WO2013146872A1 - Semiconductor nanoparticle assembly structure - Google Patents

Semiconductor nanoparticle assembly structure Download PDF

Info

Publication number
WO2013146872A1
WO2013146872A1 PCT/JP2013/058984 JP2013058984W WO2013146872A1 WO 2013146872 A1 WO2013146872 A1 WO 2013146872A1 JP 2013058984 W JP2013058984 W JP 2013058984W WO 2013146872 A1 WO2013146872 A1 WO 2013146872A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
semiconductor nanoparticles
nanoparticles
semiconductor nanoparticle
nanoparticle
Prior art date
Application number
PCT/JP2013/058984
Other languages
French (fr)
Japanese (ja)
Inventor
満 関口
敬三 高野
高橋 優
中野 寧
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014501123A priority Critical patent/JP5556973B2/en
Publication of WO2013146872A1 publication Critical patent/WO2013146872A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • the present invention relates to a semiconductor nanoparticle integrated structure having high emission luminance.
  • fluorescent dyes have been used as phosphors.
  • fluorescent dyes are organic materials, and there has been a problem that the luminance decreases when irradiated with excitation light for a long time, that is, the light resistance is poor.
  • the current trend is to apply semiconductor nanoparticles having a simple structure with an inorganic material, which have no problem of light resistance, to this field.
  • the semiconductor nanoparticles are such that when the semiconductor particles are reduced to a nano size, the band gap becomes smaller than that of the bulk and the quantum effect is strengthened, resulting in fluorescence.
  • materials such as II-VI group semiconductor nanoparticles, CdSe, CdTe, III-V group semiconductor nanoparticles, InP, GaP, I-III-VI group CuInS 2 and the like have been developed.
  • these materials are used as a core, and a shell such as ZnS having a larger band gap is formed on the outer side to improve the electron confinement effect and increase the luminous efficiency of the semiconductor nanoparticles themselves. Things have been done.
  • Non-Patent Document 1 a method for increasing the luminance per particle by integrating semiconductor nanoparticles to form giant particles of 50 to 1000 nm.
  • One method for producing such giant particles is a method of encapsulating semiconductor nanoparticles in silica beads using a hydrolysis reaction of a silica precursor based on the Stober method (see Non-Patent Document 1).
  • Non-Patent Document 2 has attempted to encapsulate CdSe / ZnS semiconductor nanoparticles in silica beads by reacting with tetraethylorthosilicate (TEOS) in the presence of tri-n-octylphosphine oxide (TOPO). It is disclosed.
  • TEOS tetraethylorthosilicate
  • TOPO tri-n-octylphosphine oxide
  • Non-Patent Document 3 discloses poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS) as a method of laminating CdTe on the surface of silica colloidal crystal beads.
  • PAH poly (allylamine hydrochloride)
  • PSS poly (sodium 4-styrenesulfonate)
  • a method of alternately laminating a PAH / PSS / PAH laminated body made of) and layers made of CdTe is disclosed.
  • the invention described in Non-Patent Document 3 intends to increase the emission intensity by utilizing the high porosity and high surface area to volume ratio of silica colloidal crystal beads.
  • FIG. 2 shows the absorption of nanoparticles constituting a CdSe / ZnS semiconductor nanoparticle assembly widely used as a core / shell type semiconductor nanoparticle assembly. An emission spectrum is shown. As shown in FIG.
  • the present invention has been made in view of the above problems, and an object of the present invention is to obtain a high-brightness semiconductor nanoparticle integrated structure in which a decrease in luminance is small even when semiconductor nanoparticles are integrated.
  • the first semiconductor nanoparticles are: The semiconductor nanoparticle integrated structure according to [1], wherein the first semiconductor nanoparticle has a band gap that is equal to or greater than the half-value width of the emission peak wavelength of the first semiconductor nanoparticle and smaller than the second semiconductor nanoparticle.
  • the first semiconductor nanoparticles include The semiconductor nanoparticle integrated structure according to [1] or [2], which has an emission peak wavelength longer than that of the second semiconductor nanoparticle.
  • the difference between the emission peak wavelength of the first semiconductor nanoparticles and the emission peak wavelength of the second semiconductor nanoparticles is equal to or greater than the half-value width of the emission peak wavelength of the first semiconductor nanoparticles.
  • the core portion and the shell portion constituting the first semiconductor nanoparticles are each made of the same material as the core portion and the shell portion constituting the second semiconductor nanoparticles, and The semiconductor nanoparticle integrated structure according to [5], wherein the core part constituting the first semiconductor nanoparticles has a larger volume average diameter than the core part constituting the second semiconductor nanoparticles.
  • the difference between the volume average diameter of the core part constituting the first semiconductor nanoparticles and the volume average diameter of the core part constituting the second semiconductor nanoparticles is:
  • the semiconductor nanoparticle integrated structure according to [6] which is equal to or more than the half-value width of the emission peak wavelength of the core portion constituting the first semiconductor nanoparticle.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the semiconductor nanoparticle integrated structure shown in Example 1.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of a semiconductor nanoparticle integrated structure shown in Example 2.
  • FIG. It is a figure which shows the relationship of the band gap of two types of core-shell type semiconductor nanoparticles which comprise the semiconductor nanoparticle integrated structure of an Example description. It is a figure which shows the definition of the core diameter in the core-shell type semiconductor nanoparticle which comprises the semiconductor nanoparticle integrated structure of an Example description.
  • a semiconductor nanoparticle integrated structure 10 includes: An internal structure in which a plurality of first semiconductor nanoparticles 11 are integrated; An external structure formed by integrating a plurality of second semiconductor nanoparticles 14 covering the internal structure, The first semiconductor nanoparticles 11 have a smaller band gap than the second semiconductor nanoparticles 14.
  • the present invention is characterized in that the first semiconductor nanoparticle 11 has a smaller band gap than the second semiconductor nanoparticle 14 in order to minimize concentration quenching of fluorescence emitted from the semiconductor nanoparticle.
  • the semiconductor nanoparticle assembly structure 10 includes two semiconductor nanoparticles having different band gaps, that is, a first semiconductor nanoparticle 11 and a second semiconductor nanoparticle 14.
  • the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 constituting the semiconductor nanoparticle integrated structure 10 are “nanoparticles arranged inside the integrated body” and “outside the integrated body”, respectively.
  • Nanoparticles ”.
  • the band gaps of the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are: They are 2.30eV and 2.53eV respectively.
  • photons emitted from the first semiconductor nanoparticles 11 existing inside are energy of 2.30 eV, and energy that can be absorbed by the second semiconductor nanoparticles 14 present outside. Since it is smaller than 2.53 eV, the fluorescence from the first semiconductor nanoparticles 11 can be efficiently extracted outside without being absorbed by the second semiconductor nanoparticles 14.
  • the problem is how much difference is provided between the band gap of the first semiconductor nanoparticles 11 and the band gap of the second semiconductor nanoparticles 14, but the absorption spectrum is shorter than the peak wavelength. Therefore, it is considered effective to shift the band gap by half the width (FWHM: full peak width at half the peak value, that is, full width at half maximum) in terms of emission spectrum. That is, in the present invention, the first semiconductor nanoparticles 11 may have a band gap that is smaller than the second semiconductor nanoparticles 14 by a portion corresponding to the half-value width of the emission peak wavelength of the first semiconductor nanoparticles 11 or more. preferable.
  • the emission peak wavelength of the first semiconductor nanoparticles 11 is greater than the emission peak wavelength of the first semiconductor nanoparticles 11 compared to the emission peak wavelength of the second semiconductor nanoparticles 14. It is preferable that it is longer than the half-value width.
  • the second semiconductor nanoparticles 14 need only have an emission peak wavelength that is smaller than the emission peak wavelength of the first semiconductor nanoparticles 11 by the half-value width thereof.
  • the emission wavelength tends to become longer as the particle size increases.
  • the semiconductor nanoparticles are core-shell semiconductor nanoparticles
  • the emission wavelength tends to increase as the diameter of the core portion (core diameter) increases. This tendency is also confirmed from the relationship between the core diameter and the emission wavelength of the CdSe / ZnS semiconductor nanoparticles shown in FIG.
  • the band gap tends to decrease as the particle size increases.
  • the semiconductor nanoparticles are core-shell semiconductor nanoparticles, There is a tendency to decrease as the core diameter increases.
  • the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are formed of the same semiconductor, the first semiconductor nanoparticles 11 have a smaller band gap than the second semiconductor nanoparticles 14.
  • the average diameter of the first semiconductor nanoparticles 11 may be selected so as to be larger than the average diameter of the second semiconductor nanoparticles 14.
  • the core portion and the shell portion constituting the first semiconductor nanoparticles 11 are the second
  • the core portion constituting the first semiconductor nanoparticle 11 constitutes the second semiconductor nanoparticle 14.
  • the average diameter is larger than that of the core portion.
  • “average diameter” refers to a volume average diameter unless otherwise specified.
  • the second semiconductor nanoparticles 14 need only have a light emission peak wavelength that is smaller than the light emission peak wavelength of the first semiconductor nanoparticles 11 by the half width. What is necessary is just to change the particle size of the 2nd semiconductor nanoparticle 14 according to it.
  • the second semiconductor nanoparticle 14 corresponds to the emission peak wavelength of the first semiconductor nanoparticle 11.
  • the core diameter of the second semiconductor nanoparticles 14 may be set so that the emission peak wavelength is smaller by the half width.
  • the difference between the average diameter of the core part constituting the first semiconductor nanoparticles 11 and the average diameter of the core part constituting the second semiconductor nanoparticles 14 constitutes the first semiconductor nanoparticles 11. This is equal to or greater than the half-value width of the emission peak wavelength of the core portion.
  • the core diameter of the second semiconductor nanoparticles 14 is set in this way if there is a characteristic curve as exemplified in FIG.
  • the emission peak wavelength of the first semiconductor nanoparticles 11 is 540 nm
  • the core size is 3.7 nm from FIG.
  • the difference between the band gap of the second semiconductor nanoparticles 14 and the band gap of the first semiconductor nanoparticles 11 may be the half width at the emission peak of the first semiconductor nanoparticles 11.
  • the two emission peaks do not overlap and the emission wavelength region is widened, which is disadvantageous in terms of detection. Therefore, based on a simplified model, the range in which the emission peak of the first semiconductor nanoparticles 11 and the emission peak of the second semiconductor nanoparticles 14 can overlap is examined.
  • the emission peak of the first semiconductor nanoparticles 11 and the emission peak of the second semiconductor nanoparticles 14 have center wavelengths of ⁇ 11 and ⁇ 14 , respectively, and have the same peak height and peak width. And both have a peak shape (standard deviation ⁇ with respect to peak broadening) following a normal distribution.
  • the emission peak of the first semiconductor nanoparticle 11 is 99.7% of the peak distributed within the range of 3 ⁇ on one side from the center wavelength, that is, within the range of the wavelength ⁇ 11 ⁇ 3 ⁇ .
  • 99.7% of the peak is distributed within the wavelength range of ⁇ 14 ⁇ 3 ⁇ .
  • the wavelength of the first semiconductor nanoparticles 11 is between ⁇ 11 ⁇ 3 ⁇ and the wavelength of the second semiconductor nanoparticles 14 is between ⁇ 14 ⁇ 3 ⁇ .
  • there is an overlapping portion that is, the distance between the peaks ( ⁇ 11 ⁇ 14 ) and the standard deviation ⁇ of the peak width have a relationship satisfying the following formula (1a).
  • the first semiconductor nanoparticle 11 has a light emission peak wavelength of the first semiconductor nanoparticle 11 as compared with the second semiconductor nanoparticle 14.
  • the first semiconductor nanoparticles 11 have a band gap that is smaller than the half-value width of the first semiconductor nanoparticles 11, that is, the emission peak wavelength of the first semiconductor nanoparticles 11 is larger than the emission peak wavelength of the second semiconductor nanoparticles 14. Is longer than the half-value width of the emission peak wavelength (that is, F H ⁇ ( ⁇ 11 ⁇ 14 ) is satisfied), the distance between the peaks ( ⁇ 11 ⁇ 14 ) is generally expressed by the following formula ( The relationship represented by 2) is preferred.
  • the first semiconductor nanoparticle is equal to or larger than the half-value width of the emission peak wavelength of the first semiconductor nanoparticle than the second semiconductor nanoparticle.
  • the semiconductor nanoparticles constituting the semiconductor nanoparticle integrated structure 10 of the present invention are both the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 in the semiconductor nanoparticle integrated structure 10 from the outside. It has the role of emitting fluorescence in the process of being excited by receiving given energy and returning from the excited state to the ground state.
  • the first semiconductor nanoparticles 11 have a smaller band gap than the second semiconductor nanoparticles 14.
  • the semiconductor constituting the semiconductor nanoparticles used in the present invention is preferably a semiconductor having a band gap that causes fluorescence emission from the visible region to the near infrared region, and specifically, a range of 200 to 700 nm. When excited by ultraviolet to visible light having an inner wavelength, it preferably emits visible to near infrared light having a wavelength in the range of 400 to 900 nm.
  • inorganic semiconductors of II-VI group, III-V group, III-VI group, IV group, IV-VI group and I-III-VI group are preferably used.
  • III-V group inorganic semiconductors AlN, AlP, AlAs, GaN, GaP, GaAs, InN, InP, InAs, InGaP and InGaAs are suitable examples of III-VI group inorganic semiconductors, and Al 2 Se 3 is a suitable example of group IV inorganic semiconductors.
  • PbS, PbSe, and PbTe are preferable examples of inorganic semiconductors of Si, Ge, and IV-VI
  • CuInS 2 is preferable as a preferable example of inorganic semiconductors of the I-III-VI group.
  • the semiconductor nanoparticles used in the present invention may have a uniform structure as a whole in both the first semiconductor nanoparticles 1 and the second semiconductor nanoparticles 4, or two or more different constituent components may be used. You may have a structure, or you may have a structure where the composition of a component changes continuously with a position.
  • Core-shell type semiconductor nanoparticles As the semiconductor nanoparticles constituting the present invention, it is desirable to use semiconductor nanoparticles having a core / shell structure, that is, core-shell type semiconductor nanoparticles.
  • the core-shell type is a particle containing a semiconductor material to be described later, and is a particle having a multiple structure composed of a core part (core part) and a shell part (covering part) covering the core part. Usually, it is approximately 20 nm or less.
  • Core portion also referred to as “core particle”
  • Materials for forming the core portion include Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, InAs, and CuInS 2
  • a semiconductor such as the above or a raw material for forming these can be used.
  • InP, CdTe, CdSe, and CuInS 2 are particularly preferably used.
  • the average particle size of the core portion (“core particle”) according to the present invention is preferably 0.5 to 15 nm.
  • II-VI group, III-V group, and IV group inorganic semiconductors can be used as a material for forming the shell portion according to the present invention.
  • a semiconductor having a larger band gap than each core-forming inorganic material such as Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, InAs, etc. Is preferred.
  • ZnS is applied as a shell to InP, CdTe, CdSe, CuInS 2 .
  • the shell portion according to the present invention may not completely cover the entire surface of the core particle as long as the core particle is not partially exposed to cause a harmful effect, or the semiconductor nanoparticle without the shell portion. It may be.
  • the average particle size of the core / shell structure semiconductor nanoparticle according to the present invention is preferably 1 to 20 nm.
  • the internal structure is formed by integrating the plurality of first semiconductor nanoparticles 11, and the external structure is integrated with the plurality of second semiconductor nanoparticles 14. Do it.
  • the semiconductor nanoparticle integrated structure 10 has a structure as shown in FIG.
  • the internal structure has a form of a semiconductor nanoparticle assembly 12 in which a plurality of first semiconductor nanoparticles 11 are integrated while being encapsulated by a matrix 17.
  • stacked is formed as an external structure so that the surface of this semiconductor nanoparticle integrated body 12 may be covered.
  • the matrix 17 has a role as a binder for fixing the accumulated first semiconductor nanoparticles 11, and silica, polymelamine, polystyrene, or the like is preferably used as the material thereof.
  • the semiconductor nanoparticle assembly 12 preferably has an average diameter of about 30 to 500 nm, and preferably contains as many first semiconductor nanoparticles 11 as possible so that the particles do not touch each other. .
  • the semiconductor nanoparticle integrated structure 10 has a structure as shown in FIG.
  • the internal structure includes a support core structure 16 that does not include semiconductor nanoparticles therein, and a plurality of first semiconductor nanoparticles so as to cover the surface of the support core structure 16.
  • 11 has a form in which a first semiconductor nanoparticle integrated layer formed by integrating 11 is formed.
  • stacked is formed as an external structure so that the surface of this internal structure may be covered.
  • the support core structure 16 has a role as a base for forming the first semiconductor nanoparticle integrated layer and the second semiconductor nanoparticle integrated layer, and ensures a high surface area to volume ratio. It has the role of increasing the emission intensity.
  • a dielectric such as silica particles, or a polymer such as polymelamine or polystyrene is preferably used.
  • the support core structure 16 preferably has an average diameter of about 30 to 500 nm.
  • the semiconductor nanoparticle integrated structure 10 of the present invention has one internal structure and one external structure, but the present invention covers this external structure.
  • the semiconductor nanoparticle integrated structure 10 of the present invention may have a plurality of external structures by further forming the second external structure formed by integrating semiconductor nanoparticles.
  • the semiconductor nanoparticles constituting the second external structure may be the second semiconductor nanoparticles 14 or a third semiconductor having a larger band gap than the second semiconductor nanoparticles 14.
  • Nanoparticles may be used. Therefore, the semiconductor nanoparticle integrated structure 10 of the present invention is configured so that the band gap of the constituent semiconductor nanoparticles gradually increases from the inside toward the outside, in other words, the emission peak of the constituent semiconductor nanoparticles from the inside toward the outside.
  • the external structure may be laminated so that the wavelength is gradually shortened.
  • the internal structure and these external structures are composed of core-shell type semiconductor nanoparticles having the same constituent semiconductor material
  • the external structure is configured so that the core diameter of the constituent semiconductor nanoparticles decreases from the inside toward the outside.
  • the body may be laminated.
  • the semiconductor nanoparticle integrated structure 10 of the present invention preferably has an average diameter in the range of 50 to 1000 nm.
  • the support core structure 16 and the first semiconductor nanoparticle assembly A bonding layer 13 may be provided between the stacked layers. The presence of such a bonding layer 13 is preferable because the bonding between the inner structure and the outer structure and the bonding between the support core structure 16 and the first semiconductor nanoparticle integrated layer are strengthened.
  • a bonding layer 13 for example, a PAH / PSS / PAH layer in which PAH (polyallylamine hydrochloride) and PSS (polysodium 4-styrene sulfonate) are laminated in the order of PAH, PSS, and PAH is preferably used. Can be used.
  • the semiconductor nanoparticle integrated structure 10 of the present invention is used for the purpose of introducing a functional group used for bonding with other molecules, for the purpose of improving hydrophilicity, or for the semiconductor nanoparticle.
  • a surface layer 15 may be further provided on the outermost periphery. Therefore, such a surface layer 15 may have a functional group such as a carboxyl group, an amino group, or a hydroxyl group.
  • a hydrophilic layer having a carboxyl group can be provided as the surface layer 15 by providing a layer made of PAA (polyacrylic acid) via a PAH / PSS / PAH layer.
  • the semiconductor nanoparticle integrated structure 10 which concerns on this invention can be manufactured using a conventionally well-known method.
  • a liquid phase method can be suitably used as a method for producing the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 constituting the semiconductor nanoparticle integrated structure 10.
  • each semiconductor constituting these semiconductor nanoparticles is obtained by chemically reacting a corresponding semiconductor precursor in an appropriate solvent.
  • the production method based on the liquid phase method include a precipitation method, a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method.
  • the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-310770 A). No., JP 2000-104058 A, etc.).
  • the production method includes a step of reducing the semiconductor precursor by a reduction reaction. It is also preferable that there is.
  • an embodiment having a step of performing the reaction of the semiconductor precursor in the presence of a surfactant is preferable.
  • the formed first semiconductor nanoparticles 11 and second semiconductor nanoparticles 14 (and the core portion constituting these semiconductor nanoparticles, if applicable) do not inadvertently aggregate during the reaction process.
  • An embodiment having a step performed in the presence of a stabilizer such as tri-n-octylphosphine oxide (TOPO) is preferable.
  • the semiconductor precursor used in the present invention is a compound containing an element used as the semiconductor material, for example if the semiconductor is Si, and the like SiCl 4 as semiconductor precursor.
  • Other semiconductor precursors include InCl 3 , P (SiMe 3 ) 3 , ZnMe 2 , CdMe 2 , GeCl 4 , tributylphosphine selenium and the like.
  • the reaction temperature for introducing the semiconductor precursor from the semiconductor precursor to the required semiconductor is not particularly limited as long as it is not lower than the boiling point of the semiconductor precursor and not higher than the boiling point of the solvent, but is preferably in the range of 70 to 110 ° C.
  • the reducing agent for reducing the semiconductor precursor various conventionally known reducing agents can be selected and used according to the reaction conditions.
  • lithium aluminum hydride LiAlH 4
  • sodium borohydride NaBH 4
  • sodium bis (2-methoxyethoxy) aluminum hydride trihydride
  • trihydride sec- Preferred are reducing agents such as lithium (butyl) boron (LiBH (sec-C 4 H 9 ) 3 ), potassium tri (sec-butyl) borohydride, lithium triethylborohydride.
  • lithium aluminum hydride (LiAlH 4 ) is preferable because of its reducing power.
  • solvent Various known solvents can be used as the solvent for dispersing the semiconductor precursor. Alcohols such as ethyl alcohol, sec-butyl alcohol and t-butyl alcohol, and hydrocarbon solvents such as toluene, decane and hexane are used. It is preferable to use it. In the present invention, a hydrophobic solvent such as toluene is particularly preferable as the dispersion solvent.
  • surfactant As the surfactant, various conventionally known surfactants can be used, and anionic, nonionic, cationic, and amphoteric surfactants are included. Of these, tetrabutylammonium chloride, bromide or hexafluorophosphate, tetraoctylammonium bromide (TOAB), or tributylhexadecylphosphonium bromide, which are quaternary ammonium salt systems, are preferred. Tetraoctyl ammonium bromide is particularly preferable.
  • the reaction by the liquid phase method varies greatly depending on the state of the compound containing the solvent in the liquid.
  • special care must be taken.
  • the size and state of the reverse micelle serving as a reaction field vary depending on the concentration and type of the surfactant, so that the conditions under which nanoparticles are formed are limited. Therefore, it is necessary to appropriately combine the surfactant and the solvent.
  • a gas phase method may be used as a method for producing the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14.
  • the opposing raw material semiconductor is evaporated by the first high temperature plasma generated between the electrodes, and in the second high temperature plasma generated by electrodeless discharge in a reduced pressure atmosphere.
  • a method of separating and removing nanoparticles from an anode made of a raw material semiconductor by electrochemical etching for example, see Japanese Patent Application Laid-Open No. 2003-515459).
  • a method of synthesizing a powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.
  • the semiconductor nanoparticle can also be purchased by designating the light emission wavelength. In the embodiment described later, a case of purchasing is shown.
  • Integration of Semiconductor Nanoparticles the semiconductor nanoparticles (that is, the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14) are integrated when the semiconductor nanoparticle integrated structure 10 is constructed. There is a need to.
  • the obtained first semiconductor nanoparticles 11 are integrated by an appropriate method to thereby obtain an internal structure.
  • the obtained second semiconductor nanoparticles 14 are applied to the surface of the internal assembly by an appropriate method.
  • An external structure can be formed by stacking.
  • an assembly in which the plurality of first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are in contact with each other is directly used as an internal structure and an external structure without constructing a matrix. Each may be used.
  • the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are aggregated by an appropriate method to form an aggregate precursor once.
  • the internal structure and the external structure are respectively constructed by forming a matrix on the integrated body precursor by a method such as the liquid phase method.
  • the “aggregate precursor” refers to an aggregate in which a plurality of semiconductor nanoparticles are gathered in contact with each other.
  • the external structure it may be formed directly on the surface of the internal structure, but from the viewpoint of strengthening the bond between the external structure and the internal structure, first, the surface of the internal structure is formed. It is preferable to construct the external layer on the surface of the bonding layer 13 after the coupling layer 13 is constructed by a conventionally known appropriate method.
  • a method for manufacturing the semiconductor nanoparticle integrated structure 10 according to the first preferred embodiment will be described.
  • silica can be suitably used as the material constituting the matrix 17, and in that case, the Stover method based on the method described in Non-Patent Document 1 can be used to construct the matrix 17 made of silica.
  • the method described in Non-Patent Document 2 can be cited.
  • CdSe / ZnS semiconductor nanoparticles are dispersed in a TOPO toluene solution.
  • TEOS is added to this solution to silanize the semiconductor nanoparticles.
  • a silica sphere of about 50 nm containing about 20 semiconductor particles is obtained as the semiconductor nanoparticle aggregate 12.
  • This silica sphere corresponds to the semiconductor nanoparticle silica aggregate in the semiconductor nanoparticle assembly structure 10 according to the first preferred embodiment.
  • a second semiconductor nanoparticle integrated layer in which semiconductor nanoparticles having a larger band gap than the first semiconductor nanoparticles 11 integrated inside (that is, the second semiconductor nanoparticles 14) are integrated on the outside.
  • the external structure can be constructed by a conventionally known appropriate method, but in this example, a growth method called Layer-by-Layer method can be suitably used.
  • a specific method for constructing such a second semiconductor nanoparticle integrated layer for example, the method described in Non-Patent Document 3 can be cited.
  • PAH polyallylamine hydrochloride
  • PSS polysodium 4-styrenesulfonate
  • the silica spheres prepared above are treated with a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to charge the silica spheres negatively.
  • a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to charge the silica spheres negatively.
  • PAH polyallylamine hydrochloride
  • PSS polysodium 4-styrene sulfonate
  • PAA polyacrylic acid
  • a PAH / PSS / PAA solution is sequentially added to the negatively charged silica spheres to form a PAH / PSS / PAH layer as a bonding layer 13 on the silica spheres. Let it be the body.
  • the silica intermediate structure is dispersed in an aqueous solution of CdSe / ZnS semiconductor nanoparticles capped with mercaptopropionic acid, so that CdSe / with a band gap larger than that of the first semiconductor nanoparticles 11 accumulated on the inner side.
  • a second semiconductor nanoparticle integrated layer in which ZnS is integrated can be formed as an external structure.
  • the CdSe / ZnS semiconductor nanoparticles used at this stage are CdSe / ZnS semiconductor nanoparticles having a larger band gap than the CdSe / ZnS semiconductor nanoparticles used as the first semiconductor nanoparticles 11.
  • the semiconductor nanoparticle integrated structure 10 is formed by the Stover method for the inside of the semiconductor nanointegrated body and the layer by layer method for the outside. It is not limited to such a method, You may carry out by another method.
  • the semiconductor nanoparticle assembly structure 10 is formed with the above-described second semiconductor nanoparticle assembly layer on the surface of the support core structure 16 made of a suitable material such as silica and not containing semiconductor nanoparticles.
  • a first semiconductor nanoparticle assembly layer in which a plurality of first semiconductor nanoparticles 11 are integrated is formed by a method similar to that used to construct an internal structure, and then its surface.
  • an external structure including a second semiconductor nanoparticle integrated layer in which a plurality of second semiconductor nanoparticles 14 having a larger band gap than the first semiconductor nanoparticles 11 are integrated (see FIG.
  • a layer-by-layer method can be suitably used for the first semiconductor nanoparticle integrated layer and the second semiconductor nanoparticle integrated layer.
  • the bonding layer 13 such as a PAH / PSS / PAH layer by the same method as described above.
  • the semiconductor nanoparticle is integrated on the surface of the external structure formed as mentioned above.
  • Two external structures may be further formed.
  • the semiconductor nanoparticles constituting the second external structure may be the second semiconductor nanoparticles 14 or a third semiconductor having a larger band gap than the second semiconductor nanoparticles 14.
  • Nanoparticles may be used.
  • Such a second external structure can also be formed by a method similar to that of the external structure. Specifically, a new PAH / PSS / PAH layer is formed on the surface of the external structure formed by the above method by sequentially forming a PAH layer, a PSS layer, and a PAH layer. Thus, a series of steps of dispersing in the aqueous solution in which the semiconductor nanoparticles as the raw material of the second external structure are dispersed may be repeated.
  • the semiconductor nanoparticle integrated structure 10 obtained in this way may be used as it is, or may be further subjected to surface treatment to form a surface layer 15 such as a hydrophilic layer.
  • the formation of the surface layer 15 can be performed using an appropriate conventionally known method as in the case of the external structure. For example, after forming the PAH / PSS / PAH layer, the required surface layer 15 can be formed.
  • a hydrophilic layer is formed as the surface layer 15, the formation of the PAH layer, the formation of the PSS layer, and the formation of the PAH layer are performed on the outermost peripheral portion of the semiconductor nanoparticle integrated structure where the surface layer 15 is not yet formed.
  • a new PAH / PSS / PAH layer can be formed by sequentially performing the formation, and then a PAA layer can be formed by further performing a PAA treatment, whereby semiconductor nanoparticles having a carboxyl group on the surface
  • the integrated structure 10 can be obtained.
  • the semiconductor nanoparticle integrated structure 10 of the present invention is not particularly limited in its application, but can be suitably used for the application of a biomaterial labeling agent.
  • the biological substance labeling agent according to the present invention has a structure in which the semiconductor nanoparticle assembly structure 10 is bonded to a molecular labeling substance via an organic molecule.
  • the biological substance labeling agent according to the present invention by adding the biological substance labeling agent according to the present invention to a living cell or living body having a target (tracking) substance, it binds or adsorbs to the target substance, and the conjugate or adsorbent is excited at a predetermined wavelength.
  • fluorescence dynamic imaging of the target (tracking) substance can be performed.
  • the biomaterial labeling agent according to the present invention can be used for bioimaging methods (technical means for visualizing biomolecules constituting the biomaterial and dynamic phenomena thereof).
  • Hydrophilization treatment of the semiconductor nanoparticle assembly The surface of the semiconductor nanoparticle assembly structure 10 described above is generally hydrophobic in a state where the surface treatment has not yet been performed, and thus is used, for example, as a biological material labeling agent. In this case, there are problems such as poor water dispersibility and aggregation of semiconductor nanoparticle aggregates. Therefore, it is preferable to perform a hydrophilic treatment on the surface of the semiconductor nanoparticle assembly structure 10 to obtain a hydrophilic semiconductor nanoparticle assembly structure.
  • hydrophilic treatment method for example, a method of chemically and / or physically binding a surface modifier to the surface of the semiconductor nanoparticle assembly structure 10 after removing the lipophilic component attached to the surface with pyridine or the like.
  • a surface modifier those having a carboxyl group / amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptoundecanoic acid, aminopropanethiol and the like.
  • 10 ⁇ 5 g of Ge / GeO 2 type nanoparticles are dispersed in 10 ml of pure water in which 0.2 g of mercaptoundecanoic acid is dissolved, and stirred at 40 ° C. for 10 minutes to treat the surface of the shell.
  • the surface of the shell of the inorganic nanoparticles can be modified with a carboxyl group.
  • the biological substance labeling agent according to the present invention is obtained by binding the hydrophilic semiconductor nanoparticle assembly structure obtained as described above, a molecular labeling substance and an organic molecule.
  • the biological substance labeling agent according to the present invention can label a biological substance by specifically binding and / or reacting with the target biological substance.
  • the molecular labeling substance examples include nucleotide chains, antibodies, antigens, sugar chains, and cyclodextrins.
  • an antibody drug such as trastuzumab
  • the biological substance labeling agent according to the present invention confirms whether a cancer marker such as HER2 recognized by such an antibody drug is present in a tissue section or the like. Can be used for tissue staining.
  • the hydrophilic semiconductor nanoparticle integrated structure and the molecular labeling substance are bound by an organic molecule.
  • the organic molecule is not particularly limited as long as it is capable of binding the semiconductor nanoparticle aggregate and the molecular labeling substance.
  • the form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordinate bond, physical adsorption, and chemical adsorption.
  • a bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of bond stability.
  • the semiconductor nanoparticle integrated structure 10 is hydrophilized with mercaptoundecanoic acid
  • avidin and biotin can be used as organic molecules.
  • the carboxyl group of the hydrophilic semiconductor nanoparticle integrated structure is preferably covalently bonded to avidin, and the avidin is further selectively bonded to biotin, and biotin is further bonded to the molecular labeling substance, thereby Become.
  • Example 1 The semiconductor nanoparticle integrated structure according to Example 1 will be described with reference to FIG.
  • the present Example 1 comprises an internal structure in the state in which one of two semiconductor nanoparticles having different band gap energies is encapsulated in a semiconductor nanoparticle silica aggregate 2 as the semiconductor nanoparticle aggregate 12.
  • the external structure formed by integrating the other semiconductor nanoparticles is shown so as to cover the semiconductor nanoparticle silica aggregate 2.
  • the CdSe / ZnS particles may be synthesized as described in the above section “Mode for Carrying Out the Invention”, but in this Example 1, those purchased from Evident Technology Co. can be used.
  • the wavelength can be selected from 490, 520, 540, 560, 580, 600, 620 nm.
  • a CdSe / ZnS semiconductor nanoparticle having an emission wavelength of 540 nm is integrated as the first semiconductor nanoparticle 1 to construct a semiconductor nanoparticle silica aggregate 2.
  • 490 nm CdSe / ZnS semiconductor nanoparticles are integrated as the second semiconductor nanoparticles 4 to construct an external structure.
  • the semiconductor nanoparticle silica aggregate 2 is formed with reference to Non-Patent Document 2.
  • the obtained semiconductor nanoparticles are dispersed in a TOPO 0.1M (mol / L) toluene solution, stirred for about 15 hours, and the surface of CdSe / ZnS semiconductor nanoparticles is silanized using TEOS (tetraethoxysilane). Add ethanol, H 2 O, and ammonia, and reflux at 100 ° C. for 1 hour.
  • TEOS tetraethoxysilane
  • the ratio of the semiconductor particles, TEOS, toluene, ethanol, H 2 O, and NH 3 is 1,2.8 ⁇ 10 4 , 5.87 ⁇ 10 6 , 1.07 ⁇ 10 8 , 7.9 ⁇ as molar ratios, respectively. 10 7 and 7.17 ⁇ 10 5 . Finally, it was centrifuged for 30 minutes and dispersed again in H 2 O. As a result, a semiconductor nanoparticle silica aggregate 2 having a particle size of about 50 nm and containing about 20 CdSe / ZnS particles is formed.
  • CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm as the second semiconductor nanoparticles 4 are further accumulated outside the semiconductor nanoparticle silica aggregate 2 using the layer-by-layer method.
  • Non-Patent Document 3 it can be performed with reference to Non-Patent Document 3. That is, the semiconductor nanoparticle silica aggregate 2 prepared above is treated with a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to be negatively charged. Next, prepare 1 mg / mL PAH (polyallylamine hydrochloride), PSS (polysodium 4-styrenesulfonate) and PAA (polyacrylic acid) in 0.5 mol / L NaCl solution. . First, a PAH solution is added to 0.5 mL per about 100 negatively charged semiconductor nanoparticle silica aggregates 2, absorbed for 20 minutes, and then washed with water four times to form a PAH layer on the surface.
  • PAH polyallylamine hydrochloride
  • PSS polysodium 4-styrenesulfonate
  • PAA polyacrylic acid
  • the PSS layer and the PAH layer are formed by performing the same processing for the PSS and PAH, respectively.
  • a PAH / PSS / PAH layer (hereinafter referred to as a PAH / PSS / PAH layer) 3 that functions as the bonding layer 13 is formed on the semiconductor nanoparticle silica aggregate 2.
  • the second semiconductor nanoparticle 4 (CdSe / ZnS semiconductor nanoparticle having an emission wavelength of 490 nm) obtained by capping the semiconductor nanoparticle silica aggregate formed with the PAH / PSS / PAH layer 3 with 0.8 mmol / L of mercaptopropionic acid.
  • the semiconductor nanoparticle integrated structure formed by forming the external structure in which the semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) 2 are integrated can be obtained.
  • the second semiconductor nanoparticles 4 In order to stack a plurality of layers of the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm), formation of a PAH layer, formation of a PSS layer, and After a new PAH / PSS / PAH layer is formed by sequentially forming a PAH layer, the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) are dispersed again in an aqueous solution. What is necessary is just to repeat a series of processes to disperse
  • a PAH layer, a PSS layer, and a PAH layer are sequentially formed on the outermost periphery of the semiconductor nanoparticle assembly structure in the same manner. From the above, PAA treatment is further performed, and then carboxyl groups are introduced.
  • Example 2 A semiconductor nanoparticle integrated structure according to Example 2 will be described with reference to FIG.
  • Example 2 shows an embodiment in which silica particles 6 are further included as the support core structure 16 in addition to the two semiconductor nanoparticle-containing layers having different band gap energies.
  • the semiconductor particle-containing layer formed on the outer side of the silica particle 6 includes two types of semiconductor nanoparticle-containing layers having different band gap energies, that is, a first semiconductor nanoparticle integrated layer and a second semiconductor nanoparticle. It differs from the invention described in Non-Patent Document 3 in that it is a layer composed of two layers with an integrated layer.
  • CdSe / ZnS particles for example, those purchased from Evident Technology can be used.
  • the wavelength can be selected from 490, 520, 540, 560, 580, 600, 620 nm.
  • CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm (half-value width at emission peak: 30 nm) are integrated as the first semiconductor nanoparticles 1 to obtain an internal structure.
  • the first semiconductor nanoparticle integrated layer constituting the body is constructed, and 490 nm CdSe / ZnS semiconductor nanoparticles are integrated as the second semiconductor nanoparticle 4 by the layer-by-layer method to form the second external structure.
  • Build a semiconductor nanoparticle integrated layer is
  • silica particles 6 (60 nm diameter) dispersed in water available from Corefront Corporation or the like can be used.
  • CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm as the first semiconductor nanoparticles 1 are accumulated outside the silica particles 6 using a layer-by-layer method.
  • Non-Patent Document 3 it can be carried out with reference to Non-Patent Document 3, as in Example 1. That is, the silica particles 6 are treated with a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to be negatively charged. Next, prepare 1 mg / mL PAH (polyallylamine hydrochloride), PSS (polysodium 4-styrenesulfonate) and PAA (polyacrylic acid) in 0.5 mol / L NaCl solution. . First, 0.5 mL of the PAH solution is added per about 100 negatively charged silica particles, absorbed for 20 minutes, and then washed with water four times to form a PAH layer on the surface of the silica particles 6.
  • PAH polyallylamine hydrochloride
  • PSS polysodium 4-styrenesulfonate
  • PAA polyacrylic acid
  • the PSS layer and the PAH layer are formed by performing the same processing for the PSS and PAH, respectively.
  • the PAH / PSS / PAH layer 3 that functions as the bonding layer 13 is formed on the silica particles 6.
  • the first semiconductor nanoparticles 1 CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm
  • the silica particles on which the PAH / PSS / PAH layer 3 was formed were capped with 0.8 mmol / L of mercaptopropionic acid were dispersed.
  • a silica intermediate structure in which an internal structure in which the first semiconductor nanoparticles 1 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm) are integrated on silica particles is formed by dispersing in 0.2 mL of an aqueous solution. You can get a body.
  • a PAH layer, a PSS layer, and a PAH layer are formed on the silica intermediate structure.
  • the first semiconductor nanoparticles 1 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm) are dispersed again in an aqueous solution. What is necessary is just to repeat a series of processes.
  • CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm as the second semiconductor nanoparticles 4 are further accumulated outside the silica intermediate structure using the layer-by-layer method.
  • about 100 silica intermediate structures prepared above were added 0.5 mL of PAH solution prepared by the same method as in Example 1 and absorbed for 20 minutes.
  • a PAH layer is formed on the surface of the structure.
  • the PSS layer and the PAH layer are formed by performing the same processing for the PSS and PAH, respectively. By these operations, the PAH / PSS / PAH layer 3 is formed on the silica intermediate structure.
  • second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) in which the silica intermediate structure on which the PAH / PSS / PAH layer 3 is formed are capped with 0.8 mmol / L of mercaptopropionic acid are applied.
  • the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) having a larger band gap than the semiconductor nanoparticles 1 constituting the internal structure are obtained.
  • a semiconductor nanoparticle integrated structure formed by forming an integrated external structure can be obtained.
  • the second semiconductor nanoparticles 4 In order to stack a plurality of layers of the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm), formation of a PAH layer, formation of a PSS layer, and After a new PAH / PSS / PAH layer is formed by sequentially forming a PAH layer, the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) are dispersed again in an aqueous solution. What is necessary is just to repeat a series of processes to disperse
  • the PAH layer, the PSS layer, and the PAH layer are sequentially formed on the outermost periphery of the semiconductor nanoparticle assembly structure in the same manner.
  • PAA treatment is further performed to introduce a carboxyl group.
  • a hydrophilic layer is formed as the surface layer 5.
  • Example 1 Example except that the second semiconductor nanoparticles 4 constituting the external structure are the same CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm as the first semiconductor nanoparticles 1 constituting the internal structure. In the same manner as in No. 2, a semiconductor nanoparticle integrated structure was obtained.
  • Table 1 shows data on the semiconductor nanoparticles constituting the semiconductor nanoparticle integrated structure obtained in Example 2 and Comparative Example 1.
  • the relationship between the band gaps of the two types of core-shell type semiconductor nanoparticles constituting the semiconductor nanoparticle integrated structure described in the examples is shown in FIG. 8, and the core-shell type constituting the obtained semiconductor nanoparticle integrated structure is shown in FIG.
  • the definition of the core diameter in the semiconductor nanoparticles is shown in FIG.
  • the particle diameters (volume average diameter) of the first semiconductor nanoparticles 1, the second semiconductor nanoparticles 4, and the semiconductor nanoparticle integrated structure are determined by a dynamic light scattering method (MalvernvInstruments, Zetasizer Nano). Using S), the particle size distribution was measured immediately after the production of semiconductor nanoparticles or aggregates (before aggregation). The average particle diameter (volume average diameter) was the particle diameter at the peak (center) position of the particle size distribution.
  • Table 2 shows the emission wavelength and fluorescence intensity of the semiconductor nanoparticle integrated structure obtained in Example 2 and Comparative Example 1.

Abstract

The purpose of the present invention is to achieve a semiconductor nanoparticle assembly structure having high luminance, which is suppressed in decrease of the luminance even if semiconductor nanoparticles are assembled. A semiconductor nanoparticle assembly structure of the present invention comprises an inner structure which is obtained by assembling a plurality of first semiconductor nanoparticles and an outer structure which is obtained by assembling a plurality of second semiconductor nanoparticles. The first semiconductor nanoparticles have a smaller band gap than the second semiconductor nanoparticles.

Description

半導体ナノ粒子集積構造体Semiconductor nanoparticle integrated structure
 本発明は発光輝度の高い半導体ナノ粒子集積構造体に関する。 The present invention relates to a semiconductor nanoparticle integrated structure having high emission luminance.
 バイオアッセイや病理診断において標識体として蛍光体を使用する場合、蛍光強度が大きいほど高いSN比が得られることから、蛍光強度が高い蛍光体が望まれている。これまで蛍光体として蛍光色素が使われてきたが、蛍光色素は有機材料であり、長時間励起光を照射すると輝度が低下していく、すなわち耐光性が悪いという問題があった。これに対し、耐光性の問題のない、無機材料で構造の簡単な半導体ナノ粒子を本分野に適用しようというのが現在の傾向である。半導体ナノ粒子は、半導体粒子をナノサイズに小さくすると、バンドギャップがバルクのものより小さくなり、その量子効果が強まる結果、蛍光が発生するというものである。現在までのところII-VI族の半導体ナノ粒子、CdSe、CdTe等、III-V族の半導体ナノ粒子、InP、GaP等、I-III-VI族CuInS2等の材料が開発されている。これらは発光効率を上げるため、これらの材料をコアとし、その外側をそれよりバンドギャップの大きいZnS等のシェルを形成することで電子の閉じ込め効果を向上し、半導体ナノ粒子自体の発光効率を上げることが行われている。 When a fluorescent substance is used as a label in bioassays or pathological diagnosis, a higher S / N ratio is obtained as the fluorescent intensity increases, and therefore a fluorescent substance having a higher fluorescent intensity is desired. Until now, fluorescent dyes have been used as phosphors. However, fluorescent dyes are organic materials, and there has been a problem that the luminance decreases when irradiated with excitation light for a long time, that is, the light resistance is poor. On the other hand, the current trend is to apply semiconductor nanoparticles having a simple structure with an inorganic material, which have no problem of light resistance, to this field. The semiconductor nanoparticles are such that when the semiconductor particles are reduced to a nano size, the band gap becomes smaller than that of the bulk and the quantum effect is strengthened, resulting in fluorescence. To date, materials such as II-VI group semiconductor nanoparticles, CdSe, CdTe, III-V group semiconductor nanoparticles, InP, GaP, I-III-VI group CuInS 2 and the like have been developed. In order to increase the luminous efficiency, these materials are used as a core, and a shell such as ZnS having a larger band gap is formed on the outer side to improve the electron confinement effect and increase the luminous efficiency of the semiconductor nanoparticles themselves. Things have been done.
 しかし、バイオアッセイでの高感度測定や病理診断における顕微鏡下での蛍光目視診断では、これら半導体ナノ粒子でも1粒子あたりの発光強度が不足するため、さらなる高輝度蛍光体粒子の開発が望まれている。 However, in fluorescence visual diagnosis under a microscope for high-sensitivity measurement in bioassay and pathological diagnosis, since these semiconductor nanoparticles lack the emission intensity per particle, further development of high-luminance phosphor particles is desired. Yes.
 上記の問題を解決するため、半導体ナノ粒子を集積させて50~1000nmの巨大粒子を形成することで、1粒子当たりの輝度を上げる方法が検討されている。
 そのような巨大粒子を製造方法の一つとして、Stober法(非特許文献1参照)に基づくシリカ前駆体の加水分解反応を利用して、半導体ナノ粒子をシリカビーズ内に内包する方法が挙げられる。例えば、非特許文献2には、CdSe/ZnSからなる半導体ナノ粒子を、トリ-n-オクチルホスフィンオキシド(TOPO)存在下テトラエチルオルソシリケート(TEOS)と反応させることによりシリカビーズ内に内包する試みが開示されている。
In order to solve the above problems, a method for increasing the luminance per particle by integrating semiconductor nanoparticles to form giant particles of 50 to 1000 nm has been studied.
One method for producing such giant particles is a method of encapsulating semiconductor nanoparticles in silica beads using a hydrolysis reaction of a silica precursor based on the Stober method (see Non-Patent Document 1). . For example, Non-Patent Document 2 has attempted to encapsulate CdSe / ZnS semiconductor nanoparticles in silica beads by reacting with tetraethylorthosilicate (TEOS) in the presence of tri-n-octylphosphine oxide (TOPO). It is disclosed.
 また、関連する別のアプローチとして、非特許文献3には、シリカコロイド結晶ビーズ表面にCdTeを積層させる方法として、ポリ(アリルアミン塩酸塩)(PAH)とポリ(4-スチレンスルホン酸ナトリウム)(PSS)からなるPAH/PSS/PAH積層体と、CdTeからなる層とを交互に積層させる方法が開示されている。非特許文献3記載の発明は、シリカコロイド結晶ビーズの有する高い多孔性および高い表面積対体積比を利用して、発光強度を高めようとするものである。 As another related approach, Non-Patent Document 3 discloses poly (allylamine hydrochloride) (PAH) and poly (sodium 4-styrenesulfonate) (PSS) as a method of laminating CdTe on the surface of silica colloidal crystal beads. A method of alternately laminating a PAH / PSS / PAH laminated body made of) and layers made of CdTe is disclosed. The invention described in Non-Patent Document 3 intends to increase the emission intensity by utilizing the high porosity and high surface area to volume ratio of silica colloidal crystal beads.
 半導体ナノ粒子を集積させて巨大粒子を形成することで、1粒子当たりの輝度を上げる試みは、従来種々行われているものの、ただ単に半導体ナノ粒子を集積させるだけでは、集積した個数分の輝度が得られないことが知られている。 Various attempts have been made to increase the luminance per particle by forming semiconductor particles by forming semiconductor particles. However, if the semiconductor nanoparticles are simply integrated, the luminance of the integrated number of particles is obtained. It is known that cannot be obtained.
 この理由の1つとして、以下のものが挙げられる。
 半導体ナノ粒子およびその集積体は、一般的な有機蛍光体と同様、光エネルギーなどの形で外部からのエネルギーを受けて励起し、励起状態から基底状態に戻る過程で蛍光を発光する。このとき、蛍光発光に用いられるエネルギーは、通常、基底状態から励起状態に到るために外部から取得したエネルギーよりも小さいことから、発光波長は吸収波長よりも短くなる。ここで、半導体ナノ粒子の吸収・発光スペクトルの例として、図2に、コア/シェル型半導体ナノ粒子集積体として広く用いられているCdSe/ZnS半導体ナノ粒子集積体を構成するナノ粒子の吸収、発光スペクトルを示す。図2に示されるように、一般的な半導体ナノ粒子集積体を構成する半導体ナノ粒子において、吸収スペクトルと発光スペクトルとが一部重複する部分(斜線部)が存在する。このとき、発光極大波長近傍の波長における吸収スペクトルが、無視できないレベルに達している場合も多く、集積体内部で発光した光が集積体外部の量子ドットで吸収されてしまうと考えられる。このように半導体ナノ粒子を集積化しても期待された輝度の上昇が得られない効果を濃度消光と呼ぶ。
One reason for this is as follows.
The semiconductor nanoparticles and their aggregates are excited by receiving external energy in the form of light energy or the like, and emit fluorescence in the process of returning from the excited state to the ground state, in the same manner as general organic phosphors. At this time, since the energy used for fluorescence emission is usually smaller than the energy acquired from the outside in order to reach the excited state from the ground state, the emission wavelength is shorter than the absorption wavelength. Here, as an example of the absorption / emission spectrum of semiconductor nanoparticles, FIG. 2 shows the absorption of nanoparticles constituting a CdSe / ZnS semiconductor nanoparticle assembly widely used as a core / shell type semiconductor nanoparticle assembly. An emission spectrum is shown. As shown in FIG. 2, in the semiconductor nanoparticles constituting a general semiconductor nanoparticle assembly, there are portions (hatched portions) where the absorption spectrum and the emission spectrum partially overlap. At this time, the absorption spectrum at a wavelength near the emission maximum wavelength often reaches a level that cannot be ignored, and it is considered that the light emitted inside the integrated body is absorbed by the quantum dots outside the integrated body. Such an effect that the expected increase in luminance is not obtained even if semiconductor nanoparticles are integrated is called concentration quenching.
 本発明は、上記問題に鑑みてなされたものであり、半導体ナノ粒子を集積化しても輝度の低下が少ない、高輝度の半導体ナノ粒子集積構造体を得ることを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to obtain a high-brightness semiconductor nanoparticle integrated structure in which a decrease in luminance is small even when semiconductor nanoparticles are integrated.
 本発明に係わる上記課題は、以下の[1]~[8]に示される手段によって解決される。
 [1] 複数の第1の半導体ナノ粒子を集積してなる内部構造体と、
 該内部構造体を被覆する、複数の第2の半導体ナノ粒子を集積してなる外部構造体と
を含み、
 該第1の半導体ナノ粒子が、該第2の半導体ナノ粒子より小さいバンドギャップを有する半導体ナノ粒子集積構造体。
The above-described problems related to the present invention are solved by means shown in the following [1] to [8].
[1] an internal structure formed by integrating a plurality of first semiconductor nanoparticles;
An external structure formed by integrating a plurality of second semiconductor nanoparticles covering the internal structure,
A semiconductor nanoparticle assembly structure in which the first semiconductor nanoparticles have a smaller band gap than the second semiconductor nanoparticles.
 [2] 前記第1の半導体ナノ粒子が、
 該第1の半導体ナノ粒子の発光ピーク波長の半値幅相当分以上、前記第2の半導体ナノ粒子よりも小さいバンドギャップを有する前記[1]に記載の半導体ナノ粒子集積構造体。
[2] The first semiconductor nanoparticles are:
The semiconductor nanoparticle integrated structure according to [1], wherein the first semiconductor nanoparticle has a band gap that is equal to or greater than the half-value width of the emission peak wavelength of the first semiconductor nanoparticle and smaller than the second semiconductor nanoparticle.
 [3] 前記第1の半導体ナノ粒子が、
 前記第2の半導体ナノ粒子よりも長い発光ピーク波長を有する前記[1]または[2]に記載の半導体ナノ粒子集積構造体。
[3] The first semiconductor nanoparticles include
The semiconductor nanoparticle integrated structure according to [1] or [2], which has an emission peak wavelength longer than that of the second semiconductor nanoparticle.
 [4] 前記第1の半導体ナノ粒子の発光ピーク波長と、前記第2の半導体ナノ粒子の発光ピーク波長との差が、該第1の半導体ナノ粒子の発光ピーク波長の半値幅以上である前記[3]に記載の半導体ナノ粒子集積構造体。
 [5] 前記第1の半導体ナノ粒子と、前記第2の半導体ナノ粒子が、ともにコア/シェル構造を有する前記[1]~[4]のいずれかに記載の半導体ナノ粒子集積構造体。
[4] The difference between the emission peak wavelength of the first semiconductor nanoparticles and the emission peak wavelength of the second semiconductor nanoparticles is equal to or greater than the half-value width of the emission peak wavelength of the first semiconductor nanoparticles. The semiconductor nanoparticle integrated structure according to [3].
[5] The semiconductor nanoparticle integrated structure according to any one of [1] to [4], wherein both the first semiconductor nanoparticles and the second semiconductor nanoparticles have a core / shell structure.
 [6] 前記第1の半導体ナノ粒子を構成するコア部分およびシェル部分が、前記第2の半導体ナノ粒子を構成するコア部分およびシェル部分とそれぞれ同一の材質から構成され、且つ、
 該第1の半導体ナノ粒子を構成するコア部分が、該第2の半導体ナノ粒子を構成するコア部分よりも大きな体積平均径を有する
前記[5]に記載の半導体ナノ粒子集積構造体。
[6] The core portion and the shell portion constituting the first semiconductor nanoparticles are each made of the same material as the core portion and the shell portion constituting the second semiconductor nanoparticles, and
The semiconductor nanoparticle integrated structure according to [5], wherein the core part constituting the first semiconductor nanoparticles has a larger volume average diameter than the core part constituting the second semiconductor nanoparticles.
 [7] 前記第1の半導体ナノ粒子を構成するコア部分の体積平均径と、前記第2の半導体ナノ粒子を構成するコア部分の体積平均径との差が、
 該第1の半導体ナノ粒子を構成するコア部分の発光ピーク波長の半値幅相当分以上である前記[6]に記載の半導体ナノ粒子集積構造体。
[7] The difference between the volume average diameter of the core part constituting the first semiconductor nanoparticles and the volume average diameter of the core part constituting the second semiconductor nanoparticles is:
The semiconductor nanoparticle integrated structure according to [6], which is equal to or more than the half-value width of the emission peak wavelength of the core portion constituting the first semiconductor nanoparticle.
 [8] 体積平均径が50~1000nmの範囲である前記[1]~[7]のいずれかに記載の半導体ナノ粒子集積構造体。 [8] The semiconductor nanoparticle integrated structure according to any one of [1] to [7], wherein the volume average diameter is in the range of 50 to 1000 nm.
 上記手段により、半導体ナノ粒子を集積化しても輝度の低下が少ない、高輝度の半導体ナノ粒子集積構造体を得ることができる。集積化粒子の外部側の半導体ナノ粒子が、内部半導体ナノ粒子からの発光を吸収しないため、高輝度の半導体ナノ粒子集積構造体が得られる。 By the above means, it is possible to obtain a high-brightness semiconductor nanoparticle integrated structure with little decrease in luminance even when semiconductor nanoparticles are integrated. Since the semiconductor nanoparticles outside the integrated particles do not absorb light emitted from the internal semiconductor nanoparticles, a high-brightness semiconductor nanoparticle integrated structure can be obtained.
本発明の半導体ナノ粒子集積構造体の断面図である。It is sectional drawing of the semiconductor nanoparticle integrated structure of this invention. 従来技術のCdSe/ZnS半導体ナノ粒子集積体を構成するナノ粒子の吸収、発光スペクトルを示す図である。It is a figure which shows the absorption and emission spectrum of the nanoparticle which comprises the CdSe / ZnS semiconductor nanoparticle aggregate | assembly of a prior art. 本発明のCdSe/ZnS半導体ナノ粒子集積構造体を構成するナノ粒子の吸収、発光スペクトルを示す図である。It is a figure which shows the absorption and emission spectrum of the nanoparticle which comprises the CdSe / ZnS semiconductor nanoparticle integrated structure of this invention. CdSe/ZnS半導体ナノ粒子のコア径と発光波長の関係を示す図である。It is a figure which shows the relationship between the core diameter of CdSe / ZnS semiconductor nanoparticle, and light emission wavelength. CdSe/ZnS半導体ナノ粒子のコア径とバンドギャップの関係を示す図である。It is a figure which shows the relationship between the core diameter of CdSe / ZnS semiconductor nanoparticles, and a band gap. 実施例1に示す半導体ナノ粒子集積構造体の製造工程を表す断面図である。6 is a cross-sectional view illustrating a manufacturing process of the semiconductor nanoparticle integrated structure shown in Example 1. FIG. 実施例2に示す半導体ナノ粒子集積構造体の製造工程を表す断面図である。6 is a cross-sectional view illustrating a manufacturing process of a semiconductor nanoparticle integrated structure shown in Example 2. FIG. 実施例記載の半導体ナノ粒子集積構造体を構成する二種類のコアシェル型半導体ナノ粒子のバンドギャップの関係を示す図である。It is a figure which shows the relationship of the band gap of two types of core-shell type semiconductor nanoparticles which comprise the semiconductor nanoparticle integrated structure of an Example description. 実施例記載の半導体ナノ粒子集積構造体を構成するコアシェル型半導体ナノ粒子におけるコア径の定義を示す図である。It is a figure which shows the definition of the core diameter in the core-shell type semiconductor nanoparticle which comprises the semiconductor nanoparticle integrated structure of an Example description.
 以下、本発明について、図を参照しながら具体的に説明する。
 〔半導体ナノ粒子集積構造体〕
 本発明に係る半導体ナノ粒子集積構造体10は、
 複数の第1の半導体ナノ粒子11を集積してなる内部構造体と、
 該内部構造体を被覆する、複数の第2の半導体ナノ粒子14を集積してなる外部構造体と
を含み、
 該第1の半導体ナノ粒子11が、該第2の半導体ナノ粒子14より小さいバンドギャップを有することを特徴とする。
Hereinafter, the present invention will be specifically described with reference to the drawings.
[Semiconductor nanoparticle integrated structure]
A semiconductor nanoparticle integrated structure 10 according to the present invention includes:
An internal structure in which a plurality of first semiconductor nanoparticles 11 are integrated;
An external structure formed by integrating a plurality of second semiconductor nanoparticles 14 covering the internal structure,
The first semiconductor nanoparticles 11 have a smaller band gap than the second semiconductor nanoparticles 14.
 本発明は、半導体ナノ粒子から発せられた蛍光の濃度消光を最小限に抑えるために、第1の半導体ナノ粒子11が、第2の半導体ナノ粒子14より小さいバンドギャップを有しているという点に最大の特徴がある。このことは、バンドギャップと波長とが、式E=hc/λ(E:エネルギー;h:プランク定数;c:光速;λ:波長)に基づき反比例する関係にあることからすると、第1の半導体ナノ粒子11の発光ピーク波長が、第2の半導体ナノ粒子14より長いことを意味する。 The present invention is characterized in that the first semiconductor nanoparticle 11 has a smaller band gap than the second semiconductor nanoparticle 14 in order to minimize concentration quenching of fluorescence emitted from the semiconductor nanoparticle. Has the biggest feature. This is because the band gap and the wavelength are inversely proportional to each other based on the equation E = hc / λ (E: energy; h: Planck constant; c: speed of light; λ: wavelength). It means that the emission peak wavelength of the nanoparticles 11 is longer than that of the second semiconductor nanoparticles 14.
 本発明の概念を、図3を用いて説明する。
 本発明に係る半導体ナノ粒子集積構造体10は、バンドギャップの異なる2つの半導体ナノ粒子、すなわち、第1の半導体ナノ粒子11および第2の半導体ナノ粒子14を含んでいる。ここで、半導体ナノ粒子集積構造体10を構成する第1の半導体ナノ粒子11および第2の半導体ナノ粒子14のそれぞれについて、吸収・発光スパクトルを図3にまとめて示す。図3の例では、第1の半導体ナノ粒子11として発光ピーク波長540nmのCdSe/ZnS半導体ナノ粒子、および第2の半導体ナノ粒子14として発光ピーク波長490nmのCdSe/ZnS半導体ナノ粒子を用いた半導体ナノ粒子集積構造体10についての吸収・発光スペクトルが示されている。図3において、半導体ナノ粒子集積構造体10を構成する第1の半導体ナノ粒子11および第2の半導体ナノ粒子14は、それぞれ「集積体内部に配置されたナノ粒子」および「集積体外部に配置されたナノ粒子」と記載されている。ここで、発光ピーク波長λとバンドギャップEgはλ(nm)=1240/Eg(eV)の関係となることから、第1の半導体ナノ粒子11および第2の半導体ナノ粒子14のバンドギャップは、それぞれ2.30eVおよび2.53eVとなる。このような半導体ナノ粒子集積構造体10においては、内部に存在する第1の半導体ナノ粒子11で発光した光子が2.30eVのエネルギーで、外部に存在する第2の半導体ナノ粒子14が吸収できるエネルギー2.53eVより小さいため、第2の半導体ナノ粒子14によって吸収されることなく、第1の半導体ナノ粒子11からの蛍光を外部に効率よく取り出せることとなる。
The concept of the present invention will be described with reference to FIG.
The semiconductor nanoparticle assembly structure 10 according to the present invention includes two semiconductor nanoparticles having different band gaps, that is, a first semiconductor nanoparticle 11 and a second semiconductor nanoparticle 14. Here, for each of the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 constituting the semiconductor nanoparticle integrated structure 10, the absorption and emission spectra are collectively shown in FIG. In the example of FIG. 3, a semiconductor using a CdSe / ZnS semiconductor nanoparticle having an emission peak wavelength of 540 nm as the first semiconductor nanoparticle 11 and a CdSe / ZnS semiconductor nanoparticle having an emission peak wavelength of 490 nm as the second semiconductor nanoparticle 14. An absorption / emission spectrum of the nanoparticle integrated structure 10 is shown. In FIG. 3, the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 constituting the semiconductor nanoparticle integrated structure 10 are “nanoparticles arranged inside the integrated body” and “outside the integrated body”, respectively. Nanoparticles ”. Here, since the emission peak wavelength λ and the band gap Eg have a relationship of λ (nm) = 1240 / Eg (eV), the band gaps of the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are: They are 2.30eV and 2.53eV respectively. In such a semiconductor nanoparticle integrated structure 10, photons emitted from the first semiconductor nanoparticles 11 existing inside are energy of 2.30 eV, and energy that can be absorbed by the second semiconductor nanoparticles 14 present outside. Since it is smaller than 2.53 eV, the fluorescence from the first semiconductor nanoparticles 11 can be efficiently extracted outside without being absorbed by the second semiconductor nanoparticles 14.
 ここで、第1の半導体ナノ粒子11のバンドギャップと、第2の半導体ナノ粒子14のバンドギャップとの間にどの程度差を設けるかが問題となるが、吸収スペクトルはピーク波長から短波長側に存在することから、発光スペクトル換算で半値幅(FWHM:ピーク値の半分の値における全ピーク幅、すなわち、半値全幅)程度バンドギャップをずらしてやるのが効果的と考えられる。すなわち、本発明では、第1の半導体ナノ粒子11が、第2の半導体ナノ粒子14と比べて、第1の半導体ナノ粒子11の発光ピーク波長の半値幅相当分以上小さいバンドギャップを有することが好ましい。これを発光ピーク波長の面から見ると、第1の半導体ナノ粒子11の発光ピーク波長が、第2の半導体ナノ粒子14の発光ピーク波長と比べて、第1の半導体ナノ粒子11の発光ピーク波長の半値幅以上長いことが好ましい。 Here, the problem is how much difference is provided between the band gap of the first semiconductor nanoparticles 11 and the band gap of the second semiconductor nanoparticles 14, but the absorption spectrum is shorter than the peak wavelength. Therefore, it is considered effective to shift the band gap by half the width (FWHM: full peak width at half the peak value, that is, full width at half maximum) in terms of emission spectrum. That is, in the present invention, the first semiconductor nanoparticles 11 may have a band gap that is smaller than the second semiconductor nanoparticles 14 by a portion corresponding to the half-value width of the emission peak wavelength of the first semiconductor nanoparticles 11 or more. preferable. When this is viewed in terms of the emission peak wavelength, the emission peak wavelength of the first semiconductor nanoparticles 11 is greater than the emission peak wavelength of the first semiconductor nanoparticles 11 compared to the emission peak wavelength of the second semiconductor nanoparticles 14. It is preferable that it is longer than the half-value width.
 ここで、本発明の概念がより良く理解されるよう、内側に存在する第1の半導体ナノ粒子11のバンドギャップをもとに、外側に位置する第2の半導体ナノ粒子14がどの程度のバンドギャップを有したらよいかについてより具体的に説明する。 Here, in order to better understand the concept of the present invention, based on the band gap of the first semiconductor nanoparticles 11 existing on the inner side, how much band the second semiconductor nanoparticles 14 located on the outer side are. A more specific description will be given as to whether a gap should be provided.
 第1の半導体ナノ粒子11における発光スペクトルにおいて、発光ピークについての半値幅が30nm程度であると仮定すると、第2の半導体ナノ粒子14が有すべきバンドギャップは下記のように計算できる。CdSe/ZnS半導体ナノ粒子の発光スペクトルとバンドギャップとの間には、λ(nm)=1240/Eg(eV)の関係が成り立つことから、第1の半導体ナノ粒子11における発光ピーク波長が540nmである場合、そのバンドギャップは2.30eVである。第2の半導体ナノ粒子14は第1の半導体ナノ粒子11の発光ピーク波長に対してその半値幅分だけ小さい発光ピーク波長を有すればよいことから、上記の場合において第2の半導体ナノ粒子14が有すべき発光ピーク波長は540-30=510nmとなる。これをバンドギャップの面から見ると、第2の半導体ナノ粒子14は、第1の半導体ナノ粒子11の発光ピーク波長に対してその半値幅分だけ小さい発光ピーク波長に対応するバンドギャップ、すなわち、510nmに対応するバンドギャップを有していればよいので、Eg=1240/(540-30)=2.43eVとなる。したがって2.43eV以上のバンドギャップをもつ第2の半導体ナノ粒子14を外側におくことが、本発明の効果をより高くするために望ましい。発光波長をバンドギャップに置き換えるのは、上記の計算を行えば良い。 In the emission spectrum of the first semiconductor nanoparticle 11, assuming that the half-value width for the emission peak is about 30 nm, the band gap that the second semiconductor nanoparticle 14 should have can be calculated as follows. Since the relationship of λ (nm) = 1240 / Eg (eV) is established between the emission spectrum and the band gap of the CdSe / ZnS semiconductor nanoparticles, the emission peak wavelength in the first semiconductor nanoparticles 11 is 540 nm. In some cases, the band gap is 2.30 eV. The second semiconductor nanoparticles 14 need only have an emission peak wavelength that is smaller than the emission peak wavelength of the first semiconductor nanoparticles 11 by the half-value width thereof. The emission peak wavelength that should be present is 540-30 = 510 nm. When this is viewed from the surface of the band gap, the second semiconductor nanoparticles 14 have a band gap corresponding to an emission peak wavelength that is smaller than the emission peak wavelength of the first semiconductor nanoparticles 11 by a half-value width, that is, Since it suffices to have a band gap corresponding to 510 nm, Eg = 1240 / (540-30) = 2.43 eV. Therefore, it is desirable to place the second semiconductor nanoparticles 14 having a band gap of 2.43 eV or more outside in order to enhance the effect of the present invention. The above calculation may be performed to replace the emission wavelength with the band gap.
 ところで、半導体ナノ粒子は、構成する半導体の材質を同一にしたときには、その発光波長は、粒径が大きくなるにつれて長くなる傾向がある。ここで、半導体ナノ粒子がコアシェル半導体ナノ粒子である場合、その発光波長は、そのコア部分の径(コア径)が大きくなるにつれて長くなる傾向がある。この傾向は、図4に示したCdSe/ZnS半導体ナノ粒子のコア径と発光波長との関係からも確認される。一方、半導体ナノ粒子は、構成する半導体の材質を同一にしたときには、そのバンドギャップは、粒径が大きくなるにつれて小さくなる傾向があり、半導体ナノ粒子がコアシェル半導体ナノ粒子である場合には、そのコア径が大きくなるにつれて小さくなる傾向がある。この傾向は、図5に示したCdSe/ZnS半導体ナノ粒子のコア径とバンドギャップとの関係からも確認される。したがって、第1の半導体ナノ粒子11と第2の半導体ナノ粒子14を同一半導体で構成した場合、第1の半導体ナノ粒子11が、第2の半導体ナノ粒子14より小さいバンドギャップを有するためには、第1の半導体ナノ粒子11の平均径が、第2の半導体ナノ粒子14の平均径よりも大きくなるように選べばよいことになる。特に、第1の半導体ナノ粒子11と、第2の半導体ナノ粒子14が、ともにコア/シェル構造を有する場合において、第1の半導体ナノ粒子11を構成するコア部分およびシェル部分が、第2の半導体ナノ粒子14を構成するコア部分およびシェル部分とそれぞれ同一の材質から構成されているときには、該第1の半導体ナノ粒子11を構成するコア部分が、該第2の半導体ナノ粒子14を構成するコア部分よりも大きな平均径を有することになる。ここで、本明細書において、「平均径」というときは、特に別の記載がない限り体積平均径をいう。 By the way, when the semiconductor materials of the semiconductor nanoparticles are the same, the emission wavelength tends to become longer as the particle size increases. Here, when the semiconductor nanoparticles are core-shell semiconductor nanoparticles, the emission wavelength tends to increase as the diameter of the core portion (core diameter) increases. This tendency is also confirmed from the relationship between the core diameter and the emission wavelength of the CdSe / ZnS semiconductor nanoparticles shown in FIG. On the other hand, when semiconductor nanoparticles are made of the same semiconductor material, the band gap tends to decrease as the particle size increases. When the semiconductor nanoparticles are core-shell semiconductor nanoparticles, There is a tendency to decrease as the core diameter increases. This tendency is also confirmed from the relationship between the core diameter and band gap of the CdSe / ZnS semiconductor nanoparticles shown in FIG. Therefore, when the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are formed of the same semiconductor, the first semiconductor nanoparticles 11 have a smaller band gap than the second semiconductor nanoparticles 14. The average diameter of the first semiconductor nanoparticles 11 may be selected so as to be larger than the average diameter of the second semiconductor nanoparticles 14. In particular, when both the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 have a core / shell structure, the core portion and the shell portion constituting the first semiconductor nanoparticles 11 are the second When the core portion and the shell portion constituting the semiconductor nanoparticle 14 are made of the same material, the core portion constituting the first semiconductor nanoparticle 11 constitutes the second semiconductor nanoparticle 14. The average diameter is larger than that of the core portion. Here, in this specification, “average diameter” refers to a volume average diameter unless otherwise specified.
 このような場合でも、前述したように、第2の半導体ナノ粒子14は第1の半導体ナノ粒子11の発光ピーク波長に対してその半値幅分だけ小さい発光ピーク波長を有すればよいことから、第2の半導体ナノ粒子14の粒径をそれに合わせて変えればよい。第1の半導体ナノ粒子11と、第2の半導体ナノ粒子14が、ともにコア/シェル構造を有する場合には、第2の半導体ナノ粒子14が第1の半導体ナノ粒子11の発光ピーク波長に対してその半値幅分だけ小さい発光ピーク波長を有するよう、第2の半導体ナノ粒子14のコア径を設定すればよいことになる。すなわち、第1の半導体ナノ粒子11を構成するコア部分の平均径と、前記第2の半導体ナノ粒子14を構成するコア部分の平均径との差が、第1の半導体ナノ粒子11を構成するコア部分の発光ピーク波長の半値幅相当分以上である。 Even in such a case, as described above, the second semiconductor nanoparticles 14 need only have a light emission peak wavelength that is smaller than the light emission peak wavelength of the first semiconductor nanoparticles 11 by the half width. What is necessary is just to change the particle size of the 2nd semiconductor nanoparticle 14 according to it. When both the first semiconductor nanoparticle 11 and the second semiconductor nanoparticle 14 have a core / shell structure, the second semiconductor nanoparticle 14 corresponds to the emission peak wavelength of the first semiconductor nanoparticle 11. Thus, the core diameter of the second semiconductor nanoparticles 14 may be set so that the emission peak wavelength is smaller by the half width. That is, the difference between the average diameter of the core part constituting the first semiconductor nanoparticles 11 and the average diameter of the core part constituting the second semiconductor nanoparticles 14 constitutes the first semiconductor nanoparticles 11. This is equal to or greater than the half-value width of the emission peak wavelength of the core portion.
 このように第2の半導体ナノ粒子14のコア径を設定することは、図4に例示されるような特性曲線があれば可能である。今回、例としてあげているCdSe/ZnS半導体ナノ粒子の場合には、第1の半導体ナノ粒子11の発光ピーク波長を540nmと仮定すると、そのコアサイズは、図4から3.7nmとなる。この場合に第2の半導体ナノ粒子14が有すべき発光ピーク波長は、第1の半導体ナノ粒子11の発光ピークにおける半値幅が30nmとすると、540-30nm=510nm相当となり、図4からこれに対応するコア径を3.4nmとすればよいことがわかる。 It is possible to set the core diameter of the second semiconductor nanoparticles 14 in this way if there is a characteristic curve as exemplified in FIG. In the case of the CdSe / ZnS semiconductor nanoparticles given here as an example, assuming that the emission peak wavelength of the first semiconductor nanoparticles 11 is 540 nm, the core size is 3.7 nm from FIG. In this case, the emission peak wavelength that the second semiconductor nanoparticles 14 should have is equivalent to 540-30 nm = 510 nm when the half-value width at the emission peak of the first semiconductor nanoparticles 11 is 30 nm. It can be seen that the corresponding core diameter should be 3.4 nm.
 また、上記の例では第2の半導体ナノ粒子14のバンドギャップと、第1の半導体ナノ粒子11のバンドギャップとの差が、第1の半導体ナノ粒子11の発光ピークにおける半値幅分あればよいとしたが、あまり両者の差が大きすぎても、二つの発光ピークが重ならず、発光波長領域が広がり、検出の点で不利になると考えられる。そこで、単純化したモデルに基づき、第1の半導体ナノ粒子11の発光ピークと第2の半導体ナノ粒子14の発光ピークとが重なりうる範囲について検討する。ここで、第1の半導体ナノ粒子11の発光ピークと第2の半導体ナノ粒子14の発光ピークが、それぞれλ11およびλ14の中心波長を有し、互いに同程度のピーク高及びピーク幅を有しており、且つ、共に正規分布に従うピーク形状(ピーク広がりについての標準偏差σ)を有すると仮定する。 Further, in the above example, the difference between the band gap of the second semiconductor nanoparticles 14 and the band gap of the first semiconductor nanoparticles 11 may be the half width at the emission peak of the first semiconductor nanoparticles 11. However, even if the difference between the two is too large, the two emission peaks do not overlap and the emission wavelength region is widened, which is disadvantageous in terms of detection. Therefore, based on a simplified model, the range in which the emission peak of the first semiconductor nanoparticles 11 and the emission peak of the second semiconductor nanoparticles 14 can overlap is examined. Here, the emission peak of the first semiconductor nanoparticles 11 and the emission peak of the second semiconductor nanoparticles 14 have center wavelengths of λ 11 and λ 14 , respectively, and have the same peak height and peak width. And both have a peak shape (standard deviation σ with respect to peak broadening) following a normal distribution.
 このような場合、第1の半導体ナノ粒子11の発光ピークについては、中心波長から片側3σずつの範囲内、すなわち波長がλ11±3σの範囲内にピークの99.7%が分布することになる。同様に、第2の半導体ナノ粒子14の発光ピークについても、波長がλ14±3σの範囲内にピークの99.7%が分布することになる。そうすると、これら2つの発光ピークが重なる条件として、第1の半導体ナノ粒子11についての波長がλ11±3σの範囲と、第2の半導体ナノ粒子14についての波長がλ14±3σの範囲と間に重複部分が存在すること、すなわち、ピーク間距離(λ11-λ14)とピーク幅の標準偏差σとが、下記式(1a)を満たす関係にあることが目安となる。 In such a case, the emission peak of the first semiconductor nanoparticle 11 is 99.7% of the peak distributed within the range of 3σ on one side from the center wavelength, that is, within the range of the wavelength λ 11 ± 3σ. Become. Similarly, with respect to the emission peak of the second semiconductor nanoparticles 14, 99.7% of the peak is distributed within the wavelength range of λ 14 ± 3σ. Then, as a condition for these two emission peaks to overlap, the wavelength of the first semiconductor nanoparticles 11 is between λ 11 ± 3σ and the wavelength of the second semiconductor nanoparticles 14 is between λ 14 ± 3σ. As a guide, there is an overlapping portion, that is, the distance between the peaks (λ 11 −λ 14 ) and the standard deviation σ of the peak width have a relationship satisfying the following formula (1a).
  (λ11-λ14)≦6σ(=3σ+3σ)  …(1a)
 正規分布に従うピークでは、半値全幅(FWHM)が標準偏差の2.35倍(≒2×(2×ln2)1/2)にあることから、第1の半導体ナノ粒子11の発光ピークおよび第2の半導体ナノ粒子14の発光ピークにおける半値全幅がともにFHであると仮定すると、上記式(1a)は、さらに、下記式(1b)の形で表すこともできる。
11 −λ 14 ) ≦ 6σ (= 3σ + 3σ) (1a)
In the peak according to the normal distribution, the full width at half maximum (FWHM) is 2.35 times the standard deviation (≈2 × (2 × ln2) 1/2 ), so that the emission peak of the first semiconductor nanoparticle 11 and the second Assuming that the full width at half maximum at the emission peak of the semiconductor nanoparticles 14 is F H , the above formula (1a) can be further expressed by the following formula (1b).
  (λ11-λ14)≦2.54FH(≒6×FH/2.35)  …(1b)
 すなわち、この2つの発光ピーク波長のピーク間距離(λ11-λ14)が、半値幅の2.54倍以内にあることが望ましい。
11 −λ 14 ) ≦ 2.54F H (≈6 × F H /2.35) (1b)
That is, it is desirable that the peak-to-peak distance (λ 11 −λ 14 ) between these two emission peak wavelengths is within 2.54 times the half width.
 これらのことを総合的に見ると、上述したように、本発明では、第1の半導体ナノ粒子11が、第2の半導体ナノ粒子14と比べて、第1の半導体ナノ粒子11の発光ピーク波長の半値幅相当分以上小さいバンドギャップを有すること、すなわち、第1の半導体ナノ粒子11の発光ピーク波長が、第2の半導体ナノ粒子14の発光ピーク波長と比べて、第1の半導体ナノ粒子11の発光ピーク波長の半値幅以上長い(すなわち、FH≦(λ11-λ14)が成り立つ)ことが好ましいのであるから、上記ピーク間距離(λ11-λ14)は、全体として下記式(2)で表される関係にあることが好ましい。 When these are seen comprehensively, as described above, in the present invention, the first semiconductor nanoparticle 11 has a light emission peak wavelength of the first semiconductor nanoparticle 11 as compared with the second semiconductor nanoparticle 14. The first semiconductor nanoparticles 11 have a band gap that is smaller than the half-value width of the first semiconductor nanoparticles 11, that is, the emission peak wavelength of the first semiconductor nanoparticles 11 is larger than the emission peak wavelength of the second semiconductor nanoparticles 14. Is longer than the half-value width of the emission peak wavelength (that is, F H ≦ (λ 11 −λ 14 ) is satisfied), the distance between the peaks (λ 11 −λ 14 ) is generally expressed by the following formula ( The relationship represented by 2) is preferred.
  FH≦(λ11-λ14)≦2.54FH  …(2)
 さらに、上記式(2)を、第1の半導体ナノ粒子11のバンドギャップEg11および第2の半導体ナノ粒子14のバンドギャップEg14を用いて表すと、上述したE=hc/λの関係を用いて、下記式(2')の関係が成り立つことになる。
F H ≦ (λ 11 -λ 14 ) ≦ 2.54F H ... (2)
Furthermore, when the above formula (2) is expressed using the band gap E g11 of the first semiconductor nanoparticles 11 and the band gap E g14 of the second semiconductor nanoparticles 14, the above-described relationship of E = hc / λ is obtained. By using this, the relationship of the following formula (2 ′) is established.
  (hc)-1×FH≦(1/Eg11-1/Eg14)≦2.54(hc)-1×FH …(2')
 つまり、ここで議論している単純化したモデルにおいては、「第1の半導体ナノ粒子が、該第1の半導体ナノ粒子の発光ピーク波長の半値幅相当分以上、第2の半導体ナノ粒子よりも小さいバンドギャップを有する」ときには、
  (hc)-1×FH≦(1/Eg11-1/Eg14
の関係を満たしており、「第1の半導体ナノ粒子と第2の半導体ナノ粒子のバンドギャップの差が半値幅の2.54倍相当以内」であるときには、
  (1/Eg11-1/Eg14)≦2.54(hc)-1×FH
の関係を満たしていることになる。
( Hc ) −1 × F H ≦ (1 / E g11 −1 / E g14 ) ≦ 2.54 (hc) −1 × F H (2 ′)
In other words, in the simplified model discussed here, “the first semiconductor nanoparticle is equal to or larger than the half-value width of the emission peak wavelength of the first semiconductor nanoparticle than the second semiconductor nanoparticle. When having a small bandgap "
( Hc ) −1 × F H ≦ (1 / E g11 −1 / E g14 )
Is satisfied, and “the difference in the band gap between the first semiconductor nanoparticles and the second semiconductor nanoparticles is within 2.54 times the full width at half maximum”,
(1 / E g11 −1 / E g14 ) ≦ 2.54 (hc) −1 × F H
The relationship is satisfied.
 ・半導体ナノ粒子
 本発明の半導体ナノ粒子集積構造体10を構成する半導体ナノ粒子は、第1の半導体ナノ粒子11および第2の半導体ナノ粒子14ともに、半導体ナノ粒子集積構造体10において、外部から与えられたエネルギーを受けて励起し、励起状態から基底状態に戻る過程で蛍光を発する役割を有する。
Semiconductor nanoparticles The semiconductor nanoparticles constituting the semiconductor nanoparticle integrated structure 10 of the present invention are both the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 in the semiconductor nanoparticle integrated structure 10 from the outside. It has the role of emitting fluorescence in the process of being excited by receiving given energy and returning from the excited state to the ground state.
 ただ、本発明においては、第1の半導体ナノ粒子11は、第2の半導体ナノ粒子14より小さいバンドギャップを有する。ここで、第1の半導体ナノ粒子11が、第2の半導体ナノ粒子14よりも、第1の半導体ナノ粒子11の発光ピーク波長の半値幅相当分以上小さいバンドギャップを有していることが好ましい。 However, in the present invention, the first semiconductor nanoparticles 11 have a smaller band gap than the second semiconductor nanoparticles 14. Here, it is preferable that the first semiconductor nanoparticles 11 have a band gap smaller than that of the second semiconductor nanoparticles 14 by an amount equivalent to the half-value width of the emission peak wavelength of the first semiconductor nanoparticles 11 or more. .
 ここで、本発明で用いられる半導体ナノ粒子を構成する半導体は、可視領域から近赤外領域における蛍光発光を生じさせるようなバンドギャップを有する半導体が好ましく、具体的には、200~700nmの範囲内の波長の紫外~可視光により励起されたときに、400~900nmの範囲内の波長の可視~近赤外光の発光を示すことが好ましい。そのような半導体として、II-VI族、III-V族、III-VI族、IV属、IV-VI族およびI-III-VI属の無機半導体が好適に用いられる。ここで、II-VI族の無機半導体の好適な例として、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTeが、III-V族の無機半導体の好適な例として、AlN、AlP、AlAs、GaN、GaP、GaAs、InN、InP、InAs、InGaP、InGaAsが、III-VI族の無機半導体の好適な例として、Al2Se3が、IV族の無機半導体の好適な例として、Si、Geが、IV-VI族の無機半導体の好適な例として、PbS、PbSe、PbTeが、I-III-VI属の無機半導体の好適な例として、CuInS2がそれぞれ挙げられる。 Here, the semiconductor constituting the semiconductor nanoparticles used in the present invention is preferably a semiconductor having a band gap that causes fluorescence emission from the visible region to the near infrared region, and specifically, a range of 200 to 700 nm. When excited by ultraviolet to visible light having an inner wavelength, it preferably emits visible to near infrared light having a wavelength in the range of 400 to 900 nm. As such semiconductors, inorganic semiconductors of II-VI group, III-V group, III-VI group, IV group, IV-VI group and I-III-VI group are preferably used. Here, as preferred examples of II-VI group inorganic semiconductors, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe are preferred examples of III-V group inorganic semiconductors, AlN, AlP, AlAs, GaN, GaP, GaAs, InN, InP, InAs, InGaP and InGaAs are suitable examples of III-VI group inorganic semiconductors, and Al 2 Se 3 is a suitable example of group IV inorganic semiconductors. PbS, PbSe, and PbTe are preferable examples of inorganic semiconductors of Si, Ge, and IV-VI, and CuInS 2 is preferable as a preferable example of inorganic semiconductors of the I-III-VI group.
 本発明で用いられる半導体ナノ粒子は、第1の半導体ナノ粒子1および第2の半導体ナノ粒子4ともに、全体として均一な構造を有していてもよいし、構成成分の組成が異なる2以上の構造を有していてもよいし、あるいは、構成成分の組成が位置によって連続的に変化する構造を有していてもよい。本発明においては、発光効率の高い点から、第1の半導体ナノ粒子1および第2の半導体ナノ粒子4のうちの、少なくともいずれか一方がコア/シェル構造を有することが望ましく、第1の半導体ナノ粒子1および第2の半導体ナノ粒子4がともにコア/シェル構造を有することが特に望ましい。 The semiconductor nanoparticles used in the present invention may have a uniform structure as a whole in both the first semiconductor nanoparticles 1 and the second semiconductor nanoparticles 4, or two or more different constituent components may be used. You may have a structure, or you may have a structure where the composition of a component changes continuously with a position. In the present invention, from the viewpoint of high luminous efficiency, it is desirable that at least one of the first semiconductor nanoparticles 1 and the second semiconductor nanoparticles 4 has a core / shell structure, and the first semiconductor It is particularly desirable that both the nanoparticles 1 and the second semiconductor nanoparticles 4 have a core / shell structure.
 コアシェル型半導体ナノ粒子
 本発明を構成する半導体ナノ粒子として、コア/シェル構造を有する半導体ナノ粒子、すなわち、コアシェル型半導体ナノ粒子を使うことが望ましい。コアシェル型とは、後述する半導体素材を含有する粒子であって、コア部(芯部)とそれを被覆するシェル部(被覆部)で構成される多重構造を有する粒子であり、その粒径は、通常概ね20nm以下である。
Core-shell type semiconductor nanoparticles As the semiconductor nanoparticles constituting the present invention, it is desirable to use semiconductor nanoparticles having a core / shell structure, that is, core-shell type semiconductor nanoparticles. The core-shell type is a particle containing a semiconductor material to be described later, and is a particle having a multiple structure composed of a core part (core part) and a shell part (covering part) covering the core part. Usually, it is approximately 20 nm or less.
 (コア部形成素材)
 本発明に係るコア部(「コア粒子」ともいう。)を形成するための素材としては、Si、Ge、InN、InP、GaAs、AlSe、CdSe、AlAs、GaP、ZnTe、CdTe、InAs、CuInS2などの半導体又はこれらを形成する原料を用いることが出来る。本発明においては、特に、InP、CdTe、CdSe、CuInS2がより好ましく用いられる。本発明に係るコア部(「コア粒子」)の平均粒径に関しては、0.5~15nmであることが好ましい。
(Core part forming material)
Materials for forming the core portion (also referred to as “core particle”) according to the present invention include Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, InAs, and CuInS 2 A semiconductor such as the above or a raw material for forming these can be used. In the present invention, InP, CdTe, CdSe, and CuInS 2 are particularly preferably used. The average particle size of the core portion (“core particle”) according to the present invention is preferably 0.5 to 15 nm.
 (シェル部形成素材)
 本発明に係るシェル部を形成するための素材としては、II-VI族、III-V族、IV族の無機半導体を用いることができる。例えば、Si、Ge、InN、InP、GaAs、AlSe、CdSe、AlAs、GaP、ZnTe、CdTe、InAsなどの各コア形成無機材料よりバンドギャップが大きく、毒性を有さない半導体又はこれらを形成する原料が好ましい。より好ましくは、InP、CdTe、CdSe、CuInS2に対して、ZnSがシェルとして適用される。なお、本発明に係るシェル部は、コア粒子が部分的に露出して弊害を生じない限り、コア粒子の全表面を完全に被覆するものでなくてもよいし、シェル部のない半導体ナノ粒子であってもよい。本発明に係るコア/シェル構造半導体ナノ体粒子の平均粒径は1~20nmであることが好ましい。
(Shell forming material)
As a material for forming the shell portion according to the present invention, II-VI group, III-V group, and IV group inorganic semiconductors can be used. For example, a semiconductor having a larger band gap than each core-forming inorganic material such as Si, Ge, InN, InP, GaAs, AlSe, CdSe, AlAs, GaP, ZnTe, CdTe, InAs, etc. Is preferred. More preferably, ZnS is applied as a shell to InP, CdTe, CdSe, CuInS 2 . Note that the shell portion according to the present invention may not completely cover the entire surface of the core particle as long as the core particle is not partially exposed to cause a harmful effect, or the semiconductor nanoparticle without the shell portion. It may be. The average particle size of the core / shell structure semiconductor nanoparticle according to the present invention is preferably 1 to 20 nm.
 ・内部構造体、外部構造体
 本発明では、内部構造体は、複数の上記第1の半導体ナノ粒子11を集積してなり、外部構造体は、複数の上記第2の半導体ナノ粒子14を集積してなる。
Internal structure, external structure In the present invention, the internal structure is formed by integrating the plurality of first semiconductor nanoparticles 11, and the external structure is integrated with the plurality of second semiconductor nanoparticles 14. Do it.
 本発明の第1の好適な態様において、本発明に係る半導体ナノ粒子集積構造体10は図1(a)に示されるような構造を有している。このとき、内部構造体は、複数の第1の半導体ナノ粒子11がマトリクス17によって内包された状態で集積されてなる半導体ナノ粒子集積体12の形態を有している。そして、この半導体ナノ粒子集積体12の表面を覆うように、複数の第2の半導体ナノ粒子14が集積されてなる第2の半導体ナノ粒子集積層が外部構造体として形成されている。 In the first preferred embodiment of the present invention, the semiconductor nanoparticle integrated structure 10 according to the present invention has a structure as shown in FIG. At this time, the internal structure has a form of a semiconductor nanoparticle assembly 12 in which a plurality of first semiconductor nanoparticles 11 are integrated while being encapsulated by a matrix 17. And the 2nd semiconductor nanoparticle integrated layer by which the several 2nd semiconductor nanoparticle 14 is integrated | stacked is formed as an external structure so that the surface of this semiconductor nanoparticle integrated body 12 may be covered.
 ここで、マトリクス17は、集積した第1の半導体ナノ粒子11を固定するためのバインダーとしての役割を有し、その材質として、シリカ、ポリメラミン、ポリスチレンなどが好適に用いられる。また、半導体ナノ粒子集積体12は、30~500nm程度の平均径を有していることが好ましく、第1の半導体ナノ粒子11を粒子同士が触れ合わない程度になるべく多く内包していることが好ましい。 Here, the matrix 17 has a role as a binder for fixing the accumulated first semiconductor nanoparticles 11, and silica, polymelamine, polystyrene, or the like is preferably used as the material thereof. The semiconductor nanoparticle assembly 12 preferably has an average diameter of about 30 to 500 nm, and preferably contains as many first semiconductor nanoparticles 11 as possible so that the particles do not touch each other. .
 また、本発明の第2の好適な態様において、本発明に係る半導体ナノ粒子集積構造体10は図1(b)に示されるような構造を有している。このとき、内部構造体は、内部に、半導体ナノ粒子を含まない支持コア構造体16を含んでおり、且つ、この支持コア構造体16の表面を覆うように、複数の第1の半導体ナノ粒子11が集積されてなる第1の半導体ナノ粒子集積層が形成された形態を有している。そして、この内部構造体の表面を覆うように、複数の第2の半導体ナノ粒子14が集積されてなる第2の半導体ナノ粒子集積層が外部構造体として形成されている。 Moreover, in the second preferred embodiment of the present invention, the semiconductor nanoparticle integrated structure 10 according to the present invention has a structure as shown in FIG. At this time, the internal structure includes a support core structure 16 that does not include semiconductor nanoparticles therein, and a plurality of first semiconductor nanoparticles so as to cover the surface of the support core structure 16. 11 has a form in which a first semiconductor nanoparticle integrated layer formed by integrating 11 is formed. And the 2nd semiconductor nanoparticle integrated layer by which the several 2nd semiconductor nanoparticle 14 is integrated | stacked is formed as an external structure so that the surface of this internal structure may be covered.
 ここで、支持コア構造体16は、第1の半導体ナノ粒子集積層及び第2の半導体ナノ粒子集積層を形成するための土台としての役割を有するとともに、高い表面積対体積比を確保することによって発光強度を高める役割を有する。支持コア構造体16の材質として、シリカ粒子等の誘電体や、ポリメラミン、ポリスチレン等の高分子ポリマーなどが好適に用いられる。この支持コア構造体16は、30~500nm程度の平均径を有していることが好ましい。 Here, the support core structure 16 has a role as a base for forming the first semiconductor nanoparticle integrated layer and the second semiconductor nanoparticle integrated layer, and ensures a high surface area to volume ratio. It has the role of increasing the emission intensity. As the material of the support core structure 16, a dielectric such as silica particles, or a polymer such as polymelamine or polystyrene is preferably used. The support core structure 16 preferably has an average diameter of about 30 to 500 nm.
 以上、本発明の半導体ナノ粒子集積構造体10における好ましい態様を2つ例示したが、本発明で内部構造体および外部構造体が取り得る形態は、上記に例示された態様に示されたものに限られないことはいうまでもない。以上の例では、本発明の半導体ナノ粒子集積構造体10として、内部構造体と外部構造体とをそれぞれ1つずつ有しているものを示したが、本発明では、この外部構造体を覆うように、半導体ナノ粒子を集積してなる第2の外部構造体がさらに形成されることにより、本発明の半導体ナノ粒子集積構造体10が複数の外部構造体を有していてもよい。ここで、第2の外部構造体を構成する半導体ナノ粒子は、上記第2の半導体ナノ粒子14であってもよいし、第2の半導体ナノ粒子14よりもさらにバンドギャップの大きい第3の半導体ナノ粒子であってもよい。したがって、本発明の半導体ナノ粒子集積構造体10は、内部から外部に向かって構成半導体ナノ粒子のバンドギャップが次第に大きくなるように、言い換えると、内部から外部に向かって構成半導体ナノ粒子の発光ピーク波長が次第に短くなるように、外部構造体が積層されていてもよい。内部構造体及びこれらの外部構造体が、構成半導体の材質が同一のコアシェル型半導体ナノ粒子からなる場合には、内部から外部に向かって構成半導体ナノ粒子のコア径が小さくなるように、外部構造体が積層されていてもよい。 In the above, two preferred embodiments of the semiconductor nanoparticle integrated structure 10 of the present invention have been exemplified, but the forms that the internal structure and the external structure can take in the present invention are those shown in the embodiments exemplified above. It goes without saying that it is not limited. In the above example, the semiconductor nanoparticle integrated structure 10 of the present invention has one internal structure and one external structure, but the present invention covers this external structure. As described above, the semiconductor nanoparticle integrated structure 10 of the present invention may have a plurality of external structures by further forming the second external structure formed by integrating semiconductor nanoparticles. Here, the semiconductor nanoparticles constituting the second external structure may be the second semiconductor nanoparticles 14 or a third semiconductor having a larger band gap than the second semiconductor nanoparticles 14. Nanoparticles may be used. Therefore, the semiconductor nanoparticle integrated structure 10 of the present invention is configured so that the band gap of the constituent semiconductor nanoparticles gradually increases from the inside toward the outside, in other words, the emission peak of the constituent semiconductor nanoparticles from the inside toward the outside. The external structure may be laminated so that the wavelength is gradually shortened. When the internal structure and these external structures are composed of core-shell type semiconductor nanoparticles having the same constituent semiconductor material, the external structure is configured so that the core diameter of the constituent semiconductor nanoparticles decreases from the inside toward the outside. The body may be laminated.
 本発明の半導体ナノ粒子集積構造体10は、その平均径が50~1000nmの範囲であることが好ましい。
 また、本発明では、内部構造体と外部構造体との間、および、内部構造体の内部に支持コア構造体16が含まれる場合には、支持コア構造体16と第1の半導体ナノ粒子集積層との間に、結合層13を有していてもよい。このような結合層13が存在すると、内部構造体と外部構造体との結合、および、支持コア構造体16と第1の半導体ナノ粒子集積層との結合が強固になり好ましい。このような結合層13として、例えば、PAH(ポリアリルアミンハイドロクロライド)とPSS(ポリソジウム4-スチレンスルフォネイト)を、PAH、PSS、PAHの順に積層してなるPAH/PSS/PAH層を好適に用いることができる。
The semiconductor nanoparticle integrated structure 10 of the present invention preferably has an average diameter in the range of 50 to 1000 nm.
In the present invention, when the support core structure 16 is included between the internal structure and the external structure and inside the internal structure, the support core structure 16 and the first semiconductor nanoparticle assembly A bonding layer 13 may be provided between the stacked layers. The presence of such a bonding layer 13 is preferable because the bonding between the inner structure and the outer structure and the bonding between the support core structure 16 and the first semiconductor nanoparticle integrated layer are strengthened. As such a bonding layer 13, for example, a PAH / PSS / PAH layer in which PAH (polyallylamine hydrochloride) and PSS (polysodium 4-styrene sulfonate) are laminated in the order of PAH, PSS, and PAH is preferably used. Can be used.
 さらに、本発明の半導体ナノ粒子集積構造体10は、他の分子との結合に供される官能基を導入することを目的として、あるいは、親水性を向上させることを目的として、あるいは、半導体ナノ粒子集積構造体10を保護することを目的として、最外周部に表面層15をさらに有していてもよい。したがって、このような表面層15は、カルボキシル基、アミノ基、水酸基などの官能基を有するものであってもよい。例えば、PAH/PSS/PAH層を介してPAA(ポリアクリル酸)からなる層を設けることによってカルボキシル基を有する親水化層を表面層15として設けることができる。 Furthermore, the semiconductor nanoparticle integrated structure 10 of the present invention is used for the purpose of introducing a functional group used for bonding with other molecules, for the purpose of improving hydrophilicity, or for the semiconductor nanoparticle. For the purpose of protecting the particle assembly structure 10, a surface layer 15 may be further provided on the outermost periphery. Therefore, such a surface layer 15 may have a functional group such as a carboxyl group, an amino group, or a hydroxyl group. For example, a hydrophilic layer having a carboxyl group can be provided as the surface layer 15 by providing a layer made of PAA (polyacrylic acid) via a PAH / PSS / PAH layer.
 ・半導体ナノ粒子集積構造体10の製造方法
 本発明に係る半導体ナノ粒子集積構造体10は、従来公知の方法を用いて製造することができる。
-Manufacturing method of semiconductor nanoparticle integrated structure 10 The semiconductor nanoparticle integrated structure 10 which concerns on this invention can be manufactured using a conventionally well-known method.
 具体的な方法として、液相法および気相法を挙げることができる。
 液相法
 本発明では、半導体ナノ粒子集積構造体10を構成する第1の半導体ナノ粒子11および第2の半導体ナノ粒子14の製造方法として、液相法を好適に用いることができる。液相法では、これらの半導体ナノ粒子を構成する各半導体は、対応半導体前駆体を適当な溶媒中で化学反応させることにより得られる。液相法に基づく製造方法としては、沈殿法、共沈法、ゾル-ゲル法、均一沈殿法、還元法などがある。そのほかに、逆ミセル法、超臨界水熱合成法、などもナノ粒子を作製する上で優れた方法である(例えば、特開2002-322468号、特開2005-239775号、特開平10-310770号、特開2000-104058号公報等を参照。)。
Specific examples of the method include a liquid phase method and a gas phase method.
Liquid Phase Method In the present invention, a liquid phase method can be suitably used as a method for producing the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 constituting the semiconductor nanoparticle integrated structure 10. In the liquid phase method, each semiconductor constituting these semiconductor nanoparticles is obtained by chemically reacting a corresponding semiconductor precursor in an appropriate solvent. Examples of the production method based on the liquid phase method include a precipitation method, a coprecipitation method, a sol-gel method, a uniform precipitation method, and a reduction method. In addition, the reverse micelle method, the supercritical hydrothermal synthesis method, and the like are also excellent methods for producing nanoparticles (for example, JP 2002-322468, JP 2005-239775, JP 10-310770 A). No., JP 2000-104058 A, etc.).
 ここで、上記内部構造体及び外部構造体を構成する、半導体ナノ粒子の集合体を、液相法により製造する場合においては、当該半導体の前駆体を還元反応により還元する工程を有する製造方法であることも好ましい。 Here, in the case of producing an assembly of semiconductor nanoparticles constituting the internal structure and the external structure by a liquid phase method, the production method includes a step of reducing the semiconductor precursor by a reduction reaction. It is also preferable that there is.
 また、液相法による反応に際しては、半導体前駆体の反応を界面活性剤の存在下で行う工程を有する態様が好ましい。また、形成した第1の半導体ナノ粒子11および第2の半導体ナノ粒子14(、および、該当する場合には、これらの半導体ナノ粒子を構成するコア部)が反応過程で不用意に凝集しないよう、トリ-n-オクチルホスフィンオキシド(TOPO)などの安定剤の存在下で行う工程を有する態様が好ましい。なお、本発明で用いられる半導体前駆体は、上記の半導体材料として用いられる元素を含む化合物であり、たとえば半導体がSiの場合、半導体前駆体としてはSiCl4などが挙げられる。その他半導体前駆体としては、InCl3、P(SiMe33、ZnMe2、CdMe2、GeCl4、トリブチルホスフィンセレンなどが挙げられる。 Further, in the reaction by the liquid phase method, an embodiment having a step of performing the reaction of the semiconductor precursor in the presence of a surfactant is preferable. In addition, the formed first semiconductor nanoparticles 11 and second semiconductor nanoparticles 14 (and the core portion constituting these semiconductor nanoparticles, if applicable) do not inadvertently aggregate during the reaction process. An embodiment having a step performed in the presence of a stabilizer such as tri-n-octylphosphine oxide (TOPO) is preferable. The semiconductor precursor used in the present invention is a compound containing an element used as the semiconductor material, for example if the semiconductor is Si, and the like SiCl 4 as semiconductor precursor. Other semiconductor precursors include InCl 3 , P (SiMe 3 ) 3 , ZnMe 2 , CdMe 2 , GeCl 4 , tributylphosphine selenium and the like.
 半導体前駆体から所要の半導体に導く際の反応温度としては、半導体前駆体の沸点以上かつ溶媒の沸点以下であれば、特に制限はないが、70~110℃の範囲が好ましい。
 (還元剤)
 半導体前駆体を還元する還元剤としては、従来周知の種々の還元剤を反応条件に応じて選択し用いることができる。本発明においては、還元力の強さの観点から、水素化アルミニウムリチウム(LiAlH4)、水素化ホウ素ナトリウム(NaBH4)、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリ(sec-ブチル)ホウ素リチウム(LiBH(sec-C493)及び水素化トリ(sec-ブチル)ホウ素カリウム、水素化トリエチルホウ素リチウムなどの還元剤が好ましい。特に、還元力の強さから水素化アルミニウムリチウム(LiAlH4)が好ましい。
The reaction temperature for introducing the semiconductor precursor from the semiconductor precursor to the required semiconductor is not particularly limited as long as it is not lower than the boiling point of the semiconductor precursor and not higher than the boiling point of the solvent, but is preferably in the range of 70 to 110 ° C.
(Reducing agent)
As the reducing agent for reducing the semiconductor precursor, various conventionally known reducing agents can be selected and used according to the reaction conditions. In the present invention, from the viewpoint of the strength of reducing power, lithium aluminum hydride (LiAlH 4 ), sodium borohydride (NaBH 4 ), sodium bis (2-methoxyethoxy) aluminum hydride, trihydride (sec- Preferred are reducing agents such as lithium (butyl) boron (LiBH (sec-C 4 H 9 ) 3 ), potassium tri (sec-butyl) borohydride, lithium triethylborohydride. In particular, lithium aluminum hydride (LiAlH 4 ) is preferable because of its reducing power.
 (溶媒)
 半導体前駆体の分散用溶媒としては、従来周知の種々の溶媒を使用できるが、エチルアルコール、sec-ブチルアルコール、t-ブチルアルコール等のアルコール類、トルエン、デカン、ヘキサンなどの炭化水素類溶媒を使用することが好ましい。本発明においては、特に、トルエン等の疎水性の溶媒が分散用溶媒として好ましい。
(solvent)
Various known solvents can be used as the solvent for dispersing the semiconductor precursor. Alcohols such as ethyl alcohol, sec-butyl alcohol and t-butyl alcohol, and hydrocarbon solvents such as toluene, decane and hexane are used. It is preferable to use it. In the present invention, a hydrophobic solvent such as toluene is particularly preferable as the dispersion solvent.
 (界面活性剤)
 界面活性剤としては、従来周知の種々の界面活性剤を使用でき、陰イオン、非イオン、陽イオン、両性界面活性剤が含まれる。なかでも第四級アンモニウム塩系である、テトラブチルアンモニウムクロリド、ブロミド又はヘキサフルオロホスフェート、テトラオクチルアンモニウムブロミド(TOAB)、またはトリブチルヘキサデシルホスホニウムブロミドが好ましい。特に、テトラオクチルアンモニウムブロミドが好ましい。
(Surfactant)
As the surfactant, various conventionally known surfactants can be used, and anionic, nonionic, cationic, and amphoteric surfactants are included. Of these, tetrabutylammonium chloride, bromide or hexafluorophosphate, tetraoctylammonium bromide (TOAB), or tributylhexadecylphosphonium bromide, which are quaternary ammonium salt systems, are preferred. Tetraoctyl ammonium bromide is particularly preferable.
 なお、液相法による反応は、液中の溶媒を含む化合物の状態により大きく変化する。単分散性の優れたナノサイズの粒子を製造する際には、特に注意を要する必要がある。例えば、逆ミセル反応法では、界面活性剤の濃度や種類により、反応場となる逆ミセルの大きさや状態が変わってくるため、ナノ粒子が形成される条件が限られてしまう。したがって、界面活性剤と溶媒とを適切に組み合わせることが必要となる。 The reaction by the liquid phase method varies greatly depending on the state of the compound containing the solvent in the liquid. When producing nano-sized particles with excellent monodispersity, special care must be taken. For example, in the reverse micelle reaction method, the size and state of the reverse micelle serving as a reaction field vary depending on the concentration and type of the surfactant, so that the conditions under which nanoparticles are formed are limited. Therefore, it is necessary to appropriately combine the surfactant and the solvent.
 気相法
 本発明では、第1の半導体ナノ粒子11および第2の半導体ナノ粒子14の製造方法として、気相法を用いてもよい。気相法による製造方法としては、(1)対向する原料半導体を電極間で発生させた第一の高温プラズマによって蒸発させ、減圧雰囲気中において無電極放電で発生させた第二の高温プラズマ中に通過させる方法(例えば特開平6-279015号公報参照。)、(2)電気化学的エッチングによって、原料半導体からなる陽極からナノ粒子を分離・除去する方法(例えば特表2003-515459号公報参照。)、(3)レーザーアブレーション法(例えば特開2004-356163号参照。)、(4)高速スパッタリング法(例えば特開2004-296781号参照。)などが用いられる。また、原料ガスを低圧状態で気相反応させて、粒子を含む粉末を合成する方法も、好ましく用いられる。
Gas Phase Method In the present invention, a gas phase method may be used as a method for producing the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14. As a manufacturing method by the vapor phase method, (1) the opposing raw material semiconductor is evaporated by the first high temperature plasma generated between the electrodes, and in the second high temperature plasma generated by electrodeless discharge in a reduced pressure atmosphere. (2) A method of separating and removing nanoparticles from an anode made of a raw material semiconductor by electrochemical etching (for example, see Japanese Patent Application Laid-Open No. 2003-515459). ), (3) laser ablation (for example, see JP-A-2004-356163), (4) high-speed sputtering method (for example, see JP-A-2004-296781), etc. A method of synthesizing a powder containing particles by reacting a raw material gas in a gas phase in a low pressure state is also preferably used.
 なお、半導体ナノ粒子の製造方法の概要については、上述したが、半導体ナノ粒子は発光波長を指定して、購入することもできる。後述する実施例では購入する場合を示す。
 半導体ナノ粒子の集積化
 本発明では、半導体ナノ粒子集積構造体10を構築する上で、上記半導体ナノ粒子(すなわち、第1の半導体ナノ粒子11および第2の半導体ナノ粒子14)をそれぞれ集積化する必要がある。本発明では、上記液相法または気相法などの方法により第1の半導体ナノ粒子11を製造した後に、得られた第1の半導体ナノ粒子11を適当な方法により集積させることにより内部構造体を得、その後、上記液相法または気相法などの方法により第2の半導体ナノ粒子14を製造した後に、得られた第2の半導体ナノ粒子14を適当な方法により前記内部集積体表面に集積させることにより外部構造体を形成することができる。このとき、複数の第1の半導体ナノ粒子11および第2の半導体ナノ粒子14がそれぞれ相互に接触した状態で集まった集合体を、マトリクスの構築を行うことなくそのまま内部構造体および外部構造体としてそれぞれ用いてもよい。ただ、より強固な内部構造体及び外部構造体を得る観点からは、第1の半導体ナノ粒子11および第2の半導体ナノ粒子14をそれぞれ適当な方法によって凝集させて一旦集積体前駆体とし、当該集積体前駆体に対して、上記液相法などの方法によってマトリクスの形成をそれぞれ行うことによって、内部構造体及び外部構造体をそれぞれ構築することが好ましい。ここで、「集積体前駆体」とは、複数の半導体ナノ粒子が相互に接触した状態で集まった集合体を指す。また、外部構造体を形成する際、内部構造体の表面に直接形成してもよいが、外部構造体と内部構造体との結合を強固にする観点からは、まず、内部構造体の表面に、従来公知の適当な方法により結合層13の構築を行ってから、当該結合層13の表面に外部構造体を構築することが好ましい。
In addition, although the outline | summary of the manufacturing method of a semiconductor nanoparticle was mentioned above, the semiconductor nanoparticle can also be purchased by designating the light emission wavelength. In the embodiment described later, a case of purchasing is shown.
Integration of Semiconductor Nanoparticles In the present invention, the semiconductor nanoparticles (that is, the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14) are integrated when the semiconductor nanoparticle integrated structure 10 is constructed. There is a need to. In the present invention, after the first semiconductor nanoparticles 11 are manufactured by a method such as the liquid phase method or the gas phase method, the obtained first semiconductor nanoparticles 11 are integrated by an appropriate method to thereby obtain an internal structure. Then, after manufacturing the second semiconductor nanoparticles 14 by a method such as the liquid phase method or the gas phase method, the obtained second semiconductor nanoparticles 14 are applied to the surface of the internal assembly by an appropriate method. An external structure can be formed by stacking. At this time, an assembly in which the plurality of first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are in contact with each other is directly used as an internal structure and an external structure without constructing a matrix. Each may be used. However, from the viewpoint of obtaining a stronger internal structure and external structure, the first semiconductor nanoparticles 11 and the second semiconductor nanoparticles 14 are aggregated by an appropriate method to form an aggregate precursor once. It is preferable that the internal structure and the external structure are respectively constructed by forming a matrix on the integrated body precursor by a method such as the liquid phase method. Here, the “aggregate precursor” refers to an aggregate in which a plurality of semiconductor nanoparticles are gathered in contact with each other. Further, when forming the external structure, it may be formed directly on the surface of the internal structure, but from the viewpoint of strengthening the bond between the external structure and the internal structure, first, the surface of the internal structure is formed. It is preferable to construct the external layer on the surface of the bonding layer 13 after the coupling layer 13 is constructed by a conventionally known appropriate method.
 これは以下のように行うことが出来る。
 まず、第1の例として、上記第1の好適な態様に係る半導体ナノ粒子集積構造体10の製造方法を挙げる。まず、第1の半導体ナノ粒子11を適当なマトリクス17によって内包させることによって集積させることによって、内部構造体となる半導体ナノ粒子集積体12を構築する。本例では、マトリクス17を構成する材質としてシリカを好適に用いることができ、その場合、シリカからなるマトリクス17を構築する上で、非特許文献1記載の方法に基づくストーバー法を用いることができる。このような半導体ナノ粒子集積体12を構築する具体的な方法として、例えば非特許文献2記載の方法を挙げることができる。例えば、CdSe/ZnS半導体ナノ粒子をTOPOのトルエン溶液に分散させる。この溶液中にTEOSを加え、半導体ナノ粒子をシラン化する。エタノール、H2O、アンモニアを加え、還流することで20程度の半導体粒子を内包する50nm程度のシリカ球状体が半導体ナノ粒子集積体12として得られる。このシリカ球状体は、上記第1の好適な態様に係る半導体ナノ粒子集積構造体10における半導体ナノ粒子シリカ集積体にあたる。
This can be done as follows.
First, as a first example, a method for manufacturing the semiconductor nanoparticle integrated structure 10 according to the first preferred embodiment will be described. First, by integrating the first semiconductor nanoparticles 11 by enclosing them with an appropriate matrix 17, a semiconductor nanoparticle assembly 12 that is an internal structure is constructed. In this example, silica can be suitably used as the material constituting the matrix 17, and in that case, the Stover method based on the method described in Non-Patent Document 1 can be used to construct the matrix 17 made of silica. . As a specific method for constructing such a semiconductor nanoparticle assembly 12, for example, the method described in Non-Patent Document 2 can be cited. For example, CdSe / ZnS semiconductor nanoparticles are dispersed in a TOPO toluene solution. TEOS is added to this solution to silanize the semiconductor nanoparticles. By adding ethanol, H 2 O, and ammonia and refluxing, a silica sphere of about 50 nm containing about 20 semiconductor particles is obtained as the semiconductor nanoparticle aggregate 12. This silica sphere corresponds to the semiconductor nanoparticle silica aggregate in the semiconductor nanoparticle assembly structure 10 according to the first preferred embodiment.
 次に、その外側に、内側に集積した第1の半導体ナノ粒子11よりバンドギャップの大きい半導体ナノ粒子(すなわち、第2の半導体ナノ粒子14)を集積してなる第2の半導体ナノ粒子集積層を外部構造体として構築する(図1(a))。外部構造体は、従来公知の適当な方法によって構築することができるが、本例ではLayer by Layer法と呼ばれる成長法を好適に用いることができる。このような第2の半導体ナノ粒子集積層を構築する具体的な方法として、例えば、非特許文献3記載の方法を挙げることができる。この方法は、前記内部構造体の表面にPAH(ポリアリルアミンハイドロクロライド)とPSS(ポリソジウム4-スチレンスルフォネイト)とを用いてPAH層の形成、PSS層の形成およびPAH層の形成を順次行うことによりPAH/PSS/PAH層を結合層13として形成し、このPAH/PSS/PAH層の表面に外部構造体を構築するものである。その具体的な手順を以下に例示する。 Next, a second semiconductor nanoparticle integrated layer in which semiconductor nanoparticles having a larger band gap than the first semiconductor nanoparticles 11 integrated inside (that is, the second semiconductor nanoparticles 14) are integrated on the outside. Is constructed as an external structure (FIG. 1A). The external structure can be constructed by a conventionally known appropriate method, but in this example, a growth method called Layer-by-Layer method can be suitably used. As a specific method for constructing such a second semiconductor nanoparticle integrated layer, for example, the method described in Non-Patent Document 3 can be cited. In this method, PAH (polyallylamine hydrochloride) and PSS (polysodium 4-styrenesulfonate) are sequentially formed on the surface of the internal structure to form a PAH layer, a PSS layer, and a PAH layer. Thus, a PAH / PSS / PAH layer is formed as the bonding layer 13, and an external structure is constructed on the surface of the PAH / PSS / PAH layer. The specific procedure is illustrated below.
 上記で作成したシリカ球状体をピラニア溶液(30%H2O2+70%H2SO4)で処理し、シリカ球状体を負に帯電させる。これとは別に、PAH(ポリアリルアミンハイドロクロライド)、PSS(ポリソジウム4-スチレンスルフォネイト)、およびPAA(ポリアクリル酸)をNaCl溶液中にそれぞれ溶解した液をそれぞれ作成する。そして、当該負に帯電したシリカ球状体に、PAH,PSS,PAAの各溶液を順次加えることによって、このシリカ球状体上にPAH/PSS/PAHの層を結合層13として形成し、シリカ中間構造体とする。次に、前記シリカ中間構造体を、メルカプトポロピオン酸でキャップしたCdSe/ZnS半導体ナノ粒子の水溶液中に分散させることで、内側に集積した第1の半導体ナノ粒子11よりバンドギャップの大きいCdSe/ZnSが集積されてなる第2の半導体ナノ粒子集積層を外部構造体として形成することができる。ここで、この段階で用いられるCdSe/ZnS半導体ナノ粒子は、第1の半導体ナノ粒子11として用いたCdSe/ZnS半導体ナノ粒子よりもバンドギャップの大きいCdSe/ZnS半導体ナノ粒子である。 The silica spheres prepared above are treated with a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to charge the silica spheres negatively. Separately, PAH (polyallylamine hydrochloride), PSS (polysodium 4-styrene sulfonate), and PAA (polyacrylic acid) are respectively dissolved in a NaCl solution. Then, a PAH / PSS / PAA solution is sequentially added to the negatively charged silica spheres to form a PAH / PSS / PAH layer as a bonding layer 13 on the silica spheres. Let it be the body. Next, the silica intermediate structure is dispersed in an aqueous solution of CdSe / ZnS semiconductor nanoparticles capped with mercaptopropionic acid, so that CdSe / with a band gap larger than that of the first semiconductor nanoparticles 11 accumulated on the inner side. A second semiconductor nanoparticle integrated layer in which ZnS is integrated can be formed as an external structure. Here, the CdSe / ZnS semiconductor nanoparticles used at this stage are CdSe / ZnS semiconductor nanoparticles having a larger band gap than the CdSe / ZnS semiconductor nanoparticles used as the first semiconductor nanoparticles 11.
 以上に示した形態では、半導体ナノ粒子集積構造体10を、半導体ナノ集積体の内部をストーバー法、外部をレイヤーバイレイヤー法で形成したが、半導体ナノ粒子集積構造体10の製造方法は、このような方法に限定されるものではなく、他の方法で行なってもよい。 In the embodiment shown above, the semiconductor nanoparticle integrated structure 10 is formed by the Stover method for the inside of the semiconductor nanointegrated body and the layer by layer method for the outside. It is not limited to such a method, You may carry out by another method.
 第2の例として、上記第2の好適な態様に係る半導体ナノ粒子集積構造体10の製造方法を挙げる。この態様では、半導体ナノ粒子集積構造体10は、シリカなどの適当な材質からなる、半導体ナノ粒子を含まない支持コア構造体16の表面に、上記した第2の半導体ナノ粒子集積層を形成するために用いたものと同様の方法により、まず、複数の第1の半導体ナノ粒子11が集積されてなる第1の半導体ナノ粒子集積層を形成して内部構造体を構築し、次いで、その表面に、第1の半導体ナノ粒子11よりもバンドギャップの大きい複数の第2の半導体ナノ粒子14が集積されてなる第2の半導体ナノ粒子集積層からなる外部構造体を構築することができる(図1(b))。このとき、第1の半導体ナノ粒子集積層および第2の半導体ナノ粒子集積層にあたって、レイヤーバイレイヤー法を好適に用いることができる。ここで、支持コア構造体16と第1の半導体ナノ粒子集積層との間、および第1の半導体ナノ粒子集積層と第2の半導体ナノ粒子集積層との間に、上記第1の例で上述したのと同様の方法により、PAH/PSS/PAH層などの結合層13を形成することが好ましい。 As a second example, a method for manufacturing the semiconductor nanoparticle integrated structure 10 according to the second preferred embodiment will be described. In this embodiment, the semiconductor nanoparticle assembly structure 10 is formed with the above-described second semiconductor nanoparticle assembly layer on the surface of the support core structure 16 made of a suitable material such as silica and not containing semiconductor nanoparticles. First, a first semiconductor nanoparticle assembly layer in which a plurality of first semiconductor nanoparticles 11 are integrated is formed by a method similar to that used to construct an internal structure, and then its surface In addition, it is possible to construct an external structure including a second semiconductor nanoparticle integrated layer in which a plurality of second semiconductor nanoparticles 14 having a larger band gap than the first semiconductor nanoparticles 11 are integrated (see FIG. 1 (b)). At this time, a layer-by-layer method can be suitably used for the first semiconductor nanoparticle integrated layer and the second semiconductor nanoparticle integrated layer. Here, between the support core structure 16 and the first semiconductor nanoparticle integrated layer and between the first semiconductor nanoparticle integrated layer and the second semiconductor nanoparticle integrated layer, in the first example, It is preferable to form the bonding layer 13 such as a PAH / PSS / PAH layer by the same method as described above.
 以上、本発明に係る半導体ナノ粒子集積構造体10の製造方法の例を示したが、本発明では、上記のように形成された外部構造体の表面に、半導体ナノ粒子を集積してなる第2の外部構造体をさらに形成してもよい。ここで、第2の外部構造体を構成する半導体ナノ粒子は、上記第2の半導体ナノ粒子14であってもよいし、第2の半導体ナノ粒子14よりもさらにバンドギャップの大きい第3の半導体ナノ粒子であってもよい。このような第2の外部構造体もまた、上記外部構造体と同様の方法により形成することができる。具体的には、上記の方法により形成された外部構造体の表面に、PAH層の形成、PSS層の形成およびPAH層の形成を順次行うことによって新たなPAH/PSS/PAH層を形成してから、第2の外部構造体の原料となる半導体ナノ粒子を分散させた水溶液中に分散させる一連の工程を繰り返せば良い。 As mentioned above, although the example of the manufacturing method of the semiconductor nanoparticle integrated structure 10 which concerns on this invention was shown, in this invention, the semiconductor nanoparticle is integrated on the surface of the external structure formed as mentioned above. Two external structures may be further formed. Here, the semiconductor nanoparticles constituting the second external structure may be the second semiconductor nanoparticles 14 or a third semiconductor having a larger band gap than the second semiconductor nanoparticles 14. Nanoparticles may be used. Such a second external structure can also be formed by a method similar to that of the external structure. Specifically, a new PAH / PSS / PAH layer is formed on the surface of the external structure formed by the above method by sequentially forming a PAH layer, a PSS layer, and a PAH layer. Thus, a series of steps of dispersing in the aqueous solution in which the semiconductor nanoparticles as the raw material of the second external structure are dispersed may be repeated.
 このように得られた半導体ナノ粒子集積構造体10は、そのまま用いてもよいが、さらに表面処理を行って、親水化層などの表面層15を形成してもよい。表面層15の形成は、上記外部構造体と同様、適当な従来公知の方法を用いて行うことができる。例えば、PAH/PSS/PAH層を形成してから、所要の表面層15の形成を行うことができる。例えば、表面層15として親水化層を形成する場合、表面層15が未だ形成されていない半導体ナノ粒子集積構造体の最外周部に対して、PAH層の形成、PSS層の形成およびPAH層の形成を同様に順次行うことによって新たなPAH/PSS/PAH層を形成してから、PAA処理をさらに行うことによりPAA層を形成することができ、これによって、カルボキシル基を表面に有する半導体ナノ粒子集積構造体10を得ることができる。 The semiconductor nanoparticle integrated structure 10 obtained in this way may be used as it is, or may be further subjected to surface treatment to form a surface layer 15 such as a hydrophilic layer. The formation of the surface layer 15 can be performed using an appropriate conventionally known method as in the case of the external structure. For example, after forming the PAH / PSS / PAH layer, the required surface layer 15 can be formed. For example, when a hydrophilic layer is formed as the surface layer 15, the formation of the PAH layer, the formation of the PSS layer, and the formation of the PAH layer are performed on the outermost peripheral portion of the semiconductor nanoparticle integrated structure where the surface layer 15 is not yet formed. A new PAH / PSS / PAH layer can be formed by sequentially performing the formation, and then a PAA layer can be formed by further performing a PAA treatment, whereby semiconductor nanoparticles having a carboxyl group on the surface The integrated structure 10 can be obtained.
 〔本発明に係る半導体ナノ粒子集積構造体の応用〕
 以下において、代表的な応用例について説明する。
 ・生体物質標識剤とバイオイメージング
 本発明の半導体ナノ粒子集積構造体10は、特にその用途に制限があるわけではないものの、生体物質標識剤の用途に好適に用いることができる。本発明に係る生体物質標識剤は、半導体ナノ粒子集積構造体10が、有機分子を介して分子標識物質と結合した構造を有している。ここで、標的(追跡)物質を有する生細胞もしくは生体に、本発明に係る生体物質標識剤を添加することで、標的物質と結合もしくは吸着し、当該結合体もしくは吸着体に所定の波長の励起光を照射し、当該励起光に応じて蛍光半導体微粒子から発生する所定の波長の蛍光を検出することにより、上記標的(追跡)物質の蛍光動態イメージングを行うことができる。
[Application of semiconductor nanoparticle integrated structure according to the present invention]
In the following, typical application examples will be described.
-Biomaterial labeling agent and bioimaging The semiconductor nanoparticle integrated structure 10 of the present invention is not particularly limited in its application, but can be suitably used for the application of a biomaterial labeling agent. The biological substance labeling agent according to the present invention has a structure in which the semiconductor nanoparticle assembly structure 10 is bonded to a molecular labeling substance via an organic molecule. Here, by adding the biological substance labeling agent according to the present invention to a living cell or living body having a target (tracking) substance, it binds or adsorbs to the target substance, and the conjugate or adsorbent is excited at a predetermined wavelength. By irradiating light and detecting fluorescence of a predetermined wavelength generated from the fluorescent semiconductor fine particles according to the excitation light, fluorescence dynamic imaging of the target (tracking) substance can be performed.
 すなわち、本発明に係る生体物質標識剤は、バイオイメージング法(生体物質を構成する生体分子やその動的現象を可視化する技術手段)に利用することができる。
 半導体ナノ粒子集積体の親水化処理
 上述した半導体ナノ粒子集積構造体10表面は、未だ表面処理を行っていない状態では、一般的には、疎水性であるため、例えば生体物質標識剤として使用する場合は、このままでは水分散性が悪く、半導体ナノ粒子集積体が凝集してしまう等の問題がある。そのため、半導体ナノ粒子集積構造体10の表面に親水化処理を行って、親水化半導体ナノ粒子集積構造体とすることが好ましい。
That is, the biomaterial labeling agent according to the present invention can be used for bioimaging methods (technical means for visualizing biomolecules constituting the biomaterial and dynamic phenomena thereof).
Hydrophilization treatment of the semiconductor nanoparticle assembly The surface of the semiconductor nanoparticle assembly structure 10 described above is generally hydrophobic in a state where the surface treatment has not yet been performed, and thus is used, for example, as a biological material labeling agent. In this case, there are problems such as poor water dispersibility and aggregation of semiconductor nanoparticle aggregates. Therefore, it is preferable to perform a hydrophilic treatment on the surface of the semiconductor nanoparticle assembly structure 10 to obtain a hydrophilic semiconductor nanoparticle assembly structure.
 親水化処理の方法としては例えば、表面に付着した親油性成分をピリジン等で除去した後に、半導体ナノ粒子集積構造体10の表面に表面修飾剤を化学的および/または物理的に結合させる方法がある。表面修飾剤としては、親水基として、カルボキシル基・アミノ基を持つものが好ましく用いられ、具体的にはメルカプトプロピオン酸、メルカプトウンデカン酸、アミノプロパンチオールなどがあげられる。具体的には、例えば、Ge/GeO2型ナノ粒子10-5gをメルカプトウンデカン酸0.2gが溶解した純水10ml中に分散させて、40℃、10分間攪拌し、シェルの表面を処理することで無機ナノ粒子のシェルの表面をカルボキシル基で修飾することができる。 As a hydrophilic treatment method, for example, a method of chemically and / or physically binding a surface modifier to the surface of the semiconductor nanoparticle assembly structure 10 after removing the lipophilic component attached to the surface with pyridine or the like. is there. As the surface modifier, those having a carboxyl group / amino group as a hydrophilic group are preferably used, and specific examples include mercaptopropionic acid, mercaptoundecanoic acid, aminopropanethiol and the like. Specifically, for example, 10 −5 g of Ge / GeO 2 type nanoparticles are dispersed in 10 ml of pure water in which 0.2 g of mercaptoundecanoic acid is dissolved, and stirred at 40 ° C. for 10 minutes to treat the surface of the shell. By doing so, the surface of the shell of the inorganic nanoparticles can be modified with a carboxyl group.
 (生体物質標識剤)
 本発明に係る生体物質標識剤は、上述したように得られた親水化半導体ナノ粒子集積構造体と、分子標識物質と有機分子を介して結合させて得られる。
(Biological substance labeling agent)
The biological substance labeling agent according to the present invention is obtained by binding the hydrophilic semiconductor nanoparticle assembly structure obtained as described above, a molecular labeling substance and an organic molecule.
 分子標識物質
 本発明に係る生体物質標識剤は分子標識物質が目的とする生体物質と特異的に結合および/または反応することにより、生体物質の標識が可能となる。
Molecular Labeling Substance The biological substance labeling agent according to the present invention can label a biological substance by specifically binding and / or reacting with the target biological substance.
 当該分子標識物質としては、例えば、ヌクレオチド鎖、抗体、抗原、糖鎖及びシクロデキストリン等が挙げられる。ここで、分子標識物質としてトラスツズマブなどの抗体医薬を用いる場合、本発明に係る生体物質標識剤は、このような抗体医薬が認識するHER2などのガンマーカーが組織切片などに存在するかどうかを確認するための組織染色に用いることができる。 Examples of the molecular labeling substance include nucleotide chains, antibodies, antigens, sugar chains, and cyclodextrins. Here, when an antibody drug such as trastuzumab is used as a molecular labeling substance, the biological substance labeling agent according to the present invention confirms whether a cancer marker such as HER2 recognized by such an antibody drug is present in a tissue section or the like. Can be used for tissue staining.
 有機分子
 本発明に係る生体物質標識剤は、上記親水化半導体ナノ粒子集積構造体と、分子標識物質とが有機分子により結合されている。当該有機分子としては半導体ナノ粒子集積体と分子標識物質とを結合できる有機分子であれば特に制限はないが、例えば、タンパク質中でも、アルブミン、ミオグロビンおよびカゼイン等、またタンパク質の一種であるアビジンをビオチンと共に用いることも好適に用いられる。上記結合の態様としては特に限定されず、共有結合、イオン結合、水素結合、配位結合、物理吸着および化学吸着等が挙げられる。結合の安定性から共有結合などの結合力の強い結合が好ましい。
Organic molecule In the biological material labeling agent according to the present invention, the hydrophilic semiconductor nanoparticle integrated structure and the molecular labeling substance are bound by an organic molecule. The organic molecule is not particularly limited as long as it is capable of binding the semiconductor nanoparticle aggregate and the molecular labeling substance. For example, among proteins, albumin, myoglobin, casein, etc. It is also preferably used together. The form of the bond is not particularly limited, and examples thereof include a covalent bond, an ionic bond, a hydrogen bond, a coordinate bond, physical adsorption, and chemical adsorption. A bond having a strong bonding force such as a covalent bond is preferable from the viewpoint of bond stability.
 具体的には、半導体ナノ粒子集積構造体10をメルカプトウンデカン酸で親水化処理した場合は、有機分子としてアビジンおよびビオチンを用いることができる。この場合上記親水化半導体ナノ粒子集積構造体のカルボキシル基はアビジンと好適に共有結合し、アビジンがさらにビオチンと選択的に結合し、ビオチンがさらに分子標識物質と結合することにより生体物質標識剤となる。 Specifically, when the semiconductor nanoparticle integrated structure 10 is hydrophilized with mercaptoundecanoic acid, avidin and biotin can be used as organic molecules. In this case, the carboxyl group of the hydrophilic semiconductor nanoparticle integrated structure is preferably covalently bonded to avidin, and the avidin is further selectively bonded to biotin, and biotin is further bonded to the molecular labeling substance, thereby Become.
 以下、実施例により、本発明を詳細に説明するが、本発明はこれに限定されるものではない。
 [実施例1]
 実施例1に係る半導体ナノ粒子集積構造体について、図6を用いて説明する。本実施例1は、バンドギャップエネルギーの異なる二つの半導体ナノ粒子のうちの一方が、半導体ナノ粒子集積体12としての半導体ナノ粒子シリカ集積体2中に内包された状態で内部構造体を構成しており、もう一方の半導体ナノ粒子を集積してなる外部構造体が、当該半導体ナノ粒子シリカ集積体2を覆うように形成されている態様を示すものである。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.
[Example 1]
The semiconductor nanoparticle integrated structure according to Example 1 will be described with reference to FIG. The present Example 1 comprises an internal structure in the state in which one of two semiconductor nanoparticles having different band gap energies is encapsulated in a semiconductor nanoparticle silica aggregate 2 as the semiconductor nanoparticle aggregate 12. The external structure formed by integrating the other semiconductor nanoparticles is shown so as to cover the semiconductor nanoparticle silica aggregate 2.
 CdSe/ZnS粒子は上記セクション「発明を実施するための形態」に記したように合成してもよいが、本実施例1では、エヴィデントテクノロジー社から購入したものを用いることができる。波長は490,520,540,560,580,600,620nmから選ぶことができ、本実施例1では第1の半導体ナノ粒子1として発光波長540nmのCdSe/ZnS半導体ナノ粒子を集積して、半導体ナノ粒子シリカ集積体2を構築し、第2の半導体ナノ粒子4として490nmのCdSe/ZnS半導体ナノ粒子を集積して外部構造体を構築する。 The CdSe / ZnS particles may be synthesized as described in the above section “Mode for Carrying Out the Invention”, but in this Example 1, those purchased from Evident Technology Co. can be used. The wavelength can be selected from 490, 520, 540, 560, 580, 600, 620 nm. In Example 1, a CdSe / ZnS semiconductor nanoparticle having an emission wavelength of 540 nm is integrated as the first semiconductor nanoparticle 1 to construct a semiconductor nanoparticle silica aggregate 2. 490 nm CdSe / ZnS semiconductor nanoparticles are integrated as the second semiconductor nanoparticles 4 to construct an external structure.
 具体的には、非特許文献2を参考にして半導体ナノ粒子シリカ集積体2を形成する。まず発光波長540nmのCdSe/ZnS粒子を例えば、メタノール/2-プロパノール=3:1混合液中で析出させ遠心分離する。得られた半導体ナノ粒子をTOPO 0.1M (mol/L) のトルエン溶液に分散させ、15時間程度攪拌し、TEOS(テトラエトキシシラン)を用いてCdSe/ZnS半導体ナノ粒子表面をシラン化する。エタノール、H2O、アンモニアを加え100℃で1時間還流する。半導体粒子、TEOS、トルエン、エタノール、H2O、NH3の比率は、モル比として各々 1、2.8×104、5.87×106、1.07×108、7.99×107、7.17×105 である。最後に30分遠心分離を行い、H2O中に再度分散させた。これによりCdSe/ZnS粒子を20個程度内包する、粒径50nm程度の半導体ナノ粒子シリカ集積体2が形成される。 Specifically, the semiconductor nanoparticle silica aggregate 2 is formed with reference to Non-Patent Document 2. First, CdSe / ZnS particles having an emission wavelength of 540 nm are precipitated in, for example, a methanol / 2-propanol = 3: 1 mixed solution and centrifuged. The obtained semiconductor nanoparticles are dispersed in a TOPO 0.1M (mol / L) toluene solution, stirred for about 15 hours, and the surface of CdSe / ZnS semiconductor nanoparticles is silanized using TEOS (tetraethoxysilane). Add ethanol, H 2 O, and ammonia, and reflux at 100 ° C. for 1 hour. The ratio of the semiconductor particles, TEOS, toluene, ethanol, H 2 O, and NH 3 is 1,2.8 × 10 4 , 5.87 × 10 6 , 1.07 × 10 8 , 7.9 × as molar ratios, respectively. 10 7 and 7.17 × 10 5 . Finally, it was centrifuged for 30 minutes and dispersed again in H 2 O. As a result, a semiconductor nanoparticle silica aggregate 2 having a particle size of about 50 nm and containing about 20 CdSe / ZnS particles is formed.
 次に、上記半導体ナノ粒子シリカ集積体2の外側に、レイヤーバイレイヤー法を用いてさらに第2の半導体ナノ粒子4としての発光波長490nmのCdSe/ZnS半導体ナノ粒子を集積する。 Next, CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm as the second semiconductor nanoparticles 4 are further accumulated outside the semiconductor nanoparticle silica aggregate 2 using the layer-by-layer method.
 具体的には、非特許文献3を参考にして行うことが出来る。すなわち、上記で作成した半導体ナノ粒子シリカ集積体2をピラニア溶液(30%H2O2+70%H2SO4)で処理して、負に帯電させる。次に0.5mol/LのNaCl溶液中に1mg/mL PAH(ポリアリルアミンハイドロクロライド)、PSS(ポリソジウム4-スチレンスルフォネイト)およびPAA(ポリアクリル酸)をそれぞれ溶解した各溶液を作成しておく。まず、PAH溶液を、当該負に帯電した半導体ナノ粒子シリカ集積体2の100個程度あたり0.5mL添加し、20分間吸収させ、その後4回水洗することにより、表面にPAH層を形成する。そして、PSS,PAHについても同様の処理をそれぞれ行うことによりPSS層及びPAH層をそれぞれ形成させる。これらの操作により、半導体ナノ粒子シリカ集積体2上に、結合層13として機能するPAH/PSS/PAHの層(以下、PAH/PSS/PAH層)3が形成される。その後、PAH/PSS/PAH層3が形成された半導体ナノ粒子シリカ集積体をメルカプトポロピオン酸0.8mmol/Lでキャップした第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)を分散させた0.2mLの水溶液中に分散させることで、半導体ナノ粒子シリカ集積体2上に、第1の半導体ナノ粒子1(発光波長540nmのCdSe/ZnS半導体ナノ粒子)よりバンドギャップの大きい第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)が集積された外部構造体を形成されてなる半導体ナノ粒子集積構造体を得ることができる。第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)の層を複数積層化するには、この半導体ナノ粒子集積構造体に対して、PAH層の形成、PSS層の形成およびPAH層の形成を順次行うことによって新たなPAH/PSS/PAH層を形成してから、再度第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)を分散させた水溶液中に分散させる一連の工程を繰り返せば良い。 Specifically, it can be performed with reference to Non-Patent Document 3. That is, the semiconductor nanoparticle silica aggregate 2 prepared above is treated with a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to be negatively charged. Next, prepare 1 mg / mL PAH (polyallylamine hydrochloride), PSS (polysodium 4-styrenesulfonate) and PAA (polyacrylic acid) in 0.5 mol / L NaCl solution. . First, a PAH solution is added to 0.5 mL per about 100 negatively charged semiconductor nanoparticle silica aggregates 2, absorbed for 20 minutes, and then washed with water four times to form a PAH layer on the surface. Then, the PSS layer and the PAH layer are formed by performing the same processing for the PSS and PAH, respectively. By these operations, a PAH / PSS / PAH layer (hereinafter referred to as a PAH / PSS / PAH layer) 3 that functions as the bonding layer 13 is formed on the semiconductor nanoparticle silica aggregate 2. Then, the second semiconductor nanoparticle 4 (CdSe / ZnS semiconductor nanoparticle having an emission wavelength of 490 nm) obtained by capping the semiconductor nanoparticle silica aggregate formed with the PAH / PSS / PAH layer 3 with 0.8 mmol / L of mercaptopropionic acid. Is dispersed in a 0.2 mL aqueous solution in which the first semiconductor nanoparticle 1 (CdSe / ZnS semiconductor nanoparticle having an emission wavelength of 540 nm) has a larger band gap on the semiconductor nanoparticle silica aggregate 2. The semiconductor nanoparticle integrated structure formed by forming the external structure in which the semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) 2 are integrated can be obtained. In order to stack a plurality of layers of the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm), formation of a PAH layer, formation of a PSS layer, and After a new PAH / PSS / PAH layer is formed by sequentially forming a PAH layer, the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) are dispersed again in an aqueous solution. What is necessary is just to repeat a series of processes to disperse | distribute.
 得られた半導体ナノ粒子集積構造体に対する親水化処理は、この半導体ナノ粒子集積構造体の最外周部に対して、PAH層の形成、PSS層の形成およびPAH層の形成を同様に順次行ってから、PAA処理をさらに行い、その後カルボキシル基を導入することにより行う。 In the hydrophilic treatment for the obtained semiconductor nanoparticle assembly structure, a PAH layer, a PSS layer, and a PAH layer are sequentially formed on the outermost periphery of the semiconductor nanoparticle assembly structure in the same manner. From the above, PAA treatment is further performed, and then carboxyl groups are introduced.
 [実施例2]
 実施例2に係る半導体ナノ粒子集積構造体について、図7を用いて説明する。本実施例2は、バンドギャップエネルギーの異なる二つの半導体ナノ粒子含有層のほかに、支持コア構造体16としてシリカ粒子6をさらに含む態様を示すものである。ただ、このシリカ粒子6の外側に形成された半導体粒子含有層が、バンドギャップエネルギーの異なる2種類の半導体ナノ粒子含有層、すなわち、第1の半導体ナノ粒子集積層と、第2の半導体ナノ粒子集積層との2層からなる層である点で非特許文献3記載の発明と異なる。
[Example 2]
A semiconductor nanoparticle integrated structure according to Example 2 will be described with reference to FIG. Example 2 shows an embodiment in which silica particles 6 are further included as the support core structure 16 in addition to the two semiconductor nanoparticle-containing layers having different band gap energies. However, the semiconductor particle-containing layer formed on the outer side of the silica particle 6 includes two types of semiconductor nanoparticle-containing layers having different band gap energies, that is, a first semiconductor nanoparticle integrated layer and a second semiconductor nanoparticle. It differs from the invention described in Non-Patent Document 3 in that it is a layer composed of two layers with an integrated layer.
 CdSe/ZnS粒子は例えば、エヴィデントテクノロジー社から購入したものを用いることができる。波長は490,520,540,560,580,600,620nmから選ぶことができ、本実施例2では、第1の半導体ナノ粒子1として発光波長540nmのCdSe/ZnS半導体ナノ粒子(発光ピークにおける半値幅:30nm)を集積して、内部構造体を構成する第1の半導体ナノ粒子集積層を構築し、第2の半導体ナノ粒子4として490nmのCdSe/ZnS半導体ナノ粒子をレイヤーバイレイヤー法で集積して、外部構造体となる第2の半導体ナノ粒子集積層を構築する。 As the CdSe / ZnS particles, for example, those purchased from Evident Technology can be used. The wavelength can be selected from 490, 520, 540, 560, 580, 600, 620 nm. In Example 2, CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm (half-value width at emission peak: 30 nm) are integrated as the first semiconductor nanoparticles 1 to obtain an internal structure. The first semiconductor nanoparticle integrated layer constituting the body is constructed, and 490 nm CdSe / ZnS semiconductor nanoparticles are integrated as the second semiconductor nanoparticle 4 by the layer-by-layer method to form the second external structure. Build a semiconductor nanoparticle integrated layer.
 内部構造体を構成する支持コア構造体16としては、例えばコアフロント社等で入手可能な水中に分散されているシリカ粒子6(60nm径)を用いることができる。このシリカ粒子6の外側に、レイヤーバイレイヤー法を用いて第1の半導体ナノ粒子1としての発光波長540nmのCdSe/ZnS半導体ナノ粒子を集積する。 As the support core structure 16 constituting the internal structure, for example, silica particles 6 (60 nm diameter) dispersed in water available from Corefront Corporation or the like can be used. CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm as the first semiconductor nanoparticles 1 are accumulated outside the silica particles 6 using a layer-by-layer method.
 具体的には、上記実施例1と同様、非特許文献3を参考にして行うことが出来る。すなわち、上記シリカ粒子6をピラニア溶液(30%H2O2+70%H2SO4)で処理して、負に帯電させる。次に0.5mol/LのNaCl溶液中に1mg/mL PAH(ポリアリルアミンハイドロクロライド)、PSS(ポリソジウム4-スチレンスルフォネイト)およびPAA(ポリアクリル酸)をそれぞれ溶解した各溶液を作成しておく。まずPAH溶液を、当該負に帯電したシリカ粒子100個程度あたり0.5mL添加し、20分間吸収させ、その後4回水洗することにより、シリカ粒子6の表面にPAH層を形成する。そして、PSS,PAHについても同様の処理をそれぞれ行うことによりPSS層及びPAH層をそれぞれ形成させる。これらの操作により、シリカ粒子6上に、結合層13として機能するPAH/PSS/PAH層3が形成される。その後、PAH/PSS/PAH層3が形成されたシリカ粒子をメルカプトポロピオン酸0.8mmol/Lでキャップした第1の半導体ナノ粒子1(発光波長540nmのCdSe/ZnS半導体ナノ粒子)を分散させた0.2mLの水溶液中に分散させることで、シリカ粒子上に、第1の半導体ナノ粒子1(発光波長540nmのCdSe/ZnS半導体ナノ粒子)が集積された内部構造体を形成されてなるシリカ中間構造体を得ることができる。第1の半導体ナノ粒子1(発光波長540nmのCdSe/ZnS半導体ナノ粒子)の層を複数積層化するには、このシリカ中間構造体に対して、PAH層の形成、PSS層の形成およびPAH層の形成を順次行うことによって新たなPAH/PSS/PAH層を形成してから、再度第1の半導体ナノ粒子1(発光波長540nmのCdSe/ZnS半導体ナノ粒子)を分散させた水溶液中に分散させる一連の工程を繰り返せば良い。 Specifically, it can be carried out with reference to Non-Patent Document 3, as in Example 1. That is, the silica particles 6 are treated with a piranha solution (30% H 2 O 2 + 70% H 2 SO 4 ) to be negatively charged. Next, prepare 1 mg / mL PAH (polyallylamine hydrochloride), PSS (polysodium 4-styrenesulfonate) and PAA (polyacrylic acid) in 0.5 mol / L NaCl solution. . First, 0.5 mL of the PAH solution is added per about 100 negatively charged silica particles, absorbed for 20 minutes, and then washed with water four times to form a PAH layer on the surface of the silica particles 6. Then, the PSS layer and the PAH layer are formed by performing the same processing for the PSS and PAH, respectively. By these operations, the PAH / PSS / PAH layer 3 that functions as the bonding layer 13 is formed on the silica particles 6. Thereafter, the first semiconductor nanoparticles 1 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm) in which the silica particles on which the PAH / PSS / PAH layer 3 was formed were capped with 0.8 mmol / L of mercaptopropionic acid were dispersed. A silica intermediate structure in which an internal structure in which the first semiconductor nanoparticles 1 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm) are integrated on silica particles is formed by dispersing in 0.2 mL of an aqueous solution. You can get a body. In order to stack a plurality of layers of the first semiconductor nanoparticles 1 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm), a PAH layer, a PSS layer, and a PAH layer are formed on the silica intermediate structure. After a new PAH / PSS / PAH layer is formed by sequentially forming layers, the first semiconductor nanoparticles 1 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm) are dispersed again in an aqueous solution. What is necessary is just to repeat a series of processes.
 次に、上記シリカ中間構造体の外側に、レイヤーバイレイヤー法を用いてさらに第2の半導体ナノ粒子4としての発光波長490nmのCdSe/ZnS半導体ナノ粒子を集積する。まず、上記で作成したシリカ中間構造体100個程度あたりに、上記実施例1と同様の方法により調製したPAH溶液を0.5mL添加して20分間吸収させ、その後4回水洗することにより、シリカ中間構造体表面にPAH層を形成する。そして、PSS,PAHについても同様の処理をそれぞれ行うことによりPSS層及びPAH層をそれぞれ形成させる。これらの操作により、上記シリカ中間構造体上にPAH/PSS/PAH層3が形成される。その後、PAH/PSS/PAH層3が形成されたシリカ中間構造体を、メルカプトポロピオン酸0.8mmol/Lでキャップした第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)を分散させた0.2mLの水溶液中に分散させることで、上記内部構造体を構成する半導体ナノ粒子1よりバンドギャップの大きい第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)が集積された外部構造体を形成されてなる半導体ナノ粒子集積構造体を得ることができる。第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)の層を複数積層化するには、この半導体ナノ粒子集積構造体に対して、PAH層の形成、PSS層の形成およびPAH層の形成を順次行うことによって新たなPAH/PSS/PAH層を形成してから、再度第2の半導体ナノ粒子4(発光波長490nmのCdSe/ZnS半導体ナノ粒子)を分散させた水溶液中に分散させる一連の工程を繰り返せば良い。 Next, CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm as the second semiconductor nanoparticles 4 are further accumulated outside the silica intermediate structure using the layer-by-layer method. First, about 100 silica intermediate structures prepared above were added 0.5 mL of PAH solution prepared by the same method as in Example 1 and absorbed for 20 minutes. A PAH layer is formed on the surface of the structure. Then, the PSS layer and the PAH layer are formed by performing the same processing for the PSS and PAH, respectively. By these operations, the PAH / PSS / PAH layer 3 is formed on the silica intermediate structure. Thereafter, second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) in which the silica intermediate structure on which the PAH / PSS / PAH layer 3 is formed are capped with 0.8 mmol / L of mercaptopropionic acid are applied. By dispersing in a dispersed 0.2 mL aqueous solution, the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) having a larger band gap than the semiconductor nanoparticles 1 constituting the internal structure are obtained. A semiconductor nanoparticle integrated structure formed by forming an integrated external structure can be obtained. In order to stack a plurality of layers of the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm), formation of a PAH layer, formation of a PSS layer, and After a new PAH / PSS / PAH layer is formed by sequentially forming a PAH layer, the second semiconductor nanoparticles 4 (CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 490 nm) are dispersed again in an aqueous solution. What is necessary is just to repeat a series of processes to disperse | distribute.
 得られた半導体ナノ粒子集積構造体に対する親水化処理は、この半導体ナノ粒子集積構造体の最外周部に対して、PAH層の形成、PSS層の形成およびPAH層の形成を同様に順次行うことによって新たなPAH/PSS/PAH層を形成してから、PAA処理をさらに行い、カルボキシル基を導入することにより行う。これにより、表面層5として、親水化層が形成される。 In the hydrophilic treatment for the obtained semiconductor nanoparticle assembly structure, the PAH layer, the PSS layer, and the PAH layer are sequentially formed on the outermost periphery of the semiconductor nanoparticle assembly structure in the same manner. After forming a new PAH / PSS / PAH layer by, PAA treatment is further performed to introduce a carboxyl group. Thereby, a hydrophilic layer is formed as the surface layer 5.
 [比較例1]
 外部構造体を構成する第2の半導体ナノ粒子4として、内部構造体を構成する第1の半導体ナノ粒子1と同じ、発光波長540nmのCdSe/ZnS半導体ナノ粒子を用いたことを除き、実施例2と同様の方法により半導体ナノ粒子集積構造体を得た。
[Comparative Example 1]
Example except that the second semiconductor nanoparticles 4 constituting the external structure are the same CdSe / ZnS semiconductor nanoparticles having an emission wavelength of 540 nm as the first semiconductor nanoparticles 1 constituting the internal structure. In the same manner as in No. 2, a semiconductor nanoparticle integrated structure was obtained.
 [蛍光強度の比較]
 上記実施例2および比較例1で得られた半導体ナノ粒子集積構造体を構成する半導体ナノ粒子についてのデータを表1に示す。ここで、実施例記載の半導体ナノ粒子集積構造体を構成する二種類のコアシェル型半導体ナノ粒子のバンドギャップの関係を図8に示すとともに、得られた半導体ナノ粒子集積構造体を構成するコアシェル型半導体ナノ粒子におけるコア径の定義を図9に示す。
[Comparison of fluorescence intensity]
Table 1 shows data on the semiconductor nanoparticles constituting the semiconductor nanoparticle integrated structure obtained in Example 2 and Comparative Example 1. Here, the relationship between the band gaps of the two types of core-shell type semiconductor nanoparticles constituting the semiconductor nanoparticle integrated structure described in the examples is shown in FIG. 8, and the core-shell type constituting the obtained semiconductor nanoparticle integrated structure is shown in FIG. The definition of the core diameter in the semiconductor nanoparticles is shown in FIG.
 第1の半導体ナノ粒子1、第2の半導体ナノ粒子4および半導体ナノ粒子集積構造体の粒径(体積平均径)は、動的光散乱法による粒径測定装置(Malvern Instruments社製、Zetasizer Nano S)を用いて、半導体ナノ粒子又は集積体作製直後(凝集前)の粒径分布を測定することにより求めた。なお、平均粒径(体積平均径)は、粒径分布のピーク(中心)位置の粒径とした。 The particle diameters (volume average diameter) of the first semiconductor nanoparticles 1, the second semiconductor nanoparticles 4, and the semiconductor nanoparticle integrated structure are determined by a dynamic light scattering method (MalvernvInstruments, Zetasizer Nano). Using S), the particle size distribution was measured immediately after the production of semiconductor nanoparticles or aggregates (before aggregation). The average particle diameter (volume average diameter) was the particle diameter at the peak (center) position of the particle size distribution.
 また、実施例2および比較例1で得られた半導体ナノ粒子集積構造体の発光波長及び蛍光強度を表2に示す。第1の半導体ナノ粒子1および第2の半導体ナノ粒子4の両方に発光波長540nmのCdSe/ZnS半導体ナノ粒子を用いた比較例1(Eg2 - Eg1 = 2.30 - 2.30= 0 eV)における蛍光強度を100としたときに、第1の半導体ナノ粒子1として発光波長540nmのCdSe/ZnS半導体ナノ粒子を用い、第2の半導体ナノ粒子4として発光波長490nmのCdSe/ZnS半導体ナノ粒子を用いた実施例2(Eg2 - Eg1 = 2.53 - 2.30 = 0.23 eV)では120程度の蛍光強度が得られている。このように蛍光強度に差が生じたのは、比較例1では図2のように、半導体ナノ粒子集積構造体の内部に位置するCdSe/ZnS半導体ナノ粒子から生じた蛍光の発光強度の3割程度が、半導体ナノ粒子集積構造体の表面付近に位置するCdSe/ZnS半導体ナノ粒子を構成するCdSeで吸収されるため、濃度消光が生じたが、本発明に係る実施例2ではこのような濃度消光を抑えることができたからであると推測している。 Further, Table 2 shows the emission wavelength and fluorescence intensity of the semiconductor nanoparticle integrated structure obtained in Example 2 and Comparative Example 1. The fluorescence intensity in Comparative Example 1 (Eg2-Eg1 = 2.30-2.30 = 0 eV) using CdSe / ZnS semiconductor nanoparticles with an emission wavelength of 540 nm for both the first semiconductor nanoparticle 1 and the second semiconductor nanoparticle 4 is shown. Example of using CdSe / ZnS semiconductor nanoparticles with an emission wavelength of 540 nm as the first semiconductor nanoparticles 1 and CdSe / ZnS semiconductor nanoparticles with an emission wavelength of 490 nm as the second semiconductor nanoparticles 4 In 2 (Eg2-Eg1 = 2.53-2.30 = 0.23 eV), a fluorescence intensity of about 120 is obtained. The difference in the fluorescence intensity was caused by 30% of the emission intensity of the fluorescence generated from the CdSe / ZnS semiconductor nanoparticles located in the semiconductor nanoparticle integrated structure as shown in FIG. Since the degree of absorption is absorbed by CdSe constituting the CdSe / ZnS semiconductor nanoparticles located near the surface of the semiconductor nanoparticle integrated structure, concentration quenching occurs, but in Example 2 according to the present invention, such concentration It is speculated that it was because quenching could be suppressed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 1・・・第1の半導体ナノ粒子
 2・・・半導体ナノ粒子シリカ集積体
 3・・・PAH/PSS/PAH層
 4・・・第2の半導体ナノ粒子
 5・・・表面層
 6・・・シリカ粒子
 10・・・本発明の半導体ナノ粒子集積構造体
 11・・・第1の半導体ナノ粒子
 12・・・半導体ナノ粒子集積体
 13・・・結合層
 14・・・第2の半導体ナノ粒子
 15・・・表面層
 16・・・支持コア構造体
 17・・・マトリクス
DESCRIPTION OF SYMBOLS 1 ... 1st semiconductor nanoparticle 2 ... Semiconductor nanoparticle silica aggregate 3 ... PAH / PSS / PAH layer 4 ... 2nd semiconductor nanoparticle 5 ... Surface layer 6 ... Silica particle 10 ... Semiconductor nanoparticle integrated structure of the present invention 11 ... First semiconductor nanoparticle 12 ... Semiconductor nanoparticle integrated body 13 ... Binding layer 14 ... Second semiconductor nanoparticle 15 ... Surface layer 16 ... Support core structure 17 ... Matrix

Claims (8)

  1.  複数の第1の半導体ナノ粒子を集積してなる内部構造体と、
     該内部構造体を被覆する、複数の第2の半導体ナノ粒子を集積してなる外部構造体と
    を含み、
     該第1の半導体ナノ粒子が、該第2の半導体ナノ粒子より小さいバンドギャップを有する半導体ナノ粒子集積構造体。
    An internal structure formed by integrating a plurality of first semiconductor nanoparticles;
    An external structure formed by integrating a plurality of second semiconductor nanoparticles covering the internal structure,
    A semiconductor nanoparticle assembly structure in which the first semiconductor nanoparticles have a smaller band gap than the second semiconductor nanoparticles.
  2.  前記第1の半導体ナノ粒子が、
     該第1の半導体ナノ粒子の発光ピーク波長の半値幅相当分以上、前記第2の半導体ナノ粒子よりも小さいバンドギャップを有する請求項1に記載の半導体ナノ粒子集積構造体。
    The first semiconductor nanoparticles are
    2. The semiconductor nanoparticle integrated structure according to claim 1, wherein the semiconductor nanoparticle integrated structure has a band gap smaller than that of the second semiconductor nanoparticles by an amount corresponding to a half width of an emission peak wavelength of the first semiconductor nanoparticles.
  3.  前記第1の半導体ナノ粒子が、
     前記第2の半導体ナノ粒子よりも長い発光ピーク波長を有する請求項1または2に記載の半導体ナノ粒子集積構造体。
    The first semiconductor nanoparticles are
    3. The semiconductor nanoparticle integrated structure according to claim 1, which has an emission peak wavelength longer than that of the second semiconductor nanoparticles.
  4.  前記第1の半導体ナノ粒子の発光ピーク波長と、前記第2の半導体ナノ粒子の発光ピーク波長との差が、該第1の半導体ナノ粒子の発光ピーク波長の半値幅以上である請求項3に記載の半導体ナノ粒子集積構造体。 The difference between the emission peak wavelength of the first semiconductor nanoparticles and the emission peak wavelength of the second semiconductor nanoparticles is not less than the half-value width of the emission peak wavelength of the first semiconductor nanoparticles. The semiconductor nanoparticle integrated structure as described.
  5.  前記第1の半導体ナノ粒子と、前記第2の半導体ナノ粒子が、ともにコア/シェル構造を有する請求項1~4のいずれかに記載の半導体ナノ粒子集積構造体。 The semiconductor nanoparticle integrated structure according to any one of claims 1 to 4, wherein both the first semiconductor nanoparticles and the second semiconductor nanoparticles have a core / shell structure.
  6.  前記第1の半導体ナノ粒子を構成するコア部分およびシェル部分が、前記第2の半導体ナノ粒子を構成するコア部分およびシェル部分とそれぞれ同一の材質から構成され、且つ、
     該第1の半導体ナノ粒子を構成するコア部分が、該第2の半導体ナノ粒子を構成するコア部分よりも大きな体積平均径を有する
    請求項5に記載の半導体ナノ粒子集積構造体。
    The core part and the shell part constituting the first semiconductor nanoparticles are each made of the same material as the core part and the shell part constituting the second semiconductor nanoparticles, and
    6. The semiconductor nanoparticle integrated structure according to claim 5, wherein the core part constituting the first semiconductor nanoparticle has a volume average diameter larger than that of the core part constituting the second semiconductor nanoparticle.
  7.  前記第1の半導体ナノ粒子を構成するコア部分の体積平均径と、前記第2の半導体ナノ粒子を構成するコア部分の体積平均径との差が、
     該第1の半導体ナノ粒子を構成するコア部分の発光ピーク波長の半値幅相当分以上である請求項6に記載の半導体ナノ粒子集積構造体。
    The difference between the volume average diameter of the core part constituting the first semiconductor nanoparticles and the volume average diameter of the core part constituting the second semiconductor nanoparticles is:
    The semiconductor nanoparticle integrated structure according to claim 6, wherein the semiconductor nanoparticle integrated structure is equal to or more than the half-value width of the emission peak wavelength of the core portion constituting the first semiconductor nanoparticles.
  8.  体積平均径が50~1000nmの範囲である請求項1~7のいずれかに記載の半導体ナノ粒子集積構造体。 8. The semiconductor nanoparticle integrated structure according to claim 1, wherein the volume average diameter is in the range of 50 to 1000 nm.
PCT/JP2013/058984 2012-03-29 2013-03-27 Semiconductor nanoparticle assembly structure WO2013146872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014501123A JP5556973B2 (en) 2012-03-29 2013-03-27 Semiconductor nanoparticle integrated structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-077441 2012-03-29
JP2012077441 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013146872A1 true WO2013146872A1 (en) 2013-10-03

Family

ID=49260121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058984 WO2013146872A1 (en) 2012-03-29 2013-03-27 Semiconductor nanoparticle assembly structure

Country Status (2)

Country Link
JP (1) JP5556973B2 (en)
WO (1) WO2013146872A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927294B2 (en) 2019-06-20 2021-02-23 Nanosys, Inc. Bright silver based quaternary nanostructures
US11360250B1 (en) 2021-04-01 2022-06-14 Nanosys, Inc. Stable AIGS films
US11407940B2 (en) 2020-12-22 2022-08-09 Nanosys, Inc. Films comprising bright silver based quaternary nanostructures
US11926776B2 (en) 2020-12-22 2024-03-12 Shoei Chemical Inc. Films comprising bright silver based quaternary nanostructures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664616B2 (en) * 2015-11-04 2017-05-30 The Boeing Company Methods and systems for non-destructive testing via hybrid spectral sensors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008094968A (en) * 2006-10-12 2008-04-24 Sharp Corp Nanocrystal particle phosphor, coated nanocrystal particle phosphor and manufacturing method of the coated nanocrystal particle phosphor
WO2010004777A1 (en) * 2008-07-07 2010-01-14 コニカミノルタエムジー株式会社 Labeling inorganic nanoparticle agent
JP2011251283A (en) * 2004-08-04 2011-12-15 Agency For Science Technology & Research Nanoparticle, nanocrystal, nanocrystal solution, and method for making water-soluble nanoparticle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251283A (en) * 2004-08-04 2011-12-15 Agency For Science Technology & Research Nanoparticle, nanocrystal, nanocrystal solution, and method for making water-soluble nanoparticle
JP2008094968A (en) * 2006-10-12 2008-04-24 Sharp Corp Nanocrystal particle phosphor, coated nanocrystal particle phosphor and manufacturing method of the coated nanocrystal particle phosphor
WO2010004777A1 (en) * 2008-07-07 2010-01-14 コニカミノルタエムジー株式会社 Labeling inorganic nanoparticle agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10927294B2 (en) 2019-06-20 2021-02-23 Nanosys, Inc. Bright silver based quaternary nanostructures
US11407940B2 (en) 2020-12-22 2022-08-09 Nanosys, Inc. Films comprising bright silver based quaternary nanostructures
US11926776B2 (en) 2020-12-22 2024-03-12 Shoei Chemical Inc. Films comprising bright silver based quaternary nanostructures
US11360250B1 (en) 2021-04-01 2022-06-14 Nanosys, Inc. Stable AIGS films

Also Published As

Publication number Publication date
JPWO2013146872A1 (en) 2015-12-14
JP5556973B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
US10854798B2 (en) Quantum dot encapsulation techniques
JP5556973B2 (en) Semiconductor nanoparticle integrated structure
KR101651798B1 (en) Preparation of particles with quantum dots
Chen et al. Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application
JP5915529B2 (en) Manufacturing method of semiconductor nanoparticle assembly
JPWO2009066548A1 (en) Semiconductor nanoparticles, fluorescent labeling substances and molecular / cell imaging methods using them
Rissi et al. Surface modification of ZnO quantum dots by organosilanes and oleic acid with enhanced luminescence for potential biological application
KR101575396B1 (en) Quantum dot contained nanocomposite particles and method of fabrication thereof
JP2009132771A (en) Core-shell-type semiconductor nanoparticle and its manufacturing method
Lee et al. Bright, stable, and water-soluble CuInS 2/ZnS nanocrystals passivated by cetyltrimethylammonium bromide
US8901535B2 (en) Semiconductor nanoparticle assembly
US20100038626A1 (en) Semiconductor nanoparticle aggregate, method for producing the same, and biological substance labeling agent utilizing the same
JP5790570B2 (en) Semiconductor nanoparticle assembly
Spera et al. Improved Surface Passivation of Colloidal Ge1–x Sn x Nanoalloys through Amorphous SiO2 Shell Growth
JP5880563B2 (en) Method for producing ion-resistant semiconductor nanoparticle assembly
JP5761102B2 (en) High-brightness semiconductor nanoparticle assembly
Yang et al. Au/SiO 2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence
WO2010004777A1 (en) Labeling inorganic nanoparticle agent
Barik Synthetic developments of semiconductor quantum dot for biological applications
WO2009116408A1 (en) Process for producing core/shell-type semiconductor nanoparticles, and core/shell-type semiconductor nanoparticles
JP2013057630A (en) Semiconductor nanoparticle assembly containing enhancement particle
JP5381711B2 (en) Aggregate of semiconductor nanoparticle phosphors, method for producing the same, and single molecule observation method using the same
JPWO2009011194A1 (en) Aggregation of semiconductor nanoparticle phosphor, method for producing the same, and single molecule observation method using the same
WO2012147429A1 (en) Glass particles containing enclosed semiconductor nanoparticles, and process for producing glass particles containing enclosed semiconductor nanoparticles
WO2011158531A1 (en) Semiconductor nanoparticle aggregate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501123

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13768232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE