を説明するための概念図である。 図7は、被検体内に液体を導入した状態でのカプセル型内視鏡の様子(磁界を作用させている状態)を説明するための概念図である。 図8は、図1に示す表示部の表示画面に表示される画像の一例を示す図である。 図9は、カプセル型内視鏡の鉛直方向における位置制御方法を説明する模式図である。 図10は、カプセル型内視鏡の水平方向における位置制御方法を説明する模式図である。 図11は、図1に示す操作入力部の一例を示す図である。 図12は、図1に示す操作入力部によって操作可能なカプセル型医療装置の磁気誘導を説明するための図である。 図13は、表示部に表示されるメニュー画面を例示する図である。 図14は、カプセル型内視鏡の拘束位置の補正の原理を説明するための概念図である。 図15は、体外永久磁石の形状と発生磁界との関係を求めるシミュレーションにおける評価項目を説明するための模式図である。 図16は、シミュレーションに用いた永久磁石の各辺の長さの比を示す表である。 図17は、図16に示す各永久磁石の磁界強度を示すグラフである。 図18は、図16に示す各永久磁石により発生するz軸方向における磁気勾配を示すグラフである。 図19は、図16に示す各永久磁石により発生するx軸方向における磁気勾配を示すグラフである。 図20は、図16に示す各永久磁石により発生するy軸方向における磁気勾配を示すグラフである。 図21は、別のシミュレーションに用いた永久磁石の各辺の長さの比を示す表である。 図22は、図21に示す各永久磁石の磁界強度を示すグラフである。 図23は、図21に示す各永久磁石により発生するz軸方向における磁気勾配を示すグラフである。 図24は、図21に示す各永久磁石により発生するx軸方向における磁気勾配を示すグラフである。 図25は、図21に示す各永久磁石により発生するy軸方向における磁気勾配を示すグラフである。 図26は、z軸方向の長さに対するy軸方向の長さとの比率と、タイプy-x-z(33)の永久磁石の磁界強度に対する各寸法比を有する永久磁石の磁界強度の比率との関係を示すグラフである。 図27は、変形例1-5に係る操作入力部の一例を示す図である。 図28は、図27に示す操作入力部によって操作可能なカプセル型医療装置の磁気誘導を説明するための図である。 図29は、本発明の実施の形態2に係るカプセル型医療装置磁気誘導システムの一構成例を示す図である。 図30は、図29に示す誘導装置の外観を模式的に示す斜視図である。 図31は、本発明の実施の形態3に係るカプセル型医療装置誘導システムの一構成例を示す模式図である。
 以下に、本発明の実施の形態に係る誘導装置及びカプセル型医療装置誘導システムについて、図面を参照しながら説明する。なお、以下の説明においては、カプセル型医療装置として、被検体内に経口にて導入され、被検体の胃に蓄えた液体中を漂うカプセル型内視鏡を用いるカプセル型内視鏡用誘導システムを例示するが、この実施の形態によって本発明が限定されるものではない。即ち、本発明は、例えば被検体の食道から肛門にかけて管腔内を移動するカプセル型内視鏡や、肛門から等張液とともに導入されるカプセル型内視鏡など、種々のカプセル型医療装置を用いることが可能である。また、以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。従って、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。なお、図面の記載において、同一部分には同一の符号を付している。
(実施の形態1)
 図1は、本発明の実施の形態1に係るカプセル型医療装置誘導システムの一構成例を示す模式図である。図2は、図1に示す誘導装置の外観の一例を示す模式図である。図1に示すように、実施の形態1におけるカプセル型医療装置誘導システム1は、被検体の体腔内に導入されるカプセル型医療装置であって、内部に永久磁石が設けられたカプセル型内視鏡10と、3次元的な磁界100を発生することにより、被検体内に導入されたカプセル型内視鏡10を磁気誘導する誘導装置20とを備える。
 カプセル型内視鏡10は、経口摂取等によって所定の液体とともに被検体の臓器内部に導入された後、消化管内部を移動して、最終的に、被検体の外部に排出される。カプセル型内視鏡10は、その間、被検体の臓器内部(例えば胃内部)に導入された液体中を漂い、磁界100によって磁気誘導されつつ被検体内を順次撮像し、撮像によって取得した体内画像に対応する画像情報(画像データ)を順次無線送信する。なお、カプセル型内視鏡10の詳細な構造については後述する。
 誘導装置20は、カプセル型内視鏡10との間で無線通信を行いカプセル型内視鏡10が取得した画像情報を含む無線信号を受信する受信部21と、カプセル型内視鏡10から受信した無線信号に基づいて、被検体内におけるカプセル型内視鏡10の位置を検出する位置検出部22と、受信部21が受信した無線信号から画像情報を取得し、該画像情報に所定の信号処理を施して体内画像を画面表示すると共に、被検体内におけるカプセル型内視鏡10の位置を画面表示する表示部23と、カプセル型医療装置誘導システム1における各種操作を指示する情報等の入力を受け付ける操作入力部24と、カプセル型内視鏡10を誘導するための磁界を生成する誘導磁界生成部25と、これらの各部を制御する制御部26と、カプセル型内視鏡10によって撮像された画像情報などを記憶する記憶部27とを備える。
 図2は、誘導装置20の外観を模式的に示す斜視図である。図2に示すように、誘導装置20には、被検体が載置される載置台として、ベッド20aが設けられている。このベッド20aの下部に、磁界100を生成する誘導磁界生成部25が少なくとも配置される。
 受信部21は、複数のアンテナ21aを備え、これらの複数のアンテナ21aを介してカプセル型内視鏡10からの無線信号を順次受信する。受信部21は、複数のアンテナ21aの中から最も受信電界強度の高いアンテナを選択し、選択したアンテナを介して受信したカプセル型内視鏡10からの無線信号に対して復調処理等を行う。これにより、受信部21は、この無線信号から被検体内に関する画像データを抽出する。受信部21は、抽出した画像データを含む画像信号を表示部23に出力する。
 位置検出部22は、受信部21が受信した無線信号の信号強度に基づいて、被検体内におけるカプセル型内視鏡10の位置を推定する演算を行う。
 表示部23は、液晶ディスプレイ等の各種ディスプレイを含み、受信部21から入力された画像データに基づく体内画像や、その他各種情報を含む画面を生成してディスプレイに表示する。具体的には、表示部23は、例えば、カプセル型内視鏡10が撮像した被検体の体内画像群を表示すると共に、カプセル型内視鏡10の位置や姿勢に関する情報や誘導操作に関する情報を表示する。この際、表示部23は、誘導装置20が発生する磁界から推定されるカプセル型内視鏡10の位置や姿勢を表示しても良いし、位置検出部22の位置検出結果に基づいて、表示中の体内画像に対応する被検体内の位置を画面に表示してもよい。また、表示部23は、例えば、制御部26の制御に従って選択された体内画像の縮小画像、被検体の患者情報及び検査情報等を表示する。
 操作入力部24は、ジョイスティック、各種ボタン及び各種スイッチを備えた操作卓、キーボード等の入力デバイスによって実現され、カプセル型内視鏡10を磁気で誘導するための誘導指示情報や誘導装置20に対して所定のモードを設定するための設定情報といった各種情報の入力を受け付ける。誘導指示情報は、磁気誘導操作対象であるカプセル型内視鏡10の姿勢や位置を制御するための情報であり、詳細には、カプセル型内視鏡10の位置を変化させる動作や、カプセル型内視鏡10の傾斜角(鉛直軸に対する角度)を変化させる動作に関する情報や、カプセル型内視鏡10の視野(後述する撮像部11A、11B)の方位角(鉛直軸周りの角度)を変化させる動作に関する情報等が含まれる。なお、以下において、視野の方位角のことを、単に方位角という。操作入力部24は、入力を受け付けたこれらの情報を制御部26に入力する。
 誘導磁界生成部25は、被検体内に導入されたカプセル型内視鏡10の位置や傾斜角や方位角を、被検体に対して相対的に変化させるための磁界を生成する。より詳細には、誘導磁界生成部25は、磁界を発生する磁界発生部としての体外永久磁石25aと、該体外永久磁石25aを並進及び回転させる機構として、第1平面位置変更部25bと、鉛直位置変更部25cと、仰角変更部25dと、旋回角変更部25eとを有する。
 図3は、体外永久磁石25aの設置状態を説明するための模式図である。図3に示すように、体外永久磁石25aは、例えば直方体形状を有する棒磁石によって実現され、自身の磁化方向と平行な4つの面の内の1つの面(以下、カプセル対向面PLともいう)と対向する領域内にカプセル型内視鏡10を拘束する。
 体外永久磁石25aは、初期状態において、カプセル対向面PLが水平面と平行になるように配置される。以下、体外永久磁石25aの初期状態にあるときの体外永久磁石25aの配置を基準配置とし、このときの磁化方向をX軸方向、磁化方向と直交する水平面内の方向をY軸方向、鉛直方向をZ軸方向とする。
 体外永久磁石25aは、直方体形状の3方向の辺の長さの内、磁化方向と直交する水平面方向(図3においては、Y軸方向)の辺の長さが、磁化方向(図3においては、X軸方向)及びカプセル対向面PLに直交する方向(図3においては、Z方向)よりも長い形状を有している。好ましくは、体外永久磁石25aは、直方体形状の3方向の辺の長さの内、カプセル対向面PLと直交する方向の長さが最も短い平板形状を有している。なお、体外永久磁石25aの形状については、後で詳述する。
 第1平面位置変更部25bは、体外永久磁石25aを水平面内において並進させる並進機構である。即ち、体外永久磁石25aにおいて磁化された2つの磁極の相対位置が確保された状態のままで水平面内に移動を行うものである。
 鉛直位置変更部25cは、体外永久磁石25aを鉛直方向において並進させる並進機構である。
 仰角変更部25dは、体外永久磁石25aを含む鉛直面内において永久磁石を回転させて、水平面に対する磁化方向の角度を変化させる回転機構である。仰角変更部25dは、好ましくは、カプセル対向面PLと平行且つ磁化方向と直交し、体外永久磁石25aの中心を通る軸(以下、回転軸YCという)に対して体外永久磁石25aを回転させる。以下、体外永久磁石25aと水平面とのなす角度を仰角θとする。
 旋回角変更部25eは、体外永久磁石25aの中心を通る鉛直方向の軸に対して体外永久磁石25aを回転させる。以下、体外永久磁石25aの鉛直方向の軸に対する回転運動を旋回運動という。また、基準配置に対して体外永久磁石25aが旋回した角度を旋回角ψとする。
 旋回角変更部25eにより体外永久磁石25aを旋回角ψだけ旋回させ、基準配置に対する回転軸YCの角度を変化させた状態で、仰角変更部25dにより体外永久磁石25aを回転軸YCに対して回転させることで、体外永久磁石25aが発生する磁界に拘束されたカプセル型内視鏡10の傾斜角及び方位角を変化させることができる。
 制御部26は、位置検出部22の検出結果、及び操作入力部24が受け付けた誘導指示情報に基づいて誘導磁界生成部25の各部の動作を制御することにより、カプセル型内視鏡10をユーザ所望の位置及び姿勢に誘導する。この際、制御部26は、体外永久磁石25aの回転によって生じるユーザが意図しないカプセル型内視鏡10の位置変化を補正するため、補正方向及び補正量を算出し、算出した補正方向及び補正量に基づいて第1平面位置変更部25bの動作を制御する。
 記憶部27は、フラッシュメモリ又はハードディスク等の書き換え可能に情報を保存する記憶メディアを用いて実現される。記憶部27は、カプセル型内視鏡10によって撮像された被検体の体内画像群の画像データの他、制御部26が誘導装置20の各部を制御するための各種プログラムや各種パラメータといった情報を記憶する。
 次に、カプセル型内視鏡10の詳細な構造について説明する。
 図4は、カプセル型内視鏡10の内部構造の一例を示す断面模式図である。図4に示すように、カプセル型内視鏡10は、被検体の臓器内部に導入し易い大きさに形成された外装であるカプセル型筐体12と、互いに異なる撮像方向の被写体を撮像して画像情報を生成する撮像部11A、11Bとを備える。また、カプセル型内視鏡10は、撮像部11A、11Bによって生成された画像情報を外部に無線送信する無線通信部16と、カプセル型内視鏡10の各構成部を制御する制御部17と、カプセル型内視鏡10の各構成部に電力を供給する電源部18とを備える。さらに、カプセル型内視鏡10は、誘導装置20による磁気誘導を可能にするための永久磁石19を備える。
 カプセル型筐体12は、被検体の臓器内部に導入可能な大きさに形成された外装ケースであり、筒状筐体12aの両側開口端をドーム形状筐体12b、12cによって塞ぐことによって実現される。ドーム形状筐体12b、12cは、可視光等の所定波長帯域の光に対して透明なドーム形状の光学部材である。また、筒状筐体12aは、可視光に対して略不透明な有色の筐体である。これらの筒状筐体12a及びドーム形状筐体12b、12cによって形成されるカプセル型筐体12は、図4に示すように、撮像部11A、11B、無線通信部16、制御部17、電源部18及び永久磁石19を液密に内包する。
 撮像部11Aは、LED等の照明部13Aと、集光レンズ等の光学系14Aと、CMOSイメージセンサ又はCCD等の撮像素子15Aとを有する。照明部13Aは、撮像素子15Aの撮像視野に白色光等の照明光を発光して、ドーム形状筐体12b越しに撮像視野内の被写体を照明する。光学系14Aは、この撮像視野からの反射光を撮像素子15Aの撮像面に集光し、撮像視野の被写体像を結像する。撮像素子15Aは、撮像面に集光された撮像視野からの反射光を受光し、受光した光信号を光電変換処理して、撮像視野の被写体像、即ち被検体の体内画像を表す画像情報を生成する。
 撮像部11Bは、撮像部11Aと同様に、LED等の照明部13Bと、集光レンズ等の光学系14Bと、CMOSイメージセンサ又はCCD等の撮像素子15Bとを有する。
 図4に示すように、カプセル型内視鏡10が長軸La方向の前方及び後方を撮像する2眼タイプのカプセル型医療装置である場合、これらの撮像部11A、11Bは、各光軸がカプセル型筐体12の長手方向の中心軸である長軸Laと略平行又は略一致し、且つ各撮像視野が互いに反対方向を向くように配置される。即ち、撮像素子15A、15Bの撮像面が長軸Laに対して直交するように、撮像部11A、11Bが実装される。
 無線通信部16は、アンテナ16aを備え、上述した撮像部11A、11Bによって取得された画像情報を、アンテナ16aを介して外部に順次無線送信する。具体的には、無線通信部16は、撮像部11A又は撮像部11Bが生成した画像情報に基づく画像信号を制御部17から取得し、該画像信号に対して変調処理等を行って、この画像信号を変調した無線信号を生成する。無線通信部16は、この無線信号を、アンテナ16aを介して外部の受信部21に送信する。
 制御部17は、撮像部11A、11B及び無線通信部16の各動作を制御すると共に、これらの各構成部間における信号の入出力を制御する。具体的には、制御部17は、照明部13Aが照明した撮像視野内の被写体を撮像素子15Aに撮像させ、照明部13Bが照明した撮像視野内の被写体を撮像素子15Bに撮像させる。また、制御部17は、画像信号を生成する信号処理機能を有する。制御部17は、撮像素子15A、15Bから画像情報を取得し、その都度、この画像情報に対して所定の信号処理を施して、画像データを含む画像信号を生成する。さらに、制御部17は、このような画像信号を時系列に沿って外部に順次無線送信するように無線通信部16を制御する。
 電源部18は、ボタン型電池又はキャパシタ等の蓄電部であって、磁気スイッチや光スイッチ等のスイッチ部を有する。電源部18は、外部から印加された磁界によって電源のオンオフ状態を切り替え、オン状態の場合に、蓄電部の電力をカプセル型内視鏡10の各構成部(撮像部11A、11B、無線通信部16、及び制御部17)に適宜供給する。また、電源部18は、オフ状態の場合に、カプセル型内視鏡10の各構成部への電力供給を停止する。
 永久磁石19は、誘導磁界生成部25が生成した磁界100によるカプセル型内視鏡10の磁気誘導を可能にするためのものであり、磁化方向が長軸Laに対して傾きを持つように、カプセル型筐体12の内部に固定配置される。具体的には、永久磁石19は、磁化方向が長軸Laに対して直交するように配置される。永久磁石19は、外部から印加された磁界に追従して動作し、この結果、誘導磁界生成部25によるカプセル型内視鏡10の磁気誘導が実現する。
 ここで、図5を参照しながら、撮像素子15A、15Bと永久磁石19との相対的な位置関係について説明する。永久磁石19は、上述した撮像部11A、11Bに対して相対的に固定された状態でカプセル型筐体12の内部に固定配置される。より詳細には、永久磁石19は、その磁化方向が、撮像素子15A、15Bの各撮像面の上下方向に対して相対的に固定されるように配置される。具体的には、図5に示すように、永久磁石19は、その磁化方向Ymが撮像素子15A、15Bの各撮像面の上下方向Yuに対して平行となるように配置される。
 図6は、被検体内に液体Wを導入した状態でのカプセル型内視鏡10の様子を説明するための概念図である。なお、図6は、カプセル型内視鏡10の位置及び姿勢を制御するための誘導磁界生成部25からの磁界がカプセル型内視鏡10内の永久磁石19に作用していない状態を示している。
 実施の形態1において例示するカプセル型内視鏡10は、液体W内で浮くように設計されている。また、カプセル型内視鏡10の重心Gは、カプセル型内視鏡10の幾何学的中心Cからカプセル型内視鏡10の長軸La(カプセル型内視鏡10の長手方向の中心軸:図4参照)に沿ってずれた位置となるように設定されている。具体的には、カプセル型内視鏡10の重心Gは、電源部18及び永久磁石19等の各構成部の配置を調整することにより、長軸La上の位置であってカプセル型筐体12の幾何学的中心Cから撮像部11B側に外れた位置に設定される。これにより、カプセル型内視鏡10は、自身の長軸Laが鉛直方向(即ち、重力方向)と略平行になった状態で、液体W中を漂う。言い換えると、カプセル型内視鏡10は、幾何学的中心Cと重心Gとを結ぶ直線が直立した状態で液体W中を漂う。カプセル型内視鏡10は、このような直立姿勢において、鉛直上方に撮像部11Aの撮像視野を向けるとともに鉛直下方に撮像部11Bの撮像視野を向ける。なお、液体Wは、水又は生理食塩水等の人体に無害な液体である。
 また、上述したように、永久磁石19は、その磁化方向Ym(図5参照)が長軸Laと直交するように配置される。即ち、永久磁石19の磁化方向Ymは、カプセル型内視鏡10の径方向と一致する。従って、カプセル型内視鏡10の位置及び姿勢を制御するための磁界が永久磁石19に作用していない場合、カプセル型内視鏡10は、磁化方向Ymが水平方向と一致した状態で液体W中を漂う。また、このとき、磁化方向Ymと、カプセル型筐体12の幾何学的中心C及び重心Gを結ぶラインとを通る平面が、鉛直平面となる。
 図7は、被検体内に液体Wを導入した状態でのカプセル型内視鏡10の様子を説明するための概念図であり、カプセル型内視鏡10の傾斜角を制御するための磁界を永久磁石19に作用させている状態を示している。
 図7に示すように、重力方向Dgに対するカプセル型内視鏡10の長軸Laの傾きは、カプセル型内視鏡10の永久磁石19に外部から磁界を作用させることで制御することができる。例えば、磁力線の方向が水平面に対して角度を有する磁界を永久磁石19に作用させることで、永久磁石19の磁化方向Ymがこの磁力線と略平行となるように、カプセル型内視鏡10を重力方向Dgに対して傾かせることができる。この場合、磁化方向Ymは、鉛直平面内に含まれた状態を維持しつつ、カプセル型内視鏡10の姿勢が変化する。このような制御を行う磁界は、誘導装置20の仰角変更部25dにより体外永久磁石25aの仰角θを変化させることにより実現される(図1及び図3参照)。
 従って、カプセル型内視鏡10を傾かせた状態で、重力方向Dgを中心として旋回する磁界を印加してカプセル型内視鏡10を重力方向Dg周りに矢印のように旋回させることにより、カプセル型内視鏡10周囲の体内画像を容易に取得することが可能となる。このような制御を行う磁界は、誘導装置20の旋回角変更部25eにより体外永久磁石25aを旋回させることにより実現される(図1及び図3参照)。
 このとき、誘導装置20の表示部23は、カプセル型内視鏡10の磁気誘導に伴う体内画像内の被写体の上下方向と表示画面の上下方向とを一致させた表示態様でカプセル型内視鏡10による被検体の体内画像を表示する。この結果、図8に示すように、表示部23の表示画面Mには、カプセル型内視鏡10の撮像素子15Aの上部領域Puの素子が撮像した液面Wsが、撮像部11Aに対応する画像の上部になるように表示される。そして、永久磁石19の磁化方向Ymが撮像素子15A、15Bの各撮像面の上下方向Yuに対して平行であるため、永久磁石19の磁化方向Ymと平行な方向が表示部23の表示画面の上下方向と一致することとなる。
 図9に示すように、カプセル型内視鏡10の水平方向における並進運動は、カプセル対向面PL内で磁界強度のピークを持つ磁界(図9(a)参照)をカプセル型内視鏡10の永久磁石19に作用させ、この磁界のピーク位置に永久磁石19を引きつけてカプセル型内視鏡10を拘束することによって制御することができる(図9(b)参照)。このような磁界は、具体的には、誘導装置20の第1平面位置変更部25bにより体外永久磁石25aを水平面内で移動させることにより実現される。
 図10に示すように、カプセル型内視鏡10の鉛直方向における並進運動は、磁気勾配の分布がカプセル対向面PLと直交する方向における距離に応じて変化する磁界をカプセル型内視鏡10の永久磁石19に作用させることによって制御することができる。このような磁界は、具体的には、誘導装置20の鉛直位置変更部25cで体外永久磁石25aを鉛直方向に移動させることにより実現される。
 例えば、図10(a)に示すように、カプセル対向面PLを水平にした場合に、鉛直位置が高くなるほど磁気勾配が弱くなる磁界を永久磁石19に作用させる。このとき、図10(b)に示すように、体外永久磁石25aを上方に移動させて永久磁石19の鉛直位置を相対的に低くすると、永久磁石19に印加される磁気引力が強くなり、カプセル型内視鏡10が下方に付勢される。なお、カプセル型内視鏡10の鉛直方向における位置は、液体Wに対するカプセル型内視鏡10の浮力と、カプセル型内視鏡10にかかる重力と、体外永久磁石25aによって印加される磁気引力とのバランスが取れた位置にほぼ維持される。
 次に、図1に示す操作入力部24の具体的な構成及び動作について説明する。
 図11(a)は、操作入力部24の正面図であり、図11(b)は、操作入力部24の右側面図である。図12は、操作入力部24の各構成部位の操作によって指示されるカプセル型内視鏡10の動きを示す図である。
 図11(a)に示すように、操作入力部24は、誘導磁界生成部25によるカプセル型内視鏡10の磁気誘導を3次元的に操作するための2つのジョイスティック31、32を備える。ジョイスティック31、32は、上下方向及び左右方向に傾動操作が可能である。
 図11(b)に示すように、ジョイスティック31の背面には、アップボタン34U、ダウンボタン34Bが設けられている。アップボタン34Uは、押圧されることによってカプセル型内視鏡10の上方誘導を指示する誘導指示情報を制御部26に入力し、ダウンボタン34Bは、押圧されることによってカプセル型内視鏡10の下方誘導を指示する誘導指示情報を制御部26に入力する。ジョイスティック31の上部には、キャプチャボタン35が設けられている。キャプチャボタン35は、押圧されることによって、表示部23に表示されている体内画像をキャプチャする。また、ジョイスティック32の上部には、アプローチボタン36が設けられている。アプローチボタン36は、押圧されることによって、撮像部11Aの撮像対象に対してカプセル型内視鏡10の撮像部11A側を近接させるようにカプセル型内視鏡10を誘導させる誘導指示情報を制御部26に入力する。
 図11(a)に示すように、ジョイスティック31の矢印Y11jに示す上下方向の傾動方向は、図12の矢印Y11のようにカプセル型内視鏡10の先端が鉛直軸Azを通るように首を振るティルティング誘導方向に対応する。操作入力部24から、ジョイスティック31の矢印Y11jの傾動操作に対応する誘導指示情報が制御部26に入力された場合、制御部26は、この誘導指示情報をもとに、ジョイスティック31の傾動方向に応じてカプセル型内視鏡10先端の絶対座標系上における誘導方向を演算し、ジョイスティック31の傾動操作に応じて誘導量を演算する。そして、誘導磁界生成部25は、例えば演算した誘導方向に、演算した誘導量に応じて体外永久磁石25aの仰角θを変化させるよう、仰角変更部25dを制御する。
 図11(a)に示すように、ジョイスティック31の矢印Y12jに示す左右方向の傾動方向は、図12の矢印Y12のようにカプセル型内視鏡10が鉛直軸Azを中心として回転するローテーション誘導方向に対応する。操作入力部24から、ジョイスティック31の矢印Y12jの傾動操作に対応する誘導指示情報が制御部26に入力された場合、制御部26は、この誘導指示情報をもとに、ジョイスティック31の傾動方向に応じて、カプセル型内視鏡10先端の絶対座標系上における誘導方向を演算すると共に、ジョイスティック31の傾動操作に応じて誘導量を演算し、さらに、例えば演算した誘導方向に、演算した誘導量に応じて体外永久磁石25aを旋回させるよう、旋回角変更部25eを制御する。
 図11(a)に示すように、ジョイスティック32の矢印Y13jに示す上下方向の傾動方向は、図12の矢印Y13のようにカプセル型内視鏡10の長軸Laを水平面Hpに投影した方向に進むホリゾンタルバックワード誘導方向又はホリゾンタルフォワード誘導方向に対応する。操作入力部24から、ジョイスティック32の矢印Y13jの傾動操作に対応する誘導指示情報が制御部26に入力された場合、制御部26は、この誘導指示情報をもとに、ジョイスティック32の傾動方向に応じて、カプセル型内視鏡10先端の絶対座標系上における誘導方向及び誘導量を演算し、演算した誘導方向及び誘導量に応じて体外永久磁石25aを並進させるよう、第1平面位置変更部25bを制御する。
 図11(a)に示すように、ジョイスティック32の矢印Y14jに示す左右方向の傾動方向は、図12の矢印Y14のようにカプセル型内視鏡10が水平面Hpを、長軸Laを水平面Hpに投影した方向と垂直に進むホリゾンタルライト誘導方向又はホリゾンタルレフト誘導方向に対応する。操作入力部24から、ジョイスティック32の矢印Y14jの傾動操作に対応する誘導指示情報が制御部26に入力された場合、制御部26は、この誘導指示情報をもとに、ジョイスティック32の傾動方向に応じて、カプセル型内視鏡10先端の絶対座標系上における誘導方向及び誘導量を演算し、演算した誘導方向及び誘導量に応じて体外永久磁石25aを並進させるよう、第1平面位置変更部25bを制御する。
 また、ジョイスティック32の背面には、アップボタン34U及びダウンボタン34Bが設けられている。図11(b)の矢印Y15jに示すようにアップボタン34Uが押圧された場合には、図12に示す鉛直軸Azに沿って矢印Y15のように上に進むアップ動作が指示される。また、図11(b)の矢印Y16jに示すように、ダウンボタン34Bが押圧された場合には、図12に示す鉛直軸Azに沿って矢印Y16のように下に進むダウン動作が指示される。操作入力部24から、アップボタン34U又はダウンボタン34Bの矢印Y15j、Y16jの押圧操作に対応する誘導指示情報が制御部26に入力された場合、制御部26は、この誘導指示情報をもとに、押圧されたボタンに応じて、カプセル型内視鏡10先端の絶対座標系上における誘導方向及び誘導量を演算し、演算した誘導方向及び誘導量に応じて体外永久磁石25aを鉛直方向に並進させるよう、鉛直位置変更部25cを制御する。例えば、アップボタン34Uが押圧された場合、鉛直位置変更部25cは、体外永久磁石25aを鉛直軸Azの下方向(カプセル型内視鏡10から離れる方向)に向かって並進させる。それにより、カプセル型内視鏡10は矢印Y15のように上昇する。一方、ダウンボタン34Bが押圧された場合、鉛直位置変更部25cは、体外永久磁石25aを鉛直軸Azの上方向(カプセル型内視鏡10に近づく方向)に向かって並進させる。それにより、カプセル型内視鏡10は、矢印Y16のように下降する。
 なお、操作入力部24は、このようなジョイスティック31、32と共に、各種操作ボタンやキーボード等からなる入力デバイスをさらに有しても良い。
 図13は、表示部23に表示されるメニュー画面Sの表示例を示す模式図である。このメニュー画面Sには、左上方の領域S1に被検体の患者名、患者ID、生年月日、性別、年齢等の各被検体情報が表示され、中央の領域S2には、撮像部11Aが撮像した生体画像Sg1が左側に表示され、11Bが撮像した生体画像Sg2が右側に表示され、領域S2の下方の領域S3には、キャプチャボタン35の押圧操作によってキャプチャされた各画像が、キャプチャ時間とともに縮小表示され、左側の領域S4にカプセル型内視鏡10の姿勢図として鉛直面における姿勢図Sg3、水平面における姿勢図Sg4が表示される。各姿勢図Sg3、Sg4に表示されるカプセル型内視鏡10の姿勢は、操作入力部24の誘導指示情報に対応する姿勢を表示している。実施の形態1においては、操作入力部24からの入力量が誘導する力に反映されるため、表示されるカプセル型内視鏡10の姿勢は、実際のカプセル型内視鏡10の姿勢とほぼ同じものと考えることができ、操作者の誘導指示補助も向上する。なお、この姿勢図Sg3、Sg4には、カプセル型内視鏡10を誘導可能な方向が矢印で示され、いずれかの誘導方向の操作入力があった場合には、入力された方向に対応する矢印の表示色を変えて、操作者の操作を補助している。
 次に、カプセル型内視鏡10の姿勢を変化させる際の制御部26の動作について詳しく説明する。ここで、カプセル型内視鏡10の姿勢を変化させるために体外永久磁石25aを回転させると、それによって生じる磁界の変化により、カプセル型内視鏡10に対して水平面内を移動させる推力が働き、カプセル型内視鏡10の拘束位置が、ユーザが意図した位置からずれてしまう。
 例えば、図14に示すように、カプセル型内視鏡10の鉛直面(ZX面)内における拘束位置は、鉛直方向におけるカプセル型内視鏡10と体外永久磁石25aとの距離、即ち、カプセル型内視鏡10の高さHと、体外永久磁石25aの回転角θとによって決まる。そのため、カプセル型内視鏡10がX=X0、Z=Hn(n=1、2、…)に位置する場合、体外永久磁石25aを仰角θnだけ回転させると、カプセル型内視鏡10の拘束位置が-X軸方向に距離Dだけ変化しようとする。
 そこで、制御部26は、カプセル型内視鏡10を元の位置(X=X0)に維持しておくために、カプセル型内視鏡10を、体外永久磁石25aの回転によって生じた変化量に対応する量(補正量)だけ、カプセル型内視鏡10の位置変化の方向とは反対方向(補正方向)にカプセル型内視鏡10を移動させる制御を行う。それにより、カプセル型内視鏡10の拘束位置の変化を相殺する。
 なお、実際のXYZ座標上では、補正方向は、体外永久磁石25aの磁化方向を含む鉛直面と水平面とが交差する軸における仰角変更部25dによる体外永久磁石25aの回転方向の反対方向となる。また、上記補正量Dは、カプセル型内視鏡10の方位角を与える体外永久磁石25aの旋回角ψに応じて、X軸方向の補正量とY軸方向の補正量とに配分される。
 具体的な動作として、制御部26は、位置検出部22から出力された検出結果から、カプセル型内視鏡10の鉛直方向における位置(図14に示す距離H1、H2に対応)を取得する。また、制御部26は、操作入力部24から入力された誘導指示情報から、ユーザ所望のカプセル型内視鏡10の方位角及び傾斜角の変化並びに移動を実現するために必要な体外永久磁石25aの旋回角ψ、仰角θ、並進方向、及び並進量を算出する。そして、体外永久磁石25aの回転によって生じるカプセル型内視鏡10の拘束位置の変化を補正するため、旋回角ψを用いて補正方向を算出すると共に、仰角θを用いて補正量を算出する。なお、このときに用いる算出式は、予め記憶部27に記憶させておく。さらに、制御部26は、誘導指示情報に基づく体外永久磁石25aの並進方向及び並進量を、算出した補正方向及び補正量を用いて補正する。そして、制御部26は、算出した旋回角ψ及び仰角θで体外永久磁石25aを旋回及び回転を変更させると共に、補正済みの並進方向及び並進量で体外永久磁石25aを並進させるよう、誘導磁界生成部25の各部を制御する。
 なお、制御部26は、上記補正方向及び補正量を算出する代わりに、体外永久磁石25aの旋回角ψ及び仰角θと、カプセル型内視鏡10の鉛直方向における位置とに対応付けられた補正方向及び補正量を予め記憶部27に記憶させ、操作入力部24からカプセル型内視鏡10を回転させる誘導指示情報が入力された際に、入力された誘導指示情報及び位置検出部22の検出結果(カプセル型内視鏡10の鉛直方向における位置)に基づいて、必要な補正方向及び補正量を記憶部27から抽出するようにしても良い。
 また、制御部26は、第1平面位置変更部25bが体外永久磁石25aを並進させる際には、カプセル型内視鏡10の移動が所定時間内に完了するよう、並進量に応じて体外永久磁石25aの並進速度を調節する制御を行っても良い。
 次に、体外永久磁石25aの形状に関する条件について説明する。
 本発明者らは、カプセル型内視鏡10を誘導するための磁界を体外永久磁石25aから効率的に発生させるため、永久磁石の形状(縦・横・高さの比)と発生磁界との関係をシミュレーションにより求めた。図15は、このシミュレーションにおける評価項目を説明するための模式図である。図15に示すように、本シミュレーションにおいては、永久磁石の磁化方向をx軸方向、シミュレーション位置と対向する面PL’の磁化方向と直交する方向をy軸方向、面PL’と直交する方向をz軸方向に設定し、シミュレーション位置における磁界強度と、同位置におけるz軸方向、x軸方向、及びy軸方向における各磁気勾配とを評価した。なお、磁気強度は、カプセル型内視鏡10に対する方位角及び傾斜角を変更する際の誘導に関与する。z軸方向の磁気勾配は、カプセル型内視鏡10に対するz軸方向における誘導に関与する。x軸方向の磁気勾配は、カプセル型内視鏡10に対するx軸方向における誘導に関与する。y軸方向の磁気勾配は、カプセル型内視鏡10に対するy軸方向における誘導に関与する。
 また、本シミュレーションにおいては、直方体(立方体を含む)の永久磁石を用いた。図16は、シミュレーションに用いた永久磁石の各辺の長さの比を示す表である。図16に示す「x軸方向の長さ」はx軸と平行な辺の長さに対応し、「y軸方向の長さ」はy軸と平行な辺の長さに対応し、「z軸方向の長さ」はz軸と平行な辺の長さに対応する。また、図16の「タイプ」の欄には、各永久磁石の辺の内、長いものが左から順に示されている。例えば、タイプ「x-y-z」は、x軸と平行な辺が最も長く、z軸と平行な辺が最も短い直方体形状を示す。なお、タイプ「xyz」は、全ての辺の長さが等しい立方体を示す。
 図17は、図16に示す各永久磁石の磁界強度を示すグラフである。図18は、図16に示す各永久磁石により発生するz軸方向における磁気勾配を示すグラフである。図19は、図16に示す各永久磁石により発生するx軸方向における磁気勾配を示すグラフである。図20は、図16に示す各永久磁石により発生するy軸方向における磁気勾配を示すグラフである。なお、図17において、磁界強度の値は正規化されている。また、図18~図20を通して、磁気勾配の値は正規化されている。図19及び図20において、横軸は、永久磁石の中心を通るz軸方向の軸(中心軸)からの距離を正規化した値を示している。
 カプセル型内視鏡10の方位角及び傾斜角の制御を効率的に行うためには、永久磁石が発生する磁界強度が強いことが好ましい。この点において、図17に示すように、比較的大きい磁界強度が得られた磁石は、タイプy-x-z及びタイプx-y-zであった。従って、カプセル型内視鏡10の方位角及び傾斜角の制御に適した形状は、z軸方向の長さがy軸方向の長さよりも短い形状であることがわかる。さらには、z軸方向の長さがx軸方向及びy軸方向の長さよりも短い、平たい形状がより好ましいと言える。
 また、永久磁石をy軸と平行な軸で回転させる場合には、y軸と直交するzx平面への投影面積が小さい方が、回転時の永久磁石の移動領域を小さくすることができて好ましい。従って、x軸方向の長さを短くする方が良い。この場合、永久磁石をより被検体に近づけて設置することができるので、強度の高い磁界を被検体内に効率良く生成することができ、誘導磁界生成部25を小型化することができる。
 カプセル型内視鏡10の鉛直方向における位置制御を行うためには、鉛直方向における磁気勾配が大きい方が好ましい。この点において、図18に示すように、z軸方向において比較的大きな磁気勾配が得られた磁石は、タイプy-x-z及びタイプx-y-zであった。従って、カプセル型内視鏡10の鉛直方向における位置制御に適した形状は、z軸方向の長さを短くした平たい形状であることがわかる。
 カプセル型内視鏡10の水平方向における位置制御を行うためには、水平方向における磁気勾配が大きい方が好ましい。この点において、図19に示すように、x軸方向において比較的大きな磁気勾配が得られた磁石は、タイプy-x-z及びタイプy-z-xであった。なお、タイプx-z-y及びタイプx-y-zの場合、永久磁石から離れた位置に磁気勾配のピークが形成されることがわかった。また、図20に示すように、y軸方向において比較的大きな磁気勾配が得られた磁石は、タイプy-x-z及びタイプx-y-zであった。これより、カプセル型内視鏡10の水平方向における制御に適した形状は、x軸方向及びz軸方向と比較して、y軸方向の長さが長い形状であることがわかる。また、x軸方向の長さは、y軸方向及びz軸方向と比較して、あまり長くしない方が好ましいと言える。
 上記シミュレーションの結果から、カプセル型内視鏡10の制御に適した体外永久磁石25aの形状は、y軸方向の長さが最も長く、z軸方向の長さが最も短い平板状であることがわかった。そこで、本発明者らは、続いて、体外永久磁石25aの各辺の長さの好適な比率を求めるための別のシミュレーションを行った。
 図21は、別のシミュレーションに用いた永久磁石の各辺の長さの比を示す表である。図21に示す「x軸方向の長さ」はx軸と平行な辺の長さに対応し、「y軸方向の長さ」はy軸と平行な辺の長さに対応し、「z軸方向の長さ」はz軸と平行な辺の長さに対応する。また、図21の「タイプ」の欄には、各永久磁石の辺の内、長いものが左から順に示されており、括弧の中の数値は、x軸方向の長さに対するz軸方向の長さの比率を示している。図21に示すように、このシミュレーションにおいては、いずれも、y軸方向と平行な辺が最も長く、z軸方向と平行な辺が最も短い直方体の永久磁石を用いている。
 図22は、図21に示す各永久磁石の磁界強度を示すグラフである。図23は、図21に示す各永久磁石により発生するz軸方向における磁気勾配を示すグラフである。図24は、図21に示す各永久磁石により発生するx軸方向における磁気勾配を示すグラフである。図25は、図21に示す各永久磁石により発生するy軸方向における磁気勾配を示すグラフである。なお、図22において、磁界強度の値は正規化されている。また、図23~図25を通して、磁気勾配の値は正規化されている。図24及び図25において、横軸は、永久磁石の中心を通るz軸方向の軸(中心軸)からの距離を正規化した値を示している。
 図22及び図23に示すように、磁界強度及びz軸方向における磁気勾配については、いずれも良好な結果が得られており、永久磁石の各辺の長さの比率を変化させることによる効果は小さいことがわかる。
 一方、図24に示すように、永久磁石のz軸方向の長さに対し、y軸方向の長さを長くするほど(例えば、タイプy-x-z(33)及びタイプy-x-z(50))、x軸方向における磁気勾配が著しく向上することがわかる。一方、この場合、この比率が極端になると(例えば、タイプy-x-z(33))、図25に示すように、y軸方向における磁気勾配が悪化することがわかる。しかしながら、y軸方向における磁気勾配に対してx軸方向における磁気勾配の値は小さいため、各軸方向における磁気勾配のバランスを考慮して、y軸方向の長さとz軸方向の長さの比を決定すれば良い。
 図26は、z軸方向の長さに対するy軸方向の長さとの比率(長さの比率)と、タイプy-x-z(33)の永久磁石の磁界強度に対する上記各比率を有する永久磁石の磁界強度の比率との関係を示すグラフである。図26に示すように、z軸方向の長さに対するy軸方向の長さが1.5倍になると、タイプy-x-z(33)の永久磁石、即ち、z軸方向の長さに対するy軸方向の長さが十分に長い永久磁石が発生する磁界強度に対し、90%程度の磁界強度を発生することができる。さらに、z軸方向の長さに対するy軸方向の長さが3倍以上になると、上記磁界強度の比率が95%となる。従って、好ましい永久磁石の形状として、z軸方向の長さに対するy軸方向の長さを1.5倍以上又は3倍以上とすると良い。
 以上説明したように、実施の形態1によれば、体外永久磁石25aの回転に起因するカプセル型内視鏡10の拘束位置の変化を、制御部26の制御の下でこの体外永久磁石25aを並進させることにより補正するので、ユーザによるカプセル型医療装置磁気誘導システムの操作性を高めることが可能となる。
 また、実施の形態1によれば、被検体内に液体を導入した液体にカプセル型内視鏡10を浮かせた状態でカプセル型内視鏡10を誘導するので、カプセル型内視鏡10を誘導するための誘導磁界生成部25を、被検体が載置されるベッド20aの下部に配置することができ、誘導装置20全体を小型化することが可能となる。
 なお、以上説明した実施の形態1においては、カプセル型内視鏡10の両端に撮像部11A、11Bが設けられた複眼カプセルを用いたが、カプセル型内視鏡のいずれか一端に撮像部が設けられた単眼カプセルを用いても良い。この場合、撮像部が設けられた側の端部にカプセル型内視鏡の重心Gの位置を近づけることにより、水面下(水中)のみを撮像するカプセル型内視鏡を実現することができる。一方、撮像部が設けられていない側の端部にカプセル型内視鏡の重心Gを近づけることにより、水面よりも上側の空間のみを撮像するカプセル型内視鏡を実現することができる。
 また、以上説明した実施の形態1においては、カプセル型内視鏡10の長軸Laに対して磁化方向が直交するように永久磁石19を配置したが、磁化方向が長軸Laの方向と一致するように永久磁石19を配置しても良い。このとき、重心Gをカプセル型内視鏡10の幾何学的中心Cに対し径方向にずれた位置に設置しても良い。この場合、液体W中においてカプセル型内視鏡10の姿勢を一意に制御することが可能となる。
 また、以上説明した実施の形態1においては、磁界を印加しない状態では、カプセル型内視鏡10が長軸Laを鉛直方向に向けた状態で浮揚するように、重心Gを長軸La上に設定した。しかしながら、磁界を印加しない状態で、カプセル型内視鏡10が長軸Laを鉛直方向に対して傾けた状態で浮揚するように、重心Gの位置を長軸Laからずらして設定しても良い。この場合、液体W中においてカプセル型内視鏡10の方位角及び傾斜角を一意に制御することが可能となる。
 或いは、カプセル型内視鏡の重心Gを幾何学的中心Cに対して永久磁石19の磁化方向と異なる方向にずらして設定しても良い。この場合も、液体W中においてカプセル型内視鏡10の方位角及び傾斜角を一意に制御することが可能となる。
 また、誘導装置20においてカプセル型内視鏡10を誘導する磁界を発生する磁石としては、上述した体外永久磁石25aと同様の磁界を発生する電磁石を用いても良い。
 また、以上説明した実施形態1においては、体外永久磁石25aを直方体形状とした。しかしながら、体外永久磁石25aの磁化方向と直交する水平の方向の長さが、磁化方向の長さ、及び、磁化方向と磁化方向と直交する水平方向とに直交する方向の長さよりも長い形状を有していれば、直方体以外の形状にしても良い。好ましくは、体外永久磁石25aは、上記3方向の長さの内、磁化方向と磁化方向と直交する水平方向とに直交する方向の長さが最も短い形状を有するようにしても良い。この場合、強い磁界を発生することが可能となる。なお、円盤形状や楕円盤形状の永久磁石を用いる場合、磁化方向並びに第1及び第2の方向の長さを、直径や長軸又は短軸の長さで規定しても良い。
(変形例1-1)
 次に、実施の形態1の変形例1-1について説明する。
 実施の形態1において、制御部26は、体外永久磁石25aの回転に起因するカプセル型内視鏡10の拘束位置の変化を補正するために必要な補正方向及び補正量を、位置検出部22が検出したカプセル型内視鏡10の鉛直位置、及び誘導指示情報に基づく体外永久磁石25aの旋回角ψ及び仰角θに基づいて算出し、或いは、予め記憶部27に記憶された値から抽出した。しかしながら、制御部26が、誘導指示情報のみに基づいて上記補正方向及び補正量を取得する構成としても良い。この場合、体内永久磁石25aの旋回角ψ及び仰角θに対応する補正方向及び補正量を、記憶部27に予め記憶させておく。記憶部27に記憶させる補正方向及び補正量としては、旋回角ψ及び仰角θごとに予め算出しておいた代表値(例えば、カプセル型内視鏡10の各鉛直位置に対応する補正量の平均値や最大値等)とすると良い。
 制御部26は、操作入力部24から誘導指示情報が入力されると、この誘導指示情報に基づいて、体外永久磁石25aの旋回角ψ、仰角θ、並進方向及び並進量を算出する。そして、算出した旋回角ψ及び仰角θに基づいて、記憶部27から補正方向及び補正量を抽出し、抽出した補正方向及び補正量を用いて誘導指示情報に基づく並進方向及び並進量を補正する。さらに、制御部26は、誘導指示情報に基づく旋回角ψ及び仰角θ、並びに、補正済みの並進方向及び並進量で体外永久磁石25aを回転及び並進させるよう、誘導磁界生成部25の各部を制御する。
 この変形例1-1によれば、位置検出部22の検出結果を用いることなく、補正方向及び補正量を取得するので、誘導磁界生成部25の制御を高速に行うことができる。
(変形例1-2)
 次に、実施の形態1の変形例1-2について説明する。
 変形例1-2においては、補正量の算出に用いられるカプセル型内視鏡10の鉛直位置Hを、ユーザに手動で段階的に設定させることを特徴とする。例えば、表示部23は、制御部26の制御の下で、カプセル型内視鏡10の鉛直位置Hを表す複数の選択肢を画面表示する。操作入力部24は、ユーザ操作により複数の選択肢の内の1つを選択する選択信号の入力を受け付け、制御部26に入力する。制御部26は、入力された選択信号に対応する鉛直位置Hを現在のカプセル型内視鏡10の鉛直位置として設定する。
 一方、記憶部27には、体内永久磁石25aの旋回角ψ、鉛直位置H、及び仰角θに対応する補正方向及び補正量を予め記憶させておく。
 制御部26は、操作入力部24から誘導指示情報が入力されると、誘導指示情報に基づいて、体外永久磁石25aを制御するための旋回角ψ、仰角θ、並進方向、及び並進量を取得する。そして、取得した旋回角ψ及び仰角θと、現在設定されているカプセル型内視鏡10の鉛直位置Hとに基づいて、記憶部27から補正方向及び補正量を抽出する。さらに、制御部26は、抽出した補正方向及び補正量を用いて、誘導指示情報に基づく並進方向及び並進量を補正し、旋回角ψ、仰角θ、補正済みの補正方向及び補正量で体外永久磁石25aを回転、及び並進させるよう誘導磁界生成部25の各部を制御する。
 この変形例1-2によれば、段階的に設定されたカプセル型内視鏡10の鉛直位置を用いて補正方向及び補正量を取得するので、誘導磁界生成部25の制御を高速に行うことができると共に、補正の精度を向上させることができる。
(変形例1-3)
 次に、実施の形態1の変形例1-3について説明する。
 変形例1-3において、誘導装置20は、カプセル型内視鏡10を誘導する誘導モードであって、ユーザが選択可能な誘導モードを少なくとも2つ備えても良い。この場合、例えば、表示部23は、制御部26の制御の下で、カプセル型内視鏡10の誘導モードを表す複数の選択肢を画面表示する。
 ユーザが選択可能な誘導モードとしては、例えば、次の(a)~(c)が挙げられる。
(a)カプセル型内視鏡10を鉛直下方向に引き付け、例えば腸壁に接触させた状態で誘導するモード
(b)カプセル型内視鏡10を鉛直上方向に引き付け、例えば腸壁又は液面に接触させた状態で誘導するモード
(c)カプセル型内視鏡10を腸壁又は液面に接触させることなく、液体中を漂わせるモード
 操作入力部24は、ユーザ操作により複数の選択肢の内の1つを選択する選択信号の入力を受け付け、制御部26に入力する。制御部26は、入力された選択信号に対応する誘導モードを現在の誘導モードとして設定し、設定された誘導モードでカプセル型内視鏡10を誘導するよう誘導磁界生成部25を制御する。
 制御部26は、操作入力部24から誘導指示情報が入力されると、体外永久磁石25aを制御するための旋回角ψ、仰角θ、並進方向、及び並進量を算出すると共に、算出した旋回角ψ、仰角θ、及び現在の誘導モードに応じて、補正方向及び補正量を取得する(実施の形態1及び変形例1-1~1-3を参照)。これは、カプセル型内視鏡10が液体の底付近に存在している状態(上記(a)に対応)と、カプセル型内視鏡10が液面付近に存在している状態(上記(b)に対応)と、カプセル型内視鏡10が液体中を漂っている状態(上記(c)に対応)とでは、カプセル型内視鏡10の高さ、即ち体外永久磁石25aからの高さ方向の距離が異なるため、体外永久磁石25aの回転に起因してカプセル型内視鏡10が並進する並進方向や並進量も異なってくるからである。そこで、制御部26は、こういったカプセル型内視鏡10の状態を考慮して、上記補正方向及び補正量を取得し、或いは、取得した補正方向及び補正量を調節する。
(変形例1-4)
 次に、実施の形態1の変形例1-4について説明する。
 変形例1-4において、制御部26は、操作入力部24から入力された誘導指示情報に基づいて、ユーザ所望のカプセル型内視鏡10の方位角、傾斜角(長軸Laの傾き)、及び目標位置(XYZ軸方向における座標)に関する情報を取得する。そして、体外永久磁石25aを回転(旋回角ψ及び仰角θを変更)させてカプセル型内視鏡10の視野を変更すると共に、位置検出部22から随時出力される位置検出結果に基づいて、カプセル型内視鏡10の位置が目標位置と一致するように、フィードバック制御を行う。
(変形例1-5)
 次に、実施の形態1の変形例1-5について説明する。
 図27(a)は、変形例1-5に係る操作入力部24の正面図であり、図27(b)は、操作入力部24の右側面図であり、図28は、操作入力部24の各構成部位の操作によって指示されるカプセル型内視鏡10の動作内容の他の例を示す図である。
 操作入力部24の各操作とカプセル型内視鏡10の誘導操作とは、以下に説明するように、水平面Hpではなくカプセル型内視鏡10の長軸Laとの直交面に沿ってカプセル型内視鏡10を誘導できるように対応付けられていてもよい。以下、カプセル型内視鏡10の長軸Laとの直交面に沿ってカプセル型内視鏡10を誘導した場合の誘導操作に対応するカプセル型内視鏡10の動きについて説明する。
 図27(a)に示すように、ジョイスティック32の矢印Y23jに示す上下方向の傾動方向は、図28に示すように、カプセル型内視鏡10が長軸Laとの直交面を矢印Y23のように進むダウン誘導方向又はアップ誘導方向が指示される。操作入力部24から、ジョイスティック32の矢印Y23jの傾動操作に対応する操作情報が制御部26に入力された場合、誘導磁界生成部25は、この操作情報をもとに、ジョイスティック32の傾動方向に応じてカプセル型内視鏡10先端の絶対座標系上における誘導方向及び誘導量を演算し、演算した誘導方向及び誘導量に応じて体外永久磁石25aを並進させるよう、第1平面位置変更部25b及び鉛直位置変更部25cを制御する。
 図27(a)に示すように、ジョイスティック32の矢印Y24jに示す左右方向の傾動方向は、図28に示すように、カプセル型内視鏡10が長軸Laとの直交面を矢印Y24のように進むライト誘導方向又はレフト誘導方向が指示される。操作入力部24から、ジョイスティック32の矢印Y24jの傾動操作に対応する操作情報が制御部26に入力された場合、制御部26は、この操作情報をもとに、ジョイスティック32の傾動方向に応じてカプセル型内視鏡10先端の絶対座標系上における誘導方向及び誘導量を演算し、演算した誘導方向及び誘導量に応じて体外永久磁石25aを並進させるよう、第1平面位置変更部25bを制御する。
 図27(b)に示すように、アップボタン34U又はダウンボタン34Bが矢印Y25j、Y26jのように押圧されることにより、図28に示すように、カプセル型内視鏡10が長軸Laに沿って矢印Y25、Y26のように撮像素子15A、15Bに対して前後に進むフォワード誘導方向又はバックワード誘導方向が指示される。操作入力部24から、アップボタン34U又はダウンボタン34Bの矢印Y25j、Y26jの押圧操作に対応する操作情報が制御部26に入力された場合、制御部26は、この操作情報をもとに、押圧されたボタンに応じて、カプセル型内視鏡10先端の絶対座標系上における誘導方向及び誘導量を演算し、演算した誘導方向及び演算量に応じて体外永久磁石25aを並進させるよう、第1平面位置変更部25b及び鉛直位置変更部25cを制御する。
 なお、図27(a)に示すように、ジョイスティック31の矢印Y21jに示す上下方向の傾動方向は、図28の矢印Y21のようにカプセル型内視鏡10の先端が鉛直軸Azを通るように首を振るティルティング誘導方向に対応し、ジョイスティック31の矢印Y22jに示す左右方向の傾動方向は、図28の矢印Y22のようにカプセル型内視鏡10が鉛直軸Azを中心として回転するローテーション誘導方向に対応する。
(変形例1-6)
 次に、実施の形態1の変形例1-6について説明する。
 被検体内におけるカプセル型内視鏡10の位置検出は、実施の形態1において説明したカプセル型内視鏡10から受信した無線信号の強度に基づく方法の他にも、様々な方法で行っても良い。
 例えば、カプセル型内視鏡10に印加された加速度に基づいて、カプセル型内視鏡10の位置を検出する方法を用いても良い。この場合、カプセル型内視鏡10の内部に、カプセル型内視鏡10に印加される加速度を3次元的に検出する加速度センサを設け、加速度センサの検出結果を無線信号に重畳して随時送信する。誘導装置20は、受信した無線信号に重畳された加速度センサの検出結果に基づき、カプセル型内視鏡10に印加された加速度を積算してカプセル型内視鏡10の位置の相対的な変化量を求め、この変化量から、カプセル型内視鏡10の現在の位置を算出する。
(変形例1-7)
 次に、実施の形態1の変形例1-7について説明する。
 被検体内におけるカプセル型内視鏡10の位置検出方法として、交流磁界を検出する方法を用いても良い。この場合、カプセル型内視鏡10の内部に、交流磁界を発生する交流磁界発生部を設ける。一方、誘導装置20側には、交流磁界を検出する磁界センサを複数設けておく。
 誘導装置20は、カプセル型内視鏡10が発生する交流磁界を、複数箇所に設置された複数の磁界センサによりそれぞれ検出し、これらの検出結果をもとにカプセル型内視鏡10の位置及び/又は方向を連続的に算出することができる。
(変形例1-8)
 次に、実施の形態1の変形例1-8について説明する。
 被検体内におけるカプセル型内視鏡10の位置検出方法として、交流磁界を検出する別の方法を説明する。この場合、カプセル型内視鏡10の内部に、交流磁界によって共振するLC回路を設ける。一方、誘導装置20側には、交流磁界を検出する磁界センサを複数設けておく。
 誘導装置20は、カプセル型内視鏡10が被検体の測定領域(誘導磁界生成部25が生成する磁界の領域)内に位置していない場合にカプセル型内視鏡10内のLC回路が発生する第1の共振磁界を予め検出しておく。そして、カプセル型内視鏡10が被検体内の測定領域内に位置している場合にカプセル型内視鏡10内のLC回路が発生する第2の共振磁界を検出し、第1の共振磁界の検出値と第2の共振磁界の検出値との差分値を連続的に求める。さらに、これらの差分値に基づいて、3次元空間におけるカプセル型内視鏡10の位置座標を連続的に算出する。
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 図29は、実施の形態2に係るカプセル型医療装置磁気誘導システムの一構成例を示す図である。図29に示すように、実施の形態2に係るカプセル型医療装置磁気誘導システム2は、図1に示す誘導装置20の代わりに、誘導磁界生成部25-2を有する誘導装置40を備える。誘導磁界生成部25-2は、図1に示す誘導磁界生成部25に対して、第2平面位置変更部25fをさらに備える。なお、カプセル型医療装置磁気誘導システム2における第2平面位置変更部25f以外の構成については、実施の形態1において説明したものと同様である。
 図30は、誘導装置40の外観を模式的に示す斜視図である。図30に示すように、誘導装置40には、被検体が載置される載置台として、水平方向に並進可能なベッド40aが設けられている。このベッド40aの下部に、磁界100を生成する誘導磁界生成部25-2が配置される。
 第2平面位置変更部25fは、ベッド40aを水平方向に並進させる並進機構である。第2平面位置変更部25fは、被検体を乗せたままベッド40aを移動させることにより、体外永久磁石25aが発生する磁界100に拘束されたカプセル型内視鏡10に対する被検体の位置、言い換えると、被検体に対するカプセル型内視鏡10の相対的な位置を変化させる。
 制御部26は、操作入力部24からカプセル型内視鏡10を並進させる誘導指示情報が入力された場合、入力された誘導指示情報に基づいて、第2平面位置変更部25fによってベッド40aを並進させ、被検体に対するカプセル型内視鏡10の位置を相対的に移動させる。
 一方、制御部26は、操作入力部24からカプセル型内視鏡10の姿勢を変化させる誘導指示情報が入力された場合、入力された誘導指示情報に基づいて体外永久磁石25aの旋回角ψ及び仰角θを算出すると共に、体外永久磁石25aの回転に起因するカプセル型内視鏡10の拘束位置の変化を補正するための補正方向及び補正量を算出する。そして、第1平面位置変更部25bに対し、算出した補正方向及び補正量に基づいて体外永久磁石25aを並進させる。
 ここで、ユーザは、カプセル型内視鏡10の傾斜角を変更する際に生じるカプセル型内視鏡10の拘束位置の変化や、この変化を補正するための補正方向及び補正量を把握することはできない。そこで、ユーザが把握できない補正動作については、ベッド40aの下部に設置された体外永久磁石25aの並進により実現し、ユーザ自身の操作によるカプセル型内視鏡10の並進運動については、ベッド40aの相対的な移動により実現する。この場合、ユーザは、ベッド40aの動きを予測することができるので、カプセル型内視鏡検査を違和感なく行うことができる。また、体外永久磁石25aは、被検体が載置されるベッド40aと比較して、高速に並進させることができるので、カプセル型内視鏡10の誘導性を向上させることもできる。
 以上説明したように、実施の形態2によれば、カプセル型内視鏡10の水平方向における並進を、体外永久磁石25aの並進及びベッド40aの並進により実現するので、体外永久磁石25aの並進量を少なくすることができ、誘導装置40全体の大型化を抑制することが可能となる。
 また、実施の形態2によれば、ユーザの操作に基づくカプセル型内視鏡10の並進をベッド40aの並進運動により実現し、ユーザが意識しないカプセル型内視鏡10の補正を体外永久磁石25aの並進運動により実現するので、ユーザの操作性を向上させることが可能となる。
(変形例2-1)
 次に、実施の形態2の変形例2-1について説明する。
 実施の形態2においては、カプセル型内視鏡10の拘束位置の補正のための並進運動と、誘導指示情報に基づくカプセル型内視鏡10の並進運動とを、体外永久磁石25a及びベッド40aにそれぞれ分担させた。しかしながら、カプセル型内視鏡10のトータルの並進運動を、体外永久磁石25a及びベッド40aに所定の比率で配分しても良い。
 即ち、制御部26は、操作入力部24から誘導指示情報が入力された場合、誘導指示情報に基づいて体外永久磁石25aを制御するための旋回角ψ、仰角θ、並進方向、及び並進量を取得する。また、実施の形態1及びその変形例1-1~1-3と同様にして、体外永久磁石25aの回転に起因するカプセル型内視鏡10の拘束位置の変化を補正する補正方向及び補正量を取得する。そして、制御部26は、誘導指示情報に基づく並進方向及び並進量を、取得した補正方向及び補正量で補正する。さらに、この補正済みの並進量を、体外永久磁石25aの並進量とベッド40aの並進量とに、所定の比率で配分する。
 なお、この比率については特に限定されず、体外永久磁石25aとベッド40aとに均等に配分しても良いし、体外永久磁石25aによる並進を優先させても良いし、ベッド40aによる並進を優先させても良い。また、この際に、カプセル型内視鏡10の移動が所定時間内に完了するよう、体外永久磁石25a及びベッド40aの各並進量に応じて、体外永久磁石25a及びベッド40aの並進速度をそれぞれ調節しても良い。
 この変形例2-1によれば、体外永久磁石25a及びベッド40aの各並進量を低減することができるので、誘導装置40の大型化をさらに抑制することができる。
(変形例2-2)
 次に、実施の形態2の変形例2-2について説明する。
 体外永久磁石25a及びベッド40aの並進速度には物理的な上限値がある。特に、ベッド40aには被検体が載置されるため、あまり高速に移動させることができない。このため、カプセル型内視鏡10を並進させる並進量(補正済みの並進量を含む)が大きい場合には、トータルの並進量を体外永久磁石25a及びベッド40aに所定の比率で配分すると、所定時間内にカプセル型内視鏡10の移動が完了せず、カプセル型内視鏡10の位置が意図した位置から大きく外れてしまうことが考えられる。このような場合には、トータルの並進量を配分する比率を変更し、体外永久磁石25aの並進量とベッド40aの並進量とを最適化することが好ましい。
 例えば、トータルの並進量を体外永久磁石25a及びベッド40aに所定の比率で配分したときに、体外永久磁石25a及びベッド40aのいずれかにおいて上限速度、又は速度に応じて規定される上限並進量を超えてしまう場合、上限速度を超える側(例えば、ベッド40a)の並進量を、上限速度を超えない側(例えば体外永久磁石25a)に配分し直す。
 この場合、ベッド40aの上限速度よりも体外永久磁石25aの上限速度の方を大きく設定しておくと良い。これは、被検体が載置されるベッド40aと比較すると、対外永久磁石25aを高速に並進させることができるからである。このように設定することにより、体外永久磁石25a側の並進量を増やして高速化することができるようになり、カプセル型内視鏡10の誘導性を向上させることが可能となる。
(実施の形態3)
 次に、本発明の実施の形態3について説明する。
 図31は、実施の形態3に係るカプセル型医療装置誘導システムの一構成例を示す模式図である。図31に示すように、実施の形態3に係るカプセル型医療装置磁気誘導システム3は、永久磁石19を内蔵し、被検体101内に導入されるカプセル型内視鏡10と、被検体101の両側に対向して配置された永久磁石51、52と、永久磁石51、52をそれぞれ駆動する駆動部53、54と、駆動部53、54の動作を制御する制御部55とを備える。カプセル型内視鏡10は、永久磁石51、52により被検体101内に形成される磁界に拘束され、永久磁石51、52の動作により、位置及び姿勢を制御される。
 永久磁石51、52は、互いに同種且つ同じ直方体形状を有する永久磁石である。永久磁石51、52は、各々の磁化方向と平行な4つの面の内の1つの面(以下、カプセル対向面PL3、PL4という)を被検体101に向け、鏡面対称となるように互いに平行に配置されている。なお、これらの永久磁石51、52は、初期状態において、磁化方向を鉛直方向(Z軸方向)に向けて配置されている。以下、カプセル内視鏡10の誘導を行っていないときの鉛直方向と直交する方向の内、カプセル対向面PL3、PL4と直交する方向をX軸方向、カプセル対向面PL3、PL4と平行な方向をY軸方向とする。
 各永久磁石51、52は、直方体形状の3方向の辺の長さの内、磁化方向と直交するカプセル対向面PL3、PL4内の方向(図31においては、Y軸方向)の辺の長さが、磁化方向(図31においては、Z軸方向)およびカプセル対向面PL3、PL4に直交する方向(図31においては、X軸方向)よりも長い形状を有している。好ましくは、各永久磁石51、52は、直方体形状の3方向の辺の長さの内、カプセル対向面PL3、PL4と直交する方向の長さが最も短い平板形状を有している。
 永久磁石51、52は、水平方向及び鉛直方向に沿って並進可能に構成されており、これにより、被検体101内のカプセル型内視鏡10の位置を制御することができる。例えば、永久磁石51、52を鉛直面内で並進させることにより、カプセル型内視鏡10の鉛直面内における位置が変化する。また、永久磁石51、52を水平面内で並進させることにより、カプセル型内視鏡10の水平面内における位置が変化する。
 永久磁石51、52は、カプセル対向面PL3、PL4と直交し、各々の中心を通る軸R0、及び、磁化方向と直交するカプセル対向面PL3、PL4内の軸R1、R2に対して回転可能に構成されている。これにより、被検体101内のカプセル型内視鏡10の方位角及び傾斜角を制御することができる。例えば、永久磁石51、52を、互いの位置関係を維持したまま軸R0に対して回転(旋回)させると、カプセル型内視鏡10が追従して方位角を変化させる。また、永久磁石51、52を互いの位置関係を維持したまま軸R1、R2に対してそれぞれ傾斜させると、カプセル型内視鏡10も追従して傾斜する。
 以上説明した実施の形態は、本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。また、本発明は、各実施の形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。本発明は、仕様等に応じて種々変形することが可能であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは、上記記載から自明である。
(付記1)
 永久磁石が内部に配置され、被検体内に導入されるカプセル型医療装置と、
 前記カプセル型内視鏡に対して磁界を印加することにより、前記被検体内において前記カプセル型医療装置を誘導する誘導装置であって、
 磁界発生部と、
 前記磁界発生部を前記被検体に対して相対的に並進させる並進機構と、
 前記磁界発生部を前記被検体に対して相対的に回転させる回転機構と、
 前記カプセル型医療装置の位置を変化させる動作に関する第1の情報、及び、前記カプセル型医療装置の姿勢を変化させる動作に関する第2の情報の入力を受け付ける入力部と、
 前記第1の情報及び前記第2の情報に基づき前記並進機構及び前記回転機構を制御して、前記磁界発生部を前記被検体に対して相対的に並進及び回転させる制御部と、
を備え、
 前記制御部は、前記入力部が前記第2の情報の入力を受け付けた場合に、前記磁界発生部の前記被検体に対する回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を前記被検体に対して相対的に並進させることにより補正することを特徴とする誘導装置と、
を備えることを特徴とするカプセル型医療装置誘導システム。
(付記2)
 前記カプセル型医療装置の永久磁石は、自身の磁化方向が前記カプセル型医療装置の長軸方向と角度を有するように配置されていることを特徴とする付記1に記載のカプセル型医療装置誘導システム。
(付記3)
 前記カプセル型医療装置の永久磁石は、自身の磁化方向が前記カプセル型医療装置の長軸方向と平行に配置されていることを特徴とする付記1に記載のカプセル型医療装置誘導システム。
(付記4)
 前記カプセル型医療装置の重心は、前記カプセル型医療装置の幾何学的中心から、前記磁化方向とは異なる方向にずれた位置に配置されていることを特徴とする付記2又は3に記載のカプセル型医療装置誘導システム。
(付記5)
 前記カプセル型医療装置は、前記磁化方向に対する撮像面の方向が固定された少なくとも1つの撮像素子を有することを特徴とする付記2~4のいずれか1つに記載のカプセル型医療装置誘導システム。
(付記6)
 前記カプセル型医療装置は、自身の長軸方向の両端部にそれぞれ設けられた2つの撮像部を有することを特徴とする付記1~5のいずれか1つに記載のカプセル型医療装置誘導システム。
 1~3 カプセル型医療装置誘導システム
 10 カプセル型内視鏡
 11A、11B 撮像部
 12 カプセル型筐体
 12a 筒状筐体
 12b、12c ドーム形状筐体
 13A、13B 照明部
 14A、14B 光学系
 15A、15B 撮像素子
 16 無線通信部
 16a アンテナ
 17 制御部
 18 電源部
 19 永久磁石
 20、40 誘導装置
 20a、40a ベッド
 21 受信部
 21a アンテナ
 22 位置検出部
 23 表示部
 24 操作入力部
 25 誘導磁界生成部
 25a、25a-1 体外永久磁石
 25a-2 コイル
 25b 第1平面位置変更部
 25c 鉛直位置変更部
 25d 仰角変更部
 25e 旋回角変更部
 25f 第2平面位置変更部
 26、55 制御部
 27 記憶部
 31、32 ジョイスティック
 34U アップボタン
 34B ダウンボタン
 35 キャプチャボタン
 36 アプローチボタン
 51、52 永久磁石
 53、54 駆動部
 100 磁界
 101 被検体

Claims (15)

  1.  永久磁石が内部に配置されたカプセル型医療装置を被検体内に導入し、該カプセル型内視鏡に対して磁界を印加することにより、前記被検体内において前記カプセル型医療装置を誘導する誘導装置において、
     磁界発生部と、
     前記磁界発生部を前記被検体に対して相対的に並進させる並進機構と、
     前記磁界発生部を前記被検体に対して相対的に回転させる回転機構と、
     前記カプセル型医療装置の位置を変化させる動作に関する第1の情報、及び、前記カプセル型医療装置の姿勢を変化させる動作に関する第2の情報の入力を受け付ける入力部と、
     前記第1の情報及び前記第2の情報に基づき前記並進機構及び前記回転機構を制御して、前記磁界発生部を前記被検体に対して相対的に並進及び回転させる制御部と、
    を備え、
     前記制御部は、前記入力部が前記第2の情報の入力を受け付けた場合に、前記磁界発生部の前記被検体に対する回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を前記被検体に対して相対的に並進させることにより補正することを特徴とする誘導装置。
  2.  前記回転機構は、前記磁界発生部を、前記磁界発生部の磁化方向を含む鉛直面内で前記被検体に対して相対的に回転させる機構を有し、
     前記制御部は、前記第2の情報に基づき、前記磁界発生部を前記機構により回転させる場合に、前記磁界発生部の回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を、前記鉛直面と水平面との交線に平行な方向に前記被検体に対して相対的に並進させることにより補正することを特徴とする請求項1に記載の誘導装置。
  3.  前記回転機構は、前記磁界発生部を、前記磁界発生部の磁化方向を鉛直軸に対して傾けた状態で、鉛直軸を中心に前記被検体に対して相対的に回転させる第2の機構を有し、
     前記制御部は、前記第2の情報に基づき、前記磁界発生部を前記第2の機構により回転させる場合に、前記磁界発生部の回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記磁界発生部を水平面内で前記被検体に対して相対的に並進させることにより補正することを特徴とする請求項1に記載の誘導装置。
  4.  前記カプセル型医療装置が導入される前記被検体を載置する載置台をさらに備え、
     前記並進機構は、前記磁界発生部を並進させる第1の並進機構と前記載置台を並進させる第2の並進機構とを有し、
     前記制御部は、前記第1及び第2の情報に基づき前記並進機構が前記磁界発生部を前記被検体に対して相対的に並進させるトータルの並進量の一部を前記第1の並進機構により並進させ、前記並進量の残りの部分を前記第2の並進機構により並進させることを特徴とする請求項1に記載の誘導装置。
  5.  前記制御部は、前記入力部が第2の情報の入力を受け付けた場合に、前記磁界発生部の前記被検体に対する回転に起因して生じる前記カプセル型医療装置の位置の変化を、前記第1の並進機構のみを並進させることにより補正することを特徴とする請求項4に記載の誘導装置。
  6.  前記制御部は、前記トータルの並進量を、前記第1の並進機構による並進量と前記第2の並進機構による並進量とに、所定の比率で分配することを特徴とする請求項4に記載の誘導装置。
  7.  前記制御部は、前記トータルの並進量を、前記第1の並進機構と前記第2の並進機構の上限速度に応じて、前記第1の並進機構による並進量と前記第2の並進機構による並進量にと分配することを特徴とする請求項4に記載の誘導装置。
  8.  前記カプセル型医療装置の位置を検出する位置検出部をさらに備え、
     前記制御部は、前記位置検出部における検出結果と、前記磁界発生部が回転する回転角とに基づいて、前記磁界発生部を前記被検体に対して相対的に並進させる並進量を算出することを特徴とする請求項1に記載の誘導装置。
  9.  前記カプセル型医療装置の位置を検出する位置検出部と、
     前記カプセル型医療装置と前記磁界発生部との間の距離及び前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量との関係を記憶する記憶部をさらに備え、
     前記制御部は、前記位置検出部の検出結果から算出される前記カプセル型医療装置と前記磁界発生部との間の距離と、前記入力部が受け付けた前記第2の情報に従って制御される前記磁界発生部の回転角とに基づいて前記記憶部から前記並進量を抽出することを特徴とする請求項1に記載の誘導装置。
  10.  前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量の代表値との関係を記憶する記憶部をさらに備え、
     前記制御部は、前記入力部が受け付けた前記第2の情報に従って制御される前記磁界発生部の回転角に基づいて前記記憶部から前記並進量を抽出することを特徴とする請求項1に記載の誘導装置。
  11.  前記カプセル型医療装置と前記磁界発生部との間の距離及び前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量との関係を記憶する記憶部をさらに備え、
     前記入力部は、前記カプセル型医療装置と前記磁界発生部との間の距離に関する情報の入力をさらに受け付け、
     前記制御部は、前記入力部が受け付けた前記距離に関する情報と、前記第2の情報に従って制御される前記磁界発生部の回転角とに基づいて前記記憶部から前記並進量を抽出することを特徴とする請求項1に記載の誘導装置。
  12.  前記入力部は、前記カプセル型医療装置の誘導モードに関する情報の入力をさらに受け付け、
     前記誘導モード及び前記磁界発生部の回転角と、前記磁界発生部を前記被検体に対して相対的に並進させる並進量との関係を記憶する記憶部をさらに備え、
     前記制御部は、前記入力部が受け付けた前記誘導モードに関する情報に基づいて前記記憶部から前記並進量を抽出することを特徴とする請求項1に記載の誘導装置。
  13.  前記カプセル型医療装置の位置を検出する位置検出部をさらに備え、
     前記制御部は、前記入力部が受け付けた少なくとも前記第2の情報に基づいて、前記カプセル型医療装置の目標位置情報を取得し、該目標位置情報と前記位置検出部の検出結果とに基づいて、前記カプセル型医療装置の位置を制御することを特徴とする請求項1に記載の誘導装置。
  14.  前記磁界発生部は永久磁石であることを特徴とする請求項1に記載の誘導装置。
  15.  永久磁石が内部に配置されたカプセル型医療装置と、
     請求項1に記載の誘導装置と、
    を備えることを特徴とするカプセル型医療装置誘導システム。
PCT/JP2013/062784 2012-05-07 2013-05-02 誘導装置及びカプセル型医療装置誘導システム WO2013168681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13787588.6A EP2848185B8 (en) 2012-05-07 2013-05-02 Guidance device and capsule medical device guidance system
CN201380017380.3A CN104203072B (zh) 2012-05-07 2013-05-02 引导装置以及胶囊型医疗装置引导***
JP2013550430A JP5475207B1 (ja) 2012-05-07 2013-05-02 誘導装置及びカプセル型医療装置誘導システム
US14/090,324 US9155450B2 (en) 2012-05-07 2013-11-26 Guiding apparatus and capsule medical device guiding system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-106332 2012-05-07
JP2012106332 2012-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/090,324 Continuation US9155450B2 (en) 2012-05-07 2013-11-26 Guiding apparatus and capsule medical device guiding system

Publications (1)

Publication Number Publication Date
WO2013168681A1 true WO2013168681A1 (ja) 2013-11-14

Family

ID=49550718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062784 WO2013168681A1 (ja) 2012-05-07 2013-05-02 誘導装置及びカプセル型医療装置誘導システム

Country Status (5)

Country Link
US (1) US9155450B2 (ja)
EP (1) EP2848185B8 (ja)
JP (1) JP5475207B1 (ja)
CN (1) CN104203072B (ja)
WO (1) WO2013168681A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027518A1 (ja) * 2014-08-20 2016-02-25 オリンパス株式会社 誘導装置及びカプセル型医療装置誘導システム
WO2016111160A1 (ja) * 2015-01-06 2016-07-14 オリンパス株式会社 誘導装置及びカプセル型医療装置誘導システム
WO2016157596A1 (ja) * 2015-03-31 2016-10-06 オリンパス株式会社 カプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置
JP2019528937A (ja) * 2016-09-23 2019-10-17 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッドAnkon Medical Technologies (Shanghai) Co.,Ltd カプセル装置を使用するためのシステムおよび方法
JP2019528939A (ja) * 2016-09-23 2019-10-17 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッドAnkon Medical Technologies (Shanghai) Co.,Ltd カプセル装置を使用するためのシステムおよび方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI520708B (zh) * 2013-09-26 2016-02-11 連吉時 膠囊內視鏡磁控系統
WO2016092926A1 (ja) * 2014-12-08 2016-06-16 オリンパス株式会社 カプセル型内視鏡システム
JP6058236B1 (ja) * 2015-03-25 2017-01-11 オリンパス株式会社 位置検出システム及び誘導システム
EP3294109B1 (en) 2015-05-12 2024-03-27 Avraham Levy Dynamic field of view endoscope
US20170119236A1 (en) * 2015-10-29 2017-05-04 Elwha Llc Lumen traveling device
CN111344590B (zh) * 2018-01-30 2024-05-24 古野电气株式会社 雷达天线装置以及方位测定方法
EP3793462B1 (en) * 2018-05-18 2024-05-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Magnetic field generator
EP3801186A4 (en) * 2018-06-02 2022-03-23 Ankon Medical Technologies (Shanghai) Co., Ltd CONTROL DEVICE FOR CAPSULE ENDOSCOPE
CN211511733U (zh) * 2019-06-17 2020-09-18 深圳硅基智控科技有限公司 胶囊内窥镜的磁控装置
CN110327011B (zh) * 2019-06-26 2021-04-20 大连理工大学 一种基于磁矢量误差标定图像的双半球胶囊机器人姿态检测方法
CN111035349B (zh) * 2020-03-11 2020-07-17 上海安翰医疗技术有限公司 胶囊内窥镜的姿态定位方法及胶囊内窥镜***
CN111481420B (zh) * 2020-06-01 2022-08-09 上海安翰医疗技术有限公司 振动胶囊的控制方法
CN112515610B (zh) * 2020-11-30 2021-10-22 元化智能科技(深圳)有限公司 无线胶囊内窥镜的驱动方法、装置及***
AU2021240322B2 (en) * 2021-01-07 2023-08-17 Joji AONUMA Versatile camera device mountable to pole

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044285A (ja) * 2005-08-10 2007-02-22 Yaskawa Electric Corp 非接触搬送装置
JP2008503310A (ja) 2004-06-21 2008-02-07 コリア インスティテュート オブ サイエンス アンド テクノロジー カプセル型内視鏡の制御システム
WO2010122823A1 (ja) * 2009-04-20 2010-10-28 オリンパスメディカルシステムズ株式会社 被検体内検査システム
JP2011147785A (ja) * 2010-01-22 2011-08-04 Novineon Healthcare Technology Partners Gmbh 磁気駆動部を含むカプセル型内視鏡
WO2011118253A1 (ja) * 2010-03-26 2011-09-29 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システムおよびカプセル型医療装置の誘導方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721655B2 (en) * 2002-04-10 2014-05-13 Stereotaxis, Inc. Efficient closed loop feedback navigation
DE10341092B4 (de) * 2003-09-05 2005-12-22 Siemens Ag Anlage zur berührungsfreien Bewegung und/oder Fixierung eines magnetischen Körpers in einem Arbeitsraum unter Verwendung eines Magnetspulensystems
DE102005032577B4 (de) * 2005-07-11 2012-09-20 Siemens Ag Verfahren zur Positionsbestimmung eines Endoroboters
JP5100336B2 (ja) * 2007-11-29 2012-12-19 オリンパスメディカルシステムズ株式会社 カプセル型医療装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503310A (ja) 2004-06-21 2008-02-07 コリア インスティテュート オブ サイエンス アンド テクノロジー カプセル型内視鏡の制御システム
JP2007044285A (ja) * 2005-08-10 2007-02-22 Yaskawa Electric Corp 非接触搬送装置
WO2010122823A1 (ja) * 2009-04-20 2010-10-28 オリンパスメディカルシステムズ株式会社 被検体内検査システム
JP2011147785A (ja) * 2010-01-22 2011-08-04 Novineon Healthcare Technology Partners Gmbh 磁気駆動部を含むカプセル型内視鏡
WO2011118253A1 (ja) * 2010-03-26 2011-09-29 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システムおよびカプセル型医療装置の誘導方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848185A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027518A1 (ja) * 2014-08-20 2016-02-25 オリンパス株式会社 誘導装置及びカプセル型医療装置誘導システム
JP5953451B1 (ja) * 2014-08-20 2016-07-20 オリンパス株式会社 誘導装置及びカプセル型医療装置誘導システム
US9968243B2 (en) 2014-08-20 2018-05-15 Olympus Corporation Guiding device for changing magnetic field to change restrained position for restraining capsule medical device relative to position of capsule medical device, and capsule medical device guiding system
WO2016111160A1 (ja) * 2015-01-06 2016-07-14 オリンパス株式会社 誘導装置及びカプセル型医療装置誘導システム
JP6028132B1 (ja) * 2015-01-06 2016-11-16 オリンパス株式会社 誘導装置及びカプセル型医療装置誘導システム
US20170164816A1 (en) * 2015-01-06 2017-06-15 Olympus Corporation Guidance device and capsule medical device guidance system
US10750935B2 (en) 2015-01-06 2020-08-25 Olympus Corporation Guidance device and capsule medical device guidance system
WO2016157596A1 (ja) * 2015-03-31 2016-10-06 オリンパス株式会社 カプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置
JP2019528937A (ja) * 2016-09-23 2019-10-17 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッドAnkon Medical Technologies (Shanghai) Co.,Ltd カプセル装置を使用するためのシステムおよび方法
JP2019528939A (ja) * 2016-09-23 2019-10-17 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッドAnkon Medical Technologies (Shanghai) Co.,Ltd カプセル装置を使用するためのシステムおよび方法
JP7189130B2 (ja) 2016-09-23 2022-12-13 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッド 磁気カプセルシステム
JP7437338B2 (ja) 2016-09-23 2024-02-22 アンコン メディカル テクノロジーズ (シャンハイ) カンパニー リミテッド 磁気カプセルをナビゲートする外部磁気制御システムの作動方法

Also Published As

Publication number Publication date
EP2848185A4 (en) 2015-07-22
EP2848185A1 (en) 2015-03-18
CN104203072B (zh) 2016-06-29
JPWO2013168681A1 (ja) 2016-01-07
JP5475207B1 (ja) 2014-04-16
EP2848185B1 (en) 2016-07-13
US20140148643A1 (en) 2014-05-29
US9155450B2 (en) 2015-10-13
CN104203072A (zh) 2014-12-10
EP2848185B8 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP5475207B1 (ja) 誘導装置及びカプセル型医療装置誘導システム
JP4932971B2 (ja) カプセル型医療装置用誘導システム
JP6028132B1 (ja) 誘導装置及びカプセル型医療装置誘導システム
JP5458225B1 (ja) 誘導装置
JP5385035B2 (ja) カプセル型医療装置誘導システム
EP2371263B1 (en) Guiding system for capsule type medical device and method for guiding capsule type medical device
US8460177B2 (en) Capsule medical device guidance system and method for guiding capsule medical device
JP6169303B1 (ja) 位置検出システム及び位置検出システムの作動方法
JPWO2011055578A1 (ja) カプセル型医療装置用誘導システム
US9931022B2 (en) Capsule medical device guidance system
WO2017094415A1 (ja) 位置検出システム及び位置検出方法
JP6022112B2 (ja) カプセル型内視鏡誘導システム、誘導装置、及び誘導装置の作動方法
WO2016157596A1 (ja) カプセル型内視鏡誘導システムおよびカプセル型内視鏡誘導装置
JP5948524B1 (ja) カプセル型医療装置誘導システム
JP2015116412A (ja) 永久磁石旋回機構

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013550430

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013787588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013787588

Country of ref document: EP