WO2013161588A1 - 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法 - Google Patents

無線通信システム、基地局装置、ユーザ端末、及び無線通信方法 Download PDF

Info

Publication number
WO2013161588A1
WO2013161588A1 PCT/JP2013/061069 JP2013061069W WO2013161588A1 WO 2013161588 A1 WO2013161588 A1 WO 2013161588A1 JP 2013061069 W JP2013061069 W JP 2013061069W WO 2013161588 A1 WO2013161588 A1 WO 2013161588A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
interference measurement
base station
measurement reference
interference
Prior art date
Application number
PCT/JP2013/061069
Other languages
English (en)
French (fr)
Inventor
聡 永田
祥久 岸山
ウェイ シー
シアン ユン
ラン チン
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to CN201380022190.0A priority Critical patent/CN104285462A/zh
Priority to EP13782031.2A priority patent/EP2843983A4/en
Publication of WO2013161588A1 publication Critical patent/WO2013161588A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, a user terminal, and a radio communication method in a next generation mobile communication system.
  • Non-patent Document 1 In the UMTS (Universal Mobile Telecommunications System) network, WSDPA (High Speed Downlink Packet Access) and HSUPA (High Speed Uplink Packet Access) are adopted for the purpose of improving frequency utilization efficiency and data rate.
  • the system features based on CDMA (Wideband Code Division Multiple Access) are maximally extracted.
  • LTE Long Term Evolution
  • Non-patent Document 1 Non-patent Document 1
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a transmission rate of about 300 Mbps at the maximum on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE advanced or LTE enhancement
  • CRS Cell-specific Reference Signal
  • CQI Channel Quality Indicator
  • CSI-RS Channel State Information-Reference Signal
  • inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system.
  • orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain.
  • UE User Equipment
  • W-CDMA Wideband Code Division Multiple Access
  • CoMP coordinated multi-point transmission / reception
  • the present invention has been made in view of such a point, and a radio communication system, a base station apparatus, a user terminal, and a radio that can determine channel quality information in consideration of interference from a plurality of transmission points and the like appropriately
  • An object is to provide a communication method.
  • a radio communication system of the present invention includes a plurality of base station apparatuses that transmit a desired signal measurement reference signal and an interference measurement reference signal for measuring a channel state, and user terminals that communicate with the plurality of base station apparatuses.
  • Each of the base station devices determines a resource to which the desired signal measurement reference signal and the interference measurement reference signal are respectively allocated, and phase-symbols of the interference measurement reference signal
  • a phase control unit that rotates, wherein the determination unit performs control so that the interference measurement reference signal is allocated to the same resource as the interference measurement reference signal transmitted from another base station device, and the phase control The unit controls a symbol of the interference measurement reference signal to a phase rotation amount different from that of other base station apparatuses.
  • the present invention it is possible to determine channel quality information in consideration of interference from a plurality of transmission points. Thereby, throughput is improved and a highly efficient wireless communication system can be realized.
  • the CSI-RS that is one of the reference signals adopted in the LTE successor system (for example, Rel. 10 LTE) will be described.
  • CSI-RS is a reference signal used for CSI measurement such as CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), etc. as a channel state.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indicator
  • CSI-RS is assigned at a predetermined period, for example, 10 subframe periods.
  • the CSI-RS is specified by parameters such as position, sequence, and transmission power.
  • the CSI-RS position includes a subframe offset, a period, and a subcarrier-symbol offset (index).
  • Non-zero power CSI-RS and zero power CSI-RS are defined as CSI-RS.
  • Non-zero power CSI-RS distributes transmission power to resources to which CSI-RS is allocated, and zero power CSI-RS does not distribute transmission power to allocated resources (CSI-RS is muted).
  • CSI-RS is a control signal such as PDCCH (Physical Downlink Control Channel), user data such as PDSCH (Physical Downlink Shared Channel), CRS (Cell-specific Reference Signal) and DM- in one subframe specified by LTE. Assigned so as not to overlap with other reference signals such as RS (Demodulation-Reference Signal).
  • One subframe is composed of 12 subcarriers continuous in the frequency direction and 14 symbols (one resource block (RB) pair) continuous in the time axis direction. Further, from the viewpoint of suppressing PAPR, two resource elements (RE: Resource Element) adjacent in the time axis direction are assigned as a set to the resources to which CSI-RS can be assigned.
  • RE Resource Element
  • interference power can be obtained from the residual of two CSI-RSs adjacent in the time axis direction.
  • the channel states at the mapping positions of the respective CSI-RSs are almost equal, and the residual of the two CSI-RSs.
  • the accuracy of interference measurement is important when CQI is calculated by CSI-RS.
  • CoMP transmission As a transmission form from a plurality of transmission points, for example, there is CoMP transmission.
  • Downlink CoMP transmission includes Coordinated Scheduling / Coordinated Beamforming and Joint processing.
  • Coordinated Scheduling / Coordinated Beamforming is a method for transmitting a shared data channel from only one cell to one user terminal UE, and in the frequency / space domain considering interference from other cells and interference to other cells. Assign radio resources.
  • Joint processing is a method for transmitting a shared data channel from a plurality of cells at the same time by applying precoding, and a joint transmission for transmitting a shared data channel from a plurality of cells to one user terminal UE, and an instantaneous process.
  • DPS Dynamic Point Selection
  • DBS Dynamic Point Blanking
  • DPB Dynamic Point Blanking
  • CSI-RS defined in LTE (Rel. 10 LTE) is one resource. Since the density in the block pair is low, it is difficult to measure interference from other transmission points (other cells) with high accuracy.
  • the applicant of the present invention in addition to CSI-RS used for desired signal measurement (hereinafter referred to as “CSI-RS for desired signal measurement”), CSI-RS ( (Hereinafter referred to as “CSI-RS for interference measurement”) was proposed to control the resources of CSI-RS for interference measurement between a plurality of transmission points.
  • CSI-RS for interference measurement (Hereinafter referred to as “CSI-RS for interference measurement”) was proposed to control the resources of CSI-RS for interference measurement between a plurality of transmission points.
  • FIG. 2A shows a case where transmission is performed from the transmission points TP # 1 and TP # 2 to the user terminal UE.
  • FIG. 2B shows an example of a CSI-RS pattern in which CSI-RSs for interference measurement are arranged.
  • the left subframe is a subframe transmitted from TP # 1
  • the right subframe is a subframe transmitted from TP # 2.
  • FIG. 2B shows a case where the CSI-RS for interference measurement is arranged on the same resource between a plurality of transmission points (TP # 1, TP # 2). Specifically, in each subframe of TP # 1 and TP # 2, the CSI-RS for interference measurement is added to the fourth RE in the frequency axis direction and the ninth and tenth REs in the time axis direction. Are arranged respectively. By using these interference measurement CSI-RSs, it is possible to estimate interference signals of cells outside TP # 1 and TP # 2.
  • desired signal measurement CSI-RS (existing) is assigned to the 0th RE in the frequency axis direction and the 9th and 10th REs in the time axis direction. If the CSI-RS) is arranged, the RE can estimate the desired signal of TP # 1. Also, as shown in FIG. 2, when CSI-RS for measuring a desired signal is arranged in the first RE in the frequency axis direction and the ninth and tenth REs in the time axis direction in the subframe of TP # 2. The RE can estimate the desired signal of TP # 2.
  • the base station apparatus signals information on the desired signal estimation method and the interference signal estimation method to the user terminal. That is, the base station apparatus provides information on RE (SMR: Signal Measurement Resource) used for estimating the desired signal, information on RE (IMR: Interference Measurement Resource) used for estimating the interference signal, and information on the combination of SMR and IMR. Signal to the terminal.
  • RE Signal Measurement Resource
  • IMR Interference Measurement Resource
  • DCI downlink control information
  • interference measurement CSI-RSs in the same resource at a plurality of transmission points (TP # 1 and TP # 2), estimation of interference signals of cells outside TP # 1 and TP # 2 Is possible. Further, at this time, signaling overhead can be reduced by transmitting the CSI-RS for interference measurement at each transmission point through one antenna port.
  • the present inventors have found that when the CSI-RS for interference measurement is arranged in the same resource at different transmission points, the measurement accuracy of interference power may be reduced at each transmission point depending on the transmission form. It was. As an example, when CoMP is not applied (single cell transmission), if interference measurement CSI-RSs are arranged in the same resource at different transmission points, there is a possibility that the interference power cannot be measured accurately. Below, the calculation method of the interference power according to a transmission form is demonstrated.
  • FIG. 3 is a diagram in which the predetermined symbols (for example, the eighth to eleventh symbols) in FIG. 2 are extracted by one resource block, and interference measurement CSI-RSs are arranged in the same resource among a plurality of transmission points. An example of a CSI-RS pattern is shown. In the following description, other signals (DMRS, PDSCH, etc.) are omitted for convenience of description.
  • the left subframe indicates a subframe transmitted from TP # 1
  • the right subframe indicates a subframe transmitted from TP # 2.
  • FIG. 3B shows an example of a CSI-RS pattern when CoMP is applied
  • FIG. 3C shows an example of a CSI-RS pattern when CoMP is not applied (during single cell transmission).
  • received signals (y 1 , y 2 ) in two REs (IMR) adjacent in the time axis direction are expressed by the following formula (1), respectively. Can be represented.
  • two REs (IMR) for estimating interference signals adjacent in the time axis direction are respectively The first and second IMRs are assumed in order along the time axis direction.
  • Equation (1) X 11 and X 12 are arranged in two interference measurement REs (IMR) adjacent in the time axis direction in subframes transmitted from TP # 1 and TP # 2, respectively.
  • This is a CSI-RS symbol for interference measurement (see FIG. 3B).
  • h 1 indicates channel fading from TP # 1 to UE
  • h 2 indicates channel fading from TP # 2 to UE.
  • n 1 and n 2 are noises in two interference measurement REs (IMRs) adjacent in the time axis direction, respectively.
  • the interference power (P 12 ) other than TP # 1 and TP # 2 (outside of TP # 1 and TP # 2) can be expressed by the following equation (2).
  • X * 11, X * 12 is the conjugate of the respective X 11, X 12.
  • the user terminal in the subframes transmitted from TP # 1 and TP # 2, by placing the interference measurement CSI-RS on the same resource, the user terminal appropriately sets interference power other than TP # 1 and TP # 2. Can be calculated.
  • the reception signals (y 1 , y 2 ) of two RE (IMR) adjacent in the time axis direction are respectively It can be represented by the following formula (3).
  • X 11 and X 12 are for interference measurement arranged in two interference measurement REs (IMR) adjacent to each other in the time axis direction in the subframe transmitted from TP # 1.
  • X 21 and X 22 are interference measurement CSI-RS symbols respectively arranged in two interference measurement REs (IMRs) adjacent to each other in the time axis direction in the subframe transmitted from TP # 2. That is, X 11 and X 21 are arranged in the same RE, and X 12 and X 22 are arranged in the same RE.
  • H 1 indicates channel fading from TP # 1 to the user terminal, and h 2 indicates channel fading from TP # 2 to the user terminal.
  • N 1 and n 2 are noises in two REs (IMRs) adjacent to each other in the time axis direction.
  • interference power other than TP # 1 (outside TP # 1) (interference power P 1 in TP # 1 ) can be expressed by the following equation (4).
  • the interference power (P 1 ) at TP # 1 is underestimated (underestimated), and the measurement accuracy of the interference power at the user terminal may be reduced.
  • the measurement accuracy such as CQI calculated in the user terminal also decreases.
  • the CSI-RS for interference measurement is assigned to two REs that are adjacent in the time axis direction, so the channel fluctuation is small, so the phase difference between X 21 and X 11 and the phase difference between X 22 and X 12 are It becomes easy to be equal, and there is a high possibility that the accuracy of interference measurement at the time of single cell transmission is lowered.
  • the present inventors focused the phase difference between X 21 and X 11 and (alpha 1), the difference ( ⁇ 1 - ⁇ 2) of the phase difference between X 22 and X 12 ( ⁇ 2), It has been found that by controlling the phase difference between CSI-RS symbols at different transmission points, the accuracy of interference measurement can be improved even when CSI-RSs for interference measurement are arranged in the same resource between different transmission points. It was. Specifically, a predetermined CSI-RS symbol for interference measurement assigned to a subframe of each transmission point is controlled to have a different phase rotation amount (also referred to as phase shift amount or phase rotation angle).
  • FIG. 4 is a diagram in which the predetermined symbols (for example, 8th to 11th) in FIG. 2 are extracted by one resource block, and CSI-RSs for interference measurement are arranged in the same resource at a plurality of transmission points. An example of the RS pattern is shown.
  • the left subframe is a subframe transmitted from TP # 1
  • the right subframe is a subframe transmitted from TP # 2.
  • phase rotation amounts are assigned to the CSI-RS symbols for interference measurement at different transmission points (TP # 1, TP # 2).
  • the base station apparatus serving as TP # 1 controls the CSI-RS symbol for interference measurement to a phase rotation amount different from that of the base station apparatus serving as TI # 2.
  • the base station apparatus serving as TP # 1 assigns the interference measurement CSI-RS to two resources (IMR) adjacent in the time axis direction and also assigns the interference measurement CSI-RS to one of the two resources.
  • a phase rotation amount different from that of the base station apparatus serving as TP # 2 is assigned to the RS symbol. For example, as shown in FIG. 4B, among the two interference measurement CSI-RS symbols that are consecutive in the time axis direction in the subframe transmitted from TP # 1, the latter half of the interference measurement CSI-RS symbols (X 12 ) Is phase rotated by ⁇ 1 . In addition, among the two interference measurement CSI-RS symbols that are consecutive in the time axis direction in the subframe transmitted from TP # 2, the latter half of the interference measurement CSI-RS symbol (X 22 ) is rotated in phase by ⁇ 2. .
  • two RE (IMR) received signals (y 1 , y 2 ) used for interference signal estimation adjacent in the time axis direction can be expressed by the following formula (5), respectively.
  • interference power (P 1 ) other than TP # 1 in TP # 1 can be expressed by the following equation (6).
  • FIG. 5 shows interference measurement CSI-RS symbols (X 11 , X 12 ) transmitted from TP # 1 and interference measurement CSI-RS symbols (X 21 , X 22 ) transmitted from TP # 2.
  • FIG. 5A shows a case where phase rotation control is not performed on the CSI-RS symbol for interference measurement (see FIG. 3C), and FIG. 5B is transmitted from TP # 1 and TP # 2, respectively.
  • FIG. 4B shows a case where the interference measurement CSI-RS symbols (X 12 , X 22 ) are phase-rotated by ⁇ 1 and ⁇ 2 ( ⁇ 1 ⁇ ⁇ 2 ), respectively (see FIG. 4B).
  • the phase difference between X 21 and X 11 and (alpha 1), in the case the phase difference between X 22 and X 12 ( ⁇ 2) is equal ( ⁇ 1 ⁇ 2), the above-described
  • the interference power (P 1 ) at TP # 1 is underestimated, and the accuracy of interference measurement at the user terminal is reduced.
  • different angles ( ⁇ 1 ) with respect to predetermined CSI-RS symbols for interference measurement for example, X 12 , X 22 ) transmitted from TP # 1 and TP # 2.
  • phase difference ( ⁇ 1 ′) between X 21 and X 11 and the positions of X 22 e j ⁇ 2 and X 12 e j ⁇ 1 even if ⁇ 1 ⁇ 2
  • the phase difference ( ⁇ 2 ′) is different ( ⁇ 1 ′ ⁇ ⁇ 2 ′).
  • the phase rotation amounts of the interference measurement CSI-RS symbol (X 12 ) transmitted from TP # 1 and the interference measurement CSI-RS symbol (X 22 ) transmitted from TP # 2 are calculated.
  • the phase rotation control is not particularly limited as long as the phase difference between X 21 and X 11 and the phase difference between X 22 and X 12 are different.
  • the phase rotation amount is changed only in one of the interference measurement CSI-RS symbol (X 12 ) transmitted from TP # 1 and the interference measurement CSI-RS symbol (X 22 ) transmitted from TP # 2. Can do. It is also possible to change the phase rotation amount of the other interference measurement CSI-RS symbol (X 11 , X 21 ) adjacent in the time axis direction.
  • the base station apparatus controls the amount of phase rotation of the interference measurement CSI-RS symbol before mapping the interference measurement CSI-RS symbol to the processing resource. For example, as shown in the following formula (7), the base station apparatus can assign a predetermined phase shift amount ( ⁇ i ) to the reference signal sequence and map it to the complex modulation symbol.
  • ⁇ k, l (p) is a code that maps to the resource grid
  • w l ′′ is the OCC code of length 2
  • r l is the reference signal sequence (after QPSK Modulation) Gold sequence)
  • ⁇ i is the amount of phase rotation (transmission point specific (TP-specific) for single cell transmission, CoMP set specific (Measurement set-specific) for CoMP transmission)
  • the base station apparatus can be configured to notify the user terminal of information (phase rotation amount) regarding phase rotation.
  • the user terminal can accurately perform the scramble analysis by specifying the phase rotation amount of the CSI-RS symbol for interference measurement transmitted from each transmission point.
  • the base station apparatus can notify the user terminal of the phase rotation amount by higher layer signaling (for example, RRC signaling), a notification signal, or the like.
  • the base station apparatus may apply a table (see FIG. 6) in which the phase rotation amount ( ⁇ ) and the bit value are combined, or may signal phase rotation amount information.
  • the base station apparatus and the user terminal have the same table, the user terminal uses the phase of the CSI-RS symbol for interference measurement transmitted from each transmission point based on the information notified by RRC signaling or a broadcast signal.
  • the amount of rotation can be specified.
  • a table showing three types of phase rotation amounts is given as an example, but a table showing arbitrary plural types of phase rotation amounts may be used.
  • the base station apparatus notifies the user terminal of the phase rotation amount using higher layer signaling (for example, RRC signaling) or a broadcast signal
  • the phase rotation amount randomly determined on the base station apparatus side is used. May be notified, or the user terminal may be notified of the phase rotation amount set so as to have different phase rotation amounts among a plurality of base station apparatuses.
  • the base station apparatus when transmitting the desired signal measurement CSI-RS, transmits information (CSI-RS-Config) indicating transmission parameters (position, sequence, transmission power, etc.) for specifying the CSI-RS. Is notified to the user terminal by higher layer signaling (RRC signaling). Therefore, the base station apparatus also uses the user terminal at the same timing as the information (CSI-RS-Config) indicating the transmission parameter (or included in the CSI-RS-Config) for the phase rotation amount for the CSI-RS for interference measurement. It is good also as a structure which notifies to.
  • information CSI-RS-Config
  • the base station apparatus associates (ties together) the phase rotation amount ( ⁇ ) with information unique to each transmission point (or a plurality of transmission point groups), and determines the phase rotation amount of the CSI-RS symbol for interference measurement. It is also possible to control. For example, when the cell IDs (or virtual cell IDs) of a plurality of transmission points are different from each other, the phase rotation amount and the cell ID (or virtual cell ID) of each transmission point are defined in association with each other. The amount of phase rotation can be controlled. In this case, the base station apparatus uses the equation (for example, the following equation (8)) in which the phase rotation amount and the cell ID (or virtual cell ID) are associated with each other to perform the phase rotation of the CSI-RS symbol for interference measurement. The amount can be controlled.
  • equation for example, the following equation (8)
  • the virtual cell ID refers to a user-specific parameter (for example, CSI-RS) notified by higher layer signaling (RRC signaling) in the initialization pseudo-random sequence generation of a reference signal (for example, CSI-RS or DM-RS).
  • RRC signaling higher layer signaling
  • a value generated from the initialization pseudo-random sequence generation formula (user-specific parameter A in the following formula (9)).
  • the user terminal can specify the amount of phase rotation of the CSI-RS symbol for interference measurement transmitted from each transmission point based on the cell ID.
  • CoMP information unique to the CoMP set (CoMP set identification information or the like) and the phase rotation amount can be defined in association with each other.
  • the base station apparatus can also control the CSI-RS pattern and the phase rotation amount in association with each other.
  • the phase rotation amount can be controlled by associating the mapping position of the RE (SMR) for measuring the desired signal with a predetermined phase rotation amount for the CSI-RS for interference measurement transmitted from each transmission point. it can.
  • the base station apparatus can also control the user terminal ID (UEID) and the phase rotation amount in association with each other.
  • UEID user terminal ID
  • the base station apparatus can control the phase rotation amount of the CSI-RS symbol for interference measurement using an equation (for example, the following equation (10)) in which the phase rotation amount is associated with the UEID.
  • the user terminal can specify the amount of phase rotation of the CSI-RS symbol for interference measurement transmitted from each transmission point based on the UEID.
  • CoMP When CoMP is applied, information unique to the CoMP set (CoMP set identification information or the like) and the phase rotation amount can be defined in association with each other.
  • phase rotation control for interference measurement CSI-RS transmitted from each transmission point in a system configuration having a plurality of CoMP groups (CoMP cluster) composed of a plurality of transmission points will be described.
  • CoMP cluster CoMP cluster
  • two CoMP groups each having three transmission points will be described as an example, but the number of transmission points and the number of CoMP groups are not limited thereto. Further, the above method can be applied to control of the phase rotation amount at each transmission point.
  • FIG. 7A shows frequency bands in which the CoMP group # 1 composed of TP # 1, TP # 2, and TP # 3 and the CoMP group # 2 composed of TP # 4, TP # 5, and TP # 6 are different from each other. The case where (subcarrier) is applied is shown. If each transmission point assigns an interference measurement RE (IMR) to the same resource in a predetermined subframe, interference from other transmission points in the same CoMP group may be underestimated (underestimated).
  • IMR interference measurement RE
  • interference CSI-RS symbols for interference measurement transmitted from a plurality of transmission points in the CoMP group are represented by QPSK (4 states), thereby canceling interference from other transmission points.
  • QPSK 4 states
  • the CSI-RS for interference measurement is arranged on the same resource at a plurality of transmission points (between TP # 1 to TP # 3 and between TP # 4 to TP # 6) constituting each CoMP group, the same Interference from other transmission points constituting the CoMP group is not taken into account, and there is a possibility that the measurement accuracy of the interference power at each transmission point is lowered.
  • FIG. 7B shows a case where the phase difference between the CSI-RS symbols for interference measurement transmitted from each transmission point belonging to the same CoMP group is controlled as shown in FIG.
  • the case where it controls by giving is shown.
  • different phase rotation amounts ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) are assigned to one of the CSI-RS symbols for interference measurement adjacent in the time axis direction (for example, X 12 , X 22 , X 32 ). be able to.
  • TP # 1 to TP # 3 constituting CoMP group # 1 even when the CSI-RS for interference measurement is arranged on the same resource, interference from other transmission points is appropriately considered.
  • the interference power (P 1 to P 3 ) at each transmission point can be estimated appropriately.
  • FIG. 7C shows a case where a plurality of CoMP groups (CoMP groups # 1, # 2) are applied in the same frequency band (subcarrier).
  • the phase rotation amount of the CSI-RS symbol for interference measurement between a plurality of transmission points in each CoMP group is controlled, and the phase rotation for the CSI-RS symbol for interference measurement between transmission points of different CoMP groups is also controlled. It is preferable to give an amount.
  • phase rotation amounts for example, ⁇ 1 to ⁇ 6
  • ⁇ 1 to ⁇ 6 different phase rotation amounts with respect to the CSI-RS symbols for interference measurement transmitted from each transmission point (TP # 1 to TP # 6) using the RE at the same position.
  • the interference power (P 1 to P 6 ) at each transmission point can be estimated appropriately.
  • FIG. 7C it is possible to effectively use radio resources by applying the same frequency band (subcarrier) between a plurality of CoMP groups.
  • phase rotation control for each transmission point when CoMP transmission is applied will be described with reference to FIG.
  • FIG. 8A shows frequency bands in which the CoMP group # 1 composed of TP # 1, TP # 2, and TP # 3 and the CoMP group # 2 composed of TP # 4, TP # 5, and TP # 6 are different from each other.
  • the case where (subcarrier) is applied is shown.
  • CSI-RSs for interference measurement are arranged on the same resource at a plurality of transmission points (TP # 1 to TP # 3) constituting CoMP group # 1. By doing this, it is possible to appropriately estimate the interference power (P 123 ) other than the CoMP group # 1 (TP # 1 to TP # 3). The same applies to the CoMP group # 2.
  • each transmission point of CoMP group # 1 and CoMP group # 2 performs interference measurement on the same RE.
  • the CSI-RS for use it is preferable to give different phase rotation amounts to the transmission points constituting different CoMP groups.
  • the phase rotation is controlled by ⁇ 1 for the CSI-RS symbols for interference measurement transmitted from the transmission points (TP # 1 to TP # 3) constituting the CoMP group # 1.
  • TP # 4 ⁇ TP # 6 interferometric measurement CSI-RS symbol transmitted from constituting the CoMP set # 2 controls the phase rotation by theta 2.
  • Interference power (P 123 , P 456 ) in each CoMP group can be estimated appropriately. Further, by applying the same frequency band (subcarrier) between a plurality of CoMP groups, it is possible to effectively use radio resources.
  • CSI-RS for interference measurement can be transmitted from the first antenna port (Tx # 1), and the second antenna port (Tx # 2) can be muted.
  • a method for estimating a desired signal there is a method of performing channel estimation based only on RE (SMR) for measuring a desired signal.
  • SMR RE
  • MMSE minimum mean square error
  • SMR RE
  • channel estimation can be performed by the following equation (11).
  • the CSI-RS is transmitted from the first antenna port (Tx # 1) to the RE (IMR) for interference measurement in the odd resource block (RB), Muting the second antenna port (Tx # 2). Then, the CSI-RS can be transmitted from the second antenna port (Tx # 2) to the interference signal RE (IMR) in even-numbered RBs, and the first antenna port (Tx # 1) can be muted.
  • the RE (IMR) for measuring the interference is also taken into account (the RE (SMR) for measuring the desired signal and the RE (SMR) for measuring the interference).
  • MMSE minimum mean square error
  • the user terminal can perform CQI measurement and PMI selection based on the result of channel estimation based on RE (SMR) for measuring a desired signal and RE (IMR) for interference measurement. it can. In this way, by performing channel estimation in consideration of RE for interference measurement, it is possible to improve CQI measurement accuracy in the user terminal.
  • the user terminal can apply the first aspect and the second aspect in combination.
  • FIG. 10 is an explanatory diagram of the system configuration of the wireless communication system according to the present embodiment.
  • the radio communication system shown in FIG. 10 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
  • this wireless communication system may be called IMT-Advanced or 4G.
  • the wireless communication system 1 is configured to include base station apparatuses 20A and 20B at each transmission point, and user terminals 10 that communicate with the base station apparatuses 20A and 20B.
  • the base station devices 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the higher station device 30, and the higher station device 30 is connected to the core network 40.
  • the base station devices 20A and 20B are connected to each other by wired connection or wireless connection.
  • the user terminal 10 can communicate with the base station apparatuses 20A and 20B that are transmission points.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • the user terminal 10 includes an existing terminal (Rel.10LTE) and a support terminal (for example, Rel.11LTE).
  • a support terminal for example, Rel.11LTE.
  • the user terminal 10 will be described as a user terminal unless otherwise specified. For convenience of explanation, it is assumed that the user terminal 10 performs wireless communication with the base station apparatuses 20A and 20B.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the wireless access method is not limited to this.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channel includes a PDSCH (Physical Downlink Shared Channel) as a downlink data channel shared by the user terminals 10 and a downlink L1 / L2 control channel (PDCCH, PCFICH, PHICH). Transmission data and higher control information are transmitted by the PDSCH.
  • PDSCH and PUSCH scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel).
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • the HARQ ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel has PUSCH (Physical Uplink Shared Channel) as an uplink data channel shared by each user terminal and PUCCH (Physical Uplink Control Channel) as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink channel state information (CSI (including CQI and the like)), ACK / NACK, and the like are transmitted by PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Transmission data and higher control information are transmitted by this PUSCH.
  • CSI including CQI and the like
  • ACK / NACK are transmitted by PUCCH.
  • the base station apparatus 20 includes a transmission / reception antenna 201, an amplifier unit 202, a transmission / reception unit (notification unit) 203, a baseband signal processing unit 204, a call processing unit 205, and a transmission path interface 206.
  • Transmission data transmitted from the base station apparatus 20 to the user terminal via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
  • the downlink data channel signal is transmitted from the RCP layer, such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • RCP layer such as PDCP layer processing, transmission data division / combination, RLC (Radio Link Control) retransmission control transmission processing, and MAC (Medium Access).
  • Control Retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed.
  • transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel, which is the downlink control channel.
  • the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the base station apparatus 20 to the user terminals 10 connected to the same transmission point through the broadcast channel.
  • Information for communication at the transmission point includes, for example, system bandwidth in the uplink or downlink, and root sequence identification information for generating a random access preamble signal in PRACH (Physical Random Access Channel) (Root Sequence Index) etc. are included.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the radio frequency signal subjected to frequency conversion and outputs the amplified signal to the transmission / reception antenna 201.
  • a radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202 and frequency-converted by the transmission / reception unit 203 to be a baseband signal. And is input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer reception processing on transmission data included in the baseband signal received in the uplink I do.
  • the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
  • the call processing unit 205 performs call processing such as communication channel setting and release, state management of the base station apparatus 20, and management of radio resources.
  • the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit (reception unit) 103, a baseband signal processing unit 104, and an application unit 105.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
  • downlink transmission data is transferred to the application unit 105.
  • the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
  • uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • HARQ retransmission control
  • each functional block in FIG. 13 mainly relates to the baseband processing unit shown in FIG. Further, the functional block diagram of FIG. 13 is simplified for explaining the present invention, and is assumed to have a configuration normally provided in the baseband processing unit.
  • the base station apparatus 20 includes a measurement RE determination unit 401, a higher control information generation unit 402, a downlink transmission data generation unit 403, a downlink control information generation unit 404, a CSI-RS generation unit 405, and a downlink transmission.
  • a data encoding / modulation unit 406, a downlink control information encoding / modulation unit 407, and a phase control unit 411 are provided.
  • the base station apparatus 20 includes a downlink channel multiplexing unit 408, an IFFT unit 409, and a CP adding unit 410.
  • the measurement RE determination unit 401 determines a resource (SMR) to which a reference signal (CSI-RS) for measuring a desired signal is allocated and a resource (IMR) to which a reference signal for interference measurement is allocated. Further, the measurement RE determining unit 401 determines a combination of a resource (measurement RE) to which a reference signal for measuring a desired signal is allocated and a resource (measurement RE) for estimating an interference signal.
  • SMR resource
  • IMR resource
  • the measurement RE determining unit 401 sets the resources (IMR) to which the interference measurement CSI-RSs transmitted from the plurality of transmission points are assigned at the same position. Also, the resource (SMR) to which the desired signal measurement CSI-RS transmitted from each transmission point is assigned is set so that it does not overlap between the transmission points.
  • Interference measurement CSI-RS and information related to allocation of desired signal measurement CSI-RS are used for higher layer signaling (for example, RRC signaling) when semi-statically signaling to a user terminal.
  • CSI-RS pattern information is used for higher layer signaling (for example, RRC signaling) when semi-statically signaling to a user terminal.
  • information regarding this assignment is sent to the downlink control information generation unit 404 for inclusion in the downlink control information.
  • the information regarding this allocation is sent to the CSI-RS generator 405 to generate the CSI-RS, and is also sent to the downlink transmission data generator 403 to make the downlink transmission data zero power (muting). .
  • the higher control information generating section 402 generates higher control information transmitted / received by higher layer signaling (for example, RRC signaling), and outputs the generated higher control information to the downlink transmission data encoding / modulating section 406.
  • the higher control information generation unit 402 generates higher control information (information on transmission parameters of CSI-RS) including information output from the measurement RE determination unit 401.
  • the upper control information generation unit 402 generates upper control information including information on the phase rotation amount of the interference measurement CSI-RS determined by the phase control unit 411. In this case, bit information corresponding to a predetermined phase rotation amount can be generated with reference to the table shown in FIG.
  • Downlink transmission data generation section 403 generates downlink transmission data and outputs the downlink transmission data to downlink transmission data encoding / modulation section 406.
  • the downlink transmission data generating section 403 arranges (mutes) the zero power CSI-RS according to the allocation information output from the measurement RE determining section 401.
  • the downlink control information generation unit 404 generates downlink control information, and outputs the downlink control information to the downlink control information encoding / modulation unit 407.
  • Downlink transmission data coding / modulation section 406 performs channel coding and data modulation on the downlink transmission data and higher control information, and outputs the result to downlink channel multiplexing section 408.
  • the downlink control information coding / modulation section 407 performs channel coding and data modulation on the downlink control information and outputs the result to the downlink channel multiplexing section 408.
  • the phase control unit 411 controls the amount of phase rotation with respect to the CSI-RS for interference measurement and outputs it to the CSI-RS generation unit 405.
  • the phase control unit can determine the amount of phase rotation ( ⁇ ) based on the unique information (for example, cell ID) of the base station apparatus.
  • the phase rotation amount ( ⁇ ) can be determined based on the desired signal measurement CSI-RS assignment pattern.
  • the phase control unit 411 outputs information regarding the determined phase rotation amount to the CSI-RS generation unit 405. When notifying the user terminal of the determined phase rotation amount, information related to the phase rotation amount is output to the higher control information generation unit 402.
  • the CSI-RS generating unit 405 generates a desired signal measuring CSI-RS and an interference measuring CSI-RS according to the allocation information output from the measurement RE determining unit 401, and these CSI-RSs are transmitted to the downlink channel multiplexing unit 408. Output to. Further, the CSI-RS generation unit 405 can perform phase rotation of the generated interference measurement CSI-RS based on the phase rotation amount output from the phase control unit 411.
  • the downlink channel multiplexing unit 408 combines the downlink control information, CSI-RS, higher control information, and downlink transmission data to generate a transmission signal.
  • the downlink channel multiplexing unit 408 outputs the generated transmission signal to the IFFT unit 409.
  • the IFFT unit 409 performs an inverse fast Fourier transform on the transmission signal, and converts the frequency domain signal into a time domain signal.
  • the transmission signal after IFFT is output to CP adding section 410.
  • CP adding section 410 adds a CP (Cyclic Prefix) to the transmission signal after IFFT, and outputs the transmission signal after CP addition to amplifier section 202 shown in FIG.
  • Each functional block in FIG. 14 mainly relates to the baseband processing unit 104 shown in FIG. Further, the functional blocks shown in FIG. 12 are simplified for the purpose of explaining the present invention, and the configuration normally provided in the baseband processing unit is provided.
  • the user terminal 10 includes a CP removing unit 301, an FFT unit 302, a downlink channel separating unit 303, a downlink control information receiving unit 304, a downlink transmission data receiving unit 305, an interference signal estimating unit 306, A channel estimation unit 307, a CQI measurement unit 308, and a phase rotation amount acquisition unit 309 are provided.
  • the transmission signal transmitted from the base station apparatus 20 is received by the transmission / reception antenna 101 shown in FIG.
  • CP removing section 301 removes the CP from the received signal and outputs it to FFT section 302.
  • the FFT unit 302 performs fast Fourier transform (FFT) on the signal after CP removal, and converts the signal in the time domain into a signal in the frequency domain.
  • FFT section 302 outputs the signal converted into the frequency domain signal to downlink channel separation section 303.
  • the downlink channel separation unit 303 separates the downlink channel signal into downlink control information, downlink transmission data, and CSI-RS.
  • Downlink channel separation section 303 outputs downlink control information to downlink control information reception section 304, outputs downlink transmission data and higher control information to downlink transmission data reception section 305, and provides interference measurement CSI-RS to interference signal estimation section
  • the desired signal measurement CSI-RS is output to the channel estimation unit 307.
  • the downlink control information reception unit 304 demodulates the downlink control information, and outputs the demodulated downlink control information to the downlink transmission data reception unit 305.
  • the downlink transmission data reception unit 305 demodulates downlink transmission data using the demodulated downlink control information.
  • the downlink transmission data receiving section 305 specifies the desired signal measurement RE (SMR) and the interference measurement RE (IMR) based on the resource information included in the higher control information.
  • SMR desired signal measurement RE
  • IMR interference measurement RE
  • Downlink transmission data receiving section 305 demodulates user data except for desired signal measurement RE and interference measurement RE. Further, downlink transmission data reception section 305 outputs higher control information included in the downlink transmission data to phase rotation amount determination section 309, interference signal estimation section 306, and channel estimation section 307.
  • the phase rotation amount acquisition unit 309 determines the phase rotation amount of the interference measurement CSI-RS given by the base station apparatus. As described above, when the phase rotation amount is associated with the cell ID or the CSI-RS pattern position, the phase rotation amount acquisition unit 309 can determine the phase rotation amount based on these pieces of information. . Further, when the phase rotation amount is defined by the bit information, the phase rotation amount can be specified with reference to the table shown in FIG.
  • the interference signal estimation unit 306 generates an interference signal in the interference measurement RE based on information such as the phase rotation amount specified by the phase rotation amount determination unit 309 and transmission parameters included in the higher control information (or downlink control information). presume.
  • the interference signal estimation unit 306 can estimate the interference signal and average the measurement results in all resource blocks.
  • the CQI measurement unit 308 is notified of the averaged interference signal estimation result.
  • the channel estimation unit 307 specifies a desired signal measurement RE (CSI-RS resource) based on information such as transmission parameters included in the higher control information (or downlink control information), and uses the desired signal measurement RE to specify the desired signal. presume. Note that the channel estimation unit 307 can also perform channel estimation using the interference measurement RE (IMR) in addition to the desired signal measurement RE (SMR) as shown in FIG. 9B.
  • IMR interference measurement RE
  • SMR desired signal measurement RE
  • the channel estimation unit 307 notifies the CQI measurement unit 308 of the channel estimation value.
  • the CQI measurement unit 308 calculates a channel state (CQI) based on the interference estimation result notified from the interference signal estimation unit 306, the channel estimation result notified from the channel estimation unit 307, and the feedback mode. Note that any of Wideband CQI, Subband CQI, and best-M average may be set as the feedback mode.
  • the CQI calculated by the CQI measurement unit 308 is notified to the base station apparatus 20 as feedback information.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the setting position of CSI-RS, the setting position of muting (zero power), the number of processing units, the processing procedure, the number of CSI-RS, the number of mutings in the above description The number of transmission points can be changed as appropriate.
  • the transmission points may be antennas. Other modifications can be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 複数の送信ポイントからの干渉等を適切に考慮してチャネル品質情報を決定することができる無線通信システム、基地局装置、ユーザ端末、及び無線通信方法を提供すること。チャネル状態を測定するための希望信号測定用参照信号及び干渉測定用参照信号を送信する複数の基地局装置と、複数の基地局装置と通信するユーザ端末とを備えた無線通信システムであって、各基地局装置は、希望信号測定用参照信号及び干渉測定用参照信号をそれぞれ割当てるリソースを決定する決定部と、干渉測定用参照信号のシンボルを位相回転する位相制御部と、を有し、決定部は、干渉測定用参照信号を他の基地局装置から送信される干渉測定用参照信号と同じリソースに割当てるように制御し、位相制御部は、干渉測定用参照信号のシンボルを他の基地局装置と異なる位相回転量に制御する。

Description

無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
 本発明は、次世代移動通信システムにおける無線通信システム、基地局装置、ユーザ端末、及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている(非特許文献1)。
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEシステムの後継のシステムも検討されている(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE-A」という))。
 LTEシステム(例えば、Rel.8LTE)の下りリンクにおいて、セルIDに関連づけられたCRS(Cell-specific Reference Signal)が定められている。このCRSは、ユーザデータの復調に用いられる他、スケジューリングや適応制御のための下りリンクのチャネル品質(CQI:Channel Quality Indicator)測定等に用いられる。一方、LTEの後継システム(例えば、Rel.10LTE)の下りリンクにおいては、CSI(Channel State Information)測定専用にCSI-RS(Channel State Information-Reference Signal)が検討されている。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sept. 2006
 ところで、LTEシステムに対してさらにシステム性能を向上させるための有望な技術の1つとして、セル間直交化がある。例えば、LTE-Aシステムでは、上下リンクとも直交マルチアクセスによりセル内の直交化が実現されている。すなわち、下りリンクでは、周波数領域においてユーザ端末UE(User Equipment)間で直交化されている。一方、セル間はW-CDMAと同様、1セル周波数繰り返しによる干渉ランダム化が基本である。
 そこで、3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術が検討されている。このCoMP送受信では、1つあるいは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。これらのCoMP送受信技術の適用により、特にセル端に位置するユーザ端末UEのスループット特性の改善が期待される。
 このように、LTE-Aシステムにおいては、一つの送信ポイントからユーザ端末に送信する送信形態に加え、複数の送信ポイントからユーザ端末に送信する送信形態がある。そのため、ユーザ端末において複数の送信ポイント間の干渉等を考慮してチャネル品質情報を決定することが重要となる。
 本発明はかかる点に鑑みてなされたものであり、複数の送信ポイントからの干渉等を適切に考慮してチャネル品質情報を決定することができる無線通信システム、基地局装置、ユーザ端末、及び無線通信方法を提供することを目的とする。
 本発明の無線通信システムは、チャネル状態を測定するための希望信号測定用参照信号及び干渉測定用参照信号を送信する複数の基地局装置と、前記複数の基地局装置と通信するユーザ端末とを備えた無線通信システムであって、各基地局装置は、前記希望信号測定用参照信号及び前記干渉測定用参照信号をそれぞれ割当てるリソースを決定する決定部と、前記干渉測定用参照信号のシンボルを位相回転する位相制御部と、を有し、前記決定部は、前記干渉測定用参照信号を他の基地局装置から送信される干渉測定用参照信号と同じリソースに割当てるように制御し、前記位相制御部は、前記干渉測定用参照信号のシンボルを他の基地局装置と異なる位相回転量に制御することを特徴とする。
 本発明によれば、複数の送信ポイントからの干渉等を適切に考慮してチャネル品質情報を決定することができる。これにより、スループットが向上し、高効率な無線通信システムを実現することができる。
干渉測定用CSI-RSを含んだCSI-RSパターンの一例を示す図である。 複数の送信ポイントから送信される干渉測定用CSI-RSを含んだCSI-RSのパターンの一例を示す図である。 複数の送信ポイントから送信される干渉測定用CSI-RSを含んだCSI-RSのパターンの一例を示す図である。 複数の送信ポイントから送信される干渉測定用CSI-RSを含んだCSI-RSのパターンの一例を示す図である。 各送信ポイントにおける干渉測定用CSI-RSシンボルをI-Q平面に示した図である。 干渉測定用CSI-RSシンボルの位相回転量(θ)とビット値とを組み合わせたテーブルを示す図である。 CoMP非適用(シングルセル送信)時における各送信ポイントの位相回転量を示す図である。 CoMP適用時におけるCoMP群を構成する各送信ポイントの位相回転量を示す図である。 干渉測定用CSI-RSを含んだCSI-RSパターンの一例を示す図である。 無線通信システムのシステム構成の説明図である。 基地局装置の全体構成の説明図である。 ユーザ端末の全体構成の説明図である。 基地局装置の機能ブロック図である。 ユーザ端末の機能ブロック図である。
 まず、LTEの後継システム(例えば、Rel.10LTE)で採用される参照信号の1つであるCSI-RSについて説明する。
 CSI-RSは、チャネル状態としてのCQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)等のCSI測定に用いられる参照信号である。CSI-RSは、全てのサブフレームに割り当てられるCRSと異なり、所定の周期、例えば10サブフレーム周期で割り当てられる。また、CSI-RSは、位置、系列および送信電力というパラメータで特定される。CSI-RSの位置には、サブフレームオフセット、周期、サブキャリア-シンボルオフセット(インデックス)が含まれる。
 なお、CSI-RSとしては、ノンゼロパワーCSI-RSとゼロパワーCSI-RSとが定義されている。ノンゼロパワーCSI-RSは、CSI-RSが割り当てられるリソースに送信パワーを分配し、ゼロパワーCSI-RSは、割り当てられるリソースに送信パワーが分配されない(CSI-RSがミュートされる)。
 CSI-RSは、LTEで規定される1サブフレームにおいて、PDCCH(Physical Downlink Control Channel)等の制御信号、PDSCH(Physical Downlink Shared Channel)等のユーザデータ、CRS(Cell-specific Reference Signal)やDM-RS(Demodulation-Reference Signal)等の他の参照信号と重ならないように割り当てられる。1サブフレームは、周波数方向に連続する12サブキャリアと、時間軸方向に連続する14シンボル(1リソースブロック(RB:Resource Block)ペア)とで構成される。また、PAPRを抑制する観点から、CSI-RSを割当て可能なリソースは、時間軸方向に隣接する2つのリソースエレメント(RE:Resource Element)がセットで割り当てられる。
 CSI-RSを用いて干渉を推定する場合、時間軸方向に隣接する2つのCSI-RSの残差から干渉電力を求めることができる。CSI-RSを、時間軸方向に隣接する2つのリソース(RE)にペアとしてマッピングすることにより、それぞれのCSI-RSのマッピング位置でのチャネル状態がほぼ等しくなり、2つのCSI-RSの残差から干渉電力を推定したときに、高精度で干渉を推定することができる。
 また、LTE-Aシステムにおいては、複数の送信ポイントからユーザ端末に送信する送信形態があるため、CSI-RSによってCQIを算出する場合、干渉測定の精度が重要となる。
 複数の送信ポイントからの送信形態としては、例えば、CoMP送信がある。下りリンクのCoMP送信としては、Coordinated Scheduling/Coordinated Beamformingと、Joint processingとがある。Coordinated Scheduling/Coordinated Beamformingは、1つのユーザ端末UEに対して1つのセルからのみ共有データチャネルを送信する方法であり、他セルからの干渉や他セルへの干渉を考慮して周波数/空間領域における無線リソースの割り当てを行う。一方、Joint processingは、プリコーディングを適用して複数のセルから同時に共有データチャネルを送信する方法であり、1つのユーザ端末UEに対して複数のセルから共有データチャネルを送信するJoint transmissionと、瞬時に1つのセルを選択し共有データチャネルを送信するDynamic Point Selection(DPS)とがある。また、干渉となる送信ポイントに対して一定領域のデータ送信を停止するDynamic Point Blanking(DPB)という送信形態もある。
 このように、CoMP等を行う際に複数の送信ポイントからのCSI-RSを適用して干渉測定を行うことは有効であるが、LTE(Rel.10LTE)で規定されたCSI-RSは1リソースブロックペアにおける密度が低いので、他の送信ポイント(他セル)からの干渉を高精度に測定することは困難となる。
 そこで本出願人は、図1に示すように、希望信号測定に使用するCSI-RS(以下、「希望信号測定用CSI-RS」と記す)に加えて、干渉測定に使用するCSI-RS(以下、「干渉測定用CSI-RS」と記す)を追加し、複数の送信ポイント間で干渉測定用CSI-RSのリソースを制御することを提案した。これにより、希望信号測定用CSI-RS(既存CSI-RS)と干渉測定用CSI-RSの双方を用いて干渉測定できるため、干渉測定精度を改善できる。
 ここで、干渉測定用CSI-RSを用いた干渉信号推定法の一例について説明する。なお、以下の説明では、2つの基地局装置が送信ポイント(TP#1、TP#2)となるシステム構成を例に説明するが、送信ポイント(TP)の数は2つに限定されない。
 図2Aは、送信ポイントTP#1、TP#2からユーザ端末UEに送信を行う場合を示している。また、図2Bは、干渉測定用CSI-RSが配置されたCSI-RSパターンの一例を示している。図2Bにおいて、左側のサブフレームは、TP#1から送信されるサブフレームであり、右側のサブフレームは、TP#2から送信されるサブフレームである。
 また、図2Bでは、複数の送信ポイント(TP#1、TP#2)間で、干渉測定用CSI-RSを同一リソースに配置する場合を示している。具体的には、TP#1、TP#2のそれぞれのサブフレームにおいて、周波数軸方向における第4のREであって、時間軸方向における第9、第10のREに、干渉測定用CSI-RSをそれぞれ配置している。これらの干渉測定用CSI-RSを用いることにより、TP#1及びTP#2の外側のセルの干渉信号の推定が可能となる。
 また、図2に示すように、TP#1のサブフレームにおいて、周波数軸方向における第0のREであって時間軸方向における第9、第10のREに希望信号測定用CSI-RS(既存のCSI-RS)を配置すると、当該REではTP#1の希望信号の推定が可能となる。また、図2に示すように、TP#2のサブフレームにおいて、周波数軸方向における第1のREであって時間軸方向における第9、第10のREに希望信号測定用CSI-RSを配置すると、当該REではTP#2の希望信号の推定が可能となる。
 この場合、基地局装置からユーザ端末に対して、希望信号の推定方法及び干渉信号の推定方法に関する情報をシグナリングする。すなわち、希望信号の推定に用いるRE(SMR:Signal Measurement Resource)の情報、干渉信号の推定に用いるRE(IMR:Interference Measurement Resource)の情報、SMRとIMRの組合せの情報を、基地局装置がユーザ端末にシグナリングする。これらの情報は、上位レイヤシグナリング(例えば、RRCシグナリング)で基地局装置からユーザ端末に通知しても良く、下り制御情報(DCI)でダイナミックに基地局装置からユーザ端末に通知しても良い。
 このように、複数の送信ポイント(TP#1とTP#2)において、同一リソースに干渉測定用CSI-RSを配置することにより、TP#1及びTP#2の外側のセルの干渉信号の推定が可能となる。また、この際、各送信ポイントにおいて干渉測定用CSI-RSを1アンテナポートで送信することにより、シグナリングのオーバヘッドを低減することができる。
 一方で、本発明者らは、異なる送信ポイントにおいて干渉測定用CSI-RSを同一リソースに配置する場合に、送信形態によっては各送信ポイントにおいて干渉電力の測定精度が低下するおそれがあることを見出した。一例として、CoMP非適用時(シングルセル送信時)に、異なる送信ポイントにおいて干渉測定用CSI-RSを同一リソースに配置すると干渉電力を正確に測定できないおそれがある。以下に、送信形態に応じた干渉電力の算出方法について説明する。
 図3は、図2における所定シンボル(例えば、第8~第11)を1リソースブロック分だけ抜き出したものであり、複数の送信ポイント間で干渉測定用CSI-RSが同一のリソースに配置されたCSI-RSパターンの一例を示している。なお、以下の説明においては説明の都合上、他の信号(DMRS、PDSCH等)は省略している。
 また、図3B、図3Cにおいて、左側のサブフレームは、TP#1から送信されるサブフレームを示し、右側のサブフレームは、TP#2から送信されるサブフレームを示している。また、図3BはCoMP適用時、図3CはCoMP非適用時(シングルセル送信時)におけるCSI-RSパターンの一例を示している。
 ユーザ端末において、干渉信号推定に用いる所定(例えば、j番目)のRE(IMR)における受信信号「y」は、TP#iから送信されるj番目のRE(IMR)のCSI-RSシンボルを「Xij」、TP#iの第1のアンテナからユーザ端末までのチャネルフェージングを「hi」、ユーザ端末におけるj番目のRE(IMR)のノイズ(AWGN)を「n」とすると、y=hij+nで表すことができる。
 TP#1とTP#2でCoMPを適用する場合(図3B参照)、時間軸方向に隣接する2つのRE(IMR)における受信信号(y、y)はそれぞれ以下の式(1)で表すことができる。なお、以下の説明では、TP#1(接続セル)及びTP#2(協調セル)から送信されるサブフレームにおいて、時間軸方向に隣接する干渉信号推定用の2つのRE(IMR)を、それぞれ時間軸方向に沿って順に1番目、2番目のIMRと仮定している。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、X11、X12は、それぞれTP#1及びTP#2から送信されるサブフレームにおいて、時間軸方向に隣接する2つの干渉測定用のRE(IMR)に配置される干渉測定用CSI-RSシンボルである(図3B参照)。また、hは、TP#1からUEまでのチャネルフェージングを示し、hは、TP#2からUEまでのチャネルフェージングを示している。また、n、nは、それぞれ時間軸方向に隣接する2つの干渉測定用のRE(IMR)におけるノイズである。
 また、TP#1及びTP#2以外(TP#1とTP#2の外側)の干渉電力(P12)は、下記式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、X* 11、X* 12は、それぞれX11、X12の共役である。yにX* 11を乗算することにより、yからX11の影響を除去して自セル以外の干渉を適切に測定することができる。
 このように、TP#1及びTP#2から送信されるサブフレームにおいて、干渉測定用CSI-RSを同一リソースに配置することにより、ユーザ端末はTP#1及びTP#2以外の干渉電力を適切に算出することができる。
 一方、TP#1とTP#2でCoMPを適用しない(シングルセル送信)場合(図3C参照)、時間軸方向に隣接する2つのRE(IMR)の受信信号(y、y)はそれぞれ以下の式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 なお、式(3)において、X11、X12は、TP#1から送信されるサブフレームにおいて、それぞれ時間軸方向に隣接する2つの干渉測定用のRE(IMR)に配置される干渉測定用CSI-RSシンボルである。X21、X22は、TP#2から送信されるサブフレームにおいて、それぞれ時間軸方向に隣接する2つの干渉測定用のRE(IMR)にそれぞれ配置される干渉測定用CSI-RSシンボルである。つまり、X11とX21が同じREに配置され、X12とX22が同じREに配置される。また、hは、TP#1からユーザ端末までのチャネルフェージングを示し、hは、TP#2からユーザ端末までのチャネルフェージングを示している。また、n、nは、それぞれ時間軸方向に隣接する2つのRE(IMR)におけるノイズである。
 また、TP#1以外(TP#1の外側)の干渉電力(TP#1における干渉電力P)は、下記式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
 式(4)において、干渉測定用CSI-RSシンボル(Xij)がQPSKシンボルであり、X21とX11との位相差(α)と、X22とX12との位相差(α)が等しい場合(α=α)には、X21* 11-X22* 12=0となる。この場合、TP#1における干渉電力(P)が低く見積もられる(過小評価される)こととなり、ユーザ端末における干渉電力の測定精度が低下するおそれがある。
 その結果、ユーザ端末において算出されるCQI等の測定精度も低下してしまう。特に、干渉測定用CSI-RSが時間軸方向で隣接する2つのREに割当てられる場合はチャネル変動が小さいため、X21とX11との位相差と、X22とX12との位相差が等しくなりやすく、シングルセル送信時における干渉測定の精度が低下する可能性が高くなる。
 そこで、本発明者らは、X21とX11との位相差(α)と、X22とX12との位相差(α)との差(α-α)に着目し、異なる送信ポイントにおいてCSI-RSシンボル間の位相差を制御することにより、異なる送信ポイント間で干渉測定用CSI-RSを同一のリソースに配置する場合であっても干渉測定の精度を向上できることを見出した。具体的には、各送信ポイントのサブフレームに割当てる所定の干渉測定用CSI-RSシンボルを異なる位相回転量(位相シフト量、位相回転角ともいう)に制御する。
 以下に、本実施の形態の詳細について図面を参照して説明する。
 図4は、図2における所定シンボル(例えば、第8~第11)を1リソースブロック分だけ抜き出したものであり、複数の送信ポイントにおいて干渉測定用CSI-RSが同一のリソースに配置されたCSI-RSパターンの一例を示している。図4Bにおいて、左側のサブフレームは、TP#1から送信されるサブフレームであり、右側のサブフレームは、TP#2から送信されるサブフレームである。
 本実施の形態では、異なる送信ポイント(TP#1、TP#2)における干渉測定用CSI-RSシンボルに対して、それぞれ異なる位相回転量(位相シフト量、位相回転角)を付与する。例えば、TP#1となる基地局装置は、干渉測定用CSI-RSシンボルをTI#2となる基地局装置と異なる位相回転量に制御する。
 具体的には、TP#1となる基地局装置は、干渉測定用CSI-RSを時間軸方向に隣接する2つのリソース(IMR)に割当てると共に、2つのリソースの一方に割当てられる干渉測定用CSI-RSのシンボルに対して、TP#2となる基地局装置と異なる位相回転量を付与する。例えば、図4Bに示すように、TP#1から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉測定用CSI-RSシンボルのうち、後半の干渉測定用CSI-RSシンボル(X12)をθだけ位相回転する。また、TP#2から送信されるサブフレームにおいて時間軸方向に連続する2つの干渉測定用CSI-RSシンボルのうち、後半の干渉測定用CSI-RSシンボル(X22)をθだけ位相回転する。
 この場合、ユーザ端末において、時間軸方向に隣接する干渉信号推定に用いる2つのRE(IMR)の受信信号(y、y)はそれぞれ以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 また、TP#1におけるTP#1以外の干渉電力(P)は、下記式(6)で表すことができる。
Figure JPOXMLDOC01-appb-M000006
 また、図5は、TP#1から送信される干渉測定用CSI-RSシンボル(X11、X12)、TP#2から送信される干渉測定用CSI-RSシンボル(X21、X22)をI-Q平面に示した場合の一例を表している。なお、図5Aは、干渉測定用CSI-RSシンボルに対して位相回転の制御を行っていない場合(図3C参照)を示しており、図5Bは、TP#1、TP#2からそれぞれ送信される干渉測定用CSI-RSシンボル(X12、X22)をそれぞれθ、θ(θ≠θ)だけ位相回転した場合(図4B参照)を示している。
 図5Aに示すように、X21とX11との位相差(α)と、X22とX12との位相差(α)が等しい場合(α=α)には、上述したようにTP#1における干渉電力(P)が過小評価され、ユーザ端末における干渉測定の精度が低下してしまう。一方で、本実施の形態に示すように、TP#1とTP#2から送信される所定の干渉測定用CSI-RSシンボル(例えば、X12、X22)に対してそれぞれ異なる角度(θ≠θ)で位相回転を行うことにより、α=αであっても、X21とX11との位相差(α’)と、X22jθ2とX12jθ1との位相差(α’)が異なる(α’≠α’)。
 そのため、上記式(6)において、X21* 11-X22* 12j(θ2-θ1)≠0とすることができるため、TP#1、TP#2における干渉電力(P、P)が過小評価されることなく、ユーザ端末における干渉測定の精度が低下することを抑制することができる。
 なお、上記説明では、TP#1から送信される干渉測定用CSI-RSシンボル(X12)と、TP#2から送信される干渉測定用CSI-RSのシンボル(X22)の位相回転量を変化させる場合を示したが、本実施の形態はこれに限られない。X21とX11との位相差と、X22とX12との位相差が異なるような位相回転制御であれば特に限定されない。例えば、TP#1から送信される干渉測定用CSI-RSシンボル(X12)と、TP#2から送信される干渉測定用CSI-RSシンボル(X22)の一方のみ位相回転量を変化させることができる。また、時間軸方向に隣接する他方の干渉測定用CSI-RSシンボル(X11、X21)の位相回転量を変化させることも可能である。
 このように、異なる送信ポイントから干渉信号推定用のRE(IMR)を同じリソースに配置して干渉測定を行う場合に、各送信ポイントから送信される所定の干渉測定用CSI-RSシンボルをそれぞれ異なる角度で位相回転することにより、干渉測定の精度が低下することを抑制することができる。
 続いて、干渉測定用CSI-RSシンボルに位相回転制御を行う場合の基地局装置の動作の一例について説明する。基地局装置は、処理のリソースへ干渉測定用CSI-RSシンボルをマッピングする前に、当該干渉測定用CSI-RSシンボルの位相回転量を制御する。例えば、基地局装置は、下記式(7)に示すように、参照信号系列に所定の位相シフト量(θ)を付与して、複素変調シンボルにマッピングすることができる。
Figure JPOXMLDOC01-appb-M000007
 式(7)において、αk,l (p)はresource gridにマッピングする符号であり、wl”は長さが2のOCC codeであり、rl,nsは参照信号シーケンス(QPSK Modulation後のGoldシーケンス)であり、θiは位相回転量(シングルセル伝送時は送信ポイント固有(TP-specific)、CoMP伝送時はCoMPセット固有(Measurement set-specific))であり、jは虚数の単位(j=-1)である。なお、位相回転は二つのCSI-RSのどちらかに導入すればよく、例えば、1つ目に導入する際に、l”=0、2つ目に導入する際に、l”=1とすることができる。
 また、基地局装置は、位相回転に関する情報(位相回転量)をユーザ端末に通知する構成とすることができる。ユーザ端末は、各送信ポイントから送信される干渉測定用CSI-RSシンボルの位相回転量を特定することにより、スクランブル解析を正確に行うことができる。
 例えば、基地局装置は、上位レイヤシグナリング(例えば、RRCシグナリング)や報知信号等により、位相回転量をユーザ端末に通知することができる。この場合、基地局装置は、位相回転量(θ)とビット値とを組み合わせたテーブル(図6参照)を適用してもよいし、位相回転量の情報をシグナリングするようにしてもよい。基地局装置とユーザ端末が同じ内容のテーブルを具備する場合には、ユーザ端末はRRCシグナリングや報知信号等で通知された情報から、各送信ポイントから送信される干渉測定用CSI-RSシンボルの位相回転量を特定することができる。
 なお、図6で表されるテーブルでは例として3種類の位相回転量を示すテーブルを挙げているが、任意の複数種類の位相回転量を示すテーブルを用いてもよい。また、基地局装置から上位レイヤシグナリング(例えば、RRCシグナリング)や報知信号等を用いて位相回転量をユーザ端末に通知する場合には、基地局装置側でランダムに決定した位相回転量をユーザ端末に通知するようにしてもよいし、複数基地局装置間で異なる位相回転量となるように設定された位相回転量をユーザ端末に通知するようにしてもよい。
 また、基地局装置は、希望信号測定用CSI-RSを送信する場合に、当該CSI-RSを特定するための送信パラメータ(位置、系列及び送信電力等)を示す情報(CSI-RS-Config)を、上位レイヤシグナリング(RRCシグナリング)でユーザ端末に通知する。したがって、基地局装置は、干渉測定用CSI-RSに対する位相回転量についても、送信パラメータを示す情報(CSI-RS-Config)と同じタイミングで(又は、CSI-RS-Configに含めて)ユーザ端末に通知する構成としてもよい。
 また、基地局装置は、位相回転量(θ)と各送信ポイント(又は複数の送信ポイントグループ)固有の情報を対応づけて(括りつけて)、干渉測定用CSI-RSシンボルの位相回転量を制御することも可能である。例えば、複数の送信ポイントのセルID(又は、仮想セルID(virtual cell ID))がそれぞれ異なる場合、位相回転量と各送信ポイントのセルID(又は、仮想セルID)を対応づけて定義して、位相回転量を制御することができる。この場合、基地局装置は、位相回転量とセルID(又は、仮想セルID)が対応づけられた式(例えば、下記式(8))を用いて、干渉測定用CSI-RSシンボルの位相回転量を制御することができる。
 ここで仮想セルIDとは、参照信号(例えば、CSI-RSやDM-RS)の初期化擬似ランダム系列生成において、ハイヤレイヤシグナリング(RRCシグナリング)で通知されるユーザ固有パラメータ(例えば、CSI-RSの初期化擬似ランダム系列生成式(下記式(9))におけるユーザ固有パラメータA)から生成される値でもよい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 式(8)を適用する場合、例えばNが3、TP#1、2、3のセルIDがそれぞれ1、2、3であったとすると、セルID=1の基地局装置は位相回転量(θ)を0、セルID=2の基地局装置は位相回転角(θ)を2π/3、セルID=3の基地局装置は位相回転角(θ)を4π/3に制御する。この場合、ユーザ端末は、セルIDに基づいて、各送信ポイントから送信される干渉測定用CSI-RSシンボルの位相回転量を特定することができる。また、CoMPを適用する場合には、CoMPセットに固有な情報(CoMPセットの識別情報等)と位相回転量とを対応づけて定義することができる。
 他にも、基地局装置は、CSI-RSのパターンと、位相回転量とを対応づけて(括りつけて)制御することも可能である。例えば、各送信ポイントから送信される干渉測定用CSI-RSに対して、希望信号測定用のRE(SMR)のマッピング位置と所定の位相回転量とを対応づけて位相回転量を制御することができる。
 他にも、基地局装置は、ユーザ端末のID(UEID)と、位相回転量とを対応づけて(括りつけて)制御することも可能である。この場合、基地局装置は、位相回転量とUEIDが対応づけられた式(例えば、下記式(10))を用いて、干渉測定用CSI-RSシンボルの位相回転量を制御することができる。
Figure JPOXMLDOC01-appb-M000010
 式(10)を適用する場合、例えばNが3、UE#1、2、3のUEIDがそれぞれ1、2、3であったとすると、UEID=1のユーザ端末に対しては位相回転角(θ)を0、UEID=2のユーザ端末に対しては位相回転角(θ)を2π/3、UEID=3のユーザ端末に対しては位相回転角(θ)を4π/3に制御する。この場合、ユーザ端末は、UEIDに基づいて、各送信ポイントから送信される干渉測定用CSI-RSシンボルの位相回転量を特定することができる。また、CoMPを適用する場合には、CoMPセットに固有な情報(CoMPセットの識別情報等)と位相回転量とを対応づけて定義することができる。
 次に、複数の送信ポイントで構成されるCoMP群(CoMP cluster)を複数有するシステム構成において、各送信ポイントから送信される干渉測定用CSI-RSに対する位相回転制御について説明する。なお、以下の説明では、それぞれ3つの送信ポイントを有する2つのCoMP群を例に挙げて説明するが、送信ポイントの数、CoMP群の数はこれに限られない。また、各送信ポイントにおける位相回転量の制御は、上記方法を適用することができる。
 まず、図7を参照して、CoMP送信を適用しない場合(シングルセル送信)の各送信ポイントから送信される干渉測定用CSI-RSに対する位相回転制御について説明する。
 図7Aは、TP#1、TP#2、TP#3で構成されるCoMP群#1と、TP#4、TP#5、TP#6で構成されるCoMP群#2とがそれぞれ異なる周波数帯域(サブキャリア)で適用される場合を示している。各送信ポイントが所定のサブフレームにおいて干渉測定用RE(IMR)を同じリソースに割当てる場合、同じCoMP群内の他の送信ポイントからの干渉が低く見積もられる(過小評価される)おそれがある。
 これは、CoMP群内の複数の送信ポイントからそれぞれ送信される干渉測定用CSI-RSシンボルがQPSK(4状態)で表されることにより、他の送信ポイントからの干渉が打ち消されるためである。一方、異なるCoMP群間では、異なるサブキャリアを適用するため、干渉測定用CSI-RSシンボルが同じ位相であっても干渉の影響が小さい。
 つまり、各CoMP群を構成する複数の送信ポイント(TP#1~TP#3の間、TP#4~TP#6の間)で、干渉測定用CSI-RSを同一リソースに配置した場合、同じCoMP群を構成する他の送信ポイントからの干渉が考慮されず、各送信ポイントの干渉電力の測定精度が低下するおそれがある。
 図7Bは、上記図4で示すように、同じCoMP群に属する各送信ポイントから送信される干渉測定用CSI-RSシンボルの位相差を制御する場合を示している。図7Bでは、CoMP群#1を構成するTP#1、TP#2、TP#3の所定の干渉測定用CSI-RSシンボルに対してそれぞれ異なる位相回転量(θ、θ、θ)を付与して制御する場合を示している。例えば、時間軸方向に隣接する干渉測定用CSI-RSシンボルの一方(例えば、X12、X22、X32)に対してそれぞれ異なる位相回転量(θ、θ、θ)を付与することができる。
 これにより、CoMP群#1を構成するTP#1~TP#3において、干渉測定用CSI-RSを同一リソースに配置する場合であっても、他の送信ポイントからの干渉を適切に考慮して、各送信ポイントにおける干渉電力(P~P)を適切に推定することができる。
 また、図7Bでは、異なるCoMP群間では、異なるサブキャリアを適用するため、異なるCoMP群同士で同じ位相を適用することができる。そのため、CoMP群#2を構成するTP#4、TP#5、TP#6から送信される所定の干渉測定用CSI-RSシンボルについて、CoMP群#1と同様に、それぞれ異なる位相回転量(θ、θ、θ)を付与して制御することができる。
 図7Cは、複数のCoMP群(CoMP群#1、#2)が同じ周波数帯域(サブキャリア)で適用される場合を示している。この場合、各CoMP群における複数の送信ポイント間の干渉測定用CSI-RSシンボルの位相回転量をそれぞれ制御すると共に、異なるCoMP群の送信ポイント間の干渉測定用CSI-RSシンボルについても異なる位相回転量を付与することが好ましい。
 例えば、各送信ポイント(TP#1~TP#6)から同じ位置のREを用いて送信される干渉測定用CSI-RSシンボルに対して、それぞれ異なる位相回転量(例えば、θ~θ)を付与することができる。これにより、複数の送信ポイントから送信される干渉測定用CSI-RSを同じリソースに配置する場合であっても、各送信ポイントにおける干渉電力(P~P)を適切に推定することができる。また、図7Cに示すように、複数のCoMP群間で同じ周波数帯域(サブキャリア)を適用することにより、無線リソースの有効活用を図ることができる。
 次に、図8を参照して、CoMP送信を適用する場合の各送信ポイントに対する位相回転制御について説明する。
 図8Aは、TP#1、TP#2、TP#3で構成されるCoMP群#1と、TP#4、TP#5、TP#6で構成されるCoMP群#2とがそれぞれ異なる周波数帯域(サブキャリア)で適用される場合を示している。CoMP送信を適用する場合には、上記図3Bに示すように、CoMP群#1を構成する複数の送信ポイント(TP#1~TP#3)で、干渉測定用CSI-RSを同一リソースに配置することにより、CoMP群#1(TP#1~TP#3)以外の干渉電力(P123)を適切に推定することができる。CoMP群#2についても同様である。
 また、CoMP群#1、CoMP群#2間では、異なるサブキャリアを適用するため、干渉測定用CSI-RSシンボルが同じ位相であっても干渉の影響が小さい。
 一方で、複数のCoMP群(CoMP群#1、#2)が同じ周波数帯域(サブキャリア)で適用されるシステムにおいて、CoMP群#1とCoMP群#2の各送信ポイントが同じREに干渉測定用CSI-RSを配置する場合、異なるCoMP群を構成する送信ポイントに対して、異なる位相回転量を付与することが好ましい。例えば、図8Bに示すように、CoMP群#1を構成する送信ポイント(TP#1~TP#3)から送信される干渉測定用CSI-RSシンボルに対してはθだけ位相回転を制御し、CoMP群#2を構成する送信ポイント(TP#4~TP#6)から送信される干渉測定用CSI-RSシンボルに対してはθだけ位相回転を制御する。
 これにより、各CoMP群を構成する送信ポイントから送信される干渉測定用CSI-RSを同じリソースに配置する場合であっても、他のCoMP群を構成する送信ポイントからの干渉を考慮して、各CoMP群における干渉電力(P123、P456)を適切に推定することができる。また、複数のCoMP群間で同じ周波数帯域(サブキャリア)を適用することにより、無線リソースの有効活用を図ることができる。
(第2の態様)
 第2の態様では、希望信号測定用CSI-RSに加えて干渉測定用CSI-RSを配置する際の、ユーザ端末におけるチャネル推定方法について説明する。
 図9Aに示すように、所定のサブフレームにおいて、希望信号測定用のRE(SMR)と干渉測定用のRE(IMR)を設ける場合、干渉信号用のRE(IMR)に一つのアンテナポート(例えば、第1アンテナポート(Tx#1))から干渉測定用CSI-RSを送信し、第2アンテナポート(Tx#2)をミューティングすることができる。
 この場合、希望信号の推定としては、希望信号測定用のRE(SMR)のみに基づいて、チャネル推定を行う方法がある。例えば、希望信号測定用のRE(SMR)のみに基づいて、平均2乗誤差最小(MMSE:Minimum Mean Squared Error)によるチャネル推定を行うことができる。例えば、下記式(11)により、チャネル推定を行うことができる。
Figure JPOXMLDOC01-appb-M000011
 また、本実施の形態では、図9Bに示すように、奇数のリソースブロック(RB)における干渉測定用のRE(IMR)に、第1アンテナポート(Tx#1)からCSI-RSを送信し、第2アンテナポート(Tx#2)をミューティングする。そして、偶数のRBにおける干渉信号用のRE(IMR)に、第2アンテナポート(Tx#2)からCSI-RSを送信し、第1アンテナポート(Tx#1)をミューティングすることができる。
 この場合、希望信号の推定において、希望信号測定用のRE(SMR)に加えて干渉測定用のRE(IMR)も考慮して(希望信号測定用のRE(SMR)と干渉測定用のRE(MIR)に基づいて)、平均2乗誤差最小(MMSE)によるチャネル推定を行うことができる。例えば、下記式(12)により、チャネル推定を行うことができる。
Figure JPOXMLDOC01-appb-M000012
 このように、ユーザ端末は、希望信号測定用のRE(SMR)と干渉測定用のRE(IMR)に基づいてチャネル推定を行った結果に基づいて、CQIの測定、PMIの選択を行うことができる。このように、干渉測定用のREも考慮してチャネル推定を行うことにより、ユーザ端末におけるCQIの測定精度を向上することが可能となる。なお、ユーザ端末は、上記第1の態様と第2の態様を組み合わせて適用することができる。
(無線通信システム)
 ここで、本実施の形態に係る無線通信システムについて詳細に説明する。図10は、本実の形態に係る無線通信システムのシステム構成の説明図である。なお、図10に示す無線通信システムは、例えば、LTEシステム或いは、SUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれても良いし、4Gと呼ばれても良い。
 図10に示すように、無線通信システム1は、各送信ポイントの基地局装置20A、20Bと、この基地局装置20A、20Bと通信するユーザ端末10とを含んで構成されている。基地局装置20A、20Bは、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。また、基地局装置20A、20Bは、有線接続又は無線接続により相互に接続されている。ユーザ端末10は、送信ポイントである基地局装置20A、20Bと通信を行うことができる。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。
 ユーザ端末10は、既存端末(Rel.10LTE)及びサポート端末(例えば、Rel.11LTE)を含むが、以下においては、特段の断りがない限りユーザ端末として説明を進める。また、説明の便宜上、基地局装置20A、20Bと無線通信するのはユーザ端末10であるものとして説明する。
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用されるが、上りリンクの無線アクセス方式はこれに限定されない。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。
 ここで、通信チャネルについて説明する。下りリンクの通信チャネルは、ユーザ端末10で共有される下りデータチャネルとしてのPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)とを有する。PDSCHにより、送信データ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCHのスケジューリング情報などが伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。
 上りリンクの通信チャネルは、各ユーザ端末で共有される上りデータチャネルとしてのPUSCH(Physical Uplink Shared Channel)と、上りリンクの制御チャネルであるPUCCH(Physical Uplink Control Channel)とを有する。このPUSCHにより、送信データや上位制御情報が伝送される。また、PUCCHにより、下りリンクのチャネル状態情報(CSI(CQIなどを含む))、ACK/NACKなどが伝送される。
 図11を参照しながら、本実施の形態に係る基地局装置の全体構成について説明する。なお、基地局装置20A、20Bは、同様な構成であるため、基地局装置20として説明する。基地局装置20は、送受信アンテナ201と、アンプ部202と、送受信部(通知部)203と、ベースバンド信号処理部204と、呼処理部205と、伝送路インターフェース206とを備えている。下りリンクにより基地局装置20からユーザ端末に送信される送信データは、上位局装置30から伝送路インターフェース206を介してベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204において、下りデータチャネルの信号は、PDCPレイヤの処理、送信データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われる。
 また、ベースバンド信号処理部204は、報知チャネルにより、同一送信ポイントに接続するユーザ端末10に対して、各ユーザ端末10が基地局装置20との無線通信するための制御情報を通知する。当該送信ポイントにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅や、PRACH(Physical Random Access Channel)におけるランダムアクセスプリアンブルの信号を生成するためのルート系列の識別情報(Root Sequence Index)などが含まれる。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。アンプ部202は周波数変換された無線周波数信号を増幅して送受信アンテナ201へ出力する。
 一方、上りリンクによりユーザ端末10から基地局装置20に送信される信号については、送受信アンテナ201で受信された無線周波数信号がアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部204に入力される。
 ベースバンド信号処理部204は、上りリンクで受信したベースバンド信号に含まれる送信データに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース206を介して上位局装置30に転送される。
 呼処理部205は、通信チャネルの設定や解放などの呼処理や、基地局装置20の状態管理や、無線リソースの管理を行う。
 次に、図12を参照しながら、本実施の形態に係るユーザ端末の全体構成について説明する。ユーザ端末10は、送受信アンテナ101と、アンプ部102と、送受信部(受信部)103と、ベースバンド信号処理部104と、アプリケーション部105とを備えている。
 下りリンクのデータについては、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅され、送受信部103で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部104でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータの内、下りリンクの送信データは、アプリケーション部105に転送される。アプリケーション部105は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータの内、報知情報も、アプリケーション部105に転送される。
 一方、上りリンクの送信データは、アプリケーション部105からベースバンド信号処理部104に入力される。ベースバンド信号処理部104においては、マッピング処理、再送制御(HARQ)の送信処理や、チャネル符号化、DFT処理、IFFT処理を行う。送受信部103は、ベースバンド信号処理部104から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。
 図13を参照して、CIS-RSパターンの決定処理に対応した基地局装置の機能ブロックについて説明する。なお、図13の各機能ブロックは、主に図11に示すベースバンド処理部に関するものである。また、図13の機能ブロック図は、本発明を説明するために簡略化したものであり、ベースバンド処理部において通常備える構成を備えるものとする。
 基地局装置20は、送信側において、測定RE決定部401、上位制御情報生成部402と、下り送信データ生成部403と、下り制御情報生成部404と、CSI-RS生成部405と、下り送信データ符号化・変調部406と、下り制御情報符号化・変調部407と、位相制御部411とを備えている。また、基地局装置20は、下りチャネル多重部408と、IFFT部409と、CP付加部410とを備えている。
 測定RE決定部401は、希望信号測定のための参照信号(CSI-RS)を割り当てるリソース(SMR)及び干渉測定のための参照信号を割当てるリソース(IMR)を決定する。また、測定RE決定部401は、希望信号測定のための参照信号を割り当てるリソース(測定RE)及び干渉信号推定のためのリソース(測定RE)の組合せを決定する。
 例えば、測定RE決定部401は、図4Bに示すように、複数の送信ポイントからそれぞれ送信される干渉測定用CSI-RSが割当てられるリソース(IMR)を同じ位置に設定する。また、各送信ポイントから送信される希望信号測定用CSI-RSが割当てられるリソース(SMR)が送信ポイント間で重ならないように設定する。
 干渉測定用CSI-RS、希望信号測定用CSI-RSの割当てに関する情報(CSI-RSパターン情報)は、ユーザ端末に準静的にシグナリングする場合には、ハイヤレイヤシグナリング(例えばRRCシグナリング)するために上位制御情報生成部402に送られる。また、この割当てに関する情報は、ユーザ端末に動的にシグナリングする場合には、下り制御情報に含めるために下り制御情報生成部404に送られる。また、この割当てに関する情報は、CSI-RSを生成するためにCSI-RS生成部405に送られると共に、下り送信データをゼロパワー(ミューティング)にするために下り送信データ生成部403に送られる。
 上位制御情報生成部402は、上位レイヤシグナリング(例えば、RRCシグナリング)により送受信される上位制御情報を生成し、生成した上位制御情報を下り送信データ符号化・変調部406に出力する。例えば、上位制御情報生成部402は、測定RE決定部401から出力された情報を含む上位制御情報(CSI-RSの送信パラメータに関する情報)を生成する。また、上位制御情報生成部402は、位相制御部411で決定された干渉測定用CSI-RSの位相回転量に関する情報を含む上位制御情報を生成する。この場合、上記図6で示したテーブルを参照して、所定の位相回転量に対応するビット情報を生成することができる。
 下り送信データ生成部403は、下りリンクの送信データを生成し、その下り送信データを下り送信データ符号化・変調部406に出力する。下り送信データ生成部403は、測定RE決定部401から出力された割当て情報にしたがって、ゼロパワーCSI-RSを配置する(ミューティングする)。
 下り制御情報生成部404は、下りリンクの制御情報を生成し、その下り制御情報を下り制御情報符号化・変調部407に出力する。下り送信データ符号化・変調部406は、下り送信データ及び上位制御情報に対してチャネル符号化及びデータ変調を行い、下りチャネル多重部408に出力する。下り制御情報符号化・変調部407は、下り制御情報に対してチャネル符号化及びデータ変調を行い、下りチャネル多重部408に出力する。
 位相制御部411は、干渉測定用CSI-RSに対する位相回転量を制御し、CSI-RS生成部405に出力する。位相制御部は、上述したように、当該基地局装置の固有の情報(例えば、セルID)に基づいて位相回転量(θ)を決定することができる。他にも、希望信号測定用CSI-RSの割当てパターンに基づいて位相回転量(θ)を決定することができる。また、位相制御部411は、決定した位相回転量に関する情報をCSI-RS生成部405に出力する。また、決定した位相回転量をユーザ端末に通知する場合には、位相回転量に関する情報を上位制御情報生成部402に出力する。
 CSI-RS生成部405は、測定RE決定部401から出力された割当て情報にしたがって希望信号測定用CSI-RS、干渉測定用CSI-RSを生成し、これらのCSI-RSを下りチャネル多重部408に出力する。また、CSI-RS生成部405は、位相制御部411から出力された位相回転量に基づいて、生成した干渉測定用CSI-RSの位相回転を行うことができる。
 下りチャネル多重部408は、下り制御情報、CSI-RS、上位制御情報及び下り送信データを合成して送信信号を生成する。下りチャネル多重部408は、生成した送信信号をIFFT部409に出力する。IFFT部409は、送信信号を逆高速フーリエ変換(Inverse Fast Fourier Transform)し、周波数領域の信号から時間領域の信号に変換する。IFFT後の送信信号をCP付加部410に出力する。CP付加部410は、IFFT後の送信信号にCP(Cyclic Prefix)を付加して、CP付加後の送信信号を図11に示すアンプ部202に出力する。
 図14を参照して、本実施の形態に係るユーザ端末の機能ブロックについて説明する。なお、図14の各機能ブロックは、主に図12に示すベースバンド処理部104に関するものである。また、図12に示す機能ブロックは、本発明を説明するために簡略化したものであり、ベースバンド処理部において通常備える構成は備えるものとする。
 ユーザ端末10は、受信側において、CP除去部301と、FFT部302と、下りチャネル分離部303と、下り制御情報受信部304と、下り送信データ受信部305と、干渉信号推定部306と、チャネル推定部307と、CQI測定部308と、位相回転量取得部309とを備えている。
 基地局装置20から送出された送信信号は、図12に示す送受信アンテナ101により受信され、CP除去部301に出力される。CP除去部301は、受信信号からCPを除去し、FFT部302に出力する。FFT部302は、CP除去後の信号を高速フーリエ変換(FFT:Fast Fourier Transform)し、時間領域の信号から周波数領域の信号に変換する。FFT部302は、周波数領域の信号に変換された信号を下りチャネル分離部303に出力する。
 下りチャネル分離部303は、下りチャネル信号を、下り制御情報、下り送信データ、CSI-RSに分離する。下りチャネル分離部303は、下り制御情報を下り制御情報受信部304に出力し、下り送信データ及び上位制御情報を下り送信データ受信部305に出力し、干渉測定用CSI-RSを干渉信号推定部306に出力し、希望信号測定用CSI-RSをチャネル推定部307に出力する。
 下り制御情報受信部304は、下り制御情報を復調し、復調された下り制御情報を下り送信データ受信部305に出力する。下り送信データ受信部305は、復調された下り制御情報を用いて下り送信データを復調する。このとき、下り送信データ受信部305は、上位制御情報に含まれるリソース情報に基づいて希望信号測定用RE(SMR)及び干渉測定用RE(IMR)を特定する。下り送信データ受信部305は、希望信号測定RE及び干渉測定用REを除いて、ユーザデータを復調する。また、下り送信データ受信部305は、下り送信データに含まれる上位制御情報を位相回転量決定部309、干渉信号推定部306、チャネル推定部307に出力する。
 位相回転量取得部309は、基地局装置で付与された干渉測定用CSI-RSの位相回転量を決定する。上述したように、位相回転量がセルIDやCSI-RSパターン位置に対応づけられている場合には、位相回転量取得部309は、これらの情報に基づいて位相回転量を決定することができる。また、位相回転量がビット情報で規定されている場合には、上記図6に示したテーブルを参照して位相回転量を特定することができる。
 干渉信号推定部306は、位相回転量決定部309で特定された位相回転量、上位制御情報(又は下り制御情報)に含まれる送信パラメータ等の情報に基づいて、干渉測定用REで干渉信号を推定する。干渉信号推定部306は、干渉信号の推定を行い、全てのリソースブロックで測定結果を平均化することができる。平均化された干渉信号の推定結果は、CQI測定部308に通知される。
 チャネル推定部307は、上位制御情報(又は下り制御情報)に含まれる送信パラメータ等の情報に基づいて希望信号測定用RE(CSI-RSリソース)を特定し、希望信号測定用REで希望信号を推定する。なお、チャネル推定部307は、上記図9Bで示したように、希望信号測定用RE(SMR)に加えて、干渉測定用RE(IMR)を用いてチャネル推定を行うことも可能である。
 チャネル推定部307は、チャネル推定値をCQI測定部308に通知する。CQI測定部308は、干渉信号推定部306から通知される干渉推定結果、及びチャネル推定部307から通知されるチャネル推定結果、フィードバックモードに基づいてチャネル状態(CQI)を算出する。なお、フィードバックモードは、Wideband CQI、Subband CQI、best-M averageのいずれが設定されてもよい。CQI測定部308で算出されたCQIは、フィードバック情報として基地局装置20に通知される。
 本発明は上記実施の形態に限定されず、様々変更して実施することが可能である。例えば、本発明の範囲を逸脱しない限りにおいて、上記説明におけるCSI-RSの設定位置、ミューティング(ゼロパワー)の設定位置、処理部の数、処理手順、CSI-RSの数、ミューティングの数、送信ポイント数については適宜変更して実施することが可能である。また、上記説明においては、複数の送信ポイントが複数の基地局装置である場合について説明しているが、送信ポイントはアンテナであっても良い。その他、本発明の範囲を逸脱しないで適宜変更して実施することが可能である。
 本出願は、2012年4月27日出願の特願2012-103511に基づく。この内容は、全てここに含めておく。

Claims (11)

  1.  チャネル状態を測定するための希望信号測定用参照信号及び干渉測定用参照信号を送信する複数の基地局装置と、前記複数の基地局装置と通信するユーザ端末とを備えた無線通信システムであって、
     各基地局装置は、前記希望信号測定用参照信号及び前記干渉測定用参照信号をそれぞれ割当てるリソースを決定する決定部と、前記干渉測定用参照信号のシンボルを位相回転する位相制御部と、を有し、
     前記決定部は、前記干渉測定用参照信号を他の基地局装置から送信される干渉測定用参照信号と同じリソースに割当てるように制御し、前記位相制御部は、前記干渉測定用参照信号のシンボルを他の基地局装置と異なる位相回転量に制御することを特徴とする無線通信システム。
  2.  前記決定部は、前記干渉測定用参照信号を時間軸方向に隣接する2つのリソースに割当て、前記位相制御部は、前記2つのリソースの一方に割当てられる干渉測定用参照信号のシンボルに対して位相回転を行うことを特徴とする請求項1に記載の無線通信システム。
  3.  前記各基地局装置は、前記干渉測定用参照信号のシンボルの位相回転量を前記ユーザ端末に通知する通知部をさらに有することを特徴とする請求項1又は請求項2に記載の無線通信システム。
  4.  前記通知部は、前記干渉測定用参照信号のシンボルの位相回転量を上位レイヤ信号又は報知信号で通知することを特徴とする請求項3に記載の無線通信システム。
  5.  前記通知部は、上位レイヤ信号を用いて前記希望信号測定用参照信号及び/又は前記干渉測定用参照信号を特定するための送信パラメータ通知するタイミングと同じタイミングで前記位相回転量を通知することを特徴とする請求項4に記載の無線通信システム。
  6.  前記位相制御部は、セルID、仮想セルID、ユーザ端末ID又は希望信号測定用参照信号の割当て位置に基づいて、前記干渉測定用参照信号のシンボルの位相回転量を制御することを特徴とする請求項1に記載の無線通信システム。
  7.  前記ユーザ端末は、各基地局装置から送信される希望信号測定用参照信号及び干渉測定用参照信号を受信する受信部と、
     前記干渉測定用参照信号のシンボルの位相回転量を決定する決定部と、
     干渉信号推定及びチャネル推定を行う推定部と、
     前記推定部の推定結果を用いてチャネル状態を測定する測定部と、を備えたことを特徴とする請求項1に記載の無線通信システム。
  8.  前記推定部は、前記希望信号測定用参照信号と前記干渉測定用参照信号を用いてチャネル推定を行うことを特徴とする請求項7に記載の無線通信システム。
  9.  チャネル状態を測定するための希望信号測定用参照信号及び干渉測定用参照信号をユーザ端末に送信する基地局装置であって、
     前記希望信号測定用参照信号及び前記干渉測定用参照信号をそれぞれ割当てるリソースを決定する決定部と、前記干渉測定用参照信号のシンボルを位相回転する位相制御部と、を有し、
     前記決定部は、前記干渉測定用参照信号を他の基地局装置から送信される干渉測定用参照信号と同じリソースに割当てるように制御し、前記位相制御部は、前記干渉測定用参照信号のシンボルを他の基地局装置と異なる量で位相回転することを特徴とする基地局装置。
  10.  チャネル状態を測定するための希望信号測定用参照信号及び干渉測定用参照信号を受信する受信部と、
     前記干渉測定用参照信号のシンボルの位相回転量を取得する取得部と、
     前記希望信号測定用参照信号及び/又は干渉測定用参照信号に基づいて、チャネル推定及び干渉信号推定を行う推定部と、
     前記推定部の推定結果を用いてチャネル状態を測定する測定部と、を備えたことを特徴とするユーザ端末。
  11.  チャネル状態を測定するための希望信号測定用参照信号及び干渉測定用参照信号を送信する複数の基地局装置と、前記複数の基地局装置のいずれかに接続するユーザ端末と、の無線通信方法であって、
     各基地局装置は、前記干渉測定用参照信号のシンボルを位相回転する工程と、前記希望信号測定用参照信号及び前記干渉測定用参照信号をそれぞれ所定のリソースに割当てる工程と、を有し、
     前記各基地局装置から送信される前記干渉測定用参照信号が同じリソースに割当てられ、前記干渉測定用参照信号のシンボルの位相回転量が各基地局装置で異なることを特徴とする無線通信方法。
PCT/JP2013/061069 2012-04-27 2013-04-12 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法 WO2013161588A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380022190.0A CN104285462A (zh) 2012-04-27 2013-04-12 无线通信***、基站装置、用户终端以及无线通信方法
EP13782031.2A EP2843983A4 (en) 2012-04-27 2013-04-12 WIRELESS COMMUNICATION SYSTEM, BASISSTATION DEVICE, USER DEVICE AND WIRELESS COMMUNICATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-103511 2012-04-27
JP2012103511A JP5893999B2 (ja) 2012-04-27 2012-04-27 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2013161588A1 true WO2013161588A1 (ja) 2013-10-31

Family

ID=49482915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061069 WO2013161588A1 (ja) 2012-04-27 2013-04-12 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法

Country Status (4)

Country Link
EP (1) EP2843983A4 (ja)
JP (1) JP5893999B2 (ja)
CN (1) CN104285462A (ja)
WO (1) WO2013161588A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019214406A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 一种测量方法、第一设备和第二设备
JP7475419B2 (ja) 2016-12-21 2024-04-26 三菱電機株式会社 通信システム、通信端末装置および基地局装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105309020B (zh) 2013-06-21 2019-08-20 富士通株式会社 发送装置、接收装置、发送方法以及接收方法
JP6581529B2 (ja) * 2016-03-11 2019-09-25 株式会社Nttドコモ 管理装置
WO2017188591A1 (ko) * 2016-04-25 2017-11-02 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 추정을 위한 신호 전송 방법
WO2018062942A1 (en) * 2016-09-30 2018-04-05 Lg Electronics Inc. Method for receiving control information for reference signal related to phase noise estimation and user equipment therefor
CN108809570B (zh) * 2017-05-04 2020-04-17 维沃移动通信有限公司 一种参考信号传输方法、相关设备及***
GB2562117B (en) 2017-05-05 2021-07-28 Samsung Electronics Co Ltd Phase tracking reference signal
US11723058B2 (en) 2017-06-14 2023-08-08 Ntt Docomo, Inc. Method of frequency resource allocation
WO2019031917A1 (ko) 2017-08-11 2019-02-14 엘지전자 주식회사 무선 통신 시스템에서, 참조 신호를 송수신하는 방법 및 이를 위한 장치
EP3985933A4 (en) * 2019-06-13 2023-06-14 Ntt Docomo, Inc. COMMUNICATION DEVICE
KR20220149515A (ko) * 2020-03-04 2022-11-08 소니그룹주식회사 무선 기지국 및 무선 단말기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087741A1 (ja) * 2008-01-04 2009-07-16 Panasonic Corporation 無線通信端末装置及び無線送信方法
WO2011119005A2 (en) * 2010-03-26 2011-09-29 Lg Electronics Inc. Method and base station for receiving reference signal, and method and user equipment for receiving reference signal
WO2012046684A1 (ja) * 2010-10-04 2012-04-12 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動端末装置及び通信制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627560B (zh) * 2007-01-05 2014-07-23 三星电子株式会社 用于在移动通信***中发送和接收随机化小区间干扰的控制信息的方法和装置
DK1942597T3 (da) * 2007-01-05 2013-05-13 Samsung Electronics Co Ltd Fremgangsmåde og apparat til videresendelse og modtagelse af styreinformation for randomisering af indgreb mellem celler i et mobilkommunikationssystem
US8238303B2 (en) * 2008-11-26 2012-08-07 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus of allocating subcarriers in an orthogonal frequency division multiplexing system
US8780829B2 (en) * 2008-12-11 2014-07-15 Lg Electronics Inc. Method for transmitting and receiving a comp reference signal in a multi-cell environment
CN101877608B (zh) * 2010-06-30 2015-07-22 中兴通讯股份有限公司 一种针对协作波束赋型的优化加权csi反馈方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087741A1 (ja) * 2008-01-04 2009-07-16 Panasonic Corporation 無線通信端末装置及び無線送信方法
WO2011119005A2 (en) * 2010-03-26 2011-09-29 Lg Electronics Inc. Method and base station for receiving reference signal, and method and user equipment for receiving reference signal
WO2012046684A1 (ja) * 2010-10-04 2012-04-12 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動端末装置及び通信制御方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Feasibility study for Evolved UTRA and UTRAN", 3GPP, TR25.912 (V7.1.0, September 2006 (2006-09-01)
NTT DOCOMO: "Enhanced Interference Measurement Mechanism for Rel-11", 3GPP TSG RAN WG1 MEETING #68BIS, R1-121471, 20 March 2012 (2012-03-20), pages 1 - 9, XP050599752 *
See also references of EP2843983A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475419B2 (ja) 2016-12-21 2024-04-26 三菱電機株式会社 通信システム、通信端末装置および基地局装置
WO2019214406A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 一种测量方法、第一设备和第二设备
CN110475264A (zh) * 2018-05-11 2019-11-19 华为技术有限公司 一种测量方法、第一设备和第二设备
CN110475264B (zh) * 2018-05-11 2023-10-24 华为技术有限公司 一种测量方法、第一设备和第二设备

Also Published As

Publication number Publication date
EP2843983A1 (en) 2015-03-04
JP2013232766A (ja) 2013-11-14
EP2843983A4 (en) 2015-11-25
JP5893999B2 (ja) 2016-03-23
CN104285462A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5893999B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP6081080B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
JP5526165B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及びチャネル状態情報測定方法
US9369890B2 (en) Radio communication system, base station apparatus, mobile terminal apparatus and interference measurement method
US9634808B2 (en) Radio communication system, radio communication method, user terminal and radio base station
US9609641B2 (en) Radio communication method, radio communication system, radio base station and user terminal
JP5437310B2 (ja) 無線基地局装置、移動端末装置、無線通信方法及び無線通信システム
JP6091816B2 (ja) 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
WO2013069538A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
JP5918680B2 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
WO2013141114A1 (ja) 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
JP5970170B2 (ja) 無線通信システム、基地局装置、移動端末装置、及び干渉測定方法
JP5959830B2 (ja) 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
WO2014045755A1 (ja) 無線通信システム、ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013782031

Country of ref document: EP