WO2013168327A1 - Multi-screen display device, multi-screen display device drive method, and multi-screen display system - Google Patents

Multi-screen display device, multi-screen display device drive method, and multi-screen display system Download PDF

Info

Publication number
WO2013168327A1
WO2013168327A1 PCT/JP2013/001382 JP2013001382W WO2013168327A1 WO 2013168327 A1 WO2013168327 A1 WO 2013168327A1 JP 2013001382 W JP2013001382 W JP 2013001382W WO 2013168327 A1 WO2013168327 A1 WO 2013168327A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate detection
image display
display device
subfield
coordinate
Prior art date
Application number
PCT/JP2013/001382
Other languages
French (fr)
Japanese (ja)
Inventor
貴彦 折口
井上 真一
剛 桑山
一朗 坂田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013168327A1 publication Critical patent/WO2013168327A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1438Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display using more than one graphics controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1431Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display using a single graphics controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • G06F3/1446Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display display composed of modules, e.g. video walls
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2025Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having all the same time duration
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/204Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames being organized in consecutive sub-frame groups
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/294Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for lighting or sustain discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery

Definitions

  • the present invention relates to a multi-screen display device composed of a plurality of image display devices, a multi-screen display system capable of inputting characters and drawings by handwriting on the multi-screen display device using a light pen, and a driving method of the multi-screen display device. .
  • a plasma display panel (hereinafter abbreviated as “panel”) is a typical image display device that displays an image in an image display area by combining binary control of light emission and non-light emission in each of a plurality of light emitting elements constituting a pixel. There is).
  • a large number of discharge cells which are light-emitting elements constituting pixels, are formed between a front substrate and a rear substrate that are arranged to face each other.
  • the front substrate a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed in parallel with each other on the front glass substrate.
  • the back substrate has a plurality of parallel data electrodes formed on a glass substrate on the back side.
  • Each discharge cell is coated with one of red (R), green (G), and blue (B) phosphors, and a discharge gas is enclosed therein.
  • R red
  • G green
  • B blue
  • an ultraviolet ray is generated by causing a gas discharge, and the phosphor is excited to emit light by the ultraviolet ray.
  • a subfield method is generally used as a method of displaying an image in an image display area of a panel by combining binary control of light emission and non-light emission in a light emitting element.
  • each discharge cell In the subfield method, one field is divided into a plurality of subfields having different emission luminances.
  • each discharge cell light emission / non-light emission of each subfield is controlled by a combination according to the gradation value to be displayed.
  • each discharge cell emits light with brightness corresponding to the gradation value to be displayed, and a color image composed of various combinations of gradation values is displayed in the image display area of the panel.
  • Some of such image display apparatuses have a function that allows a handwritten input of characters and drawings on the image display surface of the panel using a pointing device called “light pen”.
  • position coordinates In order to realize a handwriting input function using a light pen, a technique for detecting the position of the light pen in an image display area is disclosed.
  • position coordinates the coordinates representing the position of the light pen in the image display area.
  • a plasma display device that detects a position coordinate of a light pen by providing a coordinate detection period in one field only when the light pen is used is disclosed (for example, see Patent Document 1).
  • a multi-screen display device configured by combining a plurality of image display devices so that the image display surfaces are arranged on the same plane is disclosed (for example, see Patent Document 2).
  • each image display device constituting the multi-screen display device is referred to as a “partial image display device”.
  • a multi-screen display device having a handwriting input function using a light pen can be configured.
  • a multi-screen display device includes a plurality of partial image display devices including an image display unit having a plurality of electrodes extending in an x coordinate direction that is a row direction and a plurality of electrodes extending in a y coordinate direction that is a column direction. Are arranged in a matrix.
  • Each of the partial image display devices generates a display device identification subfield, a y coordinate detection subfield, and an x coordinate detection subfield.
  • a y-coordinate detection pattern for moving the first emission line extended in the x-coordinate direction in the y-coordinate direction is displayed on the image display unit.
  • an x-coordinate detection pattern for moving the second emission line extended in the y-coordinate direction in the x-coordinate direction is displayed on the image display unit. Then, in the two partial image display devices arranged adjacent to each other, the moving direction of the first emission line or the x coordinate detection when displaying the y coordinate detection pattern on the image display unit in the y coordinate detection subfield is detected.
  • One of the moving directions of the second light emission lines when displaying the x-coordinate detection pattern on the image display unit in the subfield is opposite to each other.
  • the partial image display device arranged in the odd-numbered row and the partial image display device arranged in the even-numbered row include y in the image display unit in the y-coordinate detection subfield.
  • the moving directions of the first light-emitting lines when displaying the coordinate detection pattern are opposite to each other, and the partial image display devices arranged in the odd-numbered columns and the partial image display devices arranged in the even-numbered columns.
  • the movement directions of the second light emission lines when the x coordinate detection pattern is displayed on the image display unit may be opposite to each other.
  • FIG. 1 is a schematic diagram of a multi-screen display system according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing an example of the structure of the panel used in the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of the electrode arrangement of the panel used in the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 4 schematically shows an example of a drive voltage waveform applied to each electrode of the panel in subfields SF1 to SF3 of the image display subfield in the embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a first example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a multi-screen display system according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing an example of the structure of the panel used in the plasma display device in accordance with the
  • FIG. 6 is a diagram schematically showing a second example of the drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield in the embodiment of the present invention.
  • FIG. 7 is a diagram schematically showing a third example of the drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield in the embodiment of the present invention.
  • FIG. 8 is a diagram schematically showing a fourth example of the drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the embodiment of the present invention.
  • FIG. 9 is a diagram schematically showing a configuration example of the multi-screen display system in the embodiment of the present invention.
  • FIG. 10 is a diagram schematically showing an example of each circuit block of the plasma display device constituting the multi-screen display device in the embodiment of the present invention.
  • FIG. 11 is a circuit diagram schematically showing a configuration example of a scan electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 12 is a circuit diagram schematically showing a configuration example of the sustain electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 13 is a circuit diagram schematically showing a configuration example of the data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 14 is a diagram schematically showing an example of a drive voltage waveform when the position coordinates of the light pen are detected in the multi-screen display system in the embodiment of the present invention.
  • FIG. 12 is a circuit diagram schematically showing a configuration example of the sustain electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 13 is a circuit diagram schematically showing a configuration example of the data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention.
  • FIG. 15 is a diagram schematically showing an example of the operation when detecting the position coordinates of the light pen in the multi-screen display system in the embodiment of the present invention.
  • FIG. 16 is a diagram schematically illustrating an example of an operation when performing handwriting input with a light pen in the multi-screen display system according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a multi-screen display system 100 according to an embodiment of the present invention.
  • the multi-screen display system 100 includes a multi-screen display device 130 in which a plurality of partial image display devices are housed in a single housing and a plurality (or a single) light pen 50.
  • a multi-screen display device 130 in which a plurality of partial image display devices are housed in a single housing and a plurality (or a single) light pen 50.
  • the partial image display device is a plasma display device 30 and the image display unit of the partial image display device is a plasma display panel will be described.
  • the partial image display device is limited to the plasma display device 30. It is not a thing.
  • the multi-screen display system 100 shown in FIG. 1 includes three light pens 50a, 50b, and 50c having the same structure, and can be used simultaneously by three users.
  • the light pen 50 is a general term for the light pens 50a, 50b, and 50c.
  • the number of plasma display devices 30 constituting the multi-screen display device 130 is not limited to four, and the number of light pens 50 included in the multi-screen display system 100 is not limited to three.
  • the multi-screen display device 130 arranges the plurality of plasma display devices 30 in a matrix of N rows and M columns so that the image display surfaces are arranged on the same plane.
  • One of N and M is an integer of 1 or more, and the other is an integer of 2 or more. That is, the multi-screen display device 130 includes the plasma display device 30 arranged in a matrix of 1 row and 2 columns or more, or 2 rows and 1 column or more.
  • FIG. 1 shows an example in which four plasma display devices 30a, 30b, 30c, and 30d are arranged in a matrix of 2 rows and 2 columns and one image display surface is configured in a pseudo manner by four image display surfaces. . Therefore, the multi-screen display device 130 shown in FIG. 1 can divide one image into four and display one image on four image display surfaces.
  • the four plasma display devices 30a, 30b, 30c, and 30d shown in FIG. 1 have the same structure, and the drive voltage waveform generated in the image display subfield is the same except for the difference based on the image signal to be displayed. It is. Therefore, the structure of the panel 10 described below with reference to FIGS. 2 and 3 and the drive voltage waveform of the image display subfield described with reference to FIG. 4 are common to the plasma display devices 30a, 30b, 30c, and 30d. However, as will be described later, the driving voltage waveforms generated in the coordinate detection subfield are different from each other in the plasma display devices 30a, 30b, 30c, and 30d.
  • FIG. 2 is an exploded perspective view showing an example of the structure of panel 10 used in plasma display device 30 in accordance with the exemplary embodiment of the present invention.
  • a plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11.
  • a dielectric layer 15 is formed so as to cover the display electrode pair 14, and a protective layer 16 is formed on the dielectric layer 15.
  • the front substrate 11 serves as an image display surface on which an image is displayed.
  • a plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon.
  • the phosphor layer 25R that emits red (R), the phosphor layer 25G that emits green (G), and the phosphor layer that emits blue (B) are formed on the side surfaces of the barrier ribs 24 and the surface of the dielectric layer 23. 25B is provided.
  • the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
  • the front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21.
  • the outer peripheral part is sealed with sealing materials, such as a glass frit, and the mixed gas of neon and xenon is enclosed as discharge gas in the discharge space, for example.
  • the discharge space is partitioned into a plurality of sections by the barrier ribs 24, and discharge cells, which are light-emitting elements constituting the pixels, are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
  • discharge is generated in these discharge cells, and the phosphor layer 25 emits light (discharge cells are turned on), thereby displaying a color image on the panel 10.
  • one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends.
  • the three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) light (hereinafter referred to as “red discharge cell”) and a phosphor layer 25G having a green color (G).
  • red discharge cell a discharge cell having a phosphor layer 25R and emitting red (R) light
  • green discharge cell A discharge cell that emits light
  • B blue discharge cell
  • the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
  • FIG. 3 is a diagram showing an example of an electrode arrangement of panel 10 used in plasma display device 30 in accordance with the exemplary embodiment of the present invention.
  • the panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 2) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 2) extending in the first direction.
  • M data electrodes D1 to Dm (data electrodes 22 in FIG. 2) extending in a second direction intersecting the first direction are arranged.
  • the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
  • m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed.
  • the discharge cell having the data electrode Dp + 1 is coated with a green phosphor as the phosphor layer 25G, and this discharge cell becomes a green discharge cell.
  • a blue phosphor is applied as a phosphor layer 25B to the discharge cell having the data electrode Dp + 2, and this discharge cell becomes a blue discharge cell.
  • a red discharge cell, a green discharge cell, and a blue discharge cell adjacent to each other constitute a set to constitute one pixel.
  • one field includes a plurality of image display subfields for displaying an image on panel 10, display device identification subfield SFo, y-coordinate detection subfield SFy, and x-coordinate detection subfield SFx.
  • the image display subfield is also simply referred to as a subfield.
  • Each image display subfield has an initialization period, an address period, and a sustain period.
  • the initialization operation in the initialization period includes “forced initialization operation” and “selective initialization operation”.
  • forced initializing operation an initializing discharge is forcibly generated in the discharge cells regardless of the presence or absence of discharge in the immediately preceding subfield.
  • selective initializing operation initializing discharge is selectively generated only in the discharge cells that have generated address discharge in the address period of the immediately preceding subfield.
  • the first subfield (for example, subfield SF1) of one field is set as a subfield (forced initialization subfield) for performing a forced initialization operation
  • other subfields for example, subfield SF2 and subsequent ones
  • a subfield is a subfield (selective initialization subfield) for performing a selective initialization operation.
  • a luminance weight is set for each subfield.
  • one field has eight subfields (subfields SF1 to SF8), and each subfield has a luminance of (1, 34, 21, 13, 8, 5, 3, 2).
  • An example of setting a weight is given.
  • the position of the light pen 50 in the image display area is represented by x and y coordinates.
  • the x coordinate detection subfield SFx and the y coordinate detection subfield SFy are subfields for detecting the x coordinate and the y coordinate of the position (position coordinate) of the light pen 50 in the image display area.
  • the light pen 50 is provided in the multi-screen display system 100 and is used by a user to input characters and drawings on the panel 10 by handwriting. Details of the light pen 50 will be described later.
  • wireless communication is performed between the light pen 50 and the drawing device.
  • the light pen 50 calculates the position coordinates of the light pen 50 inside the light pen 50 and transmits data of the calculated position coordinates from the light pen 50 to the drawing apparatus by wireless communication.
  • the light pen 50 In order to calculate the position coordinates of the light pen 50 inside the light pen 50, the light pen 50 accurately grasps the timing at which the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx occur in the plasma display device 30. There is a need to.
  • the image display surface of the multi-screen display device 130 is composed of a plurality of panels 10, in order to calculate the position coordinates of the light pen 50 inside the light pen 50, which panel 10 the light pen 50 is currently on It is necessary for the light pen 50 itself to specify whether or not
  • the display device identification subfield SFo of the present embodiment is for allowing the light pen 50 itself to generate a signal (coordinate reference signal) as a reference for detecting the position coordinates with high accuracy. This is to enable the light pen 50 itself to identify which panel 10 is currently receiving light emission.
  • the order of a plurality of image display subfields for example, subfields SF1 to SF8
  • display device identification subfield SFo for example, y coordinate detection subfield SFy
  • x coordinate detection subfield SFx in one field.
  • each subfield is generated will be described, but the generation order of each subfield is not limited to this order.
  • the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx are not necessarily provided in each field.
  • the display device identification subfield SFo, the y-coordinate detection subfield SFy, and the x-coordinate detection subfield SFx may be generated at a rate of once per a plurality of fields according to the video signal, the usage state of the plasma display device, and the like. Good.
  • FIG. 4 is a diagram schematically showing an example of a drive voltage waveform applied to each electrode of panel 10 in subfields SF1 to SF3 of the image display subfield in the embodiment of the present invention.
  • FIG. 4 shows sustain electrodes SU1 to SUn, scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period (for example, scan electrode SC1080), and data electrode D1 to data electrode.
  • the drive voltage waveform applied to each of Dm (for example, data electrode D5760) is shown.
  • Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected based on image data (data indicating light emission / non-light emission for each subfield) from among the electrodes.
  • each subfield after subfield SF3 generates a drive voltage waveform substantially similar to that of subfield SF2, except for the number of sustain pulses.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn.
  • a scan waveform SC1 to SCn is applied with voltage Vi1 after voltage 0 (V) is applied, and a ramp waveform voltage (hereinafter referred to as “upward ramp waveform voltage”) that gradually rises from voltage Vi1 to voltage Vi2. Apply.
  • the voltage Vi1 is set to a voltage lower than the discharge start voltage for the sustain electrodes SU1 to SUn, and the voltage Vi2 is set to a voltage exceeding the discharge start voltage for the sustain electrodes SU1 to SUn.
  • a weak initializing discharge is generated in each discharge cell while this upward ramp waveform voltage rises.
  • the voltage applied to scan electrodes SC1 to SCn reaches voltage Vi2
  • the voltage of scan electrodes SC1 to SCn is once lowered to voltage Vi3 lower than voltage Vi2, and then lowered to voltage 0 (V).
  • the voltage Vi3 is about 200 (V), but the voltage Vi3 may be any voltage that does not cause discharge in the discharge cells. Further, the voltage may be sharply decreased from the voltage Vi2 to the voltage 0 (V).
  • a voltage 0 (V) is applied to the data electrodes D1 to Dm, and a positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • the scan electrodes SC1 to SCn have a ramp waveform voltage that gradually falls from a voltage that is less than the discharge start voltage (eg, voltage 0 (V)) to a negative voltage Vi4 (hereinafter also simply referred to as “down ramp waveform voltage”). Is applied. Voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrodes SU1 to SUn.
  • the voltage applied to the scan electrodes SC1 to SCn is set to the voltage Vc.
  • the above-mentioned drive voltage waveform generated in the initialization period Pi1 is a forced initialization waveform.
  • the wall voltage of each discharge cell in which the initializing discharge has occurred can be made substantially uniform.
  • the initialization discharge generated by the ramp waveform voltage is weaker than the address discharge or the sustain discharge, and the light emission due to the initialization discharge is lower in luminance than the light emission due to the address discharge or the sustain discharge. This is to prevent the light emission by the initialization discharge from hindering the display of an image on the panel 10.
  • the forced initializing operation is described as an initializing operation for forcibly generating an initializing discharge in all the discharge cells in the image display area of panel 10, but the present invention is not limited to this. It is not limited to the configuration.
  • the operation for applying the forced initialization waveform only to some discharge cells in the image display area of the panel 10 is also the forced initialization operation, and the subfield for performing the forced initialization operation is forcibly set.
  • This is an initialization subfield.
  • the forced initializing waveform is applied only to the odd-numbered scan electrodes SC (2N-1) (N is an integer of 1 or more), and the other scan electrodes SC (2N) are described later.
  • a selective initialization waveform is applied.
  • a forced initialization waveform is applied only to the even-numbered scan electrode SC (2N), and a selective initialization waveform is applied to the other scan electrode SC (2N-1).
  • the scan electrodes SC1 to SCn to which the forced initialization waveform is applied may be changed for each field. The same applies to all subfields that perform the forced initialization operation in the following description.
  • voltage 0 (V) is applied to data electrodes D1 to Dm
  • voltage Ve is applied to sustain electrodes SU1 to SUn
  • voltage Vc is applied to scan electrodes SC1 to SCn.
  • a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row.
  • a positive address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
  • the voltages of the scan pulse and the address pulse are adjusted so that the address discharge is weaker than the sustain discharge. Therefore, the light emission due to the address discharge has lower luminance than the light emission due to the sustain discharge. This is to prevent light emission due to the address discharge from hindering display of an image on the panel 10.
  • a scan pulse of voltage Va is applied to scan electrode SC2 in the second row, and an address pulse of voltage Vd is applied to data electrode Dk corresponding to the discharge cell to emit light in the second row.
  • address discharge occurs in the discharge cells in the second row to which the scan pulse and address pulse are simultaneously applied. Address discharge does not occur in the discharge cells to which no address pulse is applied. Thus, the address operation in the discharge cells in the second row is performed.
  • the same addressing operation is sequentially performed in the order of scan electrode SC3, scan electrode SC4,..., Scan electrode SCn up to the discharge cell in the n-th row, and the address period Pw1 of subfield SF1 ends.
  • the order in which the scan pulses are applied to the scan electrodes SC1 to SCn is not limited to the order described above.
  • the order in which the scan pulses are applied to the scan electrodes SC1 to SCn may be arbitrarily set according to the specifications of the image display device.
  • voltage 0 (V) is applied to the data electrodes D1 to Dm. Then, a sustain pulse of positive voltage Vs is applied to scan electrodes SC1 to SCn, and voltage 0 (V) is applied to sustain electrodes SU1 to SUn.
  • a sustain discharge occurs in the discharge cell that has generated the address discharge in the immediately preceding address period Pw1.
  • the phosphor layer 25 of the discharge cell emits light due to the ultraviolet rays generated by the sustain discharge.
  • the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to scan electrodes SC1 to SCn and sustain electrodes SU1 to SUn.
  • the discharge cells that have generated the address discharge in the immediately preceding address period Pw1 generate the sustain discharge the number of times corresponding to the luminance weight, and emit light with the luminance corresponding to the luminance weight.
  • the sustain discharge is a strong discharge and has a high luminance as compared with the initialization discharge and the address discharge.
  • voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm, and applied to scan electrodes SC1 to SCn.
  • An upward ramp waveform voltage that gradually rises from the voltage 0 (V) to the positive voltage Vr is applied.
  • the voltage Vr is set to a voltage exceeding the discharge start voltage of the discharge cell that has generated the sustain discharge. As a result, a weak discharge (erase discharge) is generated in the discharge cell that has generated the sustain discharge.
  • the selective initialization subfield will be described by taking the subfield SF2 as an example.
  • the same drive voltage waveform as that in the initialization period Pi2 of the subfield SF2 is applied to each electrode to perform the selective initialization operation. .
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
  • a downward ramp waveform voltage that drops from a voltage that is lower than the discharge start voltage (for example, voltage 0 (V)) to a negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
  • the wall voltage on each electrode is adjusted to a wall voltage suitable for the write operation by this initialization discharge.
  • the initializing discharge does not occur in the discharge cells that did not generate the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1.
  • the voltage applied to the scan electrodes SC1 to SCn is set to the voltage Vc.
  • the above-mentioned drive voltage waveform generated in the initialization period Pi2 is a selective initialization waveform.
  • the voltage Vi4 and the voltage Ve are set to voltage values that satisfy the above-described operation according to the characteristics of the panel 10, the specifications of the plasma display device 30, and the like.
  • the drive voltage waveforms similar to those in the address period Pw1 and the sustain period Ps1 in the subfield SF1 are applied to the respective electrodes, except for the number of sustain pulses generated, and thus the description thereof is omitted.
  • each subfield after subfield SF3 the drive voltage waveform similar to that in subfield SF2 is applied to each electrode except for the number of sustain pulses, and the description thereof is omitted.
  • the subfield for performing the forced initialization operation is the subfield SF1, but the present invention is not limited to this configuration.
  • the subfield in which the forced initialization operation is performed may be a subfield after subfield SF2.
  • the present invention is not limited to this configuration.
  • the number of times of performing the forced initialization operation may be once in a plurality of fields.
  • the coordinate detection subfield is a generic name for the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx.
  • the display device identification subfield SFo is for allowing the light pen 50 itself to generate the coordinate reference signal with high accuracy, and the light pen 50 currently receives the light emitted from which panel 10. This is to allow the light pen 50 to identify itself.
  • the drive voltage waveform generated in the display device identification subfield SFo has a waveform shape that is different between the plurality of plasma display devices 30 constituting the multi-screen display device 130. Therefore, hereinafter, the display device identification subfield SFo generated in each plasma display device 30a, 30b, 30c, 30d is distinguished from each other as a display device identification subfield SFao, SFbo, SFco, SFdo, respectively.
  • the y-coordinate detection is performed in order to prevent the light pen 50 from erroneously detecting the position coordinates and moving the cursor to the wrong position when moving between the adjacent plasma display devices 30.
  • the drive voltage waveforms generated in the subfield SFy and the x-coordinate detection subfield SFx also have different waveform shapes among the plurality of plasma display devices 30. Therefore, hereinafter, the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx generated in each of the plasma display devices 30a, 30b, 30c, and 30d are respectively expressed as the y-coordinate detection subfield SFay, SFby, SFfy, SFdy, and the x-coordinate.
  • the detection subfields are distinguished from each other as SFax, SFbx, SFcx, and SFdx.
  • FIG. 5 shows driving voltage waveforms generated in the plasma display device 30a shown in FIG. 1
  • FIG. 6 shows driving voltage waveforms generated in the plasma display device 30b shown in FIG. Shows a driving voltage waveform generated in the plasma display device 30c shown in FIG. 1
  • FIG. 8 shows a driving voltage waveform generated in the plasma display device 30d shown in FIG.
  • each drawing also shows a part of the sustain period Ps8 of the subfield SF8 immediately before the display device identification subfield SFo and a part of the subfield SF1.
  • the display device identification subfield SFao generated in the plasma display device 30a has an initialization period Pio, an address period Pwo, and a display device identification period Pao.
  • the same driving voltage waveform as that in the initialization period Pi1 of the subfield SF1 of the image display subfield is applied to each electrode to perform the same forced initialization operation, and thus the description thereof is omitted.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage Vc is applied to the scan electrodes SC1 to SCn.
  • an address pulse of the voltage Vd is applied to the data electrodes D1 to Dm and a scan pulse of the voltage Va is applied to the scan electrodes SC1 to SCn to generate an address discharge in each discharge cell.
  • the scan pulse is sequentially applied to each electrode from the scan electrode SC1 to the scan electrode SCn while the address pulse is applied to all the data electrodes D1 to Dm. It is also possible to apply a scan pulse to all the scan electrodes SC1 to SCn at a time to generate an address discharge in all the discharge cells in the image display area of the panel 10a of the plasma display device 30a.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. Further, the voltage applied to sustain electrodes SU1 to SUn is changed from voltage Ve to voltage 0 (V). In the present embodiment, this state is maintained from time to0 to time To0. Therefore, during this period, after the last address discharge occurs in the discharge cells, a state in which no discharge occurs is maintained. Time to0 is the time when the scan pulse for generating the last address discharge is applied to scan electrode SCn.
  • the time To0 is set to a time longer than any of the time TA1, time TA2, and time TA3 described later.
  • the time To0 is about 60 ⁇ sec, for example.
  • the panel 10a is caused to emit a plurality of times of light emission (light emission for display device identification) as a reference when calculating the position coordinates in the light pen 50. That is, light emission for display device identification is emitted to all the discharge cells in the image display area of the panel 10a at predetermined time intervals (in this embodiment, for example, time TA1, time TA2, and time TA3 in this embodiment). Is generated a plurality of times (in this embodiment, for example, four times).
  • this display device identification discharge is a strong discharge as compared with the address discharge, and the light emission luminance is also high, like the sustain discharge.
  • a plurality of times at predetermined time intervals for specifying the plasma display device 30a.
  • time TA1, time TA2, and time TA3 in this embodiment for specifying the plasma display device 30a.
  • four times of display device identification discharges are generated, and the entire surface of the image display surface of the panel 10a is applied a plurality of times (for example, time TA1, time TA2, time TA3).
  • time TA1, time TA2, time TA3 For example, light is emitted four times.
  • the light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10a, and calculates a coordinate reference signal (position coordinate (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
  • the light pen 50 is used regardless of where the tip of the light pen 50 is in the image display area of the panel 10a. This light emission can be received at the same timing.
  • the time TA1 is about 50 ⁇ sec
  • the time TA2 is about 20 ⁇ sec
  • the time TA3 is about 30 ⁇ sec.
  • the same erase operation as that performed at the end of the sustain period Ps1 of the subfield SF1 is performed. Perform an erase operation. Thereby, a weak erasing discharge is generated in all the discharge cells in the image display area of the panel 10a.
  • a y coordinate detection subfield SFay and an x coordinate detection subfield SFax are generated.
  • the y coordinate detection subfield SFay has an initialization period Piy and a y coordinate detection period Pay.
  • a drive voltage waveform similar to that in the initialization period Pi2 of the subfield SF2 of the image display subfield is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
  • the display device identification discharge is generated in all the discharge cells in the image display area of the panel 10a.
  • a weak initializing discharge is generated in all the discharge cells.
  • the wall voltage of all the discharge cells in the image display area of panel 10a is adjusted to the wall voltage suitable for the y coordinate detection pattern display operation in the subsequent y coordinate detection period Pay.
  • priming particles that assist the generation of discharge in the y coordinate detection period Pay are generated in the discharge cell.
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage is applied to the scan electrodes SC1 to SCn.
  • Vc is applied.
  • y coordinate detection voltage Vdy is a voltage higher than the voltage 0 (V)
  • the voltage Vay of the y coordinate detection pulse is a negative voltage lower than the voltage Vc.
  • the pulse width of the y-coordinate detection pulse is shown as Ty1.
  • Discharge occurs in the discharge cells in the first row at the intersections between the data electrodes D1 to Dm to which the y coordinate detection voltage Vdy is applied and the scan electrode SC1 to which the y coordinate detection pulse of the voltage Vay is applied.
  • This discharge like the address discharge, is weaker than the sustain discharge and has a low emission luminance.
  • discharge occurs in all the discharge cells constituting the first row, and these discharge cells emit light all at once.
  • the 5760 discharge cells (1920 pixels) constituting the first row emit light all at once. And this light emission becomes light emission for y coordinate detection.
  • discharge cell row an aggregate of discharge cells constituting one row
  • pixel row an aggregate of pixels constituting one row
  • the discharge cell row and the pixel row are substantially the same, and in the above operation, the first pixel row (first discharge cell row) emits light all at once.
  • a y coordinate detection pulse of the voltage Vay is applied to the scan electrode SC2 in the second row.
  • light emission for y coordinate detection occurs in the second pixel row (second discharge cell row).
  • one horizontal line that emits light corresponds to the upper end portion (pixels in the first row) of the image display area of the panel 10a.
  • a pattern (y coordinate detection pattern a) that sequentially moves one line at a time from the bottom line to the lower end (nth pixel line) is displayed. That is, the y-coordinate detection pattern a is a pattern in which each pixel row from the first row to the n-th row of the image display area sequentially emits light for each row.
  • the y coordinate detection pattern is a pattern in which the first light emission line extended in the x coordinate direction moves in the y coordinate direction.
  • each pixel row from the first row to the n-th row in the image display area sequentially emits light every row, so that the tip of the light pen 50 is the image of the panel 10a.
  • the timing at which the light pen 50 receives this light emission varies depending on where the display area is located.
  • the time for applying the y-coordinate detection pulse to each of the scan electrodes SC1 to SCn is Ty1.
  • This Ty1 is, for example, about 1 ⁇ sec.
  • the subsequent x-coordinate detection subfield SFax has an initialization period Pix and an x-coordinate detection period Pax.
  • a driving voltage waveform similar to that in the initialization period Pi1 of the subfield SF1 of the image display subfield is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
  • initialization discharge occurs in all the discharge cells in the image display area of the panel 10a.
  • the wall voltage of all the discharge cells in the image display area of the panel 10a is adjusted to the wall voltage suitable for the x coordinate detection pattern display operation in the subsequent x coordinate detection period Pax.
  • priming particles that assist the generation of discharge in the x-coordinate detection period Pax are generated in the discharge cell.
  • the voltage 0 (V) is applied to the data electrodes D1 to Dm
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn
  • the voltage is applied to the scan electrodes SC1 to SCn.
  • Vc is applied.
  • the negative x coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and the positive x coordinate of the voltage Vdx is applied to the data electrodes D1 to D3 in the first to third columns.
  • Apply detection pulse The voltage Vdx of the x coordinate detection pulse is higher than the voltage 0 (V), and the x coordinate detection voltage Vax is a negative voltage lower than the voltage Vc.
  • the pulse width of the x-coordinate detection pulse is shown as Tx1.
  • the data electrodes D1 to D3 correspond to a red discharge cell, a green discharge cell, and a blue discharge cell constituting one pixel, and the pixel is a pixel arranged at the left end of the image display area, for example. It is.
  • Discharge occurs in the discharge cells at the intersections between the data electrodes D1 to D3 to which the x coordinate detection pulse of the voltage Vdx is applied and the scan electrodes SC1 to SCn to which the x coordinate detection voltage Vax is applied.
  • This discharge like the address discharge, is weaker than the sustain discharge and has a low emission luminance.
  • discharge occurs in all the pixels constituting the first column, and these pixels emit light all at once.
  • the 1080 pixels (3 columns ⁇ 1080 discharge cells) constituting the first column emit light all at once. And this light emission becomes light emission for x coordinate detection.
  • discharge cell column an assembly of discharge cells constituting one column
  • pixel column an assembly of discharge cells (pixel column) composed of three adjacent discharge cell columns
  • the first pixel column that is, the first, second, and third discharge cell columns
  • the x coordinate detection pulse of the voltage Vdx is applied to the data electrodes D4 to D6 in the fourth column to the sixth column.
  • light emission for x coordinate detection occurs in the second pixel column (fourth, fifth, and sixth discharge cell columns).
  • Similar operations are performed adjacent to each other in the order of data electrodes D7 to D9, data electrodes D10 to D12,..., Data electrodes Dm-2 to Dm, with the x coordinate detection voltage Vax being applied to scan electrodes SC1 to SCn.
  • Each of the three data electrodes 22 is sequentially performed until reaching the m-th discharge cell, and light emission for x coordinate detection is performed on each pixel column from the third column to the last column (for example, 1920 column). Generate sequentially.
  • one vertical line that emits light (that is, one pixel column that emits light) is displayed at the left end (first column) of the image display area of the panel 10a.
  • the x-coordinate detection pattern a is a pattern in which three discharge cell columns adjacent to each other sequentially emit light by three columns from the left end (first column) to the right end (m-th column) of the image display area. It is.
  • one vertical line that emits light extending in the y-coordinate direction is also referred to as a “second light emission line”. That is, the x-coordinate detection pattern is a pattern in which the second light emission line extended in the y-coordinate direction moves in the x-coordinate direction.
  • each pixel column from the first column to the last column in the image display area sequentially emits light for each column, so that the tip of the light pen 50 is the image of the panel 10a.
  • the timing at which the light pen 50 receives this light emission varies depending on where the display area is located.
  • the time for applying the x-coordinate detection pulse to each of the data electrodes D1 to Dm is Tx1.
  • This Tx1 is about 1 ⁇ sec, for example.
  • the display device identification subfield SFbo generated in the plasma display device 30b has an initialization period Pio, an address period Pwo, and a display device identification period Pbo.
  • a predetermined time interval different from the display device identification period Pao in this embodiment, for example, time TB1, time TB2, time In TB3
  • a plurality of display device identification discharges are generated, and the entire image display surface of the panel 10b is caused to emit light a plurality of times (for example, four times).
  • the light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10b, and calculates a coordinate reference signal (position coordinates (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
  • the time TB1 is about 40 ⁇ sec
  • the time TB2 is about 30 ⁇ sec
  • the time TB3 is about 30 ⁇ sec.
  • the time To0 is, for example, about 60 ⁇ sec, and is set to a time longer than any of the time TB1, the time TB2, and the time TB3.
  • a y-coordinate detection subfield SFby and an x-coordinate detection subfield SFbx are generated.
  • the y coordinate detection subfield SFby has an initialization period Piy and a y coordinate detection period Pby.
  • a drive voltage waveform similar to that in the initialization period Piy of the y-coordinate detection subfield SFay is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
  • the y coordinate detection period Pby a drive voltage waveform similar to that in the y coordinate detection period Pay of the y coordinate detection subfield SFay is applied to each electrode. Therefore, in the y-coordinate detection period Pby, as in the y-coordinate detection period Pay, the first light emission line is changed from the upper end portion (first pixel row) to the lower end portion (pixels in the nth row) of the image display area of the panel 10b.
  • the y-coordinate detection pattern a that sequentially moves line by line up to line) is displayed on the panel 10b.
  • the x-coordinate detection subfield SFbx has an initialization period Pix and an x-coordinate detection period Pbx.
  • a driving voltage waveform similar to that in the initialization period Pix of the x-coordinate detection subfield SFax is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
  • the same drive voltage waveform as that in the x coordinate detection period Pax of the x coordinate detection subfield SFax is applied to each electrode.
  • the order in which the x-coordinate detection pulses are applied to the data electrodes D1 to Dm is different from the x-coordinate detection period Pax.
  • an x-coordinate detection pulse is applied to the data electrodes Dm-2 to Dm, and the last pixel columns (that is, the m-2th, m ⁇ 1th, and mth columns). Discharge the cell array) simultaneously.
  • an x coordinate detection pulse is applied to the data electrodes Dm-5 to Dm-3, and the pixel columns adjacent to the last column (that is, the m-5th column, the m-4th column, and the m-3th column). Discharge the cell array) simultaneously.
  • the same operation is performed for each of the three data electrodes 22 adjacent to each other in the order of the data electrodes Dm-8 to Dm-6,..., The data electrodes D7 to D9, the data electrodes D4 to D6, and the data electrodes D1 to D3. Then, the process is sequentially performed until the discharge cell in the first column, and light emission for x coordinate detection is sequentially generated in each pixel column from the last column (for example, 1920 column) to the first column.
  • the second light-emitting line extends from the right end (m / 3-th pixel column) to the left end (one column) of the image display area of the panel 10b.
  • a pattern (x coordinate detection pattern b) that sequentially moves one column at a time (up to the pixel column of the eye) is displayed on the panel 10b.
  • the x-coordinate detection pattern b is a pattern in which three discharge cell columns adjacent to each other sequentially emit light by three columns from the right end (m-th column) to the left end (first column) of the image display area. It is.
  • the display device identification subfield SFco generated in the plasma display device 30c has an initialization period Pio, an address period Pwo, and a display device identification period Pco.
  • a predetermined time interval in this embodiment, for example, time TC1, time, which is different from both of the display device identification periods Pao and Pbo.
  • time TC2 time TC3
  • a plurality of display device identification discharges are generated, and the entire image display surface of the panel 10c is caused to emit light a plurality of times (for example, four times).
  • the light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10c, and calculates a coordinate reference signal (position coordinate (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
  • the time TC1 is about 30 ⁇ sec
  • the time TC2 is about 40 ⁇ sec
  • the time TC3 is about 30 ⁇ sec.
  • the time To0 is, for example, about 60 ⁇ sec, and is set to a time longer than any of the time TC1, the time TC2, and the time TC3.
  • a y-coordinate detection subfield SFcy and an x-coordinate detection subfield SFfx are generated.
  • the y coordinate detection subfield SFcy has an initialization period Piy and a y coordinate detection period Pcy.
  • a drive voltage waveform similar to that in the initialization period Piy of the y-coordinate detection subfield SFay is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
  • y coordinate detection period Pcy a drive voltage waveform similar to that in the y coordinate detection period Pay of the y coordinate detection subfield SFay is applied to each electrode.
  • the order in which the y coordinate detection pulse is applied to the scan electrodes SC1 to SCn is different from the y coordinate detection period Pay.
  • a y-coordinate detection pulse is applied to the scan electrode SCn, and the nth pixel row is caused to emit light all at once.
  • a y-coordinate detection pulse is applied to scan electrode SCn-1, and the n-1th pixel row is caused to emit light all at once.
  • the first light emitting line is reversed from the lower end (nth pixel row) to the upper end (1) of the image display area of the panel 10c, contrary to the y-coordinate detection periods Pay and Pby.
  • a pattern (y-coordinate detection pattern b) that sequentially moves one line at a time until the first pixel line) is displayed on the panel 10c.
  • the x coordinate detection subfield SFcx has an initialization period Pix and an x coordinate detection period Pcx.
  • a driving voltage waveform similar to that in the initialization period Pix of the x-coordinate detection subfield SFax is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
  • a drive voltage waveform similar to that in the x coordinate detection period Pax of the x coordinate detection subfield SFax is applied to each electrode. Accordingly, in the x-coordinate detection period Pcx, as in the x-coordinate detection period Pax, the second light emission line is shifted from the left end (first pixel column) to the right end (m / 3 column) of the image display area of the panel 10c.
  • the x-coordinate detection pattern a that sequentially moves one column at a time is displayed on the panel 10c.
  • the display device identification subfield SFdo generated in the plasma display device 30d has an initialization period Pio, an address period Pwo, and a display device identification period Pdo.
  • a predetermined time interval different from any of the display device identification periods Pao, Pbo, and Pco in this embodiment, for example, time TD1.
  • Time TD2, time TD3 a plurality of display device identification discharges are generated, and the entire image display surface of the panel 10d is caused to emit light a plurality of times (for example, four times).
  • the light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10d, and calculates a coordinate reference signal (position coordinate (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
  • time TD1 is about 20 ⁇ sec
  • time TD2 is about 50 ⁇ sec
  • time TD3 is about 30 ⁇ sec.
  • the time To0 is about 60 ⁇ sec, for example, and is set to a time longer than any of the time TD1, the time TD2, and the time TD3.
  • a y coordinate detection subfield SFdy and an x coordinate detection subfield SFdx are generated.
  • the y coordinate detection subfield SFdy has an initialization period Piy and a y coordinate detection period Pdy.
  • a drive voltage waveform similar to that in the initialization period Piy of the y-coordinate detection subfield SFay is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
  • the y coordinate detection period Pdy In the y coordinate detection period Pdy, a drive voltage waveform similar to that in the y coordinate detection period Pcy of the y coordinate detection subfield SFcy is applied to each electrode. Therefore, in the y-coordinate detection period Pdy, as in the y-coordinate detection period Pcy, the first light emission line is changed from the lower end portion (nth pixel row) to the upper end portion (pixels in the first row) of the image display area of the panel 10d.
  • the y-coordinate detection pattern b that sequentially moves line by line until the line) is displayed on the panel 10d.
  • the x-coordinate detection subfield SFdx has an initialization period Pix and an x-coordinate detection period Pdx.
  • a driving voltage waveform similar to that in the initialization period Pix of the x-coordinate detection subfield SFax is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
  • the second light emitting line is shifted from the right end (m / 3th pixel column) to the left end (first column) of the image display area of the panel 10d.
  • the x-coordinate detection pattern b that sequentially moves one column at a time until the pixel column is displayed on the panel 10c.
  • the above is the outline of the drive voltage waveforms of the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx.
  • each subfield is generated at substantially the same timing.
  • the times To0, TA1 to TA3, TB1 to TB3, TC1 to TC3, and TD1 to TD3 are not limited to the numerical values described above. Each time may be set appropriately according to the specifications of the multi-screen display system 100.
  • the display device identification subfield SFo is a general term for the display device identification subfields SFao, SFbo, SFco, SFdo
  • the display device identification period Po is the display device identification period Pao, Pbo, Pco, A general term for Pdo.
  • the y coordinate detection subfield SFy is a generic name of the y coordinate detection subfields SFay, SFby, SFfy, and SFdy
  • the y coordinate detection period Py is a generic name of the y coordinate detection periods Pay, Pby, Pcy, and Pdy.
  • the x-coordinate detection subfield SFx is a generic name for the x-coordinate detection subfields SFax, SFbx, SFcx, and SFdx
  • the x-coordinate detection period Px is a generic name for the x-coordinate detection periods Pax, Pbx, Pcx, and Pdx.
  • the display device identification pulse V1 is a generic name for the display device identification pulses Va1, Vb1, Vc1, and Vd1
  • the display device identification pulse V2 is a generic name for the display device identification pulses Va2, Vb2, Vc2, and Vd2, and is a display device identification pulse.
  • V3 is a generic name for display device identification pulses Va3, Vb3, Vc3, and Vd3
  • a display device identification pulse V4 is a generic name for display device identification pulses Va4, Vb4, Vc4, and Vd4.
  • voltage Vc ⁇ 50 (V)
  • voltage Vr 205 (V)
  • voltage Ve 155 (V )
  • the voltage Va, the voltage Vay, and the voltage Vax are set to be equal to each other, and the voltage Vd, the voltage Vdy, and the voltage Vdx are set to be equal to each other. Different voltages may be used.
  • the voltage Vso is set to a voltage equal to the voltage Vs, but the voltage Vso may be a voltage different from the voltage Vs.
  • the voltage Vso may be a voltage that causes display device identification discharge.
  • a voltage Vi2 of the rising ramp waveform voltage generated in the initialization period Pi1 of the subfield SF1 and a voltage Vi2 of the rising ramp waveform voltage generated in the initialization period Pio of the display device identification subfield SFo
  • the voltage Vi2 of the rising ramp waveform voltage generated in the initialization period Pix of the x-coordinate detection subfield SFx is the same voltage, but these voltages Vi2 may be set to different voltages.
  • the gradient of the rising ramp waveform voltage generated in the initialization period Pi1 of the subfield SF1, the initialization period Pio of the display device identification subfield SFo, and the initialization period Pix of the x coordinate detection subfield SFx is about 1.5 ( V / ⁇ sec).
  • the gradient of the downward ramp waveform voltage generated in the initialization period Pix of the subfield SFx is about ⁇ 2.5 (V / ⁇ sec).
  • the gradient of the rising ramp waveform voltage generated at the end of each sustain period Ps1 to Ps8 of the image display subfield (subfield SF1 to SF8) and at the end of the display apparatus identification period Po of the display apparatus identification subfield SFo is about 10 ( V / ⁇ sec).
  • the specific numerical values such as the voltage value and the gradient described above are merely examples, and the present invention is not limited to the numerical values described above for each voltage value and the gradient.
  • Each voltage value, gradient, and the like are preferably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.
  • a display device identification subfield SFo is provided in one field, and each drive voltage waveform of the display device identification subfield SFo is generated in the waveform shape shown in FIGS. 5, 6, 7, and 8. The reason for doing this is as follows.
  • wireless communication is performed between the drawing apparatus and the light pen 50.
  • the light pen 50 itself can generate a coordinate reference signal (a signal indicating the generation timing of the y-coordinate detection period Py and the x-coordinate detection period Px).
  • a subfield SFo is provided.
  • the light pen 50 detects light emission generated at a specific time interval on the panel 10 due to the display device identification discharge, and generates a coordinate reference signal. Based on this coordinate reference signal, the light pen 50 calculates the position coordinates of the light pen 50 itself.
  • each drive voltage of the display device identification subfield SFo with the waveform shape shown in FIG. 5, FIG. 6, FIG. 7, and FIG. A waveform is generated, and the time To0 is set to a time longer than any of the times TA1, TA2, TA3, TB1, TB2, TB3, TC1, TC2, TC3, TD1, TD2, and TD3. This is due to the following reasons.
  • the light receiving element of the light pen 50 also detects light emission generated by address discharge. Therefore, depending on the set value of time To0, the light pen 50 may erroneously recognize the light emission generated by the address discharge in the address period Pwo of the display device identification subfield SFo as the light emission by the display device identification discharge.
  • the time To0 is set to be longer than the other times, the time from the time when the light pen 50 detects the light emission due to the write discharge, regardless of the position in the image display area.
  • the interval to to1 is longer than other times.
  • the multi-screen display device 130 is configured by arranging a plurality of plasma display devices 30 in a matrix. Therefore, it is necessary for the light pen 50 itself to specify which panel 10 the light pen 50 is currently on.
  • times TA1, TA2, and TA3 set for the plasma display device 30a, times TB1, TB2, and TB3 set for the plasma display device 30b, times TC1, TC2, and TC3 set for the plasma display device 30c, and the plasma display device If the time TD1, TD2, and TD3 set to 30c are set to a combination of different times, the light pen 50 measures the light emission interval due to the display device identification discharge, so that the light pen 50 itself is on which panel 10 Can be identified.
  • the intervals of light emission by the display device identification discharge are set to different times depending on the plasma display devices 30. ing.
  • the position (position coordinates) of the light pen 50 in the image display area while displaying an image corresponding to the image signal on the panel 10 by the above-described operation can be generated stably, the light pen 50 itself can identify the panel 10 on which the light pen 50 is currently located, and the position coordinates of the light pen 50 can be calculated with high accuracy.
  • the configuration of the multi-screen display system 100 in the present embodiment will be described.
  • the multi-screen display device 130 is configured using a plurality of plasma display devices 30
  • the image display device that constitutes the multi-screen display device 130 is not limited to the plasma display device 30 at all. It is not something.
  • FIG. 9 is a diagram schematically showing a configuration example of the multi-screen display system 100 in the embodiment of the present invention.
  • the multi-screen display system 100 shown in the present embodiment includes a multi-screen display device 130, a drawing device 40, and a plurality of light pens 50a, 50b, 50c, and 50d as constituent elements.
  • the number of light pens 50 included in the multi-screen display system 100 is not limited to four, and may be five or more, three or less, or one.
  • the light pen 50 is used when the user inputs characters, drawings and the like in the image display area of the panel 10 by handwriting.
  • the light pen 50 is formed in a rod shape and includes a light receiving element 52, a contact switch 53, a timing detection unit 54, a coordinate calculation unit 56, and a transmission unit 59.
  • the contact switch 53 is provided at the tip of the light pen 50 and detects whether or not the tip of the light pen 50 has contacted the front substrate 11 of the panel 10 (the image display surface of the panel 10).
  • the light pen 50 is not limited to the configuration having the contact switch 53 at all.
  • the light pen may be a non-contact type provided with a manual switch instead of the contact switch 53.
  • the user turns on the manual switch to turn the image display surface using the light pen located at a position away from the image display surface. Characters and drawings can be input by handwriting.
  • the light pen may have both the contact switch 53 and the manual switch so that one light pen can be used in two types, a contact type and a non-contact type.
  • it may be configured such that the user can arbitrarily switch the drawing mode S0 (for example, line color, line thickness, line type, etc. used for drawing) by operating a manual switch. .
  • the light receiving element 52 receives light emitted from the image display surface of the panel 10 and converts it into an electric signal (light receiving signal). This light reception signal changes according to the amount of light received, and the light reception signal increases as the light amount increases. Then, the light reception signal is output to the timing detection unit 54 and the coordinate calculation unit 56.
  • the position coordinates (x, y) of the light pen 50 are positions where the light receiving element 52 receives light emitted from the image display surface of the panel 10.
  • the timing detection unit 54, the coordinate calculation unit 56, and the transmission unit 59 perform the following operation regardless of whether or not the contact switch 53 detects contact.
  • the timing detection unit 54 detects light emission for display device identification (light emission generated by display device identification discharge) generated in the display device identification period Po of the display device identification subfield SFo based on the light reception signal. Specifically, the timing detection unit 54 measures the occurrence intervals of a plurality of (for example, five times) emission using a timer (not shown in FIG. 9) of the timing detection unit 54.
  • a predetermined time interval for example, a set of times To0, TA1, TA2, TA3, a set of times To0, TB1, TB2, TB3, or a set of times To0, TC1, TC2, Whether a set of TC3 or a set of times To0, TD1, TD2, and TD3 is met is determined by a plurality of threshold values (for example, times To0, TA1, TA2, TA3, The determination is made by comparing the measured time intervals with the threshold values corresponding to TB1, TB2, TB3, TC1, TC2, TC3, TD1, TD2, and TD3.
  • a predetermined time interval for example, a set of times To0, TA1, TA2, TA3, a set of times To0, TB1, TB2, TB3, or a set of times To0, TC1, TC2, Whether a set of TC3 or a set of times To0, TD1, TD2, and TD3 is met is determined
  • the timing detection unit 54 determines which panel 10 the light pen 50 is currently on based on the determination result, and outputs a panel identification signal indicating the result to the coordinate calculation unit 56.
  • the timing detection unit 54 creates a coordinate reference signal based on one of a plurality of continuous (for example, five) light emission. For example, in the examples shown in FIGS. 5, 6, 7, and 8, the coordinate reference signal is generated based on the light emission generated at the time to1 of the display device identification period Po of the display device identification subfield SFo.
  • the time to1 is the time when the first display device identification pulse V1 is applied to the scan electrodes SC1 to SCn in the display device identification period Po of the display device identification subfield SFo.
  • the coordinate reference signal is a signal having a rising edge at each of time ty0 and time tx0, which is not shown in FIGS. 5, 6, 7, and 8, for example.
  • the time ty0 is a time at which the y coordinate detection pulse is applied to the scan electrode SC1 in the first row in the y coordinate detection period Py of the y coordinate detection subfield SFy for displaying the y coordinate detection pattern a.
  • the y coordinate detection pattern In the y-coordinate detection period Py of the y-coordinate detection subfield SFy displaying b, it is time to apply the y-coordinate detection pulse to the scan electrode SCn in the last row.
  • the x coordinate detection pulse is applied to the data electrodes D1 to D3 corresponding to the first pixel column in the x coordinate detection period Px of the x coordinate detection subfield SFx displaying the x coordinate detection pattern a.
  • X coordinate detection pulse is applied to the data electrodes Dm-2 to Dm corresponding to the last pixel column in the x coordinate detection period Px of the x coordinate detection subfield SFx displaying the x coordinate detection pattern b. It's time.
  • the timing detection unit 54 outputs the coordinate reference signal to the coordinate calculation unit 56.
  • the coordinate reference signal is not limited to a signal having rising edges at time ty0 and time tx0.
  • the coordinate reference signal may be any signal that can be used as a reference for specifying the time when the light receiving element 52 receives light emission by the y coordinate detection pattern and light emission by the x coordinate detection pattern.
  • the coordinate calculation unit 56 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown in FIG. 9).
  • the coordinate calculation unit 56 generates a signal indicating the light emission of the y coordinate detection pattern and the x coordinate detection pattern based on the panel identification signal indicating which panel 10 the light pen 50 is currently on, the coordinate reference signal, and the light reception signal.
  • a signal indicating light emission is selectively extracted from the light reception signal, and the position (x coordinate, y coordinate) of the light pen 50 in the image display area is calculated.
  • the coordinate calculation unit 56 counts the time (time Tyy) from the time ty0 to the time (time tyy) at which light reception is first received by the light receiving element 52 after the time ty0 based on the coordinate reference signal. Measure with Then, the time Tyy is divided by the time Ty1 (pulse width of the y coordinate detection pulse) in the arithmetic circuit. In this way, the y coordinate of the position of the light pen 50 in the image display area is calculated.
  • the coordinate calculation unit 56 measures, based on the coordinate reference signal, a time (time Txx) from time tx0 to time (time txx) when light is received by the light receiving element 52 for the first time after time tx0. To do. Then, the time Txx is divided by the time Tx1 (pulse width of the x coordinate detection pulse) in the arithmetic circuit. In this way, the x coordinate of the position of the light pen 50 in the image display area is calculated.
  • the time tyy is the time when the light receiving element 52 of the light pen 50 receives light emitted from the panel 10 by the y coordinate detection pattern
  • the time txx is the time when the light receiving element 52 of the light pen 50 receives the panel 10 by the x coordinate detection pattern. It is the time when the light emission generated in
  • the coordinate calculation unit 56 calculates the x coordinate and the y coordinate in consideration of which panel 10 the light pen 50 is currently on.
  • the coordinate calculation unit 56 displays the y coordinate detection pattern a and the x coordinate detection pattern a on the panel 10a. Assuming that the upper left corner of the region is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
  • the coordinate calculation unit 56 displays the y coordinate detection pattern a and the x coordinate detection pattern b on the panel 10b. Assuming that the upper right end of the region is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
  • the coordinate calculation unit 56 displays the y coordinate detection pattern b and the x coordinate detection pattern a on the panel 10c. Assuming that the lower left corner of the area is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
  • the coordinate calculation unit 56 displays the y coordinate detection pattern b and the x coordinate detection pattern b on the panel 10d. Assuming that the lower right corner of the region is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
  • the coordinate calculation unit 56 uses the coordinates (0, 0) for the x and y coordinates calculated in the panels 10b, 10c, and 10d, in order to facilitate later calculations. ) And x coordinate and y coordinate.
  • the coordinate calculation unit 56 outputs the position coordinates (x, y) of the light pen 50 thus calculated to the transmission unit 59.
  • the transmission unit 59 has a transmission circuit that encodes an electrical signal and converts the encoded signal into a radio signal such as infrared rays and transmits the signal (not shown in FIG. 9). Then, an identification number (ID) assigned to each light pen 50 independently, a drawing mode S0 of the light pen 50 (for example, line color, line thickness, line type, etc. used for drawing), contact switch A signal representing the position coordinate (x, y) of the light pen 50 calculated by the state S1 of 53 and the position calculation unit 56 is encoded, converted into a wireless signal, and wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
  • ID identification number assigned to each light pen 50 independently, a drawing mode S0 of the light pen 50 (for example, line color, line thickness, line type, etc. used for drawing), contact switch A signal representing the position coordinate (x, y) of the light pen 50 calculated by the state S1 of 53 and the position calculation unit 56 is encoded, converted into a wireless signal, and wirelessly transmitted to the receiving unit 42 of the
  • the drawing apparatus 40 includes a receiving unit 42, a drawing unit 44, and an image signal distribution unit 46.
  • the drawing device 40 creates a drawing signal based on the position coordinates (x, y) calculated by the coordinate calculation unit 56 of the light pen 50 and the drawing mode S0, and outputs the drawing signal to an appropriate plasma display device 30 through the image signal distribution unit 46.
  • This drawing signal is a signal for displaying on the panel 10 an image handwritten by the user or a cursor used as a pointer, and is substantially the same as the image signal.
  • the receiving unit 42 includes a conversion circuit that receives a radio signal wirelessly transmitted from the transmitting unit 59 of the light pen 50, decodes the received signal, and converts it into an electric signal (not shown in FIG. 9). Then, the wireless signal wirelessly transmitted from the transmission unit 59 is converted into a signal representing the identification number (ID) of the light pen 50, the drawing mode S0, the state S1, and the position coordinates (x, y) and output to the drawing unit 44. To do. When there are a plurality of light pens 50, each signal transmitted from each light pen 50 is received and decoded.
  • each signal output from the receiving unit 42 is referred to as the drawing mode S0. (T), state S1 (t), position coordinates (x (t), y (t)).
  • the drawing unit 44 includes an image memory 47.
  • the drawing unit 44 draws a color and size corresponding to the drawing mode S0 (t) with the pixel corresponding to the position coordinates (x (t), y (t)) calculated by the coordinate calculation unit 56 as the center.
  • a drawing signal of a pattern (for example, a pattern such as a white circle) is created and written into the image memory 47.
  • the drawing unit 44 uses the position coordinates (x (t), y (t) so that the trajectories of the light pens 50 are not confused with each other. ) Are distinguished from each other, and the above-described operation is performed on each light pen 50.
  • the drawing unit 44 outputs the drawing signal stored in the image memory 47 to the image signal distribution unit 46.
  • the image signal distribution unit 46 combines the drawing signal output from the drawing unit 44 and the image signal input from the outside (or selects either the drawing signal or the image signal). Then, the image signal distribution unit 46 applies the combined signal (or the selected signal) to one image display surface formed by each panel 10 of the plurality of plasma display devices 30 included in the multi-screen display device 130. In order to be displayed as a single image, it is appropriately divided according to the arrangement position of the plurality of plasma display devices 30, and the divided drawing signal (image signal) is transmitted to each of the plasma display devices 30.
  • FIG. 9 includes four plasma display devices 30a, 30b, 30c, and 30d arranged in a matrix of 2 rows and 2 columns, and is simulated by four image display surfaces arranged on the same plane.
  • 1 shows a multi-screen display device 130 having one image display surface.
  • the multi-screen display device 130 appropriately inputs a plurality of image signals transmitted from the image signal distribution unit 46 to each of the plurality of plasma display devices 30, and is configured in a pseudo manner by the plurality of panels 10.
  • One image is displayed on one image display surface. In this way, the drawing input by handwriting with the light pen 50 is combined with the image based on the image signal (or alone) and displayed on the multi-screen display device 130.
  • the light pen 50 may be provided with a switch for switching between the “drawing” mode and the “erasing” mode.
  • the trace of the light pen 50 shown on the panel 10 is traced with the light pen 50 again, so that the drawing signal stored in the image memory 47 can be partially or totally. You may comprise so that it may erase
  • FIG. 10 is a diagram schematically showing an example of each circuit block of the plasma display device 30 constituting the multi-screen display device 130 in the embodiment of the present invention.
  • the plurality of plasma display devices 30a, 30b, 30c, and 30d constituting the multi-screen display device 130 have the same configuration except for the arrangement position and the driving voltage waveform generated in the coordinate detection subfield. Therefore, hereinafter, the plasma display device 30a will be described, and description of the other plasma display devices 30b, 30c, and 30d will be omitted.
  • the plasma display device 30a includes a panel 10a and a drive circuit that includes a plurality of subfields in one field and drives the panel 10a.
  • the drive circuit includes an image signal processing circuit 31a, a data electrode drive circuit 32a, a scan electrode drive circuit 33a, a sustain electrode drive circuit 34a, a timing generation circuit 35a, and a power supply circuit (not shown) that supplies power necessary for each circuit block. ).
  • the drawing signal (image signal) output from the drawing apparatus 40 and the timing signal supplied from the timing generation circuit 35a are input to the image signal processing circuit 31a.
  • the image signal processing circuit 31a represents each gradation value (one field) of red, green, and blue in each discharge cell based on the drawing signal (image signal). Tone value) is set.
  • the image signal processing circuit 31a uses the red, green, and blue gradation values set for each discharge cell as image data indicating lighting / non-lighting for each subfield (light emission / non-light emission is “1” of the digital signal). , Data corresponding to “0”), and output the image data (red image data, green image data, and blue image data).
  • the timing generation circuit 35a separates a horizontal synchronization signal and a vertical synchronization signal from a signal transmitted as an image signal, and generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. appear.
  • the generated timing signal is supplied to each circuit block (data electrode drive circuit 32a, scan electrode drive circuit 33a, sustain electrode drive circuit 34a, image signal processing circuit 31a, etc.).
  • the data electrode driving circuit 32a Based on the image data output from the image signal processing circuit 31a and the timing signal supplied from the timing generation circuit 35a, the data electrode driving circuit 32a performs the writing periods Pw1 to Pw1 of the subfields SF1 to SF8 which are image display subfields.
  • the writing period Pwo of Pw8 and the display device identification subfield SFao the writing pulse of the voltage Vd is detected
  • the y coordinate detection period Pay of the y coordinate detection subfield SFay the y coordinate detection voltage Vdy is detected
  • the x coordinate detection of the x coordinate detection subfield SFax is detected.
  • an x-coordinate detection pulse having a voltage Vdx is applied to each data electrode D1 to Dm.
  • Sustain electrode drive circuit 34a includes a sustain pulse generation circuit and a circuit (not shown in FIG. 10) for generating voltage Ve, and generates each drive voltage waveform based on a timing signal supplied from timing generation circuit 35a.
  • the voltage is applied to each of the sustain electrodes SU1 to SUn.
  • the sustain pulse of the voltage Vs is applied.
  • the voltage Vso in the present embodiment, the voltage Vs Display device identification pulses Va2 and Va4
  • the initialization period of the display device identification subfield SFao In the initialization period Py and the y coordinate detection period Pay of the Pio and address period Pwo, the y coordinate detection subfield SFay, and the initialization period Pix and the x coordinate detection period Pax of the x coordinate detection subfield SFax, the voltage Ve is maintained. Apply to SUn.
  • Scan electrode drive circuit 33a includes a ramp waveform voltage generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown in FIG. 10). Each drive voltage waveform is based on a timing signal supplied from timing generation circuit 35a. Is applied to each of scan electrodes SC1 to SCn.
  • the ramp waveform voltage generation circuit based on the timing signal, initializes Pi1 to Pi8 and sustain periods Pw1 to Pw8 of the subfields SF1 to SF8, which are image display subfields, and an initialization period Pio of the display device identification subfield SFao.
  • the ramp waveform voltage is applied to the scan electrodes SC1 to SCn.
  • the sustain pulse generating circuit Based on the timing signal, the sustain pulse generating circuit generates sustain pulses in the sustain periods Ps1 to Ps8 of the subfields SF1 to SF8, which are image display subfields, and the voltage Vso (in the display device identification period Pao of the display device identification subfield SFao).
  • display device identification pulses Va1 and Va3 are applied to scan electrodes SC1 to SCn.
  • the scan pulse generation circuit includes a plurality of scan electrode driving ICs (scan ICs), and based on the timing signal, the writing periods Pw1 to Pw8 of the subfields SF1 to SF8 that are image display subfields and the display device identification subfield SFao
  • the writing period Pwo the scanning pulse of the voltage Vc and the voltage Va is detected
  • the y coordinate detection period Pay of the y coordinate detection subfield SFay the y coordinate detection pulse of the voltage Vc and voltage Vay is detected, and the x coordinate detection of the x coordinate detection subfield SFax.
  • the voltage Vc and the x coordinate detection voltage Vax are applied to the scan electrodes SC1 to SCn.
  • FIG. 11 is a circuit diagram schematically showing a configuration example of the scan electrode drive circuit 33a of the plasma display device 30a according to the embodiment of the present invention.
  • the scan electrode drive circuit 33a includes a sustain pulse generation circuit 55a, a ramp waveform voltage generation circuit 60a, and a scan pulse generation circuit 70a. Each circuit block operates based on the timing signal supplied from the timing generation circuit 35a, but details of the timing signal path are omitted in FIG. Hereinafter, the voltage input to the scan pulse generation circuit 70a is referred to as “reference potential A”.
  • Sustain pulse generation circuit 55a includes power recovery circuit 51a, switching element Q55, switching element Q56, and switching element Q59.
  • the power recovery circuit 51a includes a power recovery capacitor C10, a switching element Q11, a switching element Q12, a backflow prevention diode Di11, a diode Di12, a resonance inductor L11, and an inductor L12.
  • the power recovery circuit 51a recovers the power stored in the panel 10a from the panel 10a through LC resonance between the interelectrode capacitance of the panel 10a and the inductor L12, and stores it in the capacitor C10. Then, the recovered power is LC-resonated between the interelectrode capacitance of the panel 10a and the inductor L11, supplied again from the capacitor C10 to the panel 10a, and reused as power when driving the scan electrodes SC1 to SCn.
  • Switching element Q55 clamps scan electrodes SC1 to SCn to voltage Vs
  • switching element Q56 clamps scan electrodes SC1 to SCn to voltage 0 (V).
  • the switching element Q59 is a separation switch, and prevents a current from flowing back through a parasitic diode or the like of the switching element constituting the scan electrode drive circuit 33a.
  • the scan pulse generation circuit 70a sequentially applies scan pulses to the scan electrodes SC1 to SCn at the timings shown in FIGS.
  • Scan pulse generating circuit 70a outputs the output voltage of sustain pulse generating circuit 55a as it is during the sustain period. That is, the reference potential A is output to scan electrodes SC1 to SCn.
  • the voltage Vc and the x coordinate detection voltage Vax are generated and applied to the scan electrodes SC1 to SCn.
  • the ramp waveform voltage generation circuit 60a includes a Miller integration circuit 61a, a Miller integration circuit 62a, and a Miller integration circuit 63a, and generates the ramp waveform voltage shown in FIGS.
  • the voltage Vt may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2.
  • Miller integrating circuit 61a when Miller integrating circuit 61a is operated, switching element Q72 and switching elements Q71L1 to Q71Ln are turned off, switching elements Q71H1 to Q71Hn are turned on, and the rising ramp waveform voltage generated in Miller integrating circuit 61a is turned on.
  • the up slope waveform voltage for the initialization operation can be generated by superimposing the voltage Vp of the power source E71 on the top.
  • Miller integrating circuit 62a includes transistor Q62, capacitor C62, resistor R62, and diode Di62 for backflow prevention. Then, by applying a constant voltage to the input terminal IN62 (giving a constant voltage difference between two circles shown as the input terminal IN62), an up-slope waveform voltage that gradually rises toward the voltage Vr ( Ascending waveform voltage generated at the end of the sustain periods Ps1 to Ps8 of the subfields SF1 to SF8, which are image display subfields, and at the end of the display device identification period Pao of the display device identification subfield SFao.
  • Miller integrating circuit 63a includes transistor Q63, capacitor C63, and resistor R63. Then, by applying a constant voltage to the input terminal IN63 (giving a constant voltage difference between two circles shown as the input terminal IN63), a downward ramp waveform voltage (gradiently decreasing toward the voltage Vi4 ( Initialization periods Pi1 to Pi8 of subfields SF1 to SF8 which are image display subfields, initialization period Pio of display device identification subfield SFao, initialization period Piy of y coordinate detection subfield SFay, and x coordinate detection subfield (Slope waveform voltage generated in each period of the initialization period Pix of SFax).
  • the switching element Q69 is a separation switch, and prevents a current from flowing backward through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 33a.
  • switching elements and transistors can be configured using generally known semiconductor elements such as MOSFETs and IGBTs. These switching elements and transistors are controlled by timing signals corresponding to the respective switching elements and transistors generated by the timing generation circuit 35a.
  • FIG. 12 is a circuit diagram schematically showing a configuration example of the sustain electrode drive circuit 34a of the plasma display device 30a in the embodiment of the present invention.
  • Sustain electrode drive circuit 34a includes sustain pulse generation circuit 80a and constant voltage generation circuit 85a. Each circuit block operates based on the timing signal supplied from the timing generation circuit 35a, but details of the timing signal path are omitted in FIG.
  • Sustain pulse generation circuit 80a includes power recovery circuit 81a, switching element Q83, and switching element Q84.
  • the power recovery circuit 81a includes a power recovery capacitor C20, a switching element Q21, a switching element Q22, a backflow prevention diode Di21, a diode Di22, a resonance inductor L21, and an inductor L22.
  • the power recovery circuit 81a recovers the power stored in the panel 10a from the panel 10a through LC resonance between the interelectrode capacitance of the panel 10a and the inductor L22, and stores it in the capacitor C20. Then, the recovered power is LC-resonated between the interelectrode capacitance of the panel 10a and the inductor L21, supplied again from the capacitor C20 to the panel 10a, and reused as power when driving the sustain electrodes SU1 to SUn.
  • Switching element Q83 clamps sustain electrodes SU1 to SUn to voltage Vs, and switching element Q84 clamps sustain electrodes SU1 to SUn to voltage 0 (V).
  • sustain pulse generating circuit 80a applies a sustain pulse of voltage Vs to sustain electrodes SU1 to SUn. Further, sustain pulse generating circuit 80a applies display device identification pulses Va2 and Va4 to sustain electrodes SU1 to SUn in display device identification period Pao of display device identification subfield SFao.
  • the constant voltage generation circuit 85a includes a switching element Q86 and a switching element Q87. Then, the constant voltage generation circuit 85a includes initialization periods Pi1 to Pi8 and writing periods Pw1 to Pw8 of the subfields SF1 to SF8 that are image display subfields, initialization period Pio and writing period of the display device identification subfield SFao.
  • the voltage Ve is applied to the sustain electrodes SU1 to SUn during the initialization period Piy and the y coordinate detection period Pay of the Pwo, y coordinate detection subfield SFay, and the initialization period Pix and the x coordinate detection period Pax of the x coordinate detection subfield SFax. To do.
  • these switching elements can be configured using generally known elements such as MOSFETs and IGBTs. These switching elements are controlled by timing signals corresponding to the respective switching elements generated by the timing generation circuit 35a.
  • FIG. 13 is a circuit diagram schematically showing a configuration example of the data electrode driving circuit 32a of the plasma display device 30a in the embodiment of the present invention.
  • the data electrode drive circuit 32a operates based on the image data supplied from the image signal processing circuit 31a and the timing signal supplied from the timing generation circuit 35a. However, in FIG. 13, details of the paths of these signals are omitted. To do.
  • the data electrode drive circuit 32a includes switching elements Q91H1 to Q91Hm and switching elements Q91L1 to Q91Lm. Then, voltage 0 (V) is applied to data electrode Dj by turning on switching element Q91Lj, and voltage Vd is applied to data electrode Dj by turning on switching element Q91Hj. In this way, the data electrode driving circuit 32a outputs the writing pulse of the voltage Vd in the writing periods Pw1 to Pw8 of the subfields SF1 to SF8 that are image display subfields and the writing period Pwo of the display device identification subfield SFao.
  • FIG. 14 is a diagram schematically illustrating an example of a drive voltage waveform when the position coordinates of the light pen 50 are detected in the multi-screen display system 100 according to the embodiment of the present invention.
  • FIG. 14 shows an operation of detecting the position coordinates of the light pen 50 using the drive voltage waveform generated in the plasma display device 30a.
  • the operation of the plasma display devices 30b, 30c, and 30d is based on the movement direction of the first light emission line displayed in the y coordinate detection subfield SFy or the movement direction of the second light emission line displayed in the x coordinate detection subfield SFx.
  • the operation when calculating the coordinates is the same, and thus the description thereof is omitted.
  • the time Toy from the time to1 to the time ty0 is determined in advance, and the time Tox from the time to1 to the time tx0 is predetermined.
  • the timing detection unit 54 can generate a coordinate reference signal having rising edges at each of the time ty0 and the time tx0 and output the coordinate reference signal to the coordinate calculation unit 56 as shown in FIG. it can.
  • the light emission intervals are sequentially five times of time To0, time TA1, time TA2, and time TA3 (from the light receiving element 52 based on these light emissions).
  • the time to1 is specified, and it is specified that the light pen 50 is on the panel 10a of the plasma display device 30a.
  • first light emission line extended in the first direction (row direction) sequentially moves in the second direction (column direction).
  • the y coordinate detection pattern a is displayed on the panel 10a.
  • the first light emission line Ly that sequentially moves from the upper end (first row) to the lower end (nth row) of the image display region is displayed in the image display region of the panel 10a.
  • the tip of the light pen 50 is in contact with (or close to) the “coordinate (x, y)” of the image display surface of the panel 10a, the time when the first light emission line Ly passes through the coordinate (x, y).
  • the light receiving element 52 of the light pen 50 receives light emitted from the first light emitting line Ly.
  • the light pen 50 outputs a light reception signal indicating that the light receiving element 52 has received the light emission of the first light emission line Ly at time tyy.
  • the tip of the light pen 50 is in contact with (or close to) the “coordinates (x, y)” of the image display surface of the panel 10a, the time when the second light emitting line Lx passes the coordinates (x, y) At txx, the light receiving element 52 of the light pen 50 receives the light emitted from the second light emitting line Lx. Thereby, as shown in FIG. 14, the light pen 50 outputs a light receiving signal indicating that the light receiving element 52 has received the light emitted from the second light emitting line Lx at time txx.
  • the coordinate calculation unit 56 shown in FIG. 9 is based on the coordinate reference signal output from the timing detection unit 54 and the light reception signal output from the light receiving element 52 in the y coordinate detection period Pay of the y coordinate detection subfield SFay.
  • the time Tyy from the time ty0 to the time tyy is measured using the counter provided for.
  • the time Tyy is divided by the time Ty1 in the arithmetic circuit provided inside. The division result is the y coordinate of the position of the light pen 50 in the image display area of the panel 10a.
  • the coordinate calculation unit 56 is provided internally based on the coordinate reference signal output from the timing detection unit 54 and the light reception signal output from the light receiving element 52 in the x coordinate detection period Pax of the x coordinate detection subfield SFax.
  • a time Txx from time tx0 to time txx is measured using a counter.
  • the time Txx is divided by the time Tx1 in the arithmetic circuit provided inside. The division result is the x coordinate of the position of the light pen 50 in the image display area of the panel 10a.
  • the coordinate calculation unit 56 in the present embodiment calculates the position (coordinates (x, y)) of the light pen 50 in the image display area of the multi-screen display device 130. Then, a drawing input by handwriting using the light pen 50 is displayed on the image display surface of the multi-screen display device 130.
  • FIG. 15 is a diagram schematically showing an example of the operation of the multi-screen display system 100 when detecting the position coordinates of the light pen 50 in the embodiment of the present invention.
  • the multi-screen display device 130 shown in the present embodiment has the y-coordinate detection pattern and x displayed in the y-coordinate detection subfield SFy according to the arrangement position of the plasma display device 30 in the multi-screen display device 130.
  • the x-coordinate detection pattern displayed in the coordinate detection subfield SFx is changed for each plasma display device 30.
  • the first light emission line Ly (one pixel row that emits light).
  • the first emission line Ly Displays a y-coordinate detection pattern a that sequentially moves from the upper end to the lower end of the image display area on the panels 10a and 10b.
  • the first emission line Ly is sequentially from the lower end portion to the upper end portion of the image display area.
  • the moving y-coordinate detection pattern b is displayed on the panels 10c and 10d.
  • the second emission line Lx (one pixel that emits light).
  • the x-coordinate detection pattern a in which the column) sequentially moves from the left end to the right end of the image display area is displayed on the panels 10a and 10c.
  • the second light emission line Lx sequentially moves from the right end portion to the left end portion of the image display area in the x coordinate detection subfield SFx.
  • the x coordinate detection pattern b to be displayed is displayed on the panels 10b and 10d.
  • the multi-screen display device 130 is configured by 16 plasma display devices 30 arranged in a matrix of 4 rows and 4 columns, the first and third rows in the y coordinate detection subfield SFy.
  • the panel 10 displays the y-coordinate detection pattern a on the arranged plasma display device 30 and the y-coordinate detection pattern b on the plasma display device 30 arranged on the second and fourth rows.
  • the plasma display device 30 arranged in the first and third columns displays the x-coordinate detection pattern a
  • the plasma display device 30 arranged in the second and fourth columns displays x.
  • a coordinate detection pattern b is displayed on the panel 10.
  • the first light emission lines Ly are sequentially formed from the upper end portion to the lower end portion of the image display area in the y coordinate detection subfield SFy.
  • the first light emission line Ly from the lower end of the image display area in the y-coordinate detection subfield SFy.
  • the y coordinate detection pattern b that sequentially moves to the upper end portion is displayed on the panel 10.
  • the x-coordinate detection pattern a in which the second light emission line Lx sequentially moves from the left end portion to the right end portion of the image display area in the x-coordinate detection subfield SFx.
  • the x-coordinate detection pattern in which the second emission line Lx sequentially moves from the right end portion to the left end portion of the image display area in the x-coordinate detection subfield SFx. b is displayed on the panel 10.
  • the y coordinate detection pattern b may be displayed on the plasma display device 30 arranged in the odd-numbered rows, and the y coordinate detection pattern a may be displayed on the plasma display device 30 arranged in the even-numbered rows.
  • the x coordinate detection pattern b may be displayed on the plasma display device 30 arranged in the odd column, and the x coordinate detection pattern a may be displayed on the plasma display device 30 arranged in the even column.
  • the moving direction of the second light emitting line Lx when displaying the pattern is changed. That is, in multi-screen display device 130 in the present embodiment, the movement direction of first light-emitting line Ly in the y-coordinate detection pattern or the x-coordinate detection pattern between two plasma display devices 30 arranged adjacent to each other. Any one of the moving directions of the second light emitting lines Lx in the directions is opposite to each other. This is due to the following reason.
  • FIG. 16 is a diagram schematically illustrating an example of an operation when handwriting input is performed with the light pen 50 in the multi-screen display system 100 according to the embodiment of the present invention.
  • the drawing unit 44 draws a drawing pattern (with a color and size corresponding to the drawing mode S0 (t) around the pixel corresponding to the position coordinates (x (t), y (t)) calculated by the coordinate calculation unit 56. For example, a drawing signal of a pattern such as a white circle (hereinafter referred to as “cursor 101”) is generated.
  • the drawing signals are sequentially written in the image memory 47 of the drawing unit 44, and the drawing signals during the period in which the contact switch 53 is on are stored in the image memory 47. Then, the plasma display device 30 displays an image based on the drawing signal stored in the image memory 47 of the drawing unit 44 on the panel 10.
  • the cursor 101 When the user moves the tip of the light pen 50 from the position B1 of the panel 10a to the position B2 of the panel 10b, the cursor 101 also moves from the position B1 to the position B2 according to the operation.
  • the light receiving element 52 of the light pen 50 receives the light emission of the panel 10a for the display device identification period Po of the display device identification subfield SFo, and the y coordinate detection subfield SFy.
  • the light pen 50 calculates the position coordinates on the assumption that the light pen 50 itself is on the panel 10a.
  • the multi-screen display device driven by a conventional method that is, the y-coordinate detection pattern a for each of the panels 10a and 10b (the first emission line is sequentially line by line from the upper end to the lower end of the image display area of the panel).
  • the y-coordinate detection pattern a a pattern in which the second light-emitting line sequentially moves one column at a time from the left end to the right end of the panel image display area
  • the point (0) is the left end of the image display surface for both panels 10a and 10b
  • the reference point (0) for the y coordinate is the upper end of the image display surface for both panels 10a and 10b. That is, the coordinate reference point (0, 0) is the upper left corner of the image display surface in both panels 10a and 10b.
  • the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is not significantly different from the y coordinate of the original position B2 with respect to the y coordinate.
  • the x coordinate of the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is the position of the panel 10a.
  • the position is close to the reference point (0) of the x coordinate. Since this is a position close to the left end portion of the panel 10a, the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is the position B3 of the panel 10a, and the cursor 101 is displayed at a position significantly different from the original position B2. Will be.
  • the x-coordinate detection pattern a is displayed on the panel 10a, and the x-coordinate detection pattern b (the second emission line is 1 from the right end to the left end of the panel image display area). Displays a pattern that moves sequentially column by column). Therefore, the reference point (0) of the x coordinate is the left end portion of the image display surface in the panel 10a, and the right end portion of the image display surface in the panel 10b.
  • the light receiving element 52 receives light emitted from the panel 10a for the display device identification period Po of the display device identification subfield SFo, and the x coordinate detection subfield SFx.
  • the x-coordinate detection period Px even if the panel 10b emits light, the original position B2 is farthest from the x-coordinate reference point (0) of the panel 10b.
  • the x coordinate of the calculated position coordinate is the farthest position from the reference point (0) of the x coordinate of the panel 10a.
  • the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is in the vicinity of the position B1 of the panel 10a, and the cursor 101 is positioned relatively close to the original position B2. Will be displayed.
  • the light receiving element 52 receives light emitted from the panel 10b for the display device identification period Po of the display device identification subfield SFo, and y
  • the y coordinate detection period Py of the coordinate detection subfield SFy and the x coordinate detection period Px of the x coordinate detection subfield SFx assuming that the panel 10d emits light, the y coordinate detection pattern a and the x coordinate detection are performed for both the panels 10b and 10d.
  • the position coordinate calculated by the coordinate calculation unit 56 as the position C2 is the position C3 of the panel 10b, and the cursor 101 is displayed at a position significantly different from the original position B2.
  • the y-coordinate detection pattern a is displayed on the panel 10b, and the y-coordinate detection pattern b (the first emission line is 1 from the lower end to the upper end of the image display area of the panel). Displays a pattern that moves sequentially line by line). Therefore, for example, the light receiving element 52 receives the light emission of the panel 10b for the display device identification period Po of the display device identification subfield SFo, and receives the light emission of the panel 10d for the y coordinate detection period Py of the y coordinate detection subfield SFy. Even so, the y coordinate of the position coordinate calculated by the coordinate calculation unit 56 as the position C2 is the farthest position from the reference point (0) of the y coordinate of the panel 10b. Therefore, the position coordinate calculated by the coordinate calculation unit 56 as the position C2 is in the vicinity of the position C1 of the panel 10b, and the cursor 101 is displayed at a position relatively close to the original position C2.
  • the above is the moving direction of the first light emission line Ly when displaying the y-coordinate detection pattern and the first coordinate when displaying the x-coordinate detection pattern according to the arrangement position of the plasma display device 30 in the multi-screen display device 130. This is because the moving direction of the second light emitting line Lx is changed.
  • the light pen 50 may have a pointer function as follows.
  • the movement locus during that time is not displayed on the panel 10
  • the cursor indicating the current position of the tip of the light pen 50 is displayed. 101 is displayed on the panel 10.
  • the light pen 50 can be used as a pointer. Furthermore, if a lens is attached to the tip of the light pen 50, the light receiving element 52 can sufficiently receive the light emitted from the panel 10 even if the light pen 50 is located farther from the panel 10. The light pen 50 can also be used as a pointer from a position farther away.
  • the configuration in which the contact switch 53 is attached to the tip of the light pen 50 has been described.
  • a manual switch corresponding to the contact switch 53 is provided on the side surface of the light pen 50, and the user switches the switch. You may comprise so that operation of ON / OFF of can be operated.
  • the light pen 50 may include both the contact switch 53 and the manual switch.
  • display device identification discharge is generated four times at predetermined time intervals (for example, time To1, time To2, and time To3) in display device identification subfield SFo will be described.
  • time To1, time To2, and time To3 predetermined time intervals
  • the configuration in which the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx are provided in each field has been described.
  • the present invention is not limited to this configuration. is not.
  • the configuration may be such that those subfields are generated at a rate of once in a plurality of fields.
  • the drawing device 40 and the light pen 50 may be electrically connected by an electric cable or the like, and a signal may be transmitted and received between the light pen and the drawing device via the electric cable.
  • each subfield is not limited to the order shown in the embodiment.
  • the y coordinate detection subfield SFy may be generated after the x coordinate detection subfield SFx.
  • an image display subfield may be generated after the y coordinate detection subfield SFy and the x coordinate detection subfield SFx.
  • a display device identification subfield SFo may be generated between the y coordinate detection subfield SFy and the x coordinate detection subfield SFx, and the display device identification subfield SFo is set after the x coordinate detection subfield SFx. It may occur.
  • each operation has been described by taking a plasma display device using a plasma display panel as an image display unit as an example of the image display device.
  • the image display device is not limited to the plasma display device.
  • the same effect as that described above can be obtained by applying the same configuration as that described above.
  • the y-coordinate detection pattern is a single pixel row that emits light from the first light-emitting line.
  • the first light-emitting line may be a plurality of pixel rows that emit light.
  • the y-coordinate detection pattern may be a pattern in which the first light emission line sequentially moves every other row (or every other row). In these configurations, the time required for the y-coordinate detection subfield SFy can be shortened compared to the configuration shown in the present embodiment.
  • the x-coordinate detection pattern is one pixel column that emits the second emission line, but the second emission line may be a plurality of pixel columns that emit light.
  • the x-coordinate detection pattern may be a pattern in which the second light emission lines sequentially move every other row (or every other row). In these configurations, the time required for the x-coordinate detection subfield SFx can be shortened as compared with the configuration shown in the present embodiment.
  • one field has a plurality of image display subfields and a subfield for detecting position coordinates.
  • the present invention is not limited to this configuration. is not.
  • one field may be composed of only the image display subfield.
  • the forced initializing operation has been described as an initializing operation that forcibly generates initializing discharge in all the discharge cells in the image display area of the panel. It is not limited to this configuration.
  • the forced initializing waveform is applied only to some discharge cells in the image display area of the panel and the initializing discharge is forcibly generated only in the discharge cells. It shall be included in the conversion operation.
  • the drawing device 40 is provided independently of the plasma display device.
  • a computer connected to the plasma display device corresponds to the drawing device 40.
  • a rendering signal is created using the computer.
  • the present invention is not limited to this configuration.
  • the drawing device 40 may be provided as a single device, or the drawing device 40 may be provided in the plasma display device 30.
  • the drive voltage waveforms shown in FIGS. 4, 5, 6, 7, 8, and 14 are merely examples in the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms. It is not limited to.
  • circuit configurations shown in FIGS. 9, 10, 11, 12, and 13 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations. It is not a thing.
  • Each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or substantially the same as each operation shown in the embodiment.
  • a microcomputer or a computer programmed to operate may be used.
  • the specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example.
  • the present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
  • the present invention is useful as a multi-screen display device, a multi-screen display device driving method, and a multi-screen display system because the position coordinates of the light pen can be detected with reduced errors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Multimedia (AREA)
  • User Interface Of Digital Computer (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)

Abstract

In the present invention, the position coordinates of a light pen (50) are detected with reduced error. In order to do so, provided is a multi-screen display device (130) in which a plurality of partial image display devices (30a, 30b, 30c, 30d) are arranged in a matrix shape, wherein for two partial image display devices disposed next to each other, at least one of the movement direction of a first emission line when a y-coordinate detection pattern is displayed on an image display unit in a y-coordinate detection subfield, or the movement direction of a second emission line when an x-coordinate detection pattern is displayed on an image display unit in an x-coordinate detection subfield, is made the opposite of the other.

Description

マルチ画面表示装置、マルチ画面表示装置の駆動方法およびマルチ画面表示システムMulti-screen display device, multi-screen display device driving method, and multi-screen display system
 本発明は、複数の画像表示装置で構成されたマルチ画面表示装置、ライトペンを用いてマルチ画面表示装置に文字や図画の手書き入力ができるマルチ画面表示システム、およびマルチ画面表示装置の駆動方法に関する。 The present invention relates to a multi-screen display device composed of a plurality of image display devices, a multi-screen display system capable of inputting characters and drawings by handwriting on the multi-screen display device using a light pen, and a driving method of the multi-screen display device. .
 画素を構成する複数の発光素子のそれぞれにおける発光と非発光の2値制御を組み合わせて画像表示領域に画像を表示する画像表示装置として代表的なものにプラズマディスプレイパネル(以下、「パネル」と略記する)がある。 A plasma display panel (hereinafter abbreviated as “panel”) is a typical image display device that displays an image in an image display area by combining binary control of light emission and non-light emission in each of a plurality of light emitting elements constituting a pixel. There is).
 パネルは、対向配置された前面基板と背面基板との間に、画素を構成する発光素子である放電セルが多数形成されている。 In the panel, a large number of discharge cells, which are light-emitting elements constituting pixels, are formed between a front substrate and a rear substrate that are arranged to face each other.
 前面基板は、1対の走査電極と維持電極とからなる表示電極対が前面側のガラス基板上に互いに平行に複数対形成されている。背面基板は、背面側のガラス基板上に互いに平行なデータ電極が複数形成されている。 In the front substrate, a plurality of pairs of display electrodes composed of a pair of scan electrodes and sustain electrodes are formed in parallel with each other on the front glass substrate. The back substrate has a plurality of parallel data electrodes formed on a glass substrate on the back side.
 各放電セル内には、赤色(R)、緑色(G)および青色(B)のいずれかの蛍光体が塗布され、放電ガスが封入されている。そして、各放電セルでは、ガス放電を起こすことで紫外線を発生し、この紫外線で蛍光体を励起発光する。 Each discharge cell is coated with one of red (R), green (G), and blue (B) phosphors, and a discharge gas is enclosed therein. In each discharge cell, an ultraviolet ray is generated by causing a gas discharge, and the phosphor is excited to emit light by the ultraviolet ray.
 発光素子における発光と非発光との2値制御を組み合わせてパネルの画像表示領域に画像を表示する方法としては一般にサブフィールド法が用いられている。 A subfield method is generally used as a method of displaying an image in an image display area of a panel by combining binary control of light emission and non-light emission in a light emitting element.
 サブフィールド法では、1フィールドを、発光輝度が互いに異なる複数のサブフィールドに分割する。そして、各放電セルでは、表示すべき階調値に応じた組合せで各サブフィールドの発光・非発光を制御する。これにより各放電セルが表示すべき階調値に応じた明るさで発光し、パネルの画像表示領域に、様々な階調値の組合せで構成されたカラーの画像が表示される。 In the subfield method, one field is divided into a plurality of subfields having different emission luminances. In each discharge cell, light emission / non-light emission of each subfield is controlled by a combination according to the gradation value to be displayed. As a result, each discharge cell emits light with brightness corresponding to the gradation value to be displayed, and a color image composed of various combinations of gradation values is displayed in the image display area of the panel.
 このような画像表示装置には、「ライトペン」と呼ばれるポインティングデバイスを使用して、パネルの画像表示面に、文字や図画を手書き入力することができる機能を有するものがある。 Some of such image display apparatuses have a function that allows a handwritten input of characters and drawings on the image display surface of the panel using a pointing device called “light pen”.
 ライトペンを用いた手書き入力機能を実現するために、画像表示領域内におけるライトペンの位置を検出する技術が開示されている。以下、画像表示領域内におけるライトペンの位置を表す座標を「位置座標」と記す。 In order to realize a handwriting input function using a light pen, a technique for detecting the position of the light pen in an image display area is disclosed. Hereinafter, the coordinates representing the position of the light pen in the image display area are referred to as “position coordinates”.
 そして、ライトペンを使用するときだけ1フィールドに座標検出期間を設けてライトペンの位置座標を検出するプラズマディスプレイ装置が開示されている(例えば、特許文献1参照)。 A plasma display device that detects a position coordinate of a light pen by providing a coordinate detection period in one field only when the light pen is used is disclosed (for example, see Patent Document 1).
 また、画像表示面が同一平面上に配置されるように複数の画像表示装置を組み合わせて構成されたマルチ画面表示装置が開示されている(例えば、特許文献2参照)。 Also, a multi-screen display device configured by combining a plurality of image display devices so that the image display surfaces are arranged on the same plane is disclosed (for example, see Patent Document 2).
 以下、マルチ画面表示装置を構成する各画像表示装置を「部分画像表示装置」と呼称する。 Hereinafter, each image display device constituting the multi-screen display device is referred to as a “partial image display device”.
 これらの技術を組み合わせることにより、ライトペンを用いた手書き入力機能を備えたマルチ画面表示装置を構成することができる。 By combining these technologies, a multi-screen display device having a handwriting input function using a light pen can be configured.
特開2001-318765号公報JP 2001-318765 A 特開2001-117544号公報JP 2001-117544 A
 本開示におけるマルチ画面表示装置は、行方向であるx座標方向に延長した複数の電極および列方向であるy座標方向に延長した複数の電極を有する画像表示部を備えた複数の部分画像表示装置を行列状に配置する。部分画像表示装置は、それぞれが表示装置識別サブフィールド、y座標検出サブフィールドおよびx座標検出サブフィールドを発生する。y座標検出サブフィールドでは、x座標方向に延長した第1の発光線をy座標方向に移動するy座標検出パターンを画像表示部に表示する。x座標検出サブフィールドでは、y座標方向に延長した第2の発光線をx座標方向に移動するx座標検出パターンを画像表示部に表示する。そして、隣り合って配置された2台の部分画像表示装置では、y座標検出サブフィールドにおいて画像表示部にy座標検出パターンを表示する際の第1の発光線の移動方向、または、x座標検出サブフィールドにおいて画像表示部にx座標検出パターンを表示する際の第2の発光線の移動方向のいずれか一方が互いに逆である。 A multi-screen display device according to the present disclosure includes a plurality of partial image display devices including an image display unit having a plurality of electrodes extending in an x coordinate direction that is a row direction and a plurality of electrodes extending in a y coordinate direction that is a column direction. Are arranged in a matrix. Each of the partial image display devices generates a display device identification subfield, a y coordinate detection subfield, and an x coordinate detection subfield. In the y-coordinate detection subfield, a y-coordinate detection pattern for moving the first emission line extended in the x-coordinate direction in the y-coordinate direction is displayed on the image display unit. In the x-coordinate detection subfield, an x-coordinate detection pattern for moving the second emission line extended in the y-coordinate direction in the x-coordinate direction is displayed on the image display unit. Then, in the two partial image display devices arranged adjacent to each other, the moving direction of the first emission line or the x coordinate detection when displaying the y coordinate detection pattern on the image display unit in the y coordinate detection subfield is detected. One of the moving directions of the second light emission lines when displaying the x-coordinate detection pattern on the image display unit in the subfield is opposite to each other.
 これにより、ライトペンの位置座標を、誤差を低減して検出することが可能になる。 This makes it possible to detect the position coordinates of the light pen with reduced errors.
 また、本開示におけるマルチ画面表示装置では、奇数番目の行に配置された部分画像表示装置と偶数番目の行に配置された部分画像表示装置とでは、y座標検出サブフィールドにおいて画像表示部にy座標検出パターンを表示する際の第1の発光線の移動方向が互いに逆であり、また、奇数番目の列に配置された部分画像表示装置と偶数番目の列に配置された部分画像表示装置とでは、x座標検出サブフィールドにおいて画像表示部にx座標検出パターンを表示する際の第2の発光線の移動方向が互いに逆であってもよい。 Further, in the multi-screen display device according to the present disclosure, the partial image display device arranged in the odd-numbered row and the partial image display device arranged in the even-numbered row include y in the image display unit in the y-coordinate detection subfield. The moving directions of the first light-emitting lines when displaying the coordinate detection pattern are opposite to each other, and the partial image display devices arranged in the odd-numbered columns and the partial image display devices arranged in the even-numbered columns Then, in the x coordinate detection subfield, the movement directions of the second light emission lines when the x coordinate detection pattern is displayed on the image display unit may be opposite to each other.
図1は、本発明の実施の形態におけるマルチ画面表示システムの概略図である。FIG. 1 is a schematic diagram of a multi-screen display system according to an embodiment of the present invention. 図2は、本発明の実施の形態におけるプラズマディスプレイ装置に用いるパネルの構造の一例を示す分解斜視図である。FIG. 2 is an exploded perspective view showing an example of the structure of the panel used in the plasma display device in accordance with the exemplary embodiment of the present invention. 図3は、本発明の実施の形態におけるプラズマディスプレイ装置に用いるパネルの電極配列の一例を示す図である。FIG. 3 is a diagram showing an example of the electrode arrangement of the panel used in the plasma display device in accordance with the exemplary embodiment of the present invention. 図4は、本発明の実施の形態における画像表示サブフィールドのサブフィールドSF1~SF3においてパネルの各電極に印加する駆動電圧波形の一例を概略的に示す図である。FIG. 4 schematically shows an example of a drive voltage waveform applied to each electrode of the panel in subfields SF1 to SF3 of the image display subfield in the embodiment of the present invention. 図5は、本発明の実施の形態における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の第一の例を概略的に示す図である。FIG. 5 is a diagram schematically showing a first example of a drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the embodiment of the present invention. 図6は、本発明の実施の形態における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の第二の例を概略的に示す図である。FIG. 6 is a diagram schematically showing a second example of the drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield in the embodiment of the present invention. 図7は、本発明の実施の形態における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の第三の例を概略的に示す図である。FIG. 7 is a diagram schematically showing a third example of the drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield in the embodiment of the present invention. 図8は、本発明の実施の形態における座標検出サブフィールドにおいてパネルの各電極に印加する駆動電圧波形の第四の例を概略的に示す図である。FIG. 8 is a diagram schematically showing a fourth example of the drive voltage waveform applied to each electrode of the panel in the coordinate detection subfield according to the embodiment of the present invention. 図9は、本発明の実施の形態におけるマルチ画面表示システムの一構成例を概略的に示す図である。FIG. 9 is a diagram schematically showing a configuration example of the multi-screen display system in the embodiment of the present invention. 図10は、本発明の実施の形態におけるマルチ画面表示装置を構成するプラズマディスプレイ装置の各回路ブロックの一例を概略的に示す図である。FIG. 10 is a diagram schematically showing an example of each circuit block of the plasma display device constituting the multi-screen display device in the embodiment of the present invention. 図11は、本発明の実施の形態におけるプラズマディスプレイ装置の走査電極駆動回路の一構成例を概略的に示す回路図である。FIG. 11 is a circuit diagram schematically showing a configuration example of a scan electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention. 図12は、本発明の実施の形態におけるプラズマディスプレイ装置の維持電極駆動回路の一構成例を概略的に示す回路図である。FIG. 12 is a circuit diagram schematically showing a configuration example of the sustain electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention. 図13は、本発明の実施の形態におけるプラズマディスプレイ装置のデータ電極駆動回路の一構成例を概略的に示す回路図である。FIG. 13 is a circuit diagram schematically showing a configuration example of the data electrode driving circuit of the plasma display device in accordance with the exemplary embodiment of the present invention. 図14は、本発明の実施の形態におけるマルチ画面表示システムにおいてライトペンの位置座標を検出するときの駆動電圧波形の一例を概略的に示す図である。FIG. 14 is a diagram schematically showing an example of a drive voltage waveform when the position coordinates of the light pen are detected in the multi-screen display system in the embodiment of the present invention. 図15は、本発明の実施の形態におけるマルチ画面表示システムにおいてライトペンの位置座標を検出するときの動作の一例を概略的に示す図である。FIG. 15 is a diagram schematically showing an example of the operation when detecting the position coordinates of the light pen in the multi-screen display system in the embodiment of the present invention. 図16は、本発明の実施の形態におけるマルチ画面表示システムにおいてライトペンによる手書き入力を行うときの動作の一例を概略的に示す図である。FIG. 16 is a diagram schematically illustrating an example of an operation when performing handwriting input with a light pen in the multi-screen display system according to the embodiment of the present invention.
 以下、本発明の実施の形態におけるマルチ画面表示装置およびマルチ画面表示システムについて、図面を用いて説明する。なお、以下の実施の形態では、一例として、マルチ画面表示システムを、プラズマディスプレイパネルを有するプラズマディスプレイ装置を用いて構成する例を説明する。 Hereinafter, a multi-screen display device and a multi-screen display system according to embodiments of the present invention will be described with reference to the drawings. In the following embodiments, an example in which a multi-screen display system is configured using a plasma display device having a plasma display panel will be described as an example.
 (実施の形態)
 図1は、本発明の実施の形態におけるマルチ画面表示システム100の概略図である。
(Embodiment)
FIG. 1 is a schematic diagram of a multi-screen display system 100 according to an embodiment of the present invention.
 マルチ画面表示システム100は、複数の部分画像表示装置を1つの筐体に収めたマルチ画面表示装置130と複数(または単数)のライトペン50で構成される。以下、部分画像表示装置をプラズマディスプレイ装置30とし、部分画像表示装置の画像表示部をプラズマディスプレイパネルとする例を説明するが、本発明は何ら部分画像表示装置がプラズマディスプレイ装置30に限定されるものではない。 The multi-screen display system 100 includes a multi-screen display device 130 in which a plurality of partial image display devices are housed in a single housing and a plurality (or a single) light pen 50. Hereinafter, an example in which the partial image display device is a plasma display device 30 and the image display unit of the partial image display device is a plasma display panel will be described. However, in the present invention, the partial image display device is limited to the plasma display device 30. It is not a thing.
 なお、本実施の形態では、図1に示すように、マルチ画面表示装置130を、互いに同じ構造を有する4台のプラズマディスプレイ装置30a、30b、30c、30dで構成する例を説明する。また、図1に示すマルチ画面表示システム100は、互いに同じ構造を有する3本のライトペン50a、50b、50cを備えており、3人の使用者が同時に使用することが可能である。ライトペン50は、ライトペン50a、50b、50cの総称である。 In the present embodiment, as shown in FIG. 1, an example in which the multi-screen display device 130 is configured by four plasma display devices 30a, 30b, 30c, and 30d having the same structure will be described. The multi-screen display system 100 shown in FIG. 1 includes three light pens 50a, 50b, and 50c having the same structure, and can be used simultaneously by three users. The light pen 50 is a general term for the light pens 50a, 50b, and 50c.
 なお、マルチ画面表示装置130を構成するプラズマディスプレイ装置30は何ら4台に限定されるものではなく、また、マルチ画面表示システム100が備えるライトペン50も何ら3本に限定されるものではない。 Note that the number of plasma display devices 30 constituting the multi-screen display device 130 is not limited to four, and the number of light pens 50 included in the multi-screen display system 100 is not limited to three.
 マルチ画面表示装置130は、画像表示面が同一平面上に配置されるように、複数のプラズマディスプレイ装置30をN行M列の行列状に配置する。なお、N、Mは、一方が1以上の整数であり、他方が2以上の整数である。すなわち、マルチ画面表示装置130は、1行2列以上、または2行1列以上の行列状に配置されたプラズマディスプレイ装置30を備えた構成である。 The multi-screen display device 130 arranges the plurality of plasma display devices 30 in a matrix of N rows and M columns so that the image display surfaces are arranged on the same plane. One of N and M is an integer of 1 or more, and the other is an integer of 2 or more. That is, the multi-screen display device 130 includes the plasma display device 30 arranged in a matrix of 1 row and 2 columns or more, or 2 rows and 1 column or more.
 図1には、4台のプラズマディスプレイ装置30a、30b、30c、30dを2行2列の行列状に配列し、4つの画像表示面で擬似的に1つの画像表示面を構成する例を示す。したがって、図1に示すマルチ画面表示装置130は、1枚の画像を4分割し、4つの画像表示面で1枚の画像を表示することができる。 FIG. 1 shows an example in which four plasma display devices 30a, 30b, 30c, and 30d are arranged in a matrix of 2 rows and 2 columns and one image display surface is configured in a pseudo manner by four image display surfaces. . Therefore, the multi-screen display device 130 shown in FIG. 1 can divide one image into four and display one image on four image display surfaces.
 図1に示す4台のプラズマディスプレイ装置30a、30b、30c、30dは、互いに同じ構造を有し、画像表示サブフィールドにおいて発生する駆動電圧波形も、表示する画像信号にもとづく違いを除き、互いに同じである。したがって、以下の図2、図3で説明するパネル10の構造、および図4で説明する画像表示サブフィールドの駆動電圧波形は、プラズマディスプレイ装置30a、30b、30c、30dで互いに共通である。ただし、後述するように、座標検出サブフィールドで発生する駆動電圧波形は、プラズマディスプレイ装置30a、30b、30c、30dで、互いに異なる。 The four plasma display devices 30a, 30b, 30c, and 30d shown in FIG. 1 have the same structure, and the drive voltage waveform generated in the image display subfield is the same except for the difference based on the image signal to be displayed. It is. Therefore, the structure of the panel 10 described below with reference to FIGS. 2 and 3 and the drive voltage waveform of the image display subfield described with reference to FIG. 4 are common to the plasma display devices 30a, 30b, 30c, and 30d. However, as will be described later, the driving voltage waveforms generated in the coordinate detection subfield are different from each other in the plasma display devices 30a, 30b, 30c, and 30d.
 図2は、本発明の実施の形態におけるプラズマディスプレイ装置30に用いるパネル10の構造の一例を示す分解斜視図である。 FIG. 2 is an exploded perspective view showing an example of the structure of panel 10 used in plasma display device 30 in accordance with the exemplary embodiment of the present invention.
 ガラス製の前面基板11上には、走査電極12と維持電極13とからなる表示電極対14が複数形成されている。そして、表示電極対14を覆うように誘電体層15が形成され、その誘電体層15上に保護層16が形成されている。前面基板11は画像が表示される画像表示面となる。 A plurality of display electrode pairs 14 each including a scanning electrode 12 and a sustaining electrode 13 are formed on a glass front substrate 11. A dielectric layer 15 is formed so as to cover the display electrode pair 14, and a protective layer 16 is formed on the dielectric layer 15. The front substrate 11 serves as an image display surface on which an image is displayed.
 背面基板21上にはデータ電極22が複数形成され、データ電極22を覆うように誘電体層23が形成され、さらにその上に井桁状の隔壁24が形成されている。そして、隔壁24の側面および誘電体層23の表面には赤色(R)に発光する蛍光体層25R、緑色(G)に発光する蛍光体層25G、および青色(B)に発光する蛍光体層25Bが設けられている。以下、蛍光体層25R、蛍光体層25G、蛍光体層25Bをまとめて蛍光体層25とも記す。 A plurality of data electrodes 22 are formed on the rear substrate 21, a dielectric layer 23 is formed so as to cover the data electrodes 22, and a grid-like partition wall 24 is further formed thereon. The phosphor layer 25R that emits red (R), the phosphor layer 25G that emits green (G), and the phosphor layer that emits blue (B) are formed on the side surfaces of the barrier ribs 24 and the surface of the dielectric layer 23. 25B is provided. Hereinafter, the phosphor layer 25R, the phosphor layer 25G, and the phosphor layer 25B are collectively referred to as a phosphor layer 25.
 これら前面基板11と背面基板21とを、微小な空間を挟んで表示電極対14とデータ電極22とが交差するように対向配置し、前面基板11と背面基板21との間隙に放電空間を設ける。そして、その外周部をガラスフリット等の封着材によって封着し、その放電空間に、例えばネオンとキセノンの混合ガスを放電ガスとして封入する。 The front substrate 11 and the rear substrate 21 are arranged to face each other so that the display electrode pair 14 and the data electrode 22 intersect each other with a minute space therebetween, and a discharge space is provided in the gap between the front substrate 11 and the rear substrate 21. . And the outer peripheral part is sealed with sealing materials, such as a glass frit, and the mixed gas of neon and xenon is enclosed as discharge gas in the discharge space, for example.
 放電空間は隔壁24によって複数の区画に仕切られており、表示電極対14とデータ電極22とが交差する部分に、画素を構成する発光素子である放電セルが形成される。 The discharge space is partitioned into a plurality of sections by the barrier ribs 24, and discharge cells, which are light-emitting elements constituting the pixels, are formed at the intersections between the display electrode pairs 14 and the data electrodes 22.
 そして、これらの放電セルで放電を発生し、蛍光体層25を発光(放電セルを点灯)することにより、パネル10にカラーの画像を表示する。 Then, discharge is generated in these discharge cells, and the phosphor layer 25 emits light (discharge cells are turned on), thereby displaying a color image on the panel 10.
 なお、パネル10においては、表示電極対14が延伸する方向に配列された連続する3つの放電セルで1つの画素を構成する。この3つの放電セルとは、蛍光体層25Rを有し赤色(R)に発光する放電セル(以下、「赤の放電セル」と記す)と、蛍光体層25Gを有し緑色(G)に発光する放電セル(以下、「緑の放電セル」と記す)と、蛍光体層25Bを有し青色(B)に発光する放電セル(以下、「青の放電セル」と記す)である。 In the panel 10, one pixel is composed of three consecutive discharge cells arranged in the direction in which the display electrode pair 14 extends. The three discharge cells are a discharge cell having a phosphor layer 25R and emitting red (R) light (hereinafter referred to as “red discharge cell”) and a phosphor layer 25G having a green color (G). A discharge cell that emits light (hereinafter referred to as “green discharge cell”) and a discharge cell that has the phosphor layer 25B and emits light in blue (B) (hereinafter referred to as “blue discharge cell”).
 なお、パネル10の構造は上述したものに限られるわけではなく、例えばストライプ状の隔壁を備えたものであってもよい。 Note that the structure of the panel 10 is not limited to the above-described structure, and may be, for example, provided with a stripe-shaped partition wall.
 図3は、本発明の実施の形態におけるプラズマディスプレイ装置30に用いるパネル10の電極配列の一例を示す図である。 FIG. 3 is a diagram showing an example of an electrode arrangement of panel 10 used in plasma display device 30 in accordance with the exemplary embodiment of the present invention.
 パネル10には、第1の方向に延長されたn本の走査電極SC1~SCn(図2の走査電極12)およびn本の維持電極SU1~SUn(図2の維持電極13)が配列され、第1の方向に交差する第2の方向に延長されたm本のデータ電極D1~Dm(図2のデータ電極22)が配列されている。 The panel 10 includes n scan electrodes SC1 to SCn (scan electrode 12 in FIG. 2) and n sustain electrodes SU1 to SUn (sustain electrode 13 in FIG. 2) extending in the first direction. M data electrodes D1 to Dm (data electrodes 22 in FIG. 2) extending in a second direction intersecting the first direction are arranged.
 以下、第1の方向を行方向(または水平方向、またはライン方向、またはx座標方向)と呼称し、第2の方向を列方向(または垂直方向、またはy座標方向)と呼称する。 Hereinafter, the first direction is referred to as a row direction (or horizontal direction, line direction, or x coordinate direction), and the second direction is referred to as a column direction (or vertical direction or y coordinate direction).
 そして、1対の走査電極SCi(i=1~n)および維持電極SUiと1つのデータ電極Dj(j=1~m)とが交差した領域に発光素子としての放電セルが1つ形成される。すなわち、1対の表示電極対14上には、m個の放電セルが形成され、m/3個の画素が形成される。そして、放電セルは放電空間内にm×n個形成され、m×n個の放電セルが形成された領域がパネル10の画像表示領域となる。例えば、画素数が1920×1080個のパネルでは、m=1920×3=5760となり、n=1080となる。 One discharge cell as a light emitting element is formed in a region where a pair of scan electrode SCi (i = 1 to n) and sustain electrode SUi intersects with one data electrode Dj (j = 1 to m). . In other words, m discharge cells are formed on one pair of display electrodes 14 and m / 3 pixels are formed. Then, m × n discharge cells are formed in the discharge space, and an area where m × n discharge cells are formed becomes an image display area of the panel 10. For example, in a panel having 1920 × 1080 pixels, m = 1920 × 3 = 5760 and n = 1080.
 例えば、データ電極Dp(p=3×q-2 : qはm/3以下の正の整数)を有する放電セルには赤の蛍光体が蛍光体層25Rとして塗布されており、この放電セルは赤の放電セルとなる。データ電極Dp+1を有する放電セルには緑の蛍光体が蛍光体層25Gとして塗布されており、この放電セルは緑の放電セルとなる。データ電極Dp+2を有する放電セルには青の蛍光体が蛍光体層25Bとして塗布されており、この放電セルは青の放電セルとなる。そして、互いに隣接する赤の放電セル、緑の放電セルおよび青の放電セルが一組となって1つの画素を構成する。 For example, a red phosphor is applied as a phosphor layer 25R to a discharge cell having a data electrode Dp (p = 3 × q−2: q is a positive integer of m / 3 or less). It becomes a red discharge cell. The discharge cell having the data electrode Dp + 1 is coated with a green phosphor as the phosphor layer 25G, and this discharge cell becomes a green discharge cell. A blue phosphor is applied as a phosphor layer 25B to the discharge cell having the data electrode Dp + 2, and this discharge cell becomes a blue discharge cell. A red discharge cell, a green discharge cell, and a blue discharge cell adjacent to each other constitute a set to constitute one pixel.
 次に、本実施の形態におけるプラズマディスプレイ装置30において発生する駆動電圧波形について図4、図5、図6、図7、図8を用いて説明する。 Next, driving voltage waveforms generated in the plasma display device 30 according to the present embodiment will be described with reference to FIGS. 4, 5, 6, 7, and 8.
 本実施の形態においては、1フィールドに、パネル10に画像を表示するための複数の画像表示サブフィールド、表示装置識別サブフィールドSFo、y座標検出サブフィールドSFy、およびx座標検出サブフィールドSFxを備える。以下、画像表示サブフィールドを単にサブフィールドとも記す。 In the present embodiment, one field includes a plurality of image display subfields for displaying an image on panel 10, display device identification subfield SFo, y-coordinate detection subfield SFy, and x-coordinate detection subfield SFx. . Hereinafter, the image display subfield is also simply referred to as a subfield.
 各画像表示サブフィールドは、初期化期間、書込み期間および維持期間を有する。 Each image display subfield has an initialization period, an address period, and a sustain period.
 初期化期間における初期化動作には、「強制初期化動作」と「選択初期化動作」がある。強制初期化動作では、直前のサブフィールドでの放電の有無にかかわらず放電セルに強制的に初期化放電を発生する。選択初期化動作では、直前のサブフィールドの書込み期間で書込み放電を発生した放電セルだけに選択的に初期化放電を発生する。 The initialization operation in the initialization period includes “forced initialization operation” and “selective initialization operation”. In the forced initializing operation, an initializing discharge is forcibly generated in the discharge cells regardless of the presence or absence of discharge in the immediately preceding subfield. In the selective initializing operation, initializing discharge is selectively generated only in the discharge cells that have generated address discharge in the address period of the immediately preceding subfield.
 本実施の形態では、1フィールドの最初のサブフィールド(例えば、サブフィールドSF1)を強制初期化動作を行うサブフィールド(強制初期化サブフィールド)とし、他のサブフィールド(例えば、サブフィールドSF2以降のサブフィールド)を選択初期化動作を行うサブフィールド(選択初期化サブフィールド)とする例を説明する。 In the present embodiment, the first subfield (for example, subfield SF1) of one field is set as a subfield (forced initialization subfield) for performing a forced initialization operation, and other subfields (for example, subfield SF2 and subsequent ones) An example will be described in which a subfield) is a subfield (selective initialization subfield) for performing a selective initialization operation.
 また、画像表示サブフィールドにおいては、各サブフィールドに輝度重みをそれぞれ設定する。本実施の形態では、一例として、1フィールドに8つのサブフィールド(サブフィールドSF1~SF8)を備え、各サブフィールドにそれぞれ(1、34、21、13、8、5、3、2)の輝度重みを設定する例を挙げる。 Also, in the image display subfield, a luminance weight is set for each subfield. In the present embodiment, as an example, one field has eight subfields (subfields SF1 to SF8), and each subfield has a luminance of (1, 34, 21, 13, 8, 5, 3, 2). An example of setting a weight is given.
 画像表示領域内におけるライトペン50の位置は、x座標とy座標で表される。x座標検出サブフィールドSFx、y座標検出サブフィールドSFyは、画像表示領域内におけるライトペン50の位置(位置座標)のx座標、y座標を検出するためのサブフィールドである。 The position of the light pen 50 in the image display area is represented by x and y coordinates. The x coordinate detection subfield SFx and the y coordinate detection subfield SFy are subfields for detecting the x coordinate and the y coordinate of the position (position coordinate) of the light pen 50 in the image display area.
 ライトペン50は、マルチ画面表示システム100に備えられたものであり、使用者がパネル10上に文字や図画を手書き入力するために使用される。ライトペン50の詳細は後述する。 The light pen 50 is provided in the multi-screen display system 100 and is used by a user to input characters and drawings on the panel 10 by handwriting. Details of the light pen 50 will be described later.
 本実施の形態におけるマルチ画面表示システム100では、ライトペン50と描画装置との間で無線通信を行う。ライトペン50は、ライトペン50の内部でライトペン50の位置座標を算出し、算出した位置座標のデータをライトペン50から描画装置へ無線通信によって送信する。 In the multi-screen display system 100 according to the present embodiment, wireless communication is performed between the light pen 50 and the drawing device. The light pen 50 calculates the position coordinates of the light pen 50 inside the light pen 50 and transmits data of the calculated position coordinates from the light pen 50 to the drawing apparatus by wireless communication.
 ライトペン50の内部でライトペン50の位置座標を算出するためには、プラズマディスプレイ装置30においてy座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxが発生するタイミングを、ライトペン50が正確に把握する必要がある。 In order to calculate the position coordinates of the light pen 50 inside the light pen 50, the light pen 50 accurately grasps the timing at which the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx occur in the plasma display device 30. There is a need to.
 また、マルチ画面表示装置130の画像表示面は複数のパネル10で構成されるため、ライトペン50の内部でライトペン50の位置座標を算出するためには、ライトペン50が現在どのパネル10上にあるのかを、ライトペン50自身が特定する必要がある。 Further, since the image display surface of the multi-screen display device 130 is composed of a plurality of panels 10, in order to calculate the position coordinates of the light pen 50 inside the light pen 50, which panel 10 the light pen 50 is currently on It is necessary for the light pen 50 itself to specify whether or not
 本実施の形態の表示装置識別サブフィールドSFoは、位置座標を検出するための基準となる信号(座標基準信号)をライトペン50自らが高い精度で発生できるようにするためのものであり、また、ライトペン50が現在どのパネル10の発光を受光しているのかをライトペン50自らが特定できるようにするためのものである。 The display device identification subfield SFo of the present embodiment is for allowing the light pen 50 itself to generate a signal (coordinate reference signal) as a reference for detecting the position coordinates with high accuracy. This is to enable the light pen 50 itself to identify which panel 10 is currently receiving light emission.
 なお、本実施の形態では、1フィールドにおいて、複数の画像表示サブフィールド(例えば、サブフィールドSF1~SF8)、表示装置識別サブフィールドSFo、y座標検出サブフィールドSFy、x座標検出サブフィールドSFxの順番で各サブフィールドが発生する例を説明するが、各サブフィールドの発生順序は何らこの順番に限定されるものではない。 In the present embodiment, the order of a plurality of image display subfields (for example, subfields SF1 to SF8), display device identification subfield SFo, y coordinate detection subfield SFy, and x coordinate detection subfield SFx in one field. An example in which each subfield is generated will be described, but the generation order of each subfield is not limited to this order.
 また、表示装置識別サブフィールドSFo、y座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxは、必ずしも毎フィールドに設けなくともよい。例えば、映像信号やプラズマディスプレイ装置の使用状態等に応じて、複数フィールドに1回の割合で表示装置識別サブフィールドSFo、y座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxを発生する構成としてもよい。 Also, the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx are not necessarily provided in each field. For example, the display device identification subfield SFo, the y-coordinate detection subfield SFy, and the x-coordinate detection subfield SFx may be generated at a rate of once per a plurality of fields according to the video signal, the usage state of the plasma display device, and the like. Good.
 図4は、本発明の実施の形態における画像表示サブフィールドのサブフィールドSF1~SF3においてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。 FIG. 4 is a diagram schematically showing an example of a drive voltage waveform applied to each electrode of panel 10 in subfields SF1 to SF3 of the image display subfield in the embodiment of the present invention.
 図4には、維持電極SU1~SUn、書込み期間において最初に書込み動作を行う走査電極SC1、書込み期間において最後に書込み動作を行う走査電極SCn(例えば、走査電極SC1080)、データ電極D1~データ電極Dm(例えば、データ電極D5760)のそれぞれに印加する駆動電圧波形を示す。また、以下における走査電極SCi、維持電極SUi、データ電極Dkは、各電極の中から画像データ(サブフィールド毎の発光・非発光を示すデータ)にもとづき選択された電極を表す。 FIG. 4 shows sustain electrodes SU1 to SUn, scan electrode SC1 that performs the address operation first in the address period, scan electrode SCn that performs the address operation last in the address period (for example, scan electrode SC1080), and data electrode D1 to data electrode. The drive voltage waveform applied to each of Dm (for example, data electrode D5760) is shown. Scan electrode SCi, sustain electrode SUi, and data electrode Dk in the following represent electrodes selected based on image data (data indicating light emission / non-light emission for each subfield) from among the electrodes.
 なお、サブフィールドSF3以降の各サブフィールドは、維持パルスの発生数を除き、サブフィールドSF2とほぼ同様の駆動電圧波形を発生する。 It should be noted that each subfield after subfield SF3 generates a drive voltage waveform substantially similar to that of subfield SF2, except for the number of sustain pulses.
 強制初期化動作を行うサブフィールドSF1の初期化期間Pi1の前半部では、データ電極D1~Dm、維持電極SU1~SUnに、それぞれ電圧0(V)を印加する。 In the first half of the initialization period Pi1 of the subfield SF1 in which the forced initialization operation is performed, the voltage 0 (V) is applied to the data electrodes D1 to Dm and the sustain electrodes SU1 to SUn.
 走査電極SC1~SCnには、電圧0(V)を印加した後に電圧Vi1を印加し、電圧Vi1から電圧Vi2まで緩やかに上昇する傾斜波形電圧(以下、「上り傾斜波形電圧」と呼称する)を印加する。 A scan waveform SC1 to SCn is applied with voltage Vi1 after voltage 0 (V) is applied, and a ramp waveform voltage (hereinafter referred to as “upward ramp waveform voltage”) that gradually rises from voltage Vi1 to voltage Vi2. Apply.
 電圧Vi1は、維持電極SU1~SUnに対して放電開始電圧よりも低い電圧に設定し、電圧Vi2は、維持電極SU1~SUnに対して放電開始電圧を超える電圧に設定する。 The voltage Vi1 is set to a voltage lower than the discharge start voltage for the sustain electrodes SU1 to SUn, and the voltage Vi2 is set to a voltage exceeding the discharge start voltage for the sustain electrodes SU1 to SUn.
 この上り傾斜波形電圧が上昇する間に、各放電セルに微弱な初期化放電が発生する。 A weak initializing discharge is generated in each discharge cell while this upward ramp waveform voltage rises.
 走査電極SC1~SCnに印加する電圧が電圧Vi2に到達したら、走査電極SC1~SCnの電圧を、電圧Vi2よりも低い電圧Vi3まで一旦下げ、その後、電圧0(V)に下げる。本実施の形態では電圧Vi3を約200(V)とするが、電圧Vi3は放電セルに放電が発生しない電圧であればよい。また、電圧Vi2から電圧0(V)まで急峻に電圧を下げてもよい。 When the voltage applied to scan electrodes SC1 to SCn reaches voltage Vi2, the voltage of scan electrodes SC1 to SCn is once lowered to voltage Vi3 lower than voltage Vi2, and then lowered to voltage 0 (V). In the present embodiment, the voltage Vi3 is about 200 (V), but the voltage Vi3 may be any voltage that does not cause discharge in the discharge cells. Further, the voltage may be sharply decreased from the voltage Vi2 to the voltage 0 (V).
 サブフィールドSF1の初期化期間Pi1の後半部では、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには正の電圧Veを印加する。 In the latter half of the initialization period Pi1 of the subfield SF1, a voltage 0 (V) is applied to the data electrodes D1 to Dm, and a positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
 走査電極SC1~SCnには、放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4まで緩やかに下降する傾斜波形電圧(以下、単に「下り傾斜波形電圧」とも記す)を印加する。電圧Vi4は、維持電極SU1~SUnに対して放電開始電圧を超える電圧に設定する。 The scan electrodes SC1 to SCn have a ramp waveform voltage that gradually falls from a voltage that is less than the discharge start voltage (eg, voltage 0 (V)) to a negative voltage Vi4 (hereinafter also simply referred to as “down ramp waveform voltage”). Is applied. Voltage Vi4 is set to a voltage exceeding the discharge start voltage with respect to sustain electrodes SU1 to SUn.
 この下り傾斜波形電圧を走査電極SC1~SCnに印加する間に、各放電セルに微弱な初期化放電が発生する。これにより、各電極上の壁電圧は、続く書込み期間Pw1での書込み動作に適した電圧に調整される。 During the application of this downward ramp waveform voltage to scan electrodes SC1 to SCn, a weak initializing discharge is generated in each discharge cell. Thereby, the wall voltage on each electrode is adjusted to a voltage suitable for the address operation in the subsequent address period Pw1.
 下り傾斜波形電圧が電圧Vi4に到達したら、走査電極SC1~SCnに印加する電圧を電圧Vcにする。 When the descending ramp waveform voltage reaches the voltage Vi4, the voltage applied to the scan electrodes SC1 to SCn is set to the voltage Vc.
 初期化期間Pi1に発生する上述の駆動電圧波形が、強制初期化波形である。この強制初期化動作により、初期化放電が発生した各放電セルの壁電圧をほぼ均一な状態にすることができる。 The above-mentioned drive voltage waveform generated in the initialization period Pi1 is a forced initialization waveform. By this forced initializing operation, the wall voltage of each discharge cell in which the initializing discharge has occurred can be made substantially uniform.
 なお、傾斜波形電圧によって生じる初期化放電は書込み放電や維持放電と比較して弱い放電であり、初期化放電による発光も書込み放電や維持放電による発光と比較して輝度が低い。これは、初期化放電による発光がパネル10に画像を表示する際の妨げとならないようにするためである。 Note that the initialization discharge generated by the ramp waveform voltage is weaker than the address discharge or the sustain discharge, and the light emission due to the initialization discharge is lower in luminance than the light emission due to the address discharge or the sustain discharge. This is to prevent the light emission by the initialization discharge from hindering the display of an image on the panel 10.
 なお、本実施の形態では、強制初期化動作を、パネル10の画像表示領域内にある全ての放電セルに強制的に初期化放電を発生する初期化動作として説明するが、本発明は何らこの構成に限定されない。本実施の形態では、例えば、パネル10の画像表示領域内にある一部の放電セルにのみ強制初期化波形を印加する動作も強制初期化動作とし、その強制初期化動作を行うサブフィールドを強制初期化サブフィールドとする。例えば、奇数フィールドのサブフィールドSF1では奇数行の走査電極SC(2N-1)(Nは1以上の整数)にのみ強制初期化波形を印加し、他の走査電極SC(2N)には後述の選択初期化波形を印加し、偶数フィールドのサブフィールドSF1では偶数行の走査電極SC(2N)にのみ強制初期化波形を印加し、他の走査電極SC(2N-1)には選択初期化波形を印加する、というように、フィールド毎に強制初期化波形を印加する走査電極SC1~SCnを変更してもよい。これは、以下の説明における強制初期化動作を行う全てのサブフィールドについても同様である。 In the present embodiment, the forced initializing operation is described as an initializing operation for forcibly generating an initializing discharge in all the discharge cells in the image display area of panel 10, but the present invention is not limited to this. It is not limited to the configuration. In the present embodiment, for example, the operation for applying the forced initialization waveform only to some discharge cells in the image display area of the panel 10 is also the forced initialization operation, and the subfield for performing the forced initialization operation is forcibly set. This is an initialization subfield. For example, in the odd-field subfield SF1, the forced initializing waveform is applied only to the odd-numbered scan electrodes SC (2N-1) (N is an integer of 1 or more), and the other scan electrodes SC (2N) are described later. A selective initialization waveform is applied. In the even-field subfield SF1, a forced initialization waveform is applied only to the even-numbered scan electrode SC (2N), and a selective initialization waveform is applied to the other scan electrode SC (2N-1). For example, the scan electrodes SC1 to SCn to which the forced initialization waveform is applied may be changed for each field. The same applies to all subfields that perform the forced initialization operation in the following description.
 サブフィールドSF1の書込み期間Pw1では、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには電圧Veを印加し、走査電極SC1~SCnには電圧Vcを印加する。 In address period Pw1 of subfield SF1, voltage 0 (V) is applied to data electrodes D1 to Dm, voltage Ve is applied to sustain electrodes SU1 to SUn, and voltage Vc is applied to scan electrodes SC1 to SCn. .
 次に、1行目の走査電極SC1に負の電圧Vaの負極性の走査パルスを印加する。そして、データ電極D1~Dmのうちの1行目において発光するべき放電セルのデータ電極Dkに正の電圧Vdの正極性の書込みパルスを印加する。 Next, a negative scan pulse having a negative voltage Va is applied to the scan electrode SC1 in the first row. Then, a positive address pulse of a positive voltage Vd is applied to the data electrode Dk of the discharge cell that should emit light in the first row of the data electrodes D1 to Dm.
 書込みパルスの電圧Vdを印加したデータ電極Dkと走査パルスの電圧Vaを印加した走査電極SC1との交差部にある放電セル(発光するべき放電セル)では、書込み放電が発生する。 Address discharge occurs in the discharge cell (discharge cell to emit light) at the intersection of the data electrode Dk to which the address pulse voltage Vd is applied and the scan electrode SC1 to which the scan pulse voltage Va is applied.
 書込み放電が発生した放電セルでは、各電極上に維持放電の発生に必要な壁電圧が蓄積される。書込みパルスを印加しなかった放電セルでは、書込み放電は発生しない。 In the discharge cell in which the address discharge has occurred, the wall voltage necessary for generating the sustain discharge is accumulated on each electrode. In the discharge cells to which no address pulse is applied, no address discharge occurs.
 なお、走査パルスおよび書込みパルスの各電圧は、書込み放電が維持放電と比較して弱い放電となるように調整される。そのため、書込み放電による発光は維持放電による発光と比較して輝度が低い。これは、書込み放電による発光がパネル10に画像を表示する際の妨げとならないようにするためである。 The voltages of the scan pulse and the address pulse are adjusted so that the address discharge is weaker than the sustain discharge. Therefore, the light emission due to the address discharge has lower luminance than the light emission due to the sustain discharge. This is to prevent light emission due to the address discharge from hindering display of an image on the panel 10.
 次に、2行目の走査電極SC2に電圧Vaの走査パルスを印加するとともに、2行目に発光するべき放電セルに対応するデータ電極Dkに電圧Vdの書込みパルスを印加する。これにより、走査パルスと書込みパルスとが同時に印加された2行目の放電セルでは書込み放電が発生する。書込みパルスが印加されなかった放電セルでは書込み放電は発生しない。こうして、2行目の放電セルにおける書込み動作を行う。 Next, a scan pulse of voltage Va is applied to scan electrode SC2 in the second row, and an address pulse of voltage Vd is applied to data electrode Dk corresponding to the discharge cell to emit light in the second row. As a result, address discharge occurs in the discharge cells in the second row to which the scan pulse and address pulse are simultaneously applied. Address discharge does not occur in the discharge cells to which no address pulse is applied. Thus, the address operation in the discharge cells in the second row is performed.
 同様の書込み動作を、走査電極SC3、走査電極SC4、・・・、走査電極SCnという順番で、n行目の放電セルに至るまで順次行い、サブフィールドSF1の書込み期間Pw1が終了する。 The same addressing operation is sequentially performed in the order of scan electrode SC3, scan electrode SC4,..., Scan electrode SCn up to the discharge cell in the n-th row, and the address period Pw1 of subfield SF1 ends.
 なお、本発明は、走査電極SC1~SCnに走査パルスを印加する順番が何ら上述した順番に限定されるものではない。走査電極SC1~SCnに走査パルスを印加する順番は、画像表示装置における仕様等に応じて任意に設定すればよい。 In the present invention, the order in which the scan pulses are applied to the scan electrodes SC1 to SCn is not limited to the order described above. The order in which the scan pulses are applied to the scan electrodes SC1 to SCn may be arbitrarily set according to the specifications of the image display device.
 サブフィールドSF1の維持期間Ps1では、データ電極D1~Dmに電圧0(V)を印加する。そして、走査電極SC1~SCnに正の電圧Vsの維持パルスを印加するとともに、維持電極SU1~SUnに電圧0(V)を印加する。 In the sustain period Ps1 of the subfield SF1, voltage 0 (V) is applied to the data electrodes D1 to Dm. Then, a sustain pulse of positive voltage Vs is applied to scan electrodes SC1 to SCn, and voltage 0 (V) is applied to sustain electrodes SU1 to SUn.
 この維持パルスの印加により、直前の書込み期間Pw1に書込み放電を発生した放電セルでは維持放電が発生する。そして、維持放電によって発生した紫外線により、この放電セルの蛍光体層25が発光する。 By the application of the sustain pulse, a sustain discharge occurs in the discharge cell that has generated the address discharge in the immediately preceding address period Pw1. The phosphor layer 25 of the discharge cell emits light due to the ultraviolet rays generated by the sustain discharge.
 また、この維持放電により、走査電極SCi上の壁電圧、および維持電極SUi上の壁電圧は極性が反転する。直前の書込み期間Pw1に書込み放電が発生しなかった放電セルでは維持放電は発生しない。 Also, due to the sustain discharge, the polarity of the wall voltage on the scan electrode SCi and the wall voltage on the sustain electrode SUi are reversed. No sustain discharge occurs in the discharge cells in which no address discharge has occurred in the immediately preceding address period Pw1.
 続いて、走査電極SC1~SCnに電圧0(V)を印加し、維持電極SU1~SUnに電圧Vsの維持パルスを印加する。直前に維持放電を発生した放電セルでは再び維持放電が発生し、維持電極SUi上の壁電圧、および走査電極SCi上の壁電圧は極性が反転する。 Subsequently, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and a sustain pulse of voltage Vs is applied to sustain electrodes SU1 to SUn. In the discharge cell that has generated a sustain discharge immediately before, a sustain discharge occurs again, and the wall voltage on sustain electrode SUi and the wall voltage on scan electrode SCi are inverted in polarity.
 以降同様に、走査電極SC1~SCnと維持電極SU1~SUnとに、輝度重みに所定の輝度倍数を乗じた数の維持パルスを交互に印加する。こうして、直前の書込み期間Pw1において書込み放電を発生した放電セルは、輝度重みに応じた回数の維持放電が発生し、輝度重みに応じた輝度で発光する。 Thereafter, similarly, the number of sustain pulses obtained by multiplying the brightness weight by a predetermined brightness multiple is alternately applied to scan electrodes SC1 to SCn and sustain electrodes SU1 to SUn. In this way, the discharge cells that have generated the address discharge in the immediately preceding address period Pw1 generate the sustain discharge the number of times corresponding to the luminance weight, and emit light with the luminance corresponding to the luminance weight.
 なお、維持放電は、初期化放電や書込み放電と比較して、強い放電であり発光輝度も高い。 Note that the sustain discharge is a strong discharge and has a high luminance as compared with the initialization discharge and the address discharge.
 そして、維持パルスの発生後(維持期間Ps1において維持動作が終了した後)には、維持電極SU1~SUnおよびデータ電極D1~Dmに電圧0(V)を印加したまま、走査電極SC1~SCnに電圧0(V)から正の電圧Vrまで緩やかに上昇する上り傾斜波形電圧を印加する。 After the sustain pulse is generated (after the sustain operation is completed in sustain period Ps1), voltage 0 (V) is applied to sustain electrodes SU1 to SUn and data electrodes D1 to Dm, and applied to scan electrodes SC1 to SCn. An upward ramp waveform voltage that gradually rises from the voltage 0 (V) to the positive voltage Vr is applied.
 維持放電を発生した放電セルの放電開始電圧を超える電圧に電圧Vrを設定する。これにより、維持放電を発生した放電セルに微弱な放電(消去放電)が発生する。 The voltage Vr is set to a voltage exceeding the discharge start voltage of the discharge cell that has generated the sustain discharge. As a result, a weak discharge (erase discharge) is generated in the discharge cell that has generated the sustain discharge.
 これにより、走査電極SCi上の壁電圧および維持電極SUi上の壁電圧が弱められ、放電セル内の不要な壁電荷が消去される。 Thereby, the wall voltage on the scan electrode SCi and the wall voltage on the sustain electrode SUi are weakened, and unnecessary wall charges in the discharge cells are erased.
 上り傾斜波形電圧が電圧Vrに到達したら、走査電極SC1~SCnに印加する電圧を電圧0(V)まで下げる。こうして、維持期間Ps1の最後に行う消去動作が終了し、サブフィールドSF1が終了する。 When the rising ramp waveform voltage reaches the voltage Vr, the voltage applied to the scan electrodes SC1 to SCn is lowered to the voltage 0 (V). Thus, the erase operation performed at the end of sustain period Ps1 ends, and subfield SF1 ends.
 次に、選択初期化サブフィールドについてサブフィールドSF2を例に挙げて説明する。なお、本実施の形態では、サブフィールドSF3以降の初期化期間Pi3~Pi8においても、サブフィールドSF2の初期化期間Pi2と同様の駆動電圧波形を各電極に印加して、選択初期化動作を行う。 Next, the selective initialization subfield will be described by taking the subfield SF2 as an example. In the present embodiment, in the initialization periods Pi3 to Pi8 after the subfield SF3, the same drive voltage waveform as that in the initialization period Pi2 of the subfield SF2 is applied to each electrode to perform the selective initialization operation. .
 サブフィールドSF2の初期化期間Pi2では、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには正の電圧Veを印加する。 In the initialization period Pi2 of the subfield SF2, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the positive voltage Ve is applied to the sustain electrodes SU1 to SUn.
 走査電極SC1~SCnには、放電開始電圧未満となる電圧(例えば、電圧0(V))から負の電圧Vi4まで下降する下り傾斜波形電圧を印加する。 A downward ramp waveform voltage that drops from a voltage that is lower than the discharge start voltage (for example, voltage 0 (V)) to a negative voltage Vi4 is applied to scan electrodes SC1 to SCn.
 この下り傾斜波形電圧を走査電極SC1~SCnに印加する間に、直前のサブフィールドSF1の維持期間Ps1で維持放電を発生した放電セルに微弱な初期化放電が発生する。 While applying this downward ramp waveform voltage to scan electrodes SC1 to SCn, a weak initializing discharge is generated in the discharge cell that has generated a sustain discharge in sustain period Ps1 of immediately preceding subfield SF1.
 この初期化放電により、各電極上の壁電圧は、書込み動作に適した壁電圧に調整される。 The wall voltage on each electrode is adjusted to a wall voltage suitable for the write operation by this initialization discharge.
 一方、直前のサブフィールドSF1の維持期間Ps1に維持放電を発生しなかった放電セルでは、初期化放電は発生しない。 On the other hand, the initializing discharge does not occur in the discharge cells that did not generate the sustain discharge in the sustain period Ps1 of the immediately preceding subfield SF1.
 下り傾斜波形電圧が電圧Vi4に到達したら、走査電極SC1~SCnに印加する電圧を電圧Vcにする。 When the descending ramp waveform voltage reaches the voltage Vi4, the voltage applied to the scan electrodes SC1 to SCn is set to the voltage Vc.
 この初期化期間Pi2に発生する上述の駆動電圧波形が、選択初期化波形である。 The above-mentioned drive voltage waveform generated in the initialization period Pi2 is a selective initialization waveform.
 なお、電圧Vi4および電圧Veは、パネル10の特性やプラズマディスプレイ装置30の仕様等に応じて、上述の動作を満たす電圧値に設定する。 The voltage Vi4 and the voltage Ve are set to voltage values that satisfy the above-described operation according to the characteristics of the panel 10, the specifications of the plasma display device 30, and the like.
 サブフィールドSF2の書込み期間Pw2および維持期間Ps2は、維持パルスの発生数を除き、サブフィールドSF1の書込み期間Pw1および維持期間Ps1と同様の駆動電圧波形を各電極に印加するので説明を省略する。 In the address period Pw2 and the sustain period Ps2 in the subfield SF2, the drive voltage waveforms similar to those in the address period Pw1 and the sustain period Ps1 in the subfield SF1 are applied to the respective electrodes, except for the number of sustain pulses generated, and thus the description thereof is omitted.
 サブフィールドSF3以降の各サブフィールドでは、維持パルスの発生数を除き、サブフィールドSF2と同様の駆動電圧波形を各電極に印加するので説明を省略する。 In each subfield after subfield SF3, the drive voltage waveform similar to that in subfield SF2 is applied to each electrode except for the number of sustain pulses, and the description thereof is omitted.
 なお、本実施の形態では、強制初期化動作を行うサブフィールドをサブフィールドSF1とする例を説明したが、本発明は何らこの構成に限定されない。強制初期化動作を行うサブフィールドはサブフィールドSF2以降のサブフィールドであってもよい。 In the present embodiment, an example has been described in which the subfield for performing the forced initialization operation is the subfield SF1, but the present invention is not limited to this configuration. The subfield in which the forced initialization operation is performed may be a subfield after subfield SF2.
 なお、本実施の形態では、強制初期化動作を1フィールドに1回行う例を説明したが、本発明は何らこの構成に限定されない。強制初期化動作を行う回数は複数フィールドに1回であってもよい。 In the present embodiment, the example in which the forced initialization operation is performed once per field has been described, but the present invention is not limited to this configuration. The number of times of performing the forced initialization operation may be once in a plurality of fields.
 次に、一例として、マルチ画面表示装置130を4台のプラズマディスプレイ装置30a、30b、30c、30dで構成するときの、各座標検出サブフィールドで発生する駆動電圧波形を、図5、図6、図7、図8を用いて説明する。なお、座標検出サブフィールドは、表示装置識別サブフィールドSFo、y座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxの総称である。 Next, as an example, when the multi-screen display device 130 is configured with four plasma display devices 30a, 30b, 30c, and 30d, driving voltage waveforms generated in each coordinate detection subfield are shown in FIGS. This will be described with reference to FIGS. The coordinate detection subfield is a generic name for the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx.
 上述したように、表示装置識別サブフィールドSFoは、座標基準信号をライトペン50自らが高い精度で発生できるようにするためのものであり、ライトペン50が現在どのパネル10の発光を受光しているのかをライトペン50自らが特定できるようにするためのものである。そのために、本実施の形態では、表示装置識別サブフィールドSFoに発生する駆動電圧波形を、マルチ画面表示装置130を構成する複数のプラズマディスプレイ装置30間で互いに異なる波形形状にしている。したがって、以下、各プラズマディスプレイ装置30a、30b、30c、30dで発生する表示装置識別サブフィールドSFoを、それぞれ、表示装置識別サブフィールドSFao、SFbo、SFco、SFdoとして互いに区別する。 As described above, the display device identification subfield SFo is for allowing the light pen 50 itself to generate the coordinate reference signal with high accuracy, and the light pen 50 currently receives the light emitted from which panel 10. This is to allow the light pen 50 to identify itself. For this reason, in the present embodiment, the drive voltage waveform generated in the display device identification subfield SFo has a waveform shape that is different between the plurality of plasma display devices 30 constituting the multi-screen display device 130. Therefore, hereinafter, the display device identification subfield SFo generated in each plasma display device 30a, 30b, 30c, 30d is distinguished from each other as a display device identification subfield SFao, SFbo, SFco, SFdo, respectively.
 また、本実施の形態では、ライトペン50が、隣り合うプラズマディスプレイ装置30を移動するときに位置座標を誤検出して誤った位置にカーソルが表示されるのを抑制するために、y座標検出サブフィールドSFy、x座標検出サブフィールドSFxに発生する駆動電圧波形についても、複数のプラズマディスプレイ装置30間で互いに異なる波形形状にしている。したがって、以下、各プラズマディスプレイ装置30a、30b、30c、30dで発生するy座標検出サブフィールドSFy、x座標検出サブフィールドSFxを、それぞれ、y座標検出サブフィールドSFay、SFby、SFcy、SFdy、x座標検出サブフィールドSFax、SFbx、SFcx、SFdxとして互いに区別する。 Further, in the present embodiment, the y-coordinate detection is performed in order to prevent the light pen 50 from erroneously detecting the position coordinates and moving the cursor to the wrong position when moving between the adjacent plasma display devices 30. The drive voltage waveforms generated in the subfield SFy and the x-coordinate detection subfield SFx also have different waveform shapes among the plurality of plasma display devices 30. Therefore, hereinafter, the y-coordinate detection subfield SFy and the x-coordinate detection subfield SFx generated in each of the plasma display devices 30a, 30b, 30c, and 30d are respectively expressed as the y-coordinate detection subfield SFay, SFby, SFfy, SFdy, and the x-coordinate. The detection subfields are distinguished from each other as SFax, SFbx, SFcx, and SFdx.
 図5、図6、図7、図8の各図面は、本発明の実施の形態における座標検出サブフィールドにおいてパネル10の各電極に印加する駆動電圧波形の一例を概略的に示す図である。なお、図5には、図1に示したプラズマディスプレイ装置30aで発生する駆動電圧波形を示し、図6には、図1に示したプラズマディスプレイ装置30bで発生する駆動電圧波形を示し、図7には、図1に示したプラズマディスプレイ装置30cで発生する駆動電圧波形を示し、図8には、図1に示したプラズマディスプレイ装置30dで発生する駆動電圧波形を示す。 5, 6, 7, and 8 are diagrams schematically showing examples of drive voltage waveforms applied to the electrodes of the panel 10 in the coordinate detection subfield in the embodiment of the present invention. 5 shows driving voltage waveforms generated in the plasma display device 30a shown in FIG. 1, FIG. 6 shows driving voltage waveforms generated in the plasma display device 30b shown in FIG. Shows a driving voltage waveform generated in the plasma display device 30c shown in FIG. 1, and FIG. 8 shows a driving voltage waveform generated in the plasma display device 30d shown in FIG.
 図5、図6、図7、図8には、表示装置識別サブフィールドSFo、y座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxにおいて、維持電極SU1~SUn、走査電極SC1、走査電極SCn、データ電極D1~Dmのそれぞれに印加する駆動電圧波形を示す。また、各図面には、表示装置識別サブフィールドSFoの直前のサブフィールドSF8の維持期間Ps8の一部、およびサブフィールドSF1の一部もあわせて示す。 5, 6, 7, and 8, in the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx, the sustain electrodes SU1 to SUn, the scan electrode SC1, the scan electrode SCn, The drive voltage waveform applied to each of the data electrodes D1 to Dm is shown. Each drawing also shows a part of the sustain period Ps8 of the subfield SF8 immediately before the display device identification subfield SFo and a part of the subfield SF1.
 まず、図5を用いて、プラズマディスプレイ装置30aで発生する座標検出サブフィールドを説明する。 First, the coordinate detection subfield generated in the plasma display device 30a will be described with reference to FIG.
 図5に示すように、プラズマディスプレイ装置30aで発生する表示装置識別サブフィールドSFaoは、初期化期間Pio、書込み期間Pwo、および表示装置識別期間Paoを有する。 As shown in FIG. 5, the display device identification subfield SFao generated in the plasma display device 30a has an initialization period Pio, an address period Pwo, and a display device identification period Pao.
 初期化期間Pioでは、画像表示サブフィールドのサブフィールドSF1の初期化期間Pi1と同様の駆動電圧波形を各電極に印加して同様の強制初期化動作を行うので、説明を省略する。 In the initialization period Pio, the same driving voltage waveform as that in the initialization period Pi1 of the subfield SF1 of the image display subfield is applied to each electrode to perform the same forced initialization operation, and thus the description thereof is omitted.
 表示装置識別サブフィールドSFaoの書込み期間Pwoでは、データ電極D1~Dmには電圧0(V)を印加し、維持電極SU1~SUnには電圧Veを印加し、走査電極SC1~SCnには電圧Vcを印加する。 In the address period Pwo of the display device identification subfield SFao, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage Vc is applied to the scan electrodes SC1 to SCn. Apply.
 次に、データ電極D1~Dmに電圧Vdの書込みパルスを印加するとともに走査電極SC1~SCnに電圧Vaの走査パルスを印加し、各放電セルに書込み放電を発生させる。 Next, an address pulse of the voltage Vd is applied to the data electrodes D1 to Dm and a scan pulse of the voltage Va is applied to the scan electrodes SC1 to SCn to generate an address discharge in each discharge cell.
 本実施の形態では、図5に示すように、全てのデータ電極D1~Dmに書込みパルスを印加したまま、走査電極SC1から走査電極SCnまでの各電極に順次走査パルスを印加するが、例えば、全ての走査電極SC1~SCnに一斉に走査パルスを印加して、プラズマディスプレイ装置30aのパネル10aの画像表示領域内にある全ての放電セルに一斉に書込み放電を発生させてもよい。 In the present embodiment, as shown in FIG. 5, the scan pulse is sequentially applied to each electrode from the scan electrode SC1 to the scan electrode SCn while the address pulse is applied to all the data electrodes D1 to Dm. It is also possible to apply a scan pulse to all the scan electrodes SC1 to SCn at a time to generate an address discharge in all the discharge cells in the image display area of the panel 10a of the plasma display device 30a.
 パネル10aの画像表示領域内にある全ての放電セルに書込み放電を発生し終えた後は、データ電極D1~Dmに電圧0(V)を印加する。また、走査電極SC1~SCnには電圧Vcを印加し、その後、電圧0(V)を印加する。また、維持電極SU1~SUnへの印加電圧を電圧Veから電圧0(V)にする。本実施の形態では、この状態を、時刻to0から時間To0の間、維持する。したがって、この期間は、放電セルに最後の書込み放電が発生した後、放電が発生しない状態が維持される。なお、時刻to0は、最後の書込み放電を発生させるための走査パルスを走査電極SCnに印加した時刻である。 After completing the address discharge in all the discharge cells in the image display area of the panel 10a, the voltage 0 (V) is applied to the data electrodes D1 to Dm. Further, voltage Vc is applied to scan electrodes SC1 to SCn, and then voltage 0 (V) is applied. Further, the voltage applied to sustain electrodes SU1 to SUn is changed from voltage Ve to voltage 0 (V). In the present embodiment, this state is maintained from time to0 to time To0. Therefore, during this period, after the last address discharge occurs in the discharge cells, a state in which no discharge occurs is maintained. Time to0 is the time when the scan pulse for generating the last address discharge is applied to scan electrode SCn.
 そして、本実施の形態では、時間To0を、後述する時間TA1、時間TA2、時間TA3のいずれよりも長い時間に設定する。本実施の形態では、時間To0は、例えば、約60μsecである。 In this embodiment, the time To0 is set to a time longer than any of the time TA1, time TA2, and time TA3 described later. In the present embodiment, the time To0 is about 60 μsec, for example.
 次に、表示装置識別サブフィールドSFaoの表示装置識別期間Paoでは、ライトペン50における位置座標算出時の基準となる複数回の発光(表示装置識別用の発光)をパネル10aに生じさせる。すなわち、あらかじめ定められた所定の時間間隔(本実施の形態では、例えば、時間TA1、時間TA2、時間TA3)で、パネル10aの画像表示領域内の全ての放電セルに、表示装置識別用の発光を生じさせる表示装置識別放電を複数回(本実施の形態では、例えば、4回)発生させる。 Next, in the display device identification period Pao of the display device identification subfield SFao, the panel 10a is caused to emit a plurality of times of light emission (light emission for display device identification) as a reference when calculating the position coordinates in the light pen 50. That is, light emission for display device identification is emitted to all the discharge cells in the image display area of the panel 10a at predetermined time intervals (in this embodiment, for example, time TA1, time TA2, and time TA3 in this embodiment). Is generated a plurality of times (in this embodiment, for example, four times).
 具体的には、時刻to0から時間To0が経過した後の時刻to1において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの表示装置識別パルスVa1を印加する。これにより、パネル10aの画像表示領域内にある全ての放電セルに1回目の表示装置識別放電が発生し、パネル10aの画像表示面の全面が発光する(1回目の表示装置識別用の発光)。 Specifically, at time to1 after time To0 has elapsed from time to0, voltage 0 (V) is applied to sustain electrodes SU1 to SUn and display device identification pulse Va1 of voltage Vso is applied to scan electrodes SC1 to SCn. To do. As a result, the first display device identification discharge is generated in all the discharge cells in the image display area of the panel 10a, and the entire image display surface of the panel 10a emits light (first display device identification light emission). .
 なお、この表示装置識別放電は、維持放電と同様に、書込み放電と比較して強い放電であり、発光輝度も高い。 In addition, this display device identification discharge is a strong discharge as compared with the address discharge, and the light emission luminance is also high, like the sustain discharge.
 次に、時刻to1から時間TA1が経過した後の時刻ta2において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの表示装置識別パルスVa2を印加する。これにより、パネル10aの画像表示領域内にある全ての放電セルに2回目の表示装置識別放電が発生し、パネル10aの画像表示面の全面が発光する(2回目の表示装置識別用の発光)。 Next, at time ta2 after time TA1 has elapsed from time to1, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and display device identification pulse Va2 having voltage Vso is applied to sustain electrodes SU1 to SUn. As a result, the second display device identification discharge is generated in all the discharge cells in the image display area of the panel 10a, and the entire image display surface of the panel 10a emits light (second display device identification light emission). .
 次に、時刻ta2から時間TA2が経過した後の時刻ta3において、維持電極SU1~SUnに電圧0(V)を印加するとともに走査電極SC1~SCnに電圧Vsoの表示装置識別パルスVa3を印加する。これにより、パネル10aの画像表示領域内にある全ての放電セルに3回目の表示装置識別放電が発生し、パネル10aの画像表示面の全面が発光する(3回目の表示装置識別用の発光)。 Next, at time ta3 after time TA2 has elapsed from time ta2, voltage 0 (V) is applied to sustain electrodes SU1 to SUn, and display device identification pulse Va3 of voltage Vso is applied to scan electrodes SC1 to SCn. As a result, the third display device identification discharge is generated in all the discharge cells in the image display area of the panel 10a, and the entire image display surface of the panel 10a emits light (third display device identification light emission). .
 次に、時刻ta3から時間TA3が経過した後の時刻ta4において、走査電極SC1~SCnに電圧0(V)を印加するとともに維持電極SU1~SUnに電圧Vsoの表示装置識別パルスVa4を印加する。これにより、パネル10aの画像表示領域内にある全ての放電セルに4回目の表示装置識別放電が発生し、パネル10aの画像表示面の全面が発光する(4回目の表示装置識別用の発光)。 Next, at time ta4 after time TA3 has elapsed from time ta3, voltage 0 (V) is applied to scan electrodes SC1 to SCn, and display device identification pulse Va4 of voltage Vso is applied to sustain electrodes SU1 to SUn. As a result, the fourth display device identification discharge is generated in all the discharge cells in the image display area of the panel 10a, and the entire image display surface of the panel 10a emits light (fourth display device identification light emission). .
 このように、表示装置識別サブフィールドSFaoでは、プラズマディスプレイ装置30aを特定するためにあらかじめ定められた所定の時間間隔(本実施の形態では、例えば、時間TA1、時間TA2、時間TA3)で複数回(本実施の形態では、例えば、4回)の表示装置識別放電を発生し、パネル10aの画像表示面の全面を所定の時間間隔(例えば、時間TA1、時間TA2、時間TA3)で複数回(例えば、4回)発光させる。そして、ライトペン50は、この発光を受光して、ライトペン50がパネル10a上にあることを認識するとともに、座標基準信号(ライトペン50の位置座標(x座標、y座標)を算出する際に基準となる信号)を作成する。 Thus, in the display device identification subfield SFao, a plurality of times at predetermined time intervals (in the present embodiment, for example, time TA1, time TA2, and time TA3 in this embodiment) for specifying the plasma display device 30a. (In this embodiment, for example, four times of display device identification discharges are generated, and the entire surface of the image display surface of the panel 10a is applied a plurality of times (for example, time TA1, time TA2, time TA3). For example, light is emitted four times. The light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10a, and calculates a coordinate reference signal (position coordinate (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
 表示装置識別サブフィールドSFaoでは、パネル10aの画像表示面の全面が同じタイミングで一斉に光るので、ライトペン50の先端部がパネル10aの画像表示領域内のどこにあったとしても、ライトペン50は同じタイミングでこの発光を受光することができる。 In the display device identification subfield SFao, since the entire image display surface of the panel 10a shines at the same time, the light pen 50 is used regardless of where the tip of the light pen 50 is in the image display area of the panel 10a. This light emission can be received at the same timing.
 本実施の形態では、例えば、時間TA1は約50μsecであり、時間TA2は約20μsecであり、時間TA3は約30μsecである。 In this embodiment, for example, the time TA1 is about 50 μsec, the time TA2 is about 20 μsec, and the time TA3 is about 30 μsec.
 表示装置識別サブフィールドSFaoの表示装置識別期間Paoにおいて、表示装置識別パルスVa4の発生後(表示装置識別期間Paoの最後)には、サブフィールドSF1の維持期間Ps1の最後に行う消去動作と同様の消去動作を行う。これにより、パネル10aの画像表示領域内にある全ての放電セルに微弱な消去放電が発生する。 In the display device identification period Pao of the display device identification subfield SFao, after the display device identification pulse Va4 is generated (at the end of the display device identification period Pao), the same erase operation as that performed at the end of the sustain period Ps1 of the subfield SF1 is performed. Perform an erase operation. Thereby, a weak erasing discharge is generated in all the discharge cells in the image display area of the panel 10a.
 続いて、プラズマディスプレイ装置30aでは、y座標検出サブフィールドSFayとx座標検出サブフィールドSFaxを発生する。 Subsequently, in the plasma display device 30a, a y coordinate detection subfield SFay and an x coordinate detection subfield SFax are generated.
 y座標検出サブフィールドSFayは、初期化期間Piyとy座標検出期間Payを有する。 The y coordinate detection subfield SFay has an initialization period Piy and a y coordinate detection period Pay.
 初期化期間Piyでは、画像表示サブフィールドのサブフィールドSF2の初期化期間Pi2と同様の駆動電圧波形を各電極に印加して同様の選択初期化動作を行うので、説明を省略する。 In the initialization period Piy, a drive voltage waveform similar to that in the initialization period Pi2 of the subfield SF2 of the image display subfield is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
 初期化期間Piyの直前にある表示装置識別サブフィールドSFaoの表示装置識別期間Paoでは、パネル10aの画像表示領域内にある全ての放電セルに表示装置識別放電が発生するので、初期化期間Piyにおいても、それら全ての放電セルに微弱な初期化放電が発生する。これにより、パネル10aの画像表示領域内にある全ての放電セルの壁電圧が、続くy座標検出期間Payにおけるy座標検出パターン表示動作に適した壁電圧に調整される。さらに、y座標検出期間Payにおける放電の発生を補助するプライミング粒子が放電セル内に発生する。 In the display device identification period Pao of the display device identification subfield SFao immediately before the initialization period Piy, the display device identification discharge is generated in all the discharge cells in the image display area of the panel 10a. However, a weak initializing discharge is generated in all the discharge cells. Thereby, the wall voltage of all the discharge cells in the image display area of panel 10a is adjusted to the wall voltage suitable for the y coordinate detection pattern display operation in the subsequent y coordinate detection period Pay. Furthermore, priming particles that assist the generation of discharge in the y coordinate detection period Pay are generated in the discharge cell.
 y座標検出サブフィールドSFayのy座標検出期間Payでは、まず、維持電極SU1~SUnに電圧Veを印加し、データ電極D1~Dmに電圧0(V)を印加し、走査電極SC1~SCnに電圧Vcを印加する。 In the y coordinate detection period Pay of the y coordinate detection subfield SFay, first, the voltage Ve is applied to the sustain electrodes SU1 to SUn, the voltage 0 (V) is applied to the data electrodes D1 to Dm, and the voltage is applied to the scan electrodes SC1 to SCn. Vc is applied.
 次に、期間Ty0の後の時刻ty0で、データ電極D1~Dmに正極性のy座標検出電圧Vdyを印加し、1行目の走査電極SC1に電圧Vayの負極性のy座標検出パルスを印加する。y座標検出電圧Vdyは電圧0(V)よりも高い電圧であり、y座標検出パルスの電圧Vayは電圧Vcよりも低い負の電圧である。なお、図5では、y座標検出パルスのパルス幅をTy1として示している。 Next, at time ty0 after period Ty0, positive y coordinate detection voltage Vdy is applied to data electrodes D1 to Dm, and negative y coordinate detection pulse of voltage Vay is applied to scan electrode SC1 in the first row. To do. The y coordinate detection voltage Vdy is a voltage higher than the voltage 0 (V), and the voltage Vay of the y coordinate detection pulse is a negative voltage lower than the voltage Vc. In FIG. 5, the pulse width of the y-coordinate detection pulse is shown as Ty1.
 y座標検出電圧Vdyを印加したデータ電極D1~Dmと、電圧Vayのy座標検出パルスを印加した走査電極SC1との交差部にある1行目の放電セルでは、放電が発生する。 Discharge occurs in the discharge cells in the first row at the intersections between the data electrodes D1 to Dm to which the y coordinate detection voltage Vdy is applied and the scan electrode SC1 to which the y coordinate detection pulse of the voltage Vay is applied.
 この放電は、書込み放電と同様に、維持放電と比較して弱い放電であり発光輝度も低い。 This discharge, like the address discharge, is weaker than the sustain discharge and has a low emission luminance.
 このようにして、1行目を構成する全ての放電セルに放電が発生し、それらの放電セルが一斉に発光する。例えば、パネル10aの画像表示領域がm×n個の放電セルで構成され、m=1920×3=5760であり、n=1080(すなわち、画像表示領域における画素数が1920×1080)であれば、1行目を構成する5760個の放電セル(1920個の画素)が一斉に発光する。そして、この発光は、y座標検出のための発光となる。 Thus, discharge occurs in all the discharge cells constituting the first row, and these discharge cells emit light all at once. For example, if the image display area of the panel 10a is composed of m × n discharge cells, m = 1920 × 3 = 5760, and n = 1080 (that is, the number of pixels in the image display area is 1920 × 1080). The 5760 discharge cells (1920 pixels) constituting the first row emit light all at once. And this light emission becomes light emission for y coordinate detection.
 以下、1つの行を構成する放電セルの集合体を「放電セル行」と記し、1つの行を構成する画素の集合体を「画素行」と記す。本実施の形態では、放電セル行と画素行とは実質的に同じものであり、上述の動作では、1行目の画素行(1行目の放電セル行)が一斉に発光する。 Hereinafter, an aggregate of discharge cells constituting one row is referred to as “discharge cell row”, and an aggregate of pixels constituting one row is referred to as “pixel row”. In this embodiment, the discharge cell row and the pixel row are substantially the same, and in the above operation, the first pixel row (first discharge cell row) emits light all at once.
 次に、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、2行目の走査電極SC2に電圧Vayのy座標検出パルスを印加する。これにより、2行目の画素行(2行目の放電セル行)にy座標検出のための発光が生じる。 Next, with the y coordinate detection voltage Vdy applied to the data electrodes D1 to Dm, a y coordinate detection pulse of the voltage Vay is applied to the scan electrode SC2 in the second row. As a result, light emission for y coordinate detection occurs in the second pixel row (second discharge cell row).
 同様の動作を、データ電極D1~Dmにy座標検出電圧Vdyを印加したまま、走査電極SC3、走査電極SC4、・・・、走査電極SCnという順番で、n行目の放電セルに至るまで順次行い、3行目からn行目(例えば、1080行目)までの各画素行(放電セル行)にy座標検出のための発光を順次発生させる。 The same operation is performed in the order of scan electrode SC3, scan electrode SC4,..., Scan electrode SCn with the y coordinate detection voltage Vdy being applied to the data electrodes D1 to Dm until the discharge cell in the n-th row is reached. Then, light emission for y coordinate detection is sequentially generated in each pixel row (discharge cell row) from the third row to the nth row (for example, 1080th row).
 これにより、y座標検出サブフィールドSFayのy座標検出期間Payでは、発光する1本の横線(すなわち、発光する1つの画素行)が、パネル10aの画像表示領域の上端部(1行目の画素行)から下端部(n行目の画素行)まで1行ずつ順次移動するパターン(y座標検出パターンa)が表示される。すなわち、このy座標検出パターンaとは、画像表示領域の1行目からn行目までの各画素行が、1行毎に順次発光するパターンである。以下、このx座標方向に延長した発光する1本の横線を、「第1の発光線」とも記す。すなわち、y座標検出パターンとは、x座標方向に延長した第1の発光線がy座標方向に移動するパターンである。 As a result, in the y coordinate detection period Pay of the y coordinate detection subfield SFay, one horizontal line that emits light (that is, one pixel row that emits light) corresponds to the upper end portion (pixels in the first row) of the image display area of the panel 10a. A pattern (y coordinate detection pattern a) that sequentially moves one line at a time from the bottom line to the lower end (nth pixel line) is displayed. That is, the y-coordinate detection pattern a is a pattern in which each pixel row from the first row to the n-th row of the image display area sequentially emits light for each row. Hereinafter, one horizontal line that emits light extending in the x-coordinate direction is also referred to as a “first light emission line”. That is, the y coordinate detection pattern is a pattern in which the first light emission line extended in the x coordinate direction moves in the y coordinate direction.
 パネル10aにy座標検出パターンaを表示すると、画像表示領域の1行目からn行目までの各画素行が、1行毎に順次発光するので、ライトペン50の先端部がパネル10aの画像表示領域内のどこにあるかによって、ライトペン50がこの発光を受光するタイミングは変化する。ライトペン50でこの発光がいつ受光されたのか、その受光タイミングを検出することで、パネル10aの画像表示領域におけるライトペン50の位置(x座標、y座標)のy座標が検出される。 When the y-coordinate detection pattern a is displayed on the panel 10a, each pixel row from the first row to the n-th row in the image display area sequentially emits light every row, so that the tip of the light pen 50 is the image of the panel 10a. The timing at which the light pen 50 receives this light emission varies depending on where the display area is located. By detecting the light reception timing when this light emission is received by the light pen 50, the y coordinate of the position (x coordinate, y coordinate) of the light pen 50 in the image display area of the panel 10a is detected.
 本実施の形態では、走査電極SC1~SCnのそれぞれにy座標検出パルスを印加する時間をTy1とする。このTy1は、例えば、約1μsecである。 In this embodiment, the time for applying the y-coordinate detection pulse to each of the scan electrodes SC1 to SCn is Ty1. This Ty1 is, for example, about 1 μsec.
 続くx座標検出サブフィールドSFaxは、初期化期間Pixとx座標検出期間Paxを有する。 The subsequent x-coordinate detection subfield SFax has an initialization period Pix and an x-coordinate detection period Pax.
 初期化期間Pixでは、画像表示サブフィールドのサブフィールドSF1の初期化期間Pi1と同様の駆動電圧波形を各電極に印加して同様の強制初期化動作を行うので、説明を省略する。 In the initialization period Pix, a driving voltage waveform similar to that in the initialization period Pi1 of the subfield SF1 of the image display subfield is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
 x座標検出サブフィールドSFaxの初期化期間Pixでは、パネル10aの画像表示領域内にある全ての放電セルに初期化放電が発生する。これにより、パネル10aの画像表示領域内にある全ての放電セルの壁電圧が、続くx座標検出期間Paxにおけるx座標検出パターン表示動作に適した壁電圧に調整される。さらに、x座標検出期間Paxにおける放電の発生を補助するプライミング粒子が放電セル内に発生する。 In the initialization period Pix of the x-coordinate detection subfield SFax, initialization discharge occurs in all the discharge cells in the image display area of the panel 10a. Thereby, the wall voltage of all the discharge cells in the image display area of the panel 10a is adjusted to the wall voltage suitable for the x coordinate detection pattern display operation in the subsequent x coordinate detection period Pax. Furthermore, priming particles that assist the generation of discharge in the x-coordinate detection period Pax are generated in the discharge cell.
 x座標検出サブフィールドSFaxのx座標検出期間Paxでは、まず、データ電極D1~Dmに電圧0(V)を印加し、維持電極SU1~SUnに電圧Veを印加し、走査電極SC1~SCnに電圧Vcを印加する。 In the x coordinate detection period Pax of the x coordinate detection subfield SFax, first, the voltage 0 (V) is applied to the data electrodes D1 to Dm, the voltage Ve is applied to the sustain electrodes SU1 to SUn, and the voltage is applied to the scan electrodes SC1 to SCn. Vc is applied.
 次に、期間Tx0の後の時刻tx0で、走査電極SC1~SCnに負極性のx座標検出電圧Vaxを印加し、1~3列目のデータ電極D1~D3に電圧Vdxの正極性のx座標検出パルスを印加する。x座標検出パルスの電圧Vdxは電圧0(V)よりも高い電圧であり、x座標検出電圧Vaxは電圧Vcよりも低い負の電圧である。なお、図5では、x座標検出パルスのパルス幅をTx1として示している。 Next, at time tx0 after the period Tx0, the negative x coordinate detection voltage Vax is applied to the scan electrodes SC1 to SCn, and the positive x coordinate of the voltage Vdx is applied to the data electrodes D1 to D3 in the first to third columns. Apply detection pulse. The voltage Vdx of the x coordinate detection pulse is higher than the voltage 0 (V), and the x coordinate detection voltage Vax is a negative voltage lower than the voltage Vc. In FIG. 5, the pulse width of the x-coordinate detection pulse is shown as Tx1.
 なお、データ電極D1~D3は、1つの画素を構成する赤の放電セル、緑の放電セル、青の放電セルに対応しており、この画素は、例えば画像表示領域の左端に配置された画素である。 The data electrodes D1 to D3 correspond to a red discharge cell, a green discharge cell, and a blue discharge cell constituting one pixel, and the pixel is a pixel arranged at the left end of the image display area, for example. It is.
 電圧Vdxのx座標検出パルスを印加したデータ電極D1~D3と、x座標検出電圧Vaxを印加した走査電極SC1~SCnとの交差部にある放電セルでは、放電が発生する。 Discharge occurs in the discharge cells at the intersections between the data electrodes D1 to D3 to which the x coordinate detection pulse of the voltage Vdx is applied and the scan electrodes SC1 to SCn to which the x coordinate detection voltage Vax is applied.
 この放電は、書込み放電と同様に、維持放電と比較して弱い放電であり発光輝度も低い。 This discharge, like the address discharge, is weaker than the sustain discharge and has a low emission luminance.
 このようにして、1列目を構成する全ての画素に放電が発生し、それらの画素が一斉に発光する。例えば、パネル10aの画像表示領域がm×n個の放電セルで構成され、m=1920×3=5760であり、n=1080(すなわち、画像表示領域における画素数が1920×1080)であれば、1列目を構成する1080個の画素(3列×1080個の放電セル)が一斉に発光する。そして、この発光は、x座標検出のための発光となる。 In this way, discharge occurs in all the pixels constituting the first column, and these pixels emit light all at once. For example, if the image display area of the panel 10a is composed of m × n discharge cells, m = 1920 × 3 = 5760, and n = 1080 (that is, the number of pixels in the image display area is 1920 × 1080). The 1080 pixels (3 columns × 1080 discharge cells) constituting the first column emit light all at once. And this light emission becomes light emission for x coordinate detection.
 以下、1つの列を構成する放電セルの集合体を「放電セル列」と記す。また、互いに隣接する3列の放電セル列で構成される放電セルの集合体(画素の列)を「画素列」と記す。上述の動作では、1列目の画素列(すなわち、1列目、2列目および3列目の放電セル列)が一斉に発光する。 Hereinafter, an assembly of discharge cells constituting one column is referred to as a “discharge cell column”. Further, an assembly of discharge cells (pixel column) composed of three adjacent discharge cell columns is referred to as a “pixel column”. In the above-described operation, the first pixel column (that is, the first, second, and third discharge cell columns) emits light all at once.
 次に、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、4列目~6列目のデータ電極D4~D6に電圧Vdxのx座標検出パルスを印加する。これにより、2列目の画素列(4列目、5列目および6列目の放電セル列)にx座標検出のための発光が生じる。 Next, with the x coordinate detection voltage Vax being applied to the scan electrodes SC1 to SCn, the x coordinate detection pulse of the voltage Vdx is applied to the data electrodes D4 to D6 in the fourth column to the sixth column. As a result, light emission for x coordinate detection occurs in the second pixel column (fourth, fifth, and sixth discharge cell columns).
 同様の動作を、走査電極SC1~SCnにx座標検出電圧Vaxを印加したまま、データ電極D7~D9、データ電極D10~D12、・・・、データ電極Dm-2~Dmという順番で、互いに隣接する3本のデータ電極22毎に、m列目の放電セルに至るまで順次行い、3列目から最終列目(例えば、1920列目)までの各画素列にx座標検出のための発光を順次発生させる。 Similar operations are performed adjacent to each other in the order of data electrodes D7 to D9, data electrodes D10 to D12,..., Data electrodes Dm-2 to Dm, with the x coordinate detection voltage Vax being applied to scan electrodes SC1 to SCn. Each of the three data electrodes 22 is sequentially performed until reaching the m-th discharge cell, and light emission for x coordinate detection is performed on each pixel column from the third column to the last column (for example, 1920 column). Generate sequentially.
 これにより、x座標検出サブフィールドSFaxのx座標検出期間Paxでは、発光する1本の縦線(すなわち、発光する1つの画素列)が、パネル10aの画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで1列ずつ順次移動するパターン(x座標検出パターンa)が表示される。すなわち、このx座標検出パターンaとは、画像表示領域の1列目から最終列目までの各画素列が、1列毎に順次発光するパターンである。言い換えると、このx座標検出パターンaとは、互いに隣接する3つの放電セル列が、画像表示領域の左端部(1列目)から右端部(m列目)まで、3列ずつ順次発光するパターンである。以下、このy座標方向に延長した発光する1本の縦線を、「第2の発光線」とも記す。すなわち、x座標検出パターンとは、y座標方向に延長した第2の発光線がx座標方向に移動するパターンである。 Thereby, in the x coordinate detection period Pax of the x coordinate detection subfield SFax, one vertical line that emits light (that is, one pixel column that emits light) is displayed at the left end (first column) of the image display area of the panel 10a. A pattern (x-coordinate detection pattern a) that sequentially moves one column at a time from the pixel column) to the right end (m / 3th pixel column) is displayed. That is, the x-coordinate detection pattern a is a pattern in which each pixel column from the first column to the last column in the image display area sequentially emits light for each column. In other words, the x-coordinate detection pattern a is a pattern in which three discharge cell columns adjacent to each other sequentially emit light by three columns from the left end (first column) to the right end (m-th column) of the image display area. It is. Hereinafter, one vertical line that emits light extending in the y-coordinate direction is also referred to as a “second light emission line”. That is, the x-coordinate detection pattern is a pattern in which the second light emission line extended in the y-coordinate direction moves in the x-coordinate direction.
 パネル10aにx座標検出パターンaを表示すると、画像表示領域の1列目から最終列目までの各画素列が、1列毎に順次発光するので、ライトペン50の先端部がパネル10aの画像表示領域内のどこにあるかによって、ライトペン50がこの発光を受光するタイミングは変化する。ライトペン50でこの発光がいつ受光されたのか、その受光タイミングを検出することで、パネル10aの画像表示領域におけるライトペン50の位置(x座標、y座標)のx座標が検出される。 When the x-coordinate detection pattern a is displayed on the panel 10a, each pixel column from the first column to the last column in the image display area sequentially emits light for each column, so that the tip of the light pen 50 is the image of the panel 10a. The timing at which the light pen 50 receives this light emission varies depending on where the display area is located. By detecting the light reception timing when this light emission is received by the light pen 50, the x coordinate of the position (x coordinate, y coordinate) of the light pen 50 in the image display area of the panel 10a is detected.
 本実施の形態では、データ電極D1~Dmのそれぞれにx座標検出パルスを印加する時間をTx1とする。このTx1は、例えば、約1μsecである。 In this embodiment, the time for applying the x-coordinate detection pulse to each of the data electrodes D1 to Dm is Tx1. This Tx1 is about 1 μsec, for example.
 次に、図6を用いて、プラズマディスプレイ装置30bで発生する座標検出サブフィールドを説明する。 Next, the coordinate detection subfield generated in the plasma display device 30b will be described with reference to FIG.
 図6に示すように、プラズマディスプレイ装置30bで発生する表示装置識別サブフィールドSFboは、初期化期間Pio、書込み期間Pwo、および表示装置識別期間Pboを有する。 As shown in FIG. 6, the display device identification subfield SFbo generated in the plasma display device 30b has an initialization period Pio, an address period Pwo, and a display device identification period Pbo.
 表示装置識別サブフィールドSFboの初期化期間Pio、書込み期間Pwoでは、表示装置識別サブフィールドSFaoの初期化期間Pio、書込み期間Pwoと同様の動作を行うので、説明を省略する。 In the initialization period Pio and the writing period Pwo of the display device identification subfield SFbo, operations similar to those in the initialization period Pio and the writing period Pwo of the display device identification subfield SFao are performed, and thus description thereof is omitted.
 表示装置識別サブフィールドSFboでは、プラズマディスプレイ装置30bを特定するために、表示装置識別期間Paoとは異なるあらかじめ定められた所定の時間間隔(本実施の形態では、例えば、時間TB1、時間TB2、時間TB3)で複数回の表示装置識別放電を発生させ、パネル10bの画像表示面の全面を複数回(例えば、4回)発光させる。そして、ライトペン50は、この発光を受光して、ライトペン50がパネル10b上にあることを認識するとともに、座標基準信号(ライトペン50の位置座標(x座標、y座標)を算出する際に基準となる信号)を作成する。 In the display device identification subfield SFbo, in order to specify the plasma display device 30b, a predetermined time interval different from the display device identification period Pao (in this embodiment, for example, time TB1, time TB2, time In TB3), a plurality of display device identification discharges are generated, and the entire image display surface of the panel 10b is caused to emit light a plurality of times (for example, four times). The light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10b, and calculates a coordinate reference signal (position coordinates (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
 本実施の形態では、例えば、時間TB1は約40μsecであり、時間TB2は約30μsecであり、時間TB3は約30μsecである。 In this embodiment, for example, the time TB1 is about 40 μsec, the time TB2 is about 30 μsec, and the time TB3 is about 30 μsec.
 また、時間To0は、例えば、約60μsecであり、時間TB1、時間TB2、時間TB3のいずれよりも長い時間に設定する。 Further, the time To0 is, for example, about 60 μsec, and is set to a time longer than any of the time TB1, the time TB2, and the time TB3.
 表示装置識別パルスVb4の発生後(表示装置識別期間Pboの最後)には、表示装置識別期間Paoの最後に行う消去動作と同様の消去動作を行う。 After the generation of the display device identification pulse Vb4 (the end of the display device identification period Pbo), an erase operation similar to the erase operation performed at the end of the display device identification period Pao is performed.
 続いて、y座標検出サブフィールドSFbyとx座標検出サブフィールドSFbxを発生する。 Subsequently, a y-coordinate detection subfield SFby and an x-coordinate detection subfield SFbx are generated.
 y座標検出サブフィールドSFbyは、初期化期間Piyとy座標検出期間Pbyを有する。 The y coordinate detection subfield SFby has an initialization period Piy and a y coordinate detection period Pby.
 初期化期間Piyでは、y座標検出サブフィールドSFayの初期化期間Piyと同様の駆動電圧波形を各電極に印加して同様の選択初期化動作を行うので、説明を省略する。 In the initialization period Piy, a drive voltage waveform similar to that in the initialization period Piy of the y-coordinate detection subfield SFay is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
 y座標検出期間Pbyでは、y座標検出サブフィールドSFayのy座標検出期間Payと同様の駆動電圧波形を各電極に印加する。したがって、y座標検出期間Pbyでは、y座標検出期間Payと同様に、第1の発光線がパネル10bの画像表示領域の上端部(1行目の画素行)から下端部(n行目の画素行)まで1行ずつ順次移動するy座標検出パターンaがパネル10bに表示される。 In the y coordinate detection period Pby, a drive voltage waveform similar to that in the y coordinate detection period Pay of the y coordinate detection subfield SFay is applied to each electrode. Therefore, in the y-coordinate detection period Pby, as in the y-coordinate detection period Pay, the first light emission line is changed from the upper end portion (first pixel row) to the lower end portion (pixels in the nth row) of the image display area of the panel 10b. The y-coordinate detection pattern a that sequentially moves line by line up to line) is displayed on the panel 10b.
 x座標検出サブフィールドSFbxは、初期化期間Pixとx座標検出期間Pbxを有する。 The x-coordinate detection subfield SFbx has an initialization period Pix and an x-coordinate detection period Pbx.
 初期化期間Pixでは、x座標検出サブフィールドSFaxの初期化期間Pixと同様の駆動電圧波形を各電極に印加して同様の強制初期化動作を行うので、説明を省略する。 In the initialization period Pix, a driving voltage waveform similar to that in the initialization period Pix of the x-coordinate detection subfield SFax is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
 x座標検出期間Pbxでは、x座標検出サブフィールドSFaxのx座標検出期間Paxと同様の駆動電圧波形を各電極に印加する。ただし、x座標検出期間Pbxでは、x座標検出パルスをデータ電極D1~Dmに印加する順番がx座標検出期間Paxとは異なる。 In the x coordinate detection period Pbx, the same drive voltage waveform as that in the x coordinate detection period Pax of the x coordinate detection subfield SFax is applied to each electrode. However, in the x-coordinate detection period Pbx, the order in which the x-coordinate detection pulses are applied to the data electrodes D1 to Dm is different from the x-coordinate detection period Pax.
 具体的には、まず最初に、データ電極Dm-2~Dmにx座標検出パルスを印加し、最終列目の画素列(すなわち、m-2列目、m-1列目およびm列目の放電セル列)を一斉に発光させる。次に、データ電極Dm-5~Dm-3にx座標検出パルスを印加し、最終列目の隣の画素列(すなわち、m-5列目、m-4列目およびm-3列目の放電セル列)を一斉に発光させる。 Specifically, first, an x-coordinate detection pulse is applied to the data electrodes Dm-2 to Dm, and the last pixel columns (that is, the m-2th, m−1th, and mth columns). Discharge the cell array) simultaneously. Next, an x coordinate detection pulse is applied to the data electrodes Dm-5 to Dm-3, and the pixel columns adjacent to the last column (that is, the m-5th column, the m-4th column, and the m-3th column). Discharge the cell array) simultaneously.
 同様の動作を、データ電極Dm-8~Dm-6、・・・、データ電極D7~D9、データ電極D4~D6、データ電極D1~D3という順番で、互いに隣接する3本のデータ電極22毎に、1列目の放電セルに至るまで順次行い、最終列目(例えば、1920列目)から1列目までの各画素列にx座標検出のための発光を順次発生させる。 The same operation is performed for each of the three data electrodes 22 adjacent to each other in the order of the data electrodes Dm-8 to Dm-6,..., The data electrodes D7 to D9, the data electrodes D4 to D6, and the data electrodes D1 to D3. Then, the process is sequentially performed until the discharge cell in the first column, and light emission for x coordinate detection is sequentially generated in each pixel column from the last column (for example, 1920 column) to the first column.
 したがって、x座標検出期間Pbxでは、x座標検出期間Paxとは逆に、第2の発光線がパネル10bの画像表示領域の右端部(m/3列目の画素列)から左端部(1列目の画素列)まで1列ずつ順次移動するパターン(x座標検出パターンb)がパネル10bに表示される。言い換えると、このx座標検出パターンbとは、互いに隣接する3つの放電セル列が、画像表示領域の右端部(m列目)から左端部(1列目)まで、3列ずつ順次発光するパターンである。 Therefore, in the x-coordinate detection period Pbx, contrary to the x-coordinate detection period Pax, the second light-emitting line extends from the right end (m / 3-th pixel column) to the left end (one column) of the image display area of the panel 10b. A pattern (x coordinate detection pattern b) that sequentially moves one column at a time (up to the pixel column of the eye) is displayed on the panel 10b. In other words, the x-coordinate detection pattern b is a pattern in which three discharge cell columns adjacent to each other sequentially emit light by three columns from the right end (m-th column) to the left end (first column) of the image display area. It is.
 次に、図7を用いて、プラズマディスプレイ装置30cで発生する座標検出サブフィールドを説明する。 Next, the coordinate detection subfield generated in the plasma display device 30c will be described with reference to FIG.
 図7に示すように、プラズマディスプレイ装置30cで発生する表示装置識別サブフィールドSFcoは、初期化期間Pio、書込み期間Pwo、および表示装置識別期間Pcoを有する。 As shown in FIG. 7, the display device identification subfield SFco generated in the plasma display device 30c has an initialization period Pio, an address period Pwo, and a display device identification period Pco.
 表示装置識別サブフィールドSFcoの初期化期間Pio、書込み期間Pwoでは、表示装置識別サブフィールドSFaoの初期化期間Pio、書込み期間Pwoと同様の動作を行うので、説明を省略する。 In the initialization period Pio and the writing period Pwo of the display device identification subfield SFco, operations similar to those in the initialization period Pio and the writing period Pwo of the display device identification subfield SFao are performed, and thus description thereof is omitted.
 表示装置識別サブフィールドSFcoでは、プラズマディスプレイ装置30cを特定するために、表示装置識別期間Pao、Pboのいずれとも異なるあらかじめ定められた所定の時間間隔(本実施の形態では、例えば、時間TC1、時間TC2、時間TC3)で複数回の表示装置識別放電を発生させ、パネル10cの画像表示面の全面を複数回(例えば、4回)発光させる。そして、ライトペン50は、この発光を受光して、ライトペン50がパネル10c上にあることを認識するとともに、座標基準信号(ライトペン50の位置座標(x座標、y座標)を算出する際に基準となる信号)を作成する。 In the display device identification subfield SFco, in order to specify the plasma display device 30c, a predetermined time interval (in this embodiment, for example, time TC1, time, which is different from both of the display device identification periods Pao and Pbo). At TC2, time TC3), a plurality of display device identification discharges are generated, and the entire image display surface of the panel 10c is caused to emit light a plurality of times (for example, four times). The light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10c, and calculates a coordinate reference signal (position coordinate (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
 本実施の形態では、例えば、時間TC1は約30μsecであり、時間TC2は約40μsecであり、時間TC3は約30μsecである。 In this embodiment, for example, the time TC1 is about 30 μsec, the time TC2 is about 40 μsec, and the time TC3 is about 30 μsec.
 また、時間To0は、例えば、約60μsecであり、時間TC1、時間TC2、時間TC3のいずれよりも長い時間に設定する。 Further, the time To0 is, for example, about 60 μsec, and is set to a time longer than any of the time TC1, the time TC2, and the time TC3.
 表示装置識別パルスVc4の発生後(表示装置識別期間Pcoの最後)には、表示装置識別期間Paoの最後に行う消去動作と同様の消去動作を行う。 After the generation of the display device identification pulse Vc4 (the end of the display device identification period Pco), an erase operation similar to the erase operation performed at the end of the display device identification period Pao is performed.
 続いて、y座標検出サブフィールドSFcyとx座標検出サブフィールドSFcxを発生する。 Subsequently, a y-coordinate detection subfield SFcy and an x-coordinate detection subfield SFfx are generated.
 y座標検出サブフィールドSFcyは、初期化期間Piyとy座標検出期間Pcyを有する。 The y coordinate detection subfield SFcy has an initialization period Piy and a y coordinate detection period Pcy.
 初期化期間Piyでは、y座標検出サブフィールドSFayの初期化期間Piyと同様の駆動電圧波形を各電極に印加して同様の選択初期化動作を行うので、説明を省略する。 In the initialization period Piy, a drive voltage waveform similar to that in the initialization period Piy of the y-coordinate detection subfield SFay is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
 y座標検出期間Pcyでは、y座標検出サブフィールドSFayのy座標検出期間Payと同様の駆動電圧波形を各電極に印加する。ただし、y座標検出期間Pcyでは、y座標検出パルスを走査電極SC1~SCnに印加する順番がy座標検出期間Payとは異なる。 In the y coordinate detection period Pcy, a drive voltage waveform similar to that in the y coordinate detection period Pay of the y coordinate detection subfield SFay is applied to each electrode. However, in the y coordinate detection period Pcy, the order in which the y coordinate detection pulse is applied to the scan electrodes SC1 to SCn is different from the y coordinate detection period Pay.
 具体的には、まず最初に、走査電極SCnにy座標検出パルスを印加し、n行目の画素行を一斉に発光させる。次に、走査電極SCn-1にy座標検出パルスを印加し、n-1行目の画素行を一斉に発光させる。 Specifically, first, a y-coordinate detection pulse is applied to the scan electrode SCn, and the nth pixel row is caused to emit light all at once. Next, a y-coordinate detection pulse is applied to scan electrode SCn-1, and the n-1th pixel row is caused to emit light all at once.
 同様の動作を、走査電極SCn-2、走査電極SCn-3、・・・、走査電極SC3、走査電極SC2、走査電極SC1という順番で、1行目の放電セルに至るまで順次行い、n行目(例えば、1080行目)から1行目までの各画素行(放電セル行)にy座標検出のための発光を順次発生させる。 The same operation is sequentially performed in the order of scan electrode SCn-2, scan electrode SCn-3,..., Scan electrode SC3, scan electrode SC2, and scan electrode SC1 until the discharge cell in the first row reaches n rows. Light emission for y-coordinate detection is sequentially generated in each pixel row (discharge cell row) from the first row (for example, row 1080) to the first row.
 したがって、y座標検出期間Pcyでは、y座標検出期間Pay、Pbyとは逆に、第1の発光線が、パネル10cの画像表示領域の下端部(n行目の画素行)から上端部(1行目の画素行)まで1行ずつ順次移動するパターン(y座標検出パターンb)がパネル10cに表示される。 Therefore, in the y-coordinate detection period Pcy, the first light emitting line is reversed from the lower end (nth pixel row) to the upper end (1) of the image display area of the panel 10c, contrary to the y-coordinate detection periods Pay and Pby. A pattern (y-coordinate detection pattern b) that sequentially moves one line at a time until the first pixel line) is displayed on the panel 10c.
 x座標検出サブフィールドSFcxは、初期化期間Pixとx座標検出期間Pcxを有する。 The x coordinate detection subfield SFcx has an initialization period Pix and an x coordinate detection period Pcx.
 初期化期間Pixでは、x座標検出サブフィールドSFaxの初期化期間Pixと同様の駆動電圧波形を各電極に印加して同様の強制初期化動作を行うので、説明を省略する。 In the initialization period Pix, a driving voltage waveform similar to that in the initialization period Pix of the x-coordinate detection subfield SFax is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
 x座標検出期間Pcxでは、x座標検出サブフィールドSFaxのx座標検出期間Paxと同様の駆動電圧波形を各電極に印加する。したがって、x座標検出期間Pcxでは、x座標検出期間Paxと同様に、第2の発光線がパネル10cの画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで1列ずつ順次移動するx座標検出パターンaがパネル10cに表示される。 In the x coordinate detection period Pcx, a drive voltage waveform similar to that in the x coordinate detection period Pax of the x coordinate detection subfield SFax is applied to each electrode. Accordingly, in the x-coordinate detection period Pcx, as in the x-coordinate detection period Pax, the second light emission line is shifted from the left end (first pixel column) to the right end (m / 3 column) of the image display area of the panel 10c. The x-coordinate detection pattern a that sequentially moves one column at a time is displayed on the panel 10c.
 次に、図8を用いて、プラズマディスプレイ装置30dで発生する座標検出サブフィールドを説明する。 Next, the coordinate detection subfield generated in the plasma display device 30d will be described with reference to FIG.
 図8に示すように、プラズマディスプレイ装置30dで発生する表示装置識別サブフィールドSFdoは、初期化期間Pio、書込み期間Pwo、および表示装置識別期間Pdoを有する。 As shown in FIG. 8, the display device identification subfield SFdo generated in the plasma display device 30d has an initialization period Pio, an address period Pwo, and a display device identification period Pdo.
 表示装置識別サブフィールドSFdoの初期化期間Pio、書込み期間Pwoでは、表示装置識別サブフィールドSFaoの初期化期間Pio、書込み期間Pwoと同様の動作を行うので、説明を省略する。 In the initialization period Pio and the writing period Pwo of the display device identification subfield SFdo, operations similar to those in the initialization period Pio and the writing period Pwo of the display device identification subfield SFao are performed, and thus description thereof is omitted.
 表示装置識別サブフィールドSFdoでは、プラズマディスプレイ装置30dを特定するために、表示装置識別期間Pao、Pbo、Pcoのいずれとも異なるあらかじめ定められた所定の時間間隔(本実施の形態では、例えば、時間TD1、時間TD2、時間TD3)で複数回の表示装置識別放電を発生させ、パネル10dの画像表示面の全面を複数回(例えば、4回)発光させる。そして、ライトペン50は、この発光を受光して、ライトペン50がパネル10d上にあることを認識するとともに、座標基準信号(ライトペン50の位置座標(x座標、y座標)を算出する際に基準となる信号)を作成する。 In the display device identification subfield SFdo, in order to specify the plasma display device 30d, a predetermined time interval different from any of the display device identification periods Pao, Pbo, and Pco (in this embodiment, for example, time TD1). , Time TD2, time TD3), a plurality of display device identification discharges are generated, and the entire image display surface of the panel 10d is caused to emit light a plurality of times (for example, four times). The light pen 50 receives this light emission, recognizes that the light pen 50 is on the panel 10d, and calculates a coordinate reference signal (position coordinate (x coordinate, y coordinate) of the light pen 50). To create a reference signal).
 本実施の形態では、例えば、時間TD1は約20μsecであり、時間TD2は約50μsecであり、時間TD3は約30μsecである。 In this embodiment, for example, time TD1 is about 20 μsec, time TD2 is about 50 μsec, and time TD3 is about 30 μsec.
 また、時間To0は、例えば、約60μsecであり、時間TD1、時間TD2、時間TD3のいずれよりも長い時間に設定する。 The time To0 is about 60 μsec, for example, and is set to a time longer than any of the time TD1, the time TD2, and the time TD3.
 表示装置識別パルスVd4の発生後(表示装置識別期間Pdoの最後)には、表示装置識別期間Paoの最後に行う消去動作と同様の消去動作を行う。 After the generation of the display device identification pulse Vd4 (the end of the display device identification period Pdo), an erase operation similar to the erase operation performed at the end of the display device identification period Pao is performed.
 続いて、y座標検出サブフィールドSFdyとx座標検出サブフィールドSFdxを発生する。 Subsequently, a y coordinate detection subfield SFdy and an x coordinate detection subfield SFdx are generated.
 y座標検出サブフィールドSFdyは、初期化期間Piyとy座標検出期間Pdyを有する。 The y coordinate detection subfield SFdy has an initialization period Piy and a y coordinate detection period Pdy.
 初期化期間Piyでは、y座標検出サブフィールドSFayの初期化期間Piyと同様の駆動電圧波形を各電極に印加して同様の選択初期化動作を行うので、説明を省略する。 In the initialization period Piy, a drive voltage waveform similar to that in the initialization period Piy of the y-coordinate detection subfield SFay is applied to each electrode to perform the same selective initialization operation, and thus description thereof is omitted.
 y座標検出期間Pdyでは、y座標検出サブフィールドSFcyのy座標検出期間Pcyと同様の駆動電圧波形を各電極に印加する。したがって、y座標検出期間Pdyでは、y座標検出期間Pcyと同様に、第1の発光線がパネル10dの画像表示領域の下端部(n行目の画素行)から上端部(1行目の画素行)まで1行ずつ順次移動するy座標検出パターンbがパネル10dに表示される。 In the y coordinate detection period Pdy, a drive voltage waveform similar to that in the y coordinate detection period Pcy of the y coordinate detection subfield SFcy is applied to each electrode. Therefore, in the y-coordinate detection period Pdy, as in the y-coordinate detection period Pcy, the first light emission line is changed from the lower end portion (nth pixel row) to the upper end portion (pixels in the first row) of the image display area of the panel 10d. The y-coordinate detection pattern b that sequentially moves line by line until the line) is displayed on the panel 10d.
 x座標検出サブフィールドSFdxは、初期化期間Pixとx座標検出期間Pdxを有する。 The x-coordinate detection subfield SFdx has an initialization period Pix and an x-coordinate detection period Pdx.
 初期化期間Pixでは、x座標検出サブフィールドSFaxの初期化期間Pixと同様の駆動電圧波形を各電極に印加して同様の強制初期化動作を行うので、説明を省略する。 In the initialization period Pix, a driving voltage waveform similar to that in the initialization period Pix of the x-coordinate detection subfield SFax is applied to each electrode to perform the same forced initialization operation, and thus description thereof is omitted.
 x座標検出期間Pdxでは、x座標検出サブフィールドSFbxのx座標検出期間Pbxと同様の駆動電圧波形を各電極に印加する。したがって、x座標検出期間Pdxでは、x座標検出期間Pbxと同様に、第2の発光線がパネル10dの画像表示領域の右端部(m/3列目の画素列)から左端部(1列目の画素列)まで1列ずつ順次移動するx座標検出パターンbがパネル10cに表示される。 In the x coordinate detection period Pdx, a drive voltage waveform similar to that in the x coordinate detection period Pbx of the x coordinate detection subfield SFbx is applied to each electrode. Therefore, in the x-coordinate detection period Pdx, as in the x-coordinate detection period Pbx, the second light emitting line is shifted from the right end (m / 3th pixel column) to the left end (first column) of the image display area of the panel 10d. The x-coordinate detection pattern b that sequentially moves one column at a time until the pixel column is displayed on the panel 10c.
 以上が、表示装置識別サブフィールドSFo、y座標検出サブフィールドSFyおよびx座標検出サブフィールドSFxの駆動電圧波形の概要である。 The above is the outline of the drive voltage waveforms of the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx.
 なお、マルチ画面表示装置130を構成する複数のプラズマディスプレイ装置30a、30b、30c、30dでは、実質的に同じタイミングで各サブフィールドが発生するものとする。 Note that, in the plurality of plasma display devices 30a, 30b, 30c, and 30d constituting the multi-screen display device 130, each subfield is generated at substantially the same timing.
 なお、本実施の形態において、時間To0、TA1~TA3、TB1~TB3、TC1~TC3、TD1~TD3の各時間は、何ら上述した数値に限定されるものではない。各時間はマルチ画面表示システム100の仕様等に応じて適切に設定すればよい。 In the present embodiment, the times To0, TA1 to TA3, TB1 to TB3, TC1 to TC3, and TD1 to TD3 are not limited to the numerical values described above. Each time may be set appropriately according to the specifications of the multi-screen display system 100.
 なお、本実施の形態において、表示装置識別サブフィールドSFoは、表示装置識別サブフィールドSFao、SFbo、SFco、SFdoの総称であり、表示装置識別期間Poは、表示装置識別期間Pao、Pbo、Pco、Pdoの総称である。また、y座標検出サブフィールドSFyは、y座標検出サブフィールドSFay、SFby、SFcy、SFdyの総称であり、y座標検出期間Pyは、y座標検出期間Pay、Pby、Pcy、Pdyの総称である。また、x座標検出サブフィールドSFxは、x座標検出サブフィールドSFax、SFbx、SFcx、SFdxの総称であり、x座標検出期間Pxは、x座標検出期間Pax、Pbx、Pcx、Pdxの総称である。 In the present embodiment, the display device identification subfield SFo is a general term for the display device identification subfields SFao, SFbo, SFco, SFdo, and the display device identification period Po is the display device identification period Pao, Pbo, Pco, A general term for Pdo. The y coordinate detection subfield SFy is a generic name of the y coordinate detection subfields SFay, SFby, SFfy, and SFdy, and the y coordinate detection period Py is a generic name of the y coordinate detection periods Pay, Pby, Pcy, and Pdy. The x-coordinate detection subfield SFx is a generic name for the x-coordinate detection subfields SFax, SFbx, SFcx, and SFdx, and the x-coordinate detection period Px is a generic name for the x-coordinate detection periods Pax, Pbx, Pcx, and Pdx.
 また、表示装置識別パルスV1は表示装置識別パルスVa1、Vb1、Vc1、Vd1の総称であり、表示装置識別パルスV2は表示装置識別パルスVa2、Vb2、Vc2、Vd2の総称であり、表示装置識別パルスV3は表示装置識別パルスVa3、Vb3、Vc3、Vd3の総称であり、表示装置識別パルスV4は表示装置識別パルスVa4、Vb4、Vc4、Vd4の総称である。 The display device identification pulse V1 is a generic name for the display device identification pulses Va1, Vb1, Vc1, and Vd1, and the display device identification pulse V2 is a generic name for the display device identification pulses Va2, Vb2, Vc2, and Vd2, and is a display device identification pulse. V3 is a generic name for display device identification pulses Va3, Vb3, Vc3, and Vd3, and a display device identification pulse V4 is a generic name for display device identification pulses Va4, Vb4, Vc4, and Vd4.
 なお、本実施の形態において各電極に印加する電圧値は、例えば、電圧Vi1=150(V)、電圧Vi2=350(V)、電圧Vi3=200(V)、電圧Vi4=-175(V)、電圧Va=電圧Vay=電圧Vax=-200(V)、電圧Vc=-50(V)、電圧Vs=電圧Vso=205(V)、電圧Vr=205(V)、電圧Ve=155(V)、電圧Vd=電圧Vdy=電圧Vdx=55(V)である。 Note that the voltage values applied to the electrodes in this embodiment are, for example, the voltage Vi1 = 150 (V), the voltage Vi2 = 350 (V), the voltage Vi3 = 200 (V), and the voltage Vi4 = −175 (V). , Voltage Va = voltage Vay = voltage Vax = −200 (V), voltage Vc = −50 (V), voltage Vs = voltage Vso = 205 (V), voltage Vr = 205 (V), voltage Ve = 155 (V ), Voltage Vd = voltage Vdy = voltage Vdx = 55 (V).
 なお、本実施の形態において、電圧Va、電圧Vay、および電圧Vaxは互いに等しい電圧に設定され、電圧Vd、電圧Vdy、および電圧Vdxは互いに等しい電圧に設定されているが、これらの電圧は互いに異なる電圧であってもよい。 In this embodiment, the voltage Va, the voltage Vay, and the voltage Vax are set to be equal to each other, and the voltage Vd, the voltage Vdy, and the voltage Vdx are set to be equal to each other. Different voltages may be used.
 また、電圧Vsoは電圧Vsに等しい電圧に設定されているが、電圧Vsoは電圧Vsと異なる電圧であってもよい。電圧Vsoは表示装置識別放電が発生する電圧であればよい。 The voltage Vso is set to a voltage equal to the voltage Vs, but the voltage Vso may be a voltage different from the voltage Vs. The voltage Vso may be a voltage that causes display device identification discharge.
 なお、本実施の形態では、サブフィールドSF1の初期化期間Pi1で発生する上り傾斜波形電圧の電圧Vi2と、表示装置識別サブフィールドSFoの初期化期間Pioで発生する上り傾斜波形電圧の電圧Vi2と、x座標検出サブフィールドSFxの初期化期間Pixで発生する上り傾斜波形電圧の電圧Vi2とを互いに等しい電圧としているが、これらの電圧Vi2は互いに異なる電圧に設定されていてもよい。 In the present embodiment, a voltage Vi2 of the rising ramp waveform voltage generated in the initialization period Pi1 of the subfield SF1, and a voltage Vi2 of the rising ramp waveform voltage generated in the initialization period Pio of the display device identification subfield SFo The voltage Vi2 of the rising ramp waveform voltage generated in the initialization period Pix of the x-coordinate detection subfield SFx is the same voltage, but these voltages Vi2 may be set to different voltages.
 また、サブフィールドSF1の初期化期間Pi1、表示装置識別サブフィールドSFoの初期化期間Pio、およびx座標検出サブフィールドSFxの初期化期間Pixに発生する上り傾斜波形電圧の勾配は約1.5(V/μsec)である。また、画像表示サブフィールド(サブフィールドSF1~SF8)の各初期化期間Pi1~Pi8、表示装置識別サブフィールドSFoの初期化期間Pio、y座標検出サブフィールドSFyの初期化期間Piy、およびx座標検出サブフィールドSFxの初期化期間Pixに発生する下り傾斜波形電圧の勾配は約-2.5(V/μsec)である。また、画像表示サブフィールド(サブフィールドSF1~SF8)の各維持期間Ps1~Ps8の最後および表示装置識別サブフィールドSFoの表示装置識別期間Poの最後に発生する上り傾斜波形電圧の勾配は約10(V/μsec)である。 Further, the gradient of the rising ramp waveform voltage generated in the initialization period Pi1 of the subfield SF1, the initialization period Pio of the display device identification subfield SFo, and the initialization period Pix of the x coordinate detection subfield SFx is about 1.5 ( V / μsec). Also, the initialization periods Pi1 to Pi8 of the image display subfield (subfields SF1 to SF8), the initialization period Pio of the display device identification subfield SFo, the initialization period Piy of the y coordinate detection subfield SFy, and the x coordinate detection The gradient of the downward ramp waveform voltage generated in the initialization period Pix of the subfield SFx is about −2.5 (V / μsec). Further, the gradient of the rising ramp waveform voltage generated at the end of each sustain period Ps1 to Ps8 of the image display subfield (subfield SF1 to SF8) and at the end of the display apparatus identification period Po of the display apparatus identification subfield SFo is about 10 ( V / μsec).
 なお、本実施の形態において、上述した電圧値や勾配等の具体的な数値は単なる一例に過ぎず、本発明は、各電圧値や勾配等が上述した数値に限定されるものではない。各電圧値や勾配等は、パネルの放電特性やプラズマディスプレイ装置の仕様等にもとづき最適に設定することが望ましい。 In the present embodiment, the specific numerical values such as the voltage value and the gradient described above are merely examples, and the present invention is not limited to the numerical values described above for each voltage value and the gradient. Each voltage value, gradient, and the like are preferably set optimally based on the discharge characteristics of the panel and the specifications of the plasma display device.
 なお、本実施の形態において、1フィールドに表示装置識別サブフィールドSFoを設け、図5、図6、図7、図8に示した波形形状で表示装置識別サブフィールドSFoの各駆動電圧波形を発生する理由は、以下の通りである。 In this embodiment, a display device identification subfield SFo is provided in one field, and each drive voltage waveform of the display device identification subfield SFo is generated in the waveform shape shown in FIGS. 5, 6, 7, and 8. The reason for doing this is as follows.
 本実施の形態では、描画装置とライトペン50との間で無線通信を行う。そのため、本実施の形態では、ライトペン50自らが座標基準信号(y座標検出期間Pyおよびx座標検出期間Pxの発生タイミングを示す信号)を発生できるようにするために、1フィールドに表示装置識別サブフィールドSFoを設ける。ライトペン50は、表示装置識別サブフィールドSFoにおいて、表示装置識別放電によってパネル10に特定の時間間隔で発生する発光を検知し、座標基準信号を発生する。そして、この座標基準信号にもとづき、ライトペン50は、ライトペン50の位置座標を自ら算出する。 In the present embodiment, wireless communication is performed between the drawing apparatus and the light pen 50. For this reason, in this embodiment, the light pen 50 itself can generate a coordinate reference signal (a signal indicating the generation timing of the y-coordinate detection period Py and the x-coordinate detection period Px). A subfield SFo is provided. In the display device identification subfield SFo, the light pen 50 detects light emission generated at a specific time interval on the panel 10 due to the display device identification discharge, and generates a coordinate reference signal. Based on this coordinate reference signal, the light pen 50 calculates the position coordinates of the light pen 50 itself.
 また、本実施の形態では、ライトペン50における座標基準信号の発生精度を高めるために、図5、図6、図7、図8に示した波形形状で表示装置識別サブフィールドSFoの各駆動電圧波形を発生し、時間To0を、時間TA1、TA2、TA3、TB1、TB2、TB3、TC1、TC2、TC3、TD1、TD2、TD3のいずれの時間よりも長い時間に設定する。これは、以下のような理由による。 Further, in the present embodiment, in order to increase the accuracy of generating the coordinate reference signal in the light pen 50, each drive voltage of the display device identification subfield SFo with the waveform shape shown in FIG. 5, FIG. 6, FIG. 7, and FIG. A waveform is generated, and the time To0 is set to a time longer than any of the times TA1, TA2, TA3, TB1, TB2, TB3, TC1, TC2, TC3, TD1, TD2, and TD3. This is due to the following reasons.
 ライトペン50が有する受光素子は、書込み放電によって発生する発光も検出する。そのため、時間To0の設定値によっては、ライトペン50が、表示装置識別サブフィールドSFoの書込み期間Pwoにおいて書込み放電によって発生する発光を、表示装置識別放電による発光と誤認識する可能性がある。 The light receiving element of the light pen 50 also detects light emission generated by address discharge. Therefore, depending on the set value of time To0, the light pen 50 may erroneously recognize the light emission generated by the address discharge in the address period Pwo of the display device identification subfield SFo as the light emission by the display device identification discharge.
 しかし、時間To0が、他の時間よりも長い時間に設定されていれば、ライトペン50が画像表示領域内のどの位置にあっても、ライトペン50が書込み放電による発光を検出した時刻から時刻to1までの間隔は他の時間よりも長くなる。これにより、ライトペン50が、表示装置識別サブフィールドSFoの書込み期間Pwoにおいて発生する書込み放電による発光を、表示装置識別放電による発光と誤認識することを防止することができ、画像表示領域内におけるライトペン50の位置(位置座標)をより正確に検出することが可能となる。 However, if the time To0 is set to be longer than the other times, the time from the time when the light pen 50 detects the light emission due to the write discharge, regardless of the position in the image display area. The interval to to1 is longer than other times. Thereby, it is possible to prevent the light pen 50 from erroneously recognizing light emission due to the address discharge generated in the address period Pwo of the display device identification subfield SFo as light emission due to the display device identification discharge. It becomes possible to detect the position (position coordinates) of the light pen 50 more accurately.
 さらに、本実施の形態では、複数のプラズマディスプレイ装置30を行列状に配列してマルチ画面表示装置130を構成する。したがって、ライトペン50が現在どのパネル10上にあるのかを、ライトペン50自身が特定する必要がある。 Furthermore, in the present embodiment, the multi-screen display device 130 is configured by arranging a plurality of plasma display devices 30 in a matrix. Therefore, it is necessary for the light pen 50 itself to specify which panel 10 the light pen 50 is currently on.
 例えば、プラズマディスプレイ装置30aに設定する時間TA1、TA2、TA3と、プラズマディスプレイ装置30bに設定する時間TB1、TB2、TB3と、プラズマディスプレイ装置30cに設定する時間TC1、TC2、TC3と、プラズマディスプレイ装置30cに設定する時間TD1、TD2、TD3とを互いに異なる時間の組み合わせにすれば、ライトペン50は、表示装置識別放電による発光の間隔を計測することで、ライトペン50自身が現在どのパネル10上にあるのかを特定することができる。 For example, times TA1, TA2, and TA3 set for the plasma display device 30a, times TB1, TB2, and TB3 set for the plasma display device 30b, times TC1, TC2, and TC3 set for the plasma display device 30c, and the plasma display device If the time TD1, TD2, and TD3 set to 30c are set to a combination of different times, the light pen 50 measures the light emission interval due to the display device identification discharge, so that the light pen 50 itself is on which panel 10 Can be identified.
 そこで、本実施の形態では、図5、図6、図7、図8に示したように、表示装置識別放電による発光の間隔を、複数のプラズマディスプレイ装置30のそれそれで互いに異なる時間に設定している。 Therefore, in the present embodiment, as shown in FIGS. 5, 6, 7, and 8, the intervals of light emission by the display device identification discharge are set to different times depending on the plasma display devices 30. ing.
 以上のように、本実施の形態におけるマルチ画面表示システム100では、上述した動作により、パネル10に画像信号に応じた画像を表示しつつ、画像表示領域内におけるライトペン50の位置(位置座標)を検出するための放電を安定に発生し、ライトペン50が現在どのパネル10上にあるのかをライトペン50自身が特定してライトペン50の位置座標を高精度に算出することができる。 As described above, in the multi-screen display system 100 according to the present embodiment, the position (position coordinates) of the light pen 50 in the image display area while displaying an image corresponding to the image signal on the panel 10 by the above-described operation. The discharge of the light pen 50 can be generated stably, the light pen 50 itself can identify the panel 10 on which the light pen 50 is currently located, and the position coordinates of the light pen 50 can be calculated with high accuracy.
 次に、本実施の形態におけるマルチ画面表示システム100の構成について説明する。なお、本実施の形態では、マルチ画面表示装置130を複数のプラズマディスプレイ装置30を用いて構成する例を示すが、マルチ画面表示装置130を構成する画像表示装置は何らプラズマディスプレイ装置30に限定されるものではない。 Next, the configuration of the multi-screen display system 100 in the present embodiment will be described. In the present embodiment, an example in which the multi-screen display device 130 is configured using a plurality of plasma display devices 30 is shown, but the image display device that constitutes the multi-screen display device 130 is not limited to the plasma display device 30 at all. It is not something.
 図9は、本発明の実施の形態におけるマルチ画面表示システム100の一構成例を概略的に示す図である。 FIG. 9 is a diagram schematically showing a configuration example of the multi-screen display system 100 in the embodiment of the present invention.
 本実施の形態に示すマルチ画面表示システム100は、マルチ画面表示装置130と、描画装置40と、複数のライトペン50a、50b、50c、50dとを構成要素に含む。 The multi-screen display system 100 shown in the present embodiment includes a multi-screen display device 130, a drawing device 40, and a plurality of light pens 50a, 50b, 50c, and 50d as constituent elements.
 なお、ライトペン50a、50b、50c、50dは互いに同じ構成であるため、以下の説明ではそれらをライトペン50とも記す。また、マルチ画面表示システム100が有するライトペン50は何ら4本に限定されるものではなく、5本以上または3本以下であってもよく、あるいは1本であってもよい。 Since the light pens 50a, 50b, 50c, and 50d have the same configuration, they are also referred to as the light pen 50 in the following description. The number of light pens 50 included in the multi-screen display system 100 is not limited to four, and may be five or more, three or less, or one.
 ライトペン50は、使用者がパネル10の画像表示領域に文字や図画等を手書き入力するときに使用される。ライトペン50は、棒状に形成されており、受光素子52、接触スイッチ53、タイミング検出部54、座標算出部56、および送信部59を備えている。 The light pen 50 is used when the user inputs characters, drawings and the like in the image display area of the panel 10 by handwriting. The light pen 50 is formed in a rod shape and includes a light receiving element 52, a contact switch 53, a timing detection unit 54, a coordinate calculation unit 56, and a transmission unit 59.
 接触スイッチ53は、ライトペン50の先端部に設けられ、ライトペン50の先端部がパネル10の前面基板11(パネル10の画像表示面)に接触したかどうかを検知する。接触スイッチ53は、ライトペン50の先端部がパネル10に接触していればオンになってS1=「1」を出力し、接触していなければオフになってS1=「0」を出力する。 The contact switch 53 is provided at the tip of the light pen 50 and detects whether or not the tip of the light pen 50 has contacted the front substrate 11 of the panel 10 (the image display surface of the panel 10). The contact switch 53 is turned on and outputs S1 = "1" if the tip of the light pen 50 is in contact with the panel 10, and is turned off and outputs S1 = "0" if not in contact. .
 なお、本発明において、ライトペン50は何ら接触スイッチ53を有する構成に限定されるものではない。例えば、ライトペンを、接触スイッチ53に代えて手動スイッチを備えた非接触型としてもよい。そのような、非接触型のライトペンを備えたマルチ画面表示システムでは、使用者は、手動スイッチをオンにすることで、画像表示面から離れた位置にあるライトペンを用いて画像表示面に文字や図画を手書き入力することができる。また、接触スイッチ53と手動スイッチの双方をライトペンが有し、一本のライトペンを接触型・非接触型の2通りで使用できるように構成してもよい。あるいは、使用者が、手動スイッチを操作することで描画モードS0(例えば描画に用いる線の色、線の太さ、線の種類、等)を任意に切り替えることができるように構成してもよい。 In the present invention, the light pen 50 is not limited to the configuration having the contact switch 53 at all. For example, the light pen may be a non-contact type provided with a manual switch instead of the contact switch 53. In such a multi-screen display system including a non-contact type light pen, the user turns on the manual switch to turn the image display surface using the light pen located at a position away from the image display surface. Characters and drawings can be input by handwriting. Further, the light pen may have both the contact switch 53 and the manual switch so that one light pen can be used in two types, a contact type and a non-contact type. Alternatively, it may be configured such that the user can arbitrarily switch the drawing mode S0 (for example, line color, line thickness, line type, etc. used for drawing) by operating a manual switch. .
 受光素子52は、パネル10の画像表示面に生じる発光を受光して電気信号(受光信号)に変換する。この受光信号は、受光した光の光量に応じて変化し、光量が大きいほど受光信号も大きくなる。そして、その受光信号を、タイミング検出部54と座標算出部56に出力する。なお、本実施の形態において、ライトペン50の位置座標(x、y)とは、受光素子52がパネル10の画像表示面に生じる発光を受光する位置のことである。 The light receiving element 52 receives light emitted from the image display surface of the panel 10 and converts it into an electric signal (light receiving signal). This light reception signal changes according to the amount of light received, and the light reception signal increases as the light amount increases. Then, the light reception signal is output to the timing detection unit 54 and the coordinate calculation unit 56. In the present embodiment, the position coordinates (x, y) of the light pen 50 are positions where the light receiving element 52 receives light emitted from the image display surface of the panel 10.
 タイミング検出部54、座標算出部56、および送信部59は、接触スイッチ53が接触を検知しているか否かにかかわらず、以下の動作をする。 The timing detection unit 54, the coordinate calculation unit 56, and the transmission unit 59 perform the following operation regardless of whether or not the contact switch 53 detects contact.
 タイミング検出部54は、受光信号にもとづき、表示装置識別サブフィールドSFoの表示装置識別期間Poに発生する表示装置識別用の発光(表示装置識別放電によって生じる発光)を検出する。具体的には、タイミング検出部54は、タイミング検出部54が有するタイマー(図9には示さず)を用いて、複数(例えば、5回)の発光の発生間隔を計測する。そして、その発生間隔があらかじめ定められた所定の時間間隔(例えば、時間To0、TA1、TA2、TA3の一組、または時間To0、TB1、TB2、TB3の一組、または時間To0、TC1、TC2、TC3の一組、または時間To0、TD1、TD2、TD3の一組)に合致するかどうかを、タイミング検出部54に設定された複数のしきい値(例えば、時間To0、TA1、TA2、TA3、TB1、TB2、TB3、TC1、TC2、TC3、TD1、TD2、TD3に相当するしきい値)と計測された時間間隔とを比較することで判定する。 The timing detection unit 54 detects light emission for display device identification (light emission generated by display device identification discharge) generated in the display device identification period Po of the display device identification subfield SFo based on the light reception signal. Specifically, the timing detection unit 54 measures the occurrence intervals of a plurality of (for example, five times) emission using a timer (not shown in FIG. 9) of the timing detection unit 54. Then, a predetermined time interval (for example, a set of times To0, TA1, TA2, TA3, a set of times To0, TB1, TB2, TB3, or a set of times To0, TC1, TC2, Whether a set of TC3 or a set of times To0, TD1, TD2, and TD3 is met is determined by a plurality of threshold values (for example, times To0, TA1, TA2, TA3, The determination is made by comparing the measured time intervals with the threshold values corresponding to TB1, TB2, TB3, TC1, TC2, TC3, TD1, TD2, and TD3.
 そして、タイミング検出部54は、その判定結果にもとづき、ライトペン50が現在どのパネル10上にあるのかを判断し、その結果を示すパネル識別信号を座標算出部56に出力する。 The timing detection unit 54 determines which panel 10 the light pen 50 is currently on based on the determination result, and outputs a panel identification signal indicating the result to the coordinate calculation unit 56.
 また、タイミング検出部54は、連続する複数回(例えば、5回)の発光のうちの1つを基準にして座標基準信号を作成する。例えば、図5、図6、図7、図8に示す例では、表示装置識別サブフィールドSFoの表示装置識別期間Poの時刻to1に発生した発光を基準にして座標基準信号を作成する。 Also, the timing detection unit 54 creates a coordinate reference signal based on one of a plurality of continuous (for example, five) light emission. For example, in the examples shown in FIGS. 5, 6, 7, and 8, the coordinate reference signal is generated based on the light emission generated at the time to1 of the display device identification period Po of the display device identification subfield SFo.
 なお、時刻to1は、表示装置識別サブフィールドSFoの表示装置識別期間Poにおいて走査電極SC1~SCnに1回目の表示装置識別パルスV1を印加する時刻である。 The time to1 is the time when the first display device identification pulse V1 is applied to the scan electrodes SC1 to SCn in the display device identification period Po of the display device identification subfield SFo.
 座標基準信号は、図5、図6、図7、図8には示していないが、例えば、時刻ty0と時刻tx0とのそれぞれに立上りエッジがある信号のことである。時刻ty0は、y座標検出パターンaを表示するy座標検出サブフィールドSFyのy座標検出期間Pyにおいては、1行目の走査電極SC1にy座標検出パルスを印加する時刻であり、y座標検出パターンbを表示するy座標検出サブフィールドSFyのy座標検出期間Pyにおいては、最終行目の走査電極SCnにy座標検出パルスを印加する時刻である。また、時刻tx0は、x座標検出パターンaを表示するx座標検出サブフィールドSFxのx座標検出期間Pxにおいては1列目の画素列に対応するデータ電極D1~D3にx座標検出パルスを印加する時刻であり、x座標検出パターンbを表示するx座標検出サブフィールドSFxのx座標検出期間Pxにおいては最終列目の画素列に対応するデータ電極Dm-2~Dmにx座標検出パルスを印加する時刻である。 The coordinate reference signal is a signal having a rising edge at each of time ty0 and time tx0, which is not shown in FIGS. 5, 6, 7, and 8, for example. The time ty0 is a time at which the y coordinate detection pulse is applied to the scan electrode SC1 in the first row in the y coordinate detection period Py of the y coordinate detection subfield SFy for displaying the y coordinate detection pattern a. The y coordinate detection pattern In the y-coordinate detection period Py of the y-coordinate detection subfield SFy displaying b, it is time to apply the y-coordinate detection pulse to the scan electrode SCn in the last row. At time tx0, the x coordinate detection pulse is applied to the data electrodes D1 to D3 corresponding to the first pixel column in the x coordinate detection period Px of the x coordinate detection subfield SFx displaying the x coordinate detection pattern a. X coordinate detection pulse is applied to the data electrodes Dm-2 to Dm corresponding to the last pixel column in the x coordinate detection period Px of the x coordinate detection subfield SFx displaying the x coordinate detection pattern b. It's time.
 したがって、時刻to1がわかれば、時刻ty0と時刻tx0とのそれぞれに立上りエッジがある座標基準信号を発生することができる。 Therefore, if the time to1 is known, a coordinate reference signal having rising edges at each of the time ty0 and the time tx0 can be generated.
 そして、タイミング検出部54は、その座標基準信号を座標算出部56に出力する。 Then, the timing detection unit 54 outputs the coordinate reference signal to the coordinate calculation unit 56.
 なお、本実施の形態では、時刻to1を基準にして座標基準信号を発生する例を説明しているが、本発明は何らこの構成に限定されるものではない。 In this embodiment, an example in which a coordinate reference signal is generated with reference to time to1 has been described, but the present invention is not limited to this configuration.
 また、座標基準信号も、何ら時刻ty0と時刻tx0とのそれぞれに立上りエッジがある信号に限定されるものではない。座標基準信号は、y座標検出パターンによる発光およびx座標検出パターンによる発光を受光素子52が受光したときに、その時刻を特定するための基準にすることができる信号であればよい。 Also, the coordinate reference signal is not limited to a signal having rising edges at time ty0 and time tx0. The coordinate reference signal may be any signal that can be used as a reference for specifying the time when the light receiving element 52 receives light emission by the y coordinate detection pattern and light emission by the x coordinate detection pattern.
 座標算出部56は、時間の長さを計測するカウンタと、カウンタの出力に演算を施す演算回路とを備える(図9には示さず)。 The coordinate calculation unit 56 includes a counter that measures the length of time and an arithmetic circuit that performs an operation on the output of the counter (not shown in FIG. 9).
 そして、座標算出部56は、ライトペン50が現在どのパネル10上にあるのかを示すパネル識別信号、座標基準信号および受光信号にもとづき、y座標検出パターンの発光を示す信号およびx座標検出パターンの発光を示す信号を受光信号から選択的に取り出し、画像表示領域におけるライトペン50の位置(x座標、y座標)を算出する。 Then, the coordinate calculation unit 56 generates a signal indicating the light emission of the y coordinate detection pattern and the x coordinate detection pattern based on the panel identification signal indicating which panel 10 the light pen 50 is currently on, the coordinate reference signal, and the light reception signal. A signal indicating light emission is selectively extracted from the light reception signal, and the position (x coordinate, y coordinate) of the light pen 50 in the image display area is calculated.
 具体的には、座標算出部56は、座標基準信号にもとづき、時刻ty0から、時刻ty0以降に最初に受光素子52で発光が受光される時刻(時刻tyy)までの時間(時間Tyy)をカウンタで測定する。そして、演算回路において時間Tyyを時間Ty1(y座標検出パルスのパルス幅)で除算する。こうして画像表示領域におけるライトペン50の位置のy座標を算出する。 Specifically, the coordinate calculation unit 56 counts the time (time Tyy) from the time ty0 to the time (time tyy) at which light reception is first received by the light receiving element 52 after the time ty0 based on the coordinate reference signal. Measure with Then, the time Tyy is divided by the time Ty1 (pulse width of the y coordinate detection pulse) in the arithmetic circuit. In this way, the y coordinate of the position of the light pen 50 in the image display area is calculated.
 次に、座標算出部56は、座標基準信号にもとづき、時刻tx0から、時刻tx0以降に最初に受光素子52で発光が受光される時刻(時刻txx)までの時間(時間Txx)をカウンタで測定する。そして、演算回路において時間Txxを時間Tx1(x座標検出パルスのパルス幅)で除算する。こうして画像表示領域におけるライトペン50の位置のx座標を算出する。 Next, the coordinate calculation unit 56 measures, based on the coordinate reference signal, a time (time Txx) from time tx0 to time (time txx) when light is received by the light receiving element 52 for the first time after time tx0. To do. Then, the time Txx is divided by the time Tx1 (pulse width of the x coordinate detection pulse) in the arithmetic circuit. In this way, the x coordinate of the position of the light pen 50 in the image display area is calculated.
 なお、時刻tyyは、ライトペン50の受光素子52がy座標検出パターンによりパネル10に生じる発光を受光した時刻であり、時刻txxは、ライトペン50の受光素子52がx座標検出パターンによりパネル10に生じる発光を受光した時刻である。 The time tyy is the time when the light receiving element 52 of the light pen 50 receives light emitted from the panel 10 by the y coordinate detection pattern, and the time txx is the time when the light receiving element 52 of the light pen 50 receives the panel 10 by the x coordinate detection pattern. It is the time when the light emission generated in
 なお、y座標検出パターンaとy座標検出パターンbとでは第1の発光線の移動方向が逆であり、x座標検出パターンaとx座標検出パターンbとでは第2の発光線の移動方向が逆である。したがって、座標算出部56は、ライトペン50が現在どのパネル10上にあるのかを考慮して、x座標、y座標を算出する。 Note that the movement direction of the first light emission line is opposite between the y coordinate detection pattern a and the y coordinate detection pattern b, and the movement direction of the second light emission line is opposite between the x coordinate detection pattern a and the x coordinate detection pattern b. The reverse is true. Therefore, the coordinate calculation unit 56 calculates the x coordinate and the y coordinate in consideration of which panel 10 the light pen 50 is currently on.
 例えば、座標算出部56は、ライトペン50がプラズマディスプレイ装置30aのパネル10a上にあれば、y座標検出パターンaとx座標検出パターンaとがパネル10aに表示されるので、パネル10aの画像表示領域の左上端が座標(0,0)であるものとして、x座標、y座標を算出する。 For example, if the light pen 50 is on the panel 10a of the plasma display device 30a, the coordinate calculation unit 56 displays the y coordinate detection pattern a and the x coordinate detection pattern a on the panel 10a. Assuming that the upper left corner of the region is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
 また、座標算出部56は、ライトペン50がプラズマディスプレイ装置30bのパネル10b上にあれば、y座標検出パターンaとx座標検出パターンbとがパネル10bに表示されるので、パネル10bの画像表示領域の右上端が座標(0,0)であるものとして、x座標、y座標を算出する。 Further, if the light pen 50 is on the panel 10b of the plasma display device 30b, the coordinate calculation unit 56 displays the y coordinate detection pattern a and the x coordinate detection pattern b on the panel 10b. Assuming that the upper right end of the region is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
 また、座標算出部56は、ライトペン50がプラズマディスプレイ装置30cのパネル10c上にあれば、y座標検出パターンbとx座標検出パターンaとがパネル10cに表示されるので、パネル10cの画像表示領域の左下端が座標(0,0)であるものとして、x座標、y座標を算出する。 Further, if the light pen 50 is on the panel 10c of the plasma display device 30c, the coordinate calculation unit 56 displays the y coordinate detection pattern b and the x coordinate detection pattern a on the panel 10c. Assuming that the lower left corner of the area is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
 また、座標算出部56は、ライトペン50がプラズマディスプレイ装置30dのパネル10d上にあれば、y座標検出パターンbとx座標検出パターンbとがパネル10dに表示されるので、パネル10dの画像表示領域の右下端が座標(0,0)であるものとして、x座標、y座標を算出する。 Further, if the light pen 50 is on the panel 10d of the plasma display device 30d, the coordinate calculation unit 56 displays the y coordinate detection pattern b and the x coordinate detection pattern b on the panel 10d. Assuming that the lower right corner of the region is the coordinate (0, 0), the x coordinate and the y coordinate are calculated.
 そして、座標算出部56は、パネル10b、10c、10dにおいて算出したx座標、y座標に関しては、後段での演算を容易にするため、パネル10aの画像表示領域の左上端を座標(0,0)とするx座標、y座標に変換する。 Then, the coordinate calculation unit 56 uses the coordinates (0, 0) for the x and y coordinates calculated in the panels 10b, 10c, and 10d, in order to facilitate later calculations. ) And x coordinate and y coordinate.
 座標算出部56は、このようにして算出したライトペン50の位置座標(x、y)を送信部59に出力する。 The coordinate calculation unit 56 outputs the position coordinates (x, y) of the light pen 50 thus calculated to the transmission unit 59.
 送信部59は、電気信号をエンコードし、エンコード後の信号を例えば赤外線等の無線信号に変換して発信する発信回路を有する(図9には示さず)。そして、各ライトペン50にそれぞれ独立に付与されている識別番号(ID)、ライトペン50の描画モードS0(例えば描画に用いる線の色、線の太さ、線の種類、等)、接触スイッチ53の状態S1、座標算出部56が算出したライトペン50の位置座標(x、y)を表す信号等をそれぞれエンコードした後に無線信号に変換し、描画装置40の受信部42に無線送信する。 The transmission unit 59 has a transmission circuit that encodes an electrical signal and converts the encoded signal into a radio signal such as infrared rays and transmits the signal (not shown in FIG. 9). Then, an identification number (ID) assigned to each light pen 50 independently, a drawing mode S0 of the light pen 50 (for example, line color, line thickness, line type, etc. used for drawing), contact switch A signal representing the position coordinate (x, y) of the light pen 50 calculated by the state S1 of 53 and the position calculation unit 56 is encoded, converted into a wireless signal, and wirelessly transmitted to the receiving unit 42 of the drawing apparatus 40.
 描画装置40は、受信部42、描画部44、画像信号分配部46を備える。描画装置40は、ライトペン50の座標算出部56が算出した位置座標(x、y)および描画モードS0にもとづく描画信号を作成し、画像信号分配部46を通して適切なプラズマディスプレイ装置30に出力する。この描画信号は、使用者が手書き入力した画像や、ポインタとして使用するカーソルをパネル10に表示するための信号であり、画像信号と実質的に同じものである。 The drawing apparatus 40 includes a receiving unit 42, a drawing unit 44, and an image signal distribution unit 46. The drawing device 40 creates a drawing signal based on the position coordinates (x, y) calculated by the coordinate calculation unit 56 of the light pen 50 and the drawing mode S0, and outputs the drawing signal to an appropriate plasma display device 30 through the image signal distribution unit 46. . This drawing signal is a signal for displaying on the panel 10 an image handwritten by the user or a cursor used as a pointer, and is substantially the same as the image signal.
 受信部42は、ライトペン50の送信部59から無線送信される無線信号を受信し、その受信信号をデコードして電気信号に変換する変換回路を有する(図9には示さず)。そして、送信部59から無線送信される無線信号を、ライトペン50の識別番号(ID)、描画モードS0、状態S1、位置座標(x、y)を表す信号に変換して描画部44に出力する。ライトペン50が複数のときは、各ライトペン50から送信されてくる各信号をそれぞれ受信してデコードする。 The receiving unit 42 includes a conversion circuit that receives a radio signal wirelessly transmitted from the transmitting unit 59 of the light pen 50, decodes the received signal, and converts it into an electric signal (not shown in FIG. 9). Then, the wireless signal wirelessly transmitted from the transmission unit 59 is converted into a signal representing the identification number (ID) of the light pen 50, the drawing mode S0, the state S1, and the position coordinates (x, y) and output to the drawing unit 44. To do. When there are a plurality of light pens 50, each signal transmitted from each light pen 50 is received and decoded.
 なお、ライトペン50の描画モードS0、状態S1、位置座標(x、y)を表す信号は時間tによって変化する変数であるため、以下、受信部42から出力される各信号を、描画モードS0(t)、状態S1(t)、位置座標(x(t)、y(t))と記す。 Since signals representing the drawing mode S0, the state S1, and the position coordinates (x, y) of the light pen 50 are variables that change with time t, hereinafter, each signal output from the receiving unit 42 is referred to as the drawing mode S0. (T), state S1 (t), position coordinates (x (t), y (t)).
 描画部44は、画像メモリ47を備える。そして、描画部44は、座標算出部56が算出した位置座標(x(t)、y(t))に対応する画素を中心に、描画モードS0(t)に応じた色および大きさの描画パターン(例えば、白色の丸等のパターン)の描画信号を作成し、画像メモリ47に書込む。 The drawing unit 44 includes an image memory 47. The drawing unit 44 draws a color and size corresponding to the drawing mode S0 (t) with the pixel corresponding to the position coordinates (x (t), y (t)) calculated by the coordinate calculation unit 56 as the center. A drawing signal of a pattern (for example, a pattern such as a white circle) is created and written into the image memory 47.
 描画部44は、状態S1(t)=1(接触スイッチ53がオン状態)のときには、作成した描画信号を画像メモリ47に蓄積する。したがって、状態S1(t)=1の期間は、ライトペン50の過去の位置座標の軌跡に現在のライトペン50の位置座標が加えられた描画信号が画像メモリ47に蓄積される。 The drawing unit 44 stores the created drawing signal in the image memory 47 when the state S1 (t) = 1 (the contact switch 53 is on). Therefore, during the period of the state S1 (t) = 1, a drawing signal obtained by adding the current position coordinates of the light pen 50 to the past position coordinates of the light pen 50 is accumulated in the image memory 47.
 また、描画部44は、状態S1(t)=0(接触スイッチ53がオフ状態)のときには、1フィールド前の位置座標(x(t-1)、y(t-1))に対応する描画信号を画像メモリ47から消去する。したがって、状態S1(t)=0のときに画像メモリ47に蓄積される描画信号は、接触スイッチ53がオン状態であったときのライトペン50の位置座標の過去の軌跡と、ライトペン50の現在の位置座標を表すものになる。 Further, the drawing unit 44 draws corresponding to the position coordinates (x (t−1), y (t−1)) one field before when the state S1 (t) = 0 (the contact switch 53 is in the OFF state). The signal is deleted from the image memory 47. Therefore, the drawing signal stored in the image memory 47 in the state S1 (t) = 0 is the past locus of the position coordinates of the light pen 50 when the contact switch 53 is in the on state and the light pen 50. It represents the current position coordinates.
 マルチ画面表示システム100で使用されているライトペン50の数が複数であれば、描画部44は、各ライトペン50の軌跡が互いに混同しないように位置座標(x(t)、y(t))を互いに区別して、各ライトペン50に対して上述の動作を行う。 If the number of light pens 50 used in the multi-screen display system 100 is plural, the drawing unit 44 uses the position coordinates (x (t), y (t) so that the trajectories of the light pens 50 are not confused with each other. ) Are distinguished from each other, and the above-described operation is performed on each light pen 50.
 そして、描画部44は、画像メモリ47に蓄積された描画信号を画像信号分配部46に出力する。 Then, the drawing unit 44 outputs the drawing signal stored in the image memory 47 to the image signal distribution unit 46.
 画像信号分配部46は、描画部44から出力される描画信号と、外部から入力される画像信号とを合成(あるいは、描画信号と画像信号のいずれか一方を選択)する。そして、画像信号分配部46は、その合成後の信号(または、選択した信号)を、マルチ画面表示装置130が有する複数のプラズマディスプレイ装置30の各パネル10が構成する1つの画像表示面に1枚の画像として表示されるように、複数のプラズマディスプレイ装置30の配置位置に応じて適切に分割し、分割後の描画信号(画像信号)をプラズマディスプレイ装置30のそれぞれに送信する。 The image signal distribution unit 46 combines the drawing signal output from the drawing unit 44 and the image signal input from the outside (or selects either the drawing signal or the image signal). Then, the image signal distribution unit 46 applies the combined signal (or the selected signal) to one image display surface formed by each panel 10 of the plurality of plasma display devices 30 included in the multi-screen display device 130. In order to be displayed as a single image, it is appropriately divided according to the arrangement position of the plurality of plasma display devices 30, and the divided drawing signal (image signal) is transmitted to each of the plasma display devices 30.
 図9には、一例として、2行2列の行列状に配置された4台のプラズマディスプレイ装置30a、30b、30c、30dを備え、同一平面上に配置された4つの画像表示面で擬似的に1つの画像表示面を構成したマルチ画面表示装置130を示す。 As an example, FIG. 9 includes four plasma display devices 30a, 30b, 30c, and 30d arranged in a matrix of 2 rows and 2 columns, and is simulated by four image display surfaces arranged on the same plane. 1 shows a multi-screen display device 130 having one image display surface.
 そして、マルチ画面表示装置130は、画像信号分配部46から送信されてくる複数の画像信号を複数のプラズマディスプレイ装置30のそれぞれに適切に入力し、複数のパネル10で擬似的に構成された1つの画像表示面に1枚の画像を表示する。こうして、ライトペン50によって手書き入力された図画が、画像信号による画像に合成されて(あるいは単体で)、マルチ画面表示装置130に表示される。 Then, the multi-screen display device 130 appropriately inputs a plurality of image signals transmitted from the image signal distribution unit 46 to each of the plurality of plasma display devices 30, and is configured in a pseudo manner by the plurality of panels 10. One image is displayed on one image display surface. In this way, the drawing input by handwriting with the light pen 50 is combined with the image based on the image signal (or alone) and displayed on the multi-screen display device 130.
 なお、パネル10に示されたライトペン50の軌跡を消すために、ライトペン50に、「描画」モードと「消去」モードとを切り換えるスイッチを設けてもよい。そして、ライトペン50が「消去」モードのときには、パネル10に示されたライトペン50の軌跡を再度ライトペン50でなぞることで、画像メモリ47に蓄積された描画信号を部分的、または全体的に消去するように構成してもよい。 In addition, in order to erase the locus of the light pen 50 shown on the panel 10, the light pen 50 may be provided with a switch for switching between the “drawing” mode and the “erasing” mode. When the light pen 50 is in the “erase” mode, the trace of the light pen 50 shown on the panel 10 is traced with the light pen 50 again, so that the drawing signal stored in the image memory 47 can be partially or totally. You may comprise so that it may erase | eliminate.
 次に、マルチ画面表示装置130を構成するプラズマディスプレイ装置30について説明する。 Next, the plasma display device 30 constituting the multi-screen display device 130 will be described.
 図10は、本発明の実施の形態におけるマルチ画面表示装置130を構成するプラズマディスプレイ装置30の各回路ブロックの一例を概略的に示す図である。なお、マルチ画面表示装置130を構成する複数のプラズマディスプレイ装置30a、30b、30c、30dは、配置位置および座標検出サブフィールドで発生する駆動電圧波形が異なる以外は互いに同じ構成である。したがって、以下、プラズマディスプレイ装置30aについて説明し、他のプラズマディスプレイ装置30b、30c、30dの説明は省略する。 FIG. 10 is a diagram schematically showing an example of each circuit block of the plasma display device 30 constituting the multi-screen display device 130 in the embodiment of the present invention. The plurality of plasma display devices 30a, 30b, 30c, and 30d constituting the multi-screen display device 130 have the same configuration except for the arrangement position and the driving voltage waveform generated in the coordinate detection subfield. Therefore, hereinafter, the plasma display device 30a will be described, and description of the other plasma display devices 30b, 30c, and 30d will be omitted.
 プラズマディスプレイ装置30aは、パネル10aと、1フィールドに複数のサブフィールドを備えてパネル10aを駆動する駆動回路を備えている。駆動回路は、画像信号処理回路31a、データ電極駆動回路32a、走査電極駆動回路33a、維持電極駆動回路34a、タイミング発生回路35a、および各回路ブロックに必要な電源を供給する電源回路(図示せず)を備えている。 The plasma display device 30a includes a panel 10a and a drive circuit that includes a plurality of subfields in one field and drives the panel 10a. The drive circuit includes an image signal processing circuit 31a, a data electrode drive circuit 32a, a scan electrode drive circuit 33a, a sustain electrode drive circuit 34a, a timing generation circuit 35a, and a power supply circuit (not shown) that supplies power necessary for each circuit block. ).
 画像信号処理回路31aには、描画装置40から出力される描画信号(画像信号)と、タイミング発生回路35aから供給されるタイミング信号が入力される。画像信号処理回路31aは、描画信号(画像信号)をパネル10aに表示するために、描画信号(画像信号)にもとづき各放電セルに赤、緑、青の各階調値(1フィールドで表現される階調値)を設定する。そして、画像信号処理回路31aは、各放電セルに設定した赤、緑、青の階調値を、サブフィールド毎の点灯・非点灯を示す画像データ(発光・非発光をデジタル信号の「1」、「0」に対応させたデータのこと)に変換し、その画像データ(赤の画像データ、緑の画像データ、および青の画像データ)を出力する。 The drawing signal (image signal) output from the drawing apparatus 40 and the timing signal supplied from the timing generation circuit 35a are input to the image signal processing circuit 31a. In order to display the drawing signal (image signal) on the panel 10a, the image signal processing circuit 31a represents each gradation value (one field) of red, green, and blue in each discharge cell based on the drawing signal (image signal). Tone value) is set. Then, the image signal processing circuit 31a uses the red, green, and blue gradation values set for each discharge cell as image data indicating lighting / non-lighting for each subfield (light emission / non-light emission is “1” of the digital signal). , Data corresponding to “0”), and output the image data (red image data, green image data, and blue image data).
 タイミング発生回路35aは、画像信号として送信されて来る信号から水平同期信号および垂直同期信号を分離し、その水平同期信号および垂直同期信号にもとづき、各回路ブロックの動作を制御する各種のタイミング信号を発生する。そして、発生したタイミング信号をそれぞれの回路ブロック(データ電極駆動回路32a、走査電極駆動回路33a、維持電極駆動回路34a、および画像信号処理回路31a等)へ供給する。 The timing generation circuit 35a separates a horizontal synchronization signal and a vertical synchronization signal from a signal transmitted as an image signal, and generates various timing signals for controlling the operation of each circuit block based on the horizontal synchronization signal and the vertical synchronization signal. appear. The generated timing signal is supplied to each circuit block (data electrode drive circuit 32a, scan electrode drive circuit 33a, sustain electrode drive circuit 34a, image signal processing circuit 31a, etc.).
 データ電極駆動回路32aは、画像信号処理回路31aから出力される画像データとタイミング発生回路35aから供給されるタイミング信号とにもとづき、画像表示サブフィールドであるサブフィールドSF1~SF8の各書込み期間Pw1~Pw8および表示装置識別サブフィールドSFaoの書込み期間Pwoでは電圧Vdの書込みパルスを、y座標検出サブフィールドSFayのy座標検出期間Payではy座標検出電圧Vdyを、x座標検出サブフィールドSFaxのx座標検出期間Paxでは電圧Vdxのx座標検出パルスを、各データ電極D1~Dmに印加する。 Based on the image data output from the image signal processing circuit 31a and the timing signal supplied from the timing generation circuit 35a, the data electrode driving circuit 32a performs the writing periods Pw1 to Pw1 of the subfields SF1 to SF8 which are image display subfields. In the writing period Pwo of Pw8 and the display device identification subfield SFao, the writing pulse of the voltage Vd is detected, in the y coordinate detection period Pay of the y coordinate detection subfield SFay, the y coordinate detection voltage Vdy is detected, and the x coordinate detection of the x coordinate detection subfield SFax is detected. In the period Pax, an x-coordinate detection pulse having a voltage Vdx is applied to each data electrode D1 to Dm.
 維持電極駆動回路34aは、維持パルス発生回路、電圧Veを発生する回路(図10には示さず)を備え、タイミング発生回路35aから供給されるタイミング信号にもとづいて各駆動電圧波形を作成し、維持電極SU1~SUnのそれぞれに印加する。画像表示サブフィールドであるサブフィールドSF1~SF8の各維持期間Ps1~Ps8では電圧Vsの維持パルスを、表示装置識別サブフィールドSFaoの表示装置識別期間Paoでは電圧Vso(本実施の形態では、電圧Vsに等しい)の表示装置識別パルスVa2、Va4を、画像表示サブフィールドであるサブフィールドSF1~SF8の各初期化期間Pi1~Pi8と各書込み期間Pw1~Pw8、表示装置識別サブフィールドSFaoの初期化期間Pioと書込み期間Pwo、y座標検出サブフィールドSFayの初期化期間Piyとy座標検出期間Pay、およびx座標検出サブフィールドSFaxの初期化期間Pixとx座標検出期間Paxでは電圧Veを、維持電極SU1~SUnに印加する。 Sustain electrode drive circuit 34a includes a sustain pulse generation circuit and a circuit (not shown in FIG. 10) for generating voltage Ve, and generates each drive voltage waveform based on a timing signal supplied from timing generation circuit 35a. The voltage is applied to each of the sustain electrodes SU1 to SUn. In the sustain periods Ps1 to Ps8 of the subfields SF1 to SF8, which are image display subfields, the sustain pulse of the voltage Vs is applied. In the display device identification period Pao of the display device identification subfield SFao, the voltage Vso (in the present embodiment, the voltage Vs Display device identification pulses Va2 and Va4), the initialization periods Pi1 to Pi8 and the writing periods Pw1 to Pw8 of the subfields SF1 to SF8, which are image display subfields, and the initialization period of the display device identification subfield SFao In the initialization period Py and the y coordinate detection period Pay of the Pio and address period Pwo, the y coordinate detection subfield SFay, and the initialization period Pix and the x coordinate detection period Pax of the x coordinate detection subfield SFax, the voltage Ve is maintained. Apply to SUn.
 走査電極駆動回路33aは、傾斜波形電圧発生回路、維持パルス発生回路、走査パルス発生回路(図10には示さず)を備え、タイミング発生回路35aから供給されるタイミング信号にもとづいて各駆動電圧波形を作成し、走査電極SC1~SCnのそれぞれに印加する。傾斜波形電圧発生回路は、タイミング信号にもとづき、画像表示サブフィールドであるサブフィールドSF1~SF8の各初期化期間Pi1~Pi8と各維持期間Pw1~Pw8、表示装置識別サブフィールドSFaoの初期化期間Pioと表示装置識別期間Pao、y座標検出サブフィールドSFayの初期化期間Piy、およびx座標検出サブフィールドSFaxの初期化期間Pixにおいて、傾斜波形電圧を走査電極SC1~SCnに印加する。維持パルス発生回路は、タイミング信号にもとづき、画像表示サブフィールドであるサブフィールドSF1~SF8の各維持期間Ps1~Ps8では維持パルスを、表示装置識別サブフィールドSFaoの表示装置識別期間Paoでは電圧Vso(本実施の形態では、電圧Vsに等しい)の表示装置識別パルスVa1、Va3を、走査電極SC1~SCnに印加する。走査パルス発生回路は、複数の走査電極駆動IC(走査IC)を備え、タイミング信号にもとづき、画像表示サブフィールドであるサブフィールドSF1~SF8の各書込み期間Pw1~Pw8、および表示装置識別サブフィールドSFaoの書込み期間Pwoでは電圧Vcと電圧Vaの走査パルスを、y座標検出サブフィールドSFayのy座標検出期間Payでは電圧Vcと電圧Vayのy座標検出パルスを、x座標検出サブフィールドSFaxのx座標検出期間Paxでは電圧Vcとx座標検出電圧Vaxを、走査電極SC1~SCnに印加する。 Scan electrode drive circuit 33a includes a ramp waveform voltage generation circuit, a sustain pulse generation circuit, and a scan pulse generation circuit (not shown in FIG. 10). Each drive voltage waveform is based on a timing signal supplied from timing generation circuit 35a. Is applied to each of scan electrodes SC1 to SCn. The ramp waveform voltage generation circuit, based on the timing signal, initializes Pi1 to Pi8 and sustain periods Pw1 to Pw8 of the subfields SF1 to SF8, which are image display subfields, and an initialization period Pio of the display device identification subfield SFao. In the initialization period Py of the display device identification period Pao, the y-coordinate detection subfield SFay, and the initialization period Pix of the x-coordinate detection subfield SFax, the ramp waveform voltage is applied to the scan electrodes SC1 to SCn. Based on the timing signal, the sustain pulse generating circuit generates sustain pulses in the sustain periods Ps1 to Ps8 of the subfields SF1 to SF8, which are image display subfields, and the voltage Vso (in the display device identification period Pao of the display device identification subfield SFao). In this embodiment, display device identification pulses Va1 and Va3 (equal to voltage Vs) are applied to scan electrodes SC1 to SCn. The scan pulse generation circuit includes a plurality of scan electrode driving ICs (scan ICs), and based on the timing signal, the writing periods Pw1 to Pw8 of the subfields SF1 to SF8 that are image display subfields and the display device identification subfield SFao In the writing period Pwo, the scanning pulse of the voltage Vc and the voltage Va is detected, in the y coordinate detection period Pay of the y coordinate detection subfield SFay, the y coordinate detection pulse of the voltage Vc and voltage Vay is detected, and the x coordinate detection of the x coordinate detection subfield SFax. In the period Pax, the voltage Vc and the x coordinate detection voltage Vax are applied to the scan electrodes SC1 to SCn.
 次に、プラズマディスプレイ装置30aの走査電極駆動回路33a、維持電極駆動回路34a、データ電極駆動回路32aについて説明する。 Next, the scan electrode drive circuit 33a, the sustain electrode drive circuit 34a, and the data electrode drive circuit 32a of the plasma display device 30a will be described.
 図11は、本発明の実施の形態におけるプラズマディスプレイ装置30aの走査電極駆動回路33aの一構成例を概略的に示す回路図である。 FIG. 11 is a circuit diagram schematically showing a configuration example of the scan electrode drive circuit 33a of the plasma display device 30a according to the embodiment of the present invention.
 走査電極駆動回路33aは、維持パルス発生回路55aと、傾斜波形電圧発生回路60aと、走査パルス発生回路70aとを備えている。なお、各回路ブロックは、タイミング発生回路35aから供給されるタイミング信号にもとづき動作するが、図11では、タイミング信号の経路の詳細は省略する。また、以下、走査パルス発生回路70aに入力される電圧を「基準電位A」と記す。 The scan electrode drive circuit 33a includes a sustain pulse generation circuit 55a, a ramp waveform voltage generation circuit 60a, and a scan pulse generation circuit 70a. Each circuit block operates based on the timing signal supplied from the timing generation circuit 35a, but details of the timing signal path are omitted in FIG. Hereinafter, the voltage input to the scan pulse generation circuit 70a is referred to as “reference potential A”.
 維持パルス発生回路55aは、電力回収回路51aと、スイッチング素子Q55と、スイッチング素子Q56と、スイッチング素子Q59とを有する。電力回収回路51aは、電力回収用のコンデンサC10、スイッチング素子Q11、スイッチング素子Q12、逆流防止用のダイオードDi11、ダイオードDi12、共振用のインダクタL11、インダクタL12を有する。 Sustain pulse generation circuit 55a includes power recovery circuit 51a, switching element Q55, switching element Q56, and switching element Q59. The power recovery circuit 51a includes a power recovery capacitor C10, a switching element Q11, a switching element Q12, a backflow prevention diode Di11, a diode Di12, a resonance inductor L11, and an inductor L12.
 電力回収回路51aは、パネル10aに蓄えられた電力を、パネル10aの電極間容量とインダクタL12とをLC共振させてパネル10aから回収し、コンデンサC10に蓄える。そして、回収した電力を、パネル10aの電極間容量とインダクタL11とをLC共振させてコンデンサC10からパネル10aに再度供給し、走査電極SC1~SCnを駆動するときの電力として再利用する。 The power recovery circuit 51a recovers the power stored in the panel 10a from the panel 10a through LC resonance between the interelectrode capacitance of the panel 10a and the inductor L12, and stores it in the capacitor C10. Then, the recovered power is LC-resonated between the interelectrode capacitance of the panel 10a and the inductor L11, supplied again from the capacitor C10 to the panel 10a, and reused as power when driving the scan electrodes SC1 to SCn.
 スイッチング素子Q55は、走査電極SC1~SCnを電圧Vsにクランプし、スイッチング素子Q56は、走査電極SC1~SCnを電圧0(V)にクランプする。スイッチング素子Q59は分離スイッチであり、走査電極駆動回路33aを構成するスイッチング素子の寄生ダイオード等を介して電流が逆流するのを防止する。 Switching element Q55 clamps scan electrodes SC1 to SCn to voltage Vs, and switching element Q56 clamps scan electrodes SC1 to SCn to voltage 0 (V). The switching element Q59 is a separation switch, and prevents a current from flowing back through a parasitic diode or the like of the switching element constituting the scan electrode drive circuit 33a.
 走査パルス発生回路70aは、スイッチング素子Q71H1~Q71Hn、スイッチング素子Q71L1~Q71Ln、スイッチング素子Q72、負の電圧Vaを発生する電源、電圧Vpを発生する電源E71を有する。そして、走査パルス発生回路70aの基準電位Aに電圧Vpを重畳して電圧Vc(Vc=Va+Vp)を発生し、電圧Vaと電圧Vcとを切り換えながら走査電極SC1~SCnに印加することで走査パルスを発生する。例えば、電圧Va=-200(V)であり、電圧Vp=150(V)であれば、電圧Vc=-50(V)となる。 Scan pulse generation circuit 70a has switching elements Q71H1 to Q71Hn, switching elements Q71L1 to Q71Ln, switching element Q72, a power supply for generating negative voltage Va, and a power supply E71 for generating voltage Vp. Then, a voltage Vp (Vc = Va + Vp) is generated by superimposing the voltage Vp on the reference potential A of the scan pulse generating circuit 70a, and applied to the scan electrodes SC1 to SCn while switching between the voltage Va and the voltage Vc. Is generated. For example, if the voltage Va = −200 (V) and the voltage Vp = 150 (V), the voltage Vc = −50 (V).
 そして、走査パルス発生回路70aは、走査電極SC1~SCnのそれぞれに、図4~図8に示したタイミングで走査パルスを順次印加する。なお、走査パルス発生回路70aは、維持期間では維持パルス発生回路55aの出力電圧をそのまま出力する。すなわち、基準電位Aの電圧を走査電極SC1~SCnへ出力する。 The scan pulse generation circuit 70a sequentially applies scan pulses to the scan electrodes SC1 to SCn at the timings shown in FIGS. Scan pulse generating circuit 70a outputs the output voltage of sustain pulse generating circuit 55a as it is during the sustain period. That is, the reference potential A is output to scan electrodes SC1 to SCn.
 また、走査パルス発生回路70aは、図5~図8に示したタイミングで、y座標検出サブフィールドSFayのy座標検出期間Payでは電圧Vcと電圧Vay(=電圧Va)のy座標検出パルスを発生し、x座標検出サブフィールドSFaxのx座標検出期間Paxでは電圧Vcとx座標検出電圧Vax(=電圧Va)を発生して、走査電極SC1~SCnに印加する。 The scan pulse generation circuit 70a generates y-coordinate detection pulses of the voltage Vc and the voltage Vay (= voltage Va) in the y-coordinate detection period Pay of the y-coordinate detection subfield SFay at the timings shown in FIGS. In the x coordinate detection period Pax of the x coordinate detection subfield SFax, the voltage Vc and the x coordinate detection voltage Vax (= voltage Va) are generated and applied to the scan electrodes SC1 to SCn.
 傾斜波形電圧発生回路60aは、ミラー積分回路61a、ミラー積分回路62a、ミラー積分回路63aを備え、図4~図8に示した傾斜波形電圧を発生する。 The ramp waveform voltage generation circuit 60a includes a Miller integration circuit 61a, a Miller integration circuit 62a, and a Miller integration circuit 63a, and generates the ramp waveform voltage shown in FIGS.
 ミラー積分回路61aは、トランジスタQ61とコンデンサC61と抵抗R61とを有する。そして、入力端子IN61に一定の電圧を印加する(入力端子IN61として図示される2つの丸の間に一定の電圧差を与える)ことにより、電圧Vt(=電圧Vi2)に向かって緩やかに上昇する上り傾斜波形電圧(画像表示サブフィールドであるサブフィールドSF1の初期化期間Pi1、表示装置識別サブフィールドSFaoの初期化期間Pio、およびx座標検出サブフィールドSFaxの初期化期間Pix、の各期間に発生する上り傾斜波形電圧)を発生する。 Miller integrating circuit 61a includes transistor Q61, capacitor C61, and resistor R61. Then, by applying a constant voltage to the input terminal IN61 (giving a constant voltage difference between two circles illustrated as the input terminal IN61), the voltage gradually rises toward the voltage Vt (= voltage Vi2). Up-slope waveform voltage (generated in each period of initialization period Pi1 of subfield SF1, which is an image display subfield, initialization period Pio of display device identification subfield SFao, and initialization period Pix of x coordinate detection subfield SFax) To generate an upslope waveform voltage).
 あるいは、電圧Vtに電圧Vpを重畳した電圧が電圧Vi2に等しくなるように電圧Vtを設定してもよい。この構成では、ミラー積分回路61aを動作させているときは、スイッチング素子Q72およびスイッチング素子Q71L1~Q71Lnをオフにし、スイッチング素子Q71H1~Q71Hnをオンにして、ミラー積分回路61aで発生した上り傾斜波形電圧に電源E71の電圧Vpを重畳することで初期化動作のための上り傾斜波形電圧を発生することができる。 Alternatively, the voltage Vt may be set so that a voltage obtained by superimposing the voltage Vp on the voltage Vt is equal to the voltage Vi2. In this configuration, when Miller integrating circuit 61a is operated, switching element Q72 and switching elements Q71L1 to Q71Ln are turned off, switching elements Q71H1 to Q71Hn are turned on, and the rising ramp waveform voltage generated in Miller integrating circuit 61a is turned on. The up slope waveform voltage for the initialization operation can be generated by superimposing the voltage Vp of the power source E71 on the top.
 ミラー積分回路62aは、トランジスタQ62とコンデンサC62と抵抗R62と逆流防止用のダイオードDi62とを有する。そして、入力端子IN62に一定の電圧を印加する(入力端子IN62として図示される2つの丸の間に一定の電圧差を与える)ことにより、電圧Vrに向かって緩やかに上昇する上り傾斜波形電圧(画像表示サブフィールドであるサブフィールドSF1~SF8の各維持期間Ps1~Ps8の最後、および表示装置識別サブフィールドSFaoの表示装置識別期間Paoの最後に発生する上り傾斜波形電圧)を発生する。 Miller integrating circuit 62a includes transistor Q62, capacitor C62, resistor R62, and diode Di62 for backflow prevention. Then, by applying a constant voltage to the input terminal IN62 (giving a constant voltage difference between two circles shown as the input terminal IN62), an up-slope waveform voltage that gradually rises toward the voltage Vr ( Ascending waveform voltage generated at the end of the sustain periods Ps1 to Ps8 of the subfields SF1 to SF8, which are image display subfields, and at the end of the display device identification period Pao of the display device identification subfield SFao.
 ミラー積分回路63aは、トランジスタQ63とコンデンサC63と抵抗R63とを有する。そして、入力端子IN63に一定の電圧を印加する(入力端子IN63として図示される2つの丸の間に一定の電圧差を与える)ことにより、電圧Vi4に向かって緩やかに下降する下り傾斜波形電圧(画像表示サブフィールドであるサブフィールドSF1~SF8の各初期化期間Pi1~Pi8、表示装置識別サブフィールドSFaoの初期化期間Pio、y座標検出サブフィールドSFayの初期化期間Piy、およびx座標検出サブフィールドSFaxの初期化期間Pix、の各期間に発生する下り傾斜波形電圧)を発生する。 Miller integrating circuit 63a includes transistor Q63, capacitor C63, and resistor R63. Then, by applying a constant voltage to the input terminal IN63 (giving a constant voltage difference between two circles shown as the input terminal IN63), a downward ramp waveform voltage (gradiently decreasing toward the voltage Vi4 ( Initialization periods Pi1 to Pi8 of subfields SF1 to SF8 which are image display subfields, initialization period Pio of display device identification subfield SFao, initialization period Piy of y coordinate detection subfield SFay, and x coordinate detection subfield (Slope waveform voltage generated in each period of the initialization period Pix of SFax).
 なお、スイッチング素子Q69は分離スイッチであり、走査電極駆動回路33aを構成するスイッチング素子の寄生ダイオード等を介して電流が逆流するのを防止する。 Note that the switching element Q69 is a separation switch, and prevents a current from flowing backward through a parasitic diode or the like of the switching element constituting the scan electrode driving circuit 33a.
 なお、これらのスイッチング素子およびトランジスタは、MOSFETやIGBT等の一般に知られた半導体素子を用いて構成することができる。また、これらのスイッチング素子およびトランジスタは、タイミング発生回路35aで発生したそれぞれのスイッチング素子およびトランジスタに対応するタイミング信号により制御される。 Note that these switching elements and transistors can be configured using generally known semiconductor elements such as MOSFETs and IGBTs. These switching elements and transistors are controlled by timing signals corresponding to the respective switching elements and transistors generated by the timing generation circuit 35a.
 図12は、本発明の実施の形態におけるプラズマディスプレイ装置30aの維持電極駆動回路34aの一構成例を概略的に示す回路図である。 FIG. 12 is a circuit diagram schematically showing a configuration example of the sustain electrode drive circuit 34a of the plasma display device 30a in the embodiment of the present invention.
 維持電極駆動回路34aは、維持パルス発生回路80aと、一定電圧発生回路85aとを備えている。なお、各回路ブロックは、タイミング発生回路35aから供給されるタイミング信号にもとづき動作するが、図12では、タイミング信号の経路の詳細は省略する。 Sustain electrode drive circuit 34a includes sustain pulse generation circuit 80a and constant voltage generation circuit 85a. Each circuit block operates based on the timing signal supplied from the timing generation circuit 35a, but details of the timing signal path are omitted in FIG.
 維持パルス発生回路80aは、電力回収回路81aと、スイッチング素子Q83と、スイッチング素子Q84とを有する。電力回収回路81aは、電力回収用のコンデンサC20、スイッチング素子Q21、スイッチング素子Q22、逆流防止用のダイオードDi21、ダイオードDi22、共振用のインダクタL21、インダクタL22を有する。 Sustain pulse generation circuit 80a includes power recovery circuit 81a, switching element Q83, and switching element Q84. The power recovery circuit 81a includes a power recovery capacitor C20, a switching element Q21, a switching element Q22, a backflow prevention diode Di21, a diode Di22, a resonance inductor L21, and an inductor L22.
 電力回収回路81aは、パネル10aに蓄えられた電力を、パネル10aの電極間容量とインダクタL22とをLC共振させてパネル10aから回収し、コンデンサC20に蓄える。そして、回収した電力を、パネル10aの電極間容量とインダクタL21とをLC共振させてコンデンサC20からパネル10aに再度供給し、維持電極SU1~SUnを駆動するときの電力として再利用する。 The power recovery circuit 81a recovers the power stored in the panel 10a from the panel 10a through LC resonance between the interelectrode capacitance of the panel 10a and the inductor L22, and stores it in the capacitor C20. Then, the recovered power is LC-resonated between the interelectrode capacitance of the panel 10a and the inductor L21, supplied again from the capacitor C20 to the panel 10a, and reused as power when driving the sustain electrodes SU1 to SUn.
 スイッチング素子Q83は維持電極SU1~SUnを電圧Vsにクランプし、スイッチング素子Q84は維持電極SU1~SUnを電圧0(V)にクランプする。 Switching element Q83 clamps sustain electrodes SU1 to SUn to voltage Vs, and switching element Q84 clamps sustain electrodes SU1 to SUn to voltage 0 (V).
 このようにして、維持パルス発生回路80aは、電圧Vsの維持パルスを維持電極SU1~SUnに印加する。また、維持パルス発生回路80aは、表示装置識別サブフィールドSFaoの表示装置識別期間Paoでは表示装置識別パルスVa2、Va4を維持電極SU1~SUnに印加する。 In this way, sustain pulse generating circuit 80a applies a sustain pulse of voltage Vs to sustain electrodes SU1 to SUn. Further, sustain pulse generating circuit 80a applies display device identification pulses Va2 and Va4 to sustain electrodes SU1 to SUn in display device identification period Pao of display device identification subfield SFao.
 一定電圧発生回路85aは、スイッチング素子Q86、スイッチング素子Q87を有する。そして、一定電圧発生回路85aは、画像表示サブフィールドであるサブフィールドSF1~SF8の各初期化期間Pi1~Pi8と各書込み期間Pw1~Pw8、表示装置識別サブフィールドSFaoの初期化期間Pioと書込み期間Pwo、y座標検出サブフィールドSFayの初期化期間Piyとy座標検出期間Pay、およびx座標検出サブフィールドSFaxの初期化期間Pixとx座標検出期間Paxに、維持電極SU1~SUnに電圧Veを印加する。 The constant voltage generation circuit 85a includes a switching element Q86 and a switching element Q87. Then, the constant voltage generation circuit 85a includes initialization periods Pi1 to Pi8 and writing periods Pw1 to Pw8 of the subfields SF1 to SF8 that are image display subfields, initialization period Pio and writing period of the display device identification subfield SFao. The voltage Ve is applied to the sustain electrodes SU1 to SUn during the initialization period Piy and the y coordinate detection period Pay of the Pwo, y coordinate detection subfield SFay, and the initialization period Pix and the x coordinate detection period Pax of the x coordinate detection subfield SFax. To do.
 なお、これらのスイッチング素子は、MOSFETやIGBT等の一般に知られた素子を用いて構成することができる。またこれらのスイッチング素子は、タイミング発生回路35aで発生したそれぞれのスイッチング素子に対応するタイミング信号により制御される。 In addition, these switching elements can be configured using generally known elements such as MOSFETs and IGBTs. These switching elements are controlled by timing signals corresponding to the respective switching elements generated by the timing generation circuit 35a.
 図13は、本発明の実施の形態におけるプラズマディスプレイ装置30aのデータ電極駆動回路32aの一構成例を概略的に示す回路図である。 FIG. 13 is a circuit diagram schematically showing a configuration example of the data electrode driving circuit 32a of the plasma display device 30a in the embodiment of the present invention.
 なお、データ電極駆動回路32aは、画像信号処理回路31aから供給される画像データおよびタイミング発生回路35aから供給されるタイミング信号にもとづき動作するが、図13では、それらの信号の経路の詳細は省略する。 The data electrode drive circuit 32a operates based on the image data supplied from the image signal processing circuit 31a and the timing signal supplied from the timing generation circuit 35a. However, in FIG. 13, details of the paths of these signals are omitted. To do.
 データ電極駆動回路32aは、スイッチング素子Q91H1~Q91Hm、スイッチング素子Q91L1~Q91Lmを有する。そして、スイッチング素子Q91Ljをオンにすることでデータ電極Djに電圧0(V)を印加し、スイッチング素子Q91Hjをオンにすることでデータ電極Djに電圧Vdを印加する。こうしてデータ電極駆動回路32aは、画像表示サブフィールドであるサブフィールドSF1~SF8の各書込み期間Pw1~Pw8、および表示装置識別サブフィールドSFaoの書込み期間Pwoでは電圧Vdの書込みパルスを、y座標検出サブフィールドSFayのy座標検出期間Payではy座標検出電圧Vdy(=電圧Vd)を、x座標検出サブフィールドSFaxのx座標検出期間Paxでは電圧Vdx(=電圧Vd)のx座標検出パルスを、各データ電極D1~Dmに印加する。 The data electrode drive circuit 32a includes switching elements Q91H1 to Q91Hm and switching elements Q91L1 to Q91Lm. Then, voltage 0 (V) is applied to data electrode Dj by turning on switching element Q91Lj, and voltage Vd is applied to data electrode Dj by turning on switching element Q91Hj. In this way, the data electrode driving circuit 32a outputs the writing pulse of the voltage Vd in the writing periods Pw1 to Pw8 of the subfields SF1 to SF8 that are image display subfields and the writing period Pwo of the display device identification subfield SFao. In the y coordinate detection period Pay of the field SFay, the y coordinate detection voltage Vdy (= voltage Vd), and in the x coordinate detection period Pax of the x coordinate detection subfield SFax, the x coordinate detection pulse of the voltage Vdx (= voltage Vd) is stored. Applied to electrodes D1 to Dm.
 次に、本実施の形態におけるマルチ画面表示システム100の動作について説明する。 Next, the operation of the multi-screen display system 100 in the present embodiment will be described.
 図14は、本発明の実施の形態におけるマルチ画面表示システム100においてライトペン50の位置座標を検出するときの駆動電圧波形の一例を概略的に示す図である。 FIG. 14 is a diagram schematically illustrating an example of a drive voltage waveform when the position coordinates of the light pen 50 are detected in the multi-screen display system 100 according to the embodiment of the present invention.
 図14には、プラズマディスプレイ装置30aにおいて発生する駆動電圧波形を用いてライトペン50の位置座標を検出する動作を示す。なお、プラズマディスプレイ装置30b、30c、30dにおける動作は、y座標検出サブフィールドSFyで表示する第1の発光線の移動方向またはx座標検出サブフィールドSFxで表示する第2の発光線の移動方向が図14に示す駆動電圧波形とは異なるが、座標を算出する際の動作は同じであるので、説明を省略する。 FIG. 14 shows an operation of detecting the position coordinates of the light pen 50 using the drive voltage waveform generated in the plasma display device 30a. The operation of the plasma display devices 30b, 30c, and 30d is based on the movement direction of the first light emission line displayed in the y coordinate detection subfield SFy or the movement direction of the second light emission line displayed in the x coordinate detection subfield SFx. Although different from the driving voltage waveform shown in FIG. 14, the operation when calculating the coordinates is the same, and thus the description thereof is omitted.
 図14には、画像表示サブフィールドであるサブフィールドSF8に続く表示装置識別サブフィールドSFao、y座標検出サブフィールドSFayおよびx座標検出サブフィールドSFaxにおいて、走査電極SC1、走査電極SCn、データ電極D1、データ電極Dmのそれぞれに印加する駆動電圧波形、座標算出部56に入力される座標基準信号、および受光素子52から出力される受光信号を示す。なお、図14では、維持電極SU1~SUnに印加する駆動電圧波形は省略するが、図14に示す駆動電圧波形は、図5に示した駆動電圧波形と同じものである。 In FIG. 14, in the display device identification subfield SFao, the y coordinate detection subfield SFay, and the x coordinate detection subfield SFax following the subfield SF8 which is an image display subfield, the scan electrode SC1, the scan electrode SCn, the data electrode D1, The drive voltage waveform applied to each of the data electrodes Dm, the coordinate reference signal input to the coordinate calculation unit 56, and the light reception signal output from the light receiving element 52 are shown. In FIG. 14, the drive voltage waveform applied to sustain electrodes SU1 to SUn is omitted, but the drive voltage waveform shown in FIG. 14 is the same as the drive voltage waveform shown in FIG.
 本実施の形態におけるプラズマディスプレイ装置30では、時刻to1から時刻ty0までの時間Toyはあらかじめ定められており、時刻to1から時刻tx0までの時間Toxはあらかじめ定められている。 In the plasma display device 30 in the present embodiment, the time Toy from the time to1 to the time ty0 is determined in advance, and the time Tox from the time to1 to the time tx0 is predetermined.
 したがって、タイミング検出部54は、時刻to1を特定できれば、図14に示すように、時刻ty0と時刻tx0とのそれぞれに立上りエッジがある座標基準信号を発生し、座標算出部56に出力することができる。 Therefore, when the time to1 can be specified, the timing detection unit 54 can generate a coordinate reference signal having rising edges at each of the time ty0 and the time tx0 and output the coordinate reference signal to the coordinate calculation unit 56 as shown in FIG. it can.
 ライトペン50では、上述したように、タイミング検出部54において、発光の間隔が順に時間To0、時間TA1、時間TA2、時間TA3となる連続する5回の発光(これらの発光にもとづき受光素子52から出力される受光信号)を検出することで、時刻to1が特定されるとともに、ライトペン50がプラズマディスプレイ装置30aのパネル10a上にあることが特定される。 In the light pen 50, as described above, in the timing detection unit 54, the light emission intervals are sequentially five times of time To0, time TA1, time TA2, and time TA3 (from the light receiving element 52 based on these light emissions). By detecting the output light reception signal), the time to1 is specified, and it is specified that the light pen 50 is on the panel 10a of the plasma display device 30a.
 y座標検出サブフィールドSFayのy座標検出期間Payにおいては、第1の方向(行方向)に延長した線状の発光(第1の発光線)が第2の方向(列方向)に順次移動するy座標検出パターンaをパネル10aに表示する。これにより、パネル10aの画像表示領域には、画像表示領域の上端部(1行目)から下端部(n行目)まで順次移動する第1の発光線Lyが表示される。 In the y coordinate detection period Pay of the y coordinate detection subfield SFay, linear light emission (first light emission line) extended in the first direction (row direction) sequentially moves in the second direction (column direction). The y coordinate detection pattern a is displayed on the panel 10a. Thus, the first light emission line Ly that sequentially moves from the upper end (first row) to the lower end (nth row) of the image display region is displayed in the image display region of the panel 10a.
 ライトペン50の先端部がパネル10aの画像表示面の「座標(x、y)」に接触(または近接)していれば、第1の発光線Lyが座標(x、y)を通過する時刻tyyにおいて、ライトペン50の受光素子52は第1の発光線Lyの発光を受光する。これにより、ライトペン50は、図14に示すように、受光素子52が第1の発光線Lyの発光を受光したことを示す受光信号を時刻tyyにおいて出力する。 If the tip of the light pen 50 is in contact with (or close to) the “coordinate (x, y)” of the image display surface of the panel 10a, the time when the first light emission line Ly passes through the coordinate (x, y). At tyy, the light receiving element 52 of the light pen 50 receives light emitted from the first light emitting line Ly. Thereby, as shown in FIG. 14, the light pen 50 outputs a light reception signal indicating that the light receiving element 52 has received the light emission of the first light emission line Ly at time tyy.
 続くx座標検出サブフィールドSFaxのx座標検出期間Paxにおいては、第2の方向(列方向)に延長した線状の発光(第2の発光線)が第1の方向(行方向)に順次移動するx座標検出パターンaをパネル10aに表示する。これにより、パネル10aの画像表示領域には、画像表示領域の左端部(1列目の画素列)から右端部(m/3列目の画素列)まで順次移動する第2の発光線Lxが表示される。 In the subsequent x-coordinate detection period Pax of the x-coordinate detection subfield SFax, linear light emission (second light emission line) extended in the second direction (column direction) sequentially moves in the first direction (row direction). The x coordinate detection pattern a to be displayed is displayed on the panel 10a. Accordingly, the second light emitting line Lx that sequentially moves from the left end portion (first pixel column) to the right end portion (m / 3 pixel row) of the image display region is displayed in the image display region of the panel 10a. Is displayed.
 ライトペン50の先端部がパネル10aの画像表示面の「座標(x、y)」に接触(または近接)していれば、第2の発光線Lxが座標(x、y)を通過する時刻txxにおいて、ライトペン50の受光素子52は第2の発光線Lxの発光を受光する。これにより、ライトペン50は、図14に示すように、受光素子52が第2の発光線Lxの発光を受光したことを示す受光信号を時刻txxにおいて出力する。 If the tip of the light pen 50 is in contact with (or close to) the “coordinates (x, y)” of the image display surface of the panel 10a, the time when the second light emitting line Lx passes the coordinates (x, y) At txx, the light receiving element 52 of the light pen 50 receives the light emitted from the second light emitting line Lx. Thereby, as shown in FIG. 14, the light pen 50 outputs a light receiving signal indicating that the light receiving element 52 has received the light emitted from the second light emitting line Lx at time txx.
 図9に示した座標算出部56は、y座標検出サブフィールドSFayのy座標検出期間Payにおいてタイミング検出部54から出力される座標基準信号と、受光素子52から出力される受光信号にもとづき、内部に備えたカウンタを用いて時刻ty0から時刻tyyまでの時間Tyyを測定する。そして、内部に備えた演算回路において、時間Tyyを時間Ty1で除算する。この除算結果がパネル10aの画像表示領域におけるライトペン50の位置のy座標となる。 The coordinate calculation unit 56 shown in FIG. 9 is based on the coordinate reference signal output from the timing detection unit 54 and the light reception signal output from the light receiving element 52 in the y coordinate detection period Pay of the y coordinate detection subfield SFay. The time Tyy from the time ty0 to the time tyy is measured using the counter provided for. The time Tyy is divided by the time Ty1 in the arithmetic circuit provided inside. The division result is the y coordinate of the position of the light pen 50 in the image display area of the panel 10a.
 また、座標算出部56は、x座標検出サブフィールドSFaxのx座標検出期間Paxにおいてタイミング検出部54から出力される座標基準信号と、受光素子52から出力される受光信号にもとづき、内部に備えたカウンタを用いて時刻tx0から時刻txxまでの時間Txxを測定する。そして、内部に備えた演算回路において、時間Txxを時間Tx1で除算する。この除算結果がパネル10aの画像表示領域におけるライトペン50の位置のx座標となる。 Further, the coordinate calculation unit 56 is provided internally based on the coordinate reference signal output from the timing detection unit 54 and the light reception signal output from the light receiving element 52 in the x coordinate detection period Pax of the x coordinate detection subfield SFax. A time Txx from time tx0 to time txx is measured using a counter. Then, the time Txx is divided by the time Tx1 in the arithmetic circuit provided inside. The division result is the x coordinate of the position of the light pen 50 in the image display area of the panel 10a.
 本実施の形態における座標算出部56は、このようにして、マルチ画面表示装置130の画像表示領域におけるライトペン50の位置(座標(x、y))を算出する。そして、マルチ画面表示装置130の画像表示面に、ライトペン50を用いて手書き入力された図画が表示される。 In this way, the coordinate calculation unit 56 in the present embodiment calculates the position (coordinates (x, y)) of the light pen 50 in the image display area of the multi-screen display device 130. Then, a drawing input by handwriting using the light pen 50 is displayed on the image display surface of the multi-screen display device 130.
 図15は、本発明の実施の形態においてライトペン50の位置座標を検出するときのマルチ画面表示システム100の動作の一例を概略的に示す図である。 FIG. 15 is a diagram schematically showing an example of the operation of the multi-screen display system 100 when detecting the position coordinates of the light pen 50 in the embodiment of the present invention.
 本実施の形態に示すマルチ画面表示装置130は、上述したように、マルチ画面表示装置130におけるプラズマディスプレイ装置30の配置位置に応じて、y座標検出サブフィールドSFyで表示するy座標検出パターンおよびx座標検出サブフィールドSFxで表示するx座標検出パターンを、プラズマディスプレイ装置30毎に変えている。 As described above, the multi-screen display device 130 shown in the present embodiment has the y-coordinate detection pattern and x displayed in the y-coordinate detection subfield SFy according to the arrangement position of the plasma display device 30 in the multi-screen display device 130. The x-coordinate detection pattern displayed in the coordinate detection subfield SFx is changed for each plasma display device 30.
 例えば、マルチ画面表示装置130の上側(1行目)に配置された2台のプラズマディスプレイ装置30a、30bでは、y座標検出サブフィールドSFyにおいて、第1の発光線Ly(発光する1つの画素行)が画像表示領域の上端部から下端部まで順次移動するy座標検出パターンaをパネル10a、10bに表示する。一方、下側(2行目)に配置された2台のプラズマディスプレイ装置30c、30dでは、y座標検出サブフィールドSFyにおいて、第1の発光線Lyが画像表示領域の下端部から上端部まで順次移動するy座標検出パターンbをパネル10c、10dに表示する。 For example, in the two plasma display devices 30a and 30b arranged on the upper side (first row) of the multi-screen display device 130, in the y coordinate detection subfield SFy, the first light emission line Ly (one pixel row that emits light). ) Displays a y-coordinate detection pattern a that sequentially moves from the upper end to the lower end of the image display area on the panels 10a and 10b. On the other hand, in the two plasma display devices 30c and 30d arranged on the lower side (second row), in the y-coordinate detection subfield SFy, the first emission line Ly is sequentially from the lower end portion to the upper end portion of the image display area. The moving y-coordinate detection pattern b is displayed on the panels 10c and 10d.
 また、マルチ画面表示装置130の左側(1列目)に配置された2台のプラズマディスプレイ装置30a、30cでは、x座標検出サブフィールドSFxにおいて、第2の発光線Lx(発光する1本の画素列)が画像表示領域の左端部から右端部まで順次移動するx座標検出パターンaをパネル10a、10cに表示する。一方、右側(2列目)に配置された2台のプラズマディスプレイ装置30b、30dでは、x座標検出サブフィールドSFxにおいて、第2の発光線Lxが画像表示領域の右端部から左端部まで順次移動するx座標検出パターンbをパネル10b、10dに表示する。 Further, in the two plasma display devices 30a and 30c arranged on the left side (first column) of the multi-screen display device 130, in the x coordinate detection subfield SFx, the second emission line Lx (one pixel that emits light). The x-coordinate detection pattern a in which the column) sequentially moves from the left end to the right end of the image display area is displayed on the panels 10a and 10c. On the other hand, in the two plasma display devices 30b and 30d arranged on the right side (second column), the second light emission line Lx sequentially moves from the right end portion to the left end portion of the image display area in the x coordinate detection subfield SFx. The x coordinate detection pattern b to be displayed is displayed on the panels 10b and 10d.
 なお、マルチ画面表示装置130を、4行4列の行列状に配置された16台のプラズマディスプレイ装置30で構成する場合には、y座標検出サブフィールドSFyにおいて、1行目と3行目に配置されたプラズマディスプレイ装置30ではy座標検出パターンaを、2行目と4行目に配置されたプラズマディスプレイ装置30ではy座標検出パターンbを、パネル10に表示する。また、x座標検出サブフィールドSFxにおいて、1列目と3列目に配置されたプラズマディスプレイ装置30ではx座標検出パターンaを、2列目と4列目に配置されたプラズマディスプレイ装置30ではx座標検出パターンbを、パネル10に表示する。 When the multi-screen display device 130 is configured by 16 plasma display devices 30 arranged in a matrix of 4 rows and 4 columns, the first and third rows in the y coordinate detection subfield SFy. The panel 10 displays the y-coordinate detection pattern a on the arranged plasma display device 30 and the y-coordinate detection pattern b on the plasma display device 30 arranged on the second and fourth rows. In the x-coordinate detection subfield SFx, the plasma display device 30 arranged in the first and third columns displays the x-coordinate detection pattern a, and the plasma display device 30 arranged in the second and fourth columns displays x. A coordinate detection pattern b is displayed on the panel 10.
 このように、本実施の形態では、奇数番目の行に配置されたプラズマディスプレイ装置30では、y座標検出サブフィールドSFyにおいて、第1の発光線Lyが画像表示領域の上端部から下端部まで順次移動するy座標検出パターンaをパネル10に表示し、偶数番目の行に配置されたプラズマディスプレイ装置30では、y座標検出サブフィールドSFyにおいて、第1の発光線Lyが画像表示領域の下端部から上端部まで順次移動するy座標検出パターンbをパネル10に表示する。 As described above, in the present embodiment, in the plasma display device 30 arranged in the odd-numbered rows, the first light emission lines Ly are sequentially formed from the upper end portion to the lower end portion of the image display area in the y coordinate detection subfield SFy. In the plasma display device 30 that displays the moving y-coordinate detection pattern a on the panel 10 and is arranged in even-numbered rows, the first light emission line Ly from the lower end of the image display area in the y-coordinate detection subfield SFy. The y coordinate detection pattern b that sequentially moves to the upper end portion is displayed on the panel 10.
 また、奇数列目に配置されたプラズマディスプレイ装置30では、x座標検出サブフィールドSFxにおいて、第2の発光線Lxが画像表示領域の左端部から右端部まで順次移動するx座標検出パターンaをパネル10に表示し、偶数列目に配置されたプラズマディスプレイ装置30では、x座標検出サブフィールドSFxにおいて、第2の発光線Lxが画像表示領域の右端部から左端部まで順次移動するx座標検出パターンbをパネル10に表示する。 Further, in the plasma display device 30 arranged in the odd-numbered columns, the x-coordinate detection pattern a in which the second light emission line Lx sequentially moves from the left end portion to the right end portion of the image display area in the x-coordinate detection subfield SFx. In the plasma display device 30 displayed at 10 and arranged in the even-numbered columns, the x-coordinate detection pattern in which the second emission line Lx sequentially moves from the right end portion to the left end portion of the image display area in the x-coordinate detection subfield SFx. b is displayed on the panel 10.
 なお、奇数番目の行に配置されたプラズマディスプレイ装置30でy座標検出パターンbを表示し、偶数番目の行に配置されたプラズマディスプレイ装置30でy座標検出パターンaを表示してもよい。あるいは、奇数列目に配置されたプラズマディスプレイ装置30でx座標検出パターンbを表示し、偶数列目に配置されたプラズマディスプレイ装置30でx座標検出パターンaを表示してもよい。 The y coordinate detection pattern b may be displayed on the plasma display device 30 arranged in the odd-numbered rows, and the y coordinate detection pattern a may be displayed on the plasma display device 30 arranged in the even-numbered rows. Alternatively, the x coordinate detection pattern b may be displayed on the plasma display device 30 arranged in the odd column, and the x coordinate detection pattern a may be displayed on the plasma display device 30 arranged in the even column.
 このように、本実施の形態では、マルチ画面表示装置130におけるプラズマディスプレイ装置30の配置位置に応じて、y座標検出パターンを表示する際の第1の発光線Lyの移動方向、およびx座標検出パターンを表示する際の第2の発光線Lxの移動方向を変えている。すなわち、本実施の形態におけるマルチ画面表示装置130では、隣り合って配置された2台のプラズマディスプレイ装置30間で、y座標検出パターンにおける第1の発光線Lyの移動方向、またはx座標検出パターンにおける第2の発光線Lxの移動方向のいずれか一方を互いに逆方向にしている。これは、以下の理由による。 As described above, in the present embodiment, the moving direction of the first emission line Ly and the x-coordinate detection when displaying the y-coordinate detection pattern according to the arrangement position of the plasma display device 30 in the multi-screen display device 130. The moving direction of the second light emitting line Lx when displaying the pattern is changed. That is, in multi-screen display device 130 in the present embodiment, the movement direction of first light-emitting line Ly in the y-coordinate detection pattern or the x-coordinate detection pattern between two plasma display devices 30 arranged adjacent to each other. Any one of the moving directions of the second light emitting lines Lx in the directions is opposite to each other. This is due to the following reason.
 図16は、本発明の実施の形態におけるマルチ画面表示システム100においてライトペン50による手書き入力を行うときの動作の一例を概略的に示す図である。 FIG. 16 is a diagram schematically illustrating an example of an operation when handwriting input is performed with the light pen 50 in the multi-screen display system 100 according to the embodiment of the present invention.
 描画部44は、座標算出部56が算出した位置座標(x(t)、y(t))に対応する画素を中心に、描画モードS0(t)に応じた色および大きさの描画パターン(例えば、白色の丸等のパターン、以下、「カーソル101」と記す)の描画信号を発生する。この描画信号は描画部44の画像メモリ47に順次書込まれ、接触スイッチ53がオン状態の期間の描画信号は画像メモリ47に蓄積される。そして、プラズマディスプレイ装置30は、描画部44の画像メモリ47に蓄積された描画信号にもとづく画像をパネル10に表示する。 The drawing unit 44 draws a drawing pattern (with a color and size corresponding to the drawing mode S0 (t) around the pixel corresponding to the position coordinates (x (t), y (t)) calculated by the coordinate calculation unit 56. For example, a drawing signal of a pattern such as a white circle (hereinafter referred to as “cursor 101”) is generated. The drawing signals are sequentially written in the image memory 47 of the drawing unit 44, and the drawing signals during the period in which the contact switch 53 is on are stored in the image memory 47. Then, the plasma display device 30 displays an image based on the drawing signal stored in the image memory 47 of the drawing unit 44 on the panel 10.
 したがって、例えば図16に示すように、使用者がライトペン50の先端部をパネル10aの画像表示面に接触させたまま位置Aから位置B1に移動させると、その移動の軌跡を示す図柄がパネル10aに表示される。 Therefore, as shown in FIG. 16, for example, when the user moves the tip of the light pen 50 from the position A to the position B1 while keeping the tip of the light pen 50 in contact with the image display surface of the panel 10a, the pattern indicating the movement is displayed on the panel. 10a.
 使用者がライトペン50の先端部をパネル10aの位置B1からパネル10bの位置B2に移動させると、その動作に応じてカーソル101も位置B1から位置B2に移動する。 When the user moves the tip of the light pen 50 from the position B1 of the panel 10a to the position B2 of the panel 10b, the cursor 101 also moves from the position B1 to the position B2 according to the operation.
 このとき、ライトペン50の移動のタイミングによっては、ライトペン50の受光素子52が、表示装置識別サブフィールドSFoの表示装置識別期間Poに関してはパネル10aの発光を受光し、y座標検出サブフィールドSFyのy座標検出期間Pyおよびx座標検出サブフィールドSFxのx座標検出期間Pxに関してはパネル10bの発光を受光する可能性がある。この場合、ライトペン50は、ライトペン50自身がパネル10a上にあるものとして、位置座標を算出する。 At this time, depending on the movement timing of the light pen 50, the light receiving element 52 of the light pen 50 receives the light emission of the panel 10a for the display device identification period Po of the display device identification subfield SFo, and the y coordinate detection subfield SFy. For the y coordinate detection period Py and the x coordinate detection period Px of the x coordinate detection subfield SFx, there is a possibility that the panel 10b emits light. In this case, the light pen 50 calculates the position coordinates on the assumption that the light pen 50 itself is on the panel 10a.
 位置B1と位置B2とを比較すると、y座標に関してはほぼ同じであるが、x座標に関しては、位置B1がパネル10aの右端部であるのに対し、位置B2はパネル10bの左端部となる。 Comparing the position B1 and the position B2, the y-coordinate is almost the same, but the x-coordinate is the right end of the panel 10a while the position B2 is the left end of the panel 10b.
 このとき、従来の方法により駆動されるマルチ画面表示装置、すなわち、パネル10a、10bともにy座標検出パターンa(第1の発光線がパネルの画像表示領域の上端部から下端部まで1行ずつ順次移動するパターン)、x座標検出パターンa(第2の発光線がパネルの画像表示領域の左端部から右端部まで1列ずつ順次移動するパターン)を表示するマルチ画面表示装置では、x座標の基準点(0)はパネル10a、10bともに画像表示面の左端部となり、y座標の基準点(0)はパネル10a、10bともに画像表示面の上端部となる。すなわち、座標の基準点(0,0)は、パネル10a、10bともに画像表示面の左上端部となる。 At this time, the multi-screen display device driven by a conventional method, that is, the y-coordinate detection pattern a for each of the panels 10a and 10b (the first emission line is sequentially line by line from the upper end to the lower end of the image display area of the panel). In a multi-screen display device that displays an x-coordinate detection pattern a (a pattern in which the second light-emitting line sequentially moves one column at a time from the left end to the right end of the panel image display area) The point (0) is the left end of the image display surface for both panels 10a and 10b, and the reference point (0) for the y coordinate is the upper end of the image display surface for both panels 10a and 10b. That is, the coordinate reference point (0, 0) is the upper left corner of the image display surface in both panels 10a and 10b.
 したがって、位置B2として座標算出部56が算出する位置座標は、y座標に関しては本来の位置B2のy座標と大きな差は生じない。しかし、x座標に関しては、本来の位置B2がパネル10bのx座標の基準点(0)に近い位置にあるため、位置B2として座標算出部56が算出する位置座標のx座標は、パネル10aのx座標の基準点(0)に近い位置となる。これは、パネル10aの左端部に近い位置であるため、位置B2として座標算出部56が算出する位置座標は、パネル10aの位置B3となり、本来の位置B2とは大きく異なる位置にカーソル101が表示されることになる。 Therefore, the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is not significantly different from the y coordinate of the original position B2 with respect to the y coordinate. However, regarding the x coordinate, since the original position B2 is close to the reference point (0) of the x coordinate of the panel 10b, the x coordinate of the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is the position of the panel 10a. The position is close to the reference point (0) of the x coordinate. Since this is a position close to the left end portion of the panel 10a, the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is the position B3 of the panel 10a, and the cursor 101 is displayed at a position significantly different from the original position B2. Will be.
 しかし、本実施の形態では、パネル10aにはx座標検出パターンaを表示し、パネル10bにはx座標検出パターンb(第2の発光線がパネルの画像表示領域の右端部から左端部まで1列ずつ順次移動するパターン)を表示する。したがって、x座標の基準点(0)はパネル10aでは画像表示面の左端部となり、パネル10bでは画像表示面の右端部となる。 However, in the present embodiment, the x-coordinate detection pattern a is displayed on the panel 10a, and the x-coordinate detection pattern b (the second emission line is 1 from the right end to the left end of the panel image display area). Displays a pattern that moves sequentially column by column). Therefore, the reference point (0) of the x coordinate is the left end portion of the image display surface in the panel 10a, and the right end portion of the image display surface in the panel 10b.
 したがって、ライトペン50が位置B1から位置B2に移動する際に、受光素子52が、表示装置識別サブフィールドSFoの表示装置識別期間Poに関してはパネル10aの発光を受光し、x座標検出サブフィールドSFxのx座標検出期間Pxに関してはパネル10bの発光を受光したとしても、本来の位置B2がパネル10bのx座標の基準点(0)から最も遠い位置となるため、位置B2として座標算出部56が算出する位置座標のx座標は、パネル10aのx座標の基準点(0)から最も遠い位置となる。これは、パネル10aの右端部に近い位置であるため、位置B2として座標算出部56が算出する位置座標は、パネル10aの位置B1の近傍となり、本来の位置B2と比較的近い位置にカーソル101が表示されることになる。 Therefore, when the light pen 50 moves from the position B1 to the position B2, the light receiving element 52 receives light emitted from the panel 10a for the display device identification period Po of the display device identification subfield SFo, and the x coordinate detection subfield SFx. In the x-coordinate detection period Px, even if the panel 10b emits light, the original position B2 is farthest from the x-coordinate reference point (0) of the panel 10b. The x coordinate of the calculated position coordinate is the farthest position from the reference point (0) of the x coordinate of the panel 10a. Since this is a position close to the right end of the panel 10a, the position coordinate calculated by the coordinate calculation unit 56 as the position B2 is in the vicinity of the position B1 of the panel 10a, and the cursor 101 is positioned relatively close to the original position B2. Will be displayed.
 これは、パネル10cとパネル10dとの境界をまたいでライトペン50が移動するときも同様である。 This is the same when the light pen 50 moves across the boundary between the panel 10c and the panel 10d.
 上述と同様の理由により、ライトペン50が位置C1から位置C2に移動する際に、受光素子52が、表示装置識別サブフィールドSFoの表示装置識別期間Poに関してはパネル10bの発光を受光し、y座標検出サブフィールドSFyのy座標検出期間Pyおよびx座標検出サブフィールドSFxのx座標検出期間Pxに関してはパネル10dの発光を受光したとすると、パネル10b、10dともにy座標検出パターンa、x座標検出パターンbを表示するマルチ画面表示装置では、位置C2として座標算出部56が算出する位置座標は、パネル10bの位置C3となり、本来の位置B2とは大きく異なる位置にカーソル101が表示されることになる。 For the same reason as described above, when the light pen 50 moves from the position C1 to the position C2, the light receiving element 52 receives light emitted from the panel 10b for the display device identification period Po of the display device identification subfield SFo, and y For the y coordinate detection period Py of the coordinate detection subfield SFy and the x coordinate detection period Px of the x coordinate detection subfield SFx, assuming that the panel 10d emits light, the y coordinate detection pattern a and the x coordinate detection are performed for both the panels 10b and 10d. In the multi-screen display device that displays the pattern b, the position coordinate calculated by the coordinate calculation unit 56 as the position C2 is the position C3 of the panel 10b, and the cursor 101 is displayed at a position significantly different from the original position B2. Become.
 しかし、本実施の形態では、パネル10bにはy座標検出パターンaを表示し、パネル10dにはy座標検出パターンb(第1の発光線がパネルの画像表示領域の下端部から上端部まで1行ずつ順次移動するパターン)を表示する。したがって、例え受光素子52が、表示装置識別サブフィールドSFoの表示装置識別期間Poに関してはパネル10bの発光を受光し、y座標検出サブフィールドSFyのy座標検出期間Pyに関してはパネル10dの発光を受光したとしても、位置C2として座標算出部56が算出する位置座標のy座標は、パネル10bのy座標の基準点(0)から最も遠い位置となる。したがって、位置C2として座標算出部56が算出する位置座標は、パネル10bの位置C1の近傍となり、本来の位置C2と比較的近い位置にカーソル101が表示されることになる。 However, in the present embodiment, the y-coordinate detection pattern a is displayed on the panel 10b, and the y-coordinate detection pattern b (the first emission line is 1 from the lower end to the upper end of the image display area of the panel). Displays a pattern that moves sequentially line by line). Therefore, for example, the light receiving element 52 receives the light emission of the panel 10b for the display device identification period Po of the display device identification subfield SFo, and receives the light emission of the panel 10d for the y coordinate detection period Py of the y coordinate detection subfield SFy. Even so, the y coordinate of the position coordinate calculated by the coordinate calculation unit 56 as the position C2 is the farthest position from the reference point (0) of the y coordinate of the panel 10b. Therefore, the position coordinate calculated by the coordinate calculation unit 56 as the position C2 is in the vicinity of the position C1 of the panel 10b, and the cursor 101 is displayed at a position relatively close to the original position C2.
 これは、パネル10aとパネル10cとの境界をまたいでライトペン50が移動するときも同様である。 This is the same when the light pen 50 moves across the boundary between the panel 10a and the panel 10c.
 以上が、マルチ画面表示装置130におけるプラズマディスプレイ装置30の配置位置に応じて、y座標検出パターンを表示する際の第1の発光線Lyの移動方向、およびx座標検出パターンを表示する際の第2の発光線Lxの移動方向を変えている理由である。 The above is the moving direction of the first light emission line Ly when displaying the y-coordinate detection pattern and the first coordinate when displaying the x-coordinate detection pattern according to the arrangement position of the plasma display device 30 in the multi-screen display device 130. This is because the moving direction of the second light emitting line Lx is changed.
 なお、ライトペン50には、以下のようにしてポインタ機能を持たせてもよい。 The light pen 50 may have a pointer function as follows.
 状態S1(t)=0(接触スイッチ53がオフ)の期間は、ライトペン50の受光素子52がパネル10の発光を受光できれば、現時点の描画信号(位置座標(x(t)、y(t))、および描画モードS0(t)にもとづく描画信号)を画像メモリ47に書き込み、1フィールド前の描画信号(位置座標(x(t-1)、y(t-1))にもとづく描画信号)を画像メモリ47から消去する。 If the light receiving element 52 of the light pen 50 can receive the light emitted from the panel 10 during the state S1 (t) = 0 (the contact switch 53 is off), the current drawing signal (positional coordinates (x (t), y (t )) And a drawing signal based on the drawing mode S0 (t)) are written into the image memory 47, and the drawing signal based on the drawing signal (position coordinates (x (t-1), y (t-1)) one field before). ) Is deleted from the image memory 47.
 したがって、例えば、使用者がライトペン50の先端部をパネル10から離して位置を移動させると、その間の移動の軌跡はパネル10に表示されず、ライトペン50の先端部の現在位置を示すカーソル101が、パネル10に表示される。 Therefore, for example, when the user moves the position of the tip of the light pen 50 away from the panel 10, the movement locus during that time is not displayed on the panel 10, and the cursor indicating the current position of the tip of the light pen 50 is displayed. 101 is displayed on the panel 10.
 このようにして、ライトペン50をポインタとして用いることも可能である。さらに、ライトペン50の先端部にレンズを装着する等して、ライトペン50がパネル10からより離れた位置にあっても受光素子52がパネル10の発光を十分に受光できるように構成すれば、より離れた位置からライトペン50をポインタとして用いることもできる。 In this manner, the light pen 50 can be used as a pointer. Furthermore, if a lens is attached to the tip of the light pen 50, the light receiving element 52 can sufficiently receive the light emitted from the panel 10 even if the light pen 50 is located farther from the panel 10. The light pen 50 can also be used as a pointer from a position farther away.
 なお、本実施の形態では、接触スイッチ53をライトペン50の先端部に取付ける構成を説明したが、例えば、接触スイッチ53に相当する手動スイッチをライトペン50の側面等に設け、使用者がスイッチのオン・オフを操作できるように構成してもよい。あるいは、ライトペン50に接触スイッチ53と手動スイッチの両方を備える構成としてもよい。ライトペン50をこのような構成にすることで、使用者は、ライトペン50をパネル10の画像表示面から離した状態でパネル10に手書き入力することが可能となる。 In the present embodiment, the configuration in which the contact switch 53 is attached to the tip of the light pen 50 has been described. For example, a manual switch corresponding to the contact switch 53 is provided on the side surface of the light pen 50, and the user switches the switch. You may comprise so that operation of ON / OFF of can be operated. Alternatively, the light pen 50 may include both the contact switch 53 and the manual switch. By configuring the light pen 50 in such a configuration, the user can perform handwriting input on the panel 10 while the light pen 50 is separated from the image display surface of the panel 10.
 なお、本実施の形態では、表示装置識別サブフィールドSFoにおいて、あらかじめ定められた所定の時間間隔(例えば、時間To1、時間To2、時間To3)で、表示装置識別放電を4回発生させる例を説明したが、本発明は何らこの回数に限定されるものではない。 In the present embodiment, an example in which display device identification discharge is generated four times at predetermined time intervals (for example, time To1, time To2, and time To3) in display device identification subfield SFo will be described. However, the present invention is not limited to this number.
 なお、本実施の形態では、最初の表示装置識別放電を容易に特定できるようにするために、表示装置識別放電を複数回発生させるときの時間間隔は互いに異なる時間に設定することが望ましい。 In this embodiment, it is desirable to set the time intervals for generating the display device identification discharge a plurality of times to be different from each other so that the first display device identification discharge can be easily specified.
 なお、本実施の形態では、各フィールドに表示装置識別サブフィールドSFo、y座標検出サブフィールドSFy、x座標検出サブフィールドSFxを設ける構成を説明したが、本発明は何らこの構成に限定されるものではない。例えば、複数フィールドに1回の割合でそれらのサブフィールドを発生する構成であってもよい。 In the present embodiment, the configuration in which the display device identification subfield SFo, the y coordinate detection subfield SFy, and the x coordinate detection subfield SFx are provided in each field has been described. However, the present invention is not limited to this configuration. is not. For example, the configuration may be such that those subfields are generated at a rate of once in a plurality of fields.
 なお、本実施の形態では、描画装置40とライトペン50との間で無線通信を行う例を説明したが、本発明は何らこの構成に限定されない。例えば、描画装置とライトペンとの間を電気ケーブル等によって電気的に接続し、その電気ケーブルを介してライトペンと描画装置との間で信号の送受信を行う構成であってもよい。 In the present embodiment, an example in which wireless communication is performed between the drawing device 40 and the light pen 50 has been described, but the present invention is not limited to this configuration. For example, the drawing device and the light pen may be electrically connected by an electric cable or the like, and a signal may be transmitted and received between the light pen and the drawing device via the electric cable.
 なお、本発明の実施の形態では、各サブフィールドの発生順が何ら実施の形態に示した順番に限定されるものではない。例えば、1フィールドにおいて、x座標検出サブフィールドSFxの後にy座標検出サブフィールドSFyを発生してもよい。あるいは、1フィールドにおいて、y座標検出サブフィールドSFyとx座標検出サブフィールドSFxの後に画像表示サブフィールドを発生してもよい。あるいは、1フィールドにおいて、y座標検出サブフィールドSFyとx座標検出サブフィールドSFxの間に表示装置識別サブフィールドSFoを発生してもよく、x座標検出サブフィールドSFxの後に表示装置識別サブフィールドSFoを発生してもよい。 In the embodiment of the present invention, the generation order of each subfield is not limited to the order shown in the embodiment. For example, in one field, the y coordinate detection subfield SFy may be generated after the x coordinate detection subfield SFx. Alternatively, in one field, an image display subfield may be generated after the y coordinate detection subfield SFy and the x coordinate detection subfield SFx. Alternatively, in one field, a display device identification subfield SFo may be generated between the y coordinate detection subfield SFy and the x coordinate detection subfield SFx, and the display device identification subfield SFo is set after the x coordinate detection subfield SFx. It may occur.
 なお、本発明の実施の形態では、画像表示部にプラズマディスプレイパネルを用いたプラズマディスプレイ装置を画像表示装置の一例として挙げて、各動作を説明した。しかし、本発明は、何ら画像表示装置がプラズマディスプレイ装置に限定されるものではない。例えば、液晶パネル、有機ELパネル、LEDパネル等を用いた画像表示装置においても、上述した構成と同様の構成を適用することで、上述した効果と同様の効果を得ることができる。 In the embodiment of the present invention, each operation has been described by taking a plasma display device using a plasma display panel as an image display unit as an example of the image display device. However, in the present invention, the image display device is not limited to the plasma display device. For example, even in an image display device using a liquid crystal panel, an organic EL panel, an LED panel, or the like, the same effect as that described above can be obtained by applying the same configuration as that described above.
 なお、本発明の実施の形態では、y座標検出パターンとして、第1の発光線を発光する1つの画素行としたが、第1の発光線は発光する複数の画素行であってもよい。あるいは、y座標検出パターンは、第1の発光線が、1行おき(あるいは複数行おき)に順次移動するパターンであってもよい。これらの構成では、y座標検出サブフィールドSFyに要する時間を、本実施の形態に示した構成と比較して、短縮することができる。 In the embodiment of the present invention, the y-coordinate detection pattern is a single pixel row that emits light from the first light-emitting line. However, the first light-emitting line may be a plurality of pixel rows that emit light. Alternatively, the y-coordinate detection pattern may be a pattern in which the first light emission line sequentially moves every other row (or every other row). In these configurations, the time required for the y-coordinate detection subfield SFy can be shortened compared to the configuration shown in the present embodiment.
 また、本発明の実施の形態では、x座標検出パターンとして、第2の発光線を発光する1つの画素列としたが、第2の発光線は発光する複数の画素列であってもよい。あるいは、x座標検出パターンは、第2の発光線が、1列おき(あるいは複数列おき)に順次移動するパターンであってもよい。これらの構成では、x座標検出サブフィールドSFxに要する時間を、本実施の形態に示した構成と比較して、短縮することができる。 In the embodiment of the present invention, the x-coordinate detection pattern is one pixel column that emits the second emission line, but the second emission line may be a plurality of pixel columns that emit light. Alternatively, the x-coordinate detection pattern may be a pattern in which the second light emission lines sequentially move every other row (or every other row). In these configurations, the time required for the x-coordinate detection subfield SFx can be shortened as compared with the configuration shown in the present embodiment.
 なお、本発明の実施の形態では、1フィールドに、複数の画像表示サブフィールドと位置座標を検出するためのサブフィールドとを有する構成を説明したが、本発明は何らこの構成に限定されるものではない。例えば、使用者がライトペンを使用しないときは、1フィールドを画像表示サブフィールドだけで構成してもよい。 In the embodiment of the present invention, a configuration in which one field has a plurality of image display subfields and a subfield for detecting position coordinates has been described. However, the present invention is not limited to this configuration. is not. For example, when the user does not use the light pen, one field may be composed of only the image display subfield.
 なお、本発明の実施の形態では、強制初期化動作を、パネルの画像表示領域内にある全ての放電セルに強制的に初期化放電を発生する初期化動作として説明したが、本発明は何らこの構成に限定されない。本発明の実施の形態では、パネルの画像表示領域内にある一部の放電セルにのみ強制初期化波形を印加してその放電セルにのみ強制的に初期化放電を発生する動作も、強制初期化動作に含めるものとする。 In the embodiment of the present invention, the forced initializing operation has been described as an initializing operation that forcibly generates initializing discharge in all the discharge cells in the image display area of the panel. It is not limited to this configuration. In the embodiment of the present invention, the forced initializing waveform is applied only to some discharge cells in the image display area of the panel and the initializing discharge is forcibly generated only in the discharge cells. It shall be included in the conversion operation.
 なお、本発明の実施の形態では、描画装置40をプラズマディスプレイ装置と独立に備えた構成を示したが、この構成の一例としては、例えば、プラズマディスプレイ装置に接続したコンピュータに描画装置40に相当する機能を持たせ、そのコンピュータを用いて描画信号を作成する構成等がある。しかし、本発明は何らこの構成に限定されるものではなく、例えば、描画装置40を単独の機器として設けてもよく、あるいは描画装置40をプラズマディスプレイ装置30に備える構成であってもよい。 In the embodiment of the present invention, a configuration in which the drawing device 40 is provided independently of the plasma display device has been described. As an example of this configuration, for example, a computer connected to the plasma display device corresponds to the drawing device 40. There is a configuration in which a rendering signal is created using the computer. However, the present invention is not limited to this configuration. For example, the drawing device 40 may be provided as a single device, or the drawing device 40 may be provided in the plasma display device 30.
 なお、図4、図5、図6、図7、図8、図14に示した駆動電圧波形は本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこの駆動電圧波形に限定されるものではない。 The drive voltage waveforms shown in FIGS. 4, 5, 6, 7, 8, and 14 are merely examples in the embodiment of the present invention, and the present invention is not limited to these drive voltage waveforms. It is not limited to.
 また、図9、図10、図11、図12、図13に示した回路構成も本発明の実施の形態における一例を示したものに過ぎず、本発明は何らこれらの回路構成に限定されるものではない。 In addition, the circuit configurations shown in FIGS. 9, 10, 11, 12, and 13 are merely examples in the embodiment of the present invention, and the present invention is not limited to these circuit configurations. It is not a thing.
 なお、本発明における実施の形態に示した各回路ブロックは、実施の形態に示した各動作を行う電気回路として構成されてもよく、あるいは、実施の形態に示した各動作と実質的に同じ動作をするようにプログラミングされたマイクロコンピュータやコンピュータ等を用いて構成されてもよい。 Each circuit block shown in the embodiment of the present invention may be configured as an electric circuit that performs each operation shown in the embodiment, or substantially the same as each operation shown in the embodiment. A microcomputer or a computer programmed to operate may be used.
 なお、本発明の実施の形態において示した具体的な数値は、画面サイズが50インチ、表示電極対14の数が1024のパネル10の特性にもとづき設定したものであって、単に実施の形態における一例を示したものに過ぎない。本発明はこれらの数値に何ら限定されるものではなく、各数値はパネルの仕様やパネルの特性やプラズマディスプレイ装置の仕様等にあわせて最適に設定することが望ましい。また、これらの各数値は、上述した効果を得られる範囲でのばらつきを許容するものとする。 The specific numerical values shown in the embodiment of the present invention are set based on the characteristics of the panel 10 having a screen size of 50 inches and the number of display electrode pairs 14 of 1024. It is just an example. The present invention is not limited to these numerical values, and each numerical value is desirably set optimally in accordance with panel specifications, panel characteristics, plasma display device specifications, and the like. Each of these numerical values is allowed to vary within a range where the above-described effect can be obtained.
 本発明は、ライトペンの位置座標を誤差を低減して検出することができるので、マルチ画面表示装置、マルチ画面表示装置の駆動方法、およびマルチ画面表示システムとして有用である。 The present invention is useful as a multi-screen display device, a multi-screen display device driving method, and a multi-screen display system because the position coordinates of the light pen can be detected with reduced errors.
 10,10a,10b,10c,10d  パネル
 11  前面基板
 12  走査電極
 13  維持電極
 14  表示電極対
 15,23  誘電体層
 16  保護層
 21  背面基板
 22  データ電極
 24  隔壁
 25,25R,25G,25B  蛍光体層
 30,30a,30b,30c,30d  プラズマディスプレイ装置
 31  画像信号処理回路
 32  データ電極駆動回路
 33  走査電極駆動回路
 34  維持電極駆動回路
 35  タイミング発生回路
 40  描画装置
 42  受信部
 44  描画部
 46  画像信号分配部
 47  画像メモリ
 50,50a,50b,50c,50d  ライトペン
 51,81  電力回収回路
 52  受光素子
 53  接触スイッチ
 54  タイミング検出部
 55,80  維持パルス発生回路
 56  座標算出部
 59  送信部
 60  傾斜波形電圧発生回路
 61,62,63  ミラー積分回路
 70  走査パルス発生回路
 85  一定電圧発生回路
 100  マルチ画面表示システム
 101  カーソル
 130  マルチ画面表示装置
 Lx  第2の発光線
 Ly  第1の発光線
 Di11,Di12,Di21,Di22,Di62  ダイオード
 L11,L12,L21,L22  インダクタ
 Q11,Q12,Q21,Q22,Q55,Q56,Q59,Q69,Q72,Q83,Q84,Q86,Q87,Q71H1~Q71Hn,Q71L1~Q71Ln,Q91H1~Q91Hm,Q91L1~Q91Lm  スイッチング素子
 C10,C20,C61,C62,C63  コンデンサ
 R61,R62,R63  抵抗
 Q61,Q62,Q63  トランジスタ
 IN61,IN62,IN63  入力端子
 E71  電源
 SFx,SFax,SFbx,SFcx,SFdx  x座標検出サブフィールド
 SFy,SFay,SFby,SFcy,SFdy  y座標検出サブフィールド
 SFo,SFao,SFbo,SFco,SFdo  表示装置識別サブフィールド
 SF1~SF8  画像表示サブフィールド
10, 10a, 10b, 10c, 10d Panel 11 Front substrate 12 Scan electrode 13 Sustain electrode 14 Display electrode pair 15, 23 Dielectric layer 16 Protective layer 21 Back substrate 22 Data electrode 24 Partition 25, 25R, 25G, 25B Phosphor layer 30, 30a, 30b, 30c, 30d Plasma display device 31 Image signal processing circuit 32 Data electrode drive circuit 33 Scan electrode drive circuit 34 Sustain electrode drive circuit 35 Timing generation circuit 40 Drawing device 42 Receiving unit 44 Drawing unit 46 Image signal distributing unit 47 Image memory 50, 50a, 50b, 50c, 50d Light pen 51, 81 Power recovery circuit 52 Light receiving element 53 Contact switch 54 Timing detection unit 55, 80 Sustain pulse generation circuit 56 Coordinate calculation unit 59 Transmission unit 60 Ramp waveform voltage generation Circuit 61, 62, 63 Miller integration circuit 70 Scan pulse generation circuit 85 Constant voltage generation circuit 100 Multi-screen display system 101 Cursor 130 Multi-screen display device Lx Second light emission line Ly First light emission line Di11, Di12, Di21, Di22 , Di62 Diodes L11, L12, L21, L22 Inductors Q11, Q12, Q21, Q22, Q55, Q56, Q59, Q69, Q72, Q83, Q84, Q86, Q87, Q71H1 to Q71Hn, Q71L1 to Q71Ln, Q91H1 to Q91Hm, Q91L1 Q91Lm Switching element C10, C20, C61, C62, C63 Capacitor R61, R62, R63 Resistor Q61, Q62, Q63 Transistor IN61, IN62, IN63 Input terminal E7 Power SFx, SFax, SFbx, SFcx, SFdx x-coordinate detection subfield SFy, SFay, SFby, SFcy, SFdy y-coordinate detection subfield SFo, SFao, SFbo, SFco, SFdo display identification subfields SF1 ~ SF8 image display subfield

Claims (8)

  1. 行方向であるx座標方向に延長した複数の電極および列方向であるy座標方向に延長した複数の電極を有する画像表示部を備えた複数の部分画像表示装置を行列状に配置したマルチ画面表示装置であって、
    前記部分画像表示装置は、それぞれが表示装置識別サブフィールド、y座標検出サブフィールドおよびx座標検出サブフィールドを発生し、
    前記y座標検出サブフィールドでは前記x座標方向に延長した第1の発光線を前記y座標方向に移動するy座標検出パターンを前記画像表示部に表示し、
    前記x座標検出サブフィールドでは前記y座標方向に延長した第2の発光線を前記x座標方向に移動するx座標検出パターンを前記画像表示部に表示し、
    隣り合って配置された2台の前記部分画像表示装置では、前記y座標検出サブフィールドにおいて前記画像表示部に前記y座標検出パターンを表示する際の前記第1の発光線の移動方向、または、前記x座標検出サブフィールドにおいて前記画像表示部に前記x座標検出パターンを表示する際の前記第2の発光線の移動方向のいずれか一方が互いに逆である
    ことを特徴とするマルチ画面表示装置。
    Multi-screen display in which a plurality of partial image display devices having an image display unit having a plurality of electrodes extending in the x-coordinate direction that is the row direction and a plurality of electrodes extending in the y-coordinate direction that is the column direction are arranged in a matrix A device,
    The partial image display devices each generate a display device identification subfield, a y-coordinate detection subfield, and an x-coordinate detection subfield;
    In the y coordinate detection subfield, a y coordinate detection pattern for moving the first light emitting line extended in the x coordinate direction in the y coordinate direction is displayed on the image display unit,
    In the x-coordinate detection subfield, an x-coordinate detection pattern for moving the second emission line extended in the y-coordinate direction in the x-coordinate direction is displayed on the image display unit,
    In the two partial image display devices arranged adjacent to each other, the movement direction of the first emission line when the y coordinate detection pattern is displayed on the image display unit in the y coordinate detection subfield, or One of the moving directions of the second light emitting lines when displaying the x coordinate detection pattern on the image display unit in the x coordinate detection subfield is opposite to each other.
  2. 奇数番目の行に配置された前記部分画像表示装置と偶数番目の行に配置された前記部分画像表示装置とでは、前記y座標検出サブフィールドにおいて前記画像表示部に前記y座標検出パターンを表示する際の前記第1の発光線の移動方向が互いに逆であり、
    奇数番目の列に配置された前記部分画像表示装置と偶数番目の列に配置された前記部分画像表示装置とでは、前記x座標検出サブフィールドにおいて前記画像表示部に前記x座標検出パターンを表示する際の前記第2の発光線の移動方向が互いに逆である
    ことを特徴とする請求項1に記載のマルチ画面表示装置。
    The partial image display device arranged in an odd-numbered row and the partial image display device arranged in an even-numbered row display the y-coordinate detection pattern on the image display unit in the y-coordinate detection subfield. The moving directions of the first emission lines are opposite to each other,
    The partial image display device arranged in the odd-numbered column and the partial image display device arranged in the even-numbered column display the x-coordinate detection pattern on the image display unit in the x-coordinate detection subfield. The multi-screen display device according to claim 1, wherein the moving directions of the second light emitting lines are opposite to each other.
  3. 前記表示装置識別サブフィールドは、前記画像表示部に発生する発光の間隔が、複数の前記部分画像表示装置のそれぞれで互いに異なる表示装置識別期間を有する
    ことを特徴とする請求項1または請求項2に記載のマルチ画面表示装置。
    3. The display device identification subfield has display device identification periods in which intervals of light emission generated in the image display unit are different from each other in the plurality of partial image display devices. The multi-screen display device described in 1.
  4. 前記部分画像表示装置はプラズマディスプレイ装置である
    ことを特徴とする請求項1または請求項2に記載のマルチ画面表示装置。
    The multi-screen display device according to claim 1, wherein the partial image display device is a plasma display device.
  5. 行方向であるx座標方向に延長した複数の電極および列方向であるy座標方向に延長した複数の電極を有する画像表示部を備えた複数の部分画像表示装置を行列状に配置したマルチ画面表示装置と、
    受光素子を有するライトペンと、
    描画装置と、
    を備えた画像表示システムであって、
    前記マルチ画面表示装置において、
    前記部分画像表示装置は、それぞれが表示装置識別サブフィールド、y座標検出サブフィールドおよびx座標検出サブフィールドを発生し、
    前記y座標検出サブフィールドでは前記x座標方向に延長した第1の発光線を前記y座標方向に移動するy座標検出パターンを前記画像表示部に表示し、
    前記x座標検出サブフィールドでは前記y座標方向に延長した第2の発光線を前記x座標方向に移動するx座標検出パターンを前記画像表示部に表示し、
    隣り合って配置された2台の前記部分画像表示装置では、前記y座標検出サブフィールドにおいて前記画像表示部に前記y座標検出パターンを表示する際の前記第1の発光線の移動方向、または、前記x座標検出サブフィールドにおいて前記画像表示部に前記x座標検出パターンを表示する際の前記第2の発光線の移動方向のいずれか一方が互いに逆であり、
    前記ライトペンは、前記表示装置識別サブフィールド、前記y座標検出サブフィールドおよび前記x座標検出サブフィールドにおいて前記画像表示部に生じる発光を受光して受光信号を発生するとともに、前記受光信号にもとづき座標を算出し、
    前記描画装置は、前記ライトペンから出力される座標にもとづく描画信号を作成し、
    前記部分画像表示装置は、前記描画装置から出力される前記描画信号にもとづく画像を前記画像表示部に表示する
    ことを特徴とするマルチ画面表示システム。
    Multi-screen display in which a plurality of partial image display devices having an image display unit having a plurality of electrodes extending in the x-coordinate direction that is the row direction and a plurality of electrodes extending in the y-coordinate direction that is the column direction are arranged in a matrix Equipment,
    A light pen having a light receiving element;
    A drawing device;
    An image display system comprising:
    In the multi-screen display device,
    The partial image display devices each generate a display device identification subfield, a y-coordinate detection subfield, and an x-coordinate detection subfield;
    In the y coordinate detection subfield, a y coordinate detection pattern for moving the first light emitting line extended in the x coordinate direction in the y coordinate direction is displayed on the image display unit,
    In the x-coordinate detection subfield, an x-coordinate detection pattern for moving the second emission line extended in the y-coordinate direction in the x-coordinate direction is displayed on the image display unit,
    In the two partial image display devices arranged adjacent to each other, the movement direction of the first emission line when the y coordinate detection pattern is displayed on the image display unit in the y coordinate detection subfield, or In the x-coordinate detection subfield, any one of the moving directions of the second light emission lines when displaying the x-coordinate detection pattern on the image display unit is opposite to each other,
    The light pen receives light emitted from the image display unit in the display device identification subfield, the y coordinate detection subfield, and the x coordinate detection subfield to generate a light reception signal, and coordinates based on the light reception signal. To calculate
    The drawing device creates a drawing signal based on the coordinates output from the light pen,
    The partial image display device displays an image based on the drawing signal output from the drawing device on the image display unit.
  6. 奇数番目の行に配置された前記部分画像表示装置と偶数番目の行に配置された前記部分画像表示装置とでは、前記y座標検出サブフィールドにおいて前記画像表示部に前記y座標検出パターンを表示する際の前記第1の発光線の移動方向が互いに逆であり、
    奇数番目の列に配置された前記部分画像表示装置と偶数番目の列に配置された前記部分画像表示装置とでは、前記x座標検出サブフィールドにおいて前記画像表示部に前記x座標検出パターンを表示する際の前記第2の発光線の移動方向が互いに逆である
    ことを特徴とする請求項5に記載のマルチ画面表示システム。
    The partial image display device arranged in an odd-numbered row and the partial image display device arranged in an even-numbered row display the y-coordinate detection pattern on the image display unit in the y-coordinate detection subfield. The moving directions of the first emission lines are opposite to each other,
    The partial image display device arranged in the odd-numbered column and the partial image display device arranged in the even-numbered column display the x-coordinate detection pattern on the image display unit in the x-coordinate detection subfield. 6. The multi-screen display system according to claim 5, wherein the moving directions of the second light emitting lines are opposite to each other.
  7. 行方向であるx座標方向に延長した複数の電極および列方向であるy座標方向に延長した複数の電極を有する画像表示部を備えた複数の部分画像表示装置を行列状に配置したマルチ画面表示装置の駆動方法であって、
    前記部分画像表示装置のそれぞれで表示装置識別サブフィールド、y座標検出サブフィールドおよびx座標検出サブフィールドを発生し、
    前記y座標検出サブフィールドでは前記x座標方向に延長した第1の発光線を前記y座標方向に移動するy座標検出パターンを前記画像表示部に表示し、
    前記x座標検出サブフィールドでは前記y座標方向に延長した第2の発光線を前記x座標方向に移動するx座標検出パターンを前記画像表示部に表示し、
    隣り合って配置された2台の前記部分画像表示装置では、前記y座標検出サブフィールドにおいて前記画像表示部に前記y座標検出パターンを表示する際の前記第1の発光線の移動方向、また
    は、前記x座標検出サブフィールドにおいて前記画像表示部に前記x座標検出パターンを表示する際の前記第2の発光線の移動方向のいずれか一方が互いに逆であるように前記部分画像表示装置を駆動する
    ことを特徴とするマルチ画面表示装置の駆動方法。
    Multi-screen display in which a plurality of partial image display devices having an image display unit having a plurality of electrodes extending in the x-coordinate direction that is the row direction and a plurality of electrodes extending in the y-coordinate direction that is the column direction are arranged in a matrix A method for driving an apparatus, comprising:
    Generating a display device identification subfield, a y-coordinate detection subfield, and an x-coordinate detection subfield in each of the partial image display devices;
    In the y coordinate detection subfield, a y coordinate detection pattern for moving the first light emitting line extended in the x coordinate direction in the y coordinate direction is displayed on the image display unit,
    In the x-coordinate detection subfield, an x-coordinate detection pattern for moving the second emission line extended in the y-coordinate direction in the x-coordinate direction is displayed on the image display unit,
    In the two partial image display devices arranged adjacent to each other, the movement direction of the first emission line when the y coordinate detection pattern is displayed on the image display unit in the y coordinate detection subfield, or In the x-coordinate detection subfield, the partial image display device is driven such that any one of the moving directions of the second light emission lines when the x-coordinate detection pattern is displayed on the image display unit is opposite to each other. A driving method of a multi-screen display device.
  8. 奇数番目の行に配置された前記部分画像表示装置と偶数番目の行に配置された前記部分画像表示装置とでは、前記y座標検出サブフィールドにおいて前記画像表示部に前記y座標検出パターンを表示する際の前記第1の発光線の移動方向が互いに逆であり、
    奇数番目の列に配置された前記部分画像表示装置と偶数番目の列に配置された前記部分画像表示装置とでは、前記x座標検出サブフィールドにおいて前記画像表示部に前記x座標検出パターンを表示する際の前記第2の発光線の移動方向が互いに逆であるように前記部分画像表示装置を駆動する
    ことを特徴とする請求項7に記載のマルチ画面表示装置の駆動方法。
    The partial image display device arranged in an odd-numbered row and the partial image display device arranged in an even-numbered row display the y-coordinate detection pattern on the image display unit in the y-coordinate detection subfield. The moving directions of the first emission lines are opposite to each other,
    The partial image display device arranged in the odd-numbered column and the partial image display device arranged in the even-numbered column display the x-coordinate detection pattern on the image display unit in the x-coordinate detection subfield. 8. The method of driving a multi-screen display device according to claim 7, wherein the partial image display device is driven so that the moving directions of the second light emitting lines are opposite to each other.
PCT/JP2013/001382 2012-05-09 2013-03-06 Multi-screen display device, multi-screen display device drive method, and multi-screen display system WO2013168327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-107246 2012-05-09
JP2012107246A JP2015135534A (en) 2012-05-09 2012-05-09 Multi-screen display device and multi-screen display system

Publications (1)

Publication Number Publication Date
WO2013168327A1 true WO2013168327A1 (en) 2013-11-14

Family

ID=49550399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001382 WO2013168327A1 (en) 2012-05-09 2013-03-06 Multi-screen display device, multi-screen display device drive method, and multi-screen display system

Country Status (2)

Country Link
JP (1) JP2015135534A (en)
WO (1) WO2013168327A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103677713A (en) * 2013-12-09 2014-03-26 联想(北京)有限公司 Information processing method and electronic equipment
CN105336289A (en) * 2015-10-30 2016-02-17 京东方科技集团股份有限公司 Splicing control method, splicing control device and spliced screen system
CN105979168A (en) * 2016-07-18 2016-09-28 合肥盈川信息技术有限公司 Novel video splicing data distribution system
CN106101581A (en) * 2016-07-18 2016-11-09 合肥盈川信息技术有限公司 A kind of three-dimensional system of coordinate video-splicing data distributing method
CN106101580A (en) * 2016-07-18 2016-11-09 合肥盈川信息技术有限公司 A kind of three-dimensional system of coordinate video-splicing multiwindow data distributing method
CN106131458A (en) * 2016-07-18 2016-11-16 合肥盈川信息技术有限公司 A kind of new three-dimensional system of coordinate video-splicing multiwindow data distributing method
CN106168893A (en) * 2016-07-18 2016-11-30 合肥盈川信息技术有限公司 A kind of video-splicing data distribution system
CN106201405A (en) * 2016-07-18 2016-12-07 合肥盈川信息技术有限公司 A kind of novel three-dimensional coordinate system video data distribution system
CN106210563A (en) * 2016-07-18 2016-12-07 合肥盈川信息技术有限公司 A kind of three-dimensional system of coordinate video-splicing data distribution system
CN106210566A (en) * 2016-07-18 2016-12-07 合肥盈川信息技术有限公司 A kind of video-splicing multiwindow data distributing method
CN110211534A (en) * 2019-05-20 2019-09-06 武汉华星光电半导体显示技术有限公司 Image display method, device, controller and storage medium
CN110941410A (en) * 2019-11-20 2020-03-31 广州视源电子科技股份有限公司 Splicing system and method of equipment
US11643465B2 (en) 2015-08-11 2023-05-09 WuXi Biologics Ireland Limited Anti-PD-1 antibodies

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223437A (en) * 2021-04-30 2021-08-06 惠科股份有限公司 Display screen, driving method and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949391A (en) * 1974-05-21 1976-04-06 Bell Telephone Laboratories, Incorporated Plasma panel light pen tracking using adaptive tracking scan
WO2008093394A1 (en) * 2007-01-30 2008-08-07 Pioneer Corporation Input system and method, and computer program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949391A (en) * 1974-05-21 1976-04-06 Bell Telephone Laboratories, Incorporated Plasma panel light pen tracking using adaptive tracking scan
WO2008093394A1 (en) * 2007-01-30 2008-08-07 Pioneer Corporation Input system and method, and computer program

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103677713A (en) * 2013-12-09 2014-03-26 联想(北京)有限公司 Information processing method and electronic equipment
CN103677713B (en) * 2013-12-09 2017-08-29 联想(北京)有限公司 A kind of information processing method and electronic equipment
US11643465B2 (en) 2015-08-11 2023-05-09 WuXi Biologics Ireland Limited Anti-PD-1 antibodies
CN105336289A (en) * 2015-10-30 2016-02-17 京东方科技集团股份有限公司 Splicing control method, splicing control device and spliced screen system
WO2017071374A1 (en) * 2015-10-30 2017-05-04 京东方科技集团股份有限公司 Joining control method, device and joined screen system
CN106168893A (en) * 2016-07-18 2016-11-30 合肥盈川信息技术有限公司 A kind of video-splicing data distribution system
CN106131458A (en) * 2016-07-18 2016-11-16 合肥盈川信息技术有限公司 A kind of new three-dimensional system of coordinate video-splicing multiwindow data distributing method
CN106201405A (en) * 2016-07-18 2016-12-07 合肥盈川信息技术有限公司 A kind of novel three-dimensional coordinate system video data distribution system
CN106210563A (en) * 2016-07-18 2016-12-07 合肥盈川信息技术有限公司 A kind of three-dimensional system of coordinate video-splicing data distribution system
CN106210566A (en) * 2016-07-18 2016-12-07 合肥盈川信息技术有限公司 A kind of video-splicing multiwindow data distributing method
CN106101580A (en) * 2016-07-18 2016-11-09 合肥盈川信息技术有限公司 A kind of three-dimensional system of coordinate video-splicing multiwindow data distributing method
CN106101581A (en) * 2016-07-18 2016-11-09 合肥盈川信息技术有限公司 A kind of three-dimensional system of coordinate video-splicing data distributing method
CN105979168A (en) * 2016-07-18 2016-09-28 合肥盈川信息技术有限公司 Novel video splicing data distribution system
CN110211534A (en) * 2019-05-20 2019-09-06 武汉华星光电半导体显示技术有限公司 Image display method, device, controller and storage medium
CN110941410A (en) * 2019-11-20 2020-03-31 广州视源电子科技股份有限公司 Splicing system and method of equipment

Also Published As

Publication number Publication date
JP2015135534A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
WO2013168327A1 (en) Multi-screen display device, multi-screen display device drive method, and multi-screen display system
JP5321763B1 (en) Image display device driving method, image display device, and image display system
JP5252139B1 (en) Image display device driving method, image display device, and image display system
JP5288077B1 (en) Image display device driving method, image display device, and image display system
WO2013187021A1 (en) Image display device, drive method for image display device, and image display system
WO2013161144A1 (en) Image display system, image display system drive method, and light pen
JP5288078B1 (en) Image display device driving method, image display device, and image display system
WO2013140713A1 (en) Image display device drive method, image display device, and image display system
WO2013183264A1 (en) Image display device, image display device drive method, and image display system
JP5252140B1 (en) Image display device driving method, image display device, and image display system
JP2014203425A (en) Image display system having electronic pen
WO2013088691A1 (en) Drive method for image display device, image display device, light pen, and image display system
WO2014006880A1 (en) Image display device, method for driving image display device and image display system
WO2013121705A1 (en) Method for driving image displaying device, image displaying device, and image displaying system
WO2013121704A1 (en) Method for driving image displaying device, image displaying device, and image displaying system
WO2013125199A1 (en) Image display system
WO2014045520A1 (en) Image display device, image display device driving method and image display system
JP2014203061A (en) Image display device, drive method of image display device and image display system
JP2013239001A (en) Light pen, drawing device, and image display system
WO2014054268A1 (en) Electronic pen attachment, electronic pen system, and image display system comprising electronic pen system
JP2014235475A (en) Electronic pen, attachment for electronic pen, and image display system having electronic pen
JP2015155931A (en) Driving method of image display device, image display device, and image display system
JP2015155930A (en) Driving method of image display device, image display device, and image display system
JP2014010198A (en) Driving method of image display device, image display device, and image display system
JP2013186457A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP