WO2013151172A1 - Nickel metal powder and process for producing nickel metal powder - Google Patents

Nickel metal powder and process for producing nickel metal powder Download PDF

Info

Publication number
WO2013151172A1
WO2013151172A1 PCT/JP2013/060559 JP2013060559W WO2013151172A1 WO 2013151172 A1 WO2013151172 A1 WO 2013151172A1 JP 2013060559 W JP2013060559 W JP 2013060559W WO 2013151172 A1 WO2013151172 A1 WO 2013151172A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel powder
metallic nickel
pure water
ratio
absorption spectrum
Prior art date
Application number
PCT/JP2013/060559
Other languages
French (fr)
Japanese (ja)
Inventor
雅由 齋藤
浅井 剛
籠橋 亘
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2014509228A priority Critical patent/JP6086613B2/en
Priority to KR1020147025111A priority patent/KR102032009B1/en
Priority to CN201380017821.XA priority patent/CN104379279B/en
Publication of WO2013151172A1 publication Critical patent/WO2013151172A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a metallic nickel powder and a method for producing the metallic nickel powder, and more particularly to a metallic nickel powder having a small content of coarse particles formed by agglomerating particles and a producing method thereof.
  • Metallic nickel is much more stable than iron against air and humidity, and is superior in corrosion resistance, heat resistance, and wear resistance. Therefore, it is used as stainless steel for kitchens and tableware. In addition, because of its excellent heat dissipation and electrical characteristics, it is used as a material for nickel metal hydride batteries and lithium ion batteries, as well as multilayer ceramic capacitors (hereinafter referred to as MLCC) that are indispensable as parts for mobile phones and personal computers. It is also used as an electrode material.
  • MLCC multilayer ceramic capacitors
  • MLCC has a configuration in which dielectric ceramic layers and metal layers used as internal electrodes are alternately stacked, and external electrodes are connected to both ends of the laminate.
  • a material constituting the dielectric a material mainly composed of a material having a high dielectric constant such as barium titanate, strontium titanate, yttrium oxide or the like is used.
  • the metal constituting the internal electrode includes noble metal powders such as silver, palladium, platinum and gold, alloys using these noble metal powders, or base metal powders such as nickel, cobalt, iron, molybdenum, tungsten and copper, and these base metals. An alloy using powder is used.
  • metallic nickel powder as an internal electrode material has been actively performed.
  • MLCC is generally manufactured by the following method.
  • dielectric powder such as barium titanate is mixed and suspended with an organic binder, and this is formed into a sheet shape by a doctor blade method to produce a dielectric green sheet.
  • the metal powder for the internal electrode is mixed with an organic compound such as an organic solvent, a plasticizer, and an organic binder to form a metal powder paste, which is printed on the green sheet by a screen printing method and dried.
  • the organic components are removed by heat treatment, and then the sheet is fired at a temperature of about 1300 ° C. or higher. Thereafter, external electrodes are baked on both ends of the fired body to obtain MLCC.
  • the metal powder in the metal powder paste may cause a short circuit between the electrodes through the dielectric layer. There was a problem.
  • Patent Document 1 uses a nickel powder that does not show an absorption peak at an infrared absorption spectrum (hereinafter sometimes abbreviated as FT-IR) signal position of 3700 cm ⁇ 1 to 3600 cm ⁇ 1 . It has been proposed that aggregation of powders can be suppressed. This range of vibrations is attributed to OH groups that are chemically bonded to metallic nickel.
  • FT-IR infrared absorption spectrum
  • Such a metallic nickel powder can be obtained by subjecting a metallic nickel powder obtained by a vapor phase method or the like to a heat treatment in an oxidizing atmosphere at 200 ° C. to 400 ° C.
  • the conventional method described above has a certain effect for the purpose of reducing and improving the aggregation to the coarse particles, but is not necessarily sufficient as a method for preventing the aggregation to the coarse particles.
  • an object of the present invention is to provide a metallic nickel powder having a small content of coarse particles formed by aggregation of metallic nickel powder particles and a method for producing the same.
  • the present inventors have found that the nickel powder is agglomerated due to the presence of silicic acid contained in a trace amount in addition to the hydroxide on the surface of the metallic nickel powder. As a result, the present invention has been completed.
  • the present invention provides an average particle size of a 1000nm from 10 nm, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 in the Fourier transform infrared spectrophotometer comprising an MCT detector (X) And the S / N ratio (Y) of the absorption spectrum signal from 3700 cm ⁇ 1 to 3600 cm ⁇ 1 is Y ⁇ ⁇ 1.0X + 23.0 It is a metal nickel powder characterized by being.
  • the present invention is also a method for producing the metallic nickel powder, wherein the metallic nickel powder is produced from a nickel compound by a vapor phase method or a liquid phase method, the metallic nickel powder is cooled, and electrostatic adsorption filtration is performed. Then, carbon dioxide is dissolved in pure water having a reduced silicon content to prepare a carbonic acid aqueous solution, and the metal nickel powder is treated with the carbonic acid aqueous solution.
  • the metal nickel powder according to the present invention is a metal nickel powder containing almost no coarse particles formed by aggregation of the metal nickel powder, and is suitable for use as an internal electrode of a multilayer ceramic capacitor.
  • FIG. 6 is a diagram showing the results of Examples 1 to 7 and Comparative Examples 1 to 3 of the present invention. It is the figure which showed the manufacturing apparatus of the metal nickel powder used for the Example and comparative example of this invention.
  • Metallic nickel powder of the present invention an average particle diameter of a 1000nm from 10 nm, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 in the Fourier transform infrared spectrophotometer comprising an MCT detector ( X) and the S / N ratio (Y) of the absorption spectrum signals from 3700 cm ⁇ 1 to 3600 cm ⁇ 1 are Y ⁇ ⁇ 1.0 ⁇ X + 23.0 It is a metal nickel powder characterized by being. Preferably, Y ⁇ ⁇ 1.0 ⁇ X + 16.7 It is a metal nickel powder characterized by being. By setting it as this range, it is possible to obtain a metallic nickel powder with good dispersibility that hardly contains coarse particles formed by aggregation.
  • the average particle diameter of the metallic nickel powder of the present invention is preferably 10 nm to 1 ⁇ m, and more preferably fine particles in the range of 10 nm to 0.4 ⁇ m. By setting it as this range, it is suitable for using for an electrically conductive paste.
  • the particle diameter of the metallic nickel powder of the present invention is the diameter of the smallest circle that encloses each particle.
  • the S / N ratio of the metallic nickel powder of the present invention is determined by the following method.
  • Absorbance of the absorption spectrum from 1200 cm -1 900 cm -1, the absorbance of the absorption spectrum of 3600 cm -1 from 3700 cm -1, a ratio of the absorbance in the region absorption spectrum is not distorted without baseline.
  • the absorbance of the region absorption spectrum is not distorted without baseline is preferably to choose a wave number which is not affected by moisture and carbon dioxide, for example, it is preferable to select from among the 2200 cm -1 in the range of 1950cm -1 .
  • the peak area value was determined in the above frequency range in units of 50 cm ⁇ 1 and the average value was obtained.
  • the detector of the Fourier transform infrared spectrophotometer is preferably a high-sensitivity type, and the MCT detector type is used.
  • the composition of this detector consists of a semiconductor element made of mercury, cadmium, and tellurium. When liquid nitrogen is used to cool the detector, information can be obtained with high sensitivity and is effective for trace substances. .
  • various component gases are not contained in the atmosphere of the sample chamber during measurement, and the sample chamber is preferably in a dry atmosphere gas or in a vacuum state.
  • the dew point When measurement is performed under a dry atmosphere gas, if the dew point is not kept below ⁇ 50 ° C., a signal derived from the OH group will appear and this will interfere with the analysis. If the dew point is maintained, it is sufficient that the number of integration is 128 times or more.
  • the measurement resolution is preferably 4 cm ⁇ 1 or less.
  • the intensity of the absorption spectrum of the Fourier transform infrared spectroscopy of the present invention is determined under the following measurement conditions.
  • Model name Model Nicolet 6700 (Thermo Fisher Scientific)
  • Detector MCT detector
  • Measurement conditions Resolution 4cm -1 , 256 times of integration
  • Light source Infrared absorption light (IR)
  • Sample room gas dry nitrogen (dew point: -72 ° C)
  • Beam splitter KBr Background integration count, resolution: 256 times, 4 cm -1
  • Analysis method KM conversion
  • the nickel powder of the present invention can be produced by a known method such as a gas phase method or a liquid phase method.
  • a gas phase method in which nickel powder is produced by bringing nickel chloride gas into contact with a reducing gas
  • the spray pyrolysis method in which a thermally decomposable nickel compound is sprayed to thermally decompose the fine metal powder produced.
  • the particle diameter of nickel powder is generally 10 nm to 1 ⁇ m.
  • nickel powder vapor phase reduction method vaporized nickel chloride gas is reacted with a reducing gas such as hydrogen, but solid nickel chloride may be heated and evaporated to generate nickel chloride gas.
  • a reducing gas such as hydrogen
  • the metal chloride is brought into contact with chlorine gas to continuously generate nickel chloride gas, and this nickel chloride gas is directly supplied to the reduction process and then reduced. It is advantageous to produce nickel fine powder by contacting nickel chloride gas and continuously reducing nickel chloride gas.
  • nickel atoms are generated at the moment when the nickel chloride gas and the reducing gas come into contact with each other, and the nickel atoms collide and agglomerate to generate ultrafine particles and grow.
  • generate is determined by conditions, such as partial pressure and temperature of nickel chloride gas in a reduction process.
  • an amount of nickel chloride gas corresponding to the supply amount of chlorine gas is generated. Therefore, the amount of nickel chloride gas supplied to the reduction process is controlled by controlling the supply amount of chlorine gas. The amount can be adjusted, and the particle diameter of the nickel fine powder produced
  • metal chloride gas is generated by the reaction of chlorine gas and metal, unlike the method of generating metal chloride gas by heating and evaporation of solid metal chloride, the use of carrier gas can be reduced. Not only can it be used depending on the manufacturing conditions. Therefore, in the gas phase reduction reaction, the production cost can be reduced by reducing the amount of carrier gas used and the accompanying reduction in heating energy.
  • the partial pressure of nickel chloride gas in the reduction process can be controlled by mixing an inert gas with the nickel chloride gas generated in the chlorination process.
  • the particle size of nickel powder can be controlled, and variation in particle size can be suppressed,
  • the particle size can be arbitrarily set.
  • the production conditions of the nickel powder by the gas phase reduction method as described above are arbitrarily set so that the average particle diameter is 1 ⁇ m or less.
  • the particle diameter of the metallic nickel as the starting material is about 5 to 20 mm, A lump shape, a plate shape, and the like are preferable, and the purity is preferably 99.5% or more.
  • the nickel metal is first reacted with chlorine gas to produce nickel chloride gas, and the temperature at that time is set to 800 ° C. or higher and 1453 ° C. or lower, which is the melting point of nickel, to sufficiently advance the reaction. Considering the reaction rate and the durability of the chlorination furnace, the range of 900 ° C. to 1100 ° C. is preferable for practical use.
  • this nickel chloride gas is directly supplied to the reduction step and brought into contact with a reducing gas such as hydrogen gas.
  • a reducing gas such as hydrogen gas.
  • An inert gas such as nitrogen or argon is mixed with 1 to 30 mol% of the nickel chloride gas, This mixed gas may be introduced into the reduction step.
  • chlorine gas can also be supplied to a reduction process with nickel chloride gas or independently. By supplying chlorine gas to the reduction process in this way, the partial pressure of nickel chloride gas can be adjusted, and the particle size of the nickel powder to be produced can be controlled.
  • the temperature of the reduction reaction may be at least a temperature sufficient for completion of the reaction. However, since it is easier to handle the production of solid nickel powder, it is preferably below the melting point of nickel. ⁇ 1100 ° C. is practical.
  • the produced nickel powder is then cooled.
  • a reduction reaction is performed by blowing an inert gas such as nitrogen gas. It is desirable to rapidly cool the finished gas flow around 1000 ° C. to about 400 to 800 ° C.
  • the produced nickel powder is separated and collected by, for example, a bag filter or the like.
  • a heat decomposable nickel compound is used as a raw material. Specifically, nitrate, sulfate, oxynitrate, oxysulfate, chloride, ammonium complex, phosphorus 1 type (s) or 2 or more types, such as an acid salt, a carboxylate salt, an alkoxy compound, are contained.
  • the solution containing the nickel compound is sprayed to form fine droplets.
  • water, alcohol, acetone, ether or the like is used as the solvent at this time.
  • the spraying method is performed by a spraying method such as ultrasonic or double jet nozzle.
  • the heating temperature at this time is equal to or higher than the temperature at which the specific nickel compound used is thermally decomposed, and is preferably near the melting point of the metal.
  • nickel hydroxide containing nickel sulfate, nickel chloride or nickel complex is contacted by adding it to an alkali metal hydroxide such as sodium hydroxide.
  • an alkali metal hydroxide such as sodium hydroxide.
  • the nickel hydroxide is reduced with a reducing agent such as hydrazine to obtain metallic nickel powder.
  • the nickel metal powder thus produced is crushed as necessary to obtain uniform particles.
  • the nickel powder obtained by the above method is treated by suspending it in an aqueous carbonate solution under specific conditions with controlled pH and temperature.
  • an aqueous carbonate solution impurities such as chlorine adhering to the nickel surface are sufficiently removed, and the surface of the nickel powder is caused by hydroxide such as nickel hydroxide or friction between particles. Since the fine particles formed apart from the surface are removed, a uniform nickel oxide film can be formed on the surface.
  • a method of cleaning with a carbonic acid aqueous solution, or carbon dioxide gas is blown into a water slurry after pure water cleaning, or a carbonic acid aqueous solution is added for treatment.
  • a carbonic acid aqueous solution having a silicon content of 15 wtppm or less or a solution in which carbon dioxide is dissolved in pure water having a silicon content of 15 wtppm or less is used. Is less than.
  • a RO reverse osmosis membrane, an ion exchanger, and a filter equipped with an electrostatic adsorption function are used for removing silicon from pure water.
  • the silicic acid that cannot be removed by the RO reverse osmosis membrane and the ion exchanger is composed of colloidal silica or the like.
  • this colloidal silica has a surface zeta potential charged to ( ⁇ ), it has been found that it can be reduced by using a filter equipped with a filter medium having a surface zeta potential charged to (+).
  • Various materials such as hydrophilic nylon, olefin polymer or polyester can be applied as the material of the filter, but there is no particular limitation as long as the material has a positive (+) zeta potential on the surface.
  • Silicic acid contained in pure water cannot be sufficiently removed by a reverse osmosis membrane or an ion exchanger used for normal pure water production.
  • Pure water or carbonic acid aqueous solution having a silicon content of 15 wtppm or less can be obtained by further processing with a filter having a filter whose surface zeta potential is charged to (+).
  • a filter having a filter whose surface zeta potential is charged to (+).
  • a filter is commercially available under the trade name: Multipurpose tank holder filter plate type (Advantech Toyo Co., Ltd.), trade name: Posodyne UP (Nippon Pole Co., Ltd.), and the like.
  • the nickel powder is dried.
  • a known method can be adopted, and specific examples include air-flow drying, heating drying, and vacuum drying in which the drying is performed by contacting with a high-temperature gas.
  • air drying is a preferred method because there is no wear of the oxide film due to contact between the particles.
  • the dried nickel powder is further heat-treated in an environment in which the oxygen partial pressure is controlled to control the amount of Ni (OH) 2 on the powder surface.
  • the heat treatment is performed in an atmosphere in which the oxygen partial pressure is controlled while stirring using a fluid stirrer or the like.
  • the heat treatment temperature and heat treatment time are determined according to the size of the nickel powder and the thickness of the oxide film.
  • the heat treatment temperature at this time is usually 200 to 400 ° C., preferably 200 to 300 ° C., more preferably 200 ⁇ 250 ° C.
  • the heat treatment time is usually 1 minute to 10 hours.
  • the nickel powder thus obtained is dispersed again in a solvent such as water as necessary. Then, coarse powder and connected grains are removed by passing through a filter. Since the dispersibility of nickel powder is good, it is possible to efficiently remove coarse powder and connected grains.
  • a known method can be used for the filtration, and the filter is made of organic polymer (nylon, polypropylene, tetrafluoroethylene resin, cellulose, melamine, phenol resin, acrylic, etc.), metal, inorganic compound These filters can be used.
  • other classification means such as classification means using a centrifugal force (liquid cyclone) may be performed before passing through the filter.
  • the average particle diameter, FT-IR measurement, silicon concentration, and aggregation in this example were evaluated by the following methods.
  • FT-IR measurement FT-IR measurement was performed under the following conditions.
  • Model name Model Nicolet 6700 (Thermo Fisher Scientific)
  • Detector MCT detector
  • Measurement conditions Resolution 4cm -1 , 256 times of integration
  • Light source Infrared absorption light (IR)
  • Sample room gas dry nitrogen (dew point: -72 ° C)
  • Beam splitter KBr Background integration count: 256 times Resolution: 4cm -1
  • the measurement sample was prepared as follows. After the metallic nickel powder was packed in a bottomed cylindrical sample jig having a diameter of 7 mm ⁇ , the metallic nickel powder was scraped horizontally at the upper end of the cylindrical sample jig.
  • This cylindrical sample jig was set in an FT-IR apparatus so as not to overflow the sample.
  • S / N ratio the absorbance of the absorption spectrum from 1200 cm -1 900 cm -1 or 3700 cm -1 from the absorbance of the absorption spectrum of 3600 cm -1, the absorbance of the region absorption spectrum is not distorted without baseline (2200 cm -1 To 1950 cm ⁇ 1 ).
  • the absorbance was obtained by calculating the peak area value in the above frequency range in units of 50 cm ⁇ 1 and taking the average value.
  • Example 1 (Si minimum, Ni (OH) minimum) A metallic nickel powder was produced by the same method as that described in Example 1 of Japanese Patent No. 4286220. Prior to the production of metallic nickel powder, the following pure waters having different silicon concentrations were prepared. Pure water A: silicon concentration 65wtppm Pure water B: Pure water A was treated with a filtration device having a filter whose surface zeta potential was charged to (+) (a multi-purpose tank holder filter plate type (manufactured by Advantech Toyo Co., Ltd.)). The silicon concentration is 3 wtppm.
  • the metal nickel M having an average particle diameter of 5 mm was filled in the chlorination furnace 1 of the apparatus for producing metal nickel powder shown in FIG. Next, chlorine gas was supplied from the nozzle 12 into the chlorination furnace 1, and the nickel metal shot M was salified to generate nickel chloride gas. Then, it diluted with the nitrogen gas supplied from the nozzle 13 and mixed. Then, a mixed gas of nickel chloride gas and nitrogen gas was introduced from the nozzle 22 into the reduction furnace 2 having a furnace atmosphere temperature of 1000 ° C. by the heating means 21.
  • a mixed gas composed of nitrogen gas-hydrochloric acid vapor-metallic nickel powder P was introduced into a washing tank filled with pure water B, and the metallic nickel powder was separated and recovered and washed with pure water B (pure water washing).
  • carbon dioxide gas was blown into the metal nickel powder slurry to adjust the pH to 4.0, and a carbonic acid aqueous solution was treated at 25 ° C. for 60 minutes (carbonic acid aqueous solution treatment).
  • the nickel metal powder treated with the carbonic acid aqueous solution After drying the nickel metal powder treated with the carbonic acid aqueous solution, it was treated in the atmosphere at 200 ° C. for 30 minutes (heat treatment) to obtain metallic nickel powder.
  • the average particle diameter of the metallic nickel powder was 0.3 ⁇ m.
  • Example 2 Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 5 wtppm was used. Further, the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes, and a treatment at 250 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 3 A nickel metal powder was obtained in the same manner as in Example 1 except that the heat treatment after drying was changed to treatment at 200 ° C. for 30 minutes and treatment at 150 ° C. for 30 minutes.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 4 A nickel metal powder was obtained in the same manner as in Example 1 except that pure water having a silicon concentration of 14 wtppm was used instead of pure water B having a silicon concentration of 3 wtppm.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 5 Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 6 wtppm was used. Further, the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes, and a treatment at 150 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 6> Implemented except that pure water with a silicon concentration of 5 ppm was used instead of pure water B with a silicon concentration of 3 wtppm, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes and a treatment at 150 ° C. for 30 minutes. In the same manner as in Example 1, metallic nickel powder was obtained.
  • Example 7 Instead of pure water B having a silicon concentration of 3 wtppm, pure water having a silicon concentration of 4 wtppm was used, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes, and a treatment at 150 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 8 A nickel metal powder was obtained in the same manner as in Example 1 except that pure water having a silicon concentration of 7 wtppm was used instead of pure water having a silicon concentration of 3 wtppm.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 9 Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 14 wtppm was used, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes and a treatment at 250 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 2 A nickel metal powder was obtained in the same manner as in Example 1 except that pure water having a silicon concentration of 49 wtppm was used instead of pure water B having a silicon concentration of 3 wtppm.
  • the silicon concentration of pure water was prepared by mixing pure water A and pure water B.
  • Example 10 A metallic nickel powder Q was produced in the same manner as in Example 1 except that the dilution amount of nitrogen gas from the nozzle 13 was increased. A part of the metallic nickel powder Q was collected, washed with water, and the average particle size was measured. As a result, the average particle size of the metallic nickel powder Q was 0.15 ⁇ m. This metallic nickel powder Q was subjected to pure water cleaning, carbonic acid aqueous solution treatment, and heat treatment in the same manner as in Example 1.
  • FIG. 3 shows the results of evaluating the metallic nickel powder of Comparative Example 1 with the following FT-IR apparatus (model name: model Nicolet 6700 (manufactured by Thermo Fisher Scientific)) having a TGS detector.
  • a metallic nickel powder containing almost no coarse particles formed by agglomeration of nickel particles is obtained, which is suitable as a nickel powder for an internal electrode of a multilayer ceramic capacitor.

Abstract

Provided is a nickel metal powder which is reduced in the content of coarse particles formed by the agglomeration of nickel metal powder particles. The nickel metal powder has an average particle diameter of 10-1,000 nm and, when examined with a Fourier transfer infrared spectrometer equipped with a mercury-cadmium-tellurium (MCT) detector, gives an absorption spectrum in which X and Y satisfy Y≤-1.0X+23.0, where Y is the S/N ratio for the range of 3,700-3,600 cm-1 and X is the S/N ratio for the range of 1,200-900 cm-1.

Description

金属ニッケル粉末及び金属ニッケル粉末の製造方法Metallic nickel powder and method for producing metallic nickel powder
 本発明は、金属ニッケル粉末及び金属ニッケル粉末の製造方法に係り、特に、粒子同士が凝集して形成された粗大粒子の含有量が少ない金属ニッケル粉末及びその製造方法に関する。  The present invention relates to a metallic nickel powder and a method for producing the metallic nickel powder, and more particularly to a metallic nickel powder having a small content of coarse particles formed by agglomerating particles and a producing method thereof.
 金属ニッケルは、空気や湿度に対しては鉄よりはるかに安定であり、耐蝕・耐熱・耐摩耗に優れていることから、キッチンや食器などのステンレス鋼として利用されている。また、放熱特性や電気特性にも優れていることから、ニッケル水素電池やリチウムイオン電池の材料としても使用されているほか、携帯電話やパソコンの部品として欠かすことのできない積層セラミックコンデンサ(以下、MLCCと略称することがある)の電極材料としても使われている。  Metallic nickel is much more stable than iron against air and humidity, and is superior in corrosion resistance, heat resistance, and wear resistance. Therefore, it is used as stainless steel for kitchens and tableware. In addition, because of its excellent heat dissipation and electrical characteristics, it is used as a material for nickel metal hydride batteries and lithium ion batteries, as well as multilayer ceramic capacitors (hereinafter referred to as MLCC) that are indispensable as parts for mobile phones and personal computers. It is also used as an electrode material.
 MLCCは、誘電体セラミック層と、内部電極として使用される金属層とが交互に重ねられ、その積層体の両端に外部電極が接続された構成になっている。ここで、誘電体を構成する材料としては、チタン酸バリウム、チタン酸ストロンチウム、酸化イットリウム等の誘電率の高い材料を主成分とするものが用いられている。一方、内部電極を構成する金属としては、銀、パラジウム、白金、金等の貴金属粉末、これら貴金属粉末を用いた合金、あるいはニッケル、コバルト、鉄、モリブデン、タングステン、銅等の卑金属粉末、これら卑金属粉末を用いた合金等が用いられている。これらの中で、近年は金属ニッケル粉末を内部電極材料として利用したMLCCの開発が盛んに行われている。  MLCC has a configuration in which dielectric ceramic layers and metal layers used as internal electrodes are alternately stacked, and external electrodes are connected to both ends of the laminate. Here, as a material constituting the dielectric, a material mainly composed of a material having a high dielectric constant such as barium titanate, strontium titanate, yttrium oxide or the like is used. On the other hand, the metal constituting the internal electrode includes noble metal powders such as silver, palladium, platinum and gold, alloys using these noble metal powders, or base metal powders such as nickel, cobalt, iron, molybdenum, tungsten and copper, and these base metals. An alloy using powder is used. Among these, in recent years, development of MLCC using metallic nickel powder as an internal electrode material has been actively performed.
 また、近年、電子機器の軽量小型化に伴い、MLCCを小型化することが求められている、MLCCの小型化には、誘電体層、電極層厚を薄肉化することが必要で、それに伴い金属ニッケル粉末の粒径を1μm以下、さらには0.5μm以下、0.2μm以下と微粉化する要求が年々高まっている。  In recent years, with the reduction in weight and size of electronic devices, it has been required to reduce the size of MLCC. To reduce the size of MLCC, it is necessary to reduce the thickness of the dielectric layer and the electrode layer. The demand for pulverizing the metallic nickel powder to 1 μm or less, further 0.5 μm or less, and 0.2 μm or less is increasing year by year.
 MLCCは、一般に次のような方法で製造されている。まず、チタン酸バリウム等の誘電体粉末を有機バインダーと混合し懸濁させ、これをドクターブレード法によりシート状に成形し誘電体グリーンシートを作成する。一方、内部電極用の金属粉末は、有機溶剤、可塑剤、有機バインダー等の有機化合物と混合して金属粉末ペーストを形成した後、これを前記グリーンシート上にスクリーン印刷法で印刷、乾燥する。次いで、このシートを積層および圧着した後、加熱処理にて有機成分を除去してから、1300℃前後またはそれ以上の温度で焼成する。この後、焼成体の両端に外部電極を焼き付けてMLCCを得る。  MLCC is generally manufactured by the following method. First, dielectric powder such as barium titanate is mixed and suspended with an organic binder, and this is formed into a sheet shape by a doctor blade method to produce a dielectric green sheet. On the other hand, the metal powder for the internal electrode is mixed with an organic compound such as an organic solvent, a plasticizer, and an organic binder to form a metal powder paste, which is printed on the green sheet by a screen printing method and dried. Next, after laminating and pressure-bonding the sheet, the organic components are removed by heat treatment, and then the sheet is fired at a temperature of about 1300 ° C. or higher. Thereafter, external electrodes are baked on both ends of the fired body to obtain MLCC.
 上記のようなMLCCの製造方法において、金属粉末ペースト中の金属粉末に、例えば金属粉末が凝集して形成された粗大粒子が存在すると、誘電体層を突き抜け電極間で短絡を発生させる原因となる問題があった。  In the MLCC manufacturing method as described above, if the metal powder in the metal powder paste has coarse particles formed by agglomeration of the metal powder, for example, it may cause a short circuit between the electrodes through the dielectric layer. There was a problem.
 その対策として、例えば、特許文献1には、赤外線吸収スペクトル(以下、FT-IRと略称することがある)信号位置が3700cm-1から3600cm-1において吸収ピークを示さないニッケル粉末を用いることにより、粉末同士の集合を抑制できることが提案されている。この範囲の振動は、金属ニッケルに化学的に結合するOH基に帰属するものである。このような金属ニッケル粉末は、気相法等により得られた金属ニッケル粉末を、200℃~400℃の酸化性雰囲気下で熱処理を行なうことによって得ることができる。  As a countermeasure, for example, Patent Document 1 uses a nickel powder that does not show an absorption peak at an infrared absorption spectrum (hereinafter sometimes abbreviated as FT-IR) signal position of 3700 cm −1 to 3600 cm −1 . It has been proposed that aggregation of powders can be suppressed. This range of vibrations is attributed to OH groups that are chemically bonded to metallic nickel. Such a metallic nickel powder can be obtained by subjecting a metallic nickel powder obtained by a vapor phase method or the like to a heat treatment in an oxidizing atmosphere at 200 ° C. to 400 ° C.
 しかしながら、上記した従来の方法では、粗大粒子への凝集を軽減して改善する目的としてはそれなりの効果を上げているが、粗大粒子への凝集を防止する方法としては必ずしも十分ではなかった。  However, the conventional method described above has a certain effect for the purpose of reducing and improving the aggregation to the coarse particles, but is not necessarily sufficient as a method for preventing the aggregation to the coarse particles.
特許第3787032号公報Japanese Patent No. 3787032
 従って、本発明の目的は、金属ニッケル粉末粒子同士が凝集して形成された粗大粒子の含有量が少ない金属ニッケル粉末及びその製造方法を提供することにある。  Therefore, an object of the present invention is to provide a metallic nickel powder having a small content of coarse particles formed by aggregation of metallic nickel powder particles and a method for producing the same.
 本発明者等は、金属ニッケル粉末の粗大粒子について鋭意研究を重ねた結果、金属ニッケル粉末表面の水酸化物の他に、微量に含まれるケイ酸の存在により、ニッケル粉が凝集し粗大粒子が発生することを突き止め、本発明を完成させるに至った。  As a result of intensive research on the coarse particles of the metallic nickel powder, the present inventors have found that the nickel powder is agglomerated due to the presence of silicic acid contained in a trace amount in addition to the hydroxide on the surface of the metallic nickel powder. As a result, the present invention has been completed.
 すなわち、本発明は、平均粒径が10nmから1000nmであって、MCT検出器を具備するフーリエ変換赤外分光光度計における1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)と3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)が、 
 Y ≦-1.0X+23.0 
であることを特徴とする金属ニッケル粉末である。 
That is, the present invention provides an average particle size of a 1000nm from 10 nm, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 in the Fourier transform infrared spectrophotometer comprising an MCT detector (X) And the S / N ratio (Y) of the absorption spectrum signal from 3700 cm −1 to 3600 cm −1 is
Y ≦ −1.0X + 23.0
It is a metal nickel powder characterized by being.
 また、本発明は、前記の金属ニッケル粉末の製造方法であって、気相法または液相法によってニッケル化合物から金属ニッケル粉末を生成させ、前記金属ニッケル粉末を冷却し、静電吸着ろ過を行ってケイ素含有量を低減した純水に二酸化炭素を溶解させて炭酸水溶液を調製し、前記炭酸水溶液によって前記金属ニッケル粉末を処理することを特徴とする金属ニッケル粉末の製造方法である。  The present invention is also a method for producing the metallic nickel powder, wherein the metallic nickel powder is produced from a nickel compound by a vapor phase method or a liquid phase method, the metallic nickel powder is cooled, and electrostatic adsorption filtration is performed. Then, carbon dioxide is dissolved in pure water having a reduced silicon content to prepare a carbonic acid aqueous solution, and the metal nickel powder is treated with the carbonic acid aqueous solution.
 本発明に関わる金属ニッケル粉末は、金属ニッケル粉末が凝集して形成される粗大粒子を殆ど含まない金属ニッケル粉末であり、積層セラミックスコンデンサの内部電極用として好適である。  The metal nickel powder according to the present invention is a metal nickel powder containing almost no coarse particles formed by aggregation of the metal nickel powder, and is suitable for use as an internal electrode of a multilayer ceramic capacitor.
本発明の実施例1の金属ニッケル粉末のFT-IR吸収スペクトルを示した図である。It is the figure which showed the FT-IR absorption spectrum of the metallic nickel powder of Example 1 of this invention. 本発明の比較例1の金属ニッケル粉末のFT-IR吸収スペクトルを示した図である。It is the figure which showed the FT-IR absorption spectrum of the metallic nickel powder of the comparative example 1 of this invention. 本発明の参考例1(比較例1の金属ニッケル粉末)のFT-IR吸収スペクトルを示した図である。It is the figure which showed the FT-IR absorption spectrum of the reference example 1 (metallic nickel powder of the comparative example 1) of this invention. 本発明の実施例1~実施例7、比較例1~比較例3の結果を示した図である。FIG. 6 is a diagram showing the results of Examples 1 to 7 and Comparative Examples 1 to 3 of the present invention. 本発明の実施例、比較例に用いた金属ニッケル粉末の製造装置を示した図である。It is the figure which showed the manufacturing apparatus of the metal nickel powder used for the Example and comparative example of this invention.
 本発明の金属ニッケル粉末は、平均粒径が10nmから1000nmであって、MCT検出器を具備するフーリエ変換赤外分光光度計における1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)と3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)が、 
 Y ≦-1.0×X+23.0 
であることを特徴とする金属ニッケル粉末である。好ましくは、
 Y ≦-1.0×X+16.7
であることを特徴とする金属ニッケル粉末である。この範囲とすることで、凝集して形成される粗大粒子を殆ど含まない分散性の良好な金属ニッケル粉末を得ることができる。 
Metallic nickel powder of the present invention, an average particle diameter of a 1000nm from 10 nm, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 in the Fourier transform infrared spectrophotometer comprising an MCT detector ( X) and the S / N ratio (Y) of the absorption spectrum signals from 3700 cm −1 to 3600 cm −1 are
Y ≦ −1.0 × X + 23.0
It is a metal nickel powder characterized by being. Preferably,
Y ≦ −1.0 × X + 16.7
It is a metal nickel powder characterized by being. By setting it as this range, it is possible to obtain a metallic nickel powder with good dispersibility that hardly contains coarse particles formed by aggregation.
 本発明の金属ニッケル粉末の平均粒径は、10nmから1μmが好ましく、10nmから0.4μmの範囲の微粒子であればさらに好適である。この範囲とすることで、導電ペーストに用いるのに好適である。なお、本発明の金属ニッケル粉末の粒径は、各粒子を包み込む最小円の直径である。  The average particle diameter of the metallic nickel powder of the present invention is preferably 10 nm to 1 μm, and more preferably fine particles in the range of 10 nm to 0.4 μm. By setting it as this range, it is suitable for using for an electrically conductive paste. The particle diameter of the metallic nickel powder of the present invention is the diameter of the smallest circle that encloses each particle.
 本発明の金属ニッケル粉末のフーリエ変換赤外分光光度計による赤外吸収スペクトル分析における1200cm-1~900cm-1の吸収スペクトルは、Si-O-Si(鎖状)、(Si-O-Si)(環状)、(Si-O-Si)(環状)、(Si-O-Si)(環状)、SiO 2-(珪酸塩)のSi-O-Siの骨格振動に帰属されるピークである。(文献参照:「Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts(4-Volume set)」,「N.B.Colthup etal.,Introduction to Infrared and Raman Spectroscopy(Third Edition)」,「K.Nakamoto,Infrared and Raman Spectra of Inorganic and Coordination Compounds(FOURTH EDITION)」、「堀口博 著 外吸光図説総覧 三共出版社」,「有機化合物への吸収スペクトルの応用 東京化学同人」,「機器分析のてびき 化学同人社」)。また、3700cm-1から3600cm-1の吸収スペクトルは、Ni(OH)に帰属されるピークである。(文献参照:特開2010-237051号公報)。  Absorption spectrum of 1200 cm -1 ~ 900 cm -1 in the infrared absorption spectrum analysis by Fourier transform infrared spectrophotometer of metallic nickel powder of the present invention, Si-O-Si (chain), (Si-O-Si ) 3 (cyclic), (Si—O—Si) 4 (cyclic), (Si—O—Si) n (cyclic), attributed to the Si—O—Si skeletal vibration of SiO 3 2− (silicate) It is a peak. (References: “Handbook of Infrared and Raman Spectra of Inorganic Compounds, and Organic Salts (4-Volume set),” N. B. Colttop et al. , Infrared and Raman Spectra of Inorganic and Coordinating Compounds (FOURTH EDITION), Hiroshi Horiguchi, Absorption Absorption Illustrated Review Sankyo Publishing Co., Ltd., “Application of Absorption Spectrum to Organic Compounds” Dojinsha "). The absorption spectrum from 3700 cm −1 to 3600 cm −1 is a peak attributed to Ni (OH) 2 . (Refer to literature: JP 2010-237051).
 本発明の金属ニッケル粉末のS/N比は以下の方法により求めたものである。1200cm-1から900cm-1の吸収スペクトルの吸光度、3700cm-1から3600cm-1の吸収スペクトルの吸光度の、吸収スペクトルが無くベースラインが歪んでいない領域の吸光度に対する比である。一般に、吸収スペクトルが無くベースラインが歪んでいない領域の吸光度は、水分および二酸化炭素に影響されない波数を選ぶことが好ましく、例えば、2200cm-1から1950cm-1の範囲の中から選定することが好ましい。吸光度は、前記の周波数範囲を50cm-1単位でピーク面積値を求め、その平均値とした。  The S / N ratio of the metallic nickel powder of the present invention is determined by the following method. Absorbance of the absorption spectrum from 1200 cm -1 900 cm -1, the absorbance of the absorption spectrum of 3600 cm -1 from 3700 cm -1, a ratio of the absorbance in the region absorption spectrum is not distorted without baseline. Generally, the absorbance of the region absorption spectrum is not distorted without baseline is preferably to choose a wave number which is not affected by moisture and carbon dioxide, for example, it is preferable to select from among the 2200 cm -1 in the range of 1950cm -1 . For the absorbance, the peak area value was determined in the above frequency range in units of 50 cm −1 and the average value was obtained.
 なお、本発明の金属ニッケル粉末に含まれるSiOH、SiO、Ni(OH)は微量であるため、フーリエ変換赤外分光光度計の検出器は高感度タイプが好ましく、MCT検出器タイプを用いる。この検出器の組成は、水銀、カドミウム、テルルからなる半導体素子からなっており、液体窒素を使用して検出器を使用して冷やすと高感度で情報が得られ、微量物質には有効である。更に、測定中の試料室の雰囲気下は多種成分のガスが入っていないことが好ましく、試料室内は乾燥雰囲気ガス下若しくは真空状態が好ましい。なお、乾燥雰囲気ガス下で測定する場合、露点は-50℃以下に保たないとOH基に由来する信号が現われ、解析に支障するため注意する必要がある。積算回数は、露点が保たれていれば128回以上であれば十分である。測定分解能は、4cm-1以下が好ましい。  Since the metallic nickel powder of the present invention contains trace amounts of SiOH, SiO n , and Ni (OH) 2 , the detector of the Fourier transform infrared spectrophotometer is preferably a high-sensitivity type, and the MCT detector type is used. . The composition of this detector consists of a semiconductor element made of mercury, cadmium, and tellurium. When liquid nitrogen is used to cool the detector, information can be obtained with high sensitivity and is effective for trace substances. . Furthermore, it is preferable that various component gases are not contained in the atmosphere of the sample chamber during measurement, and the sample chamber is preferably in a dry atmosphere gas or in a vacuum state. When measurement is performed under a dry atmosphere gas, if the dew point is not kept below −50 ° C., a signal derived from the OH group will appear and this will interfere with the analysis. If the dew point is maintained, it is sufficient that the number of integration is 128 times or more. The measurement resolution is preferably 4 cm −1 or less.
 例えば、本発明のフーリエ変換赤外分光の吸収スペクトルの強度は以下の測定条件で求めたものである。 
 機種名:型式 Nicolet 6700(サーモフィッシャーサイエンティフィック社製) 
 検出器:MCT検出器
 測定方法:拡散反射方式 
 測定条件:分解能4cm-1,積算回数256回 
 光源:赤外吸収光(IR) 
 試料室内ガス:乾燥窒素(露点:-72℃) 
 ビームスプリッタ:KBr 
 バックグランド積算回数,分解能:256回,4cm-1 
 解析法:K-M変換
For example, the intensity of the absorption spectrum of the Fourier transform infrared spectroscopy of the present invention is determined under the following measurement conditions.
Model name: Model Nicolet 6700 (Thermo Fisher Scientific)
Detector: MCT detector Measuring method: Diffuse reflection method
Measurement conditions: Resolution 4cm -1 , 256 times of integration
Light source: Infrared absorption light (IR)
Sample room gas: dry nitrogen (dew point: -72 ° C)
Beam splitter: KBr
Background integration count, resolution: 256 times, 4 cm -1
Analysis method: KM conversion
 本発明のニッケル粉末は、例えば、気相法や液相法など公知の方法から製造することができる。特に塩化ニッケルガスと還元性ガスとを接触させることによりニッケル粉末を生成させる気相還元法、あるいは熱分解性のニッケル化合物を噴霧して熱分解する噴霧熱分解法が、生成する金属微粉末の粒子径を容易に制御することができ、さらに球状の粒子を効率よく製造することができるという点において好ましい。また、ニッケル粉末の粒径は、10nmから1μmのものが一般的である。  The nickel powder of the present invention can be produced by a known method such as a gas phase method or a liquid phase method. In particular, the vapor phase reduction method in which nickel powder is produced by bringing nickel chloride gas into contact with a reducing gas, or the spray pyrolysis method in which a thermally decomposable nickel compound is sprayed to thermally decompose the fine metal powder produced. It is preferable in that the particle diameter can be easily controlled, and spherical particles can be efficiently produced. The particle diameter of nickel powder is generally 10 nm to 1 μm.
 ニッケル粉末気相還元法においては、気化させた塩化ニッケルのガスと水素等の還元性ガスとを反応させるが、固体の塩化ニッケルを加熱し蒸発させて塩化ニッケルガスを生成させてもよい。しかしながら、塩化ニッケルの酸化または吸湿防止、およびエネルギー効率を考慮すると、金属ニッケルに塩素ガスを接触させて塩化ニッケルガスを連続的に発生させ、この塩化ニッケルガスを還元工程に直接供給し、次いで還元性ガスと接触させ塩化ニッケルガスを連続的に還元してニッケル微粉末を製造する方法が有利である。  In the nickel powder vapor phase reduction method, vaporized nickel chloride gas is reacted with a reducing gas such as hydrogen, but solid nickel chloride may be heated and evaporated to generate nickel chloride gas. However, in consideration of nickel chloride oxidation or moisture absorption prevention and energy efficiency, the metal chloride is brought into contact with chlorine gas to continuously generate nickel chloride gas, and this nickel chloride gas is directly supplied to the reduction process and then reduced. It is advantageous to produce nickel fine powder by contacting nickel chloride gas and continuously reducing nickel chloride gas.
 気相還元反応によるニッケル粉末の製造過程では、塩化ニッケルガスと還元性ガスとが接触した瞬間にニッケル原子が生成し、ニッケル原子同士が衝突・凝集することによって超微粒子が生成し、成長する。そして、還元工程での塩化ニッケルガスの分圧や温度等の条件によって、生成するニッケル微粉末の粒径が決まる。上記のようなニッケル粉末の製造方法によれば、塩素ガスの供給量に応じた量の塩化ニッケルガスが発生するから、塩素ガスの供給量を制御することで還元工程へ供給する塩化ニッケルガスの量を調整することができ、これによって生成するニッケル微粉末の粒径を制御することができる。  In the production process of nickel powder by vapor phase reduction reaction, nickel atoms are generated at the moment when the nickel chloride gas and the reducing gas come into contact with each other, and the nickel atoms collide and agglomerate to generate ultrafine particles and grow. And the particle diameter of the nickel fine powder to produce | generate is determined by conditions, such as partial pressure and temperature of nickel chloride gas in a reduction process. According to the nickel powder manufacturing method as described above, an amount of nickel chloride gas corresponding to the supply amount of chlorine gas is generated. Therefore, the amount of nickel chloride gas supplied to the reduction process is controlled by controlling the supply amount of chlorine gas. The amount can be adjusted, and the particle diameter of the nickel fine powder produced | generated by this can be controlled.
 さらに、金属塩化物ガスは、塩素ガスと金属との反応で発生するから、固体金属塩化物の加熱蒸発により金属塩化物ガスを発生させる方法とは異なり、キャリアガスの使用を少なくすることができるばかりでなく、製造条件によっては使用しないことも可能である。したがって、気相還元反応の方が、キャリアガスの使用量低減とそれに伴う加熱エネルギーの低減により、製造コストの削減を図ることができる。  Furthermore, since metal chloride gas is generated by the reaction of chlorine gas and metal, unlike the method of generating metal chloride gas by heating and evaporation of solid metal chloride, the use of carrier gas can be reduced. Not only can it be used depending on the manufacturing conditions. Therefore, in the gas phase reduction reaction, the production cost can be reduced by reducing the amount of carrier gas used and the accompanying reduction in heating energy.
 また、塩化工程で発生した塩化ニッケルガスに不活性ガスを混合することにより、還元工程における塩化ニッケルガスの分圧を制御することができる。このように、塩素ガスの供給量もしくは還元工程に供給する塩化ニッケルガスの分圧を制御することにより、ニッケル粉末の粒径を制御することができ、粒径のばらつきを抑えることができるとともに、粒径を任意に設定することができる。  Moreover, the partial pressure of nickel chloride gas in the reduction process can be controlled by mixing an inert gas with the nickel chloride gas generated in the chlorination process. Thus, by controlling the supply amount of chlorine gas or the partial pressure of nickel chloride gas supplied to the reduction process, the particle size of nickel powder can be controlled, and variation in particle size can be suppressed, The particle size can be arbitrarily set.
 上記のような気相還元法によるニッケル粉末の製造条件は、平均粒径1μm以下になるように任意に設定するが、例えば、出発原料である金属ニッケルの粒径は約5~20mmの粒状、塊状、板状等が好ましく、また、その純度は慨して99.5%以上が好ましい。この金属ニッケルを、まず塩素ガスと反応させて塩化ニッケルガスを生成させるが、その際の温度は、反応を十分進めるために800℃以上とし、かつニッケルの融点である1453℃以下とする。反応速度と塩化炉の耐久性を考慮すると、実用的には900℃~1100℃の範囲が好ましい。  The production conditions of the nickel powder by the gas phase reduction method as described above are arbitrarily set so that the average particle diameter is 1 μm or less. For example, the particle diameter of the metallic nickel as the starting material is about 5 to 20 mm, A lump shape, a plate shape, and the like are preferable, and the purity is preferably 99.5% or more. The nickel metal is first reacted with chlorine gas to produce nickel chloride gas, and the temperature at that time is set to 800 ° C. or higher and 1453 ° C. or lower, which is the melting point of nickel, to sufficiently advance the reaction. Considering the reaction rate and the durability of the chlorination furnace, the range of 900 ° C. to 1100 ° C. is preferable for practical use.
 次いで、この塩化ニッケルガスを還元工程に直接供給し、水素ガス等の還元性ガスと接触反応させるが、窒素やアルゴン等の不活性ガスを、塩化ニッケルガスに対し1~30モル%混合し、この混合ガスを還元工程に導入してもよい。また、塩化ニッケルガスとともに、または独立に塩素ガスを還元工程に供給することもできる。このように塩素ガスを還元工程に供給することによって、塩化ニッケルガスの分圧が調整でき、生成するニッケル粉末の粒径を制御することが可能となる。還元反応の温度は反応完結に十分な温度以上であればよいが、固体状のニッケル粉末を生成する方が、取扱いが容易であるので、ニッケルの融点以下が好ましく、経済性を考慮すると900℃~1100℃が実用的である。  Next, this nickel chloride gas is directly supplied to the reduction step and brought into contact with a reducing gas such as hydrogen gas. An inert gas such as nitrogen or argon is mixed with 1 to 30 mol% of the nickel chloride gas, This mixed gas may be introduced into the reduction step. Moreover, chlorine gas can also be supplied to a reduction process with nickel chloride gas or independently. By supplying chlorine gas to the reduction process in this way, the partial pressure of nickel chloride gas can be adjusted, and the particle size of the nickel powder to be produced can be controlled. The temperature of the reduction reaction may be at least a temperature sufficient for completion of the reaction. However, since it is easier to handle the production of solid nickel powder, it is preferably below the melting point of nickel. ˜1100 ° C. is practical.
 このように還元反応を行なったニッケル粉末を生成させたら、次は生成ニッケル粉末を冷却する。冷却の際、生成したニッケルの一次粒子同士の凝集による二次粒子の生成を防止して所望の粒径のニッケル粉末を得るために、窒素ガス等の不活性ガスを吹き込むことにより、還元反応を終えた1000℃付近のガス流を400~800℃程度までに急速冷却させることが望ましい。その後、生成したニッケル粉末を、例えばバグフィルター等により分離、回収する。  </ RTI> Once the nickel powder that has undergone the reduction reaction is produced, the produced nickel powder is then cooled. During cooling, in order to prevent the formation of secondary particles due to aggregation of primary particles of the generated nickel and obtain nickel powder with a desired particle size, a reduction reaction is performed by blowing an inert gas such as nitrogen gas. It is desirable to rapidly cool the finished gas flow around 1000 ° C. to about 400 to 800 ° C. Thereafter, the produced nickel powder is separated and collected by, for example, a bag filter or the like.
 また、噴霧熱分解法によるニッケル粉末の製造方法では、熱分解性のニッケル化合物を原料とするが、具体的には、硝酸塩、硫酸塩、オキシ硝酸塩、オキシ硫酸塩、塩化物、アンモニウム錯体、リン酸塩、カルボン酸塩、アルコキシ化合物などの1種または2種以上が含まれる。このニッケル化合物を含む溶液を噴霧して、微細な液滴を作るが、このときの溶媒としては、水、アルコール、アセトン、エーテル等が用いられる。また、噴霧の方法は、超音波または二重ジェットノズル等の噴霧方法により行う。このようにして微細な液滴とし、高温で加熱して金属化合物を熱分解し、ニッケル粉末を生成させる。このときの加熱温度は、使用される特定のニッケル化合物が熱分解する温度以上であり、好ましくは金属の融点付近である。  In addition, in the method for producing nickel powder by the spray pyrolysis method, a heat decomposable nickel compound is used as a raw material. Specifically, nitrate, sulfate, oxynitrate, oxysulfate, chloride, ammonium complex, phosphorus 1 type (s) or 2 or more types, such as an acid salt, a carboxylate salt, an alkoxy compound, are contained. The solution containing the nickel compound is sprayed to form fine droplets. As the solvent at this time, water, alcohol, acetone, ether or the like is used. The spraying method is performed by a spraying method such as ultrasonic or double jet nozzle. In this way, fine droplets are formed and heated at a high temperature to thermally decompose the metal compound to produce nickel powder. The heating temperature at this time is equal to or higher than the temperature at which the specific nickel compound used is thermally decomposed, and is preferably near the melting point of the metal.
 液相法による金属微粉末の製造方法では、硫酸ニッケル、塩化ニッケルあるいはニッケル錯体を含むニッケル水溶液を、水酸化ナトリウムなどのアルカリ金属水酸化物中に添加するなどして接触させニッケル水酸化物を生成させ、次いでヒドラジンなどの還元剤でニッケル水酸化物を還元し金属ニッケル粉末を得る。このようにして生成した金属ニッケル粉末は、均一な粒子を得るために必要に応じて解砕処理を行う。  In the method of producing fine metal powder by the liquid phase method, nickel hydroxide containing nickel sulfate, nickel chloride or nickel complex is contacted by adding it to an alkali metal hydroxide such as sodium hydroxide. Next, the nickel hydroxide is reduced with a reducing agent such as hydrazine to obtain metallic nickel powder. The nickel metal powder thus produced is crushed as necessary to obtain uniform particles.
 例えば、以上の方法で得られたニッケル粉末を、pH、温度を制御した特定の条件で炭酸水溶液中に懸濁させて処理を行う。炭酸水溶液で処理することにより、ニッケル表面に付着している塩素などの不純物が十分に除去されるとともに、ニッケル粉末の表面に存在する水酸化ニッケルなどの水酸化物や粒子同士の摩擦などにより表面から離間して形成された微粒子が除去されるため、表面に均一な酸化ニッケルの被膜を形成することができる。例えば、炭酸水溶液で洗浄を行う方法、あるいは純水洗浄後の水スラリー中に炭酸ガスを吹き込むか、あるいは炭酸水溶液を添加して処理することもできる。  For example, the nickel powder obtained by the above method is treated by suspending it in an aqueous carbonate solution under specific conditions with controlled pH and temperature. By treating with an aqueous carbonate solution, impurities such as chlorine adhering to the nickel surface are sufficiently removed, and the surface of the nickel powder is caused by hydroxide such as nickel hydroxide or friction between particles. Since the fine particles formed apart from the surface are removed, a uniform nickel oxide film can be formed on the surface. For example, a method of cleaning with a carbonic acid aqueous solution, or carbon dioxide gas is blown into a water slurry after pure water cleaning, or a carbonic acid aqueous solution is added for treatment.
 この炭酸水溶液での処理では、ケイ素含有量15wtppm以下の炭酸水溶液またはケイ素含有量15wtppm以下の純水に二酸化炭素を溶解させたものを用い、処理条件は温度0℃以上30℃未満、pH4以上6未満である。このような条件での処理により、乾燥後のニッケル粉末表面に均一な酸化皮膜が形成され、また、ケイ酸のニッケル粉への付着が抑制されるため、粗大粒の発生を抑制することができる。  In the treatment with the carbonic acid aqueous solution, a carbonic acid aqueous solution having a silicon content of 15 wtppm or less or a solution in which carbon dioxide is dissolved in pure water having a silicon content of 15 wtppm or less is used. Is less than. By the treatment under such conditions, a uniform oxide film is formed on the surface of the nickel powder after drying, and the adhesion of silicic acid to the nickel powder is suppressed, so that the generation of coarse particles can be suppressed. .
 なお、純水からのケイ素除去には、RO逆浸透膜、イオン交換器および静電吸着機能を具備したろ過器を用いる。今まではRO逆浸透膜とイオン交換器を用いてろ過するのが一般的であったが、RO逆浸透膜とイオン交換器で取れきれないケイ酸についての対応が困難であった。しかし、本発明者らが鋭意の研究を重ねた結果、RO逆浸透膜とイオン交換器で取りきれないケイ酸はコロイダルシリカ等からなるものであることが判った。このコロイダルシリカは、表面のゼータ電位が(-)に荷電しているため、表面のゼータ電位が(+)に荷電したろ材を具備したろ過器を用いることで低減できることが判った。このろ過器の材質は、親水性のナイロン、オレフィンポリマーまたはポリエステル等各種適用できるが、表面のゼータ電位がプラス(+)である材質であれば特に制限はない。純水中に含まれるケイ酸は、通常の純水製造に使用される逆浸透膜やイオン交換器では十分に除去することができない。ケイ素含有量15wtppm以下の純水や炭酸水溶液は、表面のゼータ電位が(+)に帯電したフィルターを有するろ過器で更に処理することにより得ることができる。例えば、このようなフィルターは、商品名:多用途型タンク付ホルダーろ過板タイプ(アドバンテック東洋株式会社)や商品名:ポジダインUP(日本ポール株式会社)等として市販されている。  In addition, a RO reverse osmosis membrane, an ion exchanger, and a filter equipped with an electrostatic adsorption function are used for removing silicon from pure water. Until now, it was common to filter using RO reverse osmosis membranes and ion exchangers, but it was difficult to cope with silicic acid that could not be removed by RO reverse osmosis membranes and ion exchangers. However, as a result of intensive studies by the present inventors, it was found that the silicic acid that cannot be removed by the RO reverse osmosis membrane and the ion exchanger is composed of colloidal silica or the like. Since this colloidal silica has a surface zeta potential charged to (−), it has been found that it can be reduced by using a filter equipped with a filter medium having a surface zeta potential charged to (+). Various materials such as hydrophilic nylon, olefin polymer or polyester can be applied as the material of the filter, but there is no particular limitation as long as the material has a positive (+) zeta potential on the surface. Silicic acid contained in pure water cannot be sufficiently removed by a reverse osmosis membrane or an ion exchanger used for normal pure water production. Pure water or carbonic acid aqueous solution having a silicon content of 15 wtppm or less can be obtained by further processing with a filter having a filter whose surface zeta potential is charged to (+). For example, such a filter is commercially available under the trade name: Multipurpose tank holder filter plate type (Advantech Toyo Co., Ltd.), trade name: Posodyne UP (Nippon Pole Co., Ltd.), and the like.
 このようにしてニッケル粉末を炭酸処理した後、そのニッケル粉末を乾燥する。乾燥方法は公知の方法を採用することができ、具体的には高温のガスと接触させ乾燥する気流乾燥、加熱乾燥および真空乾燥などが挙げられる。これらのうち、気流乾燥は粒子同士の接触による酸化皮膜の摩耗がないため、好ましい方法である。また、ニッケル粉末の表面に均質な酸化皮膜を形成させるためには、短時間で水分を除去して乾燥することが望ましい。  Thus, after the nickel powder is carbonized, the nickel powder is dried. As the drying method, a known method can be adopted, and specific examples include air-flow drying, heating drying, and vacuum drying in which the drying is performed by contacting with a high-temperature gas. Of these, air drying is a preferred method because there is no wear of the oxide film due to contact between the particles. In order to form a uniform oxide film on the surface of the nickel powder, it is desirable to remove moisture in a short time and dry it.
 この乾燥したニッケル粉末は、さらに酸素分圧を制御した環境下で熱処理を行い、粉末表面のNi(OH)量を制御する。例えば、流動攪拌機などを用い、攪拌を行いながら、酸素分圧を制御した雰囲気下で、熱処理を行う。熱処理温度、熱処理時間は、ニッケル粉末のサイズ、酸化被膜の厚さに応じて決定され、このときの熱処理温度としては、通常200~400℃であり、好ましくは200~300℃、より好ましくは200~250℃である。また、熱処理時間は、通常1分~10時間である。  The dried nickel powder is further heat-treated in an environment in which the oxygen partial pressure is controlled to control the amount of Ni (OH) 2 on the powder surface. For example, the heat treatment is performed in an atmosphere in which the oxygen partial pressure is controlled while stirring using a fluid stirrer or the like. The heat treatment temperature and heat treatment time are determined according to the size of the nickel powder and the thickness of the oxide film. The heat treatment temperature at this time is usually 200 to 400 ° C., preferably 200 to 300 ° C., more preferably 200 ~ 250 ° C. The heat treatment time is usually 1 minute to 10 hours.
 このようにして得られたニッケル粉は必要に応じ、再度、水などの溶媒に分散する。その後、フィルターを通過させることにより、粗粉や連結粒の除去を行う。ニッケル粉の分散性が良好なため、効率よく粗粉や連結粒の除去を行うことができる。フィルトレーションには、公知の方法を用いることができ、フィルターは、有機高分子製(ナイロン、ポリプロピレン、四フッ化エチレン樹脂、セルロース、メラミン、フェノール樹脂、アクリルなど)、金属製、無機化合物製のフィルターを用いることができる。なお、フィルターの効率を上げるため、フィルターを通過させる前に、その他の分級手段、例えば遠心力を用いた分級手段(液体サイクロン)などを行ってもよい。  The nickel powder thus obtained is dispersed again in a solvent such as water as necessary. Then, coarse powder and connected grains are removed by passing through a filter. Since the dispersibility of nickel powder is good, it is possible to efficiently remove coarse powder and connected grains. A known method can be used for the filtration, and the filter is made of organic polymer (nylon, polypropylene, tetrafluoroethylene resin, cellulose, melamine, phenol resin, acrylic, etc.), metal, inorganic compound These filters can be used. In order to increase the efficiency of the filter, other classification means such as classification means using a centrifugal force (liquid cyclone) may be performed before passing through the filter.
 次に、実施例および比較例を挙げて本発明を更に具体的に説明するが、本発明は、以下の例により何ら制限されるものではない。  Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
 本実施例における平均粒径、FT-IR測定、ケイ素濃度、凝集は以下の方法により評価を行った。  The average particle diameter, FT-IR measurement, silicon concentration, and aggregation in this example were evaluated by the following methods.
a.平均粒径の評価 
 走査電子顕微鏡によりニッケル粉末の写真を撮影し、その写真から粒子200個の粒径を測定してその平均値を算出した。なお、粒径は粒子を包み込む最小円の直径とした。 
a. Evaluation of average particle size
A photograph of the nickel powder was taken with a scanning electron microscope, the particle diameter of 200 particles was measured from the photograph, and the average value was calculated. The particle diameter was the diameter of the smallest circle enclosing the particles.
b.FT-IR測定 
 以下の条件にて、FT-IR測定を行った。 
 機種名:型式 Nicolet 6700(サーモフィッシャーサイエンティフィック社製) 
 検出器:MCT検出器
 測定方法:拡散反射方式 
 測定条件:分解能4cm-1,積算回数256回 
 光源:赤外吸収光(IR) 
 試料室内ガス:乾燥窒素(露点:-72℃) 
 ビームスプリッタ:KBr 
 バックグランド積算回数:256回 
 分解能:4cm-1 
 解析:K-M変換 
 測定サンプルは以下のように調製した。金属ニッケル粉末を、口径7mmφの底付円柱サンプル治具に詰めた後、金属ニッケル粉末を円柱サンプル治具上端部で水平に擦り切った。この円柱サンプル治具を、サンプルを溢さないようにFT-IR装置にセットした。 
 S/N比は、1200cm-1から900cm-1の吸収スペクトルの吸光度または3700cm-1から3600cm-1の吸収スペクトルの吸光度の、吸収スペクトルが無くベースラインが歪んでいない領域の吸光度(2200cm-1から1950cm-1)に対する比とした。なお、吸光度は、前記の周波数範囲を50cm-1単位でピーク面積値を求め、その平均値とした。 
b. FT-IR measurement
FT-IR measurement was performed under the following conditions.
Model name: Model Nicolet 6700 (Thermo Fisher Scientific)
Detector: MCT detector Measuring method: Diffuse reflection method
Measurement conditions: Resolution 4cm -1 , 256 times of integration
Light source: Infrared absorption light (IR)
Sample room gas: dry nitrogen (dew point: -72 ° C)
Beam splitter: KBr
Background integration count: 256 times
Resolution: 4cm -1
Analysis: KM conversion
The measurement sample was prepared as follows. After the metallic nickel powder was packed in a bottomed cylindrical sample jig having a diameter of 7 mmφ, the metallic nickel powder was scraped horizontally at the upper end of the cylindrical sample jig. This cylindrical sample jig was set in an FT-IR apparatus so as not to overflow the sample.
S / N ratio, the absorbance of the absorption spectrum from 1200 cm -1 900 cm -1 or 3700 cm -1 from the absorbance of the absorption spectrum of 3600 cm -1, the absorbance of the region absorption spectrum is not distorted without baseline (2200 cm -1 To 1950 cm −1 ). The absorbance was obtained by calculating the peak area value in the above frequency range in units of 50 cm −1 and taking the average value.
c.ケイ素濃度測定 
 イオンクロマトグラフィーにより、純水、炭酸水溶液中のケイ素含有量を測定した。 
 機種名:型式IC-2010(東ソー社製)(検出器:CM検出器) 
 分析モード:CM;Range(5000μS-1/2)ノンサプレッサーモード 
 カラム:TSKgel SuperIC-AP 4.6mmID × 7.5cm 
 溶離液:2mMのKOH 
 流速:0.8mL/min 
 カラム温度:40℃ 
c. Silicon concentration measurement
The silicon content in pure water and aqueous carbonate solution was measured by ion chromatography.
Model name: Model IC-2010 (manufactured by Tosoh Corporation) (detector: CM detector)
Analysis mode: CM; Range (5000 μS-1 / 2) non-suppressor mode
Column: TSKgel SuperIC-AP 4.6 mm ID × 7.5 cm
Eluent: 2 mM KOH
Flow rate: 0.8mL / min
Column temperature: 40 ° C
d.凝集の評価 
 金属ニッケル粉末100gを純水1900gに投入し、5wt%の金属ニッケル粉粉末スラリーを作成する。次いで、目開き1μmのフィルターにより吸引ろ過を行う。フィルター上に残った金属ニッケル粉末を不活性ガス雰囲気下で120℃、30分で乾燥、その重量を計測し、その通過率((100(g)-フィルター上のニッケル粉の重量(g))/100(g))により凝集を評価した。通過率が90%以上を優良(表1、図4では「○」で示す)、80%以上を良(表1、図4では「△」で示す)、80%未満を不合格(表1、図4では「×」で示す)とした。 
d. Aggregation assessment
100 g of metallic nickel powder is put into 1900 g of pure water to prepare a 5 wt% metallic nickel powder powder slurry. Next, suction filtration is performed with a filter having an opening of 1 μm. The metal nickel powder remaining on the filter was dried in an inert gas atmosphere at 120 ° C. for 30 minutes, the weight was measured, and the passage rate ((100 (g) −weight of nickel powder on the filter (g)) / 100 (g)) was evaluated for aggregation. A pass rate of 90% or more is excellent (indicated by “◯” in Table 1 and FIG. 4), 80% or more is excellent (indicated by “△” in Table 1 and FIG. 4), and less than 80% is rejected (Table 1). In FIG. 4, it is indicated by “×”.
<実施例1> (Si最小、Ni(OH)最小) 
 特許第4286220号公報の実施例1に記載する方法と同様な方法で金属ニッケル粉末を作製した。なお、金属ニッケル粉末の製造に先立ち、下記のケイ素濃度が異なる純水を用意した。 
 純水A:ケイ素濃度 65wtppm 
 純水B:純水Aを表面のゼータ電位が(+)に帯電したフィルターを有するろ過装置(多用途型タンク付ホルダー
ろ過板タイプ(アドバンテック東洋株式会社製))で処理した。ケイ素濃度は3wtppmである。 
<Example 1> (Si minimum, Ni (OH) minimum)
A metallic nickel powder was produced by the same method as that described in Example 1 of Japanese Patent No. 4286220. Prior to the production of metallic nickel powder, the following pure waters having different silicon concentrations were prepared.
Pure water A: silicon concentration 65wtppm
Pure water B: Pure water A was treated with a filtration device having a filter whose surface zeta potential was charged to (+) (a multi-purpose tank holder filter plate type (manufactured by Advantech Toyo Co., Ltd.)). The silicon concentration is 3 wtppm.
 図5に示す金属ニッケル粉末の製造装置の塩化炉1に、平均粒径5mmの金属ニッケルMを充填し、加熱手段11で炉内雰囲気温度を1100℃とした。次いで、ノズル12から塩化炉1内に塩素ガスを供給し、金属ニッケルショットMを塩化して塩化ニッケルガスを発生させた。この後、ノズル13から供給した窒素ガスで希釈、混合した。そして、塩化ニッケルガスと窒素ガスとの混合ガスを、加熱手段21で1000℃の炉内雰囲気温度とした還元炉2内に、ノズル22から導入した。  The metal nickel M having an average particle diameter of 5 mm was filled in the chlorination furnace 1 of the apparatus for producing metal nickel powder shown in FIG. Next, chlorine gas was supplied from the nozzle 12 into the chlorination furnace 1, and the nickel metal shot M was salified to generate nickel chloride gas. Then, it diluted with the nitrogen gas supplied from the nozzle 13 and mixed. Then, a mixed gas of nickel chloride gas and nitrogen gas was introduced from the nozzle 22 into the reduction furnace 2 having a furnace atmosphere temperature of 1000 ° C. by the heating means 21.
 これと同時に、ノズル23から還元炉2内に水素ガスを供給して塩化ニッケルガスを還元し、ニッケル粉末Pを得た。さらに、還元工程にて生成した金属ニッケル粉末Pに、ノズル24から供給した窒素ガスを接触させ、金属ニッケル粉末Pを冷却した。金属ニッケル粉末Pの一部を採取し、水洗後、平均粒径を測定したところ、金属ニッケル粉末Pの平均粒径は0.3μmであった。  At the same time, hydrogen gas was supplied into the reduction furnace 2 from the nozzle 23 to reduce the nickel chloride gas, and nickel powder P was obtained. Furthermore, the nitrogen gas supplied from the nozzle 24 was brought into contact with the metallic nickel powder P produced in the reduction step, and the metallic nickel powder P was cooled. A part of the metallic nickel powder P was collected, washed with water, and the average particle size was measured. The average particle size of the metallic nickel powder P was 0.3 μm.
 次いで、窒素ガス-塩酸蒸気-金属ニッケル粉末Pからなる混合ガスを、純水Bを充填した洗浄槽に導き、金属ニッケル粉末を分離回収し、純水Bで洗浄した(純水洗浄)。  Next, a mixed gas composed of nitrogen gas-hydrochloric acid vapor-metallic nickel powder P was introduced into a washing tank filled with pure water B, and the metallic nickel powder was separated and recovered and washed with pure water B (pure water washing).
 次いで、金属ニッケル粉末スラリー中に炭酸ガスを吹き込んでpH4.0とし、炭酸水溶液として25℃で60分処理を行った(炭酸水溶液処理)。  Next, carbon dioxide gas was blown into the metal nickel powder slurry to adjust the pH to 4.0, and a carbonic acid aqueous solution was treated at 25 ° C. for 60 minutes (carbonic acid aqueous solution treatment).
 炭酸水溶液で処理した金属ニッケル粉末を乾燥した後、大気中において200℃で30分処理を行い(加熱処理)、金属ニッケル粉末を得た。金属ニッケル粉末の平均粒径は0.3μmであった。  After drying the nickel metal powder treated with the carbonic acid aqueous solution, it was treated in the atmosphere at 200 ° C. for 30 minutes (heat treatment) to obtain metallic nickel powder. The average particle diameter of the metallic nickel powder was 0.3 μm.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。また、FT-IRの結果を図1に示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown. Moreover, the result of FT-IR is shown in FIG.
<実施例2> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度5wtppmとした純水を用い、更に乾燥後の加熱処理を200℃で30分処理に代えて、250℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 2>
Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 5 wtppm was used. Further, the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes, and a treatment at 250 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例3> 
 乾燥後の加熱処理を200℃で30分処理に代えて、150℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 3>
A nickel metal powder was obtained in the same manner as in Example 1 except that the heat treatment after drying was changed to treatment at 200 ° C. for 30 minutes and treatment at 150 ° C. for 30 minutes. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例4> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度14wtppmとした純水を用いた以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 4>
A nickel metal powder was obtained in the same manner as in Example 1 except that pure water having a silicon concentration of 14 wtppm was used instead of pure water B having a silicon concentration of 3 wtppm. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例5> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度6wtppmとした純水を用い、更に乾燥後の加熱処理を200℃で30分処理に代えて、150℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 5>
Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 6 wtppm was used. Further, the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes, and a treatment at 150 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例6> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度5ppmとした純水を用い、乾燥後の加熱処理を200℃で30分処理に代えて、150℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。 
<Example 6>
Implemented except that pure water with a silicon concentration of 5 ppm was used instead of pure water B with a silicon concentration of 3 wtppm, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes and a treatment at 150 ° C. for 30 minutes. In the same manner as in Example 1, metallic nickel powder was obtained.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例7> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度4wtppmとした純水を用い、更に乾燥後の加熱処理を200℃で30分処理に代えて、150℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 7>
Instead of pure water B having a silicon concentration of 3 wtppm, pure water having a silicon concentration of 4 wtppm was used, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes, and a treatment at 150 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例8> 
 ケイ素濃度3wtppmとした純水に代えて、ケイ素濃度7wtppmとした純水を用いた以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 8>
A nickel metal powder was obtained in the same manner as in Example 1 except that pure water having a silicon concentration of 7 wtppm was used instead of pure water having a silicon concentration of 3 wtppm. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例9> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度14wtppmとした純水を用い、更に乾燥後の加熱処理を200℃で30分処理に代えて、250℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Example 9>
Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 14 wtppm was used, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes and a treatment at 250 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<比較例1> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度45wtppmとした純水Aを用い、更に乾燥後の加熱処理を200℃で30分処理に代えて、150℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Comparative Example 1>
Instead of pure water B with a silicon concentration of 3 wtppm, pure water A with a silicon concentration of 45 wtppm was used, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes and a treatment at 150 ° C. for 30 minutes. In the same manner as in Example 1, metallic nickel powder was obtained. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<比較例2> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度49wtppmとした純水を用いた以外は、実施例1と同様にして金属ニッケル粉末を得た。なお、純水のケイ素濃度は、純水Aと純水Bを混合することにより調製した。 
<Comparative example 2>
A nickel metal powder was obtained in the same manner as in Example 1 except that pure water having a silicon concentration of 49 wtppm was used instead of pure water B having a silicon concentration of 3 wtppm. The silicon concentration of pure water was prepared by mixing pure water A and pure water B.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<比較例3> 
 ケイ素濃度3wtppmとした純水Bに代えて、ケイ素濃度65wtppmとした純水を用い、更に乾燥後の加熱処理を200℃で30分処理に代えて、250℃で30分処理とした以外は、実施例1と同様にして金属ニッケル粉末を得た。 
<Comparative Example 3>
Instead of pure water B with a silicon concentration of 3 wtppm, pure water with a silicon concentration of 65 wtppm was used, and the heat treatment after drying was replaced with a treatment at 200 ° C. for 30 minutes and a treatment at 250 ° C. for 30 minutes, In the same manner as in Example 1, metallic nickel powder was obtained.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<実施例10> 
 ノズル13からの窒素ガスの希釈量を増加させること以外は、実施例1と同様に金属ニッケル粉末Qを作製した。金属ニッケル粉末Qの一部を採取し、水洗後、平均粒径を測定したところ、金属ニッケル粉末Qの平均粒径は0.15μmであった。この金属ニッケル粉末Qを、実施例1と同様に純水洗浄、炭酸水溶液処理、加熱処理を行った。 
<Example 10>
A metallic nickel powder Q was produced in the same manner as in Example 1 except that the dilution amount of nitrogen gas from the nozzle 13 was increased. A part of the metallic nickel powder Q was collected, washed with water, and the average particle size was measured. As a result, the average particle size of the metallic nickel powder Q was 0.15 μm. This metallic nickel powder Q was subjected to pure water cleaning, carbonic acid aqueous solution treatment, and heat treatment in the same manner as in Example 1.
 表1に、金属ニッケル粉末の1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)、3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)、凝集の評価結果を示す。  Table 1, S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 of the metallic nickel powder (X), S / N ratio of the absorption spectrum signal 3600 cm -1 from 3700cm -1 (Y), the aggregation An evaluation result is shown.
<参考例1> 
 比較例1の金属ニッケル粉末を、TGS検出器を有する以下のFT-IR装置(機種名:型式Nicolet6700(サーモフィッシャーサイエンティフィック社製))で評価した結果を図3に示す。 
<Reference Example 1>
FIG. 3 shows the results of evaluating the metallic nickel powder of Comparative Example 1 with the following FT-IR apparatus (model name: model Nicolet 6700 (manufactured by Thermo Fisher Scientific)) having a TGS detector.
 実施例1~実施例9、比較例1~比較例3の結果を図4に示す。図4より、フーリエ変換赤外分光光度計における1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)と3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)が、Y ≦-1.0×X+23.0を満たす金属ニッケル粉末が、凝集が無く良好な分散性を示すことがわかる。特に、Y ≦ ―1.0×X+16.7を満たす金属ニッケル粉末が、より優れた分散性を示すことがわかる。  The results of Examples 1 to 9 and Comparative Examples 1 to 3 are shown in FIG. From FIG. 4, the S / N ratio of the absorption spectrum signals 900 cm -1 from 1200 cm -1 in the Fourier transform infrared spectrophotometer (X) and S / N ratio of the absorption spectrum signal from 3700cm -1 3600cm -1 (Y However, it can be seen that the metallic nickel powder satisfying Y ≦ −1.0 × X + 23.0 exhibits good dispersibility without aggregation. In particular, it can be seen that the metallic nickel powder satisfying Y ≦ −1.0 × X + 16.7 exhibits more excellent dispersibility.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、ニッケル粒子が凝集して形成された粗大粒子が殆ど含まれない金属ニッケル粉末が得られ、積層セラミックスコンデンサの内部電極用ニッケル粉として好適である。  According to the present invention, a metallic nickel powder containing almost no coarse particles formed by agglomeration of nickel particles is obtained, which is suitable as a nickel powder for an internal electrode of a multilayer ceramic capacitor.
1…塩化炉
11…加熱手段
12…塩素ガス供給管
13…窒素ガス供給管
2…還元炉
21…加熱手段
22…ノズル
23…水素ガス供給管
24…冷却ガス供給管
M…ニッケル原料
P…ニッケル粉末
DESCRIPTION OF SYMBOLS 1 ... Chlorination furnace 11 ... Heating means 12 ... Chlorine gas supply pipe 13 ... Nitrogen gas supply pipe 2 ... Reduction furnace 21 ... Heating means 22 ... Nozzle 23 ... Hydrogen gas supply pipe 24 ... Cooling gas supply pipe M ... Nickel raw material P ... Nickel Powder

Claims (4)

  1.  平均粒径が10nmから1000nmであって、MCT検出器を具備するフーリエ変換赤外分光光度計における1200cm-1から900cm-1の吸収スペクトル信号のS/N比(X)と3700cm-1から3600cm-1の吸収スペクトル信号のS/N比(Y)が、 
     Y ≦-1.0X+23.0 
    であることを特徴とする金属ニッケル粉末。 
    The S / N ratio (X) of the absorption spectrum signal of 1200 cm −1 to 900 cm −1 and 3700 cm −1 to 3600 cm in a Fourier transform infrared spectrophotometer having an average particle diameter of 10 nm to 1000 nm and equipped with an MCT detector S / N ratio (Y) of the absorption spectrum signal of −1 is
    Y ≦ −1.0X + 23.0
    A metallic nickel powder characterized by
  2.  前記S/N比(X)と前記S/N比(Y)が、 
     Y ≦-1.0X+16.7 
    であることを特徴とする請求項1に記載の金属ニッケル粉末。 
    The S / N ratio (X) and the S / N ratio (Y) are
    Y ≦ −1.0X + 16.7
    The metallic nickel powder according to claim 1, wherein:
  3.  請求項1または2に記載の金属ニッケル粉末の製造方法であって、
     気相法または液相法によってニッケル化合物から金属ニッケル粉末を生成させ、 
     前記金属ニッケル粉末を冷却し、 
     静電吸着ろ過を行ってケイ素含有量を低減した純水に二酸化炭素を溶解させて炭酸水溶液を調製し、 
     前記炭酸水溶液によって前記金属ニッケル粉末を処理することを特徴とする金属ニッケル粉末の製造方法。 
    A method for producing the metallic nickel powder according to claim 1 or 2,
    Metal nickel powder is produced from nickel compound by vapor phase method or liquid phase method,
    Cooling the metallic nickel powder;
    Prepare carbonic acid aqueous solution by dissolving carbon dioxide in pure water with reduced silicon content by performing electrostatic adsorption filtration,
    A method for producing metallic nickel powder, characterized in that the metallic nickel powder is treated with the aqueous carbonate solution.
  4.  前記静電吸着ろ過によって、ケイ素含有量を15wtppm以下とすることを特徴とする請求項3に記載の金属ニッケル粉末の製造方法。
     
     
    The method for producing metallic nickel powder according to claim 3, wherein the silicon content is set to 15 wtppm or less by the electrostatic adsorption filtration.

PCT/JP2013/060559 2012-04-06 2013-04-05 Nickel metal powder and process for producing nickel metal powder WO2013151172A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014509228A JP6086613B2 (en) 2012-04-06 2013-04-05 Metallic nickel powder and method for producing metallic nickel powder
KR1020147025111A KR102032009B1 (en) 2012-04-06 2013-04-05 Nickel metal powder and process for producing nickel metal powder
CN201380017821.XA CN104379279B (en) 2012-04-06 2013-04-05 Metallic nickel powder and the manufacture method of metallic nickel powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012087765 2012-04-06
JP2012-087765 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151172A1 true WO2013151172A1 (en) 2013-10-10

Family

ID=49300648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060559 WO2013151172A1 (en) 2012-04-06 2013-04-05 Nickel metal powder and process for producing nickel metal powder

Country Status (5)

Country Link
JP (1) JP6086613B2 (en)
KR (1) KR102032009B1 (en)
CN (1) CN104379279B (en)
TW (1) TWI597112B (en)
WO (1) WO2013151172A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122689A1 (en) * 2016-01-12 2017-07-20 東邦チタニウム株式会社 Nickel powder
CN110461503B (en) * 2017-03-10 2022-01-14 东邦钛株式会社 Nickel powder and nickel paste
JP6553313B2 (en) * 2017-07-05 2019-07-31 東邦チタニウム株式会社 Metal powder and method for producing the same
CN112423912B (en) * 2018-06-28 2023-05-23 东邦钛株式会社 Metal powder, method for producing same, and method for predicting sintering temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543921A (en) * 1991-08-12 1993-02-23 Murata Mfg Co Ltd Production of nickel fine powder
JP2000045002A (en) * 1998-07-27 2000-02-15 Toho Titanium Co Ltd Metal nickel powder
JP2005307229A (en) * 2004-04-16 2005-11-04 Tdk Corp Method and apparatus for producing nickel powder, and crucible for producing nickel powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214770A (en) * 1990-11-30 1992-08-05 Kao Corp Surface-treating agent for copper powder and surface-treated copper powder
US7261761B2 (en) * 2002-08-28 2007-08-28 Toho Titanium Co., Ltd. Metallic nickel powder and process for production thereof
EP2001656B1 (en) 2006-04-06 2014-10-15 3D Systems Incorporated KiT FOR THE PRODUCTION OF THREE-DIMENSIONAL OBJECTS BY USE OF ELECTROMAGNETIC RADIATION
JP2010237051A (en) * 2009-03-31 2010-10-21 Sumitomo Metal Mining Co Ltd Method for quantifying hydroxyl group on surface of metal powder
WO2011115213A1 (en) 2010-03-17 2011-09-22 新日鐵化学株式会社 Process for production of nickel nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543921A (en) * 1991-08-12 1993-02-23 Murata Mfg Co Ltd Production of nickel fine powder
JP2000045002A (en) * 1998-07-27 2000-02-15 Toho Titanium Co Ltd Metal nickel powder
JP2005307229A (en) * 2004-04-16 2005-11-04 Tdk Corp Method and apparatus for producing nickel powder, and crucible for producing nickel powder

Also Published As

Publication number Publication date
KR20150003159A (en) 2015-01-08
JP6086613B2 (en) 2017-03-01
KR102032009B1 (en) 2019-10-14
JPWO2013151172A1 (en) 2015-12-17
CN104379279B (en) 2016-12-07
TW201347877A (en) 2013-12-01
TWI597112B (en) 2017-09-01
CN104379279A (en) 2015-02-25

Similar Documents

Publication Publication Date Title
JP4740839B2 (en) Nickel powder and method for producing the same
JP6876001B2 (en) Nickel powder manufacturing method
JP6086613B2 (en) Metallic nickel powder and method for producing metallic nickel powder
JP6559118B2 (en) Nickel powder
WO2010001496A1 (en) Metal microparticle containing composition and process for production of the same
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
TW202112671A (en) Molybdenum sulfide powder and method for manufacturing same, heavy-metal adsorbent, photothermal conversion material, distillation method, oxygen reduction catalyst, and catalyst ink
WO2009032984A1 (en) Multi-element alloy powder containing silver and at least two non-silver containing elements
TW201936295A (en) Method for producing fine particles and fine particles
US6863708B2 (en) Method for producing metal powder and metal powder, and electroconductive paste and monolithic ceramic capacitor
CN113740390A (en) Nickel-doped indium oxide nanoparticles and preparation method and application thereof
TWI813559B (en) Nickel powder and nickel paste
JP4960210B2 (en) Nickel powder and method for producing nickel powder
JP5756694B2 (en) Flat metal particles
JP2005248198A (en) Nickel powder, and electrically conductive paste and laminated ceramic capacitor using the same
JP2002146401A (en) Nickel powder and manufacturing method
JP4394535B2 (en) Method for producing nickel powder
JP4276031B2 (en) Titanium compound-coated nickel powder and conductive paste using the same
JP5136904B2 (en) Method for producing nickel powder
JP3461337B2 (en) Nickel powder and conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771882

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509228

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147025111

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13771882

Country of ref document: EP

Kind code of ref document: A1